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ABSTRACT

FEEDBACK MOTION PLANNING OF A NOVEL FULLY ACTUATED
UNMANNED SURFACE VEHICLE VIA SEQUENTIAL COMPOSITION OF

RANDOM ELLIPTICAL FUNNELS

Özdemı̇r, Oğuz

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert Ankaralı

December 2022, 81 pages

This thesis proposes and analyzes a motion planning and control schema for un-

manned surface vehicles that fuses sampling-based approaches’ probabilistic com-

pleteness with closed-loop approaches’ robustness. The proposed schema is based

on the sequential composition of elliptical funnels, and it consists of two stages: tree

generation and motion control. For validation of the approach, we carried out experi-

ments using both simulation and physical setup besides the mathematical analysis. In

order to have a common interface for both the simulations and the physical setup and

to reduce duplication of work done, we implemented the approach as a ROS (Robot

Operating System) node that can interface both similarly. Our results show that the

proposed method handles the disturbances with minimal disruptions in the stability

of the system. Furthermore, elliptic funnels improve the sparsity of the tree compared

to the circular ones, thus, resulting in fewer mode changes.

Keywords: Motion and Path Planning, Motion Control, Sequential Composition, Un-

manned Surface Vehicles
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ÖZ

TAM TAHRİKLİ İNSANSIZ YÜZEY ARACININ RASSAL ELİPTİK
HUNİLERİN SIRALI BİLEŞİMİ İLE GERİ BESLEMELİ HAREKET

PLANLAMASI

Özdemı̇r, Oğuz

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert Ankaralı

Aralık 2022 , 81 sayfa

Tez kapsamında, insansız su üstü araçları için, örneklemeye dayalı yaklaşımların ola-

sılıksal bütünlüğünü kapalı döngü yaklaşımların gürbüzlüğü ile birleştiren bir hareket

planlama ve kontrol şeması önerilmiş ve incelenmiştir. Eliptik hunilerin sıralı bileşi-

mine dayandırdığımız çözüm önerimiz, ağaç oluşturma ve hareket kontrolü olmak

üzere iki aşamadan oluşmaktadır. Çalışmamızda, çözümümüzün geçerliliğinin gös-

terimi için matematiksel analizin yanı sıra hem simülasyon hem de fiziksel sistem

kullanılarak deneyler gerçekleştirilmiştir. Önerilen yaklaşım, simülasyon ve fiziksel

sistem testlerinde ortak arayüz kullanabilmek ve gereken iş tekrarını azaltmak için,

her ikisini de benzer şekilde arayüzleyebilen bir ROS (Robot İşletim Sistemi) dü-

ğümü olarak uygulanmıştır. Sonuçlarımız, önerilen yöntemin bozucu etkenleri sis-

tem kararlılığında minimum bozulma ile ele aldığını göstermektedir. Ayrıca, eliptik

hunilerin, dairesel olanlara kıyasla ağacın seyrekliğini iyileştirerek, hareket kontrolü

aşamasında daha az mod değişikliğiyle sonuçlandığı gözlenmiştir.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

The demand for the creation of unmanned surface vehicles (USVs) and autonomous

surface vehicles (ASVs) has increased in tandem with the rise in global interest in in-

dustrial, scientific, and military uses in both oceans and shallow waters [3]. ASVs are

surface vessels that are capable of decision-making and autonomous operation with-

out the aid of human guidance, navigation, or control independent from the number

of passengers or crew members on board [4]. USVs on the other hand, are vehicles

with no crew or passenger; that can be operated autonomously, semi-autonomously

or remotely. Due to their common attachments, these terms can be used to describe

the same surface vehicle.

The majority of currently used USVs are restricted to experimental platforms and

primarily consist of small-scale USVs with limited autonomy, endurance, payloads,

and power outputs [5]. However, increased autonomy for regular ships would also

positively affect operational performance and safety. The European Maritime Safety

Agency (EMSA) reports that more than 43% of all the 15481 recorded incidents and

casualties between 2014-2020 in the European Marine Casualty Information Platform

(EMCIP) with ships are of navigational casualties in its Annual Overview of Marine

Casualties and Incidents [6]. In the same report, it is also stated that 60.6% of the

investigated marine casualties in EMCIP are related to human action. From these fig-

ures, we can say that reducing human action from the operations of these vehicles can

decrease accidents and reduce the frequency and impact of human mistakes. These

promising benefits from the increased autonomy in surface vehicles and the need for
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a mature solution in this area make autonomy-increasing research areas such as mo-

tion control and path planning of surface vehicles an active research topic. For these

reasons, in this thesis, we demonstrate our work on the feedback motion planning of

a USV that uses the sequential composition of random elliptical funnels method.

1.2 Literature Review

Motion control and path planning are fundamental problems in robotics, where each

tries to solve the problem: how to drive the robot to a target location without colliding

with obstacles. In the literature, different approaches exist that propose solutions to

these problems with different assumptions, limitations, and resource requirements

concerning environmental representation and motion models.

The open-loop approach to this problem is to create an open-loop trajectory to be

tracked by a closed-loop control strategy. Sampling-based planners such as PRM [7],

RRT [8, 9], and EST [10] are well-known examples of open-loop planners. Later in

the trajectory tracking stage, generated online path trackers follow a collision-free

and possibly smooth path [11] [12]. Generally speaking, sampling-based planners’

trajectories are not required to be smooth and may require an additional smoothing

layer before the path-following stage.

The closed-loop approach to the path planning and motion control problem requires

the creation of a control policy, which would bring the agent to the goal configura-

tion from any valid initial configuration. This approach ensures that the agent would

reach the goal configuration even if it diverges from the optimal trajectory due to the

disturbances. The most common realizations of the closed-loop approach are based

on potential functions, with control policies based on gradient descent [13]. There

also exist planners based on navigation functions, which are potential functions with

single stable local minima at the goal configuration [14]. Navigation function meth-

ods are immune to the local-minima problem. However, their application is limited to

simple environment representations such as sphere worlds and star worlds [15], with

limited real-world use. The use of harmonic functions for global navigation is another

local-minima-free alternative [16] [17], but the required processing power for numer-
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ical solutions in these approaches is enormous and not suitable for real-time onboard

computing. Since creating a single lightweight control policy over the whole config-

uration space that would forward the agent to the goal configuration while avoiding

collisions is a challenging (and mostly impossible) task, hybrid approaches also exist.

Hybrid methods utilize the open-loop approach’s simplicity with the closed-loop ap-

proach’s robustness. Sampling-based neighborhood graph constructs a graph whose

deployments probabilistically cover the configuration space in its initialization phase

[18]. The constructed graph is later used to find the paths between the goal deploy-

ment and any other deployment, and local navigation functions are applied to each

deployment. This approach enables the use of compositions of navigation functions

in rather complex environments. Work presented in [19] follows a similar schema,

but it uses Model Predictive Control (MPC) for the motion control inside the deploy-

ments. Schemas presented in [20] and [2], on the other hand, use the ideas given

in [1] and [9] to create a funnel tree with a lightweight control policy defined over the

funnels. Another example of a hybrid method that creates a collision-free feedback

law over given cell decompositions is proposed in [21].

1.3 Contributions

The main contribution of this thesis is the development and hardware verification of

the partial feedback linearized controller that guarantees safe operation inside elliptic

funnels. This thesis proposes a new trajectory-free, sampling-based feedback motion

planning scheme that utilizes the developed controller at its core. Thanks to the 2D

polygonal map representation it is compatible with, the proposed scheme can work

in real-world workspaces in which unmanned surface vehicles operate without being

over-conservative.

We implemented the proposed algorithms and controller using C++ and ROS (Robot

Operating System) and tested them on two different simulation setups besides the

experimental platform. With clear abstraction between tree generation and motion

control stages combined with the utilized language’s performance, we could make

extensive testing, accelerated by the open source tools and libraries.
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1.4 The Outline of the Thesis

In this study, a feedback motion planning approach is proposed, deployed, and exam-

ined. In Chapter 1, we gave a brief introduction to existing motion control topologies

and presented examples of them. In Chapter 2, the works and concepts crucial for a

clear understanding of our approach are described in detail. Chapter 3 presents the

proposed algorithm in detail, containing both the graph generation and motion con-

trol stages. Details of the proposed algorithm’s implementation and architecture are

presented in Chapter 4. Later in Chapter 5, we exhibit the platform on which our ex-

periments were conducted, its low-level control architecture, and its state estimation

infrastructure. This chapter also presents the results from the investigations related to

the experimental platform. Chapter 6 presents the results from both the simulations

and real-world experiments. The experiments in this chapter are divided into multiple

sections that focus on different aspects of our approach. Finally, Chapter 7 concludes

the thesis and lays out the field’s future directions.
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CHAPTER 2

BACKGROUND

In this thesis, we present a method that combines elements from two different ap-

proaches: Rapidly-exploring Random Trees (RRT) [22] and sequential composition

of controllers [1]. In order to provide a clear and comprehensive understanding of our

proposed method, we will briefly review the key concepts and ideas behind RRT and

sequential composition in this chapter.

2.1 Sampling-based Motion Planning

Sampling-based planners are a type of motion planning algorithm that does not ex-

plicitly construct a representation of the obstacles in the configuration space. This

makes them computationally efficient compared to other complete motion planning

algorithms [23]. Instead of explicitly representing the obstacles, sampling-based

planners use a collision-checking procedure to determine whether a particular con-

figuration of the robot would be in collision with any obstacles. These planners have

limited access to the configuration space, and efficient collision detection is crucial to

their implementation and range of applicability.

Another key characteristic of sampling-based planners is their ability to achieve some

level of completeness. A complete planner can provide a correct answer to a path-

planning query in a bounded amount of time. However, complete planners are only

practical for robots with up to three degrees of freedom due to their high combi-

natorial complexity [24, Chapter 7]. Sampling-based planners offer a weaker form

of completeness, known as probabilistic completeness. Probabilistic completeness

means that given enough time, the planner will eventually find a solution if it exists.
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Sampling-based planners can be divided into two categories: multi-query and single-

query. PRM is an example of a multi-query planning algorithm that involves a learn-

ing phase where collision-free configurations are sampled and connected to create a

roadmap, a graph representation of the free configuration space Qfree. This roadmap

can then be queried in the query phase to find a path between any two configurations.

The separation between the learning and query phases of multi-query planning algo-

rithms allows for offline computation in the learning phase, enabling a more complete

representation ofQfree. In contrast, RRT and EST are examples of single-query plan-

ning algorithms. These planners prioritize speed in solving a specific path-planning

query and do not focus on the exploration of the entire free configuration space.

2.1.1 Rapidly-exploring Random Trees

The core principle of the Rapidly-exploring Random Tree (RRT) algorithm is the

utilization of a sampling strategy to direct the exploration of high-dimensional state

spaces that are subject to both algebraic and differential constraints. As stated in [22],

the algorithm samples points in the state space and "pulls" the search tree towards

these sampled points, thus biasing the exploration towards previously unexplored re-

gions of the space. The basic form of the RRT algorithm is given in Algorithm 1 and

an example tree expansion is shown in Figure 2.1. The process begins with an initial

configuration and iteratively builds a tree structure within the configuration space by

sampling new configurations and expanding the tree through the use of the Extend

function. The Nearest function is utilized to identify the closest node within the tree

to a newly sampled configuration. The Extend function, in turn, is responsible for

steering from the nearest node of the tree towards the newly sampled configuration.

Algorithm 1 Basic RRT Algorithm

1: T .Init(qstart)

2: for i = 1 to K do

3: qrand ← RandomConf(C)
4: qnear ← Nearest(T , qrand)
5: Extend(T , qnear, qrand)
6: end for
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qrand
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qnear

ε

Figure 2.1: RRT expansion illustration for a holonomic point robot. qnew is found by

applying an input to the robot in the direction of qrand from qnear.

In the RRT algorithm, the main loop can be customized to control different aspects of

the algorithm. One such aspect is the distribution of the RandomConf, which can be

slightly biased towards the qgoal to improve the algorithm’s convergence. However,

it’s important to note that biasing it too much can lead to the algorithm getting stuck in

local minima, similar to potential field planners. Another aspect of the RRT algorithm

to consider is the choice of the Nearest and Extend functions. These functions play

an essential role in satisfying differential constraints for robots with nonholonomic

constraints. By carefully selecting these functions, the algorithm can be made to

handle more complex cases.

2.2 Sequential Composition of Controllers

As previously discussed, creating a single closed-loop control policy that guides the

agent to the goal configuration while avoiding collisions throughout the entire con-

figuration space is a difficult task that is, in most cases, infeasible [25]. The idea of

sequential composition, introduced in [1], is that in these cases, instead of defining

a single complex control policy, it is more feasible to define a sequence of simpler

yet dedicated controllers that would forward the agent to the goal. The idea of fun-

nels was first used to describe the organized, self-regulating behavior displayed by

passive masses in the presence of mechanical guideways in [26]. Later, the notion of

funnels was extended to feedback controllers with a basin of attraction and a stable

equilibrium in [1]. Funnel and sequential composition ideas are described best by
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Figure 2.2, where the metaphorical funnel is illustrated by an actual funnel-shaped

structure. In the sequential composition illustration of the same figure, each funnel

guides the agent to its local goal and when the agent enters the basin of a funnel with

a higher priority, its controller is activated. In Figure 2.3, the sequential composition

idea is illustrated in a case where obstacle-free state space is not convex and the ideal

single funnel (i.e. control policy) that covers the whole obstacle-free state space is

hard to define.

Figure 2.2: Single funnel and sequential composition of funnels illustrations gotten

from [1]. Active funnel changes when the agent enters the basin of a higher-priority

funnel.

Figure 2.3: Single complex funnel and sequential composition of simpler funnels

illustrations gotten from [1]. In both of these cases, the agent is guided to the same

goal configuration.
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The sequential composition scheme can handle small disturbances by utilizing fun-

nels, which provide asymptotic stability for each controller and local goal. It also

handles large, unexpected disturbances because it does not have a predefined state

or plan. When the system’s state changes to an unexpected location due to external

disturbances, the controller for that specific area will activate, and the process will

start again. Also, suppose the state gets to a funnel closer to the goal state or begins

directly in the goal funnel. In that case, the intermediate controllers will not activate,

and the system will proceed toward the goal state directly. Thus, the proposed control

scheme effectively manages disturbances, provided that the said disturbances do not

result in the system state departing from the union of all domains.

2.2.1 Sequential Composition of Circular Funnels

Referencing the works from [1], [22], and [18], Ege and Ankarali [2] proposed a

feedback motion planning scheme for USVs with nonholonomic constraints using

random sequential composition. In their work, they defined circular funnels similar

to the one in Figure 2.4 where each funnel guided the unicycle-modeled agent to its

center using the nonlinear control policy in (2.1). In their work, Ege and Ankarali

showed that when kα and kρ in (2.1) are chosen in a way that satisfies kα > kρ, then

the center of the funnel is an asymptotically stable equilibrium point.

 v

ω

 =

 kρρ cosα

kαα

 . (2.1)

In their work, the sequential composition is realized by generating a funnel tree whose

root is at the goal configuration and expanding it in a fashion similar to RRT such

that the new funnels have their outlets at the existing higher-priority funnels’ basin.

We used a very similar tree-generation algorithm in our work, with only elliptical

expansion and termination condition differences. An example circular funnel tree can

be seen in Figure 2.5. In their work, they also compared the sparsity of the circular

funnel tree with the original RRT algorithm using Monte Carlo simulations. They

observed that on average of 1000 runs, the RRT algorithm resulted in 971 nodes,

whereas their algorithm resulted in 134 nodes in the map seen in Figure 2.5. This
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Figure 2.4: Funnel definition used in [2]. The cyan dashed curve is the scaled circle

defined by the current distance ρ to the center. The red ray shows the reference

direction determined by the φ angle, which is the direction directly toward the center,

and α is the angle between the robot’s orientation and the reference direction.

dramatic sparsity enhancement is a result of a single funnel covering large portions

of the map, which we have inherited and improved.

Figure 2.5: Example circular funnel tree gotten from [2]. The red marker shows the

goal configuration whereas the green one shows the start configuration. In this figure,

two example paths are also shown that are results from experiments that use different

kα.
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CHAPTER 3

METHODOLOGY

The schema we propose is shown in Figure 3.1, which consists of two stages: tree

generation and feedback motion control. Algorithm 2 creates an ellipse tree in the

tree generation stage that starts with the goal funnel that centers the qgoal. Later, the

ellipse tree is expanded until the termination condition is satisfied. After successfully

creating the ellipse tree, the robot’s motion on the active funnel is controlled via the

control policy detailed in Section 3.2, which funnels any q inside the funnel bound-

aries to its center asymptotically without any boundary violation. Since funnels are

generated on free space, this policy guarantees a collision-free motion to the next

connected funnel.

yqfunnel

q

Ellipse Tree

qgoal
map

v, w
Proposed Control Policy Plant

Figure 3.1: Block diagram of the proposed schema. Ellipse tree block determines the

active funnel from the plant’s state q and outputs active funnel’s state qfunnel. Then

controller uses q and qfunnel to calculate reference forward velocity v and yaw rate w

for the plant to move toward the active funnel’s center.

3.1 Tree Generation

In the tree generation stage, Algorithm 2 is used with inputs polygonally defined

map, start position, and goal position. In the execution of the algorithm, the tree is

initialized with a funnel centering qgoal, and the tree is expanded using random config-
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urations until the termination condition is satisfied. In Algorithm 2, the Terminatio-

nUnsatisfied function has two responsibilities: checking whether qstart is contained

in the set covered by the tree and checking whether the tree can still be extended. The

approach presented in [18] is utilized to check the tree’s extendability. The approach

is implemented by counting successive funnel creation failures and comparing it with

mlimit given in (3.1). The parameters Pc and β in (3.1) are user-defined parameters

in the range (0, 1) representing coverage confidence level and coverage fraction, re-

spectively. This additional termination condition is added as a way to return from the

algorithm on cases where there is no possible solution exists.

Algorithm 2 Ellipse-Tree Generation Algorithm
Input: qgoal, qstart,map

Output: Tree of elliptic funnels, G

1: G.Initialize(map, qgoal)

2: while TerminationUnsatisfied(G, qstart, mlimit) do

3: qtmp ← RandomConf(map)

4: V ← G.ClosestFunnel(qtmp)

5: qnew ← V .CalculateNextFunnelPosition(qtmp, η)

6: Vnew ← G.ConditionallyAddFunnel(map, qnew)

7: end while

8: return G

m ≥ ln (1− Pc)
ln β

− 1 = mlimit . (3.1)

In the main body of Algorithm 2, a random configuration qtmp in the map is gener-

ated, and a new funnel is conditionally added to the tree using the qtmp. For executing

lines 4-6, finding the closest funnel and collision checking procedures suitable for

ellipses are required, which are satisfied by using distance and closest point queries

from Geometric Tools Engine [27]. Later, qnew is calculated by the CalculateNext-

FunnelPosition function as in Figure 3.2. User-defined η in this function determines

how much qnew is inside the funnel V . Lastly, the ConditionallyAddFunnel function

creates a funnel centering qnew. Note that it only inserts the Vnew to the tree G if it

satisfies additional constraints defined on the size of the funnel for eliminating micro-
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funnels. For illustrative purposes, an example tree generation sequence is given in

Figure 3.3, where the ellipse-tree is initialized and expanded.

+

+qcenter

++

qtmp
qclosest

qnew

+

+qcenter

++

qtmp
qclosest

qnew

Figure 3.2: Calculating next funnels position for η = ‖qcenterqnew‖
‖qcenterqclosest‖

= 0.8 and 0.6.

First, a circular funnel is created that centers qnew and it is expanded elliptically in the

direction that allows further expansion using the environmental information.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Tree generation illustration. In the steps from (a) to (d), the goal funnel’s

creation and expansion are illustrated. In the following steps, tree expansion is illus-

trated where new funnels are created referencing the cyan qtmp’s with η = 0.8. In this

realization, newly added funnels stayed circular since they have no direction that they

can expand elliptically.
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3.2 Motion Control

The differential drive systems mainly carry autonomous ground and water (both sur-

face and underwater) vehicles’ motion control. In high friction environments where

autonomous systems operate and high bandwidth-based speed controllers are used for

low-level control of these systems, the motion pattern of robotic systems in this class

can be accurately captured with a unicycle model [28], [2]. State-space representa-

tion of the unicycle model can be seen in (3.2) and Figure 3.4. In this model, the state

consists of the 2D position and orientation w.r.t world-fixed reference frame W . The

model’s inputs are forward (and backward) velocity v and yaw rate w, which are to

be executed with previously mentioned high bandwidth, low-level controllers.

B

y

W x

qg

Figure 3.4: Unicycle model and reference frames. W and B represent world-fixed

and base-fixed frames accordingly. Here v represents forward (i.e. surge) velocity,

whereas ω represents the angular velocity.


ẋ

ẏ

θ̇

 =


cos θ 0

sin θ 0

0 1

 ·
 v

ω

 . (3.2)

The elliptical funnels used in our study impose different convex state-space con-

straints on the orbits of the robot than circular ones. For this reason, we cannot

guarantee that the orbits of the model will remain in the ellipse if we utilize the pre-

vious control policies that were introduced in [28] and [2]. To be able to guarantee, a

novel control algorithm is presented in this thesis.
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Figure 3.5: Funnel definition. M is a world-fixed frame that defines the relation

between funnels, whereas W is the frame centered on the active funnel’s center. The

cyan dashed curve is the scaled ellipse defined by the current distance toW calculated

using (3.5) and the red dashed circle is the auxiliary circle of the scaled ellipse. The

red ray shows the reference direction determined by the φ angle, and α is the angle

between the robot’s orientation and the reference direction. For circular funnels (i.e.

elliptic funnels with a=1), the red ray passes through the funnel’s center.

Inspecting the elliptic region given in Figure 3.5, which has its primary axis length

2ar (a > 1), and with the W frame defined on its center, we can define the set S

formed by the points on the boundary of the elliptical region as

S =

q =
 x

y

 | q ∈ R2,
x2

a2
+ y2 = r2

 . (3.3)

Similarly, we can express the "safe" set G as follows:

G =

q =
 x

y

 | q ∈ R2,
x2

a2
+ y2 = ρ2 < r2

 . (3.4)

Instead of defining the system dynamics in the Cartesian coordinate system, we will

define it in a special elliptical coordinate system, which is analogous to polar co-

ordinates in circular systems. Aicardi et al. [28] and Ege and Ankarali [2] use the

Euclidean norm as the error distance (radius) because they use circular polar coordi-
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nates in their studies. Since elliptic coordinates are used in this study, and we aim

to ensure that the orbits of the model stay in the defined region within the boundary

ellipse, we will use a weighted norm definition suitable for elliptic geometry. In defi-

nition 3.4, it can be easily seen that the set formed for a fixed ρ defines a new ellipse

within the safe area, which is a scaled-down version of the boundary ellipse with a

ratio of ρ/r. In this framework, the following formula, which we extracted from (3.4)

will be used as the definition of distance, and this variable will be the first of the state

space element that we defined according to the new coordinate system.

ρ(x, y) =

(
x2

a2
+ y2

) 1
2

. (3.5)

Before deducing the angular coordinates, it would be helpful to talk about the relation

of this distance definition with the control algorithm. As stated earlier, the purpose of

the local control policy is to drive the model asymptotically to the center of the ellipse

and ensure that the orbits stay within the elliptical field at all times. While asymptotic

convergence can be achieved with the following limit expression:

lim
t→∞

ρ(x, y) = 0 , (3.6)

the control algorithm must meet the following condition for the robot to stay in the

safe area:

ρ(x, y) < r , ∀t ∈ R+ . (3.7)

However, the control algorithm in this thesis is developed with a more robust ap-

proach, providing the following condition, which is sufficient but not necessary, with

the principle that the model never goes out of the ellipse during its movement.

d

dt
ρ(x, y) ≤ 0 , ∀t ∈ R+ . (3.8)

If this condition is met, we will ensure that the axis lengths of the scaled ellipse

surrounding the robot will never increase, thus ensuring that the robot always stays
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within a safe area. In the continuation of the formulation, reference frames M , W ,

and B, which can be seen in Figure 3.5, will be defined that will be used to describe

new state variables. M reference frame is a world-fixed frame on which our positional

measurements, like ones from GNSS systems, are referenced. W is a locally-fixed

frame centered around the active funnel’s center, and its x-axis is aligned with the

major axis of the active funnel. B is a base-fixed frame attached to the robot, and its x-

axis is aligned with the robot’s forward direction. Next, the scaled ellipse intersecting

the robot’s position is created, and the dashed cyan curve visualizes it in Figure 3.5.

We can define the set formed by the points on this ellipse as in (3.9), where xWB and

yWB represents B frame’s translation w.r.t W frame.

O =

q =
 x

y

 | q ∈ R2,
x2

a2
+ y2 =

[
ρ
(
xWB , y

W
B

)]2 . (3.9)

We can also define φ as in (3.10), which shows the opposite direction of the eccentric

angle of q, as shown in Figure 3.5.

φ(x, y) = atan2

(
−y, −x

a

)
. (3.10)

At this point, we aim to provide coordinate transformation by transforming the system

dynamics depending on the variables (x, y) in a way that depends on the variables

(ρ, φ) for them to be used on the controller. First, let us focus on the time derivative

of the distance variable.

ρ̇ =
d

dt

(
x2

a2
+ y2

) 1
2

=
1√

x2

a2
+ y2

·
(
xẋ

a2
+ yẏ

)

=
x
a2√

x2

a2
+ y2

· ẋ+ y√
x2

a2
+ y2

· ẏ

=
cos(φ+ π)

a
· ẋ+ sin(φ+ π) · ẏ

= −cosφ

a
· ẋ− sinφ · ẏ

(3.11)
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When ẋ and ẏ in (3.11) are replaced with the system dynamics given in (3.2), we get

the following.

ρ̇ = −v ·
[
cosφ cos θ

a
+ sinφ sin θ

]
,

ρ̇ =
v

2a
· [(a− 1) cos(φ+ θ)− (a+ 1) cos(φ− θ)] ,

ρ̇ = − v

2a
· [(a+ 1) cos(φ− θ)− (a− 1) cos(φ+ θ)] .

(3.12)

If we were to focus on the time derivative of φ,

φ̇ =
d

dt

(
atan2

(
−y, −x

a

))
=
a(xẏ − yẋ)
a2y2 + x2

,

=
1√

x2

a2
+ y2

·

 x
a√

x2

a2
+ y2

· ẏ −
y
a√

x2

a2
+ y2

· ẋ

 ,

=
1

ρ
·
(
cos(φ+ π) · ẏ − sin(φ+ π)

a
· ẋ
)
,

=
1

aρ
· (sinφ · ẋ− a cosφ · ẏ) .

(3.13)

When ẋ and ẏ in (3.13) are substituted with the system dynamics given in (3.2), we

get the following:

φ̇ =
v

aρ
· (sinφ cos θ − a cosφ sin θ) ,

=
v

2aρ
· [(sin(φ+ θ) + sin(φ− θ))− a · (sin(φ+ θ)− sin(φ− θ))] ,

=
v

2aρ
· [(1− a) sin(φ+ θ) + (1 + a) sin(φ− θ)] ,

=− v

2aρ
· [(a− 1) sin(φ+ θ)− (1 + a) sin(φ− θ)] .

(3.14)

As a result of these inferences, the equation of motion in the state-space form with

states (ρ, φ, θ) and inputs (v, ω) takes the following form:


ρ̇

φ̇

θ̇

 =


− v

2a
· [(a+ 1) cos(φ− θ)− (a− 1) cos(φ+ θ)]

− v
2aρ
· [(a− 1) sin(φ+ θ)− (a+ 1) sin(φ− θ)]

ω

 . (3.15)
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Before developing the controller, one more step of coordinate transformation will be

performed to simplify the notation. Instead of the angular coordinates (φ, θ), the new

angular coordinates

α = φ− θ ,

ψ = φ+ θ
(3.16)

will be used. In this context, the equations of motion in the state-space form with

states (ρ, α, ψ) and inputs (v, ω) takes the form


ρ̇

α̇

ψ̇

 =


− v

2a
· [(a+ 1) cosα− (a− 1) cosψ]

− v
2aρ
· [(a− 1) sinψ − (a+ 1) sinα]− ω

− v
2aρ
· [(a− 1) sinψ − (a+ 1) sinα] + ω

 . (3.17)

The first state variable that we will consider is the distance measure ρ. It will be

sufficient to satisfy the condition given in (3.7) to ensure that the robot stays in the

safe area throughout its trajectory and to satisfy the limit condition given in (3.6)

for the robot to converge to the center point asymptotically. To ensure that the ρ̇ in

(3.17) is always non-positive, and to cancel out a on the denominator that decreases

ρ̇ on long ellipses, v is chosen as in (3.18), where kv is a positive constant control

parameter.

v = kvaρ · [(a+ 1) cosα− (a− 1) cosψ] . (3.18)

When control policy for the forward velocity is chosen as in the (3.18), ρ̇ becomes

ρ̇ = −kvρ
2
· [(a+ 1) cosα− (a− 1) cosψ]2 . (3.19)

Proposition 1. If the initial condition of the model is within the safe area defined by

the outer ellipse, it is guaranteed that the orbits always remain within bounds.

Proposition 1 can be formulated as in the (3.20), where set G defines safe set of states
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as defined in (3.4).

(x(0), y(0)) ∈ G =⇒ (x(t), y(t)) ∈ G , ∀t ∈ R+ (3.20)

Proof. If and only if a (x(t), y(t)) pair is within the arena defined by G, it satisfies

(x(t), y(t)) ∈ G⇐⇒ ρ(t) ≤ r . (3.21)

Assuming the initial state (x(0), y(0)) satisfies the (3.21), if we are to inspect time

integral of ρ̇,

ξ(t) = [(a+ 1) cosα− (a− 1) cosψ]2

ρ(t) = ρ(0)− kv
2

∫ t

0

ξ(τ)ρ(τ)dτ

ξ(t) ≥ 0 =⇒
∫ t

0

ξ(τ)ρ(τ)dτ ≥ 0 =⇒ ρ(t) ≤ ρ(0)

ρ(t) ≤ ρ(0) =⇒ ρ(t) ≤ r , ∀t ∈ R+

ρ(t) ≤ r , ∀t ∈ R+ =⇒ (x(t), y(t)) ∈ G , ∀t ∈ R+

(3.22)

Thus, we have proven the proposition and that the control algorithm will ensure that

the robot’s trajectory will always remain within the safe area.

The next state variable we will consider is α since α measures how much the robot’s

instantaneous linear velocity deviates from the target velocity. In order to linearize α̇

and stably control α, ω is chosen as

ω = kαα−
v

2aρ
· [(a− 1) sinψ − (a+ 1) sinα]] . (3.23)

In (3.23), kα is a positive constant control parameter. When the control policy for the

yaw rate given in (3.23) is also utilized, system dynamics becomes as in (3.24) and

(3.25). The angular controller is mainly used for regulating the α, however after its

convergence; it also pushes ψ to its stable equilibrium 0.

 ρ̇

α̇

 =

 −kvρ
2
· [(a+ 1) cosα− (a− 1) cosψ]2

−kαα

 . (3.24)
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ψ̇ = kαα−
v

aρ
· [(a− 1) sinψ − (a+ 1) sinα] ,

ψ̇ = kαα− kv · [(a+ 1) cosα− (a− 1) cosψ]

·[(a− 1) sinψ − (a+ 1) sinα]] ,

ψ̇ = kαα−
kv
2
· [2 · (a2 − 1)sin(α + ψ)

− (a+ 1)2 sin(2α)

− (a− 1)2 sin(2ψ)] .

(3.25)

3.2.1 Control Policy in the case of Circular Funnels

In the tree generation stage, generated funnels can remain a circle after elliptic expan-

sion if they collide with the obstacles. In this subsection, we will analyze the control

policy for the case where the elliptic scale a of the funnel is equal to 1 and compare

it with the control policy in [2]. In this case, base states restated in (3.26) becomes as

in (3.27) with derived states still as in (3.28).

ρ(x, y) =

(
x2

a2
+ y2

) 1
2

,

φ(x, y) = atan2

(
−y, −x

a

)
.

(3.26)

ρ(x, y) =
(
x2 + y2

) 1
2 ,

φ(x, y) = atan2 (−y,−x) .
(3.27)

α = φ− θ ,

ψ = φ+ θ .
(3.28)

With a = 1, our control policy restated in (3.29) reduces to one in (3.30). Addi-

tionally, when a = 1; states ρ and α become the same with controlled states defined

in [2], which utilizes the nonlinear control policy in (2.1).

 v

ω

 =

 kvaρ · [(a+ 1) cosα− (a− 1) cosψ]

kαα− v
2aρ
· [(a− 1) sinψ − (a+ 1) sinα]

 . (3.29)
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 v

ω

 =

 2kvρ cosα

kαα + v
ρ
sinα

 . (3.30)

Inspecting the differences between control policies in (3.30) and (2.1), we can see

that the control command for the forward velocity v is the same when kρ = 2kv.

The other difference is that in the proposed controller, ω has additional feedback

linearizing term that linearizes α̇ in the system dynamics.

3.2.2 Stability Analysis

Inspecting the system dynamics given in (3.24), we can easily see that α̇ is only de-

pendent on α and asymptotically stable. By design, ρ̇ is non-increasing and certainly

decreasing as α converges. The angular velocity ω’s controller is designed mainly for

regulating α. However, after the α’s convergence, for funnels with a > 1, ψ term

in the angular controller becomes active. It pushes the USV’s heading slowly in the

direction that makes ψ converge to its stable equilibrium 0. This phenomenon can

also be seen in Figure 3.6, where ψ converges to 0 from both directions, except at the

unstable equilibriums at ±π.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 a=1
a=2
a=3
a=4

Figure 3.6: Change in ψ with regards to itself after α’s convergence to 0. In this

figure, the controller gains kv = 0.2 and kα = 2 used and ρ assumed constant at

10. Note that the constant ρ assumption made here does not alter the convergence

behavior since it only scales up and down the graph. For the case a = 1, the ψ term

vanishes from the angular controller; thus, ψ remains constant.
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Following the implications in (3.31), we can see that ψ converges to 2φ. When com-

bined with ψ’s stable equilibrium information, it is easy to conclude that the agent

would favor convergence to the funnel’s center from φ = 0 and φ = π directions.

lim
t→∞

α = 0 ,

=⇒ lim
t→∞

φ− θ = 0 ,

=⇒ lim
t→∞

θ = φ ,

=⇒ lim
t→∞

ψ = lim
t→∞

φ+ θ = 2φ .

(3.31)

To also inspect the convergence behavior experimentally, we created simulated ex-

periments, in which the agent is started from various positions and headings inside

the funnels with varying a, and all the states are recorded. Paths followed in two of

these experiments can be seen in Figure 3.7. Inspecting them, we can verify that for

the circular funnel case, the agent does not favor any direction of arrival, whereas, for

the elliptical one, the agent tries to arrive from the directions 0 or π.
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(a) Funnel with a = 1.
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(b) Funnel with a = 6.

Figure 3.7: Convergence of the simulated agent from 228 start configurations each

with 19 starting position and 12 starting headings with approximately 30◦ apart at

each position in funnels with a = 1 and a = 6.

In the experiments made with funnels with elliptic scales a = 2, 4, 10, the results

were consistent with the ones provided here. Funnels with lower a converge slower

to the equilibrium direction, whereas funnels with higher a tend to converge to the
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equilibrium direction first and converge to the equilibrium position later.

3.2.3 Practicality Changes

In the implementation of the proposed controller, some improvements are made re-

lated to its usability. These changes include reference saturation and the manual han-

dling of the arrival to the goal configuration. In this section, these changes will be

presented in detail.

Considering the use of reference saturation, in Figure 3.9, we can see the output of the

control policy in the scenario in Figure 3.8. Observing the operation of the controller,

we can see that the robot slows down at each funnel while getting closer to its center.

From a practical point of view, this behavior increases the mission duration and might

not be desired. Increasing kv is an option for decreasing mission duration, but it would

result in reference velocities far out of USV’s operational range when entering new

funnels. In order to overcome this limitation, we implemented reference saturation to

limit commanded v and ω to USV’s operational range. The method we used involves

limiting v and using saturated v for the calculation of linearizing terms of ω before

forwarding them to the robot’s low-level controllers. To allow such an approach, v

in (3.23) is not substituted with its closed form but handled as it is. With the help

of reference saturation, kv can be increased to a point where USV always moves

at saturation speed, excluding the termination. Thus, improving mission duration

dramatically without destabilizing α. In Figure 3.10, executed control commands

and resultant ρ and α are shown against time in a case where increased gains are used

with reference saturation. In this experiment, mission duration is improved by more

than 50%.

Another usability change is related to handling the USV’s arrival to the goal config-

uration. Since we are using the angle to the origin while calculating the states α and

ψ, and utilizing ρ at the denominator of ω’s linearizing term; there exists a singularity

at the origin. In regular funnels, this is not an issue since before reaching the center

of the funnel, USV enters the next funnel. However, when the goal funnel is reached,

there is no next funnel, and the agent can be affected by the singularity. To circum-

vent this singularity, we manually check arrival to the goal configuration inside the
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WoSat
WSat

10 m

Figure 3.8: Paths followed by the simulated USV with and without command satura-

tion. In the case where command saturation is enabled (labeled WSat), gains kv = 0.2

and kα = 2 are used and the resultant mission duration was 66 seconds. In the case

where command saturation is disabled (labeled WoSat), gains kv = 0.03 and kα = 0.5

are used and the resultant mission duration was 149 seconds.

goal funnel by comparing ρ with a parametric arrival threshold. When ρ falls below

the arrival threshold, stopping commands are sent instead of the control commands

calculated by the control policy, halting the agent before it arrives at the center, thus,

eluding the singularity.
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(a) Angular velocity ω with respect to time.
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(b) USV’s local state ρ with respect time.
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(c) Linear Velocity v with respect to time.
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(d) USV’s local state α with respect to time.

Figure 3.9: Executed forward velocity and angular velocity commands; and the states

ρ and α plotted against time. Discrete jumps on the ρ mark entries to the funnels. In

this experiment, reference saturation is disabled and lower-valued gains are utilized

to keep the commands in the operating range of the USV. In this execution, gains

kv = 0.03 and kα = 0.5 are used and the resultant mission duration was 149 seconds.
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(a) Angular velocity ω with respect to time.
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(b) USV’s local state ρ with respect time.
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(c) Linear Velocity v with respect to time.
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(d) USV’s local state α with respect to time.

Figure 3.10: Executed forward velocity and angular velocity commands; and the

states ρ and α plotted against time. Discrete jumps on the ρ and α mark entries to the

next funnels. In this experiment, reference saturation is enabled and the magnitude

of the forward velocity and angular velocity commands are saturated at 0.8m/s and

0.4 rad/s respectively. In this execution, gains kv = 0.2 and kα = 2 are used and the

resultant mission duration was 66 seconds.
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CHAPTER 4

IMPLEMENTATION

4.1 Framework

For implementing our motion planning and control algorithm, we used Robot Oper-

ating System (ROS) framework for the flexibility it creates, thanks to its loosely cou-

pled architecture. This architecture in ROS is realized by publishing and subscribing

to ROS messages for periodic data sharing between ROS nodes. In ROS, there also

exists request/response use of ROS services for query forwarding, which is suitable

for commands and planning requests. This loose coupling allows multiple executa-

bles to share responsibilities such as visualization, communication, and execution,

simplifying system architecture and implementation. Additionally, ROS’s extensive

visualization, debugging, and data recording/replaying tools make it a perfect choice

as a framework.

4.1.1 ROS Concepts

In this part, ROS concepts will be inspected more thoroughly referencing [29] and

[30]. ROS Nodes are executables that perform work. A robot control system is typi-

cally made up of multiple nodes that handle multiple layers of work. They communi-

cate/interact with one another through messages/services. A ROS message is the data

structure that can be passed between nodes. Messages can be of standard primitive

types, arrays of primitive types, or other types. Similarly, a ROS service is defined by

two message structures, one for the request and one for the response. A serving node

provides a service under a name, and a client utilizes it by sending a request message

and waiting for a response.
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Topic is the identifier of the message channel between nodes for a specific message.

Messages are published to and subscribed from a topic. A node broadcasts a message

by publishing it to a specific topic. Another node interested in that type of infor-

mation will subscribe to the topic. A single topic may have numerous concurrent

publishers and subscribers. Another ROS concept is the ROS master. It is the enabler

of the nodes’ communications. Each node communicates with the master and reports

the topics it publishes and the topics it wants to subscribe to. ROS master matches

publishers with subscribers and servers with clients, later for them to communicate.

The last ROS concept that we will cover is ROS Packages. Packages are the primary

units for organizing software in ROS. They can contain nodes, libraries, message and

service definitions, launch files, etc. Packages make it possible to reference enclosed

nodes, parameter files, or any other resource relative to the package, making it easier

to work with the contained.

4.2 System’s Software Components

Responsibilities of the system are distributed between multiple ROS executables us-

ing the primitives mentioned in Section 4.1. This section will detail the software

components that make up the system. Ellipses labeled in Figure 4.1 show the func-

tional nodes, and the rectangular boxes show the topics exchanged between the nodes.

The responsibilities of the three nodes are as follows. Sft_server implements our ap-

proach, mavros handles the communication with the USV, and odom_creator uses

reported orientation, geographic coordinates, and the requested datum (reference ge-

ographic coordinates) to publish the USV’s state in the cartesian coordinate frame

defined by the datum for it to be used in sft_server.

4.2.1 sft_server

Sft_server is a ROS node that is a part of a ROS package named after it. Its pri-

mary responsibility is to create the funnel tree in the requested map using Algo-

rithm 2 and periodically execute the control policy derived in Section 3.2. Sft_server’s

primary interface with the user is via the advertised ROS services /create_sft and
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/mavros

/local_position

/mavros/global_position/global

/odom_creator

/mavros/imu/data

/mavros/setpoint_velocity/cmd_vel

/mavros

/local_position/odom
/sft_server /datum

Figure 4.1: Graph showing the interactions between the executables sft_server,

odom_creator and mavros. Names inside the ellipses show the executables, whereas

names in the rectangular boxes show the ROS topics and namespaces.

/create_sft_latlon. When a /create_sft_latlon request is received with the information

in Table 4.1, sft_server returns the created funnel tree’s CSV representation along

with some statistics such as the number of nodes and the time elapsed while gener-

ating the tree. If returned CSV is saved, sft_server can import the funnel tree from

the CSV file since it contains all information required for the tree’s reproduction. The

/create_sft service works identical to the /create_sft_latlon service except in the for-

mer, arena and obstacles are defined directly in the cartesian space. Another feature

of the node is that it can also be configured to create circular funnels, enabling us to

compare elliptic funnels with circular ones.

For convenience, sft_server subscribes to the goal updates from the RViZ (ROS vi-

sualization software) and re-generates the tree with the updated goal using the same

map defined by the latest request. Sft_server also publishes visualization elements

that illustrate the map, the tree generated on it, and the active funnel. Visualizations

can be seen in Figure 4.2, showing the active funnel and φ angle from the current

location of the USV.

Additional open-source libraries and tools besides ROS are utilized in implementing

the sft_server node. For example, GeographicLib [31] is utilized for projecting ge-

ographic coordinates to the desired local cartesian reference frame, which is defined
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Table 4.1: Request message of the /create_sft_latlon service. /create_sft service’s

request is identical to this, except that points are defined directly in cartesian space

rather than geographic.

Type Signal Description

string frame_id Frame that the positions are defined

geographic_msgs/GeoPoint datum
Origin that will be used for cartesian

projection of the coordinates

geographic_msgs/GeoPoint startPosition Position of the starting point

geographic_msgs/GeoPoint goalPosition Position of the goal point

sft_server/GeoPolygon arena Arena as a non-intersecting polygon

sft_server/GeoPolygon[] obstacles
Obstacles as a list of

non-intersecting polygons

float64 eta The η used in Algorithm 2

float64 resolution
Discretization resolution while

creating visualizations, in meters

float64 minRadius
Minimum radius for a funnel to be

created, in meters

by the provided datum.

The Geometric Tools Engine (GTE) [27] is another open-source library used in the

implementation of the sft_server node. GTE is a collection of C++ sources that im-

plements distance and intersection calculations between geometric primitives such as

points, lines, segments, ellipses, and boxes. It also contains many more functionali-

ties, such as curve-fitting, shape-fitting, and containment calculations. In this work,

GTE is mainly used for collision checking of elliptic funnels with the obstacles and

finding points’ distances to the funnels in the tree generation stage of the scheme. In

these operations, GTE’s 3D segment and 3D ellipsoid intersection query IntrSeg-

ment3Ellipsoid3 is used in 2D by zero-initializing their z-dimension for collision

checking. For distance calculations, GTE’s N-dimensional point to hyper-ellipsoid

distance query DistPointHyperellipsoid is utilized in 2D mode. This work focuses

on 2D surface operation, but the Geometric Tools Engine’s 3D capabilities for these

32



Figure 4.2: Screenshot of RViZ, showing the visualization elements published by the

sft_server. In this screenshot, black polygons show the virtual obstacles and green

markers show the funnels.

queries enable its use also for 3D map representations that can be utilized in the fu-

ture.

4.2.2 mavros

MAVLink is a lightweight protocol widely used for communication with autonomous

systems, including the experimental platform we worked on. More details about

MAVLink are in Section 5.2. Mavros is an open-source package with a node that

links ROS messages to MAVLink messages and vice versa. The mavros node is
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highly customizable with plugins for specific use cases and MAVLink messages. The

plugins we directly use with the mavros node can be seen in Table 4.2. Using mavros,

we were able to use generic ROS messages for interacting with the robot without

directly sending/receiving MAVLink messages.

It should be noted that while ROS nodes and packages adhere to the ENU (East,

North, Up) convention, the state estimates reported from the FCU follow the NED

(North, East, Down) convention. For proper operation, conversions between NED

and ENU conventions need to be made for the states reported in NED and commands

sent in ENU. The mavros node simplifies the usage by handling convention-related

conversions while converting MAVLink messages to ROS messages and vice versa.

Table 4.2: Used mavros plugins and their function.

Mavros Plugin Direction Description

global_position MAVLink ->ROS
Reports fused position in geographic

coordinates

local_position MAVLink ->ROS
Reports velocity estimates of the USV

in its body frame

imu_pub MAVLink ->ROS
Reports fused orientation and raw

IMU measurements

setpoint_velocity ROS ->MAVLink
Forwards commanded velocity to

the USV

sys_status ROS <->MAVLink
Reports robot’s debug info and forwards

commands such as change mode
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CHAPTER 5

EXPERIMENTAL SETUP

5.1 Experimental platform

The experimental platform we tested our algorithm on can be seen in Figure 5.1. The

platform is based on the BluROV2, a tethered underwater remotely operated vehi-

cle (ROV) supplied by BlueRobotics. BlueROV2 is a commercially available open-

source ROV that employs ArduSub software and PixHawk autopilot to provide au-

tonomous capabilities. Thanks to its open-source software and hardware, BlueROV2

is easily hackable and expandable. BlueROV2’s expandability and low cost make it a

good candidate as a research platform; thus, it is widely used in the academy [32–35].

Figure 5.1: The platform used in the experiments. It consists of the main body, cata-

maran floaters on both sides and the communication assembly at the top.
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Figure 5.2: Connection diagram of the experimental platform’s and ground station’s

main components.

The experimental platform’s components with our modifications can be seen in Fig-

ure 5.2, whereas the BlueROV2’s components are as in Figure 5.3. The experimental

platform’s differences from the original ROV can be categorized into two for making

it an unmanned surface vehicle. The first category of differences is buoyancy increas-

ing differences, and the other category of differences is autonomous operation differ-

ences. Buoyancy-increasing differences can be summarized as follows. The vertical

thrusters were removed from the platform because they were no longer needed for

surface operation, and buoyancy foams were installed in their place (inside the blue

volumes to the sides). With the removal of the vertical thrusters, the motor configura-

tion of the robot became as given in Figure 5.4. Additionally, catamaran-type floaters

were attached to the sides for safe surface operation. The physical properties of the

robot changed as a result of these modifications and became as shown in Table 5.1.

The data link between the ground station and ROV in the original platform is real-

ized using the MAVLink protocol via the wired Ethernet connection. Since the Fast
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Figure 5.3: Connection diagram of the BlueROV2 and ground station’s main compo-

nents. The FXTI box connected to the ground station contains the interface board

and an Ethernet to USB converter, allowing Ethernet communication with the ROV

from the USB port. On the FXTI’s product page, the manufacturer mentions that the

choice of USB is to enable both powering and communication from a single cable.

Ethernet (100BASE-TX) can only support cable lengths up to 100 meters [36], which

might not be enough for some underwater operations, the original platform uses in-

terface boards to convert the physical layer. Used interface boards convert Ethernet

(10/100BASE-TX) physical layer to the BPL (Broadband over Power Lines, IEEE

1901) to support cable lengths up to 2000 meters [37]. In the experimental platform,

this physical link is replaced with mesh-capable wireless access points to eliminate

possible tether entanglements. Used Ubiquiti UAP-AC-M Wireless modems enable

network connection between the USV and GCS using WiFi (IEEE 802.11ac) and

allow untethered operation up to 183 meters [38]. In our tests, we observed that

operating the USV from approximately 150 meters line of sight is possible. There

also exists radio telemetry solutions such as RFD900X [39] that support up to 40 km

line of sight communication, which we are not using currently. However, it can be

considered when farther range of operation is desired. The last difference related to
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autonomous operation is the addition of the RTK-capable GPS to the platform and the

addition of the RTK base station to the ground station to be used in position estimation

filters running on the flight control unit (FCU).

Table 5.1: Physical properties of the experimental platform.

Mass

(kg)

Width

(cm)

Length

(cm)

Height

(cm)

12.40 54.00 88.00 48.50

Real-Time Kinematic (RTK) is a relative positioning method that can achieve a cm-

level positioning accuracy of a station by enabling the use of satellite corrections from

other stations [40]. RTK methods require communication between stations to share

satellite corrections. In traditional RTK, these corrections from the base stations are

sent to the rover stations using radio modems [41]. The RTK-GPS used in this work

consists of a base station installed to the GCS and a rover station that we connect to

the experimental platform. The satellite corrections from the base station are sent to

the FCU via MAVLink over the wireless link that we set.

Figure 5.4: Motor configuration used in the experimental platform. In the illustra-

tion, the red triangle shows the forward direction, blue thrusters represent clockwise

propellers and green thrusters represent counter-clockwise propellers.
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5.2 Communication Channel

As previously mentioned in Section 5.1, the communication between the robot and

the ground control station (GCS) uses MAVLink as the protocol. Known simply as

MAVLink, the micro air vehicle link is a lightweight message serialization protocol

for unmanned systems such as drones and ROVs [42]. The MAVLink protocol spec-

ifies the method for defining message structure and serialization at the application

layer. These messages are then routed to the lower layers (transport and physical

layers) for transmission to the network. There are two actively used MAVLink ver-

sions whose frame contents can be seen in Figures 5.5 and 5.6. MAVLink v1.0 was

adopted around 2013, and MAVLink v2.0 was released in 2017 with some capability

and security improvements over v1.0 [42]. These protocol versions can coexist in a

network thanks to the different start-of-text (STX) markings used.

STX LEN SEQ SYS 
ID

COMP 
ID

MSG 
ID

PAYLOAD 
(0 - 255 bytes)

CHECKSUM 
(2 bytes)

MAVLink v1 Frame (8 - 263 bytes)

Figure 5.5: Frame content of MAVLink v1.0 messages. STX byte of 0xFE marks the

start of a v1.0 frame. LEN byte shows the length of the payload. SEQ is used for de-

tecting packet losses by being incremented for each message sent. SYSID contains the

identifier for the vehicle/system sending the message, allowing multiple vehicles/sys-

tems to coexist in the same network. COMPID encodes the type of the system send-

ing the message. MSGID describes the message type; the payload should be decoded

according to the message definition indicated by the MSGID.

STX LEN INC 
FLAGS

CMP 
FLAGS SEQ SYS 

ID
COMP 

ID
MSG ID 

(3 bytes)
PAYLOAD 

(0 - 255 bytes)
CHECKSUM 

(2 bytes)
SIGNATURE 

(13 bytes)

MAVLink v2 Frame (12 - 280 bytes)

Figure 5.6: Frame content of MAVLink v2.0 messages. STX byte of 0xFD marks the

start of a v2.0 frame. Unlike MAVLink v1.0, MSGID is represented by 3 bytes rather

than a single byte enabling far more types of messages. The incompatibility/compati-

bility flags indicate whether some features need to be considered when unpacking the

payload. The optional signature enables authentication and increases security.
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Thanks to the wireless MAVLink connection between the robot and the GCS, it is

possible to allocate responsibilities between them to their capabilities. For example,

due to its access to the outer world, we gave the responsibility of mission control to

the GCS and implemented the proposed algorithms on the GCS. It sends the calcu-

lated commands to the FCU via MAVLink, while FCU periodically publishes its state

estimates and raw measurements to GCS using MAVLink.

5.3 State Estimation Infrastructure

As previously seen in Figure 5.2, the experimental platform has PixHawk as its FCU.

PixHawk contains a fast M4 core with FPU as its main microprocessor, and an M0

failsafe co-processor, whose specifications are as given below [43]. The PixHawk in

the experimental platform is flashed with ArduSub V4.1.0 autopilot stack [44] with

only guided control changes mentioned in Section 5.4.

• 32-bit STM32F427 Cortex® M4 core with FPU:

– 168 MHz Clock Frequency,

– 256 KB RAM,

– 2 MB Flash.

• 32 bit STM32F100 Cortex® M0 failsafe co-processor:

– 24 MHz Clock Frequency,

– 8 KB RAM,

– 64 KB Flash.

ArduSub scheduler manages multiple processing loops with different frequencies.

For example, it reads RC(Radio Control) commands in its 50 Hz loop, whereas it

checks leakage in its 3 Hz loop. Thanks to its powerful main processor, ArduSub

executes state estimation and control tasks in its main loop, which is executed at

400 Hz. For estimating vehicle position, velocity and angular orientation; ArduSub

utilizes an Extended Kalman Filter that uses GPS, accelerometer, gyroscopes, mag-

netometer and barometric pressure measurements [45]. State estimation and control
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flow can also be seen in Figure 5.7. ArduSub’s main thread regularly runs (400hz)

and retrieves the most recent data accessible via methods in the driver’s front end.

For example, the AHRS/EKF would obtain the most recent accelerometer, gyro, and

compass data from the sensor drivers’ front ends to produce the most recent attitude

estimate [46]. In our experimental platform, the following set of sensors exists.

• Here+ V2 RTK Rover

– NEO-M8P GNSS module

– Invensense® ICM-20948

• PixHawk onboard sensors [43]

– Invensense® MPU 6000 3-axis accelerometer and gyroscope

– ST L3GD20 3-axis 16-bit gyroscope

– ST LSM303D 3-axis 14-bit accelerometer and magnetometer

– MS5611 barometer

In this version (V 4.1.0) of ArduSub, the default state estimation implementation is

called EKF3 [45, 47–49] and its state has the 24 elements given in Table 5.2.

Table 5.2: States of the EKF running on the ArduSub. Gyroscope bias represents the

angular bias resulting from the integration of the gyroscope measurements, and the

accelerometer bias represents the velocity bias likewise.

EKF States

Angular orientation (4 quaternion states)

Velocity (3 axes, m/s)

Position (3 axes, m)

Gyroscope bias (3 axes, rad)

Accelerometer bias (3 axes, m/s)

Earth magnetic field (3 axes, Gauss)

Body magnetic field (3 axes, Gauss)

Wind velocity (2 axes, m/s)
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The EKF3 (and its prior implementations) uses parameters to enable or change the

source of measurements for the state estimation since Ardupilot is a multi-platform

library, and it is being used on air, ground, and water vehicles. For example, wind ve-

locity states of the EKF are not active in our setup since our platform is not equipped

with an airspeed sensor. We did not modify any EKF3-related parameters in our setup

and used the default values for the ArduSub V4.1.0.

Extended Kalman Filter 
(libraries/AP_AHRS, AP_NavEKF3)

Main Loop (Ardusub.cpp) 
scheduler, fast_loop

Flight Mode 
(flight_mode.cpp, control_guided.cpp)

Position Control 
(libraries/AC_PosControl.cpp)

Attitude Control 
(libraries/AC_AttitudeControl.cpp)

Motor & Servo Control 
(libraries/AP_Motors.cpp)

Hardware Abstraction Layer (HAL)

Hardware PWM Input Hardware PWM Output

Ardupilot

GCS Mavlink 
(GCS_Mavlink.cpp)

Inertial Sensor 
(libraries/AP_InertialSensor)

Barometer 
(libraries/AP_Baro)

GPS 
(libraries/AP_GPS)

Background Thread

Compass 
(libraries/AP_Compass)

Figure 5.7: State estimation and control architecture used in ArduSub stack when the

robot is in guided mode. The high-level control commands v and ω that are sent via

MAVLink are forwarded to the guided controller by GCS_Mavlink. Sensor drivers

collect raw sensor data, convert it to standard units, and store it in buffers.

EKF3 architecture supports running multiple instances of EKF cores with differ-

ent measurement sources [49], which is parametrically customizable and capable of

changing its primary core depending on the error scores of the cores. Note that only

the estimate of the primary core is reported by the AHRS (Attitude and Heading Ref-

erence System) navigation subsystem, and other cores are updated in the background,

ready to switch anytime in case of degradation of the estimates from the primary core.

In the default configuration, two EKF3 cores were running in parallel. In choosing
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the primary core, the error scores of the cores are calculated as the maximum of the

GPS, altimeter, and magnetometer fusion scores for the sensors used in that EKF in-

stance. The calculation of fusion scores is based on measurement innovations. In this

context, lower the error score is better.

5.3.1 State Estimation Experiments

In order to observe the state estimation performance of the experimental platform,

with and without RTK (Real-Time Kinematic) enabled, we executed a series of ex-

periments at the parking lot near the A2 gate of METU. In these tests, we first marked

the robot’s location and heading and executed the following scenarios with RTK dis-

abled. After each scenario, the robot is placed back in the marked position with the

same heading. Experiment recordings were kept on between 7.5 - 11.0 minutes for

the scenarios. Later, these scenarios were repeated after enabling RTK streaming with

180 seconds of surveying.

• Robot is let stationary.

• Robot is moved in a rectangular trajectory without much rotation.

• Robot is rotated multiple turns in both directions around the yaw axis.

• Robot is moved in a rectangular trajectory with rotations around the yaw axis.
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Figure 5.8: State estimation, local position results in the stationary scenarios.
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Note that placing the robot in the same location with the same heading is made man-

ually with our best effort, but our error margin is unknown However, the consistency

of the mean positions in the experiments with the RTK can be seen as an indicator. In

this section, a subset of the recorded results is given in Figures 5.8 to 5.13.
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Figure 5.9: Local position results in the multi-turn rotation scenarios.

In Figures 5.8 to 5.10, local positions reported by the robot and the statistics of the

x and y coordinate estimates are given. The reported local positions are relative to

a frame complying with the ENU (East-North-Up) convention at the location where

the robot is "armed". Note that the robot reports the local position in the NED frame,

but it is converted to ENU by the mavros node mentioned in Section 4.2.2. Statistics

given in the results are calculated using only the estimates after the provided t0 instant,

which marks the time point where we think the robot is let to rest.
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Figure 5.10: Local position results in the rectangular motion with rotation scenarios.
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Inspecting the local position results, we observed that when the RTK is used, the

mean of the position estimates converges to the same position (Minimum enclosing

circle is with a radius of 1.65 cm) independent from the motion carried beforehand.

However, when the RTK is disabled, the mean of the position varies in a circle with a

radius of 46.21 cm. These results are also visible in the standard deviations given in

the figures.
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Figure 5.11: Euler angle results in the stationary scenarios.

In Figures 5.11 to 5.13, orientations reported by the robot and the statistics of them

after the marked t0 instants are given. Inspecting these results, we observed that the

deviations on the yaw axis are larger than the other two axes. This is expected since

the primary heading source of the robot is its magnetometers, whereas the primary

sources for the other two axes are the inertial sensors.
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Figure 5.12: Euler angle results in the multi-turn rotation scenarios.
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Another observation we made on the Euler angle results is that even if the RTK can

only supply positional corrections, it still decreases the standard deviations on the

Euler angle estimates of the EKF state estimator.
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Figure 5.13: Euler angle results in the rectangular motion with rotation scenarios.

5.4 Operation Modes

The Ardusub stack has numerous operation modes, including manual, guided, stabi-

lize, depth hold, etc. However, not all of them are usable for surface operation. The

most straightforward and fully stable mode of operation is manual control, where

the vehicle allocates motor control signals based on pilot input according to the mo-

tor configuration. In manual mode, it is possible to control the vehicle’s thrust and

torque direction with some degree of magnitude. Still, it is not possible to make it

able to control the velocities, which our algorithm requires.

When judged by its interface, another possible operation mode is the guided mode.

Since the MAVLink message that the guided mode is commanded (message with id

84) lets the GCS send position, velocity, acceleration, and yaw rate commands. But

in practice, this interface is not fully realized (guided mode is in beta), and it was

impossible to command the vehicle with raw velocity commands using the ArduSub

V4.1.0 (As of September 2022, the latest stable version). In the progress, we worked

on the realization of the low-level controller using both modes and chose to proceed

with a patch that would enable the guided mode’s velocity control.
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5.4.1 Guided Control

In guided mode, different from manual mode, command channels, which are forward,

lateral, throttle, roll, pitch and yaw channels, are filled by the position and orientation

controllers shown in Figures 5.14 and 5.15a. Later on, filled channels are used for

allocating individual motor efforts just like in the manual control mode using the

motor configuration in the function summarized in Figure 5.15b.

  - accel_target 
  - accel_desired

Conversion
Multi-stage Conversions

  - forward_ch_in 
  - lateral_ch_in

Inputs Outputs

  - velocity_target 
  - velocity_desired

VelocityXY.update()
2D PID Controller

  - accel_target

Inputs Outputs

  - position_target

PositionXY.update()
2D P Controller

  - velocity_target

Inputs Outputs

AC_PosControl

Figure 5.14: Position control architecture in guided mode.

AC_AttitudeControl

  - roll_desired 
  - pitch_desired 
  - yaw_desired

rate_controller_run()

PID controllers executed for roll, pitch and
yaw axes

  - roll_ch_in 
  - pitch_ch_in 
  - yaw_ch_in

Inputs Outputs

(a) Attitude control architecture.

  - roll_ch_in 
  - pitch_ch_in 
  - yaw_ch_in 
  - forward_ch_in 
  - lateral_ch_in

output()

Allocates inidividual motor thrusts, [-1,1] and
converts to PWMs & applies motor PWMs

  - motor_pwm[N]

Inputs Outputs

AP_Motors

(b) Control allocation.

Figure 5.15: Attitude (orientation) control architecture and control allocation stage in

guided mode.
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In the control schema shown in Figure 5.14, position_target, velocity_desired, and

accel_desired are filled with the commands from MAVLink message #84, whereas

velocity_target, accel_target respective controller’s output. In this schema, com-

manded velocity and accelerations are used as feed-forward terms to the following

controllers, enabling intervention to the desired control layer via the previously men-

tioned MAVLink message. To realize the required velocity control, we only supplied

the controller with velocity_desired and disabled position stabilization by sending the

current position as the position_target.

In the attitude controller shown in Figure 5.15a, the commanded orientation is used

for calculating required rotational velocities. They are used as references to the re-

spective PID controllers that use gyroscope measurements as feedback signals. The

yaw rate command from MAVLink message #84 is converted to the yaw angle target

using discrete integration to the current yaw angle before giving target orientation

to the attitude controller. With the disabled vertical thrusters, zero desired rates on

roll and pitch axes are not realized by the controller; but they are primarily stabilized

passively by the buoyancy.

As previously mentioned, the guided control mode of Ardusub did not fully realize

its interface, and it was impossible to command USV using velocity commands. To

resolve the issue, we wrote a patch to the Ardusub stack. The written patch featured

two changes, the first of which enabled forwarding yaw rate commands from the

command message to the low-level controllers illustrated in Figures 5.14 and 5.15a.

The other change implemented is the disablement of position stabilization when the

position ignore flag was given in the command message. With these changes, it was

possible to command the USV and its SITL simulation with yaw rate and forward

(and backward) velocity commands.

After the patch, USV’s response to the yaw rate commands was satisfactory, but its

response to the forward velocity command showed some unexpected and hard-to-

model patterns both in SITL and hardware experiments. A light realization of these

patterns can be seen in Figure 5.16, which is the velocity response of the USV in

the SITL simulation that replicates a real experiment. Some inspection of the control

parameters of the FCU showed that the irregularities were derived from high gains
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Figure 5.16: Forward velocity response of the USV on the SITL simulation that repli-

cates a real multi-funnel experiment with default FCU parameters.

of the z-axis controller, which had no utility for a surface vehicle. After making

the adjustments given in Table 5.3 to the FCU parameters, better velocity responses

were gotten both in SITL and the physical platform. These results can be seen in

Figure 5.17 and Figure 5.18 respectively.

Table 5.3: FCU parameter updates regarding guided control.

Parameter Default Changed to

PSC_ACCZ_FF 0.75 0.00

PSC_ACCZ_I 4.00 0.10

PSC_ACCZ_P 2.00 0.50

PSC_POSXY_P 2.50 2.00

PSC_VELXY_D 0.80 0.00

PSC_VELXY_FF 0.00 4.00

PSC_VELXY_I 0.50 0.80

PSC_VELXY_P 5.00 6.00

PSC_VELZ_P 8.0 0.20
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Figure 5.17: Forward velocity response of the USV on the SITL simulation with

updated FCU parameters.
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Figure 5.18: Forward velocity response of the real platform with updated FCU pa-

rameters.
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5.5 Simulation Setups

For the algorithm’s development and testing, two separate simulation setups were

used, each of which is utilized for a different layer of the implementation. The first

simulation configuration is an ideal kinematic unicycle model realization. The other

simulation environment is the Software in the Loop (SITL) simulation of the Ardusub.

5.5.1 Ideal Kinematic Unicycle Simulation

Ideal kinematic simulation implemented as a software plugin that could directly use

the implemented partial feedback linearized nonlinear controller transparently. Im-

plemented model uses motion equations given in (3.2) to update its state. We uti-

lized this simulation to evaluate the controller’s response when used with different

controller gains in funnels with varying specifications. The true merit of this setup

is its execution can be made faster than real-time (around 1300x, depending on the

computer’s processing and disk-write performance), enabling automated Monte Carlo

simulations of the proposed control schema. This simulated setup is used extensively

for the results presented in Section 6.2.2.

5.5.2 SITL Simulation

In the software-in-the-loop approach, the system is simulated with its interfaces, and

the interfacing software is run without knowing the system is being simulated. The

SITL approach is frequently used because it enables a quicker, safer, and more af-

fordable development process [50]. In our case, physical experiments required co-

ordination with other parties using the Yalincak lake and METU Internal Services to

access the lake. To increase the efficiency of our experiments, we utilized software in

the loop simulation of Ardusub, the framework our experimental setup is based on,

primarily for testing and verifying the interface in between. This way, we could focus

on algorithmic results in the physical experiments. Additionally, since the model used

in the SITL setup was a dynamic model that showed similar responses to our experi-

mental platform, we also utilized it to evaluate the effect of the control parameters.
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5.5.2.1 Model Used in the SITL Simulations

As previously stated, SITL simulations are primarily employed for the verification of

the MAVLink interface between our modules and the USV. We resolved interface-

related issues before the physical experiments thanks to this prior verification. Fur-

thermore, we have yet to attempt to modify or improve the dynamical model intro-

duced in this section. The information presented here is provided by inspecting the

C++ implementation of the SITL model [44].

Upon inspecting the implementation, the state is updated periodically using PWMs

calculated by the control allocation stage described in Section 5.4.1. State update is

executed in two primary steps. The first step is responsible for calculating the resul-

tant rotational and linear accelerations when the PWMs are applied to the thrusters.

In the second step, a time update (position and orientation) is made using the constant

acceleration motion model. In the first step, the following tasks are carried out for

each thruster:

• Use commanded PWM to calculate thrust to be generated using the model

shown in Figure 5.19. This thrust curve is a piecewise quadratic one with a

dead band.

• Calculate the resultant linear accelerations on the forward and lateral axes when

the calculated thrust is generated using Newton’s second law of motion and

thruster’s pose.

• Calculate the resultant angular accelerations that will be generated when the

calculated thrust is generated using the thruster’s mounting pose and the frame’s

modeled moment of inertia. In the SITL setup, the frame’s inertia is modeled

as equivalent to a sphere with a radius of 0.2 m.

• This process is repeated for all the thrusters and resultant accelerations on the

body frame are added.

The linear and angular accelerations due to the thrusters are modeled at this point in

the process. However, other sources must be considered as well, such as drag forces,

as they have a large impact on the motion of the USV. Furthermore, drag torques,
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Figure 5.19: The thrust curve used in the SITL setup. There exists a dead band with

a width of 50 µs at 1500 µs and ESC (Electronic Speed Controller, thruster’s driver)

command saturates above 1900 µs. In this model, magnitude of the thrust increases

quadratically to the maximum. The thrust curve is symmetric around 1500 µs.

which are rotational counterparts of drag forces, are also an important factor. That’s

why drag forces and torques are also modeled in the SITL setup. Later in this step,

accelerations due to these sources are calculated using Newton’s second law and the

vector forms of the following equations.

FD =
1

2
CldAv

2 , (5.1)

τD =
1

2
CrdAω

2 . (5.2)

Later, the accelerations derived from these are superposed with the ones from the

thrusters. The physical quantities and the parameters used for the calculation of the

accelerations can be seen in Table 5.4.
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Table 5.4: In the SITL setup, the following parameters are used for modeling the

dynamics of the robot.

Name Symbol Value Unit

Drag force FD - N

Drag torque τD - Nm

Water Density d 1023.6 kg/m3

Moment of inertia I 0.268 kgm2

Mass m 16.75 kg

Equivalent sphere radius R 0.2 m

Maximum thrust of T200 @16V Tmax 51.48 N

Linear drag coefficient Cl

Clx 1.4 -

Cly 1.8 -

Clz 2.0 -

Angular drag coefficient Cr

Crx 1.05 -

Cry 1.05 -

Crz 1.05 -

Since the BluROV2 is originally an underwater platform, the model used in the SITL

setup does not perfectly match our experimental platform. Additional lead sinkers

are the most apparent difference between the SITL model and the experimental plat-

form. Since the experimental platform does not have these lead sinkers, its mass is

around 12.4 kg. Another difference is that the inertia of the model in the SITL setup is

approximated as a sphere, whereas the experimental platform is not. Due to this dif-

ference, this approximation might not accurately reflect the experimental platform’s

inertia.
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CHAPTER 6

RESULTS

The planning arena shown in Figure 6.1 was built over the lake close to the Yalincak

province of METU, where we conducted our experiments with the physical setup to

enable direct comparison of simulation results with real-world studies.

Figure 6.1: Planning arena defined over the dam lake in METU. The orange-edged

polygons represent the virtual obstacles that are defined on the map to make the sce-

narios more challenging.

The arena is defined using geographic coordinates for consistency over the experi-

ments and projected to a local cartesian coordinate frame using GeographicLib [31]

before using it in the tree generation stage. Virtual polygonal obstacles (both convex

and concave in shape) exist in the defined arena to make the arena more challenging.
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6.1 Motion Control Results

In this section, motion control results are presented and the results are divided into

two parts. In 6.1.1, the agent’s response in single funnels with varying gains and

initial conditions are presented, whereas in 6.1.2, the USV’s response in complete

funnel trees are shown.

6.1.1 Single-Funnel Results

Single-funnel experiments were carried out to observe changes in the trajectories fol-

lowed by the agent with varying kα (kv = 0.2 is fixed since it was noted to be a

viable gain). Various initial conditions from different funnel sections were employed

in these tests to demonstrate the control policy’s response better. In the kinematic

simulations illustrated in Figure 6.2, we observed that increasing kα results in more

direct trajectories.
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Figure 6.2: Controller’s responses with different controller parameters on a funnel

with a = 2 on kinematic simulation. All trajectories begin near the boundary and

travel to the funnel’s center. The difference between the four controllers is their kα,

while they share the same kv. The first argument of Funnel in the legend shows the r

of the ellipse, whereas the second shows the a of it.
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From the simulation results, we were prone to use higher kα in the physical experi-

ments; but when used, we observed oscillations on the yaw axis of the robot. These

oscillatory responses can be seen in Figure 6.3. It should be noted that the executed

paths are still quite consistent with the kinematic simulation results. More single fun-

nel results can be seen in Figure 6.6 that demonstrates the paths that the USV executed

from various initial conditions also containing outward headings.
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Figure 6.3: Angular velocity ω and local state ρ on real experiments when kα = 4.0 is

used starting from two distinct points. Trajectories starting from these points are also

given on the left part of the figure. Trajectories labeled with ’Sim’ postfix are results

from the repeated executions with the ideal kinematic unicycle simulation.

Change in ρ, which is one of the controlled variables, while being controlled by the

designed partial feedback linearized controller illustrated in Figure 6.4. The tailored

controller creates inputs that are supposed to result in non-increasing ρ, but it is still

possible for ρ to have slight increments due to external forces, initial velocity and the

inertia of the USV.
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Figure 6.4: Change in ρ when kα = 2.0 is used on multiple setups. Note that there

existed discrete jumps on the ρ̇ of the real results due to the use of finite difference

with the ZOH’ed ρ measurements, that’s why we present the moving median filtered

(with a window of 0.6 seconds) version of it.
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Figure 6.5: Angular velocity response of the USV on the lake with controller gains

kv = 0.2 and varying kα with controlled initial conditions. The radius of the minimum

enclosing circle for the initial positions of these recordings is less than 0.4 meters, and

initial headings are within a window of 11.4◦.
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(a) kv = 0.2, kα = 2.0
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(b) kv = 0.2, kα = 3.0

Figure 6.6: Controllers’ responses on a single funnel with different initial conditions

and kα. Experiments carried out at the lake and their results are reproduced both

in SITL and kinematic simulations using the same initial conditions. Initial twists

observed in some of the trajectories occur when USV’s heading is outward. It rotates

the robot’s heading inward without increasing ρ.
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6.1.2 Multi-Funnel Results

To observe the effects of the gain changes, we run the experiments recorded on mul-

tiple funnel cases on two realizations of the tree generation stage labeled MF1 and

MF2. The funnel tree realization MF2 is illustrated in Figure 6.8 as an example. In

these trees, two starting points were used for the observability of the changes made.

These starting points can be seen in Figure 6.7.

Figure 6.7: Ground station, starting points, and goal point used in multi-funnel exper-

iments.

Results from one of the multi-funnel experiments are given in Figure 6.9, which was

carried out on the funnel tree labeled MF2. This experiment was carried out on a day

with heavy rain, wind, and possibly strong surface currents. Due to these conditions,

the oscillations on the yaw axis resulting from the kα being 4 are more noticeable.

For a more clear comparison of gains, the angular velocity responses of three consec-

utive executions are given in Figure 6.11. The improvement in the yaw axis response

compared to the kα = 4 case can be seen clearly in Figure 6.11.

In Figure 6.10, results from another multi-funnel experiment with kα = 2, which

was executed on the MF1 tree, are illustrated. The resultant paths in this execution
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Figure 6.8: Used funnel tree realization MF2 with simulated trajectories from arbi-

trary start locations. The red circle shows the goal position where the USV would

reach from any other funnel.

with also SITL and SIM realizations on top of the used funnel tree can be seen in

Figure 6.12. In Figure 6.13, a multi-funnel execution on the MF2 tree starting from

MF2-pt1 is shown. The closeness of the trajectories in real, SITL and SIM realiza-

tions in these multi-funnel experiments enables the use of SITL and SIM setups for

further comparisons with the previous method using Monte Carlo experiments.
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(a) Path followed by the USV in this experiment.
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(b) USV’s global states with respect to time.
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(c) USV’s local state α with respect to time.
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(d) USV’s local state ρ with respect time.

Figure 6.9: Multi-funnel experiment results of the USV with kv = 0.2 and kα = 4.

The recording starts from the MF2-pt1 given in Figure 6.7. Since the local states

α and ρ are defined with respect to the active funnel’s center, discrete jumps exist

between funnels. These discrete jumps on the local states are marked with red dashed

vertical lines. Global states shown in (b) are defined relative to the right-handed frame

(ENU) shown in the experiment illustration, where the x, y, and z axes are represented

with red, green, and blue, respectively.
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(a) Path followed by the USV in this experiment.
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(b) USV’s global states with respect to time.
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(c) USV’s local state α with respect to time.
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(d) USV’s local state ρ with respect time.

Figure 6.10: Multi-funnel experiment results of the USV with kv = 0.2 and kα = 2.

The recording starts from the MF1-pt1 given in Figure 6.7. Since the local states

α and ρ are defined with respect to the active funnel’s center, discrete jumps exist

between funnels. These discrete jumps on the local states are marked with red dashed

vertical lines. Global states shown in (b) are defined relative to the right-handed frame

(ENU) shown in the experiment illustration, where the x, y, and z axes are represented

with red, green, and blue, respectively.
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Figure 6.11: Angular velocity responses of the experimental platform on the MF1

execution given in Figure 6.10 with varying kα. The radius of the minimum enclosing

circle for the initial positions of these recordings is less than 0.69 meters, and initial

headings are within a window of 8.1◦.
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Figure 6.12: Path resulted from the multi-funnel experiment made with the USV

on top of the used funnel tree (MF1). The scenario is repeated in SITL and SIM

setups using the same initial conditions in the real experiment. The test starts from

the MF1-pt1 given in Figure 6.7 and gains kv = 0.2 and kα = 2 are used in all

three realizations. A video replay of this physical experiment can be accessed at

https://youtu.be/xzBtKxv8xjM.
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Figure 6.13: Path resulted from the multi-funnel experiment made with the USV

on top of the used funnel tree (MF2). The scenario is repeated in SITL and SIM

setups using the same initial conditions in the real experiment. The test starts from

the MF2-pt1 given in Figure 6.7 and gains kv = 0.2 and kα = 2 are used in all

three realizations. A video replay of this physical experiment can be accessed at

https://youtu.be/R1eT_o0o5LE.
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6.2 Performance Comparison With the Circular Funnel Approach

In this section, tree generation and motion control performances of elliptical and cir-

cular funnel approaches will be compared. In order to compare both approaches, the

two scenarios given in Figure 6.14 are used which use the same arena with different

start and goal coordinates. Due to the difference in their start and goal positions,

these two scenario results in two distinct tree expansion characteristics. For example,

scenario 1 in Figure 6.14a results in trees with lower depth for the start node due to

the lower physical distance between start and goal positions. Another difference be-

tween the scenarios is that the start position in scenario 2 is in the natural expansion

direction of the tree with the root at the goal position, that’s why scenario 2 results in

fewer node counts when compared with scenario 1.

(a) Scenario 1 with a circular funnel tree on top. (b) Scenario 2 with an elliptical funnel tree on top.

Figure 6.14: Planning scenarios defined over the lake in METU, with example circu-

lar and elliptical tree realizations on top. In the scenarios, red points show the goal

positions whereas the blue points show the starting positions.

6.2.1 Tree Generation Results

To illustrate the tree generation improvements of elliptical funnels over the circular

funnels, executed tree generation stages with elliptical funnels and circular funnels

67



50 000 times in scenarios given in Figures 6.14a and 6.14b. In these total of 200 000

recorded executions, the user-defined parameters given in Table 6.1 are used.

Table 6.1: Parameters used in tree generation tests, which are described in Section 3.1.

η
Coverage

Confidence (Pc)

Coverage

Fraction (β)

Minimum

Radius

0.8 0.99 0.5 2.0

Results derived from the executions on scenario 1 are given in Table 6.2 and Fig-

ure 6.15 whereas results from scenario 2 are in Figure 6.16 and Table 6.3. In both

scenarios, elliptic funnels result in significantly fewer funnels while still requiring

time within reasonable limits. Failure rates given in Tables 6.2 and 6.3 shows how

much, in a thousand trials, the tree generation stage terminates without reaching the

start position due to the probabilistic termination condition in (3.1) with the Pc and β

given in Table 6.1. This small ratio for early terminations certainly does not overlay

the purpose of using them, which is used as a way of terminating in cases where no

possible solutions exist.

Table 6.2: Statistics from the tree generation executions run on scenario 1.

Funnel

Type

Failure

Rate

Time Elapsed

(Seconds)

Number of

Nodes

Start Node’s

Depth

- ‰ Mean Std Mean Std Mean Std

Elliptic 2.06 0.0984 0.1421 148.1801 42.0072 12.3174 3.0716

Circular 0.22 0.0083 0.0053 219.1985 47.7933 16.0907 2.8884

Table 6.3: Statistics from the tree generation executions run on scenario 2.

Funnel

Type

Failure

Rate

Time Elapsed

(Seconds)

Number of

Nodes

Start Node’s

Depth

- ‰ Mean Std Mean Std Mean Std

Elliptic 0.10 0.0068 0.0276 45.8832 23.8350 18.5060 4.0199

Circular 0.00 0.0011 0.0013 77.7369 27.1693 35.1913 5.9719
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Another statistic given in Tables 6.2 and 6.3 is the start node’s depth. The depth of a

node shows its direct connectivity order with the goal node. For example, the depth

of the goal node is 0, whereas its immediate neighbor’s depths are 1. In our case,

the start node’s depth shows how many active controller changes will occur before

reaching the goal node. Since controller changes might result in discrete jumps on

the commands sent to the actuators, the lower the start node’s depth, the better.
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(a) Number of nodes generated on scenario 1.
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(b) Start node’s depth on scenario 1.

Figure 6.15: Histogram plots of the 50 000 trees generated each for elliptic and cir-

cular funnels on scenario 1. For ellipse and circle strategies, mean node counts are

148.20 and 219.20; and the mean start node’s depths are 12.32 and 16.09 respectively.
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(a) Number of nodes generated on scenario 2.
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Figure 6.16: Histogram plots of the 50 000 trees generated each for elliptic and cir-

cular funnels on scenario 2. For ellipse and circle strategies, mean node counts are

45.88 and 77.74; and the mean start node’s depths are 18.51 and 35.19 respectively.

6.2.2 Motion Control Results

In this thesis, we propose an alternative trajectory-free planning and control schema to

the schema proposed in [2]. We use some performance metrics, as described below,

to conduct a comparative analysis of the control stages of the two methodologies.

Note that these metrics do not contain any metric that is purely related to the node

generation stage, since those are already covered in Section 6.2.1.

Mission Duration: The time that passes until the USV reaches the goal position

Average Speed: The average speed of the USV during its mission

Path Length: The distance covered by the USV until it reaches the goal position

Average Absolute Yaw Rate: It is a measure of the rotation made by the USV

during its mission. In order to make it independent of the mission duration, it is

normalized with the mission duration as shown in (6.1). When it is considered

for the same start and goal positions, the lower this metric is, the better.

1

tend − tstart

∫ tend

tstart

|ω| dt (6.1)
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For performance comparison, a subset of the 200 000 trees recorded in tree generation

tests given in Section 6.2.1 is used with the kinematic simulation setup; and the com-

mands and the resultant trajectories are recorded for analysis. The test subset consists

of a total of 40 000 simulations, equally divided between scenarios; and elliptical and

circular funnels. For elliptical funnels, the controller parameters used in the simula-

tions are the same as the final parameters used in the real USV. For circular funnels,

the controller proposed in [2] is utilized with the equivalent parameters based on the

analysis in Section 3.2.1. Used controller parameters are summarized in Table 6.4.

Table 6.4: Controller parameters used in performance tests.

Funnel Control Policy Period (s) kv | kρ kα vsat (m/s) ωsat (rad/s)

Elliptical (3.29) 0.05 0.2 2.0 0.8 0.4

Circular [2], (2.1) 0.05 0.4 2.0 0.8 0.4

80 100 120 140 160 180

Path Length (m)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

Results on Scenario 1

Circle
Ellipse

(a) Path length on scenario 1.
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(b) Average absolute yaw rate on scenario 1.

Figure 6.17: Histogram plots of the path length and average absolute yaw rate metrics

for elliptic and circular funnel cases on scenario 1. For ellipse and circle strategies,

mean path lengths are 76.54 and 73.20 meters; and mean average absolute yaw rates

are 0.0795 and 0.0891 rad/s respectively.

Inspecting the histograms in Figures 6.17, 6.18, 6.20 and 6.21, the results for path

length and mission duration metrics are close, and the winner depends on the sce-

nario. For the average speed metric, the elliptic controller has a slight advantage over

the circular one for both scenarios. Lastly, we can see that the elliptical control and
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Figure 6.18: Histogram plots of the path length and average absolute yaw rate metrics

for elliptic and circular funnel cases on scenario 2. For ellipse and circle strategies,

mean path lengths are 211.55 and 216.37 meters; and mean average absolute yaw

rates are 0.0433 and 0.0594 rad/s respectively. The multi-peak distribution of the

path length in scenario 2 is due to scenario 2 having two distinct homotopy classes of

paths with comparable probabilities.

planning schema has a clear advantage on average absolute yaw rate metric indepen-

dent from the scenario. This advantage can also be seen in the example realizations

given in Figure 6.19, where it is easy to see the surplus yaw-rate commands given by

the circular controller for the same start and goal configurations.
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(c) Angular velocity response on the elliptic case.
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(d) Angular velocity response on the circular case.

Figure 6.19: Paths and angular velocity responses from a real experiment carried on

the damn lake in the Yalincak province of METU. Gains kv = 0.2 and kα = 2 are

used in all realizations.
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Figure 6.20: Histogram plots of the mission duration and average speed metrics for

elliptic and circular funnel cases on scenario 1. For ellipse and circle strategies, mean

mission durations are 97.54 and 94.74 seconds; and mean average speeds are 0.7847

and 0.7728 m/s respectively.
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Figure 6.21: Histogram plots of the mission duration and average speed metrics for

elliptic and circular funnel cases on scenario 2. For ellipse and circle strategies,

mean mission durations are 265.83 and 274.03 seconds; and mean average speeds

are 0.7958 and 0.7896 m/s respectively.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we proposed a motion planning and control scheme for unmanned sur-

face vehicles with low-level forward velocity and yaw rate controllers. We demon-

strated the proposed scheme’s effectiveness on a novel USV and simulated versions

of it. The proposed schema sequentially composes the partial feedback linearized

controllers tailored for elliptic funnels in two stages: tree generation and motion con-

trol. The tree generation stage generates a tree starting from the goal position and

expanding randomly in free configuration space until a specified starting position is

contained within a funnel. When the initial position of the USV is connected to the

goal funnel with the generated elliptic funnel tree, the motion control stage is acti-

vated, steering the USV from node to node until the goal position is reached.

The partial feedback linearized controllers tailored for each funnel ensures the USV’s

elliptic distance (ρ) to the active funnel is non-increasing, not permitting any colli-

sions with the obstacles. Additionally, the stationary elliptic distance is possible only

momentarily since the control on the yaw axis pushes the non-positive rate of change

in the negative direction, ensuring convergence to the funnel center and sequentially

to the goal position.

Our algorithm operates on 2D maps defined by polygons and can contain both convex

and non-convex shapes. Using this environment representation, we can model the

real-world workspaces the USV operates on without being over-conservative. The

unicycle motion model we assume for the controlled agent can accurately model the

motion carried for a wide range of surface vehicles. This lets us delegate the low-
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level controls of the USV to the onboard controllers dedicated to its maneuverability,

enabling us to work with a wide range of control agents.

7.2 Future Work

In this study, the randomly generated ellipse tree from the goal position is directly

used without measuring or optimizing its quality, focusing on the motion control

stage. However, the fast nature of the tree generation algorithm could allow pro-

cedures such as re-planning or post-processing in the tree generation stage. In the

future, it is possible to design quality metrics for the generated tree and optimize it

before using it in the motion control stage, resulting in more direct paths from start to

goal. Another possible solution to this problem is updating tree generation steps so

that the generated funnel tree already complies with the desired quality measures.

Another point to mention is that the implemented algorithm works in a static en-

vironment representation where we assume there won’t be any obstacles inside the

generated funnels. This was a fair assumption on the lake that we were testing our

algorithm on since no other agents were using the lake. But for a more generalized

use case, handling dynamic obstacles is a must. In the future, it is possible to make

the funnel tree a reactive one where the tree is updated continuously depending on the

other agent’s possible trajectories.

Another possible improvement is the creation of a sequential composition framework

that would enable easier deployment and comparison of algorithms using the sequen-

tial composition as a basis.
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