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ABSTRACT

COMPUTATIONAL MECHANICS FOR SOFT BIOLOGICAL TISSUES

Altun, Cem

Ph.D., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Hüsnü Dal

January 2023, 202 pages

Computational biomechanics is an active research area, notonly to understand the

mechanisms behind the behaviours of biological tissues butalso to develop medical

techniques for surgeries, rehabilitations, and diseases.The thesis mainly composed

of two parts namely, growth-induced instabilities and dispersion-type anisotropic vis-

coelasticity for soft biological tissues.

In the first part of the thesis, planar growth-induced instabilities for a three-dimensional

bilayer-type confined tissue is examined. Firstly, a five-field Hu-Washizu type mixed

variational formulation for incompressible and inextensible limits is extended for fi-

nite growth theory that captures the primary and secondary growth-induced instabil-

ities for anisotropic soft biological tissues. A numericalexample is solved by im-

plementingT2P0F0 element on the automated differential equation solver, FEniCS.

The influence of fiber stiffness on the critical growth parameter, primary and sec-

ondary buckling is investigated. The numerical outcomes ofthis study will help to

understand the fiber stiffness effect on the buckling and post-buckling behavior of

bilayer-typed anisotropic soft biological tissues.

In the second part of thesis, we proposed five novel formulations for angular-integration-
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based dispersion-type anisotropic viscoelastic constitutive models at finite strains

where the formulations use bivariate and planar von Mises density distribution func-

tions. Then, a numerical model validation is conducted for the human myocardium.

The proposed models use the generalized structure tensor for the baseline hyperelas-

tic mechanical response to reflect the dispersion characteristics along the fiber and

sheet directions of the myocardium. A quadratic free-energy function is defined

for the viscous response that is mainly composed of logarithmic elastic and micro-

viscous strains. The density distribution function is introduced in the constitutive

equations by defining two types of formulations, namely, local-based and global-

based. In the local-based formulations, we use the density distribution as a part of

the micro-viscous free-energy functions. In the global-based formulations, the den-

sity distribution function enters the equations during thecontinuous averaging of the

stress and tangent moduli expressions. For the five of proposed models, the overstress

response has been identified through either nonlinear or linear evolution laws in each

orientation direction by using numerical integration, either over the unit micro-sphere

or over the unit planar circle. Then, the fitting performances of the proposed models

are examined and compared with the cyclic triaxial shear andtriaxial shear relaxation

experiments of human passive myocardium from the literature. All models are com-

pared, and their pros and cons are discussed. While local-based formulations suffer

from the violation of the normalization condition during the averaging integral stage

when the nonlinear evolution is used, the global-based formulations are stable and

provide high accuracy for both linear and nonlinear evolutions with a sufficient num-

ber of integration points. The proposed formulations provide a histological-based

flexible calibration capability for any type of anisotropicsoft biological tissue that

exhibits either elastic or viscous response.

Keywords: anisotropic viscoelasticity, myocardium, fiberdispersion, growth-induced

instability
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ÖZ

YUMUŞAK B İYOLOJ İK DOKULAR İÇ İN HESAPLAMALI MEKAN İK

Altun, Cem

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Hüsnü Dal

Ocak 2023 , 202 sayfa

Hesaplamalı biyomekanik, yalnızca biyolojik dokuların davranışlarının arkasındaki

mekanĭgi anlamak için dĕgil, aynı zamanda ameliyatlarda, rehabilitasyonlarda ve

hastalıkların tedavisi için gerekli olan tıbbi metotlarıngeliştirilmesi için kullanılan

aktif bir araştırma alanıdır. Bu tez, yumuşak biyolojik dokularda büyümeye dayalı

düzensizlikler ve dăgılım-tipli yöne băglı viskoelastisite olmak üzere iki ana bölüm-

den oluşmaktadır.

Tezin ilk bölümünde, üç boyutlu çift katmanlı sınırlandırılmış bir dokuda düzlemsel

büyümeye băglı kararsızlıklar incelenmiştir.̇Ilk olarak, sıkıştırılamazlık ve uzatıla-

mazlık sınırlarında kullanabilmek için yöne bağlı davranan yumuşak biyolojik do-

kularda büyümeye dayalı birincil ve ikincil burkulma davranışını yakalayabilen beş

alan dĕgişkenli Hu-Washizu tipi karma bir formülasyon sonlu büyüme teorisi için

uyarlanmıştır.T2P0F0 eleman formülasyonu otomatik diferansiyel denklem çözücü

yazılımı FEniCS’de kodlanarak bir nümerik uygulama çözülmüştür. Lif katılı̆gının

kritik büyüme parametresine, birincil ve ikincil düzensizlik moduna olan etkisi araş-

tırılmıştır. Bu çalışmanın sayısal sonuçları, iki katmanlı yapılı yöne băglı davranış

vii



gösteren biyolojik dokularda burkulma ve burkulma sonrasıdavranışı üzerindeki lif

katılığının etkisinin anlaşılmasına yardımcı olacaktır.

Tezin ikinci bölümünde, formülasyonlarda iki değişkenli ve düzlemsel von Mises yo-

ğunluk dăgılım fonksiyonlarının kullanıldı̆gı, dăgılım-tipli açısal integrasyona dayalı,

yöne băglı viskoelastik yumuşak biyolojik dokular için beş yeniformülasyon öneril-

mektedir. Bu modellerin dŏgrulaması nümerik olarak insan miyokardı davranışı üze-

rinden gerçekleştirilmiştir. Önerilen modeller, kalp kasının lif ve tabaka yönleri bo-

yunca dăgılım özelliklerini yansıtmak için temel hiperelastik mekanik davranışı için

genelleştirilmiş yapı tensörü kullanmaktadır. Dokununviskoz tepkisi için logaritmik

elastik ve mikro-viskoz gerinimlerden oluşan ikinci dereceden bir serbest enerji fonk-

siyonu tanımlanmıştır. Yŏgunluk dăgılım fonksiyonu, lokal tabanlı ve global tabanlı

olmak üzere iki ana formülasyon temelli olarak tanımlanarak malzeme denklemlerine

dahil edilmiştir. Lokal tabanlı formülasyonlarda, yoğunluk dăgılımı mikro-viskoz ser-

best enerji fonksiyonlarının bir parçası olarak kullanılmaktadır. Global tabanlı formü-

lasyonlarda, yŏgunluk dăgılım fonksiyonu, gerilim ve tĕget modülünün sürekli orta-

laması alınırken denklemlere girmektedir. Önerilen beş model için, gerilim eşlenĭgi

olan aşırı gerilim tepkisi, ya birim mikro-küre üzerinde ya da birim düzlemsel daire

üzerinde nümerik integrali alınarak her oryantasyon yönünde dŏgrusal olmayan veya

doğrusal evrim yasaları aracılığı ile tanımlanmıştır. Daha sonra, önerilen modellerin

performansları incelenmiş ve literatürde insan pasif kalp kası mekanik davranışına

yönelik döngüsel üç eksenli kesme ve üç eksenli kesme gevşeme deneyleri ile karşı-

laştırılmıştır. Lokal tabanlı formülasyonlar, doğrusal olmayan evrim formülasyonları

kullanıldığında nümerik integrasyon sırasında normalleşme koşulunu ihlal ederken,

global tabanlı formülasyonlar kararlıdır ve yeterli sayıda integral noktası kullanıldı-

ğında hem dŏgrusal hem de dŏgrusal olmayan evrim formülasyonları için doğruluk

săglamaktadır. Önerilen formülasyonlar, yönden bağımsız veya yöne bağlı bir viskoz

tepki sergileyen dĭger herhangi bir biyolojik doku için histolojik tabanlı esnek bir

kalibrasyon yetenĕgi săglamaktadır.

Anahtar Kelimeler: yöne băglı viskoelastisite, kalp kası, elyaf dağılımı, büyümeye

dayalı burkulma

viii



To my wife Kübra and to my sons Kaan & Uras

ix



ACKNOWLEDGMENTS

Research studies presented in this thesis were carried out between 2016-2022. I would

like to thank everyone who supported me during this intensive study period. First of

all, I would like to thank Assoc. Prof. Dr. Hüsnü Dal for his guidance, encouragement,

and patience during all my studies. I would also like to extend a special thank to

Prof. Dr. Suha Oral, who supported me, believed in my work, and encouraged me

to be included in the Ph.D. program. I would like to thank Assoc. Prof. Dr. Ercan

Gürses, who has been on the doctoral thesis monitoring committee from the very

beginning and has made valuable contributions and providedguidance.

I also would like to thank Dr. Osman Gültekin for his commentsand discussions

during the scientific research phases. I would also like to thank Alp Kăgan Açan for
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CHAPTER 1

INTRODUCTION

This thesis presents two main parts namely, growth-inducedinstabilities and dispersion-

type angular-integration-based anisotropic viscoelasticity for soft biological tissues.

Beginning with hyperelastic constitutive relations, a five-field mixed variational for-

mulation for growth-induced instabilities has been adopted in incompressible and in-

extensible limits and investigated for the first time in the literature on anisotropic

three-dimensional confined tissue, i.e., a thick stiff film on a compliant substrate un-

der planar growth. The numerical example was solved by implementingT2P0F0

element on the automated differential equation solver platform, FEniCS [12]. The

role of fiber stiffness on primary and secondary instabilities has been demonstrated.

Then, in the second part of the thesis, there are proposed local-based and global-based

dispersion-type formulations for anisotropic viscoelasticity to formulate histological-

based the directional rate-dependent behaviour of anisotropic soft biological tissues.

The novel dispersion-based angular integration-type anisotropic viscoelastic consti-

tutive models have been proposed by using planar and bivariate von Mises density

distributions for orthogonal directions. The model has been validated through cyclic

triaxial shear and triaxial shear relaxation experiments on human myocardium pre-

sented in the literature. The proposed anisotropic viscoelastic constitutive models are

in good agreement with the experimental data for the shear characteristics of human

myocardium tissue.
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1.1 Overview and Backgorund

Mechanical behaviors, strengths, and kinematics of livingsystems are considered un-

der the biomechanics theory. Biomechanics is an active research subject, not only

to understand the mechanism of biological tissues but also the development of treat-

ment methods for injuries and fatal diseases. Although medical operations seem to

be unrelated to mechanics; treatments, surgeries, and rehabilitation are directly re-

lated to the mechanical response of the tissues from the stress and strain perspective

[13]. In the biomechanical area, solid mechanics researches are directly involved

in many medical cases such as heart diseases, heart valve prostheses, organ support

devices, artificial heart development, replacement of diseased tissues, skin transplan-

tation, stenting on a vein, musculoskeletal diseases, etc.There are also active research

topics based on tissue engineering, biomedical materials,and medical device devel-

opment. Tissue engineering mainly focuses on the recreation of human tissues and

the replacement of diseased tissue with a compliant artificial one. It has a key role

in understanding pathology, proposing the way for artificial tissue replacement tech-

niques, and developing artificial tissues and organs, prostheses, and medical treatment

methods. Biomaterials are considered in two main groups. The first group is the syn-

thetic biomaterials (polymers, composites, metals, ceramics) and the natural biomate-

rials (cells, tissues, proteins, etc.)[14]. The functional tissue must be biocompatible in

terms of strength, stiffness, physiochemical, electro-mechanical, elastic response, and

time-dependent response, depending on the application. Itshould have the capability

to mimic the function of the native tissue/organ without disturbing the surrounding

anatomy. Therefore, it is significant to have a well-developed mathematical model

based on mechanics that describes the material response in an accurate way.

Tissues are classified according to their stiffness properties, such as soft and hard.

That definition is a relative measure that takes into accountthe relationship between

force and deformation behaviors. Soft tissues include the central nervous tissue, ab-

dominal organs, brain, lung, muscle, myocardium, and skin,while hard tissues in-

clude cartilage, tendon, and bone. For more information on the mechanical properties

of human tissues, see the review of Guimaraes et al. [15]. Tissues are composed

of cells and extracellular matrix and form organs. The extracellular matrix contains
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proteins (collagen, laminin, elastin, etc.) and glycoproteins that form a support-like

network for cells, and they have a key role in healing and regeneration. Elastin is a

protein that procures long-range elasticity for many of thesoft biological tissues [16].

In most soft biological tissues, collagen is the main structural element, and the me-

chanical behavior of living tissue is determined by the volume density of the collagen

and the orientation of the collagen fibers. Soft biological tissue is generally subjected

to large strains and undergoes nonlinear deformations. Collagen fibers may be dis-

tributed randomly or they can be in a specific orientation. Due to the wavy, disordered

form of collagen fibers in the unloaded state, they form a straight line shape, and they

are aligned to carry a higher load, especially in tension. They exhibit highly nonlin-

ear exponential increasing stiffness under loading. Therefore, such tissues represent

a J-shaped stress-strain response, as shown in Figure 1.1. Tissues can be composed of

S
tr

es
s

Strain

Figure 1.1: The representation of the nonlinear stiffeningof soft tissue is called a

J-shape stress-strain curve. At low strains, the wavy-formed fibers do not take on any

tension load. Then fibers become aligned in a straight form that takes into account

fiber strength in addition to the ground matrix.

distinct structural sub-components with distinct properties, which can be combined to

form a composite structure with material response direction dependency. This leads

to material anisotropy and the capability to sustain high-level loads in specific di-

rections. For example, a myocardium tissue exhibits different mechanical properties
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(a) (b)

myofiber epidermis

dermis

hypodermis

Figure 1.2: Schematic of anisotropy of tissues (a) Myocardium tissue that consists of

distinct collagen fibers, myocardium sheets, and elastin (b) Layered structure of skin

tissue. (The skin image was partly generated using Servier Medical Art, provided by

Servier, licensed under a Creative Commons Attribution 3.0unported license)

in orthogonal directions due to the fiber bundles and laminated sheet structure. An-

other anisotropy can be formed by laminated structures suchas skin that is made of

three different layers of tissues, namely the epidermis, dermis, and hypodermis [15].

The schematic views of anisotropic myocardium and skin tissues are shown in Figure

1.2. Constitutive models are developed to be used analytically and numerically to

observe the mechanical response of soft tissues in an accurate way. Due to the large

deformation characteristics and nonlinear behaviour of soft biological tissues, their

mechanical response cannot be characterized with the basicmechanical constants of

linear elasticity [17]. Therefore, a strain energy function based variety of hyperelas-

tic constitutive models were developed to capture mechanical response. Hyperelastic

constitutive models are actively used in finite element analysis to get insight into po-

tential risky conditions for the patient, to observe surgical scenarios, and to develop

biomaterials that mimic the native tissue for both fibrous and non-fibrous biological

tissues. There are also extended advanced constitutive models those are accounts for

viscoelasticity [18], electo-mechanical [19], electro-viscoelasticity [20],[21] for the

biological tissues [17]. The dynamic behavior of soft biological tissues is character-

ized by time-dependent responses, such as stress stiffening or stress relaxation. Due

to the high water content of the biological tissues, the viscous response is presented

under dynamic loading by dissipating energy through unloading. During the cardiac

cycle, the viscoelastic response of the surrounding tissues is a good example of the

viscous response. High water content of the ground matrix ofa tissue does not only
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cause the viscous response but also maintain the quasi incompressibility of the mate-

rial which results a sligth modification in the constitutivelevel.

There are many experiments conducted on soft biological tissues to examine their

directional characteristics. The experiments that are performed on animal tissues

provide a good insight into how human tissue can be represented, but they are not

fully adaptable for human tissues. Due to the distinct orientation characteristics of

the fibrous tissues, there are several types of experiments to obtain the isotropic or

anisotropic nature of the samples. These are, uni-axial tension, biaxial tension, pure

shear, compression for hyperelastic baseline and cyclic and relaxation tests for time-

dependent characteristics, see [17] for more detailed observations.

There are a number of extensive reviews that have been workedon regarding hypere-

lastic constitutive models of rubber-like materials and biological tissues. Steinmann et

al. [22], have compared fourteen of different micro-mechanically based hyperelastic

constitute models. Then Dal et al. [5] enlarged the group of 44 hyperleastic consti-

tutive models for rubber-like materials and examined theirbehaviour under uniaxial,

biaxial, and shear deformations. They presented parameteridentification procedures

for different optimization algorithms. Although these reviews are for rubber-like ma-

terials, they provide good insight to understand also the behaviour of soft tissues as

well. Then, Chagnon et al. [23] prosed a review to examine thebehaviour of the

materials based on hyperelastic free energy functions those are mostly used for soft

biological tissues. In paralel, [24] examined the rate-independent isotropic and in-

compressible hyperelastic constitutive models for biological tissues such as the brain,

kidney, liver, etc. Similary, Mihai et al. [25] proposed a review that make the compar-

ison of numerical results based on isotropic incompressible hyperleastic constitute

models with available experimental data for brain and fat tissues. Then, derivation

of the stress and moduli tensors have been carried out for isotropic and anisotropic

biological tissues by Cheng et al. [26].

Collagen fibers in fibrous tissues are oriented in distinct directions and are not per-

fectly aligned but they are dispersed. The effect of the dispersion in tissues, espe-

cially in healthy and non-healthy samples, directly affects the mechanical behaviour

of the material and is examined in the following reviews. Holzapfel et al. [27], have
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presented a critical review of the modeling of fiber dispersion by using angular in-

tegration and generalized structure tensor models. They compared their numerical

results with the experimental data sets. Lastly, Dal et al. [17] presented the fitting

performance of nine hyperelastic constitutive models for soft biological tissues that

are based on invariant and dispersion-type modeling. They observed the fitting ca-

pability of the models by using optimization techniques on three different human

tissues.

1.2 Growth Phenomena in Biomechanics

The formation of a biological tissue is comprised of the following three processes:

growth, remodeling, and morphogenesis. Growth mainly accounts for mass or vol-

ume change (i.e., cell enlargement, division, or death); remodeling is the change of the

material properties (i.e., reorientation of fibers subjected to a driving load); and mor-

phogenesis is related to the shape change (i.e., healing of the biological tissue)[28].

These concepts either can be combined together or they can bean individual process.

Since the main research area of the first part of this thesis isgrowth phenomena, the

details of remodeling will be out of scope. The growth phenomenon is responsible for

hyperplasia, hypertrophy, and the enlargement of the extracellular matrix. Therefore,

the growth mechanism can be either positive (enlargement) or negative (shrinkage),

and it can be isotropic, planar, or anisotropic, which may result in residual stresses on

the tissue. This may lead to overloading of the material or buckling of the structure.

Kuhl [29] states that growth in biological tissues can be categorized in three form

called as fiber growth, surface growth and volume growth. Volume growth accounts

for identical enlargement or shrinkage in all directions (i.e. tumors, fruit, arteries).

Surface growth is a kind of planar growth in a plane without any growth in the nor-

mal direction (i.e. , lungs, skin, brain, heart valves, etc.). Lastly, the fiber growth

corresponds to the growth only in the longitudinal fiber direction (i.e., plants, muscle,

eye, heart etc.). As an example, the volume growth of an artery and the fiber growth

of the heart are given in Figure 1.3.

Growth-induced deformations are common phenomena that confront living systems

and engineering applications. In a certain level of growth,called critical growth,
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(a) (b)

Figure 1.3: Biological examples for growth-induced deformations (a) Growth of the

heart for wall thickening (b) Growth of an artery; adopted from [2]

structural instabilities may rise as an indicator of pathological conditions of biological

tissues. It also plays a key role in the development of materials for biomedical appli-

cations. These materials and tissues are mostly in the form of multi-layer structures,

which may have different mechanical properties and fiber reinforcement layouts. The

main mechanism of the buckling in a multi-layered structureis the compression type

of loading that causes different levels of stresses in the thin stiff film and the compli-

ant substrate; thus, buckling leads to a release of the energy. Fiber stiffness is a critical

parameter that designates the critical growth in primary buckling as a wrinkle form.

It is significant to understand the mechanism behind the growth-induced instabilities

for transversely isotropic materials and to observe the effect of fiber stiffness over pri-

mary and secondary instabilities on bilayer systems. Growth-induced deformations

may lead to instabilities as they turn into different patterns on advanced engineering

materials and soft biological tissues. Mechanism of growthis also used to achieve

the desired geometrical form change in biomedical applications. Growth phenom-

ena are widely shown up in nature as in living organisms (plants, tissue, etc.) and

in engineering materials such as polymeric gels [30] and stretchable electronics [31].

A wide range of studies have been performed to understand theunderlying mechan-

ics of the tissue development subjected to growth and growth-induced instabilities

and their biomedical applications such as; folding of the airway [32], cortical folding

of the brain [33], cardiac growth [34, 6, 35, 36], wrinkling on spherical geometries
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[37, 38], wrinkling on the skin [39, 40], artery growth [28, 41, 42, 43, 44], grow-

ing mechanics of muscle [45], instabilities on thin stiff film on a compliant substrate

[46, 47, 48, 49], morphogenesis of the plates [50, 51], buckling of swelling hydrogels

[30, 52, 53, 54, 55, 56, 57, 58] and torsional actuator modeling [59, 60], to mention but

a few. For additional information, we refer to the state-of-the-art reviews on growth,

remodeling and morphogenesis of biological tissues [28, 61, 4, 62, 63, 29, 64]. Il-

lustrative example of growth in a soft biological tissue andgrowth in a biomedical

application is presented in Figure 1.4. Most living systemsare composed of multi-

(a) (b)

(c) (d)

Figure 1.4: Examples of growth-induced buckling for biological tissues and elec-

tronic device development (a) Flexible complementary metal-oxide semiconductor

circuits; adopted from [3] (b) Wrinkling of a flower [4], (c) Instability pattern in

bovine esophagus [4], (d) Cortical folding of the human brain

layered structures possessing different mechanical properties as in biological tissues

such as artery, airwall, skin, etc. Such structures are alsoencountered in flexible

electronics [31] and [3]. In nature, most living systems have one or two fiber family

reinforcement embedded in different layers of the system for different purposes under
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various conditions.

Instabilities of isotropic bilayer plates composed of film and bonded substrate were

examined experimentally [31, 47, 65], analytically, and numerically [30, 46, 48, 49,

66, 67, 68]. Khang et al. [31] experimentally observed the mechanical buckling of a

micro-scale bilayer system; herewith, they have ended up with thickness, wavelength,

strain, and delamination relations. They also highlightedthat these instabilities could

be used as a measure for elastic moduli of materials. Brau et al. [47] studied the en-

ergy requirements of membranes to obtain a new kind of instability initiated as period-

doubling both theoretically and numerically. Huang et al. [46] worked on wrinkles in

a layered structure experimentally and numerically in two dimensions. They obtained

a relationship between the wavelength and the amplitude of wrinkles for substrates

with various elastic moduli and thickness; they observed different instability forms

such as stripes, labyrinths, and herringbones. In the series works [66, 69, 70], differ-

ent patterns (stripes, varicose, checkerboard, hexagonal) were analyzed for a bilayer

plate under biaxial residual compressive stress in the film.Then the formation of

herringbone (zigzag) pattern with increasing residual stress was studied numerically

based on a simplified buckling model. Moreover, in the third part of the study, an

asymptotic solution was proposed for a plate with an elasticfoundation in the limit

of large strains. Regarding energy contributions of different instability patterns, Cai

et al. [48] focused on a bilayer film/substrate structure subjected to equi-biaxial com-

pressive stress numerically and experimentally, where they observed checkerboard,

hexagonal, and herringbone patterns. They ranked the modesin terms of energy,

and they ended up with the fact that herringbone mode has the lowest energy, then

come the checkerboard with hexagonal and triangular modes.On the other hand, Jia

[49] showed that hexagonal patterns minimize the elastic energy, which is the domi-

nant mode. Javili et al. [67] studied growth-induced instabilities based on eigenvalue

analysis which does not impose perturbation-dependent definitions. They tested their

approach in slender beam and growing film on a soft substrate,and as its outcome,

an objective solution was reached. Since this method provides a good initial guess

for a nonlinear analysis, it cannot be used for post-buckling behavior. As a follow-

up work, Dortdivanlioglu et al. [68] proposed isogeometricanalysis (IGA) enhanced

with eigenvalue analysis for a thin stiff film on a compliant substrate subjected to
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compressive stress. They also compared the isogeometric analysis with finite el-

ement analysis, resulting in more accurate predictions with IGA. The relationship

between film thickness, film and substrate stiffness ratio, number of wrinkles, and

wavelengths were also studied within this study. Additional physical effects were

considered by Alawiye et al. [71]. In [71], linear analysis for wrinkling problems

with additional considerations of pressure, surface tension, an upper substrate, and

fibers were performed. Diffusion-driven time transient swelling on hydrogels was

studied in [72, 73]. Considering the numerical efficiency, Kadapa et al. [74] proposed

a finite element framework by extending a mixed displacement-pressure formulation

using quadratic and linear Bezier elements. They concludedthat the model provides

good accuracy for exact incompressibility by providing an inf-sup stability condition.

Besides isotropic modeling of bilayer plate, there are alsostudies on multi-layer struc-

tural deformations and instabilities taking into account the fiber reinforcement on

layers. These types of structures have mostly been revealedin living systems (bone,

muscle, arteries, airway, heart etc.) and biomedical engineering designs such as actu-

ators. As one of the first sets of studies, Rachev et al. [75] studied over remodeling

caused by blood pressure of arterial wall. Taber [76] also proposed a growth law

for arteries, including orthotropic layers (intima/mediaand adventitia) reinforced by

muscle fibers. Lubarda et al. [45] presented a constitutive theory for stress-dependent

evolution equations for isotropic, transversely isotropic, and orthotropic biomaterials.

Then, Ciarletta et al. [77] worked on the combined effect of the growth and anisotropy

in the epithelial formation using mixed polar coordinates.By the numerical study,

they concluded that the result that distribution of residual strains and mechanical

properties of fibers embedded in the tissue has a significant effect on instability pat-

terns. Liu et al. [57] proposed a nonlinear finite element procedure for anisotropic

swelling that included the chemical potential for anisotropic hydrogel-based bilayers.

Although they do not focus on instabilities, they obtained the effects of modulus and

fiber orientations in free bending and twisting. Stewart et al. [78] worked on wrinkling

instability of bilayer cerebral cortex (grey and white matter) tissue embedded with

two family elastic fibers in two dimensions. They showed thatwrinkle wavelength is

a function of fiber orientation, and the instability can be triggered by increasing the

fiber stiffness depending on the fiber angle. There are also studies for macroscopic in-
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stabilities taking into account micromechanics based on homogenization [79], Michel

et al. [80] extended to microstructural and macroscopic instabilities for plane-strain

problems, and then Slesarenkoa et al. [81] focused on macroscopic and microscopic

instabilities in three-dimensional periodic fiber-reinforced composites. They found

that the volume fraction of fibers determines the first mode ofbuckling and a high

fraction ratio of fibers exceeding a threshold value ends up with long wave instabil-

ity, whereas a lower fraction of fibers results in microscopic instabilities. Growth-

induced nonlinear behavior such as remodeling of fibers [28,41, 62, 63, 82, 83], free

swelling of anisotropic hydrogels [54, 55, 56, 58], anisotropic growth of the heart

[35, 36], swelling of tracheal angioedema [84, 85, 86] and growth in fiber-reinforced

torsional actuators [59, 60] are extensively studied. For adetailed review account-

ing for growth-induced nonlinear behavior of fiber-reinfored systems, the interested

reader is referred to [28, 62, 63, 29].Albeit tremendous amount of work devoted

to the aforementioned aspects of growth and remodeling, there is still need for re-

search regarding the the effect of fiber stiffness on growth for primary and secondary

instabilities in three-dimensional bilayer fiber-reinforced structures.

In addition to growth-induced deformations and instabilities those are mentioned

above, there is an additional mechanical effect of growth onbiological tissues as it

may cause pre-stressed state. It has been shown that by opening angle experiments on

an artery and on the experiments on left ventricle, there is an evidence of some resid-

ual stress appears on the tissue even for unloaded state. Heart is the most complicated

organ in the human body and it may be subjected to high pressure load that drives the

volumetric growth. There are many difficulties for the numerical modeling of cardiac

due to highly non-linear, complex myofiber layout, myofiber dispersion, anisotropic

behaviour, viscoelastic response and pre-stressed state due to non-uniform volumetric

growth [87]. Experiments are performed for ex vivo or in vitro tissue in the literature

but the mechanical behaviour may be different in vivo condition because of the resid-

ual stresses. Growth-induced pre-stress effect is an another open research area need

to be investigated with accurate mechanical model of the cardiac.

11



1.3 Historical Remarks on Structural Features of Myocardium

The heart is one of the most complicated organ in mammals. It is an electro-mechanical

pump that supplies blood through the vessels to the entire living body. Cardiovascular

diseases are prevalent in the population, and they not only have a negative impact on

people’s lives but can also be fatal. The heart has vital functionality for humans and is

subjected to themo-electro-chemo-mechanical conditions. It is important to observe

the physiological conditions of the heart, which may have fatal consequences, and to

understand the mechanics behind this elite pumping system with its sub-components.

Thus, medical treatments, surgery techniques, and rehabilitation methods can be de-

veloped. For example, developing an artificial pumping system, ensuring the biocom-

patibility of transplantation, replacing the heart valve,developing the left ventricular

pacemaker device, etc.

The heart is composed of four chambers, called the left and right atria (LA, RA)

and the left and right ventricles (LV, RV). While RA is responsible for collecting

the deoxygenated blood through the vena cava, LA collects oxygenated blood from

the lungs. Atria and ventricles are connected with blood vessels and synchronized

via antrioventricular valves. Humphrey [88] describes theventricle functions as: RV

pumps blood through the lungs and LV pumps blood through the aorta. The main

pumping function of the heart in the ventricles is governed by the heart wall. The heart

wall is composed of three main layers. These are the endocardium (the inner layer),

myocardium (the middle layer), and epicardium (the outer layer). Endocardium and

epicardium are thin layers that mainly consist of collagen and elastin, and they create

an interface region with inner and outer substances. The myocardium is primarily

responsible for the heart’s pumping function in the wall. Itis made up of parallel

fibers that are embedded in sheets by extracellular matrix [88]. The orientation of the

myofibers makes a smooth transition from the epicardium to the endocardium in a

helical form. In the human, myofibers vary from about -70 degrees at the epicardium

to nearly +70 degrees at the endocardium. The LV wall thickness is higher than the

RV wall thickness due to the fact that the LV is subjected to a higher pressure load to

pump the blood to the aorta.

Myocardium is an inhomogeneous, incompressible, pre-stressed, highly nonlinear,
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anisotropic, viscoelastic tissue and it is in the form of a composite structure. My-

ocardium is an oriented and laminated structure [89] that exhibits different mechan-

ical properties in three distinct directions, called fiber direction, sheet direction, and

normal direction. Therefore, the myocardium must be considered an ortothropic ma-

terial. Due to its high water content, it is also considered incompressible. According

to experiments performed by Vossoughi et al. [90], they end up with a ratio of the bulk

modulus to the shear modulus of nearly105, which also supports the incompressibil-

ity assumption. Myocardium also contains patient-specificresidual stresses due to the

inhomogeneous growth of the heart under different physiological conditions, which

may change the mechanical behavior of the tissue. In line with the high water content

of the myocardium, it exhibits viscoelastic stress-strainrelations under cyclic load-

ing and relaxation tests. Both elastin and collagen are the determinants of the viscous

response of the myocardium [89]. The viscoelastic behaviorof the material is respon-

sible for energy dissipation when subjected to a time-dependent external load. The

resultant stress decreases over time after an instant strain is applied and maintained,

a process known as relaxation behavior. If an instant stressis applied to the material

and kept constant, it results in further deformation and is called creep behaviour. If

there is a cyclic load applied to the material, there will be different stress-stain pat-

terns for the loading and unloading curves. This phenomenonis called hysteresis,

and it is a presenter of energy dissipation measures in the system. A typical cycle of

loading- unloading, and relaxation curves of a biological tissue is given in Figure 1.5.

In this thesis, after presenting growth-induced instabilities in soft biological tissues,

we will focus on the viscoelastic passive mechanical response of the LV myocardium

under cyclic shear and shear relaxation loads.

It is mandatory to understand the layout structure of the human myocardium in three

distinct directions (fiber, sheet, and normal) for accuratenumerical modeling. Not

only the direction of orthotropic behaviour but also the dispersion characteristics in

distinct directions have the key role of mechanical response of the myocardium. The

myocardium structure is composed of parallel myocytes those are oriented helical

from the inner to outer layer of the heart wall, and these muscle fibers form separated

sheet laminates. Rohmer et al. [91] states that fibers ( 80µm in length and 5-10µm in

radius) form a group in 3-4 cell of thickness in a laminate oriented in the transverse di-
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Figure 1.5: Illustration of (a)a typical loading-unloading curve of a viscoelastic ma-

terial (b) typical relaxation curve of a viscoelastic material

rection in the heart wall. They developed a visualization algorithm, based on diffusion

tensor magnetic resonance imaging, to visualize the three-dimensional sub-structures

and orientations (fiber, sheet, and normal) of human myocardium. In order to recon-

struct the sheet surface and fibers, they used the eigenvectors of the diffusion tensors

in a sequence. Then, Sands et al. [92], developed a novel viewing technique to view

microstructure that is adaptable to angle variation through transmural depth. They

extracted three-dimensional images and obtained the orientation angles of the orthog-

onal direction for the rat left ventricular wall. Then, the LV remodeling was exam-

ined by diffusion tensor imaging for a mouse of myocardial infarction by [93]. They

observed the variation in the diffusion tensor, fractionalanisotropy, and myofiber dis-

tribution as resultant parameters. Sommer et al. [11] obtained the three-dimensional

orientation and dispersion of the fibers and sheets for humanmyocardium, which

is novel experimental research. They used second harmonic generation (SHG) mi-

croscopy for the detailed examination of myocardial microstructure. As a result, they

determined the dispersion and concentration parameter ranges, which are quite im-

portant for the mathematical modeling of the constitutive relations. There have been

conducted some mechanical tests for myocardium tissue specimens in the literature

to obtain the passive mechanical properties. It is not only important to understand

the mechanical response of the tissue physically, but it is also significant to perform

calibration and determination of parameter sets of numerical constitutive models. De-

spite the fact that the initial research was done on animal myocardium samples, it pro-

vided insight and a vision for understanding human myocardium response. One of
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the pioneer experiments has been performed by Pinto et al. [94] by obtaining the vis-

coelastic response of the rabbit heart muscle by relaxation, creep, and vibration tests.

Then Demer et al. [95], applied cyclic load and unloading test in fiber and cross-

fiber directions for the canine myocardium. They also performed uniaxial and biaxial

loading tests to obtain the non-linear elastic and viscoelastic behaviour of the tis-

sue. They concluded that, the myocardium tissue representsan anisotropic nonlinear

elastic response with rate-dependent behaviour (viscoelasticity). Tsaturyan et al. [96],

performed experiments to understand the extracellular fluid filtration effect on the vis-

coelastic behaviour of the myocardium. They showed that a reduction in the poros-

ity of the myocardium tissue slows down the relaxation behaviour. Yin et al. [97],

performed biaxial stretching experiments to characterizethe three-dimensional me-

chanical properties of normal and diseased canine myocardium. They also fitted their

experimental data with an exponential strain energy function. Then Dokos et al. [98],

developed a novel shear testing machine that is able to simple shear deformation in

two orthogonal axis and it is able to measure the forces in three axis which is also

named triaxial shear testing in literature. They obtained the shear characteristics of

rat myocardial tissue as a preliminary study. As a followingwork, Dokos et al. [99],

conducted novel triaxial shear experiments on the myocardium tissues of pigs to char-

acterize the shear mechanical properties of passive myocardium. This work was also

referred to by many researchers who work on the development of mathematical con-

stitutive material modeling, so the study can be accepted aspioneering research for

the passive shear properties of the myocardium. They sliceda cubic specimen from

the LV wall that is aligned with the fiber-sheet orientations, and then they applied si-

nusoidal simple shear for six shear modes. They concluded that passive myocardium

exhibits non-linear viscoelastic shear behaviour, anisotropic shear behaviour in three

orthogonal directions, and the shear stiffness of the myocardium is found to be max-

imum in the fiber direction and minimum in the normal direction. Then, the hypere-

lastic behaviour of bovine myocardial tissue has been mechanically tested based on

uniaxial, biaxial, and equibiaxial loadings by [100]. Sommer et al. [101], proposed a

method that makes the measurement of the shear deformationsand stresses available

for the biaxial extension test, and they demonstrated experimental results based on

human myocardial tissue specimens. As a following research, Sommer et al. [11]

determined the shear properties of the passive human ventricular myocardium by
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performing biaxial extension, triaxial cyclic shear, and shear relaxation experiments.

They also revealed the three-dimensional microstructure of cardiac tissue by second

harmonic generation microscopy. They obtained the orientations of three principal

directions (fiber, sheet, and normal), and they determined the dispersion parameters

and concentration parameters for myofibers and sheets. Theyconcluded that, the

passive human myocardium is nonlinear, orthotropic, dispersed, and rate-dependent

under large deformations. Then Avazmohammadi et al. [102],proposed a methodol-

ogy that starts with a kinematic analysis to observe the optimum displacement paths

and then applies these displacement fields to the cubic myocardium specimen. Lastly,

they developed an inverse finite element methodology that simulates the experimen-

tal configuration to determine the constitutive model parameter sets. An illuminating

research study on the healthy and infarcted myocardial tissue of a rat has been studied

by Martonova et al. [103]. They performed uniaxial extension tests for healthy and

infarcted tissues and they fitted Holzapfel-Ogden constitutive model parameters with

experimental results. Then, they proposed a constitutive model for the infarcted tissue

that is based on the combination of myocardium and transversely isotropic scar. They

presented that the infarction tissue exhibits a stiffer response than the healthy one.

1.4 Proposed Methods and Contribution

Within the scope of this thesis, we have studied novel formulations for dispersion-type

anisotropic viscoelasticity of the human myocardium, boththeoretically and numeri-

cally. One of the primary goals of the research is to develop viscoelastic constitutive

models based on histological data of the tissue’s dispersion characteristics. It is not

limited to being used for myocardium; these novel formulations can also be used for

any other type of isotropic or anisotropic tissue. We start with the decomposition

of the free-energy function into equilibrium and non-equilibrium contributions. The

baseline hyperelasticity is defined by the generalized structure tensor model. The

non-equilibrium response is described by the rheological Maxwell branch with an

integrated elastic spring element. It utilizes a quadraticfree-energy function in log-

arithmic space and a quadratic or power-type evolution equation in each orientation

direction. The overstress response is obtained through distinct orientation directions
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by numerical evaluation of averaging integrals over eitherthe unit micro-sphere or

the unit planar circle. Our contributions are as follows:

• development of a novel angular integration-based constitutive model for dispersion-

type anisotropic viscoelasticy which is proposed for the first time in the litera-

ture to our best knowledge,

• development of global-based and local-based dispersion-type formulations where

the density distribution function enters the constitutiveequations in different

stages,

• development of dispersion-based formulations based on both bivariate von Mises

and planar von Mises density distribution functions,

• in addition to the continuous integral over the unit micro-sphere, development

of a planar unit circle integral scheme to increase the accuracy of the numerical

integrals,

• identifying viscous parameter sets of novel formulations via the triaxial cyclic

shear and triaxial shear relaxation experiments conductedin the literature for

the human myocardium.

In the other part of the research in this thesis, there has been studied for planar growth-

induced instabilities in three-dimensionally confined bilayer tissues/structures, i.e.,

thick, stiff film on a compliant substrate. Growth-induced instabilities are examined

for a different range of fiber stiffness with an extended five-field Hu- Washizu mixed

variational formulation in sense of Dal [104]. The quasi-incompressible and quasi-

inextensible limits of transversely isotropic materials were considered. A numerical

example was solved by implementing the T2P0F0 element on an automated differen-

tial equation solver platform, FEniCS. Our contributions are as follows:

• extension of the five-field mixed variational formulation for finite growth prob-

lems,

• numerically investigation the role of the fiber stiffness onthe critical growth

parameter, first instability, and secondary instability modes.
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1.5 The Outline of the Thesis

After presenting the introductory sections in Chapter 1, Chapter 2 outlines the ba-

sics of continuum mechanics, including kinematics, stress, and strain measures for

both isotropic and anisotropic solids with the introduction of balance laws. Chapter 3

presents isotropic and anisotropic incompressible hyperelasticity theory within two-

field, three-field, and five-field mixed element formulationsprovided by numerical

comparative examples. Chapter 4 introduces the kinematicsof finite growth theory

with the derivations of stress and corresponding moduli expressions. Then, numer-

ical examples are provided for different types of growth-induced deformations and

instabilities by using FEniCS. Chapter 5 focuses on the theories of fiber dispersion-

type formulations for soft biological tissues. It also describes the von Mises type of

density distribution functions that are commonly used. In Chapter 6, firstly, the base-

line hyperelastic constitutive theory is presented for thehuman myocardium with

the integration of the GST type dispersion formulation. Then, current anisotropic vis-

coelasticity theories are outlined. Different angular-integration-type dispersion-based

formulations are proposed under local-based and global-based classifications. Lastly,

the fitting performance of the proposed models are observed numerically with the

triaxial cyclic shear and triaxial shear relaxation tests from the literature. Chapter 7

provides a summary of the entire work, outlines the outcomes, and gives recommen-

dations to be taken into account.
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CHAPTER 2

BASICS OF CONTINUUM MECHANICS

This chapter presents the fundamental kinematics, strain,and stress measures of gen-

eral isotropic and anisotropic solids. The chapter layout is as follows: in the first

part, fundamental descriptions of the material motion in undeformed and deformed

configurations are given. The basic pull-back and push-forward mathematical oper-

ations are introduced through metric tensors. Then, strainmeasures are described in

both Lagrangian and Eulerian settings. The fundamental characteristic equation of a

second-order tensor is presented to describe the principalinvariants. Then, isotropic

and anisotropic invariants of the right Cauchy-Green tensor are introduced, which are

the significant scalar quantities used to describe the scalar free-energy function in hy-

perelasticity. Then stress measures are introduced in bothundeformed and deformed

configurations. Later, the fundamentals of continuum thermodynamic balance laws

were summarized. Lastly, Clausis-Duhem inequality has been presented by introduc-

ing the Helmholtz free energy function.

2.1 Kinematics

A solid bodyB is a three-dimensional manifold, that includes material points P ∈
B. The movement of the solid can be described by the function oftime via bijective

mappings

χ(P, t) =







B → B(P, t) ∈ R3 × R+

P 7→ x = χt(P) = χ(P, t).
(2.1)

The pointx = χ(P, t) implies the deformed configuration of the particleP at

time t ∈ R+. Reference configurations of the points at the reference time (t0) can
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∂B0
t

∂B0
ϕ

X

B0

F

ϕ(X, t)
t

x

B ∂Bϕ

∂Bt

Figure 2.1: Nonlinear deformation of an isotropic solid. The underformed config-

urationB ∈ R3 and the deformed configurationP ∈ R3. ϕ : B × R 7→ R3 is

the nonlinear field which maps at timet ∈ R+ undeformed positionX ∈ B onto

deformedx = ϕ(X, t) ∈ P.

be expressed byX = χ(P, t0) ∈ R3 and the configuration at a arbitrary time (t)

denoted byχt(P) = χ(P, t). The displacement, velocity, and acceleration vectors

of the material point at time (t) can be defined by following respectively

u := x−X

ẋ :=
∂χ(X, t)

∂t

ẍ :=
∂2χ(X, t)

∂t2

(2.2)

The deformation map can be expressed asϕt = χt ◦ χ−1
t0 (X) such that

ϕt(X) =







B0 → B ∈ R3

X 7→ x = ϕ(X, t)
(2.3)

maps the undeformed configurationX ∈ B0 of a point onto the deformed configura-

tionx ∈ B, see Figure 2.1. The deformation gradient is defined as

F : TXB0 → TxB; F := ∇ϕt(X) (2.4)

It maps the unit tangent of the undeformed or Lagrangian configuration onto the de-

formed or Eulerian configuration. The gradient operators∇X [•] and∇x[•] express

the spatial derivative with respect to the undeformedX and deformedx coordinates,

respectively.

While the deformation gradientF performs the mapping of infinitesimal line element

(dX) from undeformed state onto deformed state, its cofactorcof[F ] = det[F ]F −T
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Figure 2.2: Three physically related mapping operations: (a) The deformation gra-

dientF , (b) cofactor of the deformation gradientcof[F ] , and (c) and the Jacobian

det[F ]; adopted from [5]

and its determinant (the Jacobian)J := det[F ] > 0 characterize the mapping of the

infinitesimal area (dA) and volume (dV ) elements from reference state onto spatial

configuration, respectively. These fundamental maps are shown in Figure 2.2.

dx = F dX , da = cof[F ]dA , dv = JdV . (2.5)

There is an obligation thatJ := det[F ] > 0 which provides the non-negative vol-

ume and the condition, is physically necessary.J−1 should also exist to perform

inverse mapping. There is also need to be defined the metric tensors (G andg) to

perform mapping between covariant and contravariant points in Lagrangian and Eu-

lerian states, respectively [105]. Here we designate the right Cauchy-Green tensor,

and the inverse of the left Cauchy-Green tensor

C = F TgF , and c = F−TGF−1 (2.6)

It is described as the pull-back operation of the Eulerian metric g and push-forward

operation of the Lagrangian metricG, respectively and the Finger tensor is defined

by b = c−1. Here, in the case of Cartesian coordinates,g andG are the same as the

identity tensor [6]. In line with that, these metric tensorscan also be written in Carte-

sian coordinates by indicial notation such as;G = δAB andg = δab. The upper case

letters correspond for Lagrangian configuration and the small case letters refer for

Eulerian setting. Accordingly, for a tensorial measure, the indicial notation describes

whether the quantity is purely or partially (two-point) described in Lagrangian and

Eulerian spaces.Then Green-Lagrangian and Almansian strain tensors are defined as

E =
1

2
[C − 1] and A =

1

2
[1− b−1] (2.7)
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whereE is the strain tensor that measures the change in Lagrangian configuration

andA is the strain tensor that measures the change in Eulerian configuration. These

quantities can be transformed to each other by covariant pull-back operation asE =

F TAF and by covariant push-forward operation asA = F−TEF−1.

Deformation gradient is the two-point tensor which can be described in indicial no-

tation asFaA = ∂xa/∂XA. It can be decomposed into pure rotation and pure stretch

inducing components as

F = RU = V R, (2.8)

replacements

(a) (b)

TB0TB0

FF
TBTB

C G

T ∗B0T ∗B0

F−TF−T

g c = b−1

T ∗BT ∗B

Figure 2.3: (a) Definition of right Cauchy Green tensor by pull-back operation of Eu-

lerian metricg, (b) Definition of left Cauchy Green tensor by push-forward operation

of Lagrangian metricG.

whereR is the orthogonal rotation tensor,U is the right stretch tensor, andV is

the left stretch tensor.U andV are the symmetric and positive definite tensors. By

the equation 2.8, the rotation and stretch can be purely separated. By using relations

between equation 2.6 and 2.8, the right Cauchy-Green tensorand left Cauch-Green

tensor (defined byb = c−1) can be written asC = U 2 andb = V 2 respectively.

Any symmetric tensor can be represented by its eigenvaluesλi and the corresponding

eigenvectors are defined in the orthonormal basis. By the spectral decomposition, the

principal stretches can be defined as following

U :=
∑3

i=1 λiN i ⊗N i and V :=
∑3

i=1 λini ⊗ ni (2.9)

whereλi is the principal stretch andN i andni are the principal directions in La-

grangian and Eulerian configurations, respectively. The stretch can also be defined by

the ratio of infinitesimal length of thedx to undeformed lengthdX and the length is

22



defined by the mathematical norms of these vectors asλ = ||dx||/||dX||.

By using the generalized eigenvalue problems for a second order tensorA, the char-

acteristic equation can be obtained as below.

λ3 − I1λ
2 + I2λ− I3 = 0 (2.10)

The roots of the equation 2.10 gives the eigenvalues (λi) of the tensorA. The coef-

ficients of equation 2.10 are called principal invariants oftensorA and described as

I1(A) := tr(A)

I2(A) :=
1

2

[

[tr(A)2]− tr(A2)
]

I3(A) := det(A)

(2.11)

The principal invariants shown in equation 2.11 can also expressed by the real and

positive eigenvalues as

I1(A) := λ1 + λ2 + λ3

I2(A) := λ1λ2 + λ2λ3 + λ1λ3

I3(A) := λ1λ2λ3

(2.12)

Hyperelastic constitutive laws can be constructed based ona scalar energy function

that represents the stored energy in the material. In general, stored free energy for

hyperelastic solid is governed by three invariants of the right Cauchy Green tensor.

These invariants can be used in combination with any kind of isotropic hyperelastic

material model. The isotropic invariants of the right Cauchy-Green tensor can be

defined as follows:

I1 := trC, I2 :=
1

2

[

I21 − tr(C2)
]

, and I3 := detC = J2 (2.13)

These invariants have physical meanings: (I1) is the line stretch, (I2) is the area

change, and (I3) is the volume change of the material. By using equation (2.12), the

schematic representations of principal stretches on an infinitesimal element shown in

Figure 2.4. If the continuum medium is an anisotropic solid which may be com-

posed of two-family stiff fibers or laminated layered structure in a specific directions,

we define Lagrangian unit vectorsn0 andm0 as following.

|n0|G = 1 where |n0|G = (n0 ·Gn0)
1/2 .

|m0|G = 1 where |m0|G = (m0 ·Gm0)
1/2 .

(2.14)
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Figure 2.4: Representation of principal stretches defines the principal invariants of

the right Cauchy-Green tensor (I1, I2, andI3), as length, area and volume measures

respectively.

The generalized schematic of an anisotropic material is shown in Figure 2.5. Then by

the tangent map, the deformed configuration of unit vectors can be formed as

n = Fn0

m = Fm0

(2.15)

In addition to the isotropic response, the anisotropic response that is generated by

stiff fibers m0 n0

Figure 2.5: Schematic representation of transversely isotropic solid that composed of

two family fibers in the direction ofn0 andm0, respectively.

two families of fibers, laminates etc. requires additional four invariantsI4, I5, I6

andI7. These additional invariants are introduced in terms ofn0 m0 unit vectors of
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fibers/laminates in the undeformed configuration

I4 := n0 ·Cn0 I5 = n0 ·C2n0 ,

I6 := m0 ·Cm0 I7 = m0 ·C2m0 ,
(2.16)

that relates to the energy storage due to fiber/sheet reinforcement in the material.

There is also an additional invariant that can be described for the coupling behaviour

through two distinct directions:

I8 := n0 ·Cm0 = m0 ·Cn0 (2.17)

InvariantsI4 andI6 represent the square of the stretch in the direction of unitsvectors.

There is not physical corresponding ofI5 andI7 and those can be dependent onI1

andI2, see details in [106].

2.2 Stress Measures

A solid bodyB is subjected to surface tractiont and body forces those generates

the stress in the deformed body. While body force acts as a volumetric quantity on

B, surface traction is specified in the area in∂Bt. The schematic representation

of the surface normal and traction vectors are shown in undeformed and deformed

configuration in Figure 2.6 where the forces acting on the surface are related to each

N

T

B0 B

∂Bt
0 ∂Bt

dA da

n

t
F

Figure 2.6: Schematic representation of the surface normaland traction vectors in a

cut-out region for the deformed and undeformed configurations.

other in the deformed and undeformed setting as
∫

∂Bt
0

T dA :=

∫

∂Bt

tda (2.18)
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The tractiont also known as Cauchy stress vector measures the force per unit de-

formed area. Then Cauchy’s stress theorem defined as

t(x,n, t) = σ · n, (2.19)

The Cauchy stress is also called the true stress, and it is defined in the deformed

configuration. Then the first Piola Kirchhoff stress (also known as engineering stress)

is defined in reference normalN by using the Piola identity (nda = JF−TNdA)

as below. The first Piola-Kirchhoff stress tensor is a non-symmetric two point tensor

that is defined by the nominal traction vector in the deformedconfigurations and unit

normal in the undeformed configurations.

P = JσF−T (2.20)

Kirchhoff stressτ is another measure of stress tensor that is a deformed configura-

tion stress quantity described as below. It is as the weighted stress defined per unit

reference volume.

τ = Jσ (2.21)

Then purely Lagrangian stress tensor called second Piola-Kirchhoff tensorS can be

defined by the pull back operation of Kirchhoff stressτ as

S = F−1τF−T = JF−1σF −T = F−1P (2.22)

Although the first Piola-Kirchhoff stress is not a symmetrictensor, the rest of the

stress measures for Cauchy (σ), Kirchhoff (τ ) and the second Piola-Kirchhoff (S)

stress tensors are symmetric. Relations of the all stress tensors are presented schemat-

ically over tangent-cotangent space and Lagrangian-Eulerian domains in Figure 2.7.

2.3 Balance Laws of Continuum Thermomechanics

In this section, the balance laws of continuum thermomechanics are summarized as

follows: conservation of massm, conservation of linear momentum (I), conserva-

tion of angular momentum (D), conservation of energy(K, E), and conservation of

entropy (H), see [107] for further derivations. The physical entitiesthat are the fun-

damentals of the balance equations are listed in Table 2.1 where the fieldsρd, u, v,
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Figure 2.7: Schematic diagram of the stress measures that reveals the stress transfor-

mations though tangent and cotangent spaces and push-forward and pull-back opera-

tions.

e, ηe andγe are the mass density, displacement, velocity, internal energy, entropy,

and entropy generation, respectively. The fundamental balance laws of continuum

thermomechanics define the relationship based on the physical entities listed in Table

2.1 and global thermodynamic loads as follows: mechanical force (Fm), mechanical

moment (Mm), mechanical power (P ), thermal power (Q) and entropy power (S),

as listed in Table 2.2. There are three additional variablesintroduced: heat flux (h),

heat source per unit mass (r) and the temperature (θ). Then the conservation of these

physical quantities can be defined with respect to time (t) derivatives in Table 2.3. The

description of the balance laws can be summarized as follows: conservation of mass

states that physical mass in a control volume is fixed quantity and cannot be generated

or lost; angular momentum governs the symmetry of Cauchy stress tensor; linear mo-

mentum outcomes with Cauchy’s equation of motion, balance of energy states that the

summation of the rate of change in kinetic energy (K) and the internal stress power

(Pint) must be equal to the rate of change in external work done (Pext), conservation

of entropy governs the second law of thermodynamics which isthe inequality rather

than an equality as irreversibility condition. After usingthe relationship between

equations listed in Tables 2.3 and 2.2 with mathematical operations such as Gauss

divergence integration theorem, integration by parts and localization theorem yields

local/strong forms of balance laws shown in Table 2.4.
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Table 2.1: Mathematical descriptions of physical entitiesin regionP

Mass m =

∫

P

ρddV (2.23)

Linear momentum I =

∫

P

ρdvdV (2.24)

Angular momentum D =

∫

P

x× ρdvdV (2.25)

Kinetic energy K =

∫

P

1

2
ρd|v|2dV (2.26)

Internal energy E =

∫

P

ρdedV (2.27)

Entropy H =

∫

P

ρdηedV (2.28)

Entropy production Γ =

∫

P

ρdγedV (2.29)

Table 2.2: Thermodynamic loads

Mechanical force Fm =

∫

P

ρdbdV +

∫

∂P

tdA (2.30)

Mechanical couple Mm =

∫

P

x× ρdbdV +

∫

∂P

x× tdA

(2.31)

Mechanical power P =

∫

P

ρdb · vdV +

∫

∂P

t · vdA (2.32)

Thermal power Q =

∫

P

ρdrdV −
∫

∂P

hdA (2.33)

Entropy power S =

∫

P

ρd
r

θ
dV −

∫

∂P

h

θ
dA (2.34)
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Table 2.3: Global forms of the physical balance principles

Conservation of mass
d

dt
m = 0 (2.35)

Conservation of linear momentum
d

dt
I = Fm (2.36)

Conservation of angular momentum
d

dt
D =M (2.37)

Conservation of energy
d

dt
[K + E ] = P +Q (2.38)

Entropy inequality Γ =
S
dt

−H ≥ 0 (2.39)

Table 2.4: Strong forms of the physical balance principles

Lagrangian Eulerian

ρd0 = ρdJ ρ̇d + ρddivv = 0 (2.40)

Div[P ] + f 0 = ρd0V̇ divσ + f = ρdv̇ (2.41)

F−1P = P TF−T ,S = ST σ = σT (2.42)

ρd0ė = P : F + r0 −DivQ ρdė = σ : L+ r − divq (2.43)

ρd0γe = ρd0η̇e −
1

θ
(r0 −DivQ) ρdγe = ρdη̇e −

1

θ
(r − divq) (2.44)

− 1

θ2
Q · ∇Xθ ≥ 0 − 1

θ2
q · ∇xθ ≥ 0
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2.4 Dissipation Inequality

The physical equations those are defined in the previous section must obey to the

second law of thermodynamic and they must be consistent. Then, the dissipation

inequality can be introduced as follows

ρdD = σ : D + ρdθη̇e − ρdė−
1

θ
q · ∇xθ ≥ 0 (2.45)

whereD is the rate of deformation tensor. The equation 2.45 is also known as

Clasius-Duhem Inequality. It can be decomposed into local entropy productionρdDloc

and heat conduction induced entropy productionρdDcon such asρdD = ρdDloc +

ρdDcon ≥ 0. These dissipation components are called as Clasius-Planck Inequality

(ρdDloc) and Fourier Inequality (ρdDcon) and the strong form requires the condition

that both of dissipation components are greater or equal to zero. These dissipation

components are defined as below

ρdDloc = σ : D + ρdθη̇e − ρdė ≥ 0

ρdDcon = −1

θ
q · ∇xθ ≥ 0 ,

(2.46)

In order to apply the local component (Dloc) for solid mechanics processes, we intro-

duce the Helmholtz free energy function (Ψ) through Legendre transformation such

thatΨ = e− θηe. Then, the local component of dissipation yield as follows

ρdDloc = σ : D − ρdΨ̇− ρdηeθ̇ ≥ 0 , (2.47)

and it can be reduced to following form for the isothermal process

ρdDloc = σ : D − ρdΨ̇ ≥ 0 , (2.48)

The first term in equation 2.48 represents the stress power (per unit current volume),

and the second term is the stored energy in the material. Equation 2.48 is also re-

ferred to the entropy inequality in elasticity, viscoelasticity, damage etc. Addition-

ally, ρdDcon is referred to the entropy inequality to heat flow direction.Then, the

Helmnholtz free energy and the heat flux can be defined as

Ψ = Ψ̂(X,F , θ,I, gθ) and q = q̂(X, θ,F , gθ) (2.49)
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wheregθ is the temperature gradient vector and it should not be confused with metric

tensorg. The stress power can also be defined in different forms of stress contribu-

tions as below

σ : Ḋ = J−1P : Ḟ = J−1S : Ċ = J−1τ : Ḋ (2.50)

By taking the time derivative of Helmholtz free energy (Ψ), it leads

Ψ̇ = ∂FΨ : Ḟ + ∂θΨ : θ̇ + ∂IΨ : İ + ∂gθ
Ψ : ġθ (2.51)

Inserting equation 2.51 into 2.47, then local dissipation yields

ρdDloc = [J−1P − ρd∂FΨ] : Ḟ − ρd∂IΨ : İ − ρd[ηe + ∂θΨ]θ̇ − ρd∂gθ
Ψ : ġθ ≥ 0

(2.52)

Equation 2.52 should be thermodynamically consistent by the following form

P − ρd∂FΨ = 0

ηe + ∂θΨ = 0

∂gθ
Ψ = 0 ,

(2.53)

which are the main results of Coleman’s method. It concludesthat the free energy

is a scalar potential for stress and entropy and does not depend on the temperature

gradient. This relations are valid for arbitraryḞ , θ̇ andġθ. These variables are also

called "external variables". Then the equation 2.52 reduces to the following form:

ρdDloc = ρd∂IΨ : İ ≥ 0 (2.54)

Here, we introduce theβ = −ρd0∂IΨ as the thermodynamical force conjugate to the

internal variableI that determine viscoelasticity, plasticity, damage etc. through the

flow rule. The internal variables are not coupled to any external force variable. It can

be either scalar, vectorial or tensorial depending on its physical representation. For

example, it can be a viscous strain in viscoelasticity, a plastic strain in plasticity, or

a hardening related quantity, etc. Internal variable evolution is determined by a flow

rule that is based on the constitutive evolution function and obeys the second law of

thermodynamics.
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CHAPTER 3

GOVERNING EQUATIONS OF THE INCOMPRESSIBLE HYPERELASTIC

CONSTITUTIVE MODELING

The constitutive equations of the materials are described to reflect the physical re-

sponse in a mathematical manner. It also defines the relationship between indepen-

dent and dependent variables such as displacement and stress. Most of the consti-

tutive models are constructed using a phenomenological approach, which takes the

macro-behavior of the material into account, and the rest ofthe models are based on

micro-mechanical models that are constructed on the micro-structure of the material

by considering statistical mechanics. Materials with a nonlinear reversible response at

large stains are covered by hyperelastic models. Mechanical behaviours of the many

of critical materials can be captured by isotropic and anisotropic hyperelastic mod-

els. For example, soft biological tissues, rubber-like materials, composite materials,

etc. Biological tissues are primarily composed of fibers that are remodelled along the

loading direction and exhibit mechanical properties that differ from the base tissue

matrix. It is significant to examine the mechanical behaviours of tissues to predict the

pathological conditions and diseases. Therefore, there have been many mechanical

characterization tests and numerical modeling studies fortissues such as the brain,

aorta, liver, skin, eye, tongue, muscle, the heart, etc.

Hyperelastic constitutive equations can be determined either by using principal invari-

ants or by using principal stretches in the Helmholtz free energy function. There are

also detailed reviews of hyperelastic constitutive modelsby [108, 109, 22, 110, 111,

5]. Depending on the volumetric resistance of hyperelasticmaterials, they can be cat-

egorized as compressible and incompressible. Because mostsoft biological tissue is

assumed to be incompressible, the main focus of this thesis will be on incompressible
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hyperelasticity.

Elastomers, hydrogels, and soft tissues exhibit nearly incompressible hyperelastic

mechanical behavior that can be characterized by a free energy density function.

Fiber-reinforced soft matrix materials and biological tissues in the inextensibility

limit exhibit nearly incompressible and inextensible mechanical responses. Thus,

the development of efficient and robust finite element formulations in the quasi-

inextensible and quasi-incompressible limits becomes significant. Hyperelastic ma-

terials exhibit stiff volumetric response compared to shear response caused by nearly

incompressible behavior. Standard displacement-based formulations show poor con-

vergence behavior and inaccurate results for incompressible materials. A similar

problem has been revealed in the nearly inextensible limit due to the high stiffness

in the fiber directions [112, 113, 104]. Mixed or hybrid element formulations based

on variational formulations utilize additional independent variables such as stress or

strain as Lagrange multipliers. In this context, we refer tothe pioneering works

of Pian et al. [114, 115], which were based on the Hellinger-Reissner formulation.

These formulations improve the stress approximation of thestandard displacement

formulation. The mean dilatation formulation withQ1P0or T2P0-element based on

Hu-Washizu type variational principle was introduced by Nagtegaal et al. [116] and

extended to large-strain problems by Simo et al. [117]. It was implemented for hyper-

elastic materials within a nearly incompressible limit by Simo and Taylor [118]. In

the element formulation, an additional term was embedded tothe potential function as

a constraint for the incompressibility [119], adopted in finite element implementation

for visco-elastic materials [120], and a novel two-field mixed displacement-pressure

formulation was presented by [121] that provides consistent results to three-field for-

mulation. The use of dilatation formulations for fiber-reinforced rubberlike materials

and fiber-reinforced soft tissues was presented in [122]. Inthe scope of this chapter,

firstly isotropic hyperelasticity will be covered and some common used hyperelastic

free-energy forms will be presented. Then, incompressibleformulations will be in-

troduced by volumetric and isochoric splitting. The anisotropic hyperelasticity will

be described by one- and two-family fiber reinforcement. After that, a two-field vari-

ational formulation will be given to manage incompressibility in the numerical pro-

cess. Then, a three-field Hu-Washizu formulation will be introduced with numerical
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examples that provide comparisons of different finite element formulations. Later,

a five-field variational formulation will be presented to cover both incompressibility

and inextensibility at the same time. A numerical example ofa dual-clamped patch

test will be presented at the end of the chapter to compare available mixed elements

in the literature.

3.1 Isotropic Hyperelasticity

In this sub-section, constitutive equations of isotropic hyperelasticity will be covered

by the determination of stress and moduli from stored free-energy functions. Free-

energy functions must be invariant under rigid body motions. Then the following

equality must be fullfilled

Ψ(F ) = Ψ(C) = Ψ(E) (3.1)

The free-energy function must be consistent with thermodynamical equilibrium which

states that whenF = 1, the free-energy must be in global minimum which yields the

normalization condition to zero energy. Another importantaspect is maintaining the

stress-free condition atF = 1. Recall from equations 2.50, 2.51 and 2.52, stress

measures (P andS) are conjugate with time derivatives of deformation entities Ḟ

andĊ , respectively.

Ψ̇ = P : Ḟ = S : Ė (3.2)

By using the relation of1
2
Ċ = Ė, the Helmholtz free-energy function and stress

relations can be described by following:

Ψ̇ =
∂Ψ

∂C
: Ċ =

S

2
: Ċ and S(C,X) = 2

∂Ψ

∂C
=
∂Ψ

∂E

Ψ̇ =
∂Ψ

∂F
: Ḟ = P : Ḟ and P (F ,X) =

∂Ψ

∂F

(3.3)

Then the two-point and Lagrangian elasticity moduli can be expressed as respectively,

A =
∂P

∂F
=

∂2Ψ

∂F ∂F
and C = 2

∂S

∂C
= 4

∂2Ψ

∂C∂C
(3.4)

whereA andC are also called as tangent moduli for two-point and Lagrangian formu-

lations and they are fourth order tensors. Stress and tangent moduli for the Eulerian
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configuration can be determined by push-forward operationsor alternatively it can be

described by the derivative with respect to metric tensorg as following

τ = 2
∂Ψ

∂g
and c = 2

∂τ

∂g
= 4

∂2Ψ

∂g∂g
(3.5)

Isotropic hyperelasticity exhibits the material responseidentical in any direction.

Therefore the free-energy (Ψ) can be characterized by invariants of right Cauchy-

Green tensor (C) which is given in equation 2.13 in previous chapter. Then byusing

the chain rule the second Piola-Kirchhoff stress stated in equation 3.3 can be de-

scribed by using invariants as following

S = 2
∂Ψ

∂C
= 2

∂Ψ

∂I1

∂I1
∂C

+ 2
∂Ψ

∂I2

∂I2
∂C

+ 2
∂Ψ

∂I3

∂I3
∂C

(3.6)

Corresponding derivatives of invariants with respect toC defined as below

∂I1
∂C

= 1 ,
∂I2
∂C

= I11−C and
∂I3
∂C

= I3C
−1 = J2C−1 (3.7)

By using using eqation 3.7 in 3.6, the definition ofS can be written in terms of

derivatives coefficients

S = ĉ11+ ĉ2C + ĉ3C
−1 (3.8)

where the coefficientŝc1, ĉ2 andĉ3 defined as

ĉ1 = 2

(

∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)

, ĉ2 = 2
∂Ψ

∂I2
, ĉ3 = 2I3

∂Ψ

∂I3
(3.9)

Corresponding invariants can also be determined in Eulerian space by using left

Cauchy Green tensor (b) such as

τ = 2
∂Ψ

∂g
= 2

∂Ψ

∂Ib1

∂Ib1
∂g

+ 2
∂Ψ

∂Ib2

∂Ib2
∂g

+ 2
∂Ψ

∂Ib3

∂Ib3
∂g

(3.10)

Corresponding derivatives of invariants of left Cauchy Green tensor (Ib1, Ib2 andIb3)

with respect to metric tensorg defined as below

∂Ib1
∂g

= b ,
∂Ib2
∂g

= Ib1b− b2 and
∂Ib3
∂g

= J2g−1 (3.11)

Then Kirchhoff stress yields to

τ = b̂1b+ b̂2b
2 + b̂3g

−1 (3.12)

where the Eulerian coefficientŝb1, b̂2 andb̂3 defined as

b̂1 = 2

(

∂Ψ

∂Ib1
+ Ib1

∂Ψ

∂Ib2

)

, b̂2 = −2
∂Ψ

∂Ib2
, b̂3 = 2Ib3

∂Ψ

∂Ib3
(3.13)
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One of the general basic example for the isotropic hyperelasticity, which also con-

siders the compressibility, is the compressible Neo-Hookean free-energy function as

presented below

Ψ =
µ

2
(I1 − 3)− µlnJ +

λ

2
(lnJ)2 (3.14)

whereµ andλ are the specific material constants such as shear modulus andLame

constant. Notice that, when there is no deformation (C = 1) or there is only rigid

body motion acts on the solid, the free energy does not store any energy and becomes

zero. That result can also be examined by checking the equation 3.14 within ingredi-

ents such asJ = detF = 1 making lnJ is zero andI1 = 3 which makes the first term

is zero. Then the second Piola-Kirchhoff stress can be determined by equation 3.6 as

below

S = µ(1−C−1) + λ(lnJ)C−1 (3.15)

The Kirchhoff stress alternatively can be determined by push-forward ofS as follow-

ing

τ = FSF T = µ(b− g−1) + λ(lnJ)g−1 (3.16)

Cauchy stress can be also obtained byσ = τ/J . Then Lagrangian tangent moduli

can be determined by equation 3.4

C = λC−1 ⊗C−1 + 2(µ− λlnJ)IC−1 (3.17)

whereIC−1 is the fourth-order geometric transformation tensor defined as,

IC−1 :=
1

2

(

C
−1⊗C

−1 +C
−1⊗C

−1
)

. (3.18)

where non-standard tensor products can be defined as[•⊗◦]ijkl = [•]ik [◦]jl and

[•⊗◦]ijkl = [•]il [◦]jk. By push-forward operation of Lagrangian tangent moduliC,

the Eulerian tangent moduli can be found as following

c =
λ

J
g−1 ⊗ g−1 +

2

J
(µ− λlnJ)I (3.19)

whereI is the fourth-order identity tensor and defined by indicial notation as below

Iijkl =
1

2
(δikδjl + δilδjk) (3.20)
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3.2 Incompressible Hyperelasticity

Some materials (such as the majority of soft biological tissues) exhibit shape change

rather than volume change. The materials that preserve their initial volume during a

loading are called incompressible materials. They can be deformed in an isochoric

way. In the invariant based free-energy formulations, while I1 is responsible for iso-

choric deformations,I3 = J2 is responsible for volumetric deformations. For the

volume preserving materials, the incompressibility constraint is covered byJ = 1.

Due to the fact that, in the next sections of this chapter, themain focus will be on

constitutive modeling of the incompressible hyperelasticity.

The incompressibility can be treated as near-incompressible or quasi-incompressible

in numerical solutions to avoid numerical difficulties since, when the Poisson’s ratio

(ν) approach to 0.5, the bulk modulus (κ) of the material goes to infinity. Due to the

order of magnitude difference between the shear and bulk responses of the material,

it is convenient to split the deformation into volumetric and isochoric parts [123] as

follows:

F = F volF̄ where F vol = J1/3
1 and F̄ = J−1/3F , (3.21)

In the same manner, the volumetric and unimodular part of theright Cauchy Green

tensor can be defined as

Cvol = F T
volF vol , C̄ = F̄

T
F̄ and C̄ = J2/3C. (3.22)

Isotropic hyperelasticity is formulated based on the free energy function, which is

defined per unit reference volume through isotropic invariantsI1, I2, I3 that are con-

stitutively related to the deformation gradient. For incompressible materials, two of

the invariantsI1, I2 are sufficient to be used in the formulation. The invariant formu-

lation of hyperelasticity is described by the following unimodular isotropic invariants

Ī1 = tr C̄ , Ī2 =
1

2

[

(tr C̄)2 − tr(C̄
2
)
]

, and Ī3 = det C̄ = 1 , (3.23)

Then, the free energy function can also be written based on multiplicative decompo-

sition of volumetric and isochoric parts as following

Ψ(C) = Ψvol(Cvol) + Ψiso(C̄) or Ψ(F ) = Ψvol(F vol) + Ψiso(F̄ ), (3.24)
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In alternative form, the free-energy decomposition is written as

Ψ(C) = Ψvol(J) + Ψiso(Ī1,Ī2) (3.25)

Now, Lagrangian and Eulerian configurations of stress and tangent moduli can be

obtained based on the volumetric and isochoric split of deformation gradientF in

following subsections.

3.2.1 Lagrangian configuration

The second-Piola Kirchhoff stress can be decomposed of

S = 2∂CΨ = Svol + Siso (3.26)

In line with the equation 3.26, the elastic Lagrangian moduli C, can be additively split

into volumetric, and isotropic parts respectively.

C = 2∂CS = 4∂CCΨ = Cvol + Ciso (3.27)

The volumetric part of the second Piola-Kirchhoff stressSvol reads

Svol := 2∂CΨvol(J) = 2Ψ′

vol(J)∂CJ where ∂CJ =
1

2
JC−1, (3.28)

Then the volumetric part of the second Piola-Kirchhoff stress can be rewritten as

Svol := JΨ′

vol(J)C
−1 where p := JΨ′

vol(J) (3.29)

wherep is the internal pressure term andΨ′
vol is the derivative of volumetric part of

the free-energyΨvol with respect toJ . The Lagrangian moduli expression for the

volumetric part is determined as

Cvol := 2∂CSvol(J) = (p+ κ̂L)C
−1 ⊗C−1 − 2pIC−1 , (3.30)

where κ̂L = J2ψ′′
vol(J), I

ABCD
C−1 = 1

2

[

C−1
ACC

−1
BD +C−1

ADC
−1
BC

]

andψ′′
vol(J) is the

second derivative of the volumetric energy function with respect toJ . The isochoric

part of the second Piola-Kirchhoff stress is obtained as

Siso := 2∂Cψiso(C̄) = 2∂
C̄
ψiso(C̄) : ∂

C̄
C̄ (3.31)
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Equation 3.31 can be written explicitly as following

Siso := S̄ : Q where S̄ = 2∂
C̄
ψiso(C̄)

and Q = ∂
C̄
C̄ = J−2/3

[

I− 1

3
C ⊗C−1

] (3.32)

Then, the Lagrangian moduli for the isotropic response can be expressed as

Ciso := 4∂2CCΨiso = 2∂C(S̄ : Q) (3.33)

The isochoric Lagrangian moduli can be expressed more explicitly such as

Ciso := QT : C : Q+ S̄ : H where Q =
∂C̄

∂C
and H = 2

∂Q

∂C

with S̄ : H =
2

3
(S̄ : C̄)PC−1 − 2

3

[

Siso ⊗C−1 +C−1 ⊗ Siso

]

(3.34)

and the fourth-order projection tensor isPC−1 = IC−1 − (1/3)C−1 ⊗C−1.

3.2.2 Eulerian configuration

The Kirchhoff stress can be decomposed of

τ = 2∂gΨ = τ vol + τ iso (3.35)

The volumetric part of Kirchhoff stressτ vol can be determined by the push-forward

operation such as

τ vol = FSvolF
T = pg−1 (3.36)

The Eulerian tangent moduli expression for the volumetric part is defined as

cvol := 4∂2ggΨvol = (p+ κ̂)g−1 ⊗ g−1 − 2pI , with κ̂ = J2ψ′′

vol(J) . (3.37)

Then, the isochoric part of the Kirchhoff stress can be defined as

τ iso = FSisoF
T = 2∂gΨiso(g;F ) = τ̄ : P where τ̄ = 2∂gΨiso(g;F̄ ) (3.38)

After some mathematical operations, equation 3.38 is simplified to

τ iso = k̂dev̄b where k̂ = 2∂Ī1Ψiso (3.39)

Lastly, by using the equation 3.5 the isochoric part of the Eulerian tangent moduli can

be determined as following

ciso = P :

[

c̄+
2

3
(τ̄ : g)I− 2

3
(τ̂ ⊗ g−1 + g−1 ⊗ τ̄ )

]

: PT (3.40)
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3.2.3 Commonly used isotropic incompressible hyperelastic constitutive mod-

els

There are a variety of types of hyperelastic constitutive models in the literature; those

are mostly used for specific kinds of material responses. Notonly rubber-like materi-

als, but also biological tissues, are composed of an isotropic response matrix that also

creates connections and supports the oriented specific components, such as fibers.

In order to reflect the mechanical response of the base matrixmaterial, it is neces-

sary to define an isotropic contribution of free-energy function. The neo-Hookean

free-energy function, which is described below, is one of the simplest isotropic hy-

perleastic constitutive models.

Ψ =
1

2
µ(I1 − 3) (3.41)

whereµ is the shear modulus of the material. It provides a good accuracy in low-

medium strain limits. Another common model is Mooney-Rivlin that considers both

invariantsI1 andI2 as following

Ψ = µ10(I1 − 3) + µ01(I2 − 3) (3.42)

whereµ10 andµ01 are material constants. It is the extended version of neo-Hookean

model. The another important hyperlelastic model is Yeoh model that uses polyno-

mials of the first invariant and expressed as

Ψ = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (3.43)

whereC10, C20 andC30 are material constants. Then, Ogden model is defined based

on the principal stretches as following

Ψ =
N
∑

p=1

µp

αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3) (3.44)

whereµp andαp are number of material constants depending the value ofN .

3.3 Anisotropic Hyperelasticity

Most of the biological tissues and plants are not homogeneous, but they are com-

posed of different kinds of ingredients that exhibit different mechanical properties.
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These composite structures can be either layered-type layouts, embedded fibers on

a softer ground matrix, or both types. Some of the important examples are; the

heart, the artery, the skin, a leaf, etc. These type of composite structures may be-

have anisotropic, orthotropic and transversely isotropicdepending on the mechanical

layout. Therefore, it is necessary to define anisotropic mechanical response in the

free-energy function. The anisotropy can be in a single direction or it can be in three

distinct directions. In order to represent an anisotropic response, there are defined

anisotropic invariants in equations 2.16 and 2.17. Then corresponding free-energy

function is described by the following form:

Ψ(g;F ,n0,m0) := ψvol(J) + Ψiso(g;F ) + Ψani(g;F ,n0,m0) (3.45)

whereΨani is the energy stored of anisotropic contributions andn0, m0 are the unit

vectors for the direction of anisotropy for two-family fibers. For anisotropic materi-

als, there are also anisotropic contributions of stresses and moduli similar to equation

3.45. Stress and tangent moduli relations of volumetric andisochoric parts are already

given in the previous section. Therefore, only anisotropicstress and moduli expres-

sions will be summarized here. For two-family fiber contributions, the anisotropic

part of the second Piola-Kirchhoff stress and the corresponding anisotropic tangent

moduli are defined below

Sani,4 = 2
∂Ψani

∂C
= 2

∂Ψani

∂I4

∂I4
∂C

= 2Ψ′n0 ⊗ n0

Sani,6 = 2
∂Ψani

∂C
= 2

∂Ψani

∂I6

∂I6
∂C

= 2Ψ′m0 ⊗m0

Cani,4 = 2
∂Sani,4

∂C
= 2

∂Sani,4

∂I4

∂I4
∂C

= 4Ψ′′n0 ⊗ n0 ⊗ n0 ⊗ n0

Cani,6 = 2
∂Sani,4

∂C
= 2

∂Sani,6

∂I6

∂I6
∂C

= 4Ψ′′m0 ⊗m0 ⊗m0 ⊗m0

(3.46)

where the subscripts4 and6 represent the two distinct direction of fibers. Similarly,

Eulerian stress and moduli expressions are defined as below

τ ani,4 = 2
∂Ψani

∂g
= 2

∂Ψani

∂I4

∂I4
∂g

= 2Ψ′n⊗ n

τ ani,6 = 2
∂Ψani

∂g
= 2

∂Ψani

∂I6

∂I6
∂g

= 2Ψ′m⊗m

cani,4 = 2
∂Sani,4

∂g
= 2

∂Sani,4

∂I4

∂I4
∂g

= 4Ψ′′n⊗ n⊗ n⊗ n

cani,6 = 2
∂Sani,4

∂g
= 2

∂Sani,6

∂I6

∂I6
∂g

= 4Ψ′′m⊗m⊗m⊗m

(3.47)
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Since most of the soft biological tissues include fibrous structures that are embedded

in the isotropic ground matrix, there should be a defined anisotropic contribution of

free-energy in addition to the isotropic response. As it is already stated in equation

3.45, isotropic part of the free-energy (volumetric and isochoric parts) are the same

as the free-energies that were introduced in the previous section. In other words,

as a isotropic ground matrix material, one of the isotropic free-energy can be pre-

ferred according to the physics of the material. Then, the anisotropic contribution is

summed up with the isotropic part with a different form of energy function. Some of

anisotropic free-energy forms those are common used in biological tissues are sum-

marized below [5]. The one of the developed model by Holzapfel et al. [124] for the

artery, which is in exponential form in anisotropic free-energy and only carries load

in the tension direction, is as follows:

Ψani(I4, I6) =
k1
2k2

∑

i=4,6

(

exp[k2〈Ii − 1〉2]− 1
)

(3.48)

wherek1 andk2 are material parameters those need to be determined from experi-

ments. Macaulay brackets〈•〉 represents the tension-only behaviour. An extended

version of this model proposed by Holzapfel et al. [125]. Theextended model in-

cludes the first invariantI1 contribution in the anisotropic part as follows

Ψani(I1, I4) = sgn〈I4 − 1〉k1
k2

(

exp(k2[(1− pc)(I1 − 3)2 + pc〈I4 − 1〉2])− 1
)

(3.49)

where pc is a type of transition parameter as0 ≤ pc ≤ 1 which regulates the

anisotropy degree of the free-energy. Another specific anisotropic free-energy form

has been developed by Holzapfel et al. [106] to represent theorthotropic response of

myocardium tissue. It is in exponential form and also takes the eighth invariant into

account which is the coupling effect between two distinct directions as shown below

Ψani =
a

2b
exp[b(I1 − 3)]− 1 +

∑

i=f,s

ai
2bi

(

exp[bi(I4i − 1)2]− 1
)

+
afs
2bfs

(

exp[bfsI28fs]− 1
)

,
(3.50)

where notationsf ands refers to two distinct direction in myocardium tissue called

as fiber and sheet directions respectively.
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3.4 Two-Field Formulation

It is common in the variational methodology to determine equilibrium equations via

a directional derivative and obtain the stationary condition of the energy potential. If

it is performed for a single variable as displacement, it yields standard displacement-

based finite element formulations, however if it contains more variable such as ad-

ditional internal pressure degree of freedom leads to mixedvariational formulation.

It is a common approach to treating numerical difficulties, such as volumetric lock-

ing due to incompressibility, by using mixed finite element formulations. Therefore,

introducing internal pressure as a penalty parameter is a well-known method to be

used in quasi-incompressible problems, and it requires additional discretization and

interpolation for the additional variable. If there is one additional variable taken into

account, then it yields a two-field finite element formulation.

Soft biological tissues exhibit high resistance to volume change and low resistance to

isochoric changes as a result of a high ratio of bulk modulus to shear modulus [107]. It

has been shown that incompressible materials deform in an isochoric way. Therefore,

it is necessary to apply a numerical treatment to overcome the locking fact by using

mixed formulations. In this situation, the volume-preserving constraint should be

enforced asJ = 1 by penalty parameter. The potential functional of hyperelasticity

can be defined by the following variational form

Π̂(φ, p) := Π̂int(φ)− Π̂ext(φ) +

∫

V

p(J − 1)dV , (3.51)

wherep is the penalty parameter and defined as the internal pressure. Then the inter-

nal potential functional is described as

Π̂int(φ) :=

∫

V

Ψ(g, F̄ ) dV (3.52)

and the external potential function is defined by

Π̂ext(φ) :=

∫

V

φ · ρ0b̄ dV +

∫

∂V

φ · t̄ dA (3.53)

whereb̄ is the body force acting to the volume of the body andt̄ is the surface traction.

By variation of equation (3.51), the stationary conditionscan be determined which

also yield Euler-Lagrange equations. And then, linearization of these equations yields

finite element formulations. As a first step, the stationary condition with respect to
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independent variablesφ andp can be obtained by the directional derivatives of the

potential functional in the direction ofδφ andδp separately. Then the Euler-Lagrange

equations are determined as follows:

DΠ̂(φ, p)[δφ] =

∫

V

((

τ iso + pJg−1
)

: sym(g∇xδφ
)

dV − δΠ̂ext(φ) = 0 ,

DΠ̂(φ, p)[δp] =

∫

V

δp (J − 1) dV = 0 ,

(3.54)

where the first term in equation (3.54) contains nonlinearity, and the second term

enforce the incompressibility constraint. In a similar way, (3.54)1 can be also written

in the Lagrangian configuration as follows

DΠ̂(φ, p)[δφ] =

∫

V

S′ : DE[δφ]dV +

∫

V

JpdivδφdV − δΠ̂ext(φ) = 0 (3.55)

The nonlinearity requires a Newton-Raphson solution. Therefore equation (3.54)

should be linearized in the direction of increments of∆φ and∆p for both variables

φ andp. The second variation provides the following linearized form

D2Π̂(φ, p)[δφ, δφ] =

∫

V

g∇x∆φ :
(

∇x∆φ
(

τ iso + pJg−1
))

dV

+

∫

V

g∇xδφ :
(

pJ
(

g−1 ⊗ g−1 − 2Ig−1

)

+ Ciso
)

: g∇x∆φdV

(3.56)

The consistent linearization of two-field variational formulation stated in equation

(3.56) can also be written in the Lagrangian configuration asbelow

D2Π̂(φ, p)[δφ,∆φ] =

∫

V

DEδφ :
(

Ciso + pJ
(

C−1 ⊗C−1 − 2I
))

: DE∆φdV +

∫

V

S :
(

(∇X∆φ)T (∇Xδφ)
)

dV

(3.57)

In general, discontinuous (constant over element) pressure field and continuous (order

of 1 or order of2) polynomial interpolations for the displacement field are used in the

mixed formulations.
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3.5 Three-Field Formulation

Although there is a treatment for the volumetric locking phenomenon by imposing a

two-field mixed formulation, as mentioned in the previous section, a constant pressure

definition over the element causes pressure osculations [107]. Therefore, definition

of an additional third independent variable, such as volumechanging (dilatation)Θ,

yields more efficient three-field mixed formulation. This principle is also known as

Hu-Washizu variational formulation, and this methodologyis widely accepted and

commonly used in the literature. Although there is a third independent variable in-

troduced in the Hu-Washizu formulation, the resultant finite element formulations are

calledQ1P0 or T2P0. The newly kinematic variableθ is included into the func-

tional as a constraint. In a similar manner to the two-field formulation, the potential

functional can be written as

Π̂(φ, p) := Π̂int(φ)− Π̂ext(φ) +

∫

V

p(θ − J)dV +

∫

V

Ψvol(θ)dV , (3.58)

whereΠint andΠext are defined in equations (3.52) and (3.53). Then the stationary

conditions with respect toφ, J andθ yield to weak forms as following

DΠ̂(φ, p)[δφ] =

∫

V

((

τ iso + pJg−1
)

: sym(g∇xδφ
)

dV − δΠ̂ext(φ) = 0 ,

DΠ̂(φ, p)[δp] =

∫

V

δp (J − θ) dV = 0 ,

DΠ̂(φ, p)[δθ] =

∫

V

δθ(Ψ′

vol(θ)− p) dV = 0 ,

(3.59)

Consistent linearization with respect toφ leads

D2Π̂(φ, p)[δφ,∆φ] =

∫

V

g∇xδφ :
(

∇x∆φ
(

τ iso + pJg−1
))

dV

+

∫

V

g∇xδφ :
(

pJ
(

g−1 ⊗ g−1 − 2Ig−1

)

+ Ciso
)

: g∇x∆φdV +

∫

V

Jg∇xδφ : g−1∆pdV

(3.60)
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The Lagrange multiplier and internal pressure termp and the mean dilatationθ can

be defined constant over an element as below

θ̄ =
1

V

∫

B

JdV =
V0
V
,

p̄ =
1

V

∫

B

Ψ′

voldV,

(3.61)

Then the incremental forms leads

∆θ̄ =
1

V

∫

B

Jg−1 : g∇x∆φdV,

∆p̄ = Ψ′′
vol∆θ̄dV,

(3.62)

Pluging of the incremental forms defined in equation 3.62 into 3.60 gives the final

form of the linearization. For the interested researcher, see [107] and [126] for the

detailed background of the intermediate steps of the derivations.

Cook’s Membrane - Two-field and Three-field element comparison

In order to test different mixed element formulations in FEniCS [12], a benchmark

problem has been performed. In the numerical applications,Cook’s Membrane ge-

ometry was preferred which is generally used for patch testsof mixed formulations

under both bending and shear [127], [128], [129], [130] and [131]. Finite element

mesh of the geometry was created in ANSYS Mechanical and it was transferred to

FEniCS by .xml format. It is also possible to create mesh in FEniCS by using sim-

ple geometries such as box, sphere etc. However, relativelycomplex mesh should be

imported from another commercial pre-processing platform. Since tetrahedron ele-

ments in FEniCS were validated in terms of stability and accuracy, therefore these

types of elements are preferred in the analysis. Two distinct finite element models

were generated, each with a different mesh size setting per each edges. The goal is to

compare alternative mixed element formulations with the same boundary conditions

in two different mesh sizes. The membrane was fixed from the blue region in each

direction ofu, and the tangential traction loadσn = (0, 10, 0)T has been applied to

the green surface. Corresponding finite element meshes and related boundary condi-

tions are represented visually and graphically in Figure 3.1. Since it is a nonlinear

analysis, the load was applied incrementally in 100 steps. In the numerical example,

the following isotropic free-energy function has been defined

Ψiso =
µ

2
(Ī1 − 3) and Ψvol =

κ

2
(J − 1)2 (3.63)
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B(5, 30, 5)

Figure 3.1: (a) Schematic view of the geometry, boundary conditions and traction load

(b) coarse mesh representation with 4 elements per edge c) fine mesh representation

with 8 elements per edge. (Units are dimensionless)

whereµ is the shear modulus andκ is the bulk modulus of the material. The parame-

ters have been defined in the quasi-incompressible limit asν = 0.4999 andµ = 67.11

units. During the comparison, the tip deflection inx2 direction is obtained from point

A and the pressure is taken from pointB. There were different element types with

different interpolation orders used to make comparisons interms of accuracy and so-

lution time. Elements that were used in the analysis are shown in Figure 3.2. The first

letter in the notation of the element type describes the geometric shape of the element.

Since we use tetrahedron elements in the example, that is referred to asT . The second

number following to the first letter is the order of interpolation degree.1 is used for

linear interpolation,2 is used for quadratic interpolation and0 is used for pressure

degree of freedom stated asP that is formulated as a constant over element. There is

also defined a different type of element which uses Crouzeix-Raviart interpolation for

the pressure degree of freedom and defined asCRP . While the subscriptHW refers

for three-field Hu-Washizu element formulation, the remained elements are formed

based on two-field mixed formulation. There will be presented resultant contours of

independent variables such as displacement, and pressure.As a reference solution,

there was solved the same numerical model with 32 elements per edges in ANSYS

with Q1P0 element by using the same material properties. Thevertical deflection at

PointA and internal pressure at pointB are given in Figure 3.3 with different mesh

settings. There are overlaps of the results ofT1P0HW -T1P0 andT2P0HW -T2P0
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Element Type Illustration

T 1P0

T 2P0

T 2P1

T 1P0HW

T 2P0HW

T 1CR1

Figure 3.2: Element types used in numerical Cook’s membranenumerical example

element formulations. Linear approximation has been performed between the results

of 4 and8 elements per edge configurations. As it is already known thatlinear inter-

polation of tetrahedron elements causes shear-locking andexhibit too stiff behaviour.

Accordingly,T1 element formulations suffer from ill-conditioning and non-accurate

results in both displacement and pressure. It also causes the checkerboard pattern for

pressure distribution, which is not realistic. The numerical problem can be solved

either by using quadratic elements or by replacing tetrahedrons with hexahedrons.

The quadratic element formulation for the displacement degree of freedom (i.e.T2)

elements converges to the reference solution by increasingthe mesh count. Some ele-

ments converges by increasing trend and some others converges by decreasing manner

such asT2P0HW andT2CR1. While it seems like theT2 interpolations agree with

the reference solution, a slight difference appears on pressure plots. By increasing

the mesh level,T2P0HW andT2P0 provided the most accurate results rather than

the other element types. Another important comparison criterion in the FE process

is the total elapsed solution time. The normalized solutiontime for different element

formulations is given in Figure 3.4 for the coarse and fine mesh scenarios, respec-

tively. According to computational efficiencies, higher-order interpolations require

more computational effort in general. Although,T2P0 provides accurate results in
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Figure 3.3: (a) Tip vertical deflection of different elementformulations at point "A"

(b) Internal pressure result at point "B" of different element formulations. Both plots

are provided based on coarse and fine mesh settings
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Figure 3.4: Normalized elapsed time for different mixed element formulations

terms of deflection and pressure, it is not the most efficient in terms of computational

time, and it requires more iterations in the Newton-Raphsonprocess. By taking into

consideration all parameter sets shown in Figures 3.3 and 3.4, T2P0HW three-field

Hu-Washizu element formulation provides the best solution. The vertical displace-

ment and pressure contours regarding toT1P0 andT1P0HW elements are given for

coarse and fine mesh settings in Figure 3.5. It is clearly seenfrom the results that, lin-

ear interpolation of displacement independent variable causes inaccurate stiff bending

behavior. Similarly, the pressure contours show an unrealistic checkerboard pattern.

Figure 3.6 presents the displacement and pressure contoursof T2P0 andT2P0HW

elements for coarse and fine meshes. These elements reflect the accurate behaviour
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Figure 3.5: Contours of 4 element per edge and 8 element per edge configurations.

(a) Vertical displacement ofT1P0 element (b) Vertical displacement ofT1P0HW ele-

ment (c) Pressure distribution ofT1P0 element (d) Pressure distribution ofT1P0HW

element

of both coarse and fine meshes. Since pressure degree of freedom is constant over

element, fine mesh setting covers the pressure distributionbetter. Both two-field and

three-field elements exhibit very similar behaviour in terms of displacement and pres-

sure. However, it should be noted from Figure 3.4 that,T2P0HW is not only the most

accurate element but also computationally efficient.

Figure 3.7 presents the displacement and pressure contoursof T2P1 andT2CR1 el-

ements for coarse and fine meshes. Using linear interpolation of pressure degree of

freedom provides smooth transition of pressure contours, but it is not computation-

ally effective. The pressure distributions of elementsT2P0 andT2P1 are similar

in an average sense. Therefore, in literature, the pressurevariable is mostly con-

sidered as constant over element. There is another element type (Crouzeix-Raviart

interpolation) also compared with common elements.CR elements store the pres-

sure constant on each face of the element. The displacement behaviour is similar to

other element types. Pressure distribution is also accurate enough, on average. How-

ever, there were observed singularities of pressure, especially in boundary condition

regions, and causes numerical instabilities. ThereforeCR element formulation is ac-

curate enough in overall region but it is not accurate in boundary regions and it is not

computationally efficient.

51



(a) (b)

(c) (d)

1414
1212
88
66
44
22

2020

1010

1010

00

00
-10-10
-20-20

uy [mm]uy [mm]

p [MPa]p [MPa]

Figure 3.6: Contours of 4 element per edge and 8 element per edge configurations.

(a) Vertical displacement ofT2P0 element (b) Vertical displacement ofT2P0HW ele-

ment (c) Pressure distribution ofT2P0 element (d) Pressure distribution ofT2P0HW

element

(a) (b)

(c) (d)
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Figure 3.7: Contours of 4 element per edge and 8 element per edge configurations.

(a) Vertical displacement ofT2P1 element (b) Vertical displacement ofT2CR1 ele-

ment (c) Pressure distribution ofT2P1 element (d) Pressure distribution ofT2CR1

element
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3.6 Five-Field Formulation

Fiber-reinforced soft biological tissues may exhibit not only incompressible behav-

ior but can also present an inextensible mechanical response due to the high ground

matrix-fiber stiffness ratio. In such numerical situation as we face in the incompress-

ible limit, a similar problem is shown up in the nearly inextensible limit due to the

high fiber stiffness. Therefore, it is also necessary to treat the nearly-inextensible

problems with a Lagrange multiplier and another kinematic variable.

A mixed variational formulation based on the Hu-Washizu principle for the nearly in-

compressible and nearly inextensible limits for fiber-reinforced materials was studied

in [112, 113, 132, 133, 104] for one family of fibers. Later it was extended to two fam-

ily fibers for soft biological tissues [134]. The approach ofZdunek et al. [112, 113] is

based on the multiplicative decomposition of the deformation gradient into a purely

unimodular extensional part, a purely spherical part, and an extension free unimod-

ular part. The mixed element formulation of Dal et al. [104, 134] is based on a

five-field Hu-Washizu type variational formulation that hasconjugate pairs(p, θ) and

(s, λ) for pressure-dilatation and fiber stress-fiber stretch, respectively. The result of

the variational formulation is theQ1P0F0element which is extended for the inexten-

sibility limit. The formulation is formed based on a vectorial displacement field and

two additional scalar conjugate pairs, making five fields in total. On the other hand,

Schröder et al. [132] used Hu-Washizu type variational formulation for incompress-

ible part of the formulation and they proposed Simplified Kinematic for anisotropic

part. They introduced low-order interpolation (constant over element) for a second-

order tensorial Lagrange multiplier conjugate to a tensorial kinematic-like field. They

formulated either use of the deformation gradientF or right Cauchy-Green tensorC

as the kinematic tensorial function conjugate to stress-like Lagrange multiplier. For a

detailed review, we refer to [132, 104, 134] and references therein.

In this section, the five-field formulation proposed by Dal [104] and Schröder et

al. [132] will be introduced and compared in detail to observe the accuracy and com-

putational cost of the models.
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3.6.1 Scalar conjugate pairs for inextensibility(s, λ)

This model uses scalar conjugate pair(s, λ) for inextensibility constraint in addition

to scalar incompressiblity pair(p, θ). The free-energy is decomposed into volumetric,

isochoric and anisotropic parts as follows

Ψ(g;F ,n0) := ψvol(J) + Ψiso(g;F ) + Ψani(g;F ,n0) (3.64)

Note that, since we are working on one-family fiber reinforcement, the anisotropic

part is the function of only a single unit vectorn0 along the fiber direction. If there

are two-family fiber reinforcement, refer equation 3.45 forextended free-energy func-

tional. Corresponding unimodular isotropic and anisotropic invariants are already de-

fined in equations 3.23 and 2.16 respectively. Then similar analogy to free-energy,

the Kirchhoff stress can decomposed of as following

τ = 2∂gΨ = τ vol + τ iso + τ ani (3.65)

whereτ vol, τ iso andτ ani are already defined in equations 3.36, 3.39 and 3.47. Sim-

ilarly, the Eulerian tangent moduli can be expressed by volumetric, isochoric and

anisotropic parts as below

c = 4∂2ggΨ = cvol + ciso + cani (3.66)

wherecvol, ciso andcani are defined in equations 3.37, 3.40 and 3.47. Two Lagrange

multiplier are required to be added in the mixed potential toenforce incompressibility

and inextensibility behavior. Then the mixed potential canbe described as below

Π̂(φ, p, θ, s, λ) := Π̂int(φ)− Π̂ext(φ) +

∫

V

p(J − θ)dV +

∫

V

Ψvol(θ)dV

+

∫

V

s(I4 − λ)dV +

∫

V

Ψani(λ)dV

(3.67)

wheres is the second Lagrange multiplier as fiber stress andλ is the kinematic entity

as fiber stretch. Then additional stationary conditions to equation 3.59 with respect to
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s andλ yields additional weak forms as following

DΠ̂(φ, p, θ, s, λ)[δφ] =

∫

V

((

τ iso + pJg−1 + 2sn⊗ n
)

: sym(g∇xδφ
)

dV

− δΠ̂ext(φ) = 0 ,

DΠ̂(φ, p, θ, s, λ)[δp] =

∫

V

δp (J − θ) dV = 0 ,

DΠ̂(φ, p, θ, s, λ)[δθ] =

∫

V

δθ(Ψ′

vol(θ)− p) dV = 0,

DΠ̂(φ, p, θ, s, λ)[δs] =

∫

V

δs (I4 − λ) dV = 0 ,

DΠ̂(φ, p, θ, s, λ)[δλ] =

∫

V

δλ(Ψ′

ani(λ)− s) dV = 0

(3.68)

Note that, there appears additional stress term in equation3.681 related with the

anisotropic part of the free-energy. Then, similar to equation 3.60, the consistent

linearization with respect toφ leads

D2Π̂(φ, p, θ, s, λ)[δφ,∆φ] =

∫

V

g∇xδφ :
(

∇x∆φ
(

τ iso + pJg−1 + 2sn⊗ n
))

dV

+

∫

V

g∇xδφ :
(

pJ
(

g−1 ⊗ g−1 − 2Ig−1

)

+ Ciso
)

: g∇x∆φdV

+

∫

V

Jg∇xδφ : g−1∆pdV

+

∫

V

g∇xδφ : 2∆sn⊗ ndV

(3.69)

The similar methodology, that were applied forp andθ in equations 3.61 and 3.62,

the second Lagrange multiplier and the fiber stress terms and fiber stretchλ can be

defined constant over an element as below

λ̄ =
1

V

∫

B

I4dV =
V0
V
, and s̄ =

1

V

∫

B

Ψ′

anidV, (3.70)

Then the incremental forms leads

∆λ̄ =
1

V

∫

B

2n⊗ n : g∇x∆φdV, and ∆s̄ = Ψ′′

ani∆λ̄dV, (3.71)
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Pluging of the incremental forms defined in equation 3.71 into 3.69 gives the final

form of the linearization, see [104] for further details. The mixed variational formu-

lation leads toQ1P0F0 or T2P0F0 five-field finite element formulation.

3.6.2 Tensorial conjugate pairs for inextensibility(C,S)

This model uses second-order tensorial conjugate pair(S,C) for inextensibility con-

straint in addition to scalar incompressiblity pair(p, θ). The model is very similar to

the previous one as it decomposes the free-energy, stress and moduli expressions in

same manner with equations 3.64, 3.65 and 3.66. The difference between the two of

the five-field models comes out in the second Lagrange multiplier and the kinematic

entity. Schröder et al. [132] described the second Lagrangemultiplier and its con-

jugate as a second-order tensors. While the proposed model by [104] is formulated

based on the constraint over fiber stretchI4, the tensorial model enforce the inexten-

sibility constraint based on right Cauchy-Green tensorC. Then the mixed potential

can be described as below

Π̂(C, p, θ,S,C) := Π̂int(φ)− Π̂ext(φ) +

∫

V

p(J − θ)dV +

∫

V

Ψvol(θ)dV

+

∫

V

S : (C − C)dV +

∫

V

Ψani(C)dV

(3.72)

whereS is the second-order tensor for the second Lagrange multiplier as anisotropic

stress tensor andC is the second-order tensor for the kinematic entity. Stationary

conditions with respect toφ, p, θ , S andC yields to the following weak forms

DΠ̂(C, p, θ,S,C)[δφ] =

∫

V

1

2
δC :

(

2∂CΨ+ pJC−1 + S
)

dV

− δΠ̂ext(φ) = 0 ,

DΠ̂(C, p, θ,S,C)[δp] =

∫

V

δp (J − θ) dV = 0 ,

DΠ̂(C, p, θ,S,C)[δθ] =

∫

V

δθ(Ψ′

vol(θ)− p) dV = 0,

DΠ̂(C, p, θ,S,C)[δC] =

∫

V

δC : (∂CΨani −
1

2
S) dV = 0 ,

DΠ̂(C, p, θ,S,C)[δS] =

∫

V

δS : (C − C) dV = 0

(3.73)

56



Discretization of the four additional fieldsθ, p, S andC are defined as constant over

the element similar to the equations 3.70 and 3.71, see [132]for further details. The

mixed variational formulation lead toQ1P0A0 or T2P0A0 five-field finite element

formulation.

3.7 Dual Clamped Patch Test - Comparison of Mixed Element Formulations

In this numerical example, it is aimed to focus on the accuracy and efficiency of differ-

ent types of finite element formulations shown in Figure 3.8,in different physical con-

ditions such as compressible, extensible, nearly incompressible, and nearly inexten-

sible cases. The descriptions of the elements as following:T2 refers for standard dis-

placement element with quadratic interpolation,T2P0 andT2P1 are the three-field

Hu-Washizu mean dilatation formulations with different pressure-dilatation interpo-

lations,T2A0 andT2A1 are the three-field that uses tensorial formulations for newly

added independent variables for inextensibility constraint,T2P0A0 andT2P1A1 are

the five-field formulation that includes scalar pair for incompressibility constraint and

tensorial pair of additional independent variables for inextensibility limits and lastly

T2P0F0 andT2P1F1 are the five-field mixed formulations composed of scalar pairs

for additional independent variables for the both incompressibility and inextensibil-

ity limits. In the solution of this numerical problem, FeniCS [12] has been used for

the finite element analysis software. The linear elements constructed by 3 nodes, the

quadratic elements formed by 6 nodes, and constant interpolation over an element

are also generated for the different types of element formulations. The square shaped

(1x1 dimensions) 2D geometry is defined in line with [132] andit is clamped at the

upper and lower edge boundaries as a fixed support. A uniform traction is applied

asq = 30 and it is incrementally applied at the left vertical edge of the square ge-

ometry. Since the model is in 2D space, nodes are fixed in the normalx3-direction.

The corresponding geometry and boundary conditions are presented in Figure 3.9.

The following free-energy function that is proposed by [132], has been used in the

numerical example.

Ψ =
λ

4
(I3 − 1)−

(

λ

2
+ µ

)

ln(
√

I3) +
µ

2
(I1 − 3) + µf〈I4 − 1〉2 (3.74)
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Element Type Illustration
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Figure 3.8: Finite element design for compressible, extensible, quasi-incompressible

and quasi-inextensible hyperelasticity.

where the first three terms in equation 3.74 is the isotropic contribution of the free-

energy function and the last term is the anisotropic part dueto the one family fiber

reinforcement. The anisotropic part of the free energy is defined by Macaulay brack-

ets 〈•〉 that represent the tension-only behavior.λ is the Lamé constant,µ is the

shear modulus of the base ground matrix andµf is the fiber stiffness. The fol-
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Figure 3.9: Schematic representation of the geometry and corresponding boundary

conditions

lowing relations can be used to calculate other mechanical constants such asλ =

νE/ ((1 + ν)(1− 2ν)) andµ = E/ (2(1 + ν)) whereE is the Young’s modulus of

the material andν is the Poisson’s ratio.

The ground matrix material is reinforced by one family of fibers withα = 600 angle

with the horizontal plane. The fiber’s unit normal is described byn0 = (0.5,
√
3/2)T .

The fiber stiffnessµf is defined as a parameter set such asµf = {102, 104, 106, 108}
to observe the robustness of the elements especially in inextensible limits. Similarly,

Poisson’s ratio is also defined in two setsν = {0.3, 0.49} to examine the element

formulations in compressible and near-incompressible limits. The elastic modulus is

defined as a constantE = 200.

For all of the cases, the initial time step increment is takenas∆t = 1. During

the Newton-Ralphson iteration process, the maximum iteration steps for each time

increment were defined as 20. If the solution does not converge in this range, the

simulation is restarted and the time step increment is divided by1/2n wheren is the

power factor that is increased by 1 whether the solution faces any divergence issues.

The process continues until the time step reaches to1/27. There are defined coarse

to fine sets of finite element meshes:2, 4, 8, 16, 32 and64 elements per edge, and

they are generated with triangular elements. The mesh layout is set to symmetric

with respect to the two major axisx1 andx2 to decrease the effect of the mesh layout
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dependencies in the results. The mesh configurations are shown in Figure 3.10.

2× 2 4× 4 8× 8

16× 16 32× 32 64× 64

Figure 3.10: Representation of mesh configurations with different element sizes

In the first set of solution forν = 0.3, the additional field variables in three-field and

five-field formulations are taken as constant over element. Hence,T2, T2P0, T2A0,

T2P0A0 andT2P0F0 elements are compared in terms of deformation and elapsed

solution time. The mid-point deflectionux(0.0, 0.5) of the left edge has been tracked

for all of the mesh configurations and for obtained for the wide range ofµf fiber

stiffness values. Accordingly, the mid-point deflection (along x2 direction) results

are presented in Figure 3.11. These graphs reveal the compressible material response

of the different element formulations for variety of fiber stiffness range. All of the

elements converges to same mid-point displacement value for the µ = {102, 104}
however they approaches the final value of displacement in a different convergence

trend. For the case ofµ = {106}, T2 is divergent andT2P0 exhibit a convergence

behaviour. In the high level of near-inextensibility limitsuch asµ = {108}, only

the elements those treats the inextensibility constraint by additional field variables as

T2A0, T2P0A0 andT2P0F0 exhibit convergence trend by identical results. The

solution efficiency is an another critical resultant parameter that is demonstrated in

Figure 3.12 forµf = 102 with (32 × 32) and(64× 64) element configurations. Due

to having a relatively low number of degrees of freedom forT2 andT2P0 elements,
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Figure 3.11:ν = 0.3, Mid-point displacementux(0, 0.5) results for(2× 2), (4× 4),

(8 × 8), (16 × 16), (32 × 32) and(64 × 64) elements per edge in the range ofµf =

{102, 104, 106, 108}.

these are the most cost-effective in terms of solution time.However, these elements

are not convergent in high fiber stiffness materials, then the best option appears to be

theT2P0F0 which can be used in both incompressible limits and inextensible limits.

T2P0F0 is competitive with standard types of elements, and it does not slow the

simulation as expected. Although,T2A0 andT2P0A0 are also good candidates for

accuracy and convergence, they fall behind in terms of computational effectiveness.

In the second set of the solution forν = 0.49, all of the element formulations shown

in Figure 3.8 have been tested in the near-incompressible case. In the cases where

µf = 102 andµf = 104, all element types have been tested in the numerical model.

However, due to the difficulties of the convergence level formore stiff cases such

asµf = 106 andµf = 108, only the element which have low-order interpolation
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Figure 3.12:ν = 0.3, the normalized elapsed time for the solution of(32 × 32) and

(64× 64) elements per edge whereµf = 102.

formulations have been preferred to be used.

In the second set of the solutions, elements listed in Figure3.8 are compared in terms

of mid-point deflection behaviour, iteration trends with respect to different fiber stiff-

ness value, normalized elapsed solution time, and Cauchy-type fiber stress contours.

Figure 3.13 shows the mid-pointux(0, 0.5) deflection characteristics for different ele-

ment formulations whereν = 0.49. For the relatively moderate fiber stiffness config-

uration (µf = 102−104), all the elements are convergent to the same value. However,

there are observed locking phenomena for almost all elementformulations when us-

ing coarse mesh settings such as(2× 2). T2 andT2P0 exhibit divergence behaviour

at µf = 106 andµf = 108. However,T2A0, T2P0A0 andT2P0F0 present excel-

lent and robust deflection behaviour. EspeciallyT2A0 element even shows accurate

results for the coarse meshes. Besides,T2P0F0 andT2P0A0 are identical, and their

lines are overlapping each other.

The total number of iterations that have been performed during the solution is an

important indicator of the robustness of the different element formulations, as shown

in Figure 3.14. It can be clearly seen that, for the relatively low fiber stiffness such

asµ = 102, all of the elements exhibit a good convergence. However, when the fiber

stiffness increased toµ = 104, Hu-Washizu-type mixed pressure-dilatation elements

suffers while converging, especially for high resolution mesh configurations. For

µ = 106 andµ = 108, standard displacement elementT2 andT2P0 are divergent
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Figure 3.13:ν = 0.49, Mid-point displacementux(0, 0.5) results for(2× 2), (4× 4),

(8 × 8), (16 × 16), (32 × 32) and(64 × 64) elements per edge in the range ofµf =

{102, 104, 106, 108}.

even for the low resolution meshes. HoweverT2A0, T2P0A0 andT2P0F0 elements

shows excellent agreement with each other and reach the solution in a very robust way

with similar iteration numbers for all of mesh resolutions.

The computational cost of the elements have been demonstrated forµf = 102 and

µf = 104 where all the elements exhibit convergence behaviours for all of mesh

resolutions, see Figure 3.15. Since it is more proper to observe the computational

effectiveness of high-resolution meshes, results are given for (32× 32) and(64× 64)

mesh settings. As expected, low-order elements, which havefewer independent vari-

ables in their formulations, spend the least computationaltime during the solution,

i.e. T2 andT2P0. However, these elements suffer from locking in higher fiberstiff-
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Figure 3.14: ν = 0.49, Number of total iterations have been performed during

Newton-Raphson iterations for(2 × 2), (4 × 4), (8 × 8), (16 × 16), (32 × 32) and

(64× 64) elements per edge in the range ofµf = {102, 104, 106, 108}.

ness materials as it is already shown in Figure 3.14. There are very high computa-

tional costs revealed due to the linear interpolations ofT2A1 andT2P1A1 elements,

which makes the analysis too slow and inefficient. It should be noted that, although

T2P1F1 has also the high-order interpolations for additional independent variables,

it has a similar computational times withT2A0 andT2P0A0. T2P0F0 element is

the most cost effective in terms of computational robustness and nearly4 times faster

thanT2P0A0 element formulation. Since these elements represent identical solu-

tions, due to the difference between the scalar and tensorial formulations, the addi-

tional tensorial calculations slow down the solution process ofT2P0A0 formulation.

Figures 3.16, 3.17 and 3.18 demonstrate the Cauchy-type fiber stress distributions for
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Figure 3.15:ν = 0.49, the normalized elapsed time for the solution of(32× 32) and

(64× 64) elements per edge atµf = 102 andµf = 104.

all element types whereµf = 104. Standard displacement elementT2 and three-field

Hu-Washizu elementsT2P0/T2P1 represent a localized stress region. However, the

stress distribution exhibits quick jumps between elementsas spikes and oscillations

are observed. Increasing the mesh resolution to(64 × 64), also increases the stress

localization but does not treat the discontinuous stress variation between elements,

which causes poor accuracy. On the other hand,T2A0, T2P0A0 andT2P0F0 el-

ements demonstrate very smooth stress distribution, and there are not any examined

spike-type discontinuities. In order to observe the mesh-dependency in a better way,

there are also additional(128 × 128) mesh resolution presented in Figure 3.17. It

shows that, for the low resolution meshes, smooth stress distribution is sufficient on

average; however, increasing the mesh resolution reveals the smooth stress local-

ization due to the fiber reinforcement. This outcome is related to the interpolation

capability of triangular elements, and this issue can be fixed by using high resolution
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Figure 3.16: Cauchy fiber stressσf distribution ofT2, T2P0 andT2P1 elements for

dual clamped patch test whereν = 0.49 andµf = 104. Stress contours are presented

for unit dimensions for(32× 32) and(64× 64) mesh configurations.

meshes. Figure 3.18 presents the stress contours of higher order elements such as

T2A1, T2P1A1 andT2P1F1. These elements exhibit very similar characteristics

between each other and the localized stresses have also beenobserved. Similarly,

stress contours are smooth and similar to high resolution mesh trends of low-order
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Figure 3.17: Cauchy fiber stressσf distribution ofT2A0, T2P0A0 andT2P0F0

elements for dual clamped patch test whereν = 0.49 andµf = 104. Stress contours

are presented for unit dimensions for(32 × 32), (64 × 64) mesh configurations for

T2A0 and for five-field formulations,(128× 128) mesh results additionally given.

elements shown in Figure 3.18. Since the computational costis quite high for high-

order elements, low-order elements are a good candidate to solve near-incompressible

and near-inextensible material response.
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Figure 3.18: Cauchy fiber stressσf distribution ofT2A1, T2P1A1 andT2P1F1

elements for dual clamped patch test whereν = 0.49 andµf = 104.
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CHAPTER 4

THEORY OF FINITE GROWTH MECHANICS

Growth-induced deformations show up in living systems (tissue, plants, etc.) and the

development of engineering devices. It is the mechanism that can be driven by dif-

ferent physics, such as chemical or mechanically induced, in biological tissues. The

detailed introduction to the growth-induced deformationsand instabilities is given in

Chapter 1. Growth beyond the physiological limit causes pathological conditions in

biological tissues. Due to the growth, tissues can be subjected to remodelling, residual

stress, and instabilities; these can be indicators of pathological diseases. The growth-

induced deformations are mostly found in arteries, muscles, tumors, the heart, etc.

For example, the growth can be the reason of the eccentric andconcentric hypertro-

phy in the heart. The physics behind the eccentric growth is chronic volume overload.

On the other hand, chronic pressure overload causes the concentric hypertrophy and

ventricular wall thickening [6]. The growth-induced instabilities can also be revealed

mostly in the airways, brain, skin, etc. While brain foldingis a consequence of the

cell-division and formation of the brain, instabilities ofthe regular shape of biological

organs such as the airways are a result of pathological conditions. The mechanics of

growth-induced deformations and instabilities need to be understood to estimate the

post-behaviour and development treatment methodologies such as tumor invasion,

stent restenosis, tissue expansion etc. [29]. Since most ofthe tissues are composed of

a multi-layer isotropic or anisotropic layout, compression type of loading causes dif-

ferent levels of stress in the thin stiff film and the compliant substrate; thus, buckling

leads to a release of energy. The stiffness variation of the layers, the fiber contri-

bution, fiber stiffness, and growth isotropy or anisotropy are the critical factors that

trigger instabilities.
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The finite growth can be modeled as a scalar parameter or as a second order tensor.

Based on the application, it can be either defined as an internal variable and obtained

through a driving mechanism or it can be directly defined within a confined domain

by a scalar known quantity, which can be the direct input of the model. The growth

mechanism can be isotropic or anisotropic which are categorized into volume growth,

area growth and fiber growth. More detailed background information and details can

be found in [29].

In this chapter, firstly the kinematic framework of finite growth will be presented

based on elastic and growth decomposition of deformation gradient. Then constitu-

tive equations will be given in the context of stress and corresponding moduli. In

the following section, types of finite growth tensors will bepresented. Then, nu-

merical examples consisting of growth-induced deformations and instabilities will be

provided on the Python-based automated finite element software FEniCS [12]. After-

wards, the five-field Hu-Washizu type mixed variational formulation was applied for

the finite growth problems usingT2P0F0 element formulation. The planar growth-

induced primary and secondary instabilities on three-dimensional bilayer type tissue

will be presented numerically.

4.1 Kinematic Framework of Finite Growth

This section presents the kinematics of growth phenomena ina general framework

and can be used for isotropic, transversely isotropic, orthotropic, and anisotropic hy-

perelastic solids. The kinematics is based on the multiplicative decomposition of the

deformation gradient into elastic and growth tensors in thesense of Rodriguez [135]

are introduced. A hyperelastic response in the intermediate state is considered. The

descriptions of the motion of the body based on the referenceand spatial configura-

tions are already given in Chapter 2. Therefore same steps will not be repeated in

this section. In the finite growth formulation, the key kinematic definition is the mul-

tiplicative decomposition of the deformation gradientF into a reversible elastic part

F e, and an irreversible growth partF g [135] as follows:

F := ∇Xϕt(X) = F eF g (4.1)
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The growth configuration is also stated as incompatible whether the elastic configu-

ration satisfies the compatibility, see Figure 4.1. In line with that, the growth term

affects the constitutive equations, and the baseline elastic response is described in the

intermediate configuration.

B0

F g

Bg

F

F e

B

Figure 4.1: Kinematic representation of finite growth. The multiplicative decomposi-

tion of the deformation gradientF gives mapping relation based on growth stateF g,

and the elastic state of the deformation gradientF e. There are defined three config-

urations at finite growth, the first one is the original stress-free configuration inB0,

the second one is the growth state with stress-free intermediate configuration inBg

which also leads to incompatibility in general, and the third is the stressed-state in

deformed configuration,B.

In the same way as split of the deformation gradientF , the JacobianJ is also mul-

tiplicatively decomposed into reversible elastic volume changeJe = det[F e] and an

irreversible grown volume changeJg = det[F g][136].

J := det[F ] = JeJg (4.2)

The conditionJ := det[F ] > 0, Je := det[F e] > 0 andJg := det[F g] > 0 provides

the non-penetrable deformations. Furthermore, the referenceB0 and the spatialB

manifolds are locally furnished with the covariant referenceG and currentg metric

tensors in the neighbourhoodsNX of X andNx of x, respectively. For the mapping

between the co- and contravariant objects in Lagrangian andEulerian states, these

metric tensors are needed [105]. In addition, these metric tensors also show forth the
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map between the referenceB0 and the intermediate configurationBg and between

the intermediate configurationBg and the spatial stateB.

By the Nanson’s formula, the total area change can also be decomposed into elastic

and growth area change as following

JF−Tn0dA = nda where JF−T = (JgF g−T )(JeF e−T ) (4.3)

whereN is the unit normal in the undeformed configuration. Similarly, the stretchλ

can also be decomposed into elasticλe and growth componentλg as below

λ = ||F · n0|| = λeλg where λg = ||F g · n0|| (4.4)

Then, we designate the right Cauchy Green tensor, the inverse of the left Cauchy

Green tensor, and the elastic right Cauchy Green tensor,

C = F TgF , c = F−TGF−1 and Ce = F eTgF e, (4.5)

as the covariant pull back of the spatial metricg and push forward of the Lagrangian

metricG, respectively. Here, in the case of Cartesian coordinates,g andG are the

same as the identity tensor [6]. In order to keep the kinematics in a wide coverage, we

suppose to consider for the case of anisotropy such as one-family fiber reinforcement.

Then, we define the Lagrangian unit vectorn0 standing for the fiber direction in

continuum as

|n0|G = 1 where |n0|G = (n0 ·Gn0)
1/2 . (4.6)

Then through the tangent map deformed configuration can be formed as

n = F eF gn0 . (4.7)

The boundaries of the domain can be split into Dirichlet and Neumann type as∂B =

∂Bϕ ∪ ∂Bt and∂Bϕ ∩ ∂Bt = ∅.

4.2 Governing Constitutive Equations of Finite Growth

The second law of thermodynamics states a positive dissipation by stress power and

the objective rate of free energy. The dissipation inequality can be applied to form
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thermodynamically consistent stress relations as

D = S :
1

2
Ċ − ψ̇ = P̂ : Ḟ − ψ̇ = τ :

1

2
£vg − ψ̇ ≥ 0 (4.8)

It is significant to notice that̂P implies the mixed-variant Piola tensor, which is rep-

resented bŷP := gP [6]. The Lie derivative of the spatial metric,£vg = (gl+lTg),

is equivalent to the symmetric rate of deformation tensor.l = Ḟ F−1 is the spatial

velocity gradient. By the evaluation of the dissipation inequality, stress derivations

can be performed. In finite growth, hyperelasticity constitutive equations are assumed

to be held on the elastic state, and growth represents an intermediate stress-free state.

Depending on the microstructure of the material or the tissue, the form of the growth

tensorF g can be either isotropic or anisotropic. Stress arises in thesolid domain

due to the elastic part of the deformation gradientF e. The growth does not have any

energy contribution to the free energy function, meaning that purely growth tensor

does not cause any stress in the body. The growth tensor can directly either be de-

pendent on a scalar strain-type variable or strain or stressdriven microstructure leads

the growth evolution. It can be defined by evolution equations based on an internal

variable. This type of growth depends on the growth criteriaas it seen in the flow rule

in plasticity formulation, and growth initiates when the mechanical driving force ex-

ceeds the threshold level. For the sake of convenience, in this study, it is assumed that

every continuum point exceeds the threshold level in the solid body; hence growth

tensorF g can be driven by independent certain scalar variables.

In general, fiber-reinforced rubber polymers, fibrous soft biological tissues, and re-

inforced composite elastomers exhibit nearly incompressible responses and, in the

reinforcement direction, nearly inextensible behavior. Depending on the physical

conditions, these solids can be subjected to growth or shrinkage, resulting in com-

pression or tension in the matrix and fibers, respectively. In a general framework, in

line with the macro-level continuum approach, we introducethe elastic Helmholtz

free energy function for one fiber family elastomers or soft tissues that is additively

split into volumetric, isotropic, and anisotropic parts.

ψ(g;F e,n0) := ψvol(J
e) + ψiso(g;F

e) + ψani(g;F
e,n0) (4.9)

In general, stored free energy for hyperelastic solid is governed by three invariants

of the right Cauchy Green tensor as it is given in Chapter 2. Ingrowth-induced
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Figure 4.2: Definition of metric and stress tensors for finitegrowth. Current metric

in Lagrangian configurationC = F TgF . Reference metricin Eulerian configuration

c = F−TGF−1. The relationship between the Lagrangian-intermediate configura-

tion and intermediate-Eulerian configuration can be definedCe = F g−TCF g−1 and

τ = F eSeF eT or directlyτ = FSF T , respectively [6].

hyperelasticity free energy formulation, elastic invariants are determined as

Ie1 := trCe, Ie2 :=
1

2

[

Ie21 − tr(Ce2)
]

, and Ie3 := detCe = Je2 (4.10)

The elastic right Cauchy Green tensorCe = F g−TCF g−1 is defined in the inter-

mediate configuration. In addition to the isotropic response, the elastic anisotropic

response that is generated by fibers should be defined. These additional invariants are

introduced in terms ofn0 unit vector of fibers in the undeformed configuration

Ie4 := n0 ·Cen0 Ie5 = n0 ·Ce2n0 (4.11)

that relates the energy storage due to fiber reinforcement inthe material. By eval-

uating the dissipation inequality (4.8), the second Piola-Kirchhoff stressS, the Piola

stressP and the Kirchhoff stressτ , can be obtained thermodynamically conjugate

to the right Cauchy Green deformation tensorC, and deformation gradientF , and

the current metricg, respectively [6, 67]. Then Kirchhoff stressτ can be determined

by the push forward of the second Piola-Kirchhoff stressS as below. The mapping
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schematic of tensorial quantities are given in Figure 4.2.

S = 2∂Cψ = 2∂Ceψ : ∂CC
e = F g−1 · Se · F g−T ,

P = ∂Fψ = ∂F eψ : ∂FF
e = P e · F g−T ,

τ = 2∂gψ = F e · Se · F eT

(4.12)

Corresponding tangent moduliC, A, andc can be derived by push forward and pull

back operations from elastic moduliCe, Ae, andce, which can be determined by tak-

ing the second derivative with respect to conjugate tensorsC, F andg, respectively

[6, 67].

C = 2∂CS = 2∂C(F
g−1 · Se · F g−T ) =

[

F g−1⊗̄F g−1
]

: Ce :
[

F g−T ⊗̄F g−T
]

,

A = ∂FP = ∂F (P
e · F g−T ) =

[

1⊗̄F g−T
]

: Ae :
[

1⊗̄F g−T
]

,

c = 2∂gτ = [F ⊗̄F ] : C :
[

F T ⊗̄F T
]

(4.13)

where ⊗̄ implies non-standard tensor product and can be defined as[•⊗̄◦]ijkl =

[•]ik [◦]jl. After defining Lagrangian, Eulerian, and two-point stressrelations with

elastic components in equation (4.12), it is required to derive corresponding the elastic

second Piola-Kirchhoff stressSe and the Kirchhoff stressτ . It should be noted that,

Kirchhoff stress can be determined by the push forward of thesecond Piola-Kirchhoff

stress. Although, as the outcome of the Eulerian configuration is more compact, we

prefer to give both deformed and undeformed configurations in this study.

Depending on the nature of the material or the tissue, the growth tensorF g can be

isotropic, transversely isotropic, orthotropic or anisotropic [29]. The simplest ap-

proach is to express the growth tensor as isotropic; with this approach, the growth

amount is equal in all directions. It can be a function of one scalar growth parameter,

g, and then the isotropic growth tensor is defined as:

F g = [1 + g] 1 (4.14)

where1 is the identity tensor. It is also categorized as the volumetric growth. For

example, tumors, arteries, and fruits may be subjected to volume growth. Note that,

g is the scalar growth parameter here and should not be confused by metric tensorg.

75



In some notations, the growth multiplier is denoted byνg. Then it can be specified by

the evolution equations for different types of growth tensors. If the growth parameter

g is zero, the growth tensor becomes equal to identity (F g = 1) which means there

is no growth. Parameterg can be positive or negative, corresponding to growth or

shrinkage in the solid, respectively. A special case of growth, namely transversely

isotropic, planar growth, isotropic in-plane growth, or area growth. For example,

airway walls, skin, brain, heart, and heart valve leaflets may be subjected to the area

growth [29]. It exhibits uneven growth along different orthogonal axes. In this way,

the growth tensorF g is defined as

F g = [1 + g] 1− g [m0 ⊗m0] (4.15)

wherem0 is the unit normal of membrane in the reference configuration. Equation

(4.15) describes an in plane growth within membrane and there is no growth along

m0 direction. For the transversely isotropic growth, the inverse of the growth tensor

F g−1 can be defined as below [136]

F g−1 =

[

1

1 + g

]

1− 1

g
[m0 ⊗m0] (4.16)

Another type of growth can be categorized into fiber growth. It is the growth type only

accounts along the fiber directionm0 and there is not any growth in other directions.

It can be defined as following

F g = 1+ [g+ 1]m0 ⊗m0 (4.17)

Fiber growth causes the fiber lengthening such as the change of λg. Growth of the

plant stems, eye, heart, skeletal muscle and hair can be given as example of fiber

growth in a specific direction. By considering the orthotopic behaviour of the most

biological tissues (i.e. myocardium tissue), the growth tensor can be introduced by

the following form

F g = gff0 ⊗ f0 + gss0 ⊗ s0 + gnn0 ⊗ n0 (4.18)

wheref 0, s0 andn0 are the unit vectors of three distinct orthogonal directions in

the reference configuration. For mechanical driven growth flow rule, see [6]. In case

of defining the growth tensor through the evolution law, thenthe general form of the

Lagrangian moduliC is defined in the following form:

C = 2
dS

dC
= 2

∂S

∂C
+ 2

[

∂S

∂F g :
∂F g

∂gg

]

⊗ ∂gg

∂C
(4.19)
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wheregg is the tensor that composed of growth multipliers. The first term in equation

4.19 is nothing but the moduli term that is defined in equation4.131. In the absence of

the evolution rule, or in other words, if the growth multipliers are scalar independent

constants, then the equation 4.19 reduces to the first term. Otherwise the second term

of equation 4.19 yields to

∂S

∂F g =
∂(F g−1SeF g−T )

∂F g = −
[

F g−1⊗̄S + S⊗F g−1
]

−
[

F g−1⊗̄F g−1
]

:
1

2
Ce :

[

F g−T⊗Ce +Ce⊗̄F g−T
]

(4.20)

The third and the last term in equation 4.19 is related with the definition of the growth

tensorF g and the evolution law of growth termsgg.

Since we consider the tissue behaviour as an incompressible, one-family fiber rein-

forced (transversely isotropic) that exhibits hyperelastic reponse, similar to the free

energy decomposition in (4.9), the elastic second Piola-Kirchhoff stressSe is defined

as additively decoupled terms, namely volumetric, isotropic, and anisotropic such as

Se = 2∂Ceψe = Se
vol + Se

iso + Se
ani (4.21)

In line with the (4.21), the elastic Lagrangian moduliCe, can be additively split into

volumetric, isotropic, and anisotropic parts respectively.

Ce = 2∂CeSe = 4∂CeCeψe = Ce
vol + Ce

iso + Ce
ani (4.22)

The volumetric part of the elastic second Piola-Kirchhoff stressSe
vol reads

Se
vol := 2∂Ceψe

vol(J
e) = peCe−1 (4.23)

The Lagrangian moduli expression for the volumetric part isdetermined as

Ce
vol := 2∂Ce

vol
Se

vol(J
e) = (pe + κ̂L)C

e−1 ⊗Ce−1 − 2peICe−1 ,

with κ̂L = Je 2ψ′′e
vol(J

e)

(4.24)

whereIABCD
Ce−1 = 1

2

[

Ce−1
AC Ce−1

BD +Ce−1
ADCe−1

BC

]

. The isotropic elastic second Piola-

Kirchhoff stress is obtained as

Se
iso := 2∂Ceψe

iso(C
e) = 2∂Ie

1
Ψiso1 (4.25)
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Then, the Lagrangian elastic moduli for the isotropic response can be derived as

Ce
iso := 2∂CeSe

iso(C
e) = 4∂Ie

1I
e
1
Ψe

iso1⊗ 1 (4.26)

The last term of the elastic second Piola-Kirchhoff stress is the anisotropic response

due to fiber reinforcement that can be derived as

Se
ani := 2∂Ceψe

ani(I4) = 2∂Ie
4
Ψanin0 ⊗ n0 (4.27)

Finally, the corresponding anisotropic elastic Lagrangian moduli read

Ce
ani := 2∂CeSe

ani(I4) = 4∂Ie
4I

e
4
Ψe

anin0 ⊗ n0 ⊗ n0 ⊗ n0 (4.28)

By applying pull-back mathematical operation to elastic second Piola-Kirchhoff stress

Se such asS = F g−1SeF g−T , we determine the second Piola-Kirchhoff stressS in

reference configuration as following

S = 2
∂Ψ

∂C
= pC−1 + 2∂Ie

1
ΨisoC

g−1 + 2∂Ie
4
Ψanic

2n0 ⊗ n0 (4.29)

wherec is the scaling factor that is resultant ofF g−1 · n0 = cn0 where it depends

on the choice of growth tensorF g and it is formed by growth multiplierg. Then

by applying push forward mathematical operation to second Piola-Kirchhoff stressS

such asτ = FSF T , we determine the Kirchhoff stressτ in spatial configuration as

following

τ = 2∂gΨ = pg−1 + 2∂Ie
1
Ψisob+ 2∂Ie

4
Ψanic

2n⊗ n (4.30)

Then corresponding moduli in reference and spatial configurations can be found by

using equations 4.19 and 4.13.

4.3 Numerical Examples for Finite Growth

In this section, variety of numerical examples regarding growth-induced deforma-

tions, such as the inhomogeneous growth of a two-dimensional plate, isotropic growth

of a bilayer formed of a flower petal, and numerical examples focused on instabilities

such as post-buckling of a two-dimensional bilayer structure and cortical folding of

the brain in two and three-dimensional cases, will be given.

Inhomogeneous growth of a plate
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This example is demonstrated to reveal the effect of the growth in a simple geometry.

In line with [74] and [137], plain strain assumption has beenapplied to 2D rectangular

plate geometry. Geometrical dimensions and finite element setting have been given

in Figure 4.3. The geometry has been constraint along the edgeX = 0 and the origin

X
Y

(a)

(b)

0.1

1

Figure 4.3: (a) Geometric unitless dimensions of the 2D plate, (b) finite element

setting of the model

corner node atX = 0 andY = 0 are fixed to prevent displacement in any directions.

In the hyperelastic model,T2P0 element formulation has been used based on the

following free-energy function:

Ψ =
µ

2
(Ī1 − 3) +

κ

2
(Je − 1)2 (4.31)

whereµ = 103 andκ = 103µ that leads to nearly incompressible limit. The growth

tensor is defined inhomogeneous though the height as following

F g =









1 + πY 0 0

0 1 0

0 0 1









(4.32)

The growth tensor was applied incrementally in 50 steps. Thedistribution of growth

component of JacobianJg is given in Figure 4.4. Due to the inhomogeneous growth

definition alongY axis as in equation 4.32, it creates growth gradient in vertical

direction and bends the plate. Note that, since there is no constraint to prevent its

free-motion, it results in zero volumetric stress, such asp = 0 in the entire domain.

3D growth of a bilayer flower petal

Different growth fractions of each layer of bilayered structures may lead to a vari-

ety of shapes because of their geometries or surrender constraints. This mechanism
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1.1

1.2
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Figure 4.4: Growth-induced deformation of a 2D plate in different time increments

such ast = 0, t = 0.33, t = 0.66 andt = 1.0, respectively. The contour provides the

variation ofJg.

is very common for plants and even for actuators that mimic nature, such as a grip-

per. The flower petal is considered a two-layered structure with different mechanical

properties, as proposed by Wang et al. [138] and used by [74].The top layer which

is not subjected to growth, has att = 0.03 unit thickness withµt = 1000 unit shear

modulus. The bottom layer that presents the isotropic growth, has has atb = 0.02 unit

thickness withµb = 10µt unit shear modulus. The geometric representation of the

single flower petal with its dimensions and finite element mesh configuration is given

in Figure 4.5. The petal is fixed in three directions to prevent movement from the bot-

tom face of the triangular root region. Isotropic type of growth tensorF g = (1+ g)1

40

0.03
0.02

Figure 4.5: The geometrical dimensions (in mm) of a single flower petals and zoomed

view of finite element mesh.

has been introduced for the bottom layer of the petal whereg = 0.05 and applied

incrementally. The hyperelastic free-energy function is defined the same as in equa-
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tion 4.31. The bulk modulus of the top and bottom layers are defined asκt = 103µt

andκb = 103µb respectively. The isotropic growth-induced deformationsare given in

Figure 4.6 for different value of growth multiplierg.

g = 0.01

g = 0.02

g = 0.03

g = 0.04

g = 0.05

0

5

10

15

20

25

30

Figure 4.6: Growth-induced displacement (in mm) contour offlower petal which is

subjected to isotropic growth on bottom layer asF g = (1 + g)1.

Two-dimensional growth-induced instabilities of bilayerstructure

Since most of the biological tissues are made of layered structures that have differ-

ent mechanical properties. Due to the variation of growth initiation between layers,

there may be compressive stress and resulting instabilities such as wrinkling or more
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complex post-buckling behaviours. This phenomenon is wellcaptured during the de-

velopment of the tissue, observation of pathological issues, or the development of

treatment methods. For example, wrinkling of the skin and folding of the airways

are common observances in terms of growth-induced instabilities. In this example,

two-dimensional growth-induced instabilities will be analyzed for a thin stiff film on

a compliant soft substrate [68]. The geometrical description and a portion of the finite

element mesh are presented in Figure 4.7. The length of the geometry is defined as

stiff film

soft substrate

hf = 1

h = 26

L = 120

X
Y

Figure 4.7: The geometrical unitless dimensions of thin stiff film on compliant soft

substrate and zoomed view of finite element mesh.

L = 120, the height of the substrate ishs = 25 and the height of the stiff film is

hf = 1. The left (X = 0) and right (X = 120) walls are fixed alongY axis and the

movement inX is set to free. Additionally, the bottom edge of the substrate where

Y = 0 is fixed alongY axis to prevent motion and kept free inX axis.24, 960 T2P0

elements have been used in two-dimensional plain-strain problem.

The hyperelastic free-energy function is defined the same asin equation 4.31. The

shear modulus of the substrate is taken asµs = 1 and the shear modulus of the film

layer isµf = 100µs. In addition, the bulk modulus of the substrate and the stiff

film layers are defined asκs = 103µs andκf = 103µf respectively which sets the

Poisson’s ratio asν = 0.4999.

Two of the layers are subjected to isotropic growth in two-dimensional domain such

asF g = (1 + g)1. There are defined variable incremental sub-steps to catch and
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observe the post behaviours of instabilities such as between ∆t = 10−3 − 10−4.

Since the rectangular domain in Figure 4.7 is numerically perfectly generated and

it does not reflect material disorders. Therefore, in such problems, to initiate the

instabilities, there should be defined perturbations that will have no effect on the

results. To account that, eccentric traction force (around10−4 order of magnitude)

has been defined in the two nodes at the top of stiff film layer along vertical axis.

The displacement response and corresponding pressure contours at different growth

increments are given in Figure 4.8. For the predefined mechanical properties, due
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Figure 4.8: The deformation pattern and pressure contours of bilayer structure in

different growthg increments in left and right columns, respectively.

to the stiffness ratio between the stiff film and soft substrate, compression stress is

revealed, causing instabilities by releasing the energy. The first buckling appears at

g = 0.024 as a sinusoidal wrinkling form and the secondary buckling isobserved at

g = 0.2346 as periodic-doubling form.
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Growth-induced cortical folding of the brain

In this sub-section, growth-induced cortical folding of the human brain with different

stiffness ratios between the gray and white matter will be analyzed in two and three

dimensions. The brain is mainly composed of white matter as sub-cortex and gray

matter as cortex. In this study, it is assumed that the brain,which is composed of

these tissues and other inner sub-organs, is neglected. Thebrain is multi-layer layout

and is subjected to compression between layers, resulting in folding and wrinkling

patterns. The sliced schematic view of the brain is given in Figure 4.9. The brain is

gray matter

white matter

Figure 4.9: Main ingredients of the brain in terms of volume rendering. (The section

view of the brain was partly generated using Servier MedicalArt, provided by Servier,

licensed under a Creative Commons Attribution 3.0 unportedlicense.)

grown as a complex folded structure, and there have been significant research efforts

to understand the brain’s morphology [33, 139, 140, 25, 141,142, 143, 144]. The

brain complexity in the outer surface of human brain increases with ageing [140].

Budday et al. [139] mentioned that larger mammals have larger brain and that also

relates the folding complexity. However, cortical thickness can be different in dif-

ferent species regardless of the size. There is a stiffness contrast between the brain

layers (gray and white matter), which is about order of one. There is also difference

between the growth development of the layers. In this study,it is assumed that only

gray matter is subjected to isotropic growth but white matter is on the rest. Budday

et al. [140] suggested the growth ratio between brain layersis about 100, therefore,
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we neglect the growth in the substrate in this example. The following Neo-Hooken

free-energy functional has been defined

Ψ(Ce) =
µ

2
(Ie1 − 3− 2ln(Je)) +

λ

2
ln2(Je) (4.33)

whereλ andµ are Lame constant and shear modulus respectively. In line with [140]

we take shear modulus of gray matter asµgray = 3.3 × 10−3 MPa and the shear

modulus of white matter is defined to examine as a result of twodifferent stiffness

ratio as1/10 and1/5. Bulk modulus of two layers are taken asκgray = 103µgray and

κwhite = 103µwhite that results with near-incompressibility condition.

Although the white matter is anisotropic in nature because of the axonal fibers, in

the literature the brain is mostly modelled as two layered isotropic material as we

follow same here. Axons are not only contributing to the anisotropy but their layout

is too complex in the brain, see Louis et al. [142]. In order tomake a realistic simu-

lation, three-dimensional CAD geometry of a human brain wastaken from [145] by

permission who created the solid geometry of a real human brain by using magnetic

resonance imaging. Since the MRI belongs to mature human, itis already folded in

complex pattern. Our aim is to initiate the instabilities from the unfolded brain ge-

ometry, the STL geometry file is shrink to observe the nearly unfolded configuration.

Since the brain is partially folded on birth, the example that we follow here covers

the brain grown for a fetus. See, Huang et al. [146] who has examined the character-

ization of human fetal brain in different time stages. Then after shrinking the brain

geometry to get smooth surface, it is neccessary to define thethickness of gray matter

layer for the human brain. Fischl et al. [147] and Narr et al. [148] mentioned that the

cortex has a thickness and varies between 1 to 4.5 mm and has 2.5 mm an overall av-

erage thickness. The thickness variation is common in different regions of the brain.

In the view of such information, we created a final geometry for the unfolded human

brain that has average thickness of 2.5 mm for the layer of gray matter. Since we

perform both two-dimensional and three-dimensional growth analysis of the brain,

two geometrical configurations are given in Figure 4.10. In order to take computa-

tional efficiency into the account, three-dimensional analysis has been performed by

using half of the entire brain. In two-dimensional configuration, the sliced geome-

try of the brain was constrained at the bottom edge and prevented movement in the

vertical axis, see Figure 4.10. In three-dimensional configuration, there is defined

85



gray matter

white matter

(a)

(b) X

Y

Figure 4.10: Geometric representation of half smooth brain. (a) three-dimensional

demonstration (b) two-dimensional sliced piece

symmetry boundary condition in the half sliced surface of the brain geometry and

displacements are fixed normal to the surface and other degree of freedoms are set to

free. The finite element setting of two of the model are given in Figure 4.11.T2P0

(a)

(b)

Figure 4.11: Finite element mesh settings of brain geometry(a) three-dimensional

demonstration (b) two-dimensional sliced piece

element formulation has been used for the both model. The growth has been defined

isotropically such asF g = (1 + g)1 and applied incrementally. Since those two-

dimensional and three-dimensional geometries are realistic in terms of their shape,
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they have smooth curvatures. Therefore there is no need to define an perturbation as

a traction or displacement. The growth-induced deformation plots are given based on

pressure contours for two-dimensional model with different gray matter/white matter

shear modulus ratios such asµwhite/µgray = 1/10 andµwhite/µgray = 1/5 in Figure

4.12. The plots are given for different incremental growth state. The instabilities re-

veals by increasing the growth multiplierg due to the energy release of the grown stiff

and thin layer of gray matter. It is also concluded that, the higher shear modulus ratio

causes the instability initiation in a smallerg value. The growth-induced deformation

µwhite/µgray = 1/5 µwhite/µgray = 1/10
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Figure 4.12: Growth-induced deformations and pressure variations of sliced two-

dimensional brain withµwhite/µgray = 1/10 andµwhite/µgray = 1/5

plots are given based on pressure contours for three-dimensional model with differ-
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Figure 4.13: Growth-induced deformations and pressure variations of three-

dimensional brain withµwhite/µgray = 1/10 andµwhite/µgray = 1/5 (×2 scaled

view)

ent gray matter/white matter shear modulus ratios such asµwhite/µgray = 1/10 and

µwhite/µgray = 1/5 in Figure 4.13. For each growth incremental image, two viewsare

given, such as the inner and outer views of the brain model, tobetter observe growth-

induced instabilities. Similarly to the two-dimensional case, when the stiffness ratio

between film and substrate increases, the instability is triggered at an earlier stage.

Therefore, it results in wrinkles that have a higher amplitude level. Growth-induced

folding patterns of the brain are very clearly seen atg = 0.10 growth level. It can be
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noted from Figure 4.13 that during the buckling and post-buckling stages, while con-

cave patterns have positive pressure contours, convex regions have negative pressure

distributions.

4.4 Extended Five-field Formulation for Finite Growth

In this section, the scalar conjugate pair type of five-field mixed variational formula-

tion in the sense of [104] is extended for growth-induced deformations. In general,

fibrous soft biological tissues exhibit nearly incompressible responses and, in the re-

inforcement direction, nearly inextensible behavior. It is essential to capture and

understand the mechanics behind growth-induced deformations and critical instabil-

ity conditions in three dimensions for fiber-reinforced tissues and bilayer structures.

In section 4.1, field equations and corresponding state variables for fiber-reinforced

transversely isotropic hyperelastic solid is already presented for growth-induced prob-

lems. Corresponding stress and moduli expressions are alsoderived for both La-

grangian and Eulerian configurations. In this section, the mixed variational formu-

lation, which leads to the quasi-incompressible and quasi-inextensible element for-

mulation, will be introduced. Finally, a five-field mixed variational formulation and

respective Euler-Lagrange equations are demonstrated. Since we decomposed the de-

formation gradient into irreversible growth and reversible elastic partF = F eF g, the

elastic part responsible for mapping of incompatible intermediate configuration to the

compatible deformed configuration. Therefore the free-energy is only the function of

elastic part of the deformation gradientF e and the growth componentF g does not

have any contribution to stress evolution. We will extend the five-field variational

formulation for finite growth based on the additively split of the free-energy function

into volumetric, isotropic and anisotropic parts as statedin equation 4.9. The potential

functional can be defined as below for thefinite elasticity

Π̂(φ) := Π̂int(φ)− Π̂ext(φ) , (4.34)

where

Π̂int(φ) :=

∫

V

Ψe(g,F e) dV and Π̂ext(φ) :=

∫

V

φ · ρ0b̄ dV +

∫

∂V

φ · t̄ dA .
(4.35)
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For the elastic loading, the stored energy in the body can be defined byΠ̂int(φ), and

Π̂ext(φ) refers to the work done by external forces. In equation (4.34), ρ0, b̄, andt̄

are the density, body force, and the surface traction, respectively. Ψe(g,F e) is the

volume-specific elastic Helmholtz free energy. The boundary value problem can be

determined from the elastic potential by the principle of minimum potential energy in

the variational form

φt = Arg{ inf
φt∈W

Π̂(ϕ, t)} (4.36)

subject to Dirichlet-type boundary condition

W = {φt | φt ∈ B ∧ φt = φ̄ on ∂Bu} . (4.37)

Due to the stationary condition of the elastic potentialΠ̂(φ), the variation of (4.36)

along with localization theorem yields the Euler-Lagrangeequation

J div[J−1τ ] + ρ0b̄ = 0 (4.38)

yielding to the balance of linear momentum for static problems in the domainB

along with Neumann-type boundary condition

P ·N = τ · n = T̄ on ∂Bt (4.39)

where we have used the identity ofNanson’s formulaasJF−TN dA = n da.

The quasi-incompressible and quasi-inextensible behavior can be sustained by two

additional penalty terms in the decomposed representation(3.64) of the free energy

functional as

Π̂(φ, pe, θ, se, λ) :=

∫

V

π∗(φ, pe, θ, se, λ) dV − Π̂ext(ϕ) . (4.40)

The mixed potential densityπ∗ in equation (4.40) is defined as

π∗

int(ϕ, p
e, θ, se, λ) = Ψiso(g,F

e) + pe(Je − θ) + ψvol(θ) + se(Ie4 − λ) + ψani(λ) .

(4.41)

Here,pe, se are penalty parameters in intermediate state pair to the kinematic quan-

tities θ, λ. The deformation of a solid body enforced by incompressibility and in-

extensibility constraints is sustained by the mixed saddlepoint principle as follows

{φ, θ, pe, λ, se} = Arg{ inf
φ∈W

inf
θ
inf
λ
sup
pe

sup
se

Π̂(φ)} . (4.42)
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Taking the first variation of (4.40) with respect toφ, pe, θ, se andλ provides the weak

form

DΠ̂(φ, pe, θ, se, λ)[δφ] =

∫

V

{
(

τ iso + peJeg−1 + 2sen⊗ n
)

: 1
2
£δφg} dV − δΠ̂ext(φ) = 0 ,

DΠ̂(φ, pe, θ, se, λ)[δpe] =

∫

V

δpe (Je − θ) dV = 0 ,

DΠ̂(φ, pe, θ, se, λ)[δθ] =

∫

V

δθ (Ψ′e
vol(θ)− pe) dV = 0 ,

DΠ̂(φ, pe, θ, se, λ)[δse] =

∫

V

δse (Ie4 − λ) dV = 0 ,

DΠ̂(φ, pe, θ, se, λ)[δλ] =

∫

V

δλ (Ψ′e
ani(λ)− se) dV = 0 ,

(4.43)

The mixed finite element formulation can be determined basedon equation 4.43.

Taking the first variation of 4.41, Euler-Lagrange equations can be determined as

1. J div[J−1τ ] + ρ0b̄ = 0

2. Je − θ = 0

3. Ψ′e
vol(θ)− pe = 0

4. Ie4 − λ = 0

5. Ψ′e
ani(λ)− se = 0

(4.44)

in the Neumann-type boundary conditionsWt = {σ · n = t on ∂Bt}. The con-

sistent linearization of the mixed potential is the same as defined in equation 3.69 in

the reference state. It has been implemented and discretized in Python-based open-

source finite element platformFEniCS[12]. The linear Newton iterations are solved

through MUltifrontal Massively Parallel sparse direct Solver (MUMPS)[149] in nu-

merical examples.

Growth-induced torsional artificial muscle

Skeletal muscles exhibit tensile stretch activation and perform angular rotation with

the skeleton [150]. To be used in soft robotics and wearable devices, artificial mus-

cles studies have been well-attracted by researchers to develop artificial muscles those

mimic the biological skeleton muscle [151, 152, 150]. Thereare different type of
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studies on actuators those can be categorized based on; shape memory alloys, piezo-

electric materials, multilayer structures, electroactive polymers, pneumatic or flu-

idic, fiber-reinforced and nano-reinforced structures. Using a fiber-reinforced type

of structure provides the advantage of tuning the stiffnessand the direction of the ex-

tension/ contraction, or torsion amount. It can also provide large strain deformations

with reversible twist and untwist behaviour. In order to simulate the torsional arti-

ficial muscle, a numerical example has been performed with embedded one-family

stiff fibers on a soft base matrix. The base matrix is incompressible, and fibers can be

considered inextensible. Therefore, it is very suitable touseT2P0F0 five-field ele-

ment formulation. Helical fiber layout in a cylindrical basematrix material is able to

generate angular rotation by volume change. The helical angle determines the move-

ment direction and behaviour and it is also adjustable by changing the fiber stiffness.

The definition of the artificial muscle geometry and its mesh layout are presented in

Figure 4.14. The radius of the cylinder is 10 unit, the lengthis 150 unit. The base soft

(a) (b) (c)

d = 20

L = 150

α = −45
o

Figure 4.14: Geometrical unitless description of artificial muscle (a) geometric defini-

tions (b) three-dimensional finite element mesh (c) vectorial representation of helical

fibers

material is reinforced by one-family stiff fibers withα = −45o helical angle. The
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free-energy function is considered as Yeoh model by the following form:

Ψe(F̄
e
) = c1(Ī

e
1 − 3) + c2(Ī

e
1 − 3)2 + c3(Ī

e
1 − 3)3

+
κ

4
(Je2 − 2 lnJe − 1) + µf〈Ie4 − 1〉2

(4.45)

wherec1 = 0.25 MPa,c2 = 0.2 MPa andc3 = −0.006 MPa are material constants

taken from [104] ,κ = 100 MPa is the bulk modulus andµf = 100 MPa is the fiber

stiffness, respectively. The cylinder is fixed from the bottom circular face in all direc-

tions to prevent any movement. The growth is defined only in the direction of fibers

that also states the fiber growth condition as given in equation 4.17. For a positive

number of growth multiplierg corresponds the volume growth in fiber directions and

for the negativeg, the reflects the shrinkage in the fiber direction. Both case causes

a reverse torsion to each other. In the numerical example of artificial muscle, both

case has been analysed. The fiber growth-induced deformations for the positive and

negative growth multiplierg are given in Figure 4.15 Figure 4.16 respectively, with

Cauchy-type shear stress contours. While growth in the fiberdirection causes pos-

g
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3π

2
θz = 2π θz = 4π

Figure 4.15: Cauchy-type shear stress distribution of artificial muscle geometry at

different positive growth values.θz represents the angular twist around axial direc-

tion.
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2
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Figure 4.16: Cauchy-type shear stress distribution of artificial muscle geometry at

different negative growth values.θz represents the angular twist around axial direc-

tion.

itive torsion with axial expansion, shrinkage in the fiber direction results in negative

torsion with axial contraction. In both cases, localized regions are shown up due to

high twist, which also causes element distortion at high levels. By adjusting the fiber

angle and stiffness, the angular twist/axial expansion/contraction ratio can be varied

depending on the requirements.

4.5 Planar Growth of Fiber-reinforced Confined 3D Bilayer Stiff film on Com-

pliant Substrate

In this section, we present the growth-induced instabilities of fiber-reinforced bilayer

confined tissue by performing on the finite element analysis program FEniCS [12]

based on extended five-field element formulation. Since the effect of fiber stiffness on

the instabilities for three-dimensional problems are missing in the literature, we out-

lined a procedure starting from two-dimensional case and set of the three-dimensional

boundaries accordingly, then we examined the growth-induced instabilities for three-

dimensional bilayer structure in a different range of fiber stiffness in both extensible

and inextensible limits. The effect of fiber stiffness on bifurcation points of primary
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and secondary instabilities have been examined in terms of growth parameterg, wave-

length, displacement amplitudes and energies. Numerical outcomes of this study will

help to understand the fiber stiffness effect on the bucklingand post-buckling be-

haviour of bilayer tissues.

In general, fiber-reinforced rubber polymers, fibrous soft biological tissues, and re-

inforced composite elastomers exhibit nearly incompressible responses and, in the

reinforcement direction, nearly inextensible behavior. It is common to observe that

the growth of multi-layered materials (stiff bilayer film, hydrogels, etc.) or tissues

(skin, artery, plant, etc.) can cause instabilities in the form of wrinkles, stripes, and

secondary buckling shapes under residual stresses. The multi-layered materials can

be composed of layers of different isotropic materials withdifferent stiffnesses (e.g.,

stiff film on a compliant soft substrate). They can be formed by combinations of

isotropic and fiber-reinforced anisotropic materials thatwe usually observe in nature,

see Figure 4.17. Depending on the physical conditions, these solids can be subjected

to growth or shrinkage, resulting in compression or tensionin the matrix and fibers,

respectively. A numerical example is demonstrated in this section through a bound-

stiff fiber

n0

soft substrate

stiff film

n0

Figure 4.17: Transverse isotropy: stiff fibers embedded in the upper stiff film and stiff

fibers embedded in the compliant soft substrate, respectively

ary value problem. As a mathematical representative case, the effect of the stiffness of

the fibers, which exist in the stiff film, on the critical growth parameter of instability

state under the planar growth are studied usingT2P0F0element in the open-source

automated finite element programFEniCS for a 3D stiff film on a compliant sub-

strate. Since the domain being analyzed is a confined part/patch of the tissue, like

a representative volume element, it is necessary to define boundary conditions prop-

erly to represent the overall behaviour accurately. The schematic illustration of the
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Figure 4.18: Schematic representation of the 3D bilayer structure (stiff film on com-

pliant substrate) with its geometric dimensions. L is the edge length of the square

in-plane section, H is the total height including the film andthe substrate,n0 is the

stiff fiber direction along y axis, Lcr1 and Lcr2 are the critical lowest dimensions needed

to be taken into account to reflect periodic behaviour of RVE (Representative Volume

Element)

3D bilayer structure is shown in Figure 4.18. In order to reflect the infinitely long

plate analogy along x and y-axes, we assume that buckling behaviour of the structure

repeats itself periodically with a critical wavelength (λcr). Thus, we define periodic

boundary conditions on side walls (blue and purple faces andopposite faces in 4.18).

In order to define periodic boundary conditions, we constrained these face pairs by

displacement relations on the left face atx = 0 and on the right face atx = Lcr1 as

shown below:
xL − xR = Lcr1

yL = yR and uL − uR = 0

zL = zR

(4.46)

Similary, we define periodic boundary relations on the frontface aty = 0 and on the

rear face aty = Lcr2 as show below:

xF = xB

yF − yB = Lcr2 and uF − uB = 0

zF = zB

(4.47)

where the superscriptsR, L, F , andB refer to the left, right, front, and back sides,

respectively. Since an infinitely long and wide structure ismodeled as a finite-sized

computational domain with periodic boundary conditions, the fiber direction is no
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longer significant for the one family fiber configuration. In other words, for single-

family fiber models with periodic boundary conditions, the same buckling modes are

obtained for different angles. Therefore, the initial fiberanglen0 is aligned to the

y-direction asn0 = [0 1 0]T . In addition to periodic boundary conditions on the

sides, the bottom face of the substrate is fixed in all directions.

In the definition of a periodic boundary condition, it is essential to determine the crit-

ical (characteristic) geometric dimensions; it can also beintroduced as the minimum

size of RVE, which reflects the actual periodic behavior without enforcing any con-

straint on the overall structural stiffness. The minimum critical lengths along the x

and y-axes are shown in Figure 4.18 as Lcr1 and Lcr2. If the RVE size is not properly

chosen, the computations could miss or artificially enforcebuckling mode. In order

to capture the minimum required RVE size, three-dimensional long but thin bilayer

structure models are defined along the fiber direction such thatL = 240 unit,H = 4

unit, andW = 1 unit dimensions, see Figure 4.19. The total heightH = 4 units,

where3.5 units correspond to the substrate and0.5 units to the stiff film. The aim

of the three-dimensional long but thin bilayer structure model is to identify charac-

teristic wavelength (λcr) in a long regime by decreasing the effect of wall boundary

conditions. Since single-family fiber reinforcement is studied in this study, fibers are

defined along the y-axis. Then periodic boundary conditionsfor left-right and front-

back face couples are defined as 4.46 and 4.47. In this study, the ratio of the shear

modulus of the film layer (µf ) to the substrate (µs) is 100, which also provides a larger

wavelength [68]. Since this study aims to observe the effectof in-plane aligned fibers

L=240

H=4

Figure 4.19: Representation of the long (L=240 unit) and thin (W=1 unit) bilayer

structure consist of substrate (red) and stiff film (blue), finite element mesh and

zoomed view of FE mesh respectively.

on bilayer three-dimensional structure buckling, fiber stiffness is the key parameter to
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be tested for a wide range. Accordingly, fiber stiffness values are taken asµfiber=100,

250, 750, 1000, 2500. The three-dimensional bilayer structure is subjected to planar

growth on both layers, and the growth parameterg monotonically increases with time

step. It is important to capture buckling modes of the bilayer structure with the proper

time step increment∆t. The initial time step is defined as1× 10−4, and it is divided

by two when a convergence problem is encountered. After the first buckling initia-

tion, the time step is also initialized to1× 10−4 and it is kept constant until it reaches

the secondary buckling stage. This process continues untilthe Newton-Raphson algo-

rithm does not converge within 20 steps, even at the fifth loopof the time step division

process. In order to trigger buckling at the critical growthvalue, a perturbation needs

to be applied. In this study, the perturbation is defined as a minimal eccentric dis-

tributed load along x and y-directions. The free-energy function is considered as the

following form in equation 4.48 and the corresponding material parameters used in

the three-dimensional bilayer structure are given in Table4.1.

Ψe(F e) =
λ

2
(Je − 1)2 +

µ

2
(Ie1 − 2ln(Je)− 3) + µf〈Ie4 − 1〉2 (4.48)

Table 4.1: Material parameters used in the analysis of three-dimensional bilayer struc-

ture with free-energy defined in equation 4.48.

Parameter Value Unit Parameter Value Unit

µfilm 102 [ – ] µsubs 1.0 [ – ]

κfilm 105 [ – ] κsubs 103 [ – ]

µfiber 100, 250, 750, 1000, 2500 [ – ] n0 [0, 1, 0] [ – ]

In order to determine the critical buckling wavelength (λcr) and related RVE dimen-

sions, three-dimensional long but thin bilayer structuralgeometry (see Figure 4.19)

was analyzed for each fiber stiffness (µfiber) values listed in Table 4.1. It is aimed

to observe the periodicity of the buckling behavior for all of the fiber stiffnesses and

identifying the critical/characteristic lengths for the RVE that are needed for post-

buckling analysis.

Periodic boundary condition enforces the same displacement vectors on boundary re-

gions. Therefore, for a sinusoidal periodicity such as wrinkling instability, the wave-
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length of the wrinkling is an essential parameter. However,due to the periodic bound-

ary conditions, the structure is enforced to have an integeramount of sinusoidal wave

pattern. In order to relax this constraint, we have performed analyses for different

lengths (L) of two-dimensional bilayer structure. Although, Figure 4.19 described

the structure length that defined in analysisL = 240 unit, we have also examined

the wavelength characteristics of different lengths, starting fromL = 15, 30, 60, 120

and finally after revealing the convergence trend for each fiber stiffness we stopped at

L = 240. The wavelength characteristics for different plate lengths have been shown

in Figure 4.20. In Figure 4.20, some of the lines overlaps to each other, however it

Figure 4.20: Representation of the determined wavelengthsfor different lengths of

bilayer structure such as L=15, 30, 60, 120 and 240 units withW=1 units.

is clear to identify from the final wavelength results. It is obtained that small size of

length outcomes with erroneous wavelength dimensions. Based on the stiffness char-

acteristics of the fibers, the wavelength round-up round-down the integer value of sine

wave pattern. It is possible to increase length-size further but the exact wavelength

can be found at infinity. Since small amounth of change in wavelength does not effect

the research interest of this study,L = 240 provides sufficient results in terms of de-

termining of the critical wavelengths for each fiber stiffness. Then, the first buckling

mode of bilayer structure without and with fibers has been observed and shown in

Figure 4.21. Due to the contribution of fiber stiffness to thedirectional stiffness of

the film, each model in Figure 4.21 leads to a different critical growth valueg and
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Without Fiber

µfiber = 100

µfiber = 250

µfiber = 750

µfiber = 1000
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Figure 4.21: First buckling mode shapes of 2D long and thin bilayer plates with

different fiber stiffness reinforcement (scaled by x5).

a different wavelength. The wavelength information acquired from Figure 4.21 will

be used for the three-dimensional rectangular in-plane section of the bilayer structure

as shown in Figure 4.18 to examine the first buckling mode and post-buckling be-

havior. As shown in Figure 4.21, the number of wrinkles decreases by increasing the

fiber stiffnessµfiber. It also means that the characteristic/critical wavelength increases

with the fiber stiffnessµfiber. In order to reflect infinite plate behavior with periodic

boundary conditions and capture at least a single wrinkle inthe three-dimensional

RVE, the minimum critical length Lcr2 should be at least (λcr) unit. It can also be

concluded that harmonics of (λcr) will also capture the exact buckling shape. Since

the buckling behavior in the x-direction (perpendicular tofibers) is likely to be de-

coupled from fibers and represent a behavior similar to the nofiber case, it requires a

smaller wavelength to capture post-buckling mode in the x-direction. Therefore, for

the bilayer model shown in Figure 4.18, Lcr1 is taken as the same as Lcr2 making the

bilayer plate have a square in-plane section. To enlarge thecoverage of the buckling

more precisely within two wrinkles, Lcr is set to 2λcr, which makes the geometrical

dimensions2λcr × 2λcr ×H as shown in Figure 4.22.

In the light of these geometrical characteristic information, the effects of fiber stiff-

ness over the primary buckling and the post-buckling regimewas examined for the

model shown in Figure 4.22. Before deciding the applicationmethod of the perturba-

tion as eccentric distributed load along x and y-directions, we examined the sample

instabilities with random perturbation definitions. We have divided the top of the

stiff film layer into square small regions. The square small regions have the same

width with the element sizes. Then, we selected randomly tenof small regions to
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2λcr

2λcr

Hf = 0.5

Hs = 3.5

Figure 4.22: Representation of three-dimensional RVE. White lines demonstrate the

stiff fibers those are aligned to the y-direction

apply traction perturbations. The perturbation magnitudeis also defined randomly

and it can take a negative or positive amount of load. Two of the examples of random

boundaries that have been created for the randomness effects are shown in Figure

4.23. The first instability results of the two different perturbation definitions given

Figure 4.23: Representation of the examples for two randomly generated perturbation

boundaries (with red colour) for bilayer stucture.

in Figure 4.23, are presented in Figure 4.24. It is concludedthat the location of per-

turbation does not change the critical growth that initiates the instability, however, the

magnitude and location of the perturbation causes phase change of the sine form of

the wrinkle. Since we define periodic boundary condition to the side-walls, that phase

shift does not affect the results.

Figure 4.25 shows pressure contours in a growth time-line where the structure is sub-

jected to planar growth. The resultant units should be determined accordingly to the

selection of consistent unit system in the modeling. Figure4.25 gives the results

for isotropic bilayer plate and fiber-reinforced bilayer structure that haveµfiber=100,

250, 750, 1000 and 2500. It can be seen that in the isotropic case without fiber con-

tribution, the first buckling triggered simultaneously in xand y-directions at the same
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Figure 4.24: Primary instability deformation shape of two randomly generated per-

turbation boundaries given in Figure 4.23.

time due to isotropic nature. The isotropic case yields to a labyrinth shape by in-

creasing the growth parameter further, as reported in [46].For the primary buckling

patterns of fiber-reinforced plates, it is clearly observedthat buckling behaviors are

similar, but the critical growth value that causes instability differs from each other.

Furthermore, in the first buckling shape, sinusoidal wrinkles are initiated along the

fiber direction, which causes energy relaxation of fibers in the critical growth param-

eter. Post-buckling behavior results as a secondary wrinkle with a different form and

amplitude in the transverse direction perpendicular to fibers. Moreover, it is also ob-

tained that the form of wrinkles that are observed in the firstbuckling mode shifts

from sinusoidal to triangular shape by increasing fiber stiffness. It can be noted from

Figure 4.25 that during the buckling and post-buckling stage, while concave patterns

have positive pressure contours, convex regions have negative pressure.

Figure 4.26 presents the effect of fiber stiffness on the critical growth parameter that

initiates buckling. While the vertical axis represents thefiber stiffness, the horizontal

axis shows the planar growth parameter. Each deformed bilayer plate image corre-

sponds to a state having a critical growth parameter that initiates either the first or

the second buckling for each fiber stiffness. It is observed that the critical growth

parameter decreases with the fiber stiffness for the first buckling. However, the sec-

ondary buckling modes are triggered within a small range of growth parameters close

to each other. Since fibers are aligned to the y-axis, the fiberstiffness directly affects

the critical growth in this direction. On the other hand, in the x-direction, which is

perpendicular to fibers, the fibers do not affect material behavior. Nevertheless, they

still are not fully decoupled from each other. The geometricform of the first buck-

ling mode have also an effect on the secondary buckling at thepost-buckling stage by

shifting it to higher critical growth compared to isotropic(without fiber) case.
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Figure 4.25: Pressure distribution of the buckling regime of a bilayer plate with mono-

tonically increasing growth,g

Out-of-plane displacement and stored energy variations during the growth are also

significant indicators to determine the critical growth parameter. The right column in

Figures 4.27 and 4.28 shows the isotropic, volumetric, and anisotropic energy varia-

tion of the film and substrate separately. The left column represents vertical displace-

ment change during growth at points A, B, and C. These specificpoints are located at

the maximum and minimum displacement points on concave and convex regions of

deformed shape. For each case in Figures 4.27 and 4.28, it is clearly seen that vertical
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Figure 4.26: Critical growth parameter variation by fiber stiffness

displacements of three points are the same until it reaches the bifurcation point where

buckling initiates. In the isotropic bilayer plate, the vertical displacement patterns

of the three points seem different from anisotropic ones. The reason is due to the

isotropic nature of the bilayer plate, where the first buckling is simultaneously trig-

gered both in x and y-directions at the same time. Later, the buckling shape starts to

evolve to the labyrinth form at the second bifurcation point. Fiber-reinforced stiff film

models show two different bifurcation points until 0.04g level. These bifurcations

correspond to the first buckling initiation along the fiber direction, and the second

buckling initiates perpendicular to the fiber direction. Inalignment with Figure 4.26,

it is observed that by increasing the fiber stiffness, the critical growth parameter de-

creases. For example, the first buckling initiates atg = 0.0116 for µfiber = 100,

while it initiates atg = 0.0026 for µfiber = 2500. For the intermediate values of

fiber stiffness, the critical growth parameter is revealed between this range. The sec-

ond buckling initiation is observed in a small range ofg = 0.028− 0.032 levels. The
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second buckling is affected by the geometrical shape of the first buckling mode. Dif-

n
o
f
ib
er

µ
f
ib
er
=

10
0

µ
f
ib
er
=

25
0

V
e
r
ti
ca
l
d
is
p
la
ce
m
e
n
t
[−

]
V
e
r
ti
ca
l
d
is
p
la
ce
m
e
n
t
[−

]
V
e
r
ti
ca
l
d
is
p
la
ce
m
e
n
t
[−

]

E
n
e
r
g
y
[−

]
E
n
e
r
g
y
[−

]
E
n
e
r
g
y
[−

]

g

g

g

g

gg

Figure 4.27: Variation of vertical displacements of pointsA, B, and C; and variation

of decoupled forms of energy for the film and substrate, thoseare subjected to incre-

mentally growth for the following cases; without fiber reinforcement,µfiber=100 and

µfiber=250, respectively.

ferent parts of the stored energies in the film and the substrate are shown in the right

column in Figures 4.27 and 4.28. Due to the sudden energy release, abrupt changes

and kinks in energy plots are observed. Tracking energy is a better indicator than

the displacement variations to identify the bifurcation asenergy is scalar quantity and

location independent. While the slope of the isotropic energy of the film shows a
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decrease at the first buckling for lower fiber stiffnesses, itincreases for higher fiber

stiffnesses. It is concluded that the first buckling is the combination of energy release

of stiff film and stiff fibers. When the fiber stiffness increases, the energy contribution

of fibers to the first instability increases as well. Furthermore, the isotropic energy of

the film and substrate layer has a key role in the initiation ofthe secondary buckling.
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Figure 4.28: Continuation of Figure 4.27 - Variation of vertical displacements

of points A, B, and C; and variation of decoupled forms of energy for the film

and substrate, those are subjected to incrementally growthfor the following cases;

µfiber=750,µfiber=1000,µfiber=2500, respectively.
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CHAPTER 5

DISPERSION-TYPE HYPERELASTIC FORMULATIONS FOR

ANISOTROPIC BIOLOGICAL TISSUES

Both soft and hard biological tissues mostly contain fiber reinforcements those are in-

tegrated to base isotropic tissue matrix. Volume fraction,stiffness characteristics and

orientation of the fibers are the main determining factors ofthe mechanical behaviour

of anisotropic tissue. In previous chapters, the anisotropic contribution of fibers have

been considered as they perfectly aligned in the orientation direction. Most of the hy-

perleastic constitutive models are constructed in a phenomenological way by fitting

the material constants with experimental data. Many experiments and imaging results

showed that anisotropic tissues contained dispersed fibersaround a mean orientation.

The dispersion characteristics of fibers can be reflected in constitutive models through

histological data. One of the pioneering research has been proposed by Lanir [153].

They proposed a constitutive model that took the nonuniformity of the fiber layouts

into account based on the fibers’ angular distributions. Thetotal free-energy is con-

structed using the angular integral over the fiber orientation directions, which is also

called the angular integration. Based on the proposed work of Lanir, Sacks [154]

constructed a constitutive model for bovine pericardium that contains fiber orienta-

tions though beta distribution function via angular integral. Holzapfel et al. [125]

proposed a constitutive model that contains a scalar parameter that is responsible for

the transition between isotropic and anisotropic conditions. Then, Gasser et al. [155]

proposed an approach for fiber dispersion called the Generalized Structure Tensor

(GST), which is one of the milestones for the next proposed models of research.

The proposed constitutive model reflects the in-plane dispersion-type anisotropy of

the adventitial and intimal layers of arterial tissue. The model uses a new defined

scalar parameter in anisotropic part of the free-energy which is derived though von
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Mises density distribution to characterize the fiber dispersion behaviour. The second

key dispersion-type anisotropic modeling is proposed by Alastrué et al. [156]. The

model is also called an Angular Integration (AI) approach that uses von Mises den-

sity distribution by using different orientation directions of micro-fibres through the

unit micro-sphere. Then the integral averaging is covered through several cubarutes

for micro-sphere those contains variety numbers of integration points over the unit

sphere. Schriefl et al. [157], observed the fiber dispersion characteristics of healthy

and diseased abdominal aortic tissues. They highlighted that, the out-of-plane dis-

persion characteristics increased for the diseased tissue. Therefore it is also essential

to consider out-of-plane dispersion distribution at the constitutive level. Holzapfel et

al. [158] pointed out that, since the in-plane dispersion ismuch more important than

the out-of-plane dispersion, rotationally symmetric dispersion models are not suitable

for human arterial layers. As an extension of [155], they introduced a non-symmetric

dispersion constitutive model by defining a new type of structure tensor based on the

von Mises distribution. Then they derived a bivariate von Mises distribution that is

able to reflect the fiber dispersion distribution at the out-of-planes for arteries. They

also presented an overview of the proposed or studied dispersion models based on

AI and GST formulations that use Beta, Gaussian, von Mises, ellipsoidal, and Bing-

ham density distributions. Melnik et al. [159] made the comparison of two family

fibers depends on different dispersion characteristics with AI and GST formulations.

The study contains not only the generalized GST and AI formulations but also the

formulations that exclude the fibers in compression. They concluded that there ap-

pears a difference between these approaches in the high dispersion occurrence. On

the contrary, Holzapfel et al. [160] showed that the resultsof two of the formulations,

AI and GST are identical in both small and large deformations. They fit each model

to uniaxial data in different directions for the adventitiaof the aorta. Volokh [161],

proposed a dispersion-type constitutive model for the arterial wall that is based on

structure tensors and allows the exclusion of fibers in compression. They studied the

auxetic effect based on fiber dispersion. Similarly, Holzapfel et al. [162] proposed

a method for the exclusion of fibers in compression for the GSTapproach. They

performed simple extension and shear to present the effect of exclusion of fibers and

they claimed that both AI and GST formulations result in equivalent results. Then,

Anssari-Benam et al. [163], presented a transversely isotropic, rate-dependent consti-
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tutive formulation based on planar fiber dispersion by usingLorentzian distribution

for aortic valve subjected to biaxial deformations under different stretch rates. A new

kind of fiber density function is proposed based on fiber kinematics. They showed

that the proposed model well-captures the experimental results, shear thinning be-

haviour and viscous response of the tissue. Li et al. [7] proposed dispersion-type of

formulation that uses triangular integration over unit sphere. This approach is kind of

the representation of separate fiber direction over each triangular area based on ele-

mentary density of the fibers. The summation of each anisotropic fiber contributions

over unit sphere determined the overall free-energy. Then continuum damage and

softening behaviour is implemented on the model by numerical examples. Their pro-

posed model is able to well-capture the fiber dispersion characteristics, damage and

softening together. Horvat et al. [8] enlarged the application of fiber dispersion for-

mulations to growth and remodeling of arterial walls. They used GST approach with

mixture of growth and remodeling and defined a fiber pre-stretched tensorial defini-

tion that is able to work with dispersion model. They performed numerical examples

for proposed model to observe the dispersion effect and meanorientation on growth

and stresses in the wall. They also present that, there is an high level effect of the

dispersion characteristics and layout on the growth-induced stress evolution. For fur-

ther details regarding to fiber dispersion formulations studied in literature, there are

state-of-the-art reviews presented by [27] and [17]. Holzapfel et al. [27] provides the

critical review of AI and GST models by demonstrating the numerical examples and

fitting capability of the models with experimental data of abdominal aortic aneurysm.

Dal et al. [17], presented the detailed review for invariantand fiber dispersion-type

of formulations for soft biological tissues and observed the fitting performance of the

constitutive models to three different experimental data of human tissues.

In this chapter, two main fiber dispersion-type formulations namely, Angular Integra-

tion (AI) and Generalized Structure Tensor (GST), for anisotropic hyperelastic soft

tissues will be presented. The models will be given in three-dimensional and pla-

nar for GST approach and three-dimensional for AI model where both of the models

are based on the von Mises density distributions. Then, in order to demonstrate the

characteristics of density distribution functions those are used for the fiber dispersion,

there will be given polar plots for different kinds of biological soft tissues.
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5.1 Fiber Dispersion Formulations

It has been studied in the literature that not only the fiber mean direction but their

dispersion characteristics have significant effect on the mechanical response of the

tissue. Taking into account of the dispersion in the constitutive level helps to un-

derstand the histological relation between experimental and numerical results. It has

also shown that dispersion architecture of healthy and diseased or healthy and injured

tissue exhibit different fiber distribution those were mentioned by [164] and [165]

respectively. To reflect the dispersion formulation into the constitutive models there

have been proposed different kind of dispersion-type formulations those defines the

stress-strain behaviour. Those models are based on a density probability distribution

function that fits with the histological data of the tissue [17]. There are two differ-

ent main dispersion-type formulation outlined in the literature those are generelized

structure tensor (GST) forumulation and angular integration (AI) formulation. These

approaches will be introduced in this section.

5.1.1 Generalized structure tensor formulation

The generalized structure tensor formulation is proposed by [155], where the fiber

density distribution is notated asρ(r) that characterize the distribution of fibers in

arbitrary unit vectorr. In the origin of the study, the orientation direction is also

stated asM but we will user notation here. The unit vectorr is defined in Eulerian

angles such that defined in the range ofθ ∈ [0, π] andφ ∈ [0, 2π], demonstrated in

Figure 5.1. Let Lagrangian unit fiber orientationr on an unit sphere and the fiber

density function in the direction ofr is ρ(r). The unit fiber orientationr is described

with spherical coordinates as

r = sinΘ cosΦe1 + sinΘ sinΦe2 + cosΘe3, (5.1)

wheree1, e2 ande3 represents the unit vectors at Cartesian coordinates. The de-

formed state ofr is expressed with stretch vectort = Fr. Then, the density

distribution functionρ(r) is defined to present the fiber orientations around the mean
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Figure 5.1: (a) The unit micro-sphere and the orientation vector, (b) mean fiber direc-

tions of two families of fiber lie one1-e2 plane.

direction and it is normalized over the unit sphere as following:

1

4π

∫

ω

ρ(r)dω = 1 (5.2)

whereω = sinΘdΘdΦ. Then the symmetric generalized structure tensor is defined

as
1

|S|

∫

S

ρ(r(Θ,Φ))r ⊗ rdA (5.3)

where |S| = 4π is the area of the unit sphere. Gasser et al. [155] formulatedπ-

periodic von Mises distribution as a fiber density distribution aroundM for a planar

condition. The von Mises distribution function is a scalar quantity which is used for

probability distribution that represents normal distribution projected over sphere. It

is a function ofΘ which is centered around0 and concentration parameterb which is

the determinator of the anisotropy level of the distribution. The standard von Mises

distribution function is

ρ̄(Θ) =
exp[b(cos(2Θ)]

2πI0(b)
where I0(b) =

1

π

∫ π

0

exp(b cosΘ)dΘ , (5.4)

whereI0(b) represents the notation of modified Bessel function of the first kind of

order zero. By integrating equation 5.4 according to 5.2 gives the following relation

I ≡
∫ π

0

ρ̄(Θ) sinΘdΘ ≡ exp(−b)
2
√
2πb

erfi(
√
2b)

I0(b)
(5.5)

where erfi(x) = −i erf(x) is the imaginary error function. Then the normalized von

Mises distribution can be determined byρ(Θ) = ρ̄(Θ)/I as following:

ρ(Θ) = 4

√

b

2π

exp[b(cos(2Θ) + 1)]

erfi
√
2b

. (5.6)
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By inserting equation 5.6 into the equation 5.3 , the generalized structure tensor can

be written as

H = κ1+ (1− 3κ)M ⊗M with κ =
1

4

∫ π

0

ρ(Θ) sin3ΘdΘ (5.7)

κ andb parameters are nonlinearly related to each other by equations 5.6 and 5.7 and

κ can be determined by numerical integration of 5.72. The dispersion parameterκ has

the upper and lower limits due to physical aspects of the material behaviour as it can

be defined in the range ofκ ∈ [0, 1/3]. It directly integrated to the constitutive model

with generalized structure tensor as a scalar multiplier represented in equation 5.71.

The lower limitκ = 0 recovers the distinct anisotropy by yielding of concentration

parameterb to infinity and the upper limitκ = 1/3 leads to an isotropic constitutive

response which also brings the concentration parameterb = 0. The relationship

betweenρ−Θ andκ− b are presented graphically in Figure 5.2. Then, the second
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Figure 5.2: (a) Graphical representation of nonlinear relation between the dispersion

parameterκ and the concentration parameterb, (b) dispersion characteristics through

the density functionρ and the angle of dispersionΘ. The correspondingκ values are

1/3, 4/15, 1/5, 1/11, 1/20 and0 respectively.

Piola Kirchhoff stress and the Kirchoff stress can be definedin the following form:

S = 2∂CΨ = 2

[

∂U

∂J

∂J

∂C
+
∂Ψiso

∂I1

∂I1
∂C

+
∂Ψani

∂E

∂E

∂C

]

τ = 2∂gΨ = 2

[

∂U

∂J

∂J

∂g
+
∂Ψiso

∂I1

∂I1
∂g

+
∂Ψani

∂E

∂E

∂g

] (5.8)

whereE is construct the strain like scalar quantity in the direction of mean orientation

and it is defined in Lagrangian and Eulerian configurations asfollowing

E = H : C − 1 and E = h : g − 1 (5.9)
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5.1.2 Generalized structure tensor based bivariate formulation

Holzapfel et al. [158], extended the GST approach, which provides rotational sym-

metric distribution based on planar distribution, to GST based bivariate formulation.

The formulation not only takes the dispersion characteristics into account in-plane but

also adds the out-of-plane contribution to the formulation. By experimental histologi-

cal observations, they obtained the fiber distributions notonly effective in planar plane

but also there is minor effect on the out-of-plane for arteries. They concluded that the

in-plane and out-of-plane fiber distributions are uncoupled from each other. Then the

fiber density probability function is multiplicatively decomposed into in-planeρip(Φ)

and out of planeρop(Θ) contributions as follows:

ρ(r) = ρip(Φ)ρop(Θ). (5.10)

where the anglesΦ andΘ demonstrated over micro-sphere schematically in Figure

5.11. The probability density function is defined for the in-plane by a basic von Mises

distribution as follows

ρip(Φ) =
exp[a(cos(2Θ)]

I0(a)
where I0(a) =

1

π

∫ π

0

exp(a cosα)dα (5.11)

wherea is the concentration parameter andI0(a) is the modified Bessel function of

the first kind of order zero. If the in-planeρip(Φ) density function divided by2π, the

normalized version can be found. The out of plane probability density distribution is

defined as

ρop(Θ) = 2

√

2b

π

exp[b(cos(2Θ)− 1)]

erf(
√
2b)

. (5.12)

whereb is the concentration parameter for out-of-plane distribution. By using the

similar normalized relation defined by equation 5.2 withω = cosΘdΘdΦ, the nor-

malization equations yields

1

4π

∫ 2π

0

ρip(Φ)dΦ

∫ π/2

−π/2

ρop(Θ) cosΘdΘ = 1 (5.13)

By defining the in-plane normalization as follows

1

2π

∫ 2π

0

ρip(Φ)dΦ = 1 (5.14)

then equation 5.13 reduces to out-of-plane normalization as below
∫ π/2

−π/2

ρop(Θ) cosΘdΘ = 2 (5.15)
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Then, the scalar quantities of dispersion for in-plane (κip) and out-of-plane (κop) are

defined

κip =
1

π

∫ π

0

ρip(Φ) sin
2ΦdΦ with κop =

1

4

∫ π/2

−π/2

ρop(Θ) cos3 ΘdΘ (5.16)

The generalized structure tensor can be obtained as

H =
1

4π

∫ π

Φ=−π

∫ π/2

Θ=−π/2

ρip(Φ)ρop(Θ)N ⊗N cosΘdΘdΦ (5.17)

By using the relationship of equations 5.17 and 5.16, the structure tensor yields the

following form

H = 2κipκop1+2κop(1−2κip)M f ⊗M f +(1−2κop(1+κip))Mn⊗Mn (5.18)

whereM f andMn are the mean fiber orientation direction and normal direction

perpendicular to the main plane, respectively.κip ∈ [0, 1] andκop ∈ [0, 1/2] where

these parameters are determined by using the histology and imaging data of the tissue.

The relationship between the scalar density distribution quantityκ and concentration

parameters are given for both in-plane and out-of-plane distributions in Figure 5.3.

Note thatκip andκop defined in larger range of interval than the given range in Figure

(a) (b) ba

κ
ip

κ
o
p

Figure 5.3: (a) Graphical representation of nonlinear relation between the in-plane

dispersion parameterκip and the in-plane concentration parametera, (b) relationship

between the out-of-plane dispersion parameterκop and the out-of-plane concentration

parameterb

5.3. However, the negative values of concentration factorsrepresents non-physical

behaviour and therefore omitted from plots.
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5.1.3 Angular integration dispersion formulation

Micro-sphere based angular integration formulation for the anisotropic finite elastic-

ity proposed by Alastrué et al. [156]. The anisotropic contribution of the tissue is

defined by using von Mises distribution functions through orientation directions. The

micro-fiber directions are considered in the concept of chain-based structure. Then

homogenization has been performed by numerical integral over the unit sphere. For

the numerical integration step there have been defined several cubatures by Heo et

al. [166] for the micro-sphere. The anisotropic free-energy is defined as the angular-

integration of micro-fiber free energies over the micro-sphere that contributes in dis-

crete orientation sets based on von Mises probability function ρ(r)

Ψani =
1

|S|

∫

S

ρ(r,M)Ψmic(λf) dA, where |S| = 4π, (5.19)

where|S| is the total surface area of the unit sphere anddA = sin(Θ)dΘdΦ. The

notationλf represents the micro-fiber stretch in the direction ofr and it can be intro-

duced by using stretch vectort = Fr.

λf =
√

t · gt (5.20)

The contributions of each chains in the orientations directions can also be stated as

following

Ψani =

p
∑

k=1

Ψmic(λf), (5.21)

Each of the orientation direction can also be stated as the averaging of the total num-

ber of p contributions of micro-fiber energies as introduced in equation 5.19. The

contribution of each set of orientations to the macroscopiclevel can be defined as a

continuous average over micro-sphere as follows

〈•〉 = 1

|S|

∫

S

(•) dA ≈
p

∑

k=1

wk (•)k and Ψani(F , r) = 〈ρ(r)Ψmic〉 (5.22)

wherewk
k=1:p are the weight factors of the set integration points relatedwith discrete

orientation directionsrk
k=1:p andp is the total number of integration points. Then the

Kirchhoff stress can be written as

τ = 2∂gΨ = 2

[

∂U

∂J

∂J

∂g
+
∂Ψiso

∂I1

∂I1
∂g

+
∂Ψani

∂λf

∂λf
∂g

]

(5.23)
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and the more explicit form of the Kirchhoff stress reads

τ =

∫

S

ρ(r)Ψ′micλ−1
f t⊗ tdA− pg−1 + 2c1b (5.24)

wherec1 is the constant that is determined by the derivative ofΨiso with respect toI1.

Theπ-periodic rotational symmetric von Mises distribution described as

ρ(Θ) = 4

√

b

2π

exp[b(cos(2Θ) + 1)]

erfi
√
2b

(5.25)

5.2 Examples of Fiber Dispersion Architecture of Biological Tissues

In this section, there will be presented polar plots for bothplanar and bivariate von

Mises density distributions those are published in the literature based on histological

data. There have been reported many of fiber dispersion data [156, 27, 158, 164, 7,

8, 167, 168, 169, 170], based on von Mises density distributions for artery. Since

it is composed of anisotropic layered-type structure and layers have different fiber

orientations and distributions, the dispersion characteristics of fibers reflects high in-

fluence on mechanical response of the constitutive models. The density distributions

of the intima, media and adventitia layers based on von Misesdistribution are given

in polar plots in Figure 5.4. Liu et al. [9] proposed dispersion based formulation

for the intestine walls including submucosa, longitudinaland circular muscle layers.

Eriksson et al. [10], presented a formulation for the dispersion characteristics of fiber

and sheet orientations of rabbit myocardium and they fit the planar von Mises distri-

butions parameters to experimentally measured histological data. The corresponding

planar von Mises distribution architecture of the intestine wall layers and fiber-sheet

orientations of a rabbit myocardium are shown by polar plotsin Figure 5.5. Longi-

tidunal and circular muscle layers of intestinal walls are nearly isotropic with scalar

dispersion parametersκlong = 0.30 andκcirc = 0.32. However, submucosa exhibit

slightly anisotropic fiber dispersion withκsub = 0.25. The orientation angles are

Θ = 65o, 40o, 30o, respectively. On the other hand, the rabbit myocardium tissue is

highly anisotropic in both fiber and sheet orientations. It is assumed that the fiber and

sheet directions are orthogonal to each other. The scalar dispersion parameter for the

fiber isκf = 0.00765 which corresponds tobf = 32.517 and the scalar dispersion

parameter for the sheet direction isκs = 0.0249 that corresponds tobs = 10.28.
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Figure 5.4: The polar plots of the density distribution functionsρ (a) planar von Mises

distribution of two families of fibers for a medial layer of human thoracic aorta [7],(b)

in-plane von Mises distributions of one family of fibers for intima, media and adven-

titia layers of healthy abdominal aorta [8] (c) out-of-plane von Mises distributions

of one family of fibers for intima, media and adventitia layers of healthy abdominal

aorta [8]

Since their density localization differ to each other in terms of amplitude, their plots

are given separately to clear view.
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Figure 5.5: The polar plots of the density distribution functions ρ (a) planar von

Mises distribution of one family of fibers for intestine walllayers namely submucosa,

longitudinal and circular muscle layers [9],(b) planar vonMises distributions of fiber

orientation of rabbit myocardium [10] (c) planar von Mises distributions of sheet

orientation of rabbit myocardium [10]
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CHAPTER 6

ANISOTROPIC VISCOELASTIC CONSTITUTIVE MODELLING OF

HUMAN MYOCARDIUM

6.1 Introduction

The heart is the primary component of the cardiovascular system, and pathological

conditions related to the heart may have a vital impact on human life. Historically,

cardiovascular diseases (CVDs) are not only a disease related to the diet of mod-

ern people, but also the most deadly medical conditions thathave always been en-

countered since ancient times [171]. According to the WorldHealth Organization,

CVDs are the leading cause of death, taking the lives of around 17.9 million people

each year. In general, clinical therapies for CVDs are more arule-of-thumb, than

a systematic therapy design based on scientific criteria. The heart is an electrome-

chanical pump that supplies blood through the vessels to theentire living body, and

it is subjected to thermo-electro-chemo-mechanical conditions. Hence, understand-

ing the biomechanics of the heart may lead to the developmentof more accurate

treatment techniques (medical treatments, surgery techniques, rehabilitation meth-

ods, etc.) alongside understanding the pathology itself. For example, developing an

artificial pumping system, developing transplantation techniques, replacing the heart

valve, developing the left ventricular pacemaker device, etc. To this respect, the in-

terest in computational cardiovascular mechanics has increased tremendously in the

last few decades. However, understanding the mechanics of the heart is a challeng-

ing task due to its sophisticated structure. In this chapter, we aim to develop a novel

constitutive model that describes the mechanical behaviorof the passive myocardium.

The heart wall is made of three main layers. These are the endocardium, myocardium,
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Figure 6.1: The schematic view of the section view of the human heart, sliced pieced

of the left ventricle and idealized patch of heart wall described within three orthogonal

directions, fiber direction, sheet direction and normal direction, respectively. (The

realistic images were partly generated using Servier Medical Art, provided by Servier,

licensed under a Creative Commons Attribution 3.0 unportedlicense)

and epicardium. Endocardium and epicardium are thin layersthat mainly consist of

collagen and elastin, and they create an interface region with inner and outer sub-

stances. The myocardium is primarily responsible for the heart’s pumping function

in the wall. It is made up of parallel fibers that are embedded in sheets by extracel-

lular matrix [88]. The orientation of the myofibers makes a smooth transition from

the epicardium to the endocardium in a helical form. In the human, myofibers vary

from about -70 degrees at the epicardium to nearly +70 degrees at the endocardium.

The LV wall thickness is higher than the RV wall thickness dueto the fact that the LV

is subjected to a higher pressure load to pump the blood to theaorta. The schematic

view of the section view of the human heart, sliced pieces of the left ventricle, and

the schematic continuum approach of the myocardium tissue are given, respectively,

in Figure 6.1. The historical remarks on the structural features of the myocardium

have already been mentioned in detail in section 1.3. As an highlight to Chapter 1, the

mechanical behavior of the tissues is highly influenced by the structural arrangement

of fibers. Therefore, morphological studies are essential to identify the mechanical

response of the tissues. In a recent study, Sommer et al. [11]quantitatively mea-

sured in-plane and out-of-plane dispersion of fibers from mean fiber direction and

sheet direction for samples extracted from human myocardium. They also performed

monotonic biaxial and triaxial shear experiments along with cyclic experiments and

120



observed that myocardial tissue exhibits non-linear orthotropic material behavior. Be-

fore, Sommer et al. [11], similar observations were outlined by Dokos et al. [99] for

pig heart.

6.1.1 Hyperelastic constitutive models for passive myocardium

Several hyperelastic constitutive models for myocardial tissue have been proposed in

over years, beginning with the isotropic models [172], continuing with transversely

isotropic models based on invariants [173] and on Green-Lagrange strain tensor [174].

Unequivocally, these models were not able to describe orthotropic anisotropic me-

chanical behaviour of the myocardium. Later on, orthotropic models were proposed

by Nash& Hunter [175], and Schmid et al. [176]. One of the most successful

model proposed by Holzapfel& Ogden [106] which is based on invariants. Göktepe

et al. [177] implemented this constitutive model in a general purpose finite element

program [178] and also showed the fitting performance of the model based on exper-

iments of Dokos et al. [99]. Nevertheless, the aforementioned models lack describing

dispersed nature of collagen fibers. In fact, the first model to incorporate the dis-

persed structure of collagen fibers was proposed by Lanir [153] for epidermal tissue.

They utilized a density distribution function to describe the dispersion of fibers in

microstructural level and used angular integration to obtain the macroscopic mechan-

ical behaviour of the tissue. Following the work of Lanir, several dispersion-based

anisotropic hyperelastic models have been developed for various types of soft tissues,

e.g., Driessen et al. [179] for aortic valve and arterial wall, Alastrué et al. [156, 180]

for blood vessels, Gasser et al. [155] and Holzapfel et al. [158] for arterial wall. For

the case of myocardium, Eriksson et al. [10] modified the model of Holzapfel& Og-

den [106] to take into account of dispersion along the fiber and sheet directions using

the generalized structure tensor approach proposed by Gasser et al. [155]. The numer-

ical performance of this model was adressed among other by, e.g., Cansiz et al. [18]

and Gültekin et al. [1].
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6.1.2 Viscoelastic constitutive models for passive myocardium

The above-mentioned models treat the myocardium as an hyperelastic material. How-

ever, according to the observations of Dokos et al. [99] on pig heart, myocardial tissue

shows stress relaxation and hysteresis response in all shear modes for the cyclic tri-

axial shear test. Furthermore, Sommer et al. [11] obtained similar observations for

the human myocardium when conducting stress relaxation tests along with cyclic tri-

axial shear and cyclic biaxial tests. In addition, aforementioned studies addressed the

directional dependence of the tissue for different test modes.

One of the earliest attempt to model the viscoelastic behavior of the myocardium was

made by Loeffler & Sagawa [181]. They developed a one-dimensional viscoelas-

tic model for both passive and active reponse of cat myocardium. The passive re-

sponse was developed by a rheological model consisting of a spring connected to

two Maxwell elements in parallel. Later on, Yang& Taber [182] proposed a bipha-

sic (consists of fluid and solid phases) viscoelastic model that takes into account the

contribution of extracellular fluid flow to the viscoelasticbehavior of passive cardiac

muscle. Following this work, Huyghe et al. [183] developed atransversely isotropic

biphasic model that also incorporates viscoelasticity dueto shear deformation in an

isotropic manner. However, these models were not able to capable of describing

anisotropic viscoelastic behavior of the myocardial tissue entirely. More comprehen-

sive models were proposed by Kaliske [184] and Holzapfel& Gasser [185] in finite

linear viscoelastic settings where stress update is derived with convolution integral

in analogy to a small strain setting. More general orthotropic viscoelastic formula-

tion were developed by Cansiz et al. [18] and Gültekin et al. [1]. The equilibrium

response of the both models are identical and based on the dispersion-based hyper-

elastic formulation proposed by Eriksson et al. [10]. On theother hand, the viscous

response of the myocardial tissue in the sense of Cansiz et al. [18] delivered by a

canonical representation in terms of strain-like internalvariables conjugate to driving

viscous stresses, while Gültekin et al. [1] pursues a convolution representation of the

viscous overstresses. The interested readers may refer to Gültekin& Dal [186] for the

comparison of these two models [18, 1] based on human myocardium dataset [11].
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Furthermore, the recent fractional derivative based orthotropic viscoelastic model on

passive myocardium, as documented in Nordsletten et al. [187], demonstrates good

fitting performance on the human myocardium dataset.

From the view of modelling overall function of heart, the importance of viscoelas-

ticity in cardiac cycle was revealed by Cansiz et al. [20, 21]and Tikenŏgulları et

al. [188]. Cansiz et al. [20] presented an unified theory for orthotropic electro-visco-

elastic response of myocardium by extending the formulation of Cansiz et al. [18]

and Göktepe et al. [189]. Later on, Cansiz et al. [21] extended their work to reveal the

mechanisms of the defibrillation phenomenon by elaboratingon the bidomain setting

as described by Dal et al. [19]. Recently, Tikenoğulları et al. [188] succesfully em-

bedded the viscous formulation of Gültekin et al. [1]. The common observation of

these works is adressing the importance of the viscous effects in overall function of

hearth.

In this chapter, firstly, a proper hyperelastic constitutive model proposed by [106]

will be presented by deriving the stress and consistent tangent moduli expressions.

The deformation gradient is multiplicatively decomposed into spherical and unimod-

ular parts; accordingly, the free energy function is additively decomposed into vol-

umetric and isochoric parts. Then, we adopt the formulationof [10] and hypere-

lastic formulation will be revised by integration of dispersion kinematics. Further,

we also additively decompose the free energy function into equilibrium and non-

equilibrium parts with the assumption that non-equilibrium part is related to the

volume-preserving deformations. Rheological Maxwell model and convolution inte-

gral formulations have been introduced for non-equilibrium response of myocardium.

Then, we proposed five novel formulations for the angular integration type dispersion-

based anisotropic viscoelastic constitutive model for myocardium. Non-equilibrium

response of the myocardium is modeled by a rheological device consisting of a spring

with a Maxwell element in parallel. The viscoelasticity is modelled through one di-

mensional Maxwell branch with a quadratic free energy function in logarithmic strain

space and a quadratic and power type dissipation potential in each orientation di-

rection. The overstress response is then obtained by the numerical integration over

the unit micro-shpere and over the planar circle for the orthogonal directions of my-

ocardium.
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6.2 Governing Equations of Hyperelastic Constitutive Model for Passive My-

ocardium

In this section, hyperelastic constitutive model of myocardium will be presented

based on the formulation proposed by Holzapfel et al. [106].We start with the mul-

tiplicative decomposition of the deformation gradientF = F volF̄ into volumetric

F vol and unimodular̄F in order to impose incompressibility nature of the tissue. The

related kinematic relations are already given in equation 3.21. Due to the high water

content of myocardium similar to the most of the biological tissues, it is assumed to

reflect an incompressible behaviour [101]. Then Jacobian leads toJ = F vol = 1

for incompressibility condition. The identity tensor is defined by1. Isotropic hy-

perelasticity is formulated based on the free energy function, which is defined per

unit reference volume through isotropic invariantsI1, I2, I3 those are constitutively

related to the deformation gradient. For incompressible materials, two of the invari-

antsI1, I2 are sufficient to be used in the formulation. The invariant formulation of

hyperelasticity is described by equation 3.23.

For orthotropic tissues, additional unimodular invariantsI4f,s,n, I5f,s,n, relates the ma-

terial response through distinct unit vectors for fiberf0, sheets0, and normaln0. Iso-

choric counterparts of unit vectors in Eulerian configuration are defined asf = F̄ f0,

s = F̄ s0, andn = F̄ n0. Coupled orthotropic behaviour along unit vectors is de-

scribed byI8. Unimodular description of orthotropic invariants are defined as

Ī4f = f0 · C̄f0 , Ī4s = s0 · C̄s0 , Ī4n = n0 · C̄n0 ,

Ī5f = f0 · C̄
2
f0 , Ī5s = s0 · C̄ 2

s0 , Ī5n = n0 · C̄ 2
n0 ,

Ī8fs = f0 · C̄s0 , Ī8fn = f 0 · C̄n0 , Ī8sn = s0 · C̄n0 .

(6.1)

Ī4f , Ī4f and Ī4n define the material behaviour along distinct fiber (f0), sheet (s0)

normal (n0) directions. It should be noted thatĪ5f , Ī5f andĪ5n are related with̄I1 and

Ī2 [106]. Therefore fourth invariants are enough to use the behaviour in orthotropic

directions. Then, the orientation related structure tensors can be described as dyadic

124



product of orientation vectors as shown below.

Hf = f0 ⊗ f 0 , Hs = s0 ⊗ s0 , Hn = n0 ⊗ n0 ,

Hfs = sym(f0 ⊗ s0) , Hfn = sym(f 0 ⊗ n0) , Hsn = sym(s0 ⊗ n0) ,

(6.2)

Göktepe et al. [177] mentioned that thef0 orientation refers to coiled perimysial

fibers oriented along the long axis of the myocytes, and lyingin the sheet. The ori-

entations0 is normal to the sheet plane and refers to sparse direction ofperimysial

collagens that connect myocardial sheets. The orientationn0 is orthogonal tof 0

andn0, it represents the tightly bound endomysial collagen in thesheet and layouts

perpendicular to cardiomyocyte axis. The specific form of the isochoric free-energy

function for the passive myocardium is defined as below in line with Holzapfel et

al. [106, 177]

Ψ̄e(C̄) =
a

2b

{

exp[b(Ī1 − 3)]− 1
}

+
∑

i=f,s

ai
2bi

{

exp[bi(Ī4i − 1)2]− 1
}

+
afs
2bfs

{

exp[bfsĪ
2
8fs]− 1

}

,
(6.3)

where the first term in equation (6.3) accounts for isotropicmatrix response , the sec-

ond term contributes for additional stiffness due to anisotropic response in the fiber

and sheet directions and the last term is coupled behaviour (relative shear) of fiber-

sheet interaction.a, af , as, afs, b, bf , bs, bfs are material constants, which should be

non-negative numbers to satisfy the necessary condition for stability. Ī4n is omitted

from the free-energy equation above. Since its behaviour isobtained by the combina-

tion of Ī1, Ī4f andĪ4s; Ī4n is dependent to others [106]. Next, the unimodular elastic

part of the stress̄S
e

in can be defined by

S̄
e
= Ψ̄e′

1 1+ Ψ̄e′

4f Hf + Ψ̄e′

4s Hs + Ψ̄e′

8fsHfs, (6.4)

whereΨ̄e′

1 , Ψ̄e′

4f , Ψ̄e′

4s andΨ̄e′

8fs are the scalar values those are resultant terms of the

derivation with respect to corresponding invariants and derived as below. The volu-

125



metric part of the stress can also be determined bySvol = pC−1.

Ψ̄e′

1 := 2∂
Ī1
Ψ̄e = a exp[b(Ī1 − 3)] ,

Ψ̄e′

4f := 2∂
Ī4f

Ψ̄e= 2af(Ī4f − 1) exp[bf (Ī4f − 1)2] ,

Ψ̄e′

4s := 2∂
Ī4s
Ψ̄e = 2as(Ī4s − 1) exp[bs(Ī4s − 1)2] ,

Ψ̄e′

8fs:= 2∂
Ī8fs

Ψ̄e= 2afsĪ8fs exp(bfsĪ
2
8fs) .

(6.5)

Then, corresponding elastic unimodular part of Lagrangianmoduli reads,

C̄e = Ψ̄e′′

1 1⊗ 1+ Ψ̄e′′

4f Hf ⊗Hf + Ψ̄e′′

4s Hs ⊗Hs + Ψ̄e′′

8fs Hfs ⊗Hfs . (6.6)

whereΨ̄e′′

1 , Ψ̄e′′

4f , Ψ̄e′′

4s andΨ̄e′′

8fs are the scalar coefficients for unimodular elastic mod-

uli those are resultant terms of the second derivation with respect to corresponding

invariants and they obtained by

Ψ̄e′′

1 := 4∂2
Ī1Ī1

Ψ̄e = 2ab exp[b(Ī1 − 3)] ,

Ψ̄e′′

4f := 4∂2
Ī4f Ī4f

Ψ̄e = 4af [1 + 2bf(Ī4f − 1)2] exp[bf (Ī4f − 1)2] ,

Ψ̄e′′

4s := 4∂2
Ī4s Ī4s

Ψ̄e = 4as[1 + 2bs(Ī4s − 1)2] exp[bs(Ī4s − 1)2] ,

Ψ̄e′′

8fs:= 4∂2
Ī8fs Ī8fs

Ψ̄e= 4afs(1 + 2bfsĪ
2
8fs) exp(bfsĪ

2
8fs) .

(6.7)

6.3 Orthotropic Viscoelasticity based on Dispersion-typeHyperelastic Consti-

tutive Model for Passive Myocardium

In this section, kinematic equations will be modified based on the GST dispersion

formulation. Then the general constitutive framework of orthotropic viscoelastic-

ity will be presented by the decomposition of the free-energy into equilibrium and

non-equilibrium response. The orthotropic viscoelastic formulation will be given two

separate formulations, namely, convolution integral representation and conanical rep-

resentation, in the sense of Gültekin et al. [1] and Cansiz etal. [18], respectively.

In line with section 5.1.1,κf andκs are defined for the two scalar structural param-

eters reflecting the fiber and sheet distributions, respectively in sense of [10]. The

modified unimodular fourth invariants in the direction of fiber and sheet are defined
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as

Ī∗4f = κf Ī1 + (1− 3κf)Ī4f and Ī∗4s = κsĪ1 + (1− 3κs)Ī4s , (6.8)

In [155], Gasser et al. defined the collagen fiber distribution rotationally symmetric

around a mean fiber directionM . They formulatedπ-periodic von Mises distribu-

tion as a fiber density distribution aroundM for a planar condition. The von Mises

distribution function is a one-dimensional probability distribution that represents the

normal distribution projected over the unit sphere. The theoretical details are given in

Chapter 5. Then, the modified structure tensors that reflect the fiber dispersion along

orthogonal directionsf ands are defined as

H∗

f = κf1+ (1− 3κf )f0 ⊗ f 0 and H∗

s = κs1+ (1− 3κs)s0 ⊗ s0 . (6.9)

Double-contracted of structure tensors in equation (6.9) with unimodular part of the

Cauchy-Green tensor̄C gives the modified fourth invariants in orthogonal directions

(Ī∗4f,s = C̄ : H∗

f,s).

The constitutive material formulation is presented in Lagrangian configuration which

is based on additive decomposition of the free energy function composed of isotropic

and anisotropic parts. The free energy further split into volumetric and isochoric part

as a function of JacobianJ , and unimodular part of the left Cauchy-Green tensorC̄,

respectively. The free energy function is described as

Ψ̂ := Ψ(C,H ;I) = Ψvol(J) + Ψ̄iso(C̄,H ;I) + Ψ̄ani(C̄;I) (6.10)

whereI denotes the set of internal variables those reveals viscoelastic behaviour of

the material. With the use of Clasius-Planck inequality refer [107], the second Piola-

Kirchhoff stress tensor (S) and a stress-like quantity also known as internal force (β)

reads

S = 2∂CΨ(C,H ;I) and β = −∂
I
Ψ(C,H;I) , (6.11)

The second Piola-Kirchhoff stress tensor in equation (6.11) decomposed of volumet-

ric and isochoric parts as,

S = Svol + Siso , where Svol := 2∂CΨvol(J) and Siso := 2∂CΨ̄(C̄,H ;I) .

(6.12)
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The volumetric part of the second Piola-Kirchhoff stress tensor reads

Svol = Ψ′

vol(J)JC
−1 , where Ψ̂′

vol(J) = ∂JΨvol(J) and p = J∂JΨvol(J)

(6.13)

wherep is the internal pressure term. The isochoric part of the second Piola-Kirchhoff

stress tensor defined as

Siso = S̄ : Q with S̄ := 2 ∂C̄Ψ̄(C̄,H,I) and Q := ∂CC̄ (6.14)

whereQ andI are the fourth order deviatoric projection and identity tensors, respec-

tively. They are defined as following

Q = J−2/3

[

I− 1

3
C ⊗C−1

]

, where I :=
1

2
(1⊗1 + 1⊗1) (6.15)

The free-energy function in equation (6.10) can split into according to elastic and

viscous response of the material, i.e.

Ψ̄(C̄,H;I) = Ψ̄e(C̄,H) + Ψ̄v(C̄;I) (6.16)

Similarly, the unimodular part of second Piola-Kirchhoff stress (̄S) is also decom-

posed into the elastic (̄Se) and viscous (̄Sv)components as;

S̄ = S̄
e
+ S̄

v
(6.17)

The elastic and viscous parts of unimoduar second Piola-Kirchoff stress are defined

as a conjugate of unimodular part of right Cauchy-Green tensor (C̄)

S̄
e
:= 2∂C̄Ψ̄

e(C̄,H) and S̄
v
:= 2∂C̄Ψ̄

v(C̄;I) (6.18)

In order to get the solution of a nonlinear problem, it is required to solve it with

incremental steps through Newton iterations. In this point, algorithmic tangent is

introduced as the decomposition of volumetric and isochoric parts as

∆S := Calgo :
1

2
∆C , where Calgo = Cvol + C

algo
iso (6.19)

The volumetric part of the Lagrangian moduli can be derived directly from the free-

energy as a closed-form expression

Cvol := 4 ∂2CCΨvol(J) =
[

J2Ψ′′

vol(J) + JΨ′

vol(J)
]

C−1 ⊗C−1 − 2JIC−1 (6.20)
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where superscript "′ " and " ′′" represent the first and the second derivative with re-

spect to the dependent variable (J). The isochoric part of the algorithmic Lagrangian

moduli is expressed as

C
algo
iso = QT : C̄algo : Q+

2

3

(

S̄ : C̄
)

PC−1 − 2

3

(

Siso ⊗C−1 +C−1 ⊗ Siso

)

(6.21)

The unimodular part of algorithmic Lagrangian moduli is decomposed into elastic

and viscous parts

C̄algo = C̄e + C̄algo
v (6.22)

The equlibrium part of the unimodular algorithmic Lagrangian moduli can be derived

from the free-energy function and the non-equlibrium part can be derived in incre-

mental form with time discretization,respectively.

C̄e = 4 ∂2C̄ C̄Ψ̄
e(C̄,H) (6.23)

Then, by inserting the dispersion-type modified invariantsdescribed in equation 6.8

into the the free-energy function defined in equation 6.3, the modified GST based

dispersion-type free-energy function for the equilibriumresponse can be written as

below in line with [10] and [1]

Ψ̄e(C̄) =
a

2b

{

exp[b(Ī1 − 3)]− 1
}

+
∑

i=f,s

ai
2bi

{

exp[bi(Ī
∗

4i − 1)2]− 1
}

+
afs
2bfs

{

exp[bfsĪ
2
8fs]− 1

}

,
(6.24)

As the additively decomposition of the free-energy function is introduced in equation

6.10, the volumetric part of the free-energy which satisfy zero stress state in unloaded

condition, is defined as

Ψvol(J) = κ(J − ln J − 1) (6.25)

whereκ is the bulk modulus, which should not be confused with the dispersion-

related parameter described in equation 6.9. The first and the second derivatives of the

volumetric free-energy with respect to Jacobian (J) are defined to be used in equations

6.13 and 6.20 for the corresponding stress and moduli derivations. Then, unimodular

part of the elastic stressSe which is defined in equation 6.4 can be modified through

dispersion-type generalized structure tensors as below

S̄
e
= Ψ̄e′

1 1+ Ψ̄e′

4f H
∗

f + Ψ̄e′

4sH
∗

s + Ψ̄e′

8fsHfs (6.26)
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where the modified scalar derivative coefficients are introduced as follows

Ψ̄e′

1 := 2∂
Ī1
Ψ̄e = a exp[b(Ī1 − 3)] ,

Ψ̄e′

4f := 2∂
Ī∗
4f

Ψ̄e= 2af(Ī
∗
4f − 1) exp[bf (Ī

∗
4f − 1)2] ,

Ψ̄e′

4s := 2∂
Ī∗
4s
Ψ̄e = 2as(Ī

∗
4s − 1) exp[bs(Ī

∗
4s − 1)2] ,

Ψ̄e′

8fs:= 2∂
Ī8fs

Ψ̄e= 2afsĪ8fs exp(bfsĪ
2
8fs)

(6.27)

Then, corresponding modified elastic unimodular part of Lagrangian moduli yields,

C̄e = Ψ̄e′′

1 1⊗ 1+ Ψ̄e′′

4f H
∗

f ⊗H∗

f + Ψ̄e′′

4s H
∗

s ⊗H∗

s + Ψ̄e′′

8fs Hfs ⊗Hfs (6.28)

Then the scalar second derivative coefficient are revised asfollows

Ψ̄e′′

1 := 4∂2
Ī1Ī1

Ψ̄e = 2ab exp[b(Ī1 − 3)] ,

Ψ̄e′′

4f := 4∂2
Ī∗
4f

Ī∗
4f

Ψ̄e = 4af [1 + 2bf(Ī
∗
4f − 1)2] exp[bf (Ī

∗
4f − 1)2] ,

Ψ̄e′′

4s := 4∂2
Ī∗
4s Ī

∗

4s
Ψ̄e = 4as[1 + 2bs(Ī

∗
4s − 1)2] exp[bs(Ī

∗
4s − 1)2] ,

Ψ̄e′′

8fs:= 4∂2
Ī8fsĪ8fs

Ψ̄e= 4afs(1 + 2bfsĪ
2
8fs) exp(bfsĪ

2
8fs)

(6.29)

6.3.1 Convolution integral formulation

We will follow the convolution integral representation in sense of Gültekin et al. [1].

By considering one-dimensional rheological generalized Maxwell model, the first

order linear differential equation for the evolution of viscous stresses is defined for

the linear viscoelasticity. The exact integration of the linear evolution equation can

be defined as follows

˙̄Sv
i +

S̄
v
i

τi
= ǫi

˙̄Se
i , S̄

v
i (t = 0) = 0 (6.30)

where the subscript "i" is used forf, s, n, fs as separate stress components. The dif-

ferential equation satisfies the zero stress state though initial conditions and it can also

be used to determine viscous strain as an variable.τi is the relaxation time in seconds.

It can be defined asτi = η/µ, whereη is the viscosity andµ is the shear modulus of

the material through orthogonal directions.ǫi is the positive dimensionless parameter

that work with isochoric stress component. The closed form of solution of equation

6.30 comes out with the convolution integral form as below

S̄
v
i =

∫ t

0

exp

(

−t− s

τi

)

ǫi
˙̄Se
ids. (6.31)
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The approximation of integral 6.31 can be written in the timeinterval[tn, tn+1] as

S̄
v
i,n+1 =

∫ t+1

0

exp

(

−tn+1 − s

τi

)

ǫi
˙̄Se
ids. (6.32)

wheretn+1 = tn +∆t then the integral 6.32 can be split into time intervals as[0, tn]

and[tn, t+ 1] as below

S̄
v
i,n+1 =

∫ tn

0

exp

(

−∆t

τi

)

exp

(

−tn − s

τi

)

ǫi
˙̄Se
ids

+

∫ t+1

tn

exp

(

−tn+1 − s

τi

)

ǫi
˙̄Se
ids.

(6.33)

In order to approximate the integral 6.33, we consider the mid-point rule,

∫ t+1

tn

exp

(

−tn+1 − s

τi

)

ǫi
˙̄Se
ids = ∆t

[

exp

(

−tn+1 + s

τi

)

˙̄Se
i

]

(6.34)

wheres = (tn + tn+1)/2. Then the viscous stress yield to the final form as

S̄
v
i, n+1 = exp

(

−∆t

2τi

)[

exp

(

−∆t

2τi

)

S̄
v
i, n − ǫiS̄

e
i, n

]

+ exp

(

−∆t

2τi

)

ǫiS̄
e
i, n+1 ,

(6.35)

The first term in equation 6.35, represents thetn and the second term represents the

tn+1 contributions, respectively. Then, viscous unimodular part of the tangent moduli

C̄algo
v can be determined as

C̄n+1
v,i = exp

(

−∆t

2τi

)

ǫiC̄
n+1
iso,i (6.36)

This algorithm is a second order accurate one-step algorithm for linear viscoelasticity.

6.3.2 Canonical formulation

Canonical representation for viscoelasticity is a common approach for both the linear

and nonlinear evolution of the overstress response of the material. In this approach,

internal variable setI can be either defined in tensorial or scalar strain-like variables

conjugate to overstress. In sense of Miehe et al. [190], Dal et al. [120] and Cansiz et

al. [18], the viscous response of the tissue are defined as logarithmic strain in each

orientation directionsf , s andn as following

εf :=
1

2
ln(

√

Ī4f ) , εs :=
1

2
ln(

√

Ī4s) , εn :=
1

2
ln(

√

Ī4n) , (6.37)

131



The relationship between the storageΨ̄v and the dissipation potentialΦdisp is de-

scribed by Biot [191] as

∂εvi Ψ̄
v
i (εi, ε

v
i ) + ∂ε̇vi Φdisp,i(ε̇

v
i ) = 0 and εvi (0) = εv0i , (6.38)

wherei = f, s, n. For the non-equilibrium response, one-dimensional Maxwell rheo-

logical model in the logarithmic strain space is introducedin each distinct orthogonal

direction and illustrated schematically in Figure 6.2. Thespecific form of the vicous

Ψ̄e

Ψ̄v γv

Siso Siso

εei (t) εvi (t)

εi(t)

Figure 6.2: Schematically illustration of generalized Maxwell rheological model.

Representation of the additively decomposition of isochoric free-energy into equi-

librium and non-equilibrium parts. The springs are refers to stored energies and the

dashpot represents the energy dissipation through viscousresponse.

part of the free-energy is described as a quadratic functionas below

Ψ̄v(εi; ε
v
i ) =

1

2

∑

i=f,s,n

µv
i (εi − εvi )

2 , (6.39)

whereµv is the viscous shear modulus in orthogonal directions alongfiber, sheet and

normal. εvi is the strain-like internal variables and in total the internal variable setI

contains three of scalar quantity in this formulation. The logarithmic stresses and the

thermodynamical forces conjugate to the internal variables are described as follows

σv
i := ∂εiΨ̄

v(εi, ε
v
i ) and βi := −∂εvi Ψ̄

v(εi, ε
v
i ) , (6.40)

For the specific choice of the viscous free energy function(Ψ̄v), σv
i = βi equality

can be maintained. The proper choose of the dissipation potential and algorithmic
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process of the non-equilibrium response will be presented in the context of proposed

dispersion-type anisotropic viscoelasticity formulation in the next section.

6.4 Proposed Formulations for Dispersion-type Anisotropic Viscoelasticity

As outlined in the above sections, dispersion-based anisotropic formulations are not

considered in the literature for the rate-dependent behavior of tissues. Biological tis-

sues are mostly considered as they include reinforced fibersembedded in an isotropic

ground tissue matrix. From many of experimental studies, itwas revealed that fiber

distribution is not perfectly aligned in the specific orientation but it is dispersed

around a mean fiber direction [192], [193], [93], [11]. Current state-of-the art

dispersion-based anisotropic models account for the mechanical response of the my-

ocardium using hyperelasticity theory. In this section, wepropose an angular integra-

tion type dispersion-based anisotropic viscoelastic constitutive models. The defor-

mation gradient is multiplicatively decomposed into spherical and unimodular parts;

accordingly, the free energy function is additively decomposed into volumetric and

isochoric parts, as introduced in section 6.2. Further, we also additively decompose

the free energy function into equilibrium and non-equilibrium parts with the assump-

tion that non-equilibrium part is related to the volume-preserving deformations. For

equilibrium response, we adopt the formulation of Erikssonet al. [10] and details are

given in section 6.3. Non-equilibrium response of myocardium is modelled through

one dimensional rheological device consists of a spring with a Maxwell element in

parallel with a quadratic free energy function in logarithmic strain space including

density distribution functionρ. The viscous free-energy function introduced as the

additively decomposition of micro-viscous free-energy functions in each orientation

directions based on the affine approach. Then, quadratic andpower-type dissipation

potentials for each orientation direction have been presented for the different pro-

posed models. The overstress response is then obtained by the numerical integration

over the unit sphere for the fiber, sheet and normal directions. We quantitatively

investigate the performance of the proposed framework withrespect to available ex-

perimental data of Sommer et al. [11] in this chapter.

Firstly, we outline the general framework for a dispersion-type anisotropic viscoelas-
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tic constitutive model for passive myocardium at finite strain in Lagrangian config-

uration. Then, by using these relations we will identify thedifferences of proposed

formulations one-by-one.

By using equation 6.10, we decompose the free-energy function into volumetric, iso-

choric and anisotropic parts. The illustration of Maxwell rheological model and ide-

alized network over unit sphere of the tissue are presented in Figure 6.3.Ψ̄e andΨ̄v

are isochoric parts of elastic and viscoleastic free-energies respectively andγv is the

energy dissipation due to viscous effects.εk(t) is the total logarithmic strain quantity

decomposed of elasticεe(t) and viscousεv(t) parts which are related to each other

through orientation directions on micro-sphere wherek is the total number of micro

orientation directions over the unit sphere. Let Lagrangian unit fiber orientationr on

Ψ̄e

Ψ̄v γv

SisoSiso

εe(t) εv(t)

εk(t) e1

e2

e3

(a) (b)

r

Figure 6.3: (a) Demonstration of generalised Maxwell rheological model (b) Ideal-

ization of tissue network for non-equilibrium response, the micro-sphere model

an unit sphere and the fiber density function in the directionof r is ρ(r). The unit

fiber orientationr is described with spherical coordinates as

r = sinθcosφe1 + sinθsinφe2 + cosθe3, (6.41)

defined in Eulerian anglesθ ∈ [0, π] andφ ∈ [0, 2π], see Figure 6.4. The deformed

state ofr is expressed with isochoric stretch vectort = F̄ r. The non-equilibrium

part of the model is constructed based on a quadratic free energy function in the

logarithmic strain space. Quadratic-type or a power-type of dissipation potential are

introduced those leads to the linear or nonlinear evolutionequations in orientation

directions, respectively. The overstress response will bedetermined by the numerical

integration over the unit sphere with, i.e. 21 and 39 quadrature points. The numerical
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integration over the sphere provides a numerical evaluation of averaging integrals

by a discrete set of orientations. It provides sufficient accuracy and computationally

inexpensive algebraic expressions [194]. The schematic representation of integration

points are shown in Figure 6.5. The micro affine-stretch of a line element in ther

orientation and corresponding logarithmic strain are defined as follows

λk =
√

I4,k εk =
1

2
ln(λk), where I4,k = t2k,1 + t2k,2 + t2k,3, (6.42)

where subscriptk is the set of discrete orientations in the micro-sphere.

We proposed two main approaches for formulations of dispersion effects through

density distributionρ(r). In the first approach, namely local-based dispersion, we

impose the density distribution over the mechanical viscous properties of the tissue,

such asµ or η, viscous shear modulus and viscosity, respectively. In thesecond

approach, we define the density distribution in a global manner that acts as a multiplier

for the micro-viscous free energies. Both methods reach theoverall stress and moduli

expressions by integral averaging over the unit micro-sphere. In the following sub-

sections, we will introduce these two approaches with a sub-proposed formulation for

dispersion-type viscoelasticity.

S S

(a) (b)

e1e1

e2e2

e3e3

φ

θ

r

dA

ϑ
ϑ

M1

M2

Figure 6.4: (a) The unit micro-sphere and the orientation vector, (b) mean fiber direc-

tions of two families of fiber lie one1-e2 plane.
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(a) (b)

Figure 6.5: Demonstration of fully symmetric integration points over micro-sphere

(a) 21 in half, in total 42 integration points (b) 39 in half, in total 78 integration points

6.4.1 Proposed formulations for local-based dispersion-type anisotropic vis-

coelasticity

In the local-based dispersion formulations, we introduce density distribution func-

tion ρ(r) into the micro-viscous free-energy as an mechanical property multiplier.

Accordingly, the non-equilibrium part of the macroscopic free energy is defined as

the angular-integration of micro-viscous free energies over the unit micro-sphere that

contributes in discrete orientation sets based on von Misesprobability functionρ(r)

Ψ̄v(C̄,F ;I) = Ψ̄v(ε;I) =
1

|S|

∫

S

Ψ̄micv(F , r) dA, (6.43)

where |S| = 4π is the total area of the unit sphere. The contribution of eachset

of orientations to the macroscopic level can be defined as a continuous average over

micro-sphere as follows

〈•〉 = 1

|S|

∫

S

(•) dA ≈
p

∑

k=1

wk (•)k and Ψ̄v(C̄,F ;I) = 〈ψmicv(ε, εv)〉, (6.44)

wherewk
k=1:p are the weight factors of the set integration points relatedwith dis-

crete orientation directionsrk
k=1:p andp is the total number of integration points.

The corresponding orientation directions (r) and weight factors (w) are described

in [195], [196] and [166] with different numbers of integration points over the unit

sphere. In these studies, Heo et al. [166] have also worked onthe methodology of
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cubature formulation for the sphere. Differently from the GST based dispersion of

the elastic part of the material defined in equation 5.4; for the viscous part, there is

defined bivariate von Mises distribution. In line with [158], the total probability dis-

tributionρ(r) is defined in the uncoupled form of multiplicatively decomposition of

two distinct probability densities related with in-planeρip(Φ) and out of planeρop(Θ)

as stated in equation 5.10. Then, the logarithmic stresses and the thermodynamical

forces conjugate to the internal variables are described asfollows:

σv
k := ∂εkΨ̄

micv
k (εk, ε

v
k) and βk := −∂εv

k

ˆ̄Ψmicv
k (εk, ε

v
k) , (6.45)

For the specific choice of the micro-viscous free energy function(Ψ̄micv), σv
k = βk

equality can be maintained. Accordingly the viscous free energy is defined in the

quadratic form as follows

Ψ̄micv
k (εk, εv) =

1

2
ρk(r)µ

v(εk − εvk)
2, (6.46)

Then, by using the relation between equations 6.45 and 6.46,the logarithmic stress

and thermodynamical stress-like thermodynamical force are obtained as following in

the orientation directions

σv
k := ρk(r)µ

v(εk − εvk) and βk := σv
k (6.47)

The dissipated energy in the dashpot of the Maxwell element shown in Figure 6.31 can

be defined by power-type of generic dissipation potential ondiscrete set of orientation

as

Φdisp(İ) =
∑

k=1:p

Φdisp,k(ε̇
v
k) where Φdisp,k(ε̇

v
k) =

β̂2

η

(1 +m)

(2 +m)

(

η

β̂
|ε̇vk|

)
2+m
1+m

(6.48)

whereβ̂ is the stress like parameter taken as1.0 for unit consistency,η is the viscos-

ity parameter in the orientation direction, andm is the parameter that identifies the

transition between linear and nonlinear viscoelastic evolution laws. Equation 6.48

will lead to a linear form of evolution equation ifm = 0 which will end up in a

closed form expression for the internal variableεvk. On the other hand ifm > 0, the

evolution equation become the nonlinear function of overstressβ and it will require

local Newton iterations in time discretization. Both linear and nonlinear solution of

the evolution equation will be provided below. The relationship between the storage
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and the dissipation potential is described by

∂εv
k
Ψ̄v

k(εk, ε
v
k) + ∂ε̇v

k
Φdisp,k(ε̇

v
k) = 0 and εvk(0) = εv0k , (6.49)

Linear Evolution Equation

After some mathematical manipulations defined by Biot [191], by using 6.48 and

6.45 , the linear evolution equations for the interval variables can be obtained in the

orientation directions as

ε̇vk = γ̇vk(βk) , where γ̇vk(βk) =
βk
η

(6.50)

To compute the internal variable at current time-stepn + 1, we describe equation

6.501 by backward Euler integration scheme which leads as follows

εvk,n+1 = εvk,n +∆tγvk(βk, n+1) , (6.51)

By using equations 6.50 and (6.51) the internal variable canbe determined as a closed

form expression as follows

εvk,n+1 =
(∆t/η)ρ(r)µεk, n+1 + εvk,n

(1 + ∆tρ(r)µ/η)
, (6.52)

Then, the unimodular part of the second Piola-Kirchoff stress of the viscous response

can be written as a continuous average though orientations directions

S̄
v
=

∑

k=1:p

4Ψ̄v′

4krk ⊗ rkwk , (6.53)

whereΨ̄v′

4k is the derivative resultant of the micro-viscous free-energy with respect to

the orientation invariants which is related with the stretch as shown in equation 6.421

and defined explicity as follows

Ψ̄v′

4k := 2∂Ī4kΨ̄
v(ε;I) =

σk
Ī4k

, (6.54)

Then, the unimodular part of the algoritmic viscous tangentmoduli can be expressed

in the compact form as

C̄algo
v =

∑

k=1:p

2Ψ̄v′′

4krk ⊗ rk ⊗ rk ⊗ rkwk . (6.55)
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whereΨ̄v′′

4k is the second derivative of the micro-viscous free-energy with respect to

the orientation invariants and defined as

Ψ̄v′

4k
:=

(ck − 2σk)

I24k
where ck =

∂σk

∂εk
=
∂σk

∂εe
k

(

1−
∂εv

k

∂εk

)

=
ρ(r)µη

η +∆tρ(r)µ
.

(6.56)

Non-linear Evolution Equation

In equation 6.482,m > 0 makes to evolution equation in nonlinear form of overstress

and it is need to be solved by local Newton iterations. By using the relations of equa-

tions 6.48 and 6.49,the following evolution equation for strain-like internal variables

obtained

ε̇vk = γvk(βk) ,where γvk(βk) =
1

η

∣

∣

∣

∣

βk

β̂

∣

∣

∣

∣

m

βk (6.57)

The evaluation of the internal variableεvk,n+1 at the current step is obtained by un-

conditionally stable backward-Euler integration scheme as it is already introduced in

equation 6.51. The residual expressionrk is defined as a function of internal variable

εvk

rk(ε
v
k, n+1) := εvk, n+1 − εvk, n −∆t γvk(βk, n+1) = 0 (6.58)

which requires local Newton iteration stepi+ 1

εv, i+1
k,n+1 = εv, ik, n+1 − rik /Ki

k (6.59)

where the local tangent termKi
k is defined as follows

Ki
k := ∂εv

k, n+1
rk

∣

∣

∣

εv, i
k, n+1

= 1−∆t
(m+ 1)

η

∣

∣

∣

∣

∣

βi
k, n+1

β̂

∣

∣

∣

∣

∣

m

∂εv
k, n+1

βi
k,n+1 (6.60)

The unimodular part of the second Piola-Kirchoff stress andcorresponding tangent

moduli of the viscous response can be written identical formthat is stated in equations

6.53 and 6.55. Then theck term in equation 6.56 can be obtained as follows

ck =
∂σk
∂εk

=
∂σk
∂εek

(

1− ∂εvk
∂εk

)

=
∂σk
∂εek

1

Kk
. (6.61)

Note that, the last derivative term in equation 6.60 and the derivative term in equation

6.61 are directly depend on the choice of the free-energy form. By using the relations

of equations 6.46 and 6.47 for the specific choice of the free-energy, both derivatives

gives the same result asρ(r)µ.
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6.4.1.1 Proposed model-I - local-based bivariate von Misesdispersion formula-

tion

In proposed model I, there is used single bivariate von Misesdensity distributionρ(r)

for the sheet and fiber orientations. However, fiber and sheetdirections formulated

based on their own shear modulus such asµv,f andµv,s respectively. Since there are

defined different shear moduli for the fiber and sheet directions, it requires the integral

averaging over unit micro-sphere for each of the direction.Then the micro-viscous

free energy functions along fiber and sheet directions are defined as follows:

Ψ̄micv,f
k=1:p (εk, ε

v,f
k ) = 1

2
ρ(rk)µ

v,f(εk − εv,fk )2

Ψ̄micv,s
k=p+1:2p(εk, ε

v,s
k ) = 1

2
ρ(rk)µ

v,s(εk − εv,sk )2
(6.62)

wherep is the total number of integration points over micro-sphere. There is defined

two separate free-energy function and it requires twice of internal variables than the

used integration points. For example, if there is used 21 integration points such as

p = 21, then the number of total interval variables will be 42 that includes 21 internal

variable for the fiber direction and 21 for the sheet directions. In the same logic, the

local tangent termsKi
k reads

Kf
k=1:p := 1−∆t (m+1)

ηf

∣

∣

∣

∣

βf
k, n+1

β̂

∣

∣

∣

∣

m

ρ(rk)µ
v,f

Ks
k=p+1:2p := 1−∆t (m+1)

ηs

∣

∣

∣

βs
k, n+1

β̂

∣

∣

∣

m

ρ(rk)µ
v,s

(6.63)

6.4.1.2 Proposed model-II - local-based planar and bivariate combined von

Mises dispersion formulation

In proposed model II, we formulate an angular-integration type anisotropic viscoelas-

tic constitutive model at finite strains that uses planar andbivariate von Mises distri-

bution functions for different orthogonal directions to capture fiber dispersion for soft

biological tissues. It utilizes a quadratic free-energy function in the logarithmic space

and a linear evolution equation in each orientation direction. The overstress response

is obtained through distinct orientation directions by numerical evaluation of averag-

ing integrals over the unit micro-sphere by making use ofpn number of quadrature
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points for the normal contribution and over the unit planar circle by usingpfs number

of quadrature points for the fiber-sheet plane.

Since we present the unit fiber directionr in a planar circle forf − s plane, thenθ

in equation 6.41 drops out andr reduces in two dimensional vector ine1 − e2 plane.

The main reason of the requirement of the planar circle integration in the in-plane,

is covering even for the nearly anisotropic dispersion behaviours such as the cases

where the concentration parameterb > 100. Otherwise less number of quadrature

points over micro-sphere cannot sustain the normalizationof overall density func-

tion ρ which can cause inaccurate results, see Figure 6.7. The numerical integration

over the circle and sphere provides a numerical evaluation of averaging integrals for

a discrete set of orientations. The schematic representation of integration points and

stretch vectors over a planar circle and the micro-sphere isshown in Figure 6.6. The

(a) (b)

(c) (d)

x

y

x

y

z

Figure 6.6: (a) Demonstration of fully symmetric integration points over planar circle,

given for 30 integration points (pfs) in half circle (b) Idealization of tissue network

for the non-equilibrium response, the planar circle model (c) Demonstration of fully

symmetric integration points over micro-sphere, given for21 integration points (pn) in

half circle (d) Idealization of tissue network for non-equilibrium response, the micro-

sphere model.
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micro affine-stretch of a line element in ther orientation and corresponding loga-

rithmic strain are defined similarly as in equation 6.42. Note that, since the location

of integration points are different in a circle and a sphere,the orientation directions

are also different from each other, see Figure 6.6. The non-equilibrium part of the

macroscopic free energy is defined as the angular-integration of micro-viscous free

energies over the planar circle and micro-sphere in discrete orientation sets based on

von Mises probability function which is defined equation 6.43. However, that rela-

tion is valid for unit micro-sphere approach. Note that, when the integration to be

performed over planar circle,|S| will describe the total circumference of the unit

circle which corresponds for2π and the integranddA should be replaced withdφ.

By the proposed model II, it is aimed to sustain the normalityof dispersion of fibers

and sheets in-plane by taking the circular planar integration and the normal direction

contributes isotropic way by the integral averaging over the micro-sphere. The model

uses2pfs + pn internal variables in total. It is because the planar integration points

may be different from the unit-sphere integration points. In addition to that, there

have been defined distinct mechanical properties for orthogonal directions in fiber,

sheet, and normal, such as shear moduli (µf , µs andµn) and viscosity (ηf , ηs and

ηn). Then the resultant micro-viscous free energy forms are given below whereρf

andρs are the same density distributions along the orthogonal directions, andρn is

the density distribution to describe the behaviour for normal orientation. It is mainly

contributes to isotropic behaviour of the viscous stress ifρn is taken as 1.

Ψ̄micv,f
k=1:pfs

(εk, ε
v,f
k ) = 1

2
ρf(rk)µ

v,f(εk − εv,fk )2

Ψ̄micv,s
k=pfs+1:2pfs

(εk, ε
v,s
k ) = 1

2
ρs(rk)µ

v,s(εk − εv,sk )2

Ψ̄micv,n
k=1:pn

(εk, ε
v,n
k ) = 1

2
ρn(rk)µ

v,n(εk − εv,nk )2

(6.64)

The second Piola-Kirchhoff stress of the viscous response reads to continuous aver-

aging through orientation directions as follows

S̄
v

=
∑

k=1:pfs
4Ψ̄v′

f,4krk ⊗ rkwk

+
∑

k=pfs+1:2pfs
4Ψ̄v′

s,4krk ⊗ rkwk

+
∑

k=1:pn
4Ψ̄v′

n,4krk ⊗ rkwk

(6.65)
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Then corresponding algorithmic viscous tangent moduli canbe written as

C̄algo
v =

∑

k=1:pfs
2Ψ̄v′′

f,4krk ⊗ rk ⊗ rk ⊗ rkwk

+
∑

k=pfs+1:2pfs
2Ψ̄v′′

s,4krk ⊗ rk ⊗ rk ⊗ rkwk

+
∑

k=1:pn
2Ψ̄v′′

n,4krk ⊗ rk ⊗ rk ⊗ rkwk

(6.66)

6.4.2 Proposed formulations for global-based dispersion-type anisotropic vis-

coelasticity

In the second approach, we define the density distributionρ(r) in global manner that

acts as an multiplier to the micro-viscous free energies. Inother words, the density

distribution is placed outside of the micro-viscous free energy and enters the formu-

lation during the integral averaging of stress and tangent moduli expressions. Then,

the non-equilibrium part of the macroscopic free energy is defined as the angular-

integration of micro-viscous free energies over the unit micro-sphere that contributes

in discrete orientation sets based on von Mises probabilityfunctionρ(r)

Ψ̄v(C̄,F ;I) = Ψ̄v(ε;I) =
1

|S|

∫

S

ρ(r)Ψ̄micv(F , r) dA, (6.67)

where|S| = 4π is the total area of the unit sphere. By contribution of each orientation

set to the macroscopic level can be defined as a continuous average over micro-sphere

as follows

〈•〉 = 1

|S|

∫

S

(•) dA ≈
p

∑

k=1

wk (•)k and Ψ̄v(C̄,F ;I) = 〈ρψmicv(ε, εv)〉,

(6.68)

wherewk
k=1:p are the weight factors of the set integration points relatedwith dis-

crete orientation directionsrk
k=1:p andp is the total number of integration points.

Then, the logarithmic stresses and the thermodynamical forces conjugate to the inter-

nal variables can described identical in the form of equation 6.45. Accordingly the

viscous free energy is defined in the quadratic form as follows

Ψ̄micv
k (εk, εv) =

1

2
µv(εk − εvk)

2, (6.69)

Then, by using the relation between equations 6.45 and 6.69,the logarithmic stress

and thermodynamical stress-like thermodynamical force are obtained as following in
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the orientation directions

σv
k := µv(εk − εvk) and βk := σv

k (6.70)

The dissipated energy in the dashpot of the Maxwell element shown in Figure 6.31

is identical to equation 6.48. Both linear and nonlinear solution of the evolution

equation will be provided below which will exclude the density distributionρ(r)

compared to the local-based formulations.

Linear Evolution Equation

The linear evolution equations for the interval variables and corresponding backward

Euler integration scheme is identical to equations 6.50 and6.51. By using these

equations, the internal variable can be determined as a closed form expression as

follows

εvk,n+1 =
(∆t/η)µεk, n+1 + εvk,n

(1 + ∆tµ/η)
, (6.71)

Then, the unimodular part of the second Piola-Kirchoff stress of the viscous response

reads as a continuous average though orientations directions

S̄
v
=

∑

k=1:p

4ρ(r)Ψ̄v′

4krk ⊗ rkwk , (6.72)

whereΨ̄v′

4k is the derivative resultant of the micro-viscous free-energy with respect to

the orientation invariants and already given in equation 6.54. Then, the unimodular

part of the algoritmic viscous tangent moduli can be writtenas

C̄algo
v =

∑

k=1:p

2ρ(r)Ψ̄v′′

4krk ⊗ rk ⊗ rk ⊗ rkwk . (6.73)

whereΨ̄v′′

4k is the second derivative of the micro-viscous free-energy with respect to

the orientation invariants and written as

Ψ̄v′

4k
:=

(ck − 2σk)

I24k
where ck =

∂σk
∂εk

=
∂σk
∂εek

(

1− ∂εvk
∂εk

)

=
µη

η +∆tµ
. (6.74)

Non-linear Evolution Equation

In the previous sub-section, the non-linear evolution equations 6.57-6.61 are given in

the general form that includes the specific derivatives of stress and overstress with

respect to strain and strain-like internal variables, respectively. Therefore, we do
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not repeat the same steps here. The important point in the global-based dispersion

formulations is, logarithmic stress and overstress measures do not include density

distribution in local manner, see equation 6.70. Then, by using equation 6.69 and

6.70, the last derivative term in equation 6.60 and the derivative term in equation

6.61 yield the same result, such asµ due to the specific form of the micro-viscous

free-energy form.

6.4.2.1 Proposed model-III - global-based bivariate von Mises dispersion for-

mulation

The proposed model III is formulated similar to model I by using a single bivariate

von Mises density distributionρ(r) for the sheet and fiber orientations. The only dif-

ference is that the density distributions are imposed in a global manner rather than

embedded in the micro-viscous free energies. The fiber and sheet directions formu-

lated based on separate shear modulus such asµv,f andµv,s respectively. Since there

are defined different shear moduli for the fiber and sheet directions, it requires the

integral averaging over unit micro-sphere for each of the direction. Then the micro-

viscous free energy functions along fiber and sheet directions are defined as follows

Ψ̄micv,f
k=1:p (εk, ε

v,f
k ) = 1

2
µv,f(εk − εv,fk )2

Ψ̄micv,s
k=p1:2p(εk, ε

v,s
k ) = 1

2
µv,s(εk − εv,sk )2

(6.75)

wherep is the total number of integration points over micro-sphere. Since there is

defined two separate free-energy function, it requires double of internal variables than

the used integration points. In the similar manner, the local tangent termsKi
k reads

Kf
k=1:p := 1−∆t (m+1)

ηf

∣

∣

∣

∣

βf
k, n+1

β̂

∣

∣

∣

∣

m

µv,f

Ks
k=p+1:2p := 1−∆t (m+1)

ηs

∣

∣

∣

βs
k, n+1

β̂

∣

∣

∣

m

µv,s

(6.76)

Then the unimodular part of the second Piola-Kirchhoff stress of the viscous response

yields to continuous averaging though orientation directions as follows

S̄
v
=

∑

k=1:p

4ρf (r)Ψ̄
v′

f,4krk ⊗ rkwk +
∑

k=p+1:2p

4ρs(r)Ψ̄
v′

s,4krk ⊗ rkwk , (6.77)
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whereρf(r) andρs(r) are the density distributions along different orthogonal direc-

tions. They can either be taken the same or different. Then, similarly the unimodular

part of the algorithmic viscous tangent moduli can be written as

C̄algo
v =

∑

k=1:p

2ρf(r)Ψ̄
v′′

f,4krk⊗rk⊗rk⊗rkwk+
∑

k=p+1:2p

2ρs(r)Ψ̄
v′′

s,4krk⊗rk⊗rk⊗rkwk

(6.78)

6.4.2.2 Proposed model-IV - global-based planar and bivariate combined dis-

persion formulation

The proposed model IV is formulated in a similar manner to model II by using an

angular-integration type anisotropic viscoelastic constitutive model at finite strains

that uses planar and bivariate von Mises distribution functions for different orthogonal

directions such as fiber, sheet, and normal. In model IV, we utilize a quadratic free-

energy function in logarithmic space and a power-type non-linear evolution equation

in each orientation direction. The general frame work is thesame as model II except

the definition of the density distributionρ(r) acts on the micro-viscous free-energies

in globally. On the contrary to model II, in model IV since we adopt the density

distribution function in global stress and moduli expressions, it is not only satisfy the

normalization condition on linear evolution-law but also meet the normalization for

non-linear evolution. The micro-viscous free energy functions are defined as below

Ψ̄micv,f
k=1:pfs

(εk, ε
v,f
k ) = 1

2
µv,f(εk − εv,fk )2

Ψ̄micv,s
k=pfs+1:2pfs

(εk, ε
v,s
k ) = 1

2
µv,s(εk − εv,sk )2

Ψ̄micv,n
k=1:pn

(εk, ε
v,n
k ) = 1

2
µv,n(εk − εv,nk )2

(6.79)

Then, the unimodular part of the second Piola-Kirchhoff stress of the viscous response

reads to continuous averaging though orientation directions as follows

S̄
v

=
∑

k=1:pfs
4ρf(r)Ψ̄

v′

f,4krk ⊗ rkwk

+
∑

k=pfs+1:2pfs
4ρs(r)Ψ̄

v′

s,4krk ⊗ rkwk

+
∑

k=1:pn
4ρn(r)Ψ̄

v′

n,4krk ⊗ rkwk

(6.80)
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Then, similarly the unimodular part of the algorithmic viscous tangent moduli can be

written as

C̄algo
v =

∑

k=1:pfs
2ρf(r)Ψ̄

v′′

f,4krk ⊗ rk ⊗ rk ⊗ rkwk

+
∑

k=pfs+1:2pfs
2ρs(r)Ψ̄

v′′

s,4krk ⊗ rk ⊗ rk ⊗ rkwk

+
∑

k=1:pn
2ρn(r)Ψ̄

v′′

n,4krk ⊗ rk ⊗ rk ⊗ rkwk

(6.81)

6.4.2.3 Proposed model-V - global-based planar von Mises dispersion formula-

tion

Proposed model-V uses planar von Mises density distribution functionρ(r) for the

sheet and fiber orientations and threat the normal directionby using isotropic be-

haviour through the unit-micro sphere. Additionally, as another alternative approach,

we also add dispersion in the normal direction. This formulation is similar to model I

however, it also contains the shear modulus regarding to thenormal directionµv,s in

addition to shear modulus of fiber and sheet directions such as µv,f andµv,s respec-

tively. Since there are defined different viscous properties for orthogonal directions

(fiber, sheet and normal), it requires the integral averaging over unit micro-sphere for

each of the direction. Then the micro-viscous free energy functions along orthogonal

directions are defined as follows

Ψ̄micv,f
k=1:p (εk, ε

v,f
k ) = 1

2
)µv,f(εk − εv,fk )2

Ψ̄micv,s
k=p+1:2p(εk, ε

v,s
k ) = 1

2
µv,s(εk − εv,sk )2

Ψ̄micv,n
k=2p+1:3p(εk, ε

v,n
k ) = 1

2
µv,n(εk − εv,nk )2

(6.82)

Then, the unimodular part of the second Piola-Kirchhoff stress of the viscous response

reads to continuous averaging though orientation directions as follows

S̄
v

=
∑

k=1:p 4ρf (r)Ψ̄
v′

f,4krk ⊗ rkwk

+
∑

k=p+1:2p 4ρs(r)Ψ̄
v′

s,4krk ⊗ rkwk

+
∑

k=2p+1:3p 4Ψ̄
v′

n,4krk ⊗ rkwk

(6.83)

147



Then, similarly the unimodular part of the algorithmic viscous tangent moduli can be

written as

C̄algo
v =

∑

k=1:p 2ρf(r)Ψ̄
v′′

f,4krk ⊗ rk ⊗ rk ⊗ rkwk

+
∑

k=p+1:2p 2ρs(r)Ψ̄
v′′

s,4krk ⊗ rk ⊗ rk ⊗ rkwk

+
∑

k=2p+1:3p 2Ψ̄
v′′

n,4krk ⊗ rk ⊗ rk ⊗ rkwk

(6.84)

6.4.3 Numerical sensitivity of the AI-based anisotropic dispersion

It is essential to check the numerical sensitivity of the AI-based density distribution

function ρ, while using different numbers of integration points on theunit micro-

sphere or on the unit planar circle. The numerical integration points over the unit

micro-sphere varies from 42 to 600, which is also the number of orientations for

micro-fibers. The visual representation of 42 integration points over the unit micro-

sphere is given in Figure 6.63. Due to the symmetry in the sphere, in numerical ap-

plications half of the total integration points are sufficient to reflect overall behaviour.

Alastrué et al. [156] stated that 368 directions are sufficient to catch the accurate re-

sults where the concentration parameterb ≤ 20. For the higher degree of anisotropy

there should be used much more integration points over the unit micro-sphere. The

resultant density functions, calculated for planar von Mises and bivariate von Mises

distributions, are given in Figure 6.7 by the numerical integration over micro-sphere.

Figure 6.71 represents the planar von Mises density distribution results by changing

the concentration parameterb. 21, 39 and55 are the numerical integration results

of density functions those are calculated by 21, 39 and 55 integration points over

the unit micro-sphere. The "quad" is the result of quadrature integral calculated on

Python that provides very close result to exact one. The planar density distribution

in 5.4 satisfies the normalization naturally due to the form of the density function.

Therefore the quadrature gives the exact results of 1 every points of the concentration

factor b. However, 21 point integration is highly accurate up tob ≤ 2.1, 39 point

integration is highly accurate up tob ≤ 4.3 and 55 point integration is highly accurate

up to b ≤ 6.4. These limits are considered of the error is less than %1. It is also

shown that by increasing the concentration parameterb, while 21 and 39 points of nu-
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Figure 6.7: (a) Graphical representation of the relationship between the normalized

planar density distributionρ and the concentration parameterb by numerical integra-

tion over micro-sphere for different number of integrationpoints, (b) Graphical rep-

resentation of the relationship between the normalized bivariate density distribution

ρip andρop and the concentration parametersa andb respectively by the numerical

integration over micro-sphere for different number of integration points

merical integrals over unit sphere overestimates the density distributionρ, 55 points

of integration underestimates. It is also concluded that, there should be used much

higher integration points over the unit micro-sphere for highly anisotropic dispersion

histology.

Figure 6.72 represents the numerical results of bivariate von Mises density distribution

over the unit micro-sphere by changing the concentration parametera andb for in-

plane and out-of-plane distributions, respectively. Similarly, 21, 39 and55 are the

numerical integration results of density functions those are calculated by 21, 39 and

55 integration points over the unit micro-sphere and "ip" and "op" denotes the in-

plane and out-of-plane distributions separately. The in-plane numerical results for

21, 39 and 55 integration points are in divergence trend fromthe beginning. The

out-of-plane integral results does not suffers from the accuracy in the lower values of

concentration factorsb. Since the overall density is multiplicatively decomposedinto

in-plane and out-of-plane components, their multiplicative product is the determinant

of the overall behaviour and it is identical to the numericalintegration results of planar

density distribution which is given in Figure 6.71. The out-of-plane accuracy can be
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maintained forb ≤ 4.0 with %1 error. The deviation trend of the out-of-plane results

are in nonlinear behaviour and gives more accurate result for 55 integration points

over the unit micro-sphere. To reflect the more accurate results for high anisotropy

for bivariate von Mises density distribution, there shouldbe used more integration

points.

Due to the three-dimensional orientation sets of the unit micro-sphere, integration

points should be spread around the spherical surface in 3-D space. Therefore, it

is necessary to use high number of integration points to get more accurate results

for highly anisotropic dispersion histology; otherwise, low numbers of integration

points cause erroneous numerical integration for highly anisotropic fiber distributions,

which is determined by the concentration parameterb. Therefore, we proposed to use

the unit planar circle integration for planar type of dispersion characteristics. Since

planar circle integration reduces the working space from 3-D to 2-D, it is possible to

get higher accuracy with small number of integration pointscompared to unit micro-

sphere. The visual representation of 60 integration pointsover the unit planar circle is

given in Figure 6.61. The numerical sensitivity of the unit planar circular integration

approach is shown in Figure 6.8 against concentration factor b.

Concentration parameter (b)
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f : 30
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Figure 6.8: The relationship between the normalized planardensity distributionρ and

the concentration parameterb by numerical integration over the unit planar circle for

different number of integration points.

In the Figure 6.8,f ands refer for the direction vectors for fiber and sheet, respec-
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tively. Numbers in the legend, represent the half of the integration points over the

planar circle, such as{3, 6, 9, 15, 20, 30, 60}. In the sensitivity analysis, the fiber and

sheet is examined in a single numerical integration calculation which takes the or-

thogonality of fiber and sheet into the account. Therefore, while for the even numbers

of half integration points result with the overlap of fiber and sheet density distribution,

the odd numbers of half integration points results with separation of density distribu-

tions for fiber and sheet directions by overestimating and underestimating behaviour

in Figure 6.8. It is obvious that even for a low number of integration points over

the unit planar circle (i.e. 9) it is sufficient to the get accurate results up tob ≤ 10.

By increasing the integration points up to 30, it provides sufficient accuracy even for

b = 100 which is nearly distinct anisotropic case. It should be noted that for the or-

thogonal fiber families, it is important to use an even numberof integration points to

keep the symmetry of fiber directions.

6.5 Representative Numerical Examples

In this section, mechanical parameters of the proposed models are fitted numerically

for cyclic triaxial shear and shear relaxation tests performed by [11] for human my-

ocardium tissues. The agreement between the numerical analysis based on proposed

models and the experiment has been examined for different shear modes. In order to

validate the proposed models, FEAP was used as a finite element analysis program

[178]. It was revealed from the experiments [101] that, human left LV myocardium

presents a highly nonlinear, anisotropic, and viscoelastic response under large defor-

mations. Biaxial test is not sufficient alone to fit a constitutive model parameters that

may subject to different type of loadings. Therefore, it is essential to develop a con-

stitutive model that also reflects the direction dependent material response to shear

loadings. Accordingly, Sommer et al. [11] performed pioneering experiments to ex-

amine the shear mechanical properties of human myocardium tissue by slicing small

cubic specimens from the middle wall of the left ventricle. Then, they identified the

fiber, sheet, and normal directions of samples to be tested for triaxial simple tests

and shear relaxations, as shown schematically in Figure 6.9. Triaxial shear loading

scenario represents the six modes of simple shear loading for orthogonal shear planes
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fs

s

Figure 6.9: Schmetic demonstration of the experimental steps performed by Sommer

et al. [11].(The sliced heart Figure was partly generated using Servier Medical Art,

provided by Servier, licensed under a Creative Commons Attribution 3.0 unported

license)
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Figure 6.10: Schematic representation of six triaxial shear modes namely (fs), (sf),

(nf), (fn), (sn), (ns), reproduced from [1]

those are (fs), (fn), (sf ), (sn), (nf ) and (ns). In the notation of shear modes, the

first letter refers for the normal direction of the plane and the second letter represents

the loading direction, see Figure 6.10. The corresponding deformation gradientF αβ
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for the shear modesαβ(α, β = f, s, n) is defined as below

F αβ = 1 + γeβ ⊗ eα (6.85)

whereα 6= β. Based on the period defined for the cyclic triaxial shear experiment

in [1], a sinusoidal displacement have been defined in the numerical analysis in the

following form

γ(t) = γmax sin(2πt / τ) , where γmax = 0.5 and τ = 474 s (6.86)

Since elastic mechanical properties of the human myocardium tissue that is corre-

sponding to quasi-static triaxial shear tests have alreadybeen obtained by [1] based

on the baseline hyperelastic incompressible constitutivemodel, here we re-produce

the elastic triaxial shear fits in the same manner and shown inFigure 6.11. The elastic
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Figure 6.11: Elastic triaxial shear test and numerical fits for (fs), (sf), (nf), (fn), (sn),

(ns).

parameters are given in Table 6.1 . Dispersion parameters for the fiber and for the

sheet have also been identified experimentally by Sommer et al. [11] asκf = 0.08

andκs = 0.09. These parameters are corresponds for theaf = 3.48 andas = 3.15

as a concentration parameters for the two orthogonal directions stated in the equation

5.11. The polar plot of the density distribution (DD) forf ands directions for the
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Figure 6.12: The polar plot of the two families of fibers (f ands) distribution based

on density distribution (DD) for the myocardium tissue.

Table 6.1: Elastic material parameters for the baseline hyperelastic constitutive model

[1] wherea, af , as, afs are in [kPa], andb, bf , bs, bfs are dimensionless.

a b af bf as bs afs bfs

0.4 6.55 3.05 29.05 1.25 36.65 0.15 6.28

human myocardium is given by Figure 6.12. Once completion ofcyclic triaxial shear

experiments, relaxation triaxial shear tests have been also performed by Sommer et

al. [11]. They performed shear relaxation tests at 0.5 amount of shear for six shear

modes in order to tract the direction dependent viscoelastic relaxation response of

the tissue. Therefore an instant shear step applied to 0.5 amount of shear and it was

maintained for 300 seconds. While fitting the viscous material mechanical properties,

Latin Hypercube Sampling Design has been used as a design of experiment method.

Randomly, 1000 design points were generated in a parameter range, and optimum

data sets have been obtained. The viscoelastic material parameters are obtained by

considering both triaxial cyclic and relaxation shear loadings. In the following part,

the fitting performance of the proposed models in sub-section 6.4 will be presented

one by one.
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6.5.1 Numerical results of model-I

In this sub-section, triaxial cyclic shear and relaxation shear results of Model-I, which

is introduced in sub-section 6.4.1.1, will be presented. The parameter set which pro-

vide the best fit for the both cyclic and relaxation shear tests are given in Table 6.2.

Table 6.2: Viscous material parameters for the Model-I whereµf , µs are directional

shear moduli in [kPa], andηf , ηs are directional viscosities in [kPa s],β̂ is the activa-

tion parameter,mf ,ms, a andb are dimensionless.

µf µs ηf ηs β mf ms a b

100 90 400000 300000 1.0 2.0 2.0 5.0 5.0

Then, corresponding polar plots of the density distribution functions for the viscous

response of sheets and the fiberf directions at in-plane and for the normaln direction

at out-of-plane are given in Figure 6.13.

0◦0◦

30◦30◦

60◦60◦
90◦90◦

120◦120◦

150◦150◦

180◦180◦

210◦210◦

240◦240◦

270◦270◦
300◦300◦

330◦330◦

f

s
n

12
2

34

Figure 6.13: Model I - The polar plots of the two families of fiber (f) and sheet(s)

directions along in-plane distribution and out-of-plane distribution through normal

direction (n) for the viscous response of the myocardium.

Figure 6.14 presents the numerical results of Cauchy stressversus the cyclic amount
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Figure 6.14: Cauchy stressσ vs amount of shearγ of Model-I response with respect

to the cyclic triaxial shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

of shear under triaxial cyclic shear loading. It is seen that, although none of the tri-

axial cyclic shear responses are able to catch the peak corners, Model-I averagely

captures the low-level strain responses. There are deviations for all of the shear direc-
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tions. Due to the decreasing effect of the local-based density distribution on nonlinear

evolution law, the continiuous integral averaging cannot satisfy the normalization of

the numerical integral over the micro-sphere.
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Figure 6.15: Cauchy stressσ vs relaxation time of Model-I response with respect to

the triaxial relaxation shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

Figure 6.15 presents the relaxation response of Model-I under a 300-second relax-

ation condition. In the experimental data, it is seen that after the instant loading of

the tissue, there is a rapid decrease around the initial moments≈0-5 seconds for all

the shear modes. Then, continuation of the relaxation leadsto steady-state values of

stress. In the numerical Model-I, the instant decrease at the initial moments is ob-

tained for all of the shear modes. All of the responses had nearly converged to the

experimental values at the end of the test duration and were about to reach the steady-

state response. Due to the local-based density distribution over the corresponding

shear moduli in each direction, it causes underestimation and non-accurate observa-

tions.

The main problem in Model-I confronts itself in the integralaveraging stage through

stress and moduli calculations. Since, we use local-based von Mises dispersion in the

formulation, density distributionρ(r) reveals in free-energy definition, see equation

6.62. Therefore, it has to be part of the stress and overstress definitions. Then, it enters

the non-linear evolution equation and is used as a multiplier in the local tangent term
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as defined in equation 6.63. In the local tangent term, the density distribution is not

only used as a multiplier of shear moduliµ but it also ingredient of the overstress. Due

to the nonlinear exponentm, the density distribution directly decrease the activation

of the stress and affects the result of the evolution equation. It causes a violation of

the numerical integral averaging during the stress and moduli calculations. Therefore,

it is concluded that the nonlinear evolution equation is notsuitable for local-based

formulations.

6.5.2 Numerical results of model-II

In order to decouple the dispersion characteristics of the normal direction and fiber-

sheet plane, we used a novel planar dispersion integration for the fiber-sheet plane

and isotropic contribution of normal direction get involved through integral averaging

over the unit-micro sphere. Since we have reported the problem of Model-I as a nu-

merical issue that cause violation of the normalization of the density distributionρ(r)

in non-linear evolution equations, in Model-II we preferred to use linear-evolution

law. The best fit parameter sets for both the cyclic and relaxation shear tests are given

in Table 6.3.

Table 6.3: Viscous material parameters for the Model-II where µf , µs andµn are

directional shear moduli in [kPa], andηf , ηs andηn are directional viscosities in [kPa

s], b is the dimensionless concentration parameter.

µf µs µn ηf ηs ηn b

90 50 40 100000 50000 3500 20.0

Accordingly, the polar plot of the density distribution (DD) function for f and s

directions in human myocardium is given in Figure 6.16 for the viscous response.

For the non-equilibrium response, it is shown that the fiber and sheet responses are

more anisotropic. The corresponding concentration parameter for the fiber and the

sheet isb = 20. Figure 6.17 presents the numerical results of Cauchy stress versus

the cyclic amount of shear under triaxial cyclic shear loading. As revealed by the

experimental studies, hysteresis increases asf > s > n. For (fs) and (fn), it is
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Figure 6.16: The polar plot of the two families of fibers (f ands) ased on density

distributions (DD) for the viscous response of Model II.

possible to catch the upper and lower peak values by increasing the fiber and sheet

shear modulus (µ) however there is a trade-off between the response of the tissue

between cyclic shear and shear relaxation. Therefore, these parameters are kept as an

optimum parameter set. Both (sf) and (sn) are very closely tobe identical with the

experimental results and reflect an accurate response. (nf)and (ns) capture the average

response of the tissue except for the nonlinear behaviour atthe corner peaks. Due to

use of a relatively small shear modulus (µn) in the normal direction and low viscosity

in the normal direction (ηn), corner peaks could not captured totally. Additionally,

if relatively higher dispersion had been used for the viscous response of the model

such asb < 10, then (fs) and (sf) coupling effects increases which causesrotation of

the curves of coupling modes with respect to the origin and result of a larger slope of

response and deviates from the experimental results.

Figure 6.18 presents the relaxation response of the proposed model under 300 seconds

relaxation condition. In the Model-II, the instant decrease is captured in average man-

ner. All of the responses nearly converges to the experimental values at the end of the

test duration and about to reach the steady-state response.It is possible to obtain more

consistent relaxation response by decreasing the viscosity of the isotropic behaviour

based onn direction (ηn), however it will cause the decrease of peak responses of the

cyclic triaxial results.
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Figure 6.17: Cauchy stressσ vs amount of shearγ of Model-II response with respect

to the cyclic triaxial shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

Model II exhibit good agreement with anisotropic nature of the myocardium tissue in

all shear directions. It is not only take into the account fordispersion characteristics of

viscoelasticity but also it presents an accurate numericalintegration over unit circle.
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Figure 6.18: Cauchy stressσ vs relaxation time of Model-II response with respect to

the triaxial relaxation shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

6.5.3 Numerical results of model-III

The Model-III is formulated based on a global-based bivariate von Mises distribution

and is presented in sub-section 6.4.2.1. The model reflects the three-dimensional dis-

persion characteristics through multiplication of two uncoupled density distributions

namely in-planeρip and out-of-planeρop. Therefore, there are not any mechanical

viscous properties defined for the normal direction becauseit is already taken into

account by the bivariate formulation automatically. The main difference of Model-

III from Model-I is comes up with the constitutive modellingapproach through the

density distribution. Model-III uses global-based approach and use density distribu-

tion during the integral averaging of stress and moduli calculations which satisfy the

normality of the numerical integral. The parameter set which gives the best fit for the

both cyclic and relaxation shear tests at the same time are given in Table 6.4.

Then, corresponding polar plots of the density distribution functions for the viscous

response of sheets and fiberf directions at in-plane and for the normaln direction at

out-of-plane are given in Figure 6.19. Figure 6.20 presentsthe numerical results of

Cauchy stress versus the cyclic amount of shear under triaxial cyclic shear loading.

(fs), (fn), (sf) and (sn) shear modes exhibit good agreementwith experimental results.
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Table 6.4: Viscous material parameters for the Model-III whereµf , µs are directional

shear moduli in [kPa], andηf , ηs are directional viscosities in [kPa s],β̂ is the activa-

tion parameter,mf ,ms, a andb are dimensionless.

µf µs ηf ηs β mf ms a b

90 80 400000 300000 1.0 2.0 2.0 5 3.5

0◦0◦

30◦30◦

60◦60◦
90◦90◦

120◦120◦

150◦150◦

180◦180◦

210◦210◦

240◦240◦

270◦270◦
300◦300◦

330◦330◦

f

s
n

1
1

2
2

3
3

4

Figure 6.19: Model III - The polar plots of the two families offiber (f) and sheet(s)

directions along in-plane distribution and out-of-plane distribution through normal

direction (n) for the viscous response of the myocardium.

The curved-shape behaviour can be avoided by decreasing shear moduli along orthog-

onal directions, but it also causes a decrease in peak stresses at corner edges. Another

parameter is viscosityη that has major effect on overstress peak results. On the other

hand, it causes a delay in the relaxation test, which is a trade-off for the choice of

the best parameter set. (nf) and (ns) are not able to catch peak responses, but they

exhibit average manner behaviour. In bivariate formulation, the viscous response of

the normal direction has been imposed by the contribution offiber and sheet direction

through density distribution functionρ. In order to narrow the hysteresis regarding

to the normal related shear modes, the out-of-plane concentration parameterb should

be increased. However, there is a coupling effect due to the dispersion formulation,
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Figure 6.20: Cauchy stressσ vs amount of shearγ of Model-III response with respect

to the cyclic triaxial shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

and the decreasing contribution of the normal direction also narrows the hysteresis of

the fiber and sheet directions. Therefore, the parameter setis selected to represent the

optimal manner for each response.
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Figure 6.21 presents the relaxation response of the Model-III under a 300-second re-

laxation state. The rapid decrease in Model-III much smoother than Model-I and II

and more closely to experimental result. It is mostly related with the shear modu-

lus of the fiber and sheet directions. All of the responses hadnearly converged to

the experimental values at the end of the test duration and were about to reach the

steady-state response. The global-based bivariate model mostly exhibits anisotropy
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Figure 6.21: Cauchy stressσ vs relaxation time of Model-III response with respect to

the triaxial relaxation shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

in the preferred fiber and sheet directions and a minor effectof isotropic contribu-

tion of the normal direction. The model is close to the transversely isotropic nature

of a tissue. Therefore, the trixial cyclic shear response that is related to the normal

direction covers the experiment in an average sense.

6.5.4 Numerical results of model-IV

Due to the normalization restrictions of global-based models during the continuous

integral averaging of stress and moduli, in Model-II, therehas been used linear evo-

lution law. Since, the global-based formulations directlymeet the normalization con-

dition of the numerical integral, we use a nonlinear evolution law in Model-IV. It has

the same constitutive relations as the Model-II and the onlychange is the nonlinear-
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ity of the evolution. In a similar manner, we use circular integral for the dispersion

characteristics of fiber and sheet directions, and the isotropic contribution of the nor-

mal direction is maintained by using numerical integral over the unit micro-sphere.

Accordingly, the optimum parameter set for the both cyclic and relaxation shear tests

are given in Table 6.5. Accordingly, the polar plot of the density distribution (DD)

Table 6.5: Viscous material parameters for the Model-IV where µf , µs andµn are

directional shear moduli in [kPa],ηf , ηs andηn are directional viscosities in [kPa s],

β̂ is the activation parameter,mf , ms, mn are exponents andb is the dimensionless

concentration parameter.

µf µs µn ηf ηs ηn β̂ mf ms mn b

90.7 77.0 32.3 1237500 278300 27235 1.0 2.0 2.0 2.0 20
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Figure 6.22: The polar plot of the two families of fibers (f ands) ased on density

distributions (DD) for the viscous response of Model IV.

function forf ands directions in human myocardium is given in Figure 6.22 for the

viscous response. For the non-equilibrium response, by taking advantage of the nu-

merical accuracy advantage of the circular integration, itis possible to use a higher

value of the concentration factor, which also makes the distribution more anisotropic

in the fiber and sheet directions. The corresponding concentration parameter for the

fiber and the sheet isb = 20. Figure 6.23 presents the numerical results of Cauchy

stress versus the cyclic amount of shear under triaxial cyclic shear loading. Cyclic
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Figure 6.23: Cauchy stressσ vs amount of shearγ of Model-IV response with respect

to the cyclic triaxial shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

responses of shear modes (fs), (fn), (sf) and (sn) exhibit perfect agreement with the

experimental data. (nf) and (ns) capture the average response of the tissue except for

the nonlinear behaviour at the corner peaks. It is mainly because of the isotropic type
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of contribution in the normal direction.

Figure 6.24 presents the relaxation response of the proposed model under 300 seconds

relaxation condition. There is an offset between the experimental data and the finite

element analysis results, especially for (fs) and (fn) due to the high shear moduli and

viscosity along the fiber direction. (nf) and (ns) results track the experimental data,

and they converge to a steady-state response at the end of theanalysis. The rest of the

shear modes are still in a decreasing trend, and they are about to reach steady-state

response as well.
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Figure 6.24: Cauchy stressσ vs relaxation time of Model-IV response with respect to

the triaxial relaxation shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

Model IV exhibits good agreement with the anisotropic nature of the myocardium

tissue in all shear directions for the cyclic triaxial sheartests. The planar circular

integration allows us to define highly anisotropic dispersion modeling due to its high

accuracy, and it provides flexibility for fitting the numerical model.

6.5.5 Numerical results of model-V

The Model-V is formulated based onπ-periodic rotationally symmetric planar von

Mises distribution in fiber and sheet directions. In the firstnumerical solution, the
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viscous response in the normal direction is assumed to be caused by the isotropic

surrounding tissue and enters the formulation by integral averaging over unit micro-

sphere with a concentration factorb = 0. At the second numerical solution, there

is assumed to be an additional dispersion along the normal direction, and a planar

von Mises distribution is also defined through the normal orientation. Although these

formulations are decoupled to each other, there are also minor contribution of planar

distribution over distinct orthogonal directionf , s andn. The optimum viscous pa-

rameter set for both the cyclic and relaxation shear tests are given in Table 6.6. The

Table 6.6: Viscous material parameters for the Model-V1 whereµf , µs, µn are direc-

tional shear moduli in [kPa], andηf , ηs, ηn are directional viscosities in [kPa s],β̂ is

the activation parameter,mf ,ms, a andb are dimensionless.

µf µs µn ηf ηs ηn β mf ms mn bf,s

100 70 10 400000 300000 100000 1.0 2.0 2.0 2.0 5.0
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Figure 6.25: Model V1 - The polar plot of the two families of fiber (f) and sheet(s)

directions for a planar density distribution

polar plot that reflects the density distribution characteristics along fiberf and sheet

s directions are given in Figure 6.25. Since the viscous behaviour is assumed to be

isotropic with a zero concentration parameter, its polar plot would be an exact circle

in the polar plot. The numerical results of Cauchy stress versus the cyclic amount

of shear under triaxial cyclic shear loading are shown in Figure 6.26. The model
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Figure 6.26: Cauchy stressσ vs amount of shearγ of Model-V1 response with respect

to the cyclic triaxial shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

presents good agreement with the experimental test data, especially for (fs), (fn), (sf)

and (sn) and it is even able to catch the highly nonlinear behaviour at peak corners.

By definition of the planar von Mises distribution, dispersion effects for all orthogo-
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nal directions have a minor effect to each other. Therefore,by changing one of the

parameters in the viscous parameter set, directly change all of the graphs shown in

Figure 6.26. (ns) and (nf) exhibit average manner agreementwith the experimental

data at mid-levels of shear strains. Peak responses are not well-reflected due to the

isotropic formulation of normal orientation.

Figure 6.27 presents the relaxation response of Model-V1 under 300 seconds for six of

the shear modes. Shear relaxations exhibit a perfect decreasing slope with an offset.

After the instant loading, the rapid relaxation drop is lessthan what is expected from

the experimental data. All of the numerical curves are stillin a decreasing trend

toward a steady-state amount of stress.
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Figure 6.27: Cauchy stressσ vs relaxation time of Model-V1 response with respect

to the triaxial relaxation shear test data for six of the shear modes namely (fs), (fn),

(sf), (sn), (nf) and (ns).

In the previous numerical results for the different formulations, there is provided a

good agreement with cyclic triaxial experiments, especially for (fs), (fn), (sf) and (sn)

and average agreement with (ns) and (nf) in the mid-range strains. It is observed

that a purely isotropic formulation (b = 0) though the normal direction is not able to

reflect the nonlinear behaviour in the cyclic triaxial tests. In order to handle this is-

sue, we change the isotropic contribution of the normal direction to planar von Mises

distribution which will exhibit the orthotropic behaviourof the myocardium. The op-

timum viscous parameter set for the both cyclic and relaxation shear tests are given
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in Table 6.7. The corresponding polar plots of the density distribution functions for

Table 6.7: Viscous material parameters for the Model-V2 whereµf , µs, µn are direc-

tional shear moduli in [kPa], andηf , ηs, ηn are directional viscosities in [kPa s],β̂ is

the activation parameter,mf ,ms, a andb are dimensionless.

µf µs µn ηf ηs ηn β mf ms mn bf,s,n

100 60 30 400000 300000 100000 1.0 2.0 2.0 2.0 5.0

the viscous response of sheets and fiberf directions at in-plane and for the normaln

direction at out-of-plane are given in Figure 6.28. Figure 6.29 presents the numerical
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Figure 6.28: Model V2 - The polar plots of the two families of fiber (f) and sheet(s)

directions along in-plane distribution and out-of-plane distribution through normal

direction (n) for the viscous response of the myocardium.

results of Cauchy stress versus the cyclic amount of shear under triaxial cyclic shear

loading. By adding the anisotropic dispersion through the normal direction, the fully

orthotropic viscous response is maintained. All of the shear modes exhibits perfect

agreement with the experimental data. Figure 6.30 presentsthe relaxation response of

the Model-V2. There is still appears a little offset through upward direction however

the relaxation slopes of the numerical results are well-captured. All of the stresses are
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Figure 6.29: Cauchy stressσ vs amount of shearγ of Model-V2 response with respect

to the cyclic triaxial shear test data for six of the shear modes namely (fs), (fn), (sf),

(sn), (nf) and (ns).

about to converge to the steady-state state and the model perform a good agreement

also under the relaxation response.
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CHAPTER 7

CONCLUSIONS

This thesis covers two main parts under biomechanics, namely, growth-induced in-

stabilities for soft biological tissue and dispersion-type anisotropic viscoelasticity for

the human myocardium. To begin, we formulated a five-field Hu-Washizu type mixed

variational formulation in FEniCS via theT2P0F0 element to investigate primary

and secondary instabilities on bilayer-typed three-dimensional confined tissue. To

the best of our knowledge, this is the first observation of three-dimensional space in

the literature. Since the instability patterns lead to different wavelengths based on the

fiber stiffness, we suggested using two-dimensional modelsto determine the exact

wavelengths in three-dimensional analysis. We showed thatwavelength decreases by

increasing the fiber stiffness. While higher fiber stiffnesson the film layer causes

the first instability in the direction of fibers with a lower growth parameter, g, the

effect of fiber stiffness on the secondary buckling mode is ata minor level, where it

is observed perpendicular to the fiber direction. Another outcome is that the energy

release mechanism at the initiation of buckling is mainly composed of isotropic and

anisotropic contributions from the stiff film layer. For a higher fiber stiffness, the ef-

fect of the anisotropic energy on the first buckling becomes more dominant than other

types of energy components. However, in the secondary instability, isotropic energy

of the film layer plays a key role for the energy release mechanism. This study will aid

in understanding the role of fiber stiffness in the buckling and post-buckling behavior

of anisotropic multi-layer tissues in incompressibility and inextensibility limits.

In the second part of the study in this thesis, we have proposed five novel global-based

and local-based von Mises dispersion based angular-integration type anisotropic vis-

coelasticity formulations that are able to reflect the distinct viscous response of the
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tissue based on its fiber distribution architecture. We start with the decomposition

of the free-energy function into equilibrium and non-equilibrium contributions. The

baseline hyperelasticity is defined by the generalized structure tensor model. The

non-equilibrium response is described by the rheological Maxwell branch with an

integrated elastic spring element. It utilizes a quadraticfree-energy function in loga-

rithmic space and a power-type evolution equation in each orientation direction. The

overstress response is obtained through distinct orientation directions by numerical

evaluation of averaging integrals over either the unit micro-sphere or the unit planar

circle. The validation of proposed constitutive models hasbeen carried out for the hu-

man myocardium tissue, which is inhomogeneous, incompressible, anisotropic, and

viscoelastic. The parameters of the proposed models were obtained from cyclic tri-

axial shear and triaxial shear relaxation experiments of human passive myocardium

conducted by Sommer et al. [101]. Then, we demonstrate the fitting capability of the

proposed dispersion-type anisotropic viscoelasticity formulations on triaxial cyclic

shear and shear relaxation response of the human heart by performing numerical sim-

ulations in the finite element analysis program FEAP.

For the five proposed models, we have used different types of density distributions

and integration schemes. For anisotropic dispersion densities, we used bivariate von

Mises and planar von Mises density distributions with continuous average integrals

over the unit-sphere and unit planar circle for different integration schemes. Since all

of the proposed formulations are based on the angular integration method, the sen-

sitivity of the numerical integration becomes paramount. The analytical integral of

the density distributions is generally formalized to maintain the normalization con-

dition. When the concentration parametera or b is increased, the anisotropy of the

distribution increases as well, and numerical integrationproduces a deviation based

on the number of integration points used. Therefore, for more anisotropic disper-

sion characteristics, the integral averaging over the unitmicro-sphere will require a

high number of integration points, which is not feasible in terms of the computational

time of the analysis. Numerical integration of the bivariate von Mises and planar von

Mises density distributions is presented with different numbers of integration points,

which guide the proper selection of total integration points. In order to overcome the

erroneous numerical integration at high concentration parameters in planar dispersion
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models, we proposed a planar circular integration scheme that provides high accuracy

even forb = 100 where the dispersion is very close to the perfectly anisotropic case.

The fitting performance of the proposed models has been tested at the constitutive

level using numerical examples for the cyclic triaxial shear test and the triaxial re-

laxation test from the literature. The normalization of thenumerical integration is

violated in the local-based dispersion models by the nonlinear evolution rule. This

problem is mainly integrated by the density distribution function directly into the

micro-viscous free energies. Due to the nonlinear exponentin the evolution equa-

tion, the density distribution is exposed to a decreasing trend, and activation stress

cannot be reached. In order to overcome the violation of the normalization state,

we suggest using a linear evolution law that results in an explicitly defined update

regime. Therefore, the density distribution can be placed directly as a multiplier of

the free-energy function. Although the local-based formulations provide flexibility

to get into the constitutive level equations and make it possible to describe different

density distributions for separate mechanical propertiesof the tissue, in order to keep

the accuracy of the numerical integral averaging, they should only be used with linear

evolution equations. To avoid violating the normalizationcondition, we used global-

based formulations at Models III, IV, and V, where the density distribution function

does not enter the micro-viscous free-energy but reveals itself in the continuous aver-

age integral over the unit-sphere or planar circle during the stress and tangent moduli

calculations. This method accurately solves both linear and nonlinear evolution equa-

tions using the dispersion-type angular integration scheme.

We have formulated both bivariate von Mises and planar von Mises distributions for

fiber and sheet directions. The bivariate von Mises density distribution contributes

not only to in-plane dispersion but also to out-of-plane directions through the normal

direction in the myocardium. Planar von Mises density distribution provides rotation-

ally symmetric behaviour in three-dimensional space, which results in a minor effect

on the out-of-plane direction. Both models work well and capture the experimental

data with a good agreement, especially for cyclic triaxial shear tests. However, due

to the isotropic definition in the normal direction in the first four models, the nor-

mal direction-related shear modes exhibited an average sense of agreement with the

experiments. In order to reflect the true behaviour of the orthotropic nature of the
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myocardium tissue, we add dispersion characteristics to the normal orientation in ad-

dition to the dispersion formulation of fiber and sheet. Thatformulation well-agreed

with the cyclic triaxial experiment data of the human myocardium. In the trixaial re-

laxation numerical fittings, the same data set that is obtained from the cyclic triaxial

tests are used. The relaxation slope has been well captured with some upward off-

set. There is a trade-off between the optimum fitting parameters of the triaxial cyclic

shear and triaxial shear relaxation tests. Therefore, we kept the optimum parameter

sets, which are suitable for both tests.

Dispersion-type anisotropic viscoelasticity is promosing framework for the model-

ing of rate-dependent response of soft biological tissues.These constitutive mod-

els provide histological-based modeling which is flexible to be used for any type of

anisotropic tissue. Angular integration-based dispersion-type anisotropic viscoelas-

ticity is able to use any type of distribution function i.e. bivariate or planar von Mises

distributions based on different type of numerical integral averaging schemes such

as over the unit micro-sphere and unit planar circle. The general framework has

the capability to be used for not only highly dispersed behaviours but also highly

anisotropic dispersion characteristics by choosing the proper number of integration

points and integration scheme.

Although, we have tested the proposed models in the unique experiments provided

in the literature for the human myocardium, as a future work,further numerical tests

can be performed for any other type of soft anisotropic viscoelastic tissue. More ex-

perimental work is need for the understanding of the roots ofviscoelastic response

and its relations to tissue histology. It is also required todevelop more efficient in-

tegration scheme by providing bias of integration points onthe localized region of

the density distribution function to increase the computational efficiency and accu-

racy. Additionally, in order to get a more flexible model in terms of fitting purposes,

the concentration factors in the orthogonal directions canbe defined independently

within an optimization algorithm, which will increase the computational time and to-

tal number of independent parameters in the analysis but it will provide a larger space

of parameter sets. Then, the passive mechanical response ofthe entire heart model

can be constructed and examined numerically under pressureloads during the cardiac

cycle.
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