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ABSTRACT

COMPUTATIONAL MECHANICS FOR SOFT BIOLOGICAL TISSUES

Altun, Cem
Ph.D., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Hisnt Dal

January 2023, 202 pages

Computational biomechanics is an active research areagmptto understand the
mechanisms behind the behaviours of biological tissueslisotto develop medical
techniques for surgeries, rehabilitations, and diseaths.thesis mainly composed
of two parts namely, growth-induced instabilities and disjpon-type anisotropic vis-

coelasticity for soft biological tissues.

In the first part of the thesis, planar growth-induced inditegs for a three-dimensional
bilayer-type confined tissue is examined. Firstly, a fivédftléu-Washizu type mixed
variational formulation for incompressible and inextéhsilimits is extended for fi-
nite growth theory that captures the primary and secondanytty-induced instabil-
ities for anisotropic soft biological tissues. A numeriexlmple is solved by im-
plementingl’2 PO F0 element on the automated differential equation solverjE&n
The influence of fiber stiffness on the critical growth partaneprimary and sec-
ondary buckling is investigated. The numerical outcomethisf study will help to
understand the fiber stiffness effect on the buckling and-poskling behavior of

bilayer-typed anisotropic soft biological tissues.
In the second part of thesis, we proposed five novel formanatior angular-integration-
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based dispersion-type anisotropic viscoelastic corstumodels at finite strains
where the formulations use bivariate and planar von Misesitedistribution func-
tions. Then, a numerical model validation is conducted fiertuman myocardium.
The proposed models use the generalized structure tenrdhiefbaseline hyperelas-
tic mechanical response to reflect the dispersion charsiiteralong the fiber and
sheet directions of the myocardium. A quadratic free-endunction is defined
for the viscous response that is mainly composed of logardtelastic and micro-
viscous strains. The density distribution function is adluced in the constitutive
equations by defining two types of formulations, namelyaldmased and global-
based. In the local-based formulations, we use the densitfbdition as a part of
the micro-viscous free-energy functions. In the globaduhformulations, the den-
sity distribution function enters the equations during¢batinuous averaging of the
stress and tangent moduli expressions. For the five of peapm®dels, the overstress
response has been identified through either nonlinear @adiavolution laws in each
orientation direction by using numerical integrationheitover the unit micro-sphere
or over the unit planar circle. Then, the fitting performasnoéthe proposed models
are examined and compared with the cyclic triaxial sheartaaxial shear relaxation
experiments of human passive myocardium from the liteeatAil models are com-
pared, and their pros and cons are discussed. While losaddarmulations suffer
from the violation of the normalization condition duringethveraging integral stage
when the nonlinear evolution is used, the global-based dtations are stable and
provide high accuracy for both linear and nonlinear evohsiwith a sufficient num-
ber of integration points. The proposed formulations pteva histological-based
flexible calibration capability for any type of anisotrogoft biological tissue that

exhibits either elastic or viscous response.

Keywords: anisotropic viscoelasticity, myocardium, fidespersion, growth-induced

instability
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YUMUSAK B IYOLOJ IK DOKULAR ICIN HESAPLAMALI MEKAN K

Altun, Cem
Doktora, Makina Muhendigi Bolim{
Tez Yoneticisi: Dog. Dr. Hisni Dal

Ocak 2023 [ 202 sayfa

Hesaplamali biyomekanik, yalnizca biyolojik dokularinvdanislarinin arkasindaki
mekangi anlamak icin dgil, ayni zamanda ameliyatlarda, rehabilitasyonlarda ve
hastaliklarin tedavisi igin gerekli olan tibbi metotlagalistiriimesi i¢in kullanilan
aktif bir arastirma alanidir. Bu tez, yumusak biyoloji@ktilarda biyumeye dayali
diuzensizlikler ve dguhim-tipli yone bali viskoelastisite olmak tzere iki ana bolim-

den olusmaktadir.

Tezin ilk bolimdinde, t¢ boyutlu ¢ift katmanli sinirlantims bir dokuda dizlemsel
buyiimeye bgl kararsizliklar incelenmistidlk olarak, sikistirilamaziik ve uzatila-
mazlik sinirlarinda kullanabilmek icin yéne gladavranan yumusak biyolojik do-
kularda blyumeye dayal birincil ve ikincil burkulma damraini yakalayabilen bes
alan d@iskenli Hu-Washizu tipi karma bir formulasyon sonlu biygl teorisi icin
uyarlanmistir’’2 PO F0 eleman formulasyonu otomatik diferansiyel denklem ¢6ziicu
yazihmi FEniCS’de kodlanarak bir nimerik uygulama c¢ozigtir. Lif katilginin
kritik blylime parametresine, birincil ve ikincil diizengiznoduna olan etkisi aras-

tinlmigtir. Bu calismanin sayisal sonuglari, iki katrhayapili yone bgli davranis
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gOsteren biyolojik dokularda burkulma ve burkulma sondesiranisi tzerindeki lif

katihginin etkisinin anlagsiimasina yardimci olacaktir.

Tezin ikinci bolumunde, formilasyonlarda ikigigkenli ve dizlemsel von Mises yo-
gunluk dailim fonksiyonlarinin kullanildji, dagilim-tipli acisal integrasyona dayali,
yone ba@li viskoelastik yumusak biyolojik dokular icin bes yebrmulasyon oneril-
mektedir. Bu modellerin dgrulamasi nimerik olarak insan miyokardi davranigi Gize-
rinden gerceklestirilmistir. Onerilen modeller, kalpstnin lif ve tabaka yonleri bo-
yunca d@ilim dzelliklerini yansitmak icin temel hiperelastik magkk davranigi icin
genellestiriimig yapi tensoru kullanmaktadir. Dokuniskoz tepkisi igin logaritmik
elastik ve mikro-viskoz gerinimlerden olusan ikinci dezden bir serbest enerji fonk-
siyonu tanimlanmistir. Ygunluk dailhm fonksiyonu, lokal tabanli ve global tabanh
olmak Uzere iki ana formilasyon temelli olarak tanimlakanalzeme denklemlerine
dahil edilmistir. Lokal tabanli formilasyonlarda,ganluk dajilimi mikro-viskoz ser-
best enerji fonksiyonlarinin bir parcasi olarak kullaraktadir. Global tabanl formu-
lasyonlarda, ygunluk dayilim fonksiyonu, gerilim ve tget modulinin surekli orta-
lamasi alinirken denklemlere girmektedir. Onerilen beglehicin, gerilim eslerii
olan agin gerilim tepkisi, ya birim mikro-kire Uzerinda ga birim dizlemsel daire
Uzerinde numerik integrali alinarak her oryantasyon y@ethajrusal olmayan veya
dogrusal evrim yasalari aradliile tanimlanmistir. Daha sonra, 6nerilen modellerin
performanslari incelenmis ve literatirde insan pasipkasi mekanik davranigina
yonelik dongusel t¢ eksenli kesme ve ¢ eksenli kesme gevgeneyleri ile karsi-
lastinimistir. Lokal tabanli formilasyonlar, @asal olmayan evrim formulasyonlari
kullanildiginda numerik integrasyon sirasinda normallesme kaguillal ederken,
global tabanh formulasyonlar kararhdir ve yeterli sayidtegral noktasi kullanildi-
ginda hem dgrusal hem de dgrusal olmayan evrim formulasyonlari i¢in @aluk
sajlamaktadir. Onerilen formulasyonlar, yondeivasiz veya yone I bir viskoz
tepki sergileyen djer herhangi bir biyolojik doku icin histolojik tabanl esn bir
kalibrasyon yetert@ sajlamaktadir.

Anahtar Kelimeler: yone il viskoelastisite, kalp kasi, elyaf gaimi, biylimeye

dayali burkulma
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CHAPTER 1

INTRODUCTION

This thesis presents two main parts namely, growth-indircsebilities and dispersion-

type angular-integration-based anisotropic viscoadagtior soft biological tissues.

Beginning with hyperelastic constitutive relations, a fiiedd mixed variational for-
mulation for growth-induced instabilities has been addpteancompressible and in-
extensible limits and investigated for the first time in titerhture on anisotropic
three-dimensional confined tissue, i.e., a thick stiff filmabcompliant substrate un-
der planar growth. The numerical example was solved by impteing72 POF0
element on the automated differential equation solverfquiax, FEnIiCS [12]. The

role of fiber stiffness on primary and secondary instab#ithas been demonstrated.

Then, in the second part of the thesis, there are proposaldidased and global-based
dispersion-type formulations for anisotropic viscoatast to formulate histological-
based the directional rate-dependent behaviour of ansiotsoft biological tissues.
The novel dispersion-based angular integration-typeonuigic viscoelastic consti-
tutive models have been proposed by using planar and bisartan Mises density
distributions for orthogonal directions. The model hasrbeaidated through cyclic
triaxial shear and triaxial shear relaxation experimemt$ioman myocardium pre-
sented in the literature. The proposed anisotropic visstiel constitutive models are
in good agreement with the experimental data for the shemacteristics of human

myocardium tissue.



1.1 Overview and Backgorund

Mechanical behaviors, strengths, and kinematics of ligiygfems are considered un-
der the biomechanics theory. Biomechanics is an activaresesubject, not only
to understand the mechanism of biological tissues but alsaévelopment of treat-
ment methods for injuries and fatal diseases. Although oatdiperations seem to
be unrelated to mechanics; treatments, surgeries, anbiliektéon are directly re-
lated to the mechanical response of the tissues from thesstred strain perspective
[13]. In the biomechanical area, solid mechanics researene directly involved
in many medical cases such as heart diseases, heart vakthgses, organ support
devices, artificial heart development, replacement ofadied tissues, skin transplan-
tation, stenting on a vein, musculoskeletal diseasesTl&re are also active research
topics based on tissue engineering, biomedical mateaats medical device devel-
opment. Tissue engineering mainly focuses on the recreafilluman tissues and
the replacement of diseased tissue with a compliant adiiftme. It has a key role
in understanding pathology, proposing the way for artifitssue replacement tech-
nigues, and developing artificial tissues and organs, Ipessss, and medical treatment
methods. Biomaterials are considered in two main groups.fif$t group is the syn-
thetic biomaterials (polymers, composites, metals, cexgrand the natural biomate-
rials (cells, tissues, proteins, etc.)[14]. The functidissue must be biocompatible in
terms of strength, stiffness, physiochemical, electra@imaaical, elastic response, and
time-dependent response, depending on the applicatisholtld have the capability
to mimic the function of the native tissue/organ withouttdibing the surrounding
anatomy. Therefore, it is significant to have a well-devetbmathematical model

based on mechanics that describes the material responseacarate way.

Tissues are classified according to their stiffness pragsersuch as soft and hard.
That definition is a relative measure that takes into accthentelationship between
force and deformation behaviors. Soft tissues include #meral nervous tissue, ab-
dominal organs, brain, lung, muscle, myocardium, and skimle hard tissues in-

clude cartilage, tendon, and bone. For more informatioemrechanical properties
of human tissues, see the review of Guimaraes et al. [15]su&ts are composed

of cells and extracellular matrix and form organs. The edHalar matrix contains
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proteins (collagen, laminin, elastin, etc.) and glycoenmud that form a support-like
network for cells, and they have a key role in healing andmegaion. Elastin is a
protein that procures long-range elasticity for many ofdbf biological tissues [16].
In most soft biological tissues, collagen is the main strcadtelement, and the me-
chanical behavior of living tissue is determined by the wodudensity of the collagen
and the orientation of the collagen fibers. Soft biologitsue is generally subjected
to large strains and undergoes nonlinear deformationslag@m fibers may be dis-
tributed randomly or they can be in a specific orientatione Buthe wavy, disordered
form of collagen fibers in the unloaded state, they form agtttdine shape, and they
are aligned to carry a higher load, especially in tensioreyTéxhibit highly nonlin-
ear exponential increasing stiffness under loading. Thezesuch tissues represent

a J-shaped stress-strain response, as shown in Figlrasisted can be composed of

Stress

LA

Strain
Figure 1.1: The representation of the nonlinear stifferohgoft tissue is called a
J-shape stress-strain curve. At low strains, the wavy-¢arfibers do not take on any
tension load. Then fibers become aligned in a straight foiamh tdkkes into account

fiber strength in addition to the ground matrix.

distinct structural sub-components with distinct projgsrtwhich can be combined to
form a composite structure with material response diraafiependency. This leads
to material anisotropy and the capability to sustain higel loads in specific di-

rections. For example, a myocardium tissue exhibits difiemechanical properties
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myofiber

e

epidermis
pdermis

/ hypodermis

(a)
Figure 1.2: Schematic of anisotropy of tissues (a) Myocardiissue that consists of
distinct collagen fibers, myocardium sheets, and elasjihdipered structure of skin
tissue. (The skin image was partly generated using Serveeliddl Art, provided by

Servier, licensed under a Creative Commons AttributioruByforted license)

in orthogonal directions due to the fiber bundles and lareshaheet structure. An-
other anisotropy can be formed by laminated structures asdkin that is made of
three different layers of tissues, namely the epidermisndg and hypodermis [15].
The schematic views of anisotropic myocardium and skiméssre shown in Figure
M1.2. Constitutive models are developed to be used andlyti@ad numerically to
observe the mechanical response of soft tissues in an &ecuag. Due to the large
deformation characteristics and nonlinear behaviour @ftsological tissues, their
mechanical response cannot be characterized with the i@&silsanical constants of
linear elasticity[[17]. Therefore, a strain energy funotlzased variety of hyperelas-
tic constitutive models were developed to capture meclharesponse. Hyperelastic
constitutive models are actively used in finite elementysialto get insight into po-
tential risky conditions for the patient, to observe suatjgcenarios, and to develop
biomaterials that mimic the native tissue for both fibroud aon-fibrous biological
tissues. There are also extended advanced constitutivelsibdse are accounts for
viscoelasticity [[18], electo-mechanical [19], electiseoelasticity [[20]/[21] for the
biological tissues [17]. The dynamic behavior of soft bgtal tissues is character-
ized by time-dependent responses, such as stress stiffensiress relaxation. Due
to the high water content of the biological tissues, theatscresponse is presented
under dynamic loading by dissipating energy through untggdDuring the cardiac
cycle, the viscoelastic response of the surrounding tss&ia good example of the

viscous response. High water content of the ground matrxtefsue does not only
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cause the viscous response but also maintain the quasi pressibility of the mate-

rial which results a sligth modification in the constitutieeel.

There are many experiments conducted on soft biologicalidis to examine their
directional characteristics. The experiments that aréopeed on animal tissues
provide a good insight into how human tissue can be repredebut they are not
fully adaptable for human tissues. Due to the distinct dagon characteristics of
the fibrous tissues, there are several types of experimerbtain the isotropic or
anisotropic nature of the samples. These are, uni-axialdanbiaxial tension, pure
shear, compression for hyperelastic baseline and cydtiaelaxation tests for time-

dependent characteristics, see [17] for more detailedrehisens.

There are a number of extensive reviews that have been workesbarding hypere-
lastic constitutive models of rubber-like materials amald@gical tissues. Steinmann et
al. [22], have compared fourteen of different micro-medcbalty based hyperelastic
constitute models. Then Dal et &ll [5] enlarged the groupdofiyiperleastic consti-
tutive models for rubber-like materials and examined tbetmaviour under uniaxial,
biaxial, and shear deformations. They presented pararndetetification procedures
for different optimization algorithms. Although these iews are for rubber-like ma-
terials, they provide good insight to understand also thebieur of soft tissues as
well. Then, Chagnon et all._ [23] prosed a review to examinebilgaviour of the
materials based on hyperelastic free energy functionsthoes mostly used for soft
biological tissues. In paralel, [24] examined the ratesjmehdent isotropic and in-
compressible hyperelastic constitutive models for bimdalgissues such as the brain,
kidney, liver, etc. Similary, Mihai et al. [25] proposed aiev that make the compar-
ison of numerical results based on isotropic incompresdilyperleastic constitute
models with available experimental data for brain and fgues. Then, derivation
of the stress and moduli tensors have been carried out fopEo and anisotropic

biological tissues by Cheng et al. [26].

Collagen fibers in fibrous tissues are oriented in distineaions and are not per-
fectly aligned but they are dispersed. The effect of theeatspn in tissues, espe-
cially in healthy and non-healthy samples, directly afgtte mechanical behaviour

of the material and is examined in the following reviews. tqfel et al.[[27], have



presented a critical review of the modeling of fiber dispmrddy using angular in-
tegration and generalized structure tensor models. Theyaced their numerical
results with the experimental data sets. Lastly, Dal etlal] presented the fitting
performance of nine hyperelastic constitutive models &t Biological tissues that
are based on invariant and dispersion-type modeling. Thegrved the fitting ca-
pability of the models by using optimization techniques breé different human

tissues.

1.2 Growth Phenomena in Biomechanics

The formation of a biological tissue is comprised of thedwaling three processes:
growth, remodeling, and morphogenesis. Growth mainly aetsofor mass or vol-
ume change (i.e., cell enlargement, division, or deatimpegeling is the change of the
material properties (i.e., reorientation of fibers sulgddb a driving load); and mor-
phogenesis is related to the shape change (i.e., healifge dfiblogical tissue)[28].
These concepts either can be combined together or they aamibdividual process.
Since the main research area of the first part of this thegigoisth phenomena, the
details of remodeling will be out of scope. The growth pheeaon is responsible for
hyperplasia, hypertrophy, and the enlargement of the eafitdar matrix. Therefore,
the growth mechanism can be either positive (enlargementggative (shrinkage),
and it can be isotropic, planar, or anisotropic, which maylban residual stresses on
the tissue. This may lead to overloading of the material aklwg of the structure.
Kuhl [29] states that growth in biological tissues can beegatized in three form
called as fiber growth, surface growth and volume growthula@ growth accounts
for identical enlargement or shrinkage in all directions.(itumors, fruit, arteries).
Surface growth is a kind of planar growth in a plane without growth in the nor-
mal direction (i.e. , lungs, skin, brain, heart valves, ))ett.astly, the fiber growth
corresponds to the growth only in the longitudinal fiber diien (i.e., plants, muscle,
eye, heart etc.). As an example, the volume growth of anyagted the fiber growth

of the heart are given in Figure1.3.

Growth-induced deformations are common phenomena thédtaraniving systems

and engineering applications. In a certain level of grovatl|ed critical growth,
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Figure 1.3: Biological examples for growth-induced defatimns (a) Growth of the
heart for wall thickening (b) Growth of an artery; adopteahfr|2]

structural instabilities may rise as an indicator of patigatal conditions of biological
tissues. It also plays a key role in the development of medtefor biomedical appli-
cations. These materials and tissues are mostly in the fomutti-layer structures,
which may have different mechanical properties and fib@foecement layouts. The
main mechanism of the buckling in a multi-layered strucfarhie compression type
of loading that causes different levels of stresses in timestiiff film and the compli-
ant substrate; thus, buckling leads to a release of the yrféiger stiffness is a critical
parameter that designates the critical growth in primaigkbng as a wrinkle form.
It is significant to understand the mechanism behind the gromduced instabilities
for transversely isotropic materials and to observe thecetif fiber stiffness over pri-
mary and secondary instabilities on bilayer systems. Gramduced deformations
may lead to instabilities as they turn into different patteon advanced engineering
materials and soft biological tissues. Mechanism of grosthlso used to achieve
the desired geometrical form change in biomedical apptinat Growth phenom-
ena are widely shown up in nature as in living organisms ¢plaissue, etc.) and
in engineering materials such as polymeric gels [30] aretctiable electronics [31].
A wide range of studies have been performed to understananitherlying mechan-
ics of the tissue development subjected to growth and grawdhiced instabilities
and their biomedical applications such as; folding of thievay [32], cortical folding
of the brain [33], cardiac growth [34] 6, 135,/36], wrinkling spherical geometries
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[37,38], wrinkling on the skin[[39, 40], artery growth [281442,43) 44], grow-
ing mechanics of musclé [45], instabilities on thin stifffilon a compliant substrate
[46,47 48| 49], morphogenesis of the plates [50, 51], bogkdf swelling hydrogels
[30,52/53/ 54,55, 56, 57, 58] and torsional actuator madgb9,60], to mention but
a few. For additional information, we refer to the statetfod-art reviews on growth,
remodeling and morphogenesis of biological tissues[[284662, 63/ 29, 64]. -
lustrative example of growth in a soft biological tissue andwth in a biomedical
application is presented in Figure 1.4. Most living systemescomposed of multi-

Loy a7 -
il 'S
(a) (b) \ &

Figure 1.4: Examples of growth-induced buckling for biotaj tissues and elec-
tronic device development (a) Flexible complementary in@tade semiconductor
circuits; adopted from[]3] (b) Wrinkling of a flower [4], (chstability pattern in
bovine esophagusl[4], (d) Cortical folding of the humanfbrai

layered structures possessing different mechanical pgiep&s in biological tissues
such as artery, airwall, skin, etc. Such structures are et@ountered in flexible
electronics[[31] and |3]. In nature, most living systemséhame or two fiber family

reinforcement embedded in different layers of the systardifterent purposes under
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various conditions.

Instabilities of isotropic bilayer plates composed of filmdabonded substrate were
examined experimentally [31, 47,165], analytically, andnmuically [30,/ 46| 48, 49,
66,67, 68]. Khang et all [31] experimentally observed themaaical buckling of a
micro-scale bilayer system; herewith, they have ended tiptivickness, wavelength,
strain, and delamination relations. They also highlighhed these instabilities could
be used as a measure for elastic moduli of materials. Bral [@{7& studied the en-
ergy requirements of membranes to obtain a new kind of iflgtahitiated as period-
doubling both theoretically and numerically. Huang et'4€][worked on wrinkles in
a layered structure experimentally and numerically in tivoahsions. They obtained
a relationship between the wavelength and the amplituderioikigs for substrates
with various elastic moduli and thickness; they observéfint instability forms
such as stripes, labyrinths, and herringbones. In thesseweks [66/ 69, 70], differ-
ent patterns (stripes, varicose, checkerboard, hexageeat analyzed for a bilayer
plate under biaxial residual compressive stress in the filthen the formation of
herringbone (zigzag) pattern with increasing residuasstwas studied numerically
based on a simplified buckling model. Moreover, in the thiadt pf the study, an
asymptotic solution was proposed for a plate with an eldstiadation in the limit
of large strains. Regarding energy contributions of déferinstability patterns, Cai
et al. [48] focused on a bilayer film/substrate structurgesttbd to equi-biaxial com-
pressive stress numerically and experimentally, wherg tthserved checkerboard,
hexagonal, and herringbone patterns. They ranked the modesms of energy,
and they ended up with the fact that herringbone mode hasthest energy, then
come the checkerboard with hexagonal and triangular mddeghe other hand, Jia
[49] showed that hexagonal patterns minimize the elaseecggn which is the domi-
nant mode. Javili et al. [67] studied growth-induced insiis based on eigenvalue
analysis which does not impose perturbation-dependemtitiefis. They tested their
approach in slender beam and growing film on a soft substateas its outcome,
an objective solution was reached. Since this method pesvadgood initial guess
for a nonlinear analysis, it cannot be used for post-bugkiahavior. As a follow-
up work, Dortdivanlioglu et al! [68] proposed isogeometmalysis (IGA) enhanced

with eigenvalue analysis for a thin stiff film on a complianibstrate subjected to



compressive stress. They also compared the isogeometigsanwith finite el-
ement analysis, resulting in more accurate predictionh V@A. The relationship
between film thickness, film and substrate stiffness ratimnlmer of wrinkles, and
wavelengths were also studied within this study. Additigotaysical effects were
considered by Alawiye et al. [71]. In[71], linear analysg fwrinkling problems
with additional considerations of pressure, surface tensan upper substrate, and
fibers were performed. Diffusion-driven time transient Bivg on hydrogels was
studied in[[72], 73]. Considering the numerical efficiencgdidpa et al[ [74] proposed
a finite element framework by extending a mixed displacerpeassure formulation
using quadratic and linear Bezier elements. They conclticktcthe model provides

good accuracy for exact incompressibility by providing @miagup stability condition.

Besides isotropic modeling of bilayer plate, there are siadies on multi-layer struc-
tural deformations and instabilities taking into accoum¢ fiber reinforcement on
layers. These types of structures have mostly been revealiethg systems (bone,
muscle, arteries, airway, heart etc.) and biomedical e&®ging designs such as actu-
ators. As one of the first sets of studies, Rachev et al. [slistl over remodeling
caused by blood pressure of arterial wall. Taberl [76] alssppsed a growth law
for arteries, including orthotropic layers (intima/mediad adventitia) reinforced by
muscle fibers. Lubarda et al. [45] presented a constitutigerty for stress-dependent
evolution equations for isotropic, transversely isotoppnd orthotropic biomaterials.
Then, Ciarletta et al. [77] worked on the combined effechefgrowth and anisotropy
in the epithelial formation using mixed polar coordinat&y the numerical study,
they concluded that the result that distribution of residiteains and mechanical
properties of fibers embedded in the tissue has a signifi¢iat @n instability pat-
terns. Liu et al.[[5/7] proposed a nonlinear finite elementcpdure for anisotropic
swelling that included the chemical potential for anisptedhydrogel-based bilayers.
Although they do not focus on instabilities, they obtainlee ¢ffects of modulus and
fiber orientations in free bending and twisting. Stewart.F8] worked on wrinkling
instability of bilayer cerebral cortex (grey and white nealttissue embedded with
two family elastic fibers in two dimensions. They showed thankle wavelength is
a function of fiber orientation, and the instability can khgdered by increasing the

fiber stiffness depending on the fiber angle. There are alsliest for macroscopic in-
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stabilities taking into account micromechanics based endgenization[79], Michel
et al. [80] extended to microstructural and macroscopitahities for plane-strain
problems, and then Slesarenkoa etlall [81] focused on nw@apirsand microscopic
instabilities in three-dimensional periodic fiber-reirded composites. They found
that the volume fraction of fibers determines the first modbuwkling and a high
fraction ratio of fibers exceeding a threshold value ends itlp lvng wave instabil-
ity, whereas a lower fraction of fibers results in microscapstabilities. Growth-
induced nonlinear behavior such as remodeling of fibers42862/ 63, 82, 83], free
swelling of anisotropic hydrogels [54, 55,156,/ 58], anisepic growth of the heart
[35,136], swelling of tracheal angioedemal[84, 85, 86] arahgh in fiber-reinforced
torsional actuators [59, 60] are extensively studied. Fdetailed review account-
ing for growth-induced nonlinear behavior of fiber-reirddrsystems, the interested
reader is referred to [28, 62, 163,/29Albeit tremendous amount of work devoted
to the aforementioned aspects of growth and remodelinge tisestill need for re-
search regarding the the effect of fiber stiffness on groettipfimary and secondary

instabilities in three-dimensional bilayer fiber-reirded structures.

In addition to growth-induced deformations and instaieditthose are mentioned
above, there is an additional mechanical effect of growtlbiotogical tissues as it
may cause pre-stressed state. It has been shown that bygergle experiments on
an artery and on the experiments on left ventricle, thera svédence of some resid-
ual stress appears on the tissue even for unloaded stated.istb@ most complicated
organ in the human body and it may be subjected to high pressad that drives the
volumetric growth. There are many difficulties for the nuroa@rmodeling of cardiac
due to highly non-linear, complex myofiber layout, myofibepersion, anisotropic
behaviour, viscoelastic response and pre-stressed s&te don-uniform volumetric
growth [87]. Experiments are performed for ex vivo or in @itissue in the literature
but the mechanical behaviour may be different in vivo candibecause of the resid-
ual stresses. Growth-induced pre-stress effect is an anoffen research area need

to be investigated with accurate mechanical model of theiaar
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1.3 Historical Remarks on Structural Features of Myocardium

The heart is one of the most complicated organ in mammalsatt electro-mechanical
pump that supplies blood through the vessels to the entirgglbody. Cardiovascular
diseases are prevalent in the population, and they not @vg & negative impact on
people’s lives but can also be fatal. The heart has vitaltfanality for humans and is
subjected to themo-electro-chemo-mechanical condititins important to observe
the physiological conditions of the heart, which may havelfeonsequences, and to
understand the mechanics behind this elite pumping sysidmitas'sub-components.
Thus, medical treatments, surgery techniques, and refagibih methods can be de-
veloped. For example, developing an artificial pumpingeystensuring the biocom-
patibility of transplantation, replacing the heart valdeyeloping the left ventricular

pacemaker device, etc.

The heart is composed of four chambers, called the left agitt atria (LA, RA)
and the left and right ventricles (LV, RV). While RA is resinle for collecting
the deoxygenated blood through the vena cava, LA collegigenated blood from
the lungs. Atria and ventricles are connected with bloode&ssand synchronized
via antrioventricular valves. Humphrey |88] describes\aatricle functions as: RV
pumps blood through the lungs and LV pumps blood through tmaa The main
pumping function of the heart in the ventricles is governgthle heart wall. The heart
wall is composed of three main layers. These are the endocaithe inner layer),
myocardium (the middle layer), and epicardium (the outgeta Endocardium and
epicardium are thin layers that mainly consist of collaged @lastin, and they create
an interface region with inner and outer substances. Thecargaum is primarily
responsible for the heart’s pumping function in the wallislimade up of parallel
fibers that are embedded in sheets by extracellular ma@ix [&e orientation of the
myofibers makes a smooth transition from the epicardium ¢oetidocardium in a
helical form. In the human, myofibers vary from about -70 degrat the epicardium
to nearly +70 degrees at the endocardium. The LV wall thiskng higher than the
RV wall thickness due to the fact that the LV is subjected taghér pressure load to

pump the blood to the aorta.
Myocardium is an inhomogeneous, incompressible, presstiek highly nonlinear,
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anisotropic, viscoelastic tissue and it is in the form of awposite structure. My-
ocardium is an oriented and laminated structlre [89] thhilbéts different mechan-
ical properties in three distinct directions, called fibeedtion, sheet direction, and
normal direction. Therefore, the myocardium must be carsid an ortothropic ma-
terial. Due to its high water content, it is also consideremmpressible. According
to experiments performed by Vossoughi etlal! [90], they gnaith a ratio of the bulk
modulus to the shear modulus of neatly, which also supports the incompressibil-
ity assumption. Myocardium also contains patient-spemfidual stresses due to the
inhomogeneous growth of the heart under different phygiokd conditions, which
may change the mechanical behavior of the tissue. In linetvé high water content
of the myocardium, it exhibits viscoelastic stress-strailations under cyclic load-
ing and relaxation tests. Both elastin and collagen aredberchinants of the viscous
response of the myocardium [89]. The viscoelastic behafitre material is respon-
sible for energy dissipation when subjected to a time-déeenexternal load. The
resultant stress decreases over time after an instarm grapplied and maintained,
a process known as relaxation behavior. If an instant stsesgplied to the material
and kept constant, it results in further deformation andalted creep behaviour. If
there is a cyclic load applied to the material, there will biéedent stress-stain pat-
terns for the loading and unloading curves. This phenoménaalled hysteresis,
and it is a presenter of energy dissipation measures in gtersy A typical cycle of
loading- unloading, and relaxation curves of a biologitssue is given in Figurie 1.5.
In this thesis, after presenting growth-induced instébgiin soft biological tissues,
we will focus on the viscoelastic passive mechanical respaf the LV myocardium

under cyclic shear and shear relaxation loads.

It is mandatory to understand the layout structure of thedrumyocardium in three
distinct directions (fiber, sheet, and normal) for accuraimerical modeling. Not
only the direction of orthotropic behaviour but also thepéision characteristics in
distinct directions have the key role of mechanical respaighe myocardium. The
myocardium structure is composed of parallel myocytesdtare oriented helical
from the inner to outer layer of the heart wall, and these eugwers form separated
sheet laminates. Rohmer et al.[91] states that fiberg {8t length and 5-1@um in

radius) form a group in 3-4 cell of thickness in a laminatentéd in the transverse di-
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Figure 1.5: lllustration of (a)a typical loading-unloadiourve of a viscoelastic ma-

terial (b) typical relaxation curve of a viscoelastic matker

rection in the heart wall. They developed a visualizatiggpathm, based on diffusion
tensor magnetic resonance imaging, to visualize the ttlireensional sub-structures
and orientations (fiber, sheet, and normal) of human myawgaxdin order to recon-
struct the sheet surface and fibers, they used the eigernsettihe diffusion tensors
in a sequence. Then, Sands etlall [92], developed a noveingeechnique to view
microstructure that is adaptable to angle variation throignsmural depth. They
extracted three-dimensional images and obtained thetatien angles of the orthog-
onal direction for the rat left ventricular wall. Then, th¥ kemodeling was exam-
ined by diffusion tensor imaging for a mouse of myocardifiation by [93]. They
observed the variation in the diffusion tensor, fracticar@kotropy, and myofiber dis-
tribution as resultant parameters. Sommer et al. [11] obththe three-dimensional
orientation and dispersion of the fibers and sheets for humgocardium, which
is novel experimental research. They used second harmenergtion (SHG) mi-
croscopy for the detailed examination of myocardial mitmature. As a result, they
determined the dispersion and concentration parametgesanhich are quite im-
portant for the mathematical modeling of the constitutelations. There have been
conducted some mechanical tests for myocardium tissueénsess in the literature
to obtain the passive mechanical properties. It is not omlgartant to understand
the mechanical response of the tissue physically, but isis significant to perform
calibration and determination of parameter sets of nurakcmnstitutive models. De-
spite the fact that the initial research was done on animakandium samples, it pro-

vided insight and a vision for understanding human myocandiesponse. One of
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the pioneer experiments has been performed by Pinto etdlbjobtaining the vis-
coelastic response of the rabbit heart muscle by relaxatr@ep, and vibration tests.
Then Demer et al! [95], applied cyclic load and unloadingd tediber and cross-
fiber directions for the canine myocardium. They also penft uniaxial and biaxial
loading tests to obtain the non-linear elastic and visatieldbehaviour of the tis-
sue. They concluded that, the myocardium tissue repreaardsisotropic nonlinear
elastic response with rate-dependent behaviour (visstels). Tsaturyan et al. [96],
performed experiments to understand the extracellulat filliation effect on the vis-
coelastic behaviour of the myocardium. They showed thatlaatgon in the poros-
ity of the myocardium tissue slows down the relaxation behav Yin et al. [97],
performed biaxial stretching experiments to characteheethree-dimensional me-
chanical properties of normal and diseased canine myagardihey also fitted their
experimental data with an exponential strain energy fonctrhen Dokos et al. [98],
developed a novel shear testing machine that is able to sisff@ar deformation in
two orthogonal axis and it is able to measure the forces ieetlaxis which is also
named triaxial shear testing in literature. They obtairrexighear characteristics of
rat myocardial tissue as a preliminary study. As a followwayk, Dokos et al.[[99],
conducted novel triaxial shear experiments on the myogardissues of pigs to char-
acterize the shear mechanical properties of passive ngiocar This work was also
referred to by many researchers who work on the developnienathematical con-
stitutive material modeling, so the study can be acceptquaaseering research for
the passive shear properties of the myocardium. They stiaadbic specimen from
the LV wall that is aligned with the fiber-sheet orientatipaisd then they applied si-
nusoidal simple shear for six shear modes. They concluggg#ssive myocardium
exhibits non-linear viscoelastic shear behaviour, anigit shear behaviour in three
orthogonal directions, and the shear stiffness of the nrgogan is found to be max-
imum in the fiber direction and minimum in the normal direntid@hen, the hypere-
lastic behaviour of bovine myocardial tissue has been nmechlly tested based on
uniaxial, biaxial, and equibiaxial loadings by [100]. Soemet al. [101], proposed a
method that makes the measurement of the shear deformatidrtresses available
for the biaxial extension test, and they demonstrated @xgetal results based on
human myocardial tissue specimens. As a following reseg@ommer et al.[[11]

determined the shear properties of the passive human sglatrimyocardium by
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performing biaxial extension, triaxial cyclic shear, at@ar relaxation experiments.
They also revealed the three-dimensional microstructiicammiac tissue by second
harmonic generation microscopy. They obtained the orieemts of three principal
directions (fiber, sheet, and normal), and they determihediispersion parameters
and concentration parameters for myofibers and sheets. ddmgfuded that, the
passive human myocardium is nonlinear, orthotropic, dsguk and rate-dependent
under large deformations. Then Avazmohammadi et al.|[1@¥®jposed a methodol-
ogy that starts with a kinematic analysis to observe thexopt displacement paths
and then applies these displacement fields to the cubic myiocaspecimen. Lastly,
they developed an inverse finite element methodology thatlsites the experimen-
tal configuration to determine the constitutive model paansets. An illuminating
research study on the healthy and infarcted myocardialdis§a rat has been studied
by Martonova et al. [103]. They performed uniaxial extensiests for healthy and
infarcted tissues and they fitted Holzapfel-Ogden cortstgunodel parameters with
experimental results. Then, they proposed a constitutagatfor the infarcted tissue
that is based on the combination of myocardium and transkyeisotropic scar. They

presented that the infarction tissue exhibits a stiffepoese than the healthy one.

1.4 Proposed Methods and Contribution

Within the scope of this thesis, we have studied novel foatnoihs for dispersion-type
anisotropic viscoelasticity of the human myocardium, kbgoretically and numeri-
cally. One of the primary goals of the research is to develspoelastic constitutive
models based on histological data of the tissue’s dispeidiaracteristics. It is not
limited to being used for myocardium; these novel formuolasi can also be used for
any other type of isotropic or anisotropic tissue. We stathwhe decomposition
of the free-energy function into equilibrium and non-edpiibm contributions. The
baseline hyperelasticity is defined by the generalizedcaira tensor model. The
non-equilibrium response is described by the rheologicakWell branch with an
integrated elastic spring element. It utilizes a quadrifaéie-energy function in log-
arithmic space and a quadratic or power-type evolution tiguén each orientation

direction. The overstress response is obtained througimcli®rientation directions
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by numerical evaluation of averaging integrals over eitherunit micro-sphere or

the unit planar circle. Our contributions are as follows:

e development of a novel angular integration-based conisetmodel for dispersion-
type anisotropic viscoelasticy which is proposed for thet fime in the litera-

ture to our best knowledge,

e development of global-based and local-based dispergpaformulations where
the density distribution function enters the constitutaggiations in different

stages,

e development of dispersion-based formulations based dndieairiate von Mises

and planar von Mises density distribution functions,

¢ in addition to the continuous integral over the unit micphsre, development
of a planar unit circle integral scheme to increase the aoyusf the numerical

integrals,

¢ identifying viscous parameter sets of novel formulatiorsstiae triaxial cyclic
shear and triaxial shear relaxation experiments conduntéte literature for

the human myocardium.

In the other part of the research in this thesis, there hasdiedied for planar growth-
induced instabilities in three-dimensionally confinedapér tissues/structures, i.e.,
thick, stiff film on a compliant substrate. Growth-inducedtabilities are examined
for a different range of fiber stiffness with an extended freéd Hu- Washizu mixed
variational formulation in sense of Dal [104]. The quasiampressible and quasi-
inextensible limits of transversely isotropic materiaksresconsidered. A numerical
example was solved by implementing the T2POF0 element ontamated differen-

tial equation solver platform, FEniCS. Our contributions as follows:

e extension of the five-field mixed variational formulatiom fmite growth prob-

lems,

e numerically investigation the role of the fiber stiffnesstbe critical growth

parameter, first instability, and secondary instabilitydes.
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1.5 The Outline of the Thesis

After presenting the introductory sections in Chapter lajitér 2 outlines the ba-
sics of continuum mechanics, including kinematics, strassdl strain measures for
both isotropic and anisotropic solids with the introduntad balance laws. Chapter 3
presents isotropic and anisotropic incompressible hyg&treity theory within two-
field, three-field, and five-field mixed element formulatigrevided by numerical
comparative examples. Chapter 4 introduces the kinematifisite growth theory
with the derivations of stress and corresponding modulresgions. Then, numer-
ical examples are provided for different types of growttitined deformations and
instabilities by using FEnIiCS. Chapter 5 focuses on thertesof fiber dispersion-
type formulations for soft biological tissues. It also d#ses the von Mises type of
density distribution functions that are commonly used. hagter 6, firstly, the base-
line hyperelastic constitutive theory is presented for hlnenan myocardium with
the integration of the GST type dispersion formulation. ,l@irrent anisotropic vis-
coelasticity theories are outlined. Different angulaegration-type dispersion-based
formulations are proposed under local-based and glolsdebalassifications. Lastly,
the fitting performance of the proposed models are obseruetkrcally with the
triaxial cyclic shear and triaxial shear relaxation test&f the literature. Chapter 7
provides a summary of the entire work, outlines the outcormed gives recommen-

dations to be taken into account.
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CHAPTER 2

BASICS OF CONTINUUM MECHANICS

This chapter presents the fundamental kinematics, staohstress measures of gen-
eral isotropic and anisotropic solids. The chapter layewus follows: in the first
part, fundamental descriptions of the material motion ideformed and deformed
configurations are given. The basic pull-back and pushdodwnathematical oper-
ations are introduced through metric tensors. Then, sin@asures are described in
both Lagrangian and Eulerian settings. The fundamentabchexistic equation of a
second-order tensor is presented to describe the prinoyeiants. Then, isotropic
and anisotropic invariants of the right Cauchy-Green teas®introduced, which are
the significant scalar quantities used to describe thersita&energy function in hy-
perelasticity. Then stress measures are introduced inurateformed and deformed
configurations. Later, the fundamentals of continuum tleelymamic balance laws
were summarized. Lastly, Clausis-Duhem inequality has Ipeesented by introduc-

ing the Helmholtz free energy function.

2.1 Kinematics

A solid body Z is a three-dimensional manifold, that includes materiah{so?” <
2. The movement of the solid can be described by the functidima via bijective
mappings
B — B(P.t)eR*xR
X(2,t) = ) ' (2.1)
P = x=x(2)=x(Z1).
The pointez = x(Z,t) implies the deformed configuration of the particté at

timet € R,. Reference configurations of the points at the reference @ can
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Figure 2.1: Nonlinear deformation of an isotropic solid. eTimderformed config-
urationZ < R? and the deformed configuratio®” € R?. ¢ : Z x R — R3is
the nonlinear field which maps at timec R, undeformed positionX € £ onto
deformedr = p(X,t) € Z.

be expressed bX = x(2,t,) € R3 and the configuration at a arbitrary timg (
denoted byx,(Z?) = x(Z,t). The displacement, velocity, and acceleration vectors

of the material point at time) can be defined by following respectively

u=x—X
. Ox(X,t)
T = 5 (2.2)
. 0*x(X,t)
e

The deformation map can be expressegas- x; o x;;' (X) such that

wt(X){ Foo PER 2.3)
X — xz=¢p(X,t)

maps the undeformed configuratidh € %, of a point onto the deformed configura-
tionx € 4, see Figuré 2]1. The deformation gradient is defined as

F:Tx%)— 1,9, F:=Vg,(X) (2.4)

It maps the unit tangent of the undeformed or Lagrangian gardtion onto the de-
formed or Eulerian configuration. The gradient operalGg$e] and V. [e| express
the spatial derivative with respect to the undeform@@énd deformed: coordinates,

respectively.

While the deformation gradiedf performs the mapping of infinitesimal line element
(dX) from undeformed state onto deformed state, its cofaettjiF’] = det[F|F~"
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dv
dXx dA

(a) (b) (c)
Figure 2.2: Three physically related mapping operatioa3.The deformation gra-
dient F', (b) cofactor of the deformation gradienif[F'| , and (c) and the Jacobian
det[F; adopted from([B]

and its determinant (the Jacobiah)= det[F'| > 0 characterize the mapping of the
infinitesimal areadA) and volume {V') elements from reference state onto spatial

configuration, respectively. These fundamental maps anersin Figurd 2.P.

dz = FdX, da=cof[FldA, dv=JdV . (2.5)

There is an obligation that := det[F] > 0 which provides the non-negative vol-
ume and the condition, is physically necessasy.! should also exist to perform
inverse mapping. There is also need to be defined the metsote G andg) to

perform mapping between covariant and contravariant pamkagrangian and Eu-
lerian states, respectively [105]. Here we designate tjig iCauchy-Green tensor,

and the inverse of the left Cauchy-Green tensor
C =F'gF, and c=FTGF™! (2.6)

It is described as the pull-back operation of the Euleriatricng and push-forward
operation of the Lagrangian meti&, respectively and the Finger tensor is defined
by b = c!. Here, in the case of Cartesian coordinateandG are the same as the
identity tensor([6]. In line with that, these metric tenscas also be written in Carte-
sian coordinates by indicial notation such &= §,5 andg = d,,. The upper case
letters correspond for Lagrangian configuration and thellstaae letters refer for
Eulerian setting. Accordingly, for a tensorial measure,itidicial notation describes
whether the quantity is purely or partially (two-point) debed in Lagrangian and

Eulerian spaces.Then Green-Lagrangian and Almansian gtresors are defined as

E = %[0—1] and A:%[l—bl] (2.7)
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where E is the strain tensor that measures the change in Lagrangidigaration
and A is the strain tensor that measures the change in Euleridigaoation. These
guantities can be transformed to each other by covariattpick operation afl =

FT AF and by covariant push-forward operationds= F-"EF ..

Deformation gradient is the two-point tensor which can bgcdbed in indicial no-
tation ast, 4 = dz,/0X 4. It can be decomposed into pure rotation and pure stretch
inducing components as

F=RU =VR, (2.8)

3
4
3

T
€Y (b)

Figure 2.3: (a) Definition of right Cauchy Green tensor byl4balck operation of Eu-
lerian metricg, (b) Definition of left Cauchy Green tensor by push-forwapeéiation

of Lagrangian metri&s.

where R is the orthogonal rotation tensdt] is the right stretch tensor, ard is

the left stretch tensolV and V' are the symmetric and positive definite tensors. By
the equation 218, the rotation and stretch can be purelyatgoh By using relations
between equation 2.6 ahd P.8, the right Cauchy-Green temsbteft Cauch-Green
tensor (defined by = ¢~ ') can be written a&C = U? andb = V' respectively.
Any symmetric tensor can be represented by its eigenvalugasd the corresponding
eigenvectors are defined in the orthonormal basis. By thetispelecomposition, the

principal stretches can be defined as following
U=’ AN, ®N; and V=37 \n,®n; (2.9)

where ); is the principal stretch anéV; andn; are the principal directions in La-
grangian and Eulerian configurations, respectively. Tregcdt can also be defined by

the ratio of infinitesimal length of théx to undeformed lengti X and the length is
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defined by the mathematical norms of these vectorsag|dx||/||dX]||.

By using the generalized eigenvalue problems for a secaet t&nsorA, the char-

acteristic equation can be obtained as below.
N LN+ LAN—13=0 (2.10)

The roots of the equatidn 2J10 gives the eigenvalugsdf the tensorA. The coef-

ficients of equation 2.10 are called principal invariantsesfsorA and described as

I
~
<

L(A): (A)

5 [[tr(A)?] — tr(A?)] (2.11)
I3(A) :=det(A)

The principal invariants shown in equation 2.11 can alsaesged by the real and

positive eigenvalues as

Il(A) = /\1 + AQ + )\3
I(A) == Mg + Aads + M As (2.12)
]3(A) = )\1)\2)\3

Hyperelastic constitutive laws can be constructed basea szalar energy function
that represents the stored energy in the material. In gerstoaed free energy for
hyperelastic solid is governed by three invariants of tightriCauchy Green tensor.
These invariants can be used in combination with any kindatropic hyperelastic
material model. The isotropic invariants of the right Cau@reen tensor can be

defined as follows:
1
L =trC, I,:= ) (I} —tr(C?)], and I3:=detC = J? (2.13)

These invariants have physical meaning$;) {s the line stretch, §) is the area
change, andl{) is the volume change of the material. By using equafion?)? the
schematic representations of principal stretches on amtggimal element shown in
Figure[2.4. If the continuum medium is an anisotropic solldak may be com-
posed of two-family stiff fibers or laminated layered struetin a specific directions,
we define Lagrangian unit vectorg andm, as following.

‘no‘G =1 where \ng\g = (’no . Gn0)1/2 .

N (2.14)

‘mo‘G =1 where ‘mo‘G = (mo . Gmo
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Figure 2.4: Representation of principal stretches defihegtincipal invariants of
the right Cauchy-Green tensaf { I,, andls), as length, area and volume measures

respectively.

The generalized schematic of an anisotropic material izshio Figure 2.5. Then by

the tangent map, the deformed configuration of unit vectansbe formed as

_F
e A (2.15)

m = Fmy

In addition to the isotropic response, the anisotropicaasp that is generated by

stiff fibers

Figure 2.5: Schematic representation of transverselydpit solid that composed of

two family fibers in the direction of, andm,, respectively.

two families of fibers, laminates etc. requires additiomalrfinvariantsily, I, I

and/,. These additional invariants are introduced in terma®¥n, unit vectors of
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fibers/laminates in the undeformed configuration

Iy :=ng-Cn I, =ny-C?nyg,
4 0 0 5 0 0 (216)
16 = mO-CmO [7:m0-C'2m0,
that relates to the energy storage due to fiber/sheet regrfent in the material.
There is also an additional invariant that can be describeth& coupling behaviour

through two distinct directions:
[g = no-CmO :mO-CnO (217)

Invariants/, and/s represent the square of the stretch in the direction of uettors.
There is not physical corresponding Bfand I; and those can be dependent Gn

andl,, see details in [106].

2.2 Stress Measures

A solid body # is subjected to surface tractidgnand body forces those generates
the stress in the deformed body. While body force acts aswanatric quantity on
A, surface traction is specified in the aread®,. The schematic representation
of the surface normal and traction vectors are shown in wndefd and deformed
configuration in Figure 216 where the forces acting on théaserare related to each

08!
N

dA B,

Figure 2.6: Schematic representation of the surface noamdkraction vectors in a

cut-out region for the deformed and undeformed configunatio

other in the deformed and undeformed setting as
TdA = / tda (2.18)
oA oA
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The tractiont also known as Cauchy stress vector measures the force pettasni

formed area. Then Cauchy’s stress theorem defined as
t(x,n,t) =0 -n, (2.19)

The Cauchy stress is also called the true stress, and it isedein the deformed
configuration. Then the first Piola Kirchhoff stress (alsown as engineering stress)
is defined in reference norma& by using the Piola identityr{da = JF~T NdA)
as below. The first Piola-Kirchhoff stress tensor is a namsyetric two point tensor
that is defined by the nominal traction vector in the deforroefigurations and unit

normal in the undeformed configurations.
P=JoF T (2.20)

Kirchhoff stressr is another measure of stress tensor that is a deformed coafigu
tion stress quantity described as below. It is as the wethsiieess defined per unit
reference volume.

T=Jo (2.21)

Then purely Lagrangian stress tensor called second Pintoff tensorS can be

defined by the pull back operation of Kirchhoff stresas
S=F'tFT=JF'¢oFT"T=F'P (2.22)

Although the first Piola-Kirchhoff stress is not a symmeteasor, the rest of the
stress measures for Cauchy)( Kirchhoff (7) and the second Piola-Kirchhoff(
stress tensors are symmetric. Relations of the all strasstgeare presented schemat-

ically over tangent-cotangent space and Lagrangian-Enlelomains in Figure 2.7.

2.3 Balance Laws of Continuum Thermomechanics

In this section, the balance laws of continuum thermomecklare summarized as
follows: conservation of mass, conservation of linear momentur)( conserva-
tion of angular momentunty), conservation of energy/C, £), and conservation of
entropy (4), seel[107] for further derivations. The physical entitiest are the fun-

damentals of the balance equations are listed in Table 2etenthe fieldy,, u, v,
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F

F—T
Figure 2.7: Schematic diagram of the stress measures tle#tisehe stress transfor-
mations though tangent and cotangent spaces and pushrdicevwe pull-back opera-

tions.

e, n. and~, are the mass density, displacement, velocity, internatgghentropy,
and entropy generation, respectively. The fundamentahioal laws of continuum
thermomechanics define the relationship based on the @hgsitities listed in Table
2.1 and global thermodynamic loads as follows: mechanaakf (F',,,), mechanical
moment (M ,,,), mechanical powerK), thermal power @) and entropy powery),
as listed in Tablé 212. There are three additional variaiiieeduced: heat fluxr),
heat source per unit mass @nd the temperatur@), Then the conservation of these
physical quantities can be defined with respect to tithadrivatives in Table 213. The
description of the balance laws can be summarized as falloarsservation of mass
states that physical mass in a control volume is fixed queautitt cannot be generated
or lost; angular momentum governs the symmetry of Cauclegstensor; linear mo-
mentum outcomes with Cauchy’s equation of motion, balaheaergy states that the
summation of the rate of change in kinetic enerff)) &nd the internal stress power
(P;¢) must be equal to the rate of change in external work déhg)( conservation
of entropy governs the second law of thermodynamics whithdsnequality rather
than an equality as irreversibility condition. After usitite relationship between
equations listed in Tabldés 2.3 and12.2 with mathematicataijpms such as Gauss
divergence integration theorem, integration by parts acdlization theorem yields

local/strong forms of balance laws shown in Tdblé 2.4.
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Table 2.1: Mathematical descriptions of physical entitiesegion &

Mass m = /g) padV (2.23)
Linear momentum 7= /y pavdV (2.24)
Angular momentum D= /yw X pgovdV (2.25)
Kinetic energy K= /y%pd\fuﬁdv (2.26)
Internal energy &= /g} paedV (2.27)
Entropy H= /g) pPanedV (2.28)
Entropy production = /j pPaYedV (2.29)
Table 2.2: Thermodynamic loads
Mechanical force F, = /,» pabdV + /w tdA (2.30)

Mechanical couple

Mechanical power

Thermal power

Entropy power

Mm:/:cXpdde+/ x X tdA
P 0P

P:/pdb~vdv+/ t-vdA
P 0

Q:/ pdrdV—/ hdA
2 0P

r h
S:/ pd—dV—/ —dA
» 0 oz 0

(2.31)

(2.32)

(2.33)

(2.34)




Table 2.3: Global forms of the physical balance principles

. d

Conservation of mass Pl 0 (2.35)

Conservation of linear momentum %I =F,, (2.36)
. d

Conservation of angular momentum @D =M (2.37)
. d

Conservation of energy @[IC +&=P+Q (2.38)

. . S
Entropy inequality I'= P H>0 (2.39)

Table 2.4: Strong forms of the physical balance principles

Lagrangian Eulerian
Pdo = paJ pa + padive =0 (2.40)
Div[P] + fo = paV dive + f = pgv (2.412)
F'Pp=P'F7T =87 oc=oc" (2.42)
pae =P : F+ry— DivQ pe¢ = o : L+r — divg (2.43)
| . | :

PdoYe = PdoTie — 5(7“0 — DivQ) PdYe = Pdlle — 5(7" — divq) (2.44)

1 1

_EQ.VXQZQ —ﬁq-v@.ezo
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2.4 Dissipation Inequality

The physical equations those are defined in the previousoseatiust obey to the
second law of thermodynamic and they must be consistentn,Tthe dissipation

inequality can be introduced as follows
1
pa? = o : D + pgbj. — paé — éq VL0 >0 (2.45)

where D is the rate of deformation tensor. The equafion 2.45 is alsmvk as
Clasius-Duhem Inequality. It can be decomposed into lauabey productiony Z,.
and heat conduction induced entropy productiQ®.., such asp;2 = paZioec +
raZ.o0n > 0. These dissipation components are called as Clasius#laaquality
(paZ,0c) and Fourier Inequalitysy; Z..,) and the strong form requires the condition
that both of dissipation components are greater or equatito. ZThese dissipation

components are defined as below

pd-@loc =o:D+ pdeﬁe - pd€ >0
1 (2.46)
pd@con = —aq : vxe > 07

In order to apply the local componerizy,.) for solid mechanics processes, we intro-
duce the Helmholtz free energy functiodi)(through Legendre transformation such

thatW = e — 0n.. Then, the local component of dissipation yield as follows
Pa%oc =0 : D — pd\if — pdneé >0, (2.47)
and it can be reduced to following form for the isothermalgess
Piioc = 0 : D — pg¥ >0, (2.48)

The first term in equation 2.48 represents the stress poweu(pt current volume),
and the second term is the stored energy in the material. tieqU2.48 is also re-
ferred to the entropy inequality in elasticity, viscoelasy, damage etc. Addition-
ally, paZ... is referred to the entropy inequality to heat flow directiofhen, the

Helmnholtz free energy and the heat flux can be defined as

v = @(X,F,Q,I, g@) and q= Q(X,Q,F,gg) (249)
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whereg, is the temperature gradient vector and it should not be saafwith metric
tensorg. The stress power can also be defined in different forms e§stcontribu-

tions as below
oc:D=J'P.F=J'S:C=J"'r:D (2.50)
By taking the time derivative of Helmholtz free energy)( it leads
U=0p0:F+0V:0+079:T+0,V: g, (2.51)
Inserting equation 2.51 info 247, then local dissipatimhdgs

PiT1oe = [J P — paOp¥) : F — pg0zV : T — palne + 99P)0 — pady,V : gy > 0
(2.52)
Equatior 2.52 should be thermodynamically consistent byfdhowing form

P—pdﬁp\ll =0
Ne + 0¥ =0 (2.53)

Dy, ¥ =0,

which are the main results of Coleman’s method. It conclutiasthe free energy
is a scalar potential for stress and entropy and does nohdepe the temperature
gradient. This relations are valid for arbitrafy, 0 andg,. These variables are also

called "external variables". Then the equafion 2.52 reslt@ehe following form:
pd@loc = pdaI\II : I >0 (254)

Here, we introduce th8 = — 4,07V as the thermodynamical force conjugate to the
internal variableZ that determine viscoelasticity, plasticity, damage etcough the
flow rule. The internal variables are not coupled to any ewxtkiorce variable. It can
be either scalar, vectorial or tensorial depending on iisial representation. For
example, it can be a viscous strain in viscoelasticity, atplastrain in plasticity, or

a hardening related quantity, etc. Internal variable evatus determined by a flow
rule that is based on the constitutive evolution functiod abeys the second law of

thermodynamics.
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CHAPTER 3

GOVERNING EQUATIONS OF THE INCOMPRESSIBLE HYPERELASTIC
CONSTITUTIVE MODELING

The constitutive equations of the materials are describagftect the physical re-
sponse in a mathematical manner. It also defines the rethijptetween indepen-
dent and dependent variables such as displacement ansl. sMest of the consti-
tutive models are constructed using a phenomenologicabapp, which takes the
macro-behavior of the material into account, and the regt@Mmodels are based on
micro-mechanical models that are constructed on the nsitt@ture of the material
by considering statistical mechanics. Materials with alimear reversible response at
large stains are covered by hyperelastic models. Mechamteaviours of the many
of critical materials can be captured by isotropic and anigoc hyperelastic mod-
els. For example, soft biological tissues, rubber-likeenats, composite materials,
etc. Biological tissues are primarily composed of fibers #na remodelled along the
loading direction and exhibit mechanical properties théiedfrom the base tissue
matrix. It is significant to examine the mechanical behars@i tissues to predict the
pathological conditions and diseases. Therefore, there been many mechanical
characterization tests and numerical modeling studiesigsues such as the brain,

aorta, liver, skin, eye, tongue, muscle, the heart, etc.

Hyperelastic constitutive equations can be determinéeelty using principal invari-
ants or by using principal stretches in the Helmholtz freergy function. There are
also detailed reviews of hyperelastic constitutive motygl$108, 109| 22, 110, 111,
5]. Depending on the volumetric resistance of hyperelastterials, they can be cat-
egorized as compressible and incompressible. Becauseswibsiological tissue is

assumed to be incompressible, the main focus of this theliseron incompressible
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hyperelasticity.

Elastomers, hydrogels, and soft tissues exhibit nearlgnmressible hyperelastic
mechanical behavior that can be characterized by a fregyemnsity function.
Fiber-reinforced soft matrix materials and biologicaktiss in the inextensibility
limit exhibit nearly incompressible and inextensible metisal responses. Thus,
the development of efficient and robust finite element foatiahs in the quasi-
inextensible and quasi-incompressible limits becomesifsignt. Hyperelastic ma-
terials exhibit stiff volumetric response compared to shesponse caused by nearly
incompressible behavior. Standard displacement-basedifations show poor con-
vergence behavior and inaccurate results for incompiessilaterials. A similar
problem has been revealed in the nearly inextensible liont i the high stiffness
in the fiber directions [112, 1183, 104]. Mixed or hybrid elethormulations based
on variational formulations utilize additional indepentigariables such as stress or
strain as Lagrange multipliers. In this context, we refethe pioneering works
of Pian et al.[[114], 115], which were based on the HellingeisBher formulation.
These formulations improve the stress approximation ofstaadard displacement
formulation. The mean dilatation formulation wi@idPOor T2PG-element based on
Hu-Washizu type variational principle was introduced bygiégaal et al. [116] and
extended to large-strain problems by Simo et al. [117]. K w@plemented for hyper-
elastic materials within a nearly incompressible limit byn8 and Taylor[[118]. In
the element formulation, an additional term was embedd#tktpotential function as
a constraint for the incompressibility [119], adopted intérelement implementation
for visco-elastic materials [120], and a novel two-field edxdisplacement-pressure
formulation was presented by [121] that provides consisesults to three-field for-
mulation. The use of dilatation formulations for fiber-feirced rubberlike materials
and fiber-reinforced soft tissues was presented in/[122fhérscope of this chapter,
firstly isotropic hyperelasticity will be covered and sonmrenon used hyperelastic
free-energy forms will be presented. Then, incompresddyaulations will be in-
troduced by volumetric and isochoric splitting. The anigpic hyperelasticity will
be described by one- and two-family fiber reinforcementeAfhat, a two-field vari-
ational formulation will be given to manage incompresdipiin the numerical pro-

cess. Then, a three-field Hu-Washizu formulation will beadticed with numerical
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examples that provide comparisons of different finite eleinfermulations. Later,
a five-field variational formulation will be presented to eowoth incompressibility
and inextensibility at the same time. A numerical exampla diial-clamped patch
test will be presented at the end of the chapter to compaitabamixed elements

in the literature.

3.1 Isotropic Hyperelasticity

In this sub-section, constitutive equations of isotropipédrelasticity will be covered
by the determination of stress and moduli from stored freergy functions. Free-
energy functions must be invariant under rigid body motioiiten the following

equality must be fullfilled
U(F)=V(C)=V(E) (3.1)

The free-energy function must be consistent with thermadyinal equilibrium which
states that whe#' = 1, the free-energy must be in global minimum which yields the
normalization condition to zero energy. Another impor@spect is maintaining the
stress-free condition aF = 1. Recall from equations 2.b0, 2151 and 2.52, stress
measureslP and.S) are conjugate with time derivatives of deformation eesitf”
andC , respectively.

U=P:F=S:E (3.2)

By using the relation O%C’ — E, the Helmholtz free-energy function and stress

relations can be described by following:

) ov . S . ov oV
\If:—aC.C’:g.C’ and S(C’X):2—8C’:—6E 3
L . ow '
V=-siF=P:F and P(F.X)=_

Then the two-point and Lagrangian elasticity moduli camtm@essed as respectively,

oP U s U
= oF  aror M ©=255=Y560¢

(3.4)

whereA andC are also called as tangent moduli for two-point and Lagr@amfprmu-

lations and they are fourth order tensors. Stress and tangwtuli for the Eulerian
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configuration can be determined by push-forward operaborasiernatively it can be
described by the derivative with respect to metric temsas following

ov or o*v
—2-— and c=2-— =14
T 89 an C 69 6969

Isotropic hyperelasticity exhibits the material respordentical in any direction.

(3.5)

Therefore the free-energy] can be characterized by invariants of right Cauchy-
Green tensor@) which is given in equation 2.13 in previous chapter. Them$ing
the chain rule the second Piola-Kirchhoff stress statedqimton[3.B can be de-
scribed by using invariants as following

ov ov oI, oV 0I, 28\1/ 0l

B/ ) R R— — 3.6
S=25¢ = %r10¢ T*an00 2oL 00 (3:6)

Corresponding derivatives of invariants with respeaftdefined as below
5C e 1 C and 50 3C JC (3.7)

By using using eqatioh 3.7 in_3.6, the definition $fcan be written in terms of
derivatives coefficients
S =61+ 6C+6C™H (3.8)

where the coefficients,, ¢, andé; defined as
ov ov ov ov
= 2 —_— I —_— o = 2— Sy = 2_[ e 39
C1 (8[1+ 18[2) y C2 oL, C3 38[3 (3.9)
Corresponding invariants can also be determined in Eules@ace by using left
Cauchy Green tensob)(such as
ov oV Ol OV Olpy OV Olps
=2 2 2
09~ 0L 0g | Oly dg ' Oly Og

Corresponding derivatives of invariants of left Cauchy&réensor {1, I, andlys3)

(3.10)

with respect to metric tensgrdefined as below
O3

O0lp Olpo 2 2 1
Yoy o2 _pp b2 and —J 3.11
dg g bl an dg g ( )
Then Kirchhoff stress yields to
T = bib + bob® + byg ! (3.12)
where the Eulerian coefficients, b, andb; defined as
R ov ov N ov ~ ov
by =2 — + [ — , bo=—2— | by =2[p3— 3.13
1 (3[b1 + Ip1 a[b2) 2 oL, 3 b3 Ol ( )
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One of the general basic example for the isotropic hypetreigs which also con-
siders the compressibility, is the compressible Neo-HaoKeee-energy function as

presented below

A
U= g([1 —3) = uinJ + 5(InJ)? (3.14)

wherep and \ are the specific material constants such as shear modulusaamel
constant. Notice that, when there is no deformati©n=¢ 1) or there is only rigid
body motion acts on the solid, the free energy does not styrer@ergy and becomes
zero. That result can also be examined by checking the elafi4 within ingredi-
ents such ag = detF’ = 1 making In/J is zero and/; = 3 which makes the first term
is zero. Then the second Piola-Kirchhoff stress can be méted by equation 316 as

below

S=upuld-CH+AIn))C! (3.15)

The Kirchhoff stress alternatively can be determined byhglesward of S as follow-
ing
T=FSF' =pub—g")+A(InJ)g™! (3.16)

Cauchy stress can be also obtainedoby- 7/J. Then Lagrangian tangent moduli

can be determined by equationl3.4
C=XC'®C " +2(u—AInJ)[g (3.17)
wherel-: is the fourth-order geometric transformation tensor defae,

(C'®C '+ C'eC!) . (3.18)

DO | =

]:[Cfl =

where non-standard tensor products can be definddcas,;,, = o], [0];, and
[e®0], ;11 = [o];; [o];;- By push-forward operation of Lagrangian tangent modyli
the Eulerian tangent moduli can be found as following
Ay 2
c=59 @g +j(,u—>\InJ)H (3.19)

wherel is the fourth-order identity tensor and defined by indiciatiation as below

1
Liji = 3 (03051 + 0ijk) (3.20)
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3.2 Incompressible Hyperelasticity

Some materials (such as the majority of soft biologicaliesy exhibit shape change
rather than volume change. The materials that preserveithigal volume during a
loading are called incompressible materials. They can lermied in an isochoric
way. In the invariant based free-energy formulations, @hilis responsible for iso-
choric deformations/; = J? is responsible for volumetric deformations. For the
volume preserving materials, the incompressibility camst is covered by = 1.
Due to the fact that, in the next sections of this chapter,ntae focus will be on

constitutive modeling of the incompressible hyperelastic

The incompressibility can be treated as near-incompriessitquasi-incompressible
in numerical solutions to avoid numerical difficulties senevhen the Poisson’s ratio
(v) approach to 0.5, the bulk modulus) (of the material goes to infinity. Due to the
order of magnitude difference between the shear and buttonses of the material,
it is convenient to split the deformation into volumetricdasochoric parts [123] as

follows:
F=F,,F where F,,=J"?1 and F=J'°F, (3.21)

In the same manner, the volumetric and unimodular part ofitte Cauchy Green

tensor can be defined as
Cw=F.F,, , C=F'F and C=J**C. (3.22)

Isotropic hyperelasticity is formulated based on the freergy function, which is
defined per unit reference volume through isotropic inves,, /5, /3 that are con-
stitutively related to the deformation gradient. For ingoessible materials, two of
the invariantd, I, are sufficient to be used in the formulation. The invariantrfo-

lation of hyperelasticity is described by the following on@dular isotropic invariants

_ _ 1 _ _ _ _
L=tC, L=; [(trC)2 (G|, and L=detC=1, (3.23)

Then, the free energy function can also be written based dtiphizative decompo-

sition of volumetric and isochoric parts as following
\II(C) = \Ilvol(cvol) + \Ijiso(é) or \II(F) = \IIUOZ(F’UOI) + \IIiSO(F)a (324)
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In alternative form, the free-energy decomposition istentas

\II(C) - \IIUOZ(J) + \Ijiso(llaIQ) (325)

Now, Lagrangian and Eulerian configurations of stress andeiat moduli can be
obtained based on the volumetric and isochoric split of whe&tion gradientF’ in

following subsections.

3.2.1 Lagrangian configuration

The second-Piola Kirchhoff stress can be decomposed of
S =205V = S0 + Siso (3.26)

In line with the equationh 3.26, the elastic Lagrangian mo@ytan be additively split

into volumetric, and isotropic parts respectively.
(C = 2805 = 4600\1[ = (Cvol + Cz’so (327)
The volumetric part of the second Piola-Kirchhoff stré&s, reads

St =205V o (J) = 20

vol

1
(J)0cJ where OcJ = 5Jc—l, (3.28)
Then the volumetric part of the second Piola-Kirchhoff s¢rean be rewritten as

Spor :=JVU (J)YC™' where p:=JV (J) (3.29)

vol vol

wherep is the internal pressure term and, , is the derivative of volumetric part of
the free-energy,,; with respect toJ. The Lagrangian moduli expression for the

volumetric part is determined as

Coot 1= 2058 vat(J) = (p+~r)C' @ C™' = 2plpma, (3.30)

wherei, = J2y),(J), I25¢P = §[CLe.Cpp + CapCre] and iy, (J) is the

vol vol

second derivative of the volumetric energy function witbpect toJ. The isochoric

part of the second Piola-Kirchhoff stress is obtained as
Siso = 2acwiso(é) = 28Cwiso(é> : aéé (331)
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Equatiori 3.3 can be written explicitly as following

Siso:=8:Q where S =201;,(C)
! (3.32)
and Q=0,C=J?%3 {H — §C ® C‘l}

Then, the Lagrangian moduli for the isotropic response eaexpressed as
Ciso = 4056Vis0 = 205(S : Q) (3.33)

The isochoric Lagrangian moduli can be expressed moreaithpbuch as

Ciso:=0QT:C:Q+S:H where Q:g—g and HZZS%
(3.34)
o 2 2
with S :H = g(S : C)]P)Cfl — g [Siso & Cil + C*l ® Siso]
and the fourth-order projection tensoifig—+ = Io-1 — (1/3)C ' @ C .
3.2.2 Eulerian configuration
The Kirchhoff stress can be decomposed of
T =20,V = Tyol + Tiso (3.35)

The volumetric part of Kirchhoff stress,,, can be determined by the push-forward
operation such as
Tvol = FSUOIFT = pg_l (336)

The Eulerian tangent moduli expression for the volumetait [ defined as

Coot =40, Vo = (p+R)g ' @g ™" —2pI, with &= J%,(J). (3.37)

vol
Then, the isochoric part of the Kirchhoff stress can be ddfase
Tiso = FSioF" =29,V;,(g:F) =7 : P where 7=29,V,,(g;F) (3.38)
After some mathematical operations, equalfion13.38 is sfieglto
Tiso = kdeb  where k = 20; U, (3.39)

Lastly, by using the equatidn 3.5 the isochoric part of thieEan tangent moduli can

be determined as following

2
(T:g)l—Z(tg'+gte7r)| P’ (3.40)

G:Z‘SO:PZ C+
3

Wl N
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3.2.3 Commonly used isotropic incompressible hyperelasticonstitutive mod-

els

There are a variety of types of hyperelastic constitutivelet®in the literature; those
are mostly used for specific kinds of material responsesoNlgtrubber-like materi-
als, but also biological tissues, are composed of an ismtrepponse matrix that also
creates connections and supports the oriented specificawngs, such as fibers.
In order to reflect the mechanical response of the base nraaterial, it is neces-
sary to define an isotropic contribution of free-energy fiolt The neo-Hookean
free-energy function, which is described below, is one efshmplest isotropic hy-
perleastic constitutive models.

- %M(Il —_3) (3.41)

wherey is the shear modulus of the material. It provides a good acguin low-
medium strain limits. Another common model is Mooney-Riuhat considers both

invariants/; andI, as following
U = puo(fr = 3) + por (2 — 3) (3.42)

whereu,o andyy; are material constants. It is the extended version of neoketan
model. The another important hyperlelastic model is Yeoldehthat uses polyno-

mials of the first invariant and expressed as
U = Cyo(Iy = 3) + Cyo(I1 — 3)* + Co(I) — 3)° (3.43)

whereC}, Cy andCsy are material constants. Then, Ogden model is defined based

on the principal stretches as following
N
=300 a1y - 3) (3.44)
p=1 7P

wherey, anda, are number of material constants depending the valueé. of

3.3 Anisotropic Hyperelasticity

Most of the biological tissues and plants are not homogeseout they are com-

posed of different kinds of ingredients that exhibit diéiet mechanical properties.
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These composite structures can be either layered-typeitsyembedded fibers on
a softer ground matrix, or both types. Some of the importxan®les are; the
heart, the artery, the skin, a leaf, etc. These type of coitgpesuctures may be-
have anisotropic, orthotropic and transversely isotrdejgending on the mechanical
layout. Therefore, it is necessary to define anisotropichaeical response in the
free-energy function. The anisotropy can be in a singlectiva or it can be in three
distinct directions. In order to represent an anisotropgponse, there are defined
anisotropic invariants in equatiohs 2.16 and P.17. Thenesponding free-energy

function is described by the following form:
‘I’(g; F7 ny, mO) = wvol(t]) + \I]z‘so(g; F) + \I[am<gu F7 Ny, mO) (345)

whereV,,; is the energy stored of anisotropic contributions adm, are the unit
vectors for the direction of anisotropy for two-family filserFor anisotropic materi-
als, there are also anisotropic contributions of stressésreoduli similar to equation
[3.45. Stress and tangent moduli relations of volumetridsmchoric parts are already
given in the previous section. Therefore, only anisotrgpiess and moduli expres-
sions will be summarized here. For two-family fiber conttibas, the anisotropic
part of the second Piola-Kirchhoff stress and the corregpgnanisotropic tangent

moduli are defined below

a\:[jani 6\111"”' 6]4
Sanit = 2755 oI, oC T ® Mo
8\I/ani 6\11ani 6]6
=9 =9 — =2V
Sanis = 2755 21, oC Mo & Mo
08 ;i 08 ynia 014 (3.46)
Cania =2 868174 =2 (‘;ZZA 50 = AU"ny @ ng @ ng @ Ny
aSaniél 8Sani66]6
. — 2 7 — 2 LA S 4\1[//
Canig 2C al; oC my @ my ® my ® My

where the subscriptsand6 represent the two distinct direction of fibers. Similarly,

Eulerian stress and moduli expressions are defined as below
a\pam‘ 28\Ilam‘ 8]4

ani,4d — 2 = — =2V
Tanid = 2750 oI, ag o em
6\11ani 6\11ani 81
T ani6 = =2 =5 :2\1/’m®m
’ d0g 0l Og (3.47)
9 8‘S'ami,4 2 aSam’A 814 4\11,/ Q ® ® .
Canid = = - = n n n n
A dg oI, dg
8Sani 4 6‘S’ani 6 6]6
i = 2 g2 ani6 20 gy
Cani 6 g ol, 0g mmmEm
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Since most of the soft biological tissues include fibrougdtires that are embedded
in the isotropic ground matrix, there should be a definedatrapic contribution of
free-energy in addition to the isotropic response. As itlisaly stated in equation
[3.45, isotropic part of the free-energy (volumetric anctiswric parts) are the same
as the free-energies that were introduced in the previocisose In other words,
as a isotropic ground matrix material, one of the isotropgefenergy can be pre-
ferred according to the physics of the material. Then, theodropic contribution is
summed up with the isotropic part with a different form of gyefunction. Some of
anisotropic free-energy forms those are common used iodicdl tissues are sum-
marized belowl[5]. The one of the developed model by HolZdagifal. [124] for the
artery, which is in exponential form in anisotropic freeeggy and only carries load

in the tension direction, is as follows:

\pani(LlaIG) = zk—]; Z (eXdk’2<Ii — 1>2] — 1) (348)
i=4,6

wherek; andk, are material parameters those need to be determined froariexp
ments. Macaulay brackete) represents the tension-only behaviour. An extended
version of this model proposed by Holzapfel et al. [125]. Bxéended model in-

cludes the first invariant; contribution in the anisotropic part as follows

Wani(11, 14) = sgM(1y — 1)% (exp(ka[(1 — pe) (I = 3)° + pe(ls — 1)%]) — 1)
(3.49)
wherep. is a type of transition parameter 8s< p. < 1 which regulates the
anisotropy degree of the free-energy. Another specificoaimipic free-energy form
has been developed by Holzapfel et al. [106] to represerdrthetropic response of
myocardium tissue. It is in exponential form and also takesdighth invariant into

account which is the coupling effect between two distinoéctions as shown below

Uopi = %exp{b([l —-3)] -1+ Z ;—gi (explbi (L — 1)%] — 1)

i=f,s
0 (3.50)
2bfs (exqbfslgfs] - 1) )

where notationg’ ands refers to two distinct direction in myocardium tissue calle

as fiber and sheet directions respectively.
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3.4 Two-Field Formulation

It is common in the variational methodology to determineikdgpium equations via
a directional derivative and obtain the stationary conditof the energy potential. If
it is performed for a single variable as displacement, ildgestandard displacement-
based finite element formulations, however if it containgenariable such as ad-
ditional internal pressure degree of freedom leads to muggational formulation.
It is a common approach to treating numerical difficultiagshsas volumetric lock-
ing due to incompressibility, by using mixed finite elememiniulations. Therefore,
introducing internal pressure as a penalty parameter isliakwawn method to be
used in quasi-incompressible problems, and it requiregiaddl discretization and
interpolation for the additional variable. If there is ordeldional variable taken into

account, then it yields a two-field finite element formulatio

Soft biological tissues exhibit high resistance to volurhargye and low resistance to
isochoric changes as aresult of a high ratio of bulk modussiear modulus [107]. It
has been shown that incompressible materials deform iroahasic way. Therefore,
it is necessary to apply a numerical treatment to overcomdoitking fact by using
mixed formulations. In this situation, the volume-presegvconstraint should be
enforced as/ = 1 by penalty parameter. The potential functional of hypestatiy
can be defined by the following variational form

(. p) = 1™ () — () + / p(J — 1)V, (3.51)

v

wherep is the penalty parameter and defined as the internal presBuea the inter-

nal potential functional is described as

I (¢) := / (g, F)dV (3.52)
14
and the external potential function is defined by
() := / @ - pobdV + ¢-tdA (3.53)
\% ov

whereb is the body force acting to the volume of the body agithe surface traction.
By variation of equation[(3.51), the stationary conditi@mas be determined which
also yield Euler-Lagrange equations. And then, lineaioradf these equations yields

finite element formulations. As a first step, the stationamydition with respect to
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independent variableg andp can be obtained by the directional derivatives of the
potential functional in the direction 6t anddp separately. Then the Euler-Lagrange

equations are determined as follows:

DIi(¢, p) (5] = / (7% + pJg ") : SymgV.o) dV — ST () — 0,

v

DIi(e,p)[6p] = /V 6p (] — 1) dV =0,

(3.54)
where the first term in equation (3]54) contains nonlingaahd the second term
enforce the incompressibility constraint. In a similar w&¢54) can be also written

in the Lagrangian configuration as follows

DIi(¢,p)[6) = /

\%

S': DE[s¢|dV + / JpdivégpdV — STI**'(¢) = 0 (3.55)
14

The nonlinearity requires a Newton-Raphson solution. &lee equation[(3.54)
should be linearized in the direction of incrementsXap and Ap for both variables

¢ andp. The second variation provides the following linearizedrio

DT1(¢,p)[60, 0] = /V gV AP : (VA (770 + pJg™t)) dV
b [gV0: (o (g @ g™ - 2,0) £ C) (35O
14
gV, ApdV

The consistent linearization of two-field variational farlation stated in equation

(3.58) can also be written in the Lagrangian configurationedsw

DMi(6.p)(66 A8 = [ DEdG: (C* 4 (CT o 0 =)
(3.57)

DEA¢dV + /V S (VAg) (Vo)) dV

In general, discontinuous (constant over element) pregsid and continuous (order
of 1 or order of2) polynomial interpolations for the displacement field asediin the
mixed formulations.
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3.5 Three-Field Formulation

Although there is a treatment for the volumetric locking ptsenon by imposing a
two-field mixed formulation, as mentioned in the previousties, a constant pressure
definition over the element causes pressure osculation§.[ITherefore, definition
of an additional third independent variable, such as volah@nging (dilatationp,
yields more efficient three-field mixed formulation. Thisnmiple is also known as
Hu-Washizu variational formulation, and this methodolegyvidely accepted and
commonly used in the literature. Although there is a thirdeipendent variable in-
troduced in the Hu-Washizu formulation, the resultantéliement formulations are
calledQ1P0 or T2P0. The newly kinematic variablé is included into the func-
tional as a constraint. In a similar manner to the two-fieldrfolation, the potential

functional can be written as

(¢, p) = 17 () — T () + /

p(6 — J)dV + / U,(0)dV,  (3.58)
.

v

wherell™ andII**! are defined in equations (3]52) ahd (3.53). Then the stationa

conditions with respect tg, J andd yield to weak forms as following

DIi(¢, p)[59)] = /V (7% + pJg™") : symgV.o¢) dV — 1) = 0.

DIi(h,p)[50] = / 5p (] —0)dV =0,

DII(¢,p)[66] = / 30V ,(0) —p)dV =0,
\%4
(3.59)
Consistent linearization with respect¢oeads

D1(¢, p)[5p, AgY] = /V gV.06 : (Vale (7% + pig ™)) dV
+ / gV, oo : (pJ (g*1 g — 2I[g—1) + (Ciso) (3.60)
174
gV, ApdV +/ JgV.6¢ : g ApdV
1%
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The Lagrange multiplier and internal pressure terand the mean dilatatiofh can

be defined constant over an element as below

| Vy
0=— [ JdV = —
V /g Vv’
. (3.61)
p= | WV,
Then the incremental forms leads
_ 1
Af = v Jg: gV A¢dV,
B (3.62)
Ap =" AGdV,

Pluging of the incremental forms defined in equafion B3.62 R0 gives the final
form of the linearization. For the interested researches,[807] and[[126] for the

detailed background of the intermediate steps of the deviva.

Cook’s Membrane - Two-field and Three-field element comparisn

In order to test different mixed element formulations in KE® [12], a benchmark
problem has been performed. In the numerical applicatiGosk’s Membrane ge-
ometry was preferred which is generally used for patch wfstsixed formulations
under both bending and shear [127], [128], [129], [130] ab@l]. Finite element
mesh of the geometry was created in ANSYS Mechanical andsttreasferred to
FENICS by .xml format. It is also possible to create mesh iniEB by using sim-
ple geometries such as box, sphere etc. However, relatoshplex mesh should be
imported from another commercial pre-processing platfo8ince tetrahedron ele-
ments in FENICS were validated in terms of stability and eacy therefore these
types of elements are preferred in the analysis. Two distinice element models
were generated, each with a different mesh size settinggoéredges. The goal is to
compare alternative mixed element formulations with thees&oundary conditions
in two different mesh sizes. The membrane was fixed from the k#gion in each
direction ofu, and the tangential traction loadh = (0, 10, 0)” has been applied to
the green surface. Corresponding finite element meshestatdd boundary condi-
tions are represented visually and graphically in Figufé &ince it is a nonlinear
analysis, the load was applied incrementally in 100 stepsthd numerical example,

the following isotropic free-energy function has been dafin
K

U, = g(f1 -3) and Wy = 5(J - 1) (3.63)
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Figure 3.1: (a) Schematic view of the geometry, boundargitmms and traction load
(b) coarse mesh representation with 4 elements per edgeeanish representation

with 8 elements per edge. (Units are dimensionless)

wherey is the shear modulus ands the bulk modulus of the material. The parame-
ters have been defined in the quasi-incompressible limit-a%).4999 andy = 67.11
units. During the comparison, the tip deflectioncindirection is obtained from point
A and the pressure is taken from poit There were different element types with
different interpolation orders used to make comparisonsnms of accuracy and so-
lution time. Elements that were used in the analysis are sloWwigure 3.2. The first
letter in the notation of the element type describes the gdocrshape of the element.
Since we use tetrahedron elements in the example, thaeisedfto ag’. The second
number following to the first letter is the order of interpida degree.1 is used for
linear interpolationp is used for quadratic interpolation ands used for pressure
degree of freedom stated &sthat is formulated as a constant over element. There is
also defined a different type of element which uses CrouRamart interpolation for
the pressure degree of freedom and defined &%. While the subscript/ W refers
for three-field Hu-Washizu element formulation, the reredielements are formed
based on two-field mixed formulation. There will be presdnesultant contours of
independent variables such as displacement, and pres&sira.reference solution,
there was solved the same numerical model with 32 elementsdges in ANSYS
with Q1P0 element by using the same material properties.véheal deflection at
Point A and internal pressure at poiftare given in Figuré_3]3 with different mesh
settings. There are overlaps of the result§’ 004, -7'1P0 and T2 P0 gy -12P0
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Element Type Illustration
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Figure 3.2: Element types used in numerical Cook’s membnaneerical example

element formulations. Linear approximation has been peréo between the results
of 4 and8 elements per edge configurations. As it is already knownlitier inter-
polation of tetrahedron elements causes shear-locking@mdit too stiff behaviour.
Accordingly, 7’1 element formulations suffer from ill-conditioning and naocurate
results in both displacement and pressure. It also causehttkerboard pattern for
pressure distribution, which is not realistic. The numarigroblem can be solved
either by using quadratic elements or by replacing tetrairedwith hexahedrons.
The quadratic element formulation for the displacementeegf freedom (i.e72)
elements converges to the reference solution by increfisgngesh count. Some ele-
ments converges by increasing trend and some others caesvgyglecreasing manner
such asi"2P0gy andT2C R1. While it seems like th&'2 interpolations agree with
the reference solution, a slight difference appears onspresplots. By increasing
the mesh level72P0y5y andT2P0 provided the most accurate results rather than
the other element types. Another important comparisoerioi in the FE process
is the total elapsed solution time. The normalized solutilowe for different element
formulations is given in Figure_3.4 for the coarse and fine hm&senarios, respec-
tively. According to computational efficiencies, higheder interpolations require

more computational effort in general. Althoudh2P0 provides accurate results in
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Figure 3.3: (a) Tip vertical deflection of different elemémtmulations at point "A"
(b) Internal pressure result at point "B" of different eleth®rmulations. Both plots

are provided based on coarse and fine mesh settings
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Figure 3.4: Normalized elapsed time for different mixedmat formulations

terms of deflection and pressure, it is not the most efficreteims of computational
time, and it requires more iterations in the Newton-Raphsogess. By taking into
consideration all parameter sets shown in Figlres 3.3 ahd"3.,0y three-field
Hu-Washizu element formulation provides the best solutidhe vertical displace-
ment and pressure contours regardin@'id’0 and7'1 P04y, elements are given for
coarse and fine mesh settings in Fidure 3.5. Itis clearly eenthe results that, lin-
ear interpolation of displacement independent variahlses inaccurate stiff bending

behavior. Similarly, the pressure contours show an urggabheckerboard pattern.

Figure[3.6 presents the displacement and pressure combiits”0 and 72 P0 gy

elements for coarse and fine meshes. These elements reflentdhrate behaviour
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Figure 3.5: Contours of 4 element per edge and 8 element ger @hfigurations.

(a) Vertical displacement @f 1 PO element (b) Vertical displacement®i POy, ele-
ment (c) Pressure distribution @fl PO element (d) Pressure distributiontt PO g

element

of both coarse and fine meshes. Since pressure degree afrfidectonstant over
element, fine mesh setting covers the pressure distribbgter. Both two-field and
three-field elements exhibit very similar behaviour in tewhdisplacement and pres-
sure. However, it should be noted from Figure 3.4 th&t’0 4y is not only the most

accurate element but also computationally efficient.

Figure[3.7 presents the displacement and pressure cowmtidlits®1 and72C R1 el-
ements for coarse and fine meshes. Using linear interpolafipressure degree of
freedom provides smooth transition of pressure contowssitlis not computation-
ally effective. The pressure distributions of elemehtsP0 and72P1 are similar
in an average sense. Therefore, in literature, the pressuiable is mostly con-
sidered as constant over element. There is another elegg(€rouzeix-Raviart
interpolation) also compared with common elemertsz elements store the pres-
sure constant on each face of the element. The displacerakaviour is similar to
other element types. Pressure distribution is also aceeraugh, on average. How-
ever, there were observed singularities of pressure, edlyda boundary condition
regions, and causes numerical instabilities. ThereftReelement formulation is ac-
curate enough in overall region but it is not accurate in lolauy regions and it is not

computationally efficient.
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3.6 Five-Field Formulation

Fiber-reinforced soft biological tissues may exhibit natyoincompressible behav-
ior but can also present an inextensible mechanical respduns to the high ground
matrix-fiber stiffness ratio. In such numerical situatienee face in the incompress-
ible limit, a similar problem is shown up in the nearly inex¢éle limit due to the

high fiber stiffness. Therefore, it is also necessary tot tilea nearly-inextensible

problems with a Lagrange multiplier and another kinemadicable.

A mixed variational formulation based on the Hu-Washizugiple for the nearly in-
compressible and nearly inextensible limits for fiber-f@ioed materials was studied
in[112,113/13P, 133, 104] for one family of fibers. Later @aswextended to two fam-
ily fibers for soft biological tissue$ [134]. The approaclzdiunek et al.[[112, 113] is
based on the multiplicative decomposition of the defororagradient into a purely
unimodular extensional part, a purely spherical part, anéxdension free unimod-
ular part. The mixed element formulation of Dal et al. [1084]Lis based on a
five-field Hu-Washizu type variational formulation that ftasjugate pairgp, ) and
(s, A) for pressure-dilatation and fiber stress-fiber stretctpaeively. The result of
the variational formulation is th@ 1POFOelement which is extended for the inexten-
sibility limit. The formulation is formed based on a vec#drdisplacement field and
two additional scalar conjugate pairs, making five fieldsotalt On the other hand,
Schrdder et al! [132] used Hu-Washizu type variational fdation for incompress-
ible part of the formulation and they proposed Simplified ématic for anisotropic
part. They introduced low-order interpolation (constaveroelement) for a second-
order tensorial Lagrange multiplier conjugate to a tersdérnematic-like field. They
formulated either use of the deformation gradiéhor right Cauchy-Green tensGr
as the kinematic tensorial function conjugate to strdsstlagrange multiplier. For a

detailed review, we refer t0 [132, 104, 134] and referenbessin.

In this section, the five-field formulation proposed by Dab4] and Schroder et
al. [132] will be introduced and compared in detail to obsghe accuracy and com-

putational cost of the models.
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3.6.1 Scalar conjugate pairs for inextensibility(s, \)

This model uses scalar conjugate pair\) for inextensibility constraint in addition
to scalar incompressiblity paip, 6). The free-energy is decomposed into volumetric,

isochoric and anisotropic parts as follows
U(g; F,mo) := Yoor(J) + Viso(g; F) + Wani(g; F', 1) (3.64)

Note that, since we are working on one-family fiber reinfoneat, the anisotropic
part is the function of only a single unit vectag along the fiber direction. If there
are two-family fiber reinforcement, refer equation 3.45dgtended free-energy func-
tional. Corresponding unimodular isotropic and anisatrapvariants are already de-
fined in equations_3.23 and 2]16 respectively. Then simiatagy to free-energy,

the Kirchhoff stress can decomposed of as following
T = 289\1[ = Tyol + Tiso + Tani (365)

whereT,.;, Ts, andr,,; are already defined in equatidns 3.36, 8.39[and 3.47. Sim-
ilarly, the Eulerian tangent moduli can be expressed bymelvic, isochoric and

anisotropic parts as below
Cc= 48929\1[ = Cyol T Ciso + Cani (366)

wherec,,;, ¢;s, andc,,; are defined in equations 3137, 3.40 and B.47. Two Lagrange
multiplier are required to be added in the mixed potenti@rtforce incompressibility

and inextensibility behavior. Then the mixed potential bardescribed as below

(¢, p,0,5.A) := [T (¢) — T () + /

p(J — 0)dV + / Wy (0)dV

v
+ / s(Iy — N)dV + / Uoni(A)dV
\%4 \%4
(3.67)
wheres is the second Lagrange multiplier as fiber stress arsthe kinematic entity
as fiber stretch. Then additional stationary conditiongjiee¢ior 3.58 with respect to
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s and ) yields additional weak forms as following

Dﬂ(d),p, 0,8, \)[0p] = /v ((TiSO +pJg '+ 2sn ® n) : sym(gvxé(b) dv

— I ($) =0,
DIl(¢,p,0,5,\)[0p] = /Vcsp (J—0)dV =0,
Dl(6.p.0,5. N80 = [ 80(¥.4(6) =) dV =0
DII(¢, p, 0,5, \)[ds] = /Vés (I, —\)dV =0,
DII(¢,p, 0, s, N[0 = /V(S)\(\I/;m()\)—s) dV =0

(3.68)

Note that, there appears additional stress term in equiie® related with the

anisotropic part of the free-energy. Then, similar to eique8.60, the consistent

linearization with respect te leads
D1L(¢, p, 6,5, \) [0, Ap] = / gV,o¢ : (V. A (7°° + pJg~' +2sn@n)) dV
\%

+ / gV.ip: (pJ (g_1 Qg — 21[9-1) + (Ciso)
1%

gV, A¢pdV
+ /ngmdqb:g_lApdV
v

+ / gV.0¢ : 2Asn @ ndV
v (3.69)
The similar methodology, that were applied foandé in equation$ 3.61 arld 3162,
the second Lagrange multiplier and the fiber stress teamd fiber stretchA can be

defined constant over an element as below

-1 Ve 1
A=— [ I,dV =— d s=— [ ¥ dV T
V/B4 a and s V/B anidV, (3.70)

Then the incremental forms leads

_ 1 _
AX= / mon:gVAGdY, and A5 =" ANV, (3.71)
B

ant
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Pluging of the incremental forms defined in equafion B.7& [BE9 gives the final
form of the linearization, seé [104] for further details.€Timixed variational formu-
lation leads taQ1POF0 or T2P0F0 five-field finite element formulation.

3.6.2 Tensorial conjugate pairs for inextensibility(C, S)

This model uses second-order tensorial conjugate(ai€) for inextensibility con-
straint in addition to scalar incompressiblity pgix 6). The model is very similar to
the previous one as it decomposes the free-energy, strdsa@auli expressions in
same manner with equations 3.64, 3.65[and|3.66. The differkatween the two of
the five-field models comes out in the second Lagrange migitiphd the kinematic
entity. Schrdoder et all [132] described the second Lagramgjéiplier and its con-
jugate as a second-order tensors. While the proposed mgpd&04] is formulated
based on the constraint over fiber strefghthe tensorial model enforce the inexten-
sibility constraint based on right Cauchy-Green teriSorThen the mixed potential

can be described as below

[(C.p.6.8.C) = 1" (g) — T () + /

p(J —0)dV + / Uy (0)dV

\%4

+ / S:(C—-C)av +/ Ui (C)dV
v Y B2
whereS is the second-order tensor for the second Lagrange maltigdi anisotropic
stress tensor an@ is the second-order tensor for the kinematic entity. Staiip

conditions with respect t@, p, 6 , S andC yields to the following weak forms

5 1
DII(C,p,0,8,C)[6¢] = / 55(7 : (20cV +pJC~' + 8)dV
14
— It (¢) =0,

DII(C,p,0,8,C)[6p] = /Vap (J—60)dV =0,
(3.73)

vol

DI(C.p.0,5.C)66) = [ 50(W,(6) = p)dV =0,
1%

DII(C,p,0,8,C)[6C] = /56:(8C\IIW—%S) dV =0,
Vv

DII(C,p,0,8,C)[6S] = /58:(C—C)dV:O
Vv
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Discretization of the four additional fields p, S andC are defined as constant over
the element similar to the equatidns 3.70 Bnd13.71,[see [bBRjrther details. The
mixed variational formulation lead tQ1P0A0 or T2 PO A0 five-field finite element

formulation.

3.7 Dual Clamped Patch Test - Comparison of Mixed Element Fanulations

In this numerical example, itis aimed to focus on the acquaad efficiency of differ-
ent types of finite element formulations shown in Figure B\ 8jfferent physical con-
ditions such as compressible, extensible, nearly incossgrke, and nearly inexten-
sible cases. The descriptions of the elements as followiRgefers for standard dis-
placement element with quadratic interpolati@i2,P0 and72P1 are the three-field
Hu-Washizu mean dilatation formulations with differenegsure-dilatation interpo-
lations, 72 A0 and7'2 A1 are the three-field that uses tensorial formulations forlypew
added independent variables for inextensibility constrdi2 POA0 andT2P1A1 are
the five-field formulation that includes scalar pair for ingaressibility constraint and
tensorial pair of additional independent variables foxteasibility limits and lastly
T2P0F0andT2P1F1 are the five-field mixed formulations composed of scalargpair
for additional independent variables for the both incorapitality and inextensibil-
ity limits. In the solution of this numerical problem, Fer8¢12] has been used for
the finite element analysis software. The linear elementstcocted by 3 nodes, the
guadratic elements formed by 6 nodes, and constant intgrpolover an element
are also generated for the different types of element foatrars. The square shaped
(1x1 dimensions) 2D geometry is defined in line with [132] &nd clamped at the
upper and lower edge boundaries as a fixed support. A unifaxatian is applied
asq = 30 and it is incrementally applied at the left vertical edgelod square ge-
ometry. Since the model is in 2D space, nodes are fixed in theala:;-direction.
The corresponding geometry and boundary conditions argepted in Figuré_319.
The following free-energy function that is proposed by [[l 3fas been used in the

numerical example.
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Element Type lllustration

A
- ALA
- AAA
- ALL
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Figure 3.8: Finite element design for compressible, extéssquasi-incompressible

and quasi-inextensible hyperelasticity.

where the first three terms in equation 3.74 is the isotropitréoution of the free-
energy function and the last term is the anisotropic parttdute one family fiber
reinforcement. The anisotropic part of the free energy fsxdd by Macaulay brack-
ets (o) that represent the tension-only behavior.is the Lamé constany is the

shear modulus of the base ground matrix andis the fiber stiffness. The fol-
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Figure 3.9: Schematic representation of the geometry angésmonding boundary

conditions

lowing relations can be used to calculate other mechanmastants such as =
vE/((1+v)(1—-2v))andy = E/(2(1 +v)) whereE is the Young’s modulus of

the material and is the Poisson’s ratio.

The ground matrix material is reinforced by one family of fibwith o« = 60° angle
with the horizontal plane. The fiber’s unit normal is desedtbyn, = (0.5,/3/2)".
The fiber stiffnesg; is defined as a parameter set such.pas= {102, 10%, 10%, 10%}
to observe the robustness of the elements especially iteingtble limits. Similarly,
Poisson’s ratio is also defined in two sets= {0.3,0.49} to examine the element
formulations in compressible and near-incompressiblé@d$inThe elastic modulus is
defined as a constaft = 200.

For all of the cases, the initial time step increment is ta@sm\¢ = 1. During
the Newton-Ralphson iteration process, the maximum iteragteps for each time
increment were defined as 20. If the solution does not cosverghis range, the
simulation is restarted and the time step increment is divioy 1 /2" wheren is the
power factor that is increased by 1 whether the solutionsfary divergence issues.
The process continues until the time step reachds'26. There are defined coarse
to fine sets of finite element meshes:4, 8, 16, 32 and64 elements per edge, and
they are generated with triangular elements. The mesh tagaet to symmetric

with respect to the two major axas;, andx, to decrease the effect of the mesh layout

59



dependencies in the results. The mesh configurations annshd-igure 3.10.

2 %2 4 x4 8 X &

16 x 16 32 X 32

Figure 3.10: Representation of mesh configurations witleiht element sizes

In the first set of solution for = 0.3, the additional field variables in three-field and
five-field formulations are taken as constant over elemeahdd, 72, T2 P0, T2 A0,
T2P0AO andT2P0F0 elements are compared in terms of deformation and elapsed
solution time. The mid-point deflectian. (0.0, 0.5) of the left edge has been tracked
for all of the mesh configurations and for obtained for theawienge ofy. fiber
stiffness values. Accordingly, the mid-point deflectiofo(m x, direction) results
are presented in Figure 3111. These graphs reveal the cesitfieematerial response
of the different element formulations for variety of fibeiffsiess range. All of the
elements converges to same mid-point displacement valutnég: = {102, 10}
however they approaches the final value of displacement iffexeht convergence
trend. For the case of = {10°}, T2 is divergent and2P( exhibit a convergence
behaviour. In the high level of near-inextensibility linsitich as: = {10}, only
the elements those treats the inextensibility constrajiratdalitional field variables as
T2A0, T2P0A0 andT2P0F0 exhibit convergence trend by identical results. The
solution efficiency is an another critical resultant partenéhat is demonstrated in
Figure[3.I2 foru, = 102 with (32 x 32) and(64 x 64) element configurations. Due

to having a relatively low number of degrees of freedomf@rand72 PO elements,
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Figure 3.11v = 0.3, Mid-point displacement,.(0, 0.5) results for(2 x 2), (4 x 4),
(8 x 8), (16 x 16), (32 x 32) and(64 x 64) elements per edge in the range.gf=
{102,10%, 10, 108}

these are the most cost-effective in terms of solution tiri@wever, these elements
are not convergent in high fiber stiffness materials, therboést option appears to be
the T2 P0F 0 which can be used in both incompressible limits and inexéagmits.
T2PO0OF0 is competitive with standard types of elements, and it dadssltow the
simulation as expected. Although2A0 and72P0A0 are also good candidates for
accuracy and convergence, they fall behind in terms of coatipmal effectiveness.

In the second set of the solution fer= 0.49, all of the element formulations shown

in Figure[3.8 have been tested in the near-incompressikke da the cases where
py = 10% andpy = 104, all element types have been tested in the numerical model.
However, due to the difficulties of the convergence levelrfare stiff cases such

asuy = 10° andpy; = 10%, only the element which have low-order interpolation
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py = 10% 32x32 Elements i = 10% 64x64 Elements
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Figure 3.12:» = 0.3, the normalized elapsed time for the solution & x 32) and

(64 x 64) elements per edge whegg = 102

formulations have been preferred to be used.

In the second set of the solutions, elements listed in Fi§ild@re compared in terms
of mid-point deflection behaviour, iteration trends witspect to different fiber stiff-
ness value, normalized elapsed solution time, and Cauygie/fiber stress contours.
Figure[3.18 shows the mid-point (0, 0.5) deflection characteristics for different ele-
ment formulations where = 0.49. For the relatively moderate fiber stiffness config-
uration (1, = 102 —10%), all the elements are convergent to the same value. However
there are observed locking phenomena for almost all elefoemulations when us-
ing coarse mesh settings such'ax 2). 72 and7'2P0 exhibit divergence behaviour
atu; = 10% anduy = 108, However, 7240, T2P0A0 andT2POF0 present excel-
lent and robust deflection behaviour. EspecidlB/A0 element even shows accurate
results for the coarse meshes. Besid&s?0F0 and72P0A0 are identical, and their

lines are overlapping each other.

The total number of iterations that have been performednduttie solution is an
important indicator of the robustness of the different edatrformulations, as shown

in Figure[3.14. It can be clearly seen that, for the relagivelv fiber stiffness such
asp = 102, all of the elements exhibit a good convergence. Howevegnathe fiber
stiffness increased to = 10*, Hu-Washizu-type mixed pressure-dilatation elements
suffers while converging, especially for high resolutioesh configurations. For

pu = 10% andu = 10%, standard displacement elem@rit and72P0 are divergent

62



=107 - = 10°
0.05 i 0.05 \ i
0.04 ;B%_;I’—' 0.04 \
20.03 20,03
o o
=3 =3
= 0.02 = 0.020 s\
S S
0.01 0.01
0.005 4 S 16 32 o 004 4 S 16 32 64
elem/edge elem/edge
0.05 Hy 0.05 My
0.04 \ 0.04 \
2 0.03 2 0.03
(@) (@)
= =
= 0.02 = 0.02
3 % S
NI —— 0.01
0.00; 4 8 6 32 o 0% 4 8 16 32 o4
elem/edge elem/edge
—— T2 —e— T2P) —=— T2POF( T2A1 —e— T2P1A1

T2P1—=— T2P1F1—e— T2A0 —e— T2P0AO

Figure 3.13w = 0.49, Mid-point displacement, (0, 0.5) results for(2 x 2), (4 x 4),
(8 x 8), (16 x 16), (32 x 32) and(64 x 64) elements per edge in the range.gf =
{102,104, 106, 108}

even for the low resolution meshes. Howe¥&r40, 72 POAO andT'2 POF0 elements
shows excellent agreement with each other and reach thiosailua very robust way

with similar iteration numbers for all of mesh resolutions.

The computational cost of the elements have been demetti@t,,; = 10* and
py = 10* where all the elements exhibit convergence behaviours Ifafanesh
resolutions, see Figufe_3]15. Since it is more proper torgbsthe computational
effectiveness of high-resolution meshes, results arendre(32 x 32) and(64 x 64)
mesh settings. As expected, low-order elements, which feswer independent vari-
ables in their formulations, spend the least computatitingd during the solution,

i.e. T2 and7T2P0. However, these elements suffer from locking in higher feiéf-
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Figure 3.14: v = 0.49, Number of total iterations have been performed during
Newton-Raphson iterations f¢2 x 2), (4 x 4), (8 x 8), (16 x 16), (32 x 32) and
(64 x 64) elements per edge in the rangegf= {10%,10%, 10°, 10%}.

ness materials as it is already shown in Fidgure]3.14. Thereeny high computa-
tional costs revealed due to the linear interpolatiois2fi1 and72P1A1 elements,
which makes the analysis too slow and inefficient. It showabted that, although
T2P1F1 has also the high-order interpolations for additional petedent variables,
it has a similar computational times wit2 A0 and72P0A0. T2P0F0 element is
the most cost effective in terms of computational robustises! nearlyl times faster
thanT2P0A0 element formulation. Since these elements representicaéisolu-
tions, due to the difference between the scalar and tehm$ormaulations, the addi-
tional tensorial calculations slow down the solution psscef72 P0 A0 formulation.
Figures 3.16, 3.17 and 3118 demonstrate the Cauchy-typesfiless distributions for
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Figure 3.15 = 0.49, the normalized elapsed time for the solutior(8# x 32) and
(64 x 64) elements per edge af = 10% andy; = 10%.

all element types where; = 10*. Standard displacement elem@itand three-field
Hu-Washizu element§2 P0/T2P1 represent a localized stress region. However, the
stress distribution exhibits quick jumps between elemastspikes and oscillations
are observed. Increasing the mesh resolutiof6dox 64), also increases the stress
localization but does not treat the discontinuous stresati@n between elements,
which causes poor accuracy. On the other hart0, T2P0A0 andT2P0F0 el-
ements demonstrate very smooth stress distribution, ard #ire not any examined
spike-type discontinuities. In order to observe the mespeddency in a better way,
there are also addition&l28 x 128) mesh resolution presented in Figlre 3.17. It
shows that, for the low resolution meshes, smooth stregshdiBon is sufficient on
average; however, increasing the mesh resolution revealsmooth stress local-
ization due to the fiber reinforcement. This outcome is egldb the interpolation

capability of triangular elements, and this issue can belfiyeusing high resolution
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Figure 3.16: Cauchy fiber stress distribution of7'2, 72 P0 and72P1 elements for

dual clamped patch test where= 0.49 andu; = 10*. Stress contours are presented
for unit dimensions fo(32 x 32) and(64 x 64) mesh configurations.

meshes. Figure 3.8 presents the stress contours of higier @lements such as
T2A1, T2P1A1 andT2P1F1. These elements exhibit very similar characteristics
between each other and the localized stresses have alsmbserved. Similarly,
stress contours are smooth and similar to high resolutioshnrends of low-order

66



32 X 32 64 x 64

T2A0

32 x 32 64 x 64 128 x 128

T2P0AO

64 x 64 128 x 128

T2P0OF0

1Y
B
L |
%

b
2

i,
L

0 225 45 67.5 90
W .

Figure 3.17: Cauchy fiber stress; distribution of 7240, T2P0A0 andT2P0F0
elements for dual clamped patch test where 0.49 andp; = 10%. Stress contours
are presented for unit dimensions 182 x 32), (64 x 64) mesh configurations for
T2A0 and for five-field formulations128 x 128) mesh results additionally given.

elements shown in Figufe_3]18. Since the computationalisagtite high for high-
order elements, low-order elements are a good candidatdérsear-incompressible
and near-inextensible material response.
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Figure 3.18: Cauchy fiber stress distribution of 72A1, T2P1A1 andT2P1F'1
elements for dual clamped patch test where 0.49 andy; = 10*.
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CHAPTER 4

THEORY OF FINITE GROWTH MECHANICS

Growth-induced deformations show up in living systemss(tes plants, etc.) and the
development of engineering devices. It is the mechanismctrabe driven by dif-
ferent physics, such as chemical or mechanically inducedialogical tissues. The
detailed introduction to the growth-induced deformatiand instabilities is given in
Chaptefll. Growth beyond the physiological limit causes@atyical conditions in
biological tissues. Due to the growth, tissues can be stdgjéo remodelling, residual
stress, and instabilities; these can be indicators of pagical diseases. The growth-
induced deformations are mostly found in arteries, musd¢ienors, the heart, etc.
For example, the growth can be the reason of the eccentricamzkentric hypertro-
phy in the heart. The physics behind the eccentric growthrisrac volume overload.
On the other hand, chronic pressure overload causes therdoicchypertrophy and
ventricular wall thickening [6]. The growth-induced inkiities can also be revealed
mostly in the airways, brain, skin, etc. While brain foldiisga consequence of the
cell-division and formation of the brain, instabilitiestbe regular shape of biological
organs such as the airways are a result of pathological tonsli The mechanics of
growth-induced deformations and instabilities need to heeustood to estimate the
post-behaviour and development treatment methodologiels as tumor invasion,
stent restenosis, tissue expansion étc. [29]. Since malsédissues are composed of
a multi-layer isotropic or anisotropic layout, compressigpe of loading causes dif-
ferent levels of stress in the thin stiff film and the complismbstrate; thus, buckling
leads to a release of energy. The stiffness variation ofdker§, the fiber contri-
bution, fiber stiffness, and growth isotropy or anisotropy the critical factors that

trigger instabilities.
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The finite growth can be modeled as a scalar parameter or apadserder tensor.
Based on the application, it can be either defined as an aiteaniable and obtained
through a driving mechanism or it can be directly defined withconfined domain
by a scalar known quantity, which can be the direct input efrttodel. The growth
mechanism can be isotropic or anisotropic which are caisgghmto volume growth,
area growth and fiber growth. More detailed background méiron and details can
be found in[[29].

In this chapter, firstly the kinematic framework of finite gith will be presented
based on elastic and growth decomposition of deformatiadignt. Then constitu-
tive equations will be given in the context of stress and egponding moduli. In
the following section, types of finite growth tensors will peesented. Then, nu-
merical examples consisting of growth-induced defornmatiand instabilities will be
provided on the Python-based automated finite element adtRENICS[[12]. After-
wards, the five-field Hu-Washizu type mixed variational fatation was applied for
the finite growth problems usirij2 PO F'0 element formulation. The planar growth-
induced primary and secondary instabilities on three-dsranal bilayer type tissue

will be presented numerically.

4.1 Kinematic Framework of Finite Growth

This section presents the kinematics of growth phenomemageneral framework
and can be used for isotropic, transversely isotropicobrtipic, and anisotropic hy-
perelastic solids. The kinematics is based on the muléiplie decomposition of the
deformation gradient into elastic and growth tensors insérese of Rodriguez [135]
are introduced. A hyperelastic response in the intermedigtte is considered. The
descriptions of the motion of the body based on the referandespatial configura-
tions are already given in Chapfér 2. Therefore same stdpsatibe repeated in
this section. In the finite growth formulation, the key kiregin definition is the mul-
tiplicative decomposition of the deformation gradidninto a reversible elastic part

F*, and an irreversible growth paft’ [135] as follows:

F :=V,p,(X) = F°F? (4.1)
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The growth configuration is also stated as incompatible drethe elastic configu-
ration satisfies the compatibility, see Figlrel4.1. In linéhwhat, the growth term
affects the constitutive equations, and the baselineiel@stponse is described in the

intermediate configuration.

Figure 4.1: Kinematic representation of finite growth. Thdtiplicative decomposi-
tion of the deformation gradierd gives mapping relation based on growth stEte
and the elastic state of the deformation gradiEfit There are defined three config-
urations at finite growth, the first one is the original strFee configuration in,,
the second one is the growth state with stress-free inteateedonfiguration in,
which also leads to incompatibility in general, and thedhg the stressed-state in

deformed configuratiors.

In the same way as split of the deformation gradiEnthe Jacobiar/ is also mul-
tiplicatively decomposed into reversible elastic volurharge/¢ = det[F*] and an

irreversible grown volume changll = det[F][136].

J = det[F| = J°J? (4.2)

The condition] := det[F] > 0, J¢ := det[F°] > 0 and.J? := det[F“] > 0 provides
the non-penetrable deformations. Furthermore, the neters, and the spatial’
manifolds are locally furnished with the covariant refereir and currenig metric
tensors in the neighbourhoodls, of X andN,, of «, respectively. For the mapping
between the co- and contravariant objects in LagrangianEanerian states, these

metric tensors are needed [105]. In addition, these metnisdrs also show forth the
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map between the referencé, and the intermediate configuratiod, and between

the intermediate configuratio®, and the spatial state.

By the Nanson'’s formula, the total area change can also bengsased into elastic

and growth area change as following
JF "ngdA =nda where JF " = (JVF/ ") (JFT) (4.3)

whereNN is the unit normal in the undeformed configuration. Simylatthe stretch\

can also be decomposed into elasti@and growth componen¥’ as below
A= ||F -ngl| = XN where ) =||FY - nyl| (4.4)

Then, we designate the right Cauchy Green tensor, the enadrthe left Cauchy

Green tensor, and the elastic right Cauchy Green tensor,
C =F'gF, c=FTGF™! and C°=F“TgF°, (4.5)

as the covariant pull back of the spatial metsiand push forward of the Lagrangian
metric G, respectively. Here, in the case of Cartesian coordingtes\d G are the
same as the identity tensor [6]. In order to keep the kinessatia wide coverage, we
suppose to consider for the case of anisotropy such as ambrféber reinforcement.
Then, we define the Lagrangian unit veciag standing for the fiber direction in

continuum as
Ingle =1  where  |nglg = (no - Gng)'/* . (4.6)
Then through the tangent map deformed configuration canrbeetbas
n=FFn,. 4.7)

The boundaries of the domain can be split into Dirichlet aediidann type a8% =
0%8? U 0% ando#B? N 0A" = ().

4.2 Governing Constitutive Equations of Finite Growth

The second law of thermodynamics states a positive dissiphy stress power and

the objective rate of free energy. The dissipation inequakn be applied to form
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thermodynamically consistent stress relations as
1. . 1 .
.@:S:§C—w:P:F—w:7—:§£vg—1p20 (4.8)

It is significant to notice thaP implies the mixed-variant Piola tensor, which is rep-
resented byP := g P [6]. The Lie derivative of the spatial metri€,,g = (gl+1"g),

is equivalent to the symmetric rate of deformation tengor: FF~! is the spatial
velocity gradient. By the evaluation of the dissipationguality, stress derivations
can be performed. In finite growth, hyperelasticity consitie equations are assumed
to be held on the elastic state, and growth represents amietkate stress-free state.
Depending on the microstructure of the material or the &sthie form of the growth
tensor F¥ can be either isotropic or anisotropic. Stress arises irsttiel domain
due to the elastic part of the deformation gradig¥it The growth does not have any
energy contribution to the free energy function, meaniraj furely growth tensor
does not cause any stress in the body. The growth tensor czatlgieither be de-
pendent on a scalar strain-type variable or strain or sthegsn microstructure leads
the growth evolution. It can be defined by evolution equatibased on an internal
variable. This type of growth depends on the growth critasid seen in the flow rule
in plasticity formulation, and growth initiates when the ¢hanical driving force ex-
ceeds the threshold level. For the sake of convenienceisistiy, it is assumed that
every continuum point exceeds the threshold level in thi smwdy; hence growth

tensorFY can be driven by independent certain scalar variables.

In general, fiber-reinforced rubber polymers, fibrous saftdgical tissues, and re-
inforced composite elastomers exhibit nearly incompldsgiesponses and, in the
reinforcement direction, nearly inextensible behaviorepPnding on the physical
conditions, these solids can be subjected to growth or lshge, resulting in com-
pression or tension in the matrix and fibers, respectivelya ¢eneral framework, in
line with the macro-level continuum approach, we introdtiee elastic Helmholtz
free energy function for one fiber family elastomers or sisfues that is additively

split into volumetric, isotropic, and anisotropic parts.

V(g F° mo) = Yoar(J°) + Yiso(g; F) + tani(g; F, 1) (4.9)

In general, stored free energy for hyperelastic solid isegoed by three invariants
of the right Cauchy Green tensor as it is given in Chapter 2.grbwth-induced

73



F
.
{)

S
¢
C P .

F*T

Q
(____________
E\“ ““““
AN

Figure 4.2: Definition of metric and stress tensors for figitewth. Current metric

in Lagrangian configuratio6 = F' gF. Reference metrim Eulerian configuration
c = F"T'GF~'. The relationship between the Lagrangian-intermediatdigora-

tion and intermediate-Eulerian configuration can be def@éd= F*""CF?~! and

T = F°S°FT ordirectlyr = FSFT, respectively([5].

hyperelasticity free energy formulation, elastic invatgaare determined as
e e e 1 e2 e2 e e e2
I =trC* I§:= 3 [I7? —tx(C?)], and I5:=detC®=J (4.10)

The elastic right Cauchy Green tengdf = F9 TCF?! is defined in the inter-
mediate configuration. In addition to the isotropic res@oribe elastic anisotropic
response that is generated by fibers should be defined. Théisi®aal invariants are

introduced in terms of, unit vector of fibers in the undeformed configuration
I{ == mngy - Cny If = ngy - C%ny (4.11)

that relates the energy storage due to fiber reinforcemeahtimaterial. By eval-
uating the dissipation inequality (4.8), the second PiGlahhoff stressS, the Piola
stressP and the Kirchhoff stress, can be obtained thermodynamically conjugate
to the right Cauchy Green deformation tengoy and deformation gradiedf, and
the current metrig, respectivelyl[6, 67]. Then Kirchhoff stregscan be determined

by the push forward of the second Piola-Kirchhoff str&sas below. The mapping
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schematic of tensorial quantities are given in Fidguré 4.2.
S = 2001 = 20pe0 : 0C¢ = F9~'. §¢. 9T
P =0y = 0pet) : OpF = P°-FI T (4.12)

T:Qangpe.se.FeT

Corresponding tangent moddli, A, andc can be derived by push forward and pull
back operations from elastic modd@f, A¢, andc®, which can be determined by tak-
ing the second derivative with respect to conjugate tenGorE’ andg, respectively
[6, [67].

C =208 =205(F' -8 -F"")=[FI'@F '] .C: [F"TQF "]
A=0pP=0p(P° F"7)=[10F "] : A°: [1IQF7 "] ,

¢c=20,T=[FQF]:C: [F'QF"]

(4.13)
where @ implies non-standard tensor product and can be definddcas,;,, =
[e],;. [o];;- After defining Lagrangian, Eulerian, and two-point stresistions with
elastic components in equatidn (4.12), itis required tovéarorresponding the elastic
second Piola-Kirchhoff stres$® and the Kirchhoff stress. It should be noted that,
Kirchhoff stress can be determined by the push forward o$éoend Piola-Kirchhoff
stress. Although, as the outcome of the Eulerian configurad more compact, we

prefer to give both deformed and undeformed configurationisis study.

Depending on the nature of the material or the tissue, thetrtensorFY can be

isotropic, transversely isotropic, orthotropic or aniepic [29]. The simplest ap-
proach is to express the growth tensor as isotropic; with dipproach, the growth
amount is equal in all directions. It can be a function of ocela growth parameter,

g, and then the isotropic growth tensor is defined as:
FI=1[1+g1 (4.14)

wherel is the identity tensor. It is also categorized as the voluimgrowth. For
example, tumors, arteries, and fruits may be subjected|ton@growth. Note that,

g is the scalar growth parameter here and should not be cahbysmetric tensog.
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In some notations, the growth multiplier is denoteddy Then it can be specified by
the evolution equations for different types of growth tessdf the growth parameter

g is zero, the growth tensor becomes equal to idenfity € 1) which means there

is no growth. Parametay can be positive or negative, corresponding to growth or
shrinkage in the solid, respectively. A special case of ghpwamely transversely
isotropic, planar growth, isotropic in-plane growth, oeargrowth. For example,
airway walls, skin, brain, heart, and heart valve leaflety be@subjected to the area
growth [29]. It exhibits uneven growth along different atjonal axes. In this way,

the growth tenso¥F” is defined as
F9=[1+g1—9g[mo®my] (4.15)

wheremy is the unit normal of membrane in the reference configuratgquation
(4.18) describes an in plane growth within membrane ancetiseno growth along
my direction. For the transversely isotropic growth, the nseeof the growth tensor

F97! can be defined as beloiv [136]

1 1
Forl=|—|1-- 4.16
{1+g} g o @ ml (4.10)
Another type of growth can be categorized into fiber growtis the growth type only
accounts along the fiber directien, and there is not any growth in other directions.

It can be defined as following
F9=1+[g+ 1]my®myg (4.17)

Fiber growth causes the fiber lengthening such as the change @rowth of the

plant stems, eye, heart, skeletal muscle and hair can ba gwexample of fiber
growth in a specific direction. By considering the orthotopehaviour of the most
biological tissues (i.e. myocardium tissue), the growtiste can be introduced by

the following form
F9 =g/ fo® fo+ 9°80 @ 80+ g"ng @ ng (4.18)

where f,, s andn, are the unit vectors of three distinct orthogonal directiam
the reference configuration. For mechanical driven growvath fule, seel[6]. In case
of defining the growth tensor through the evolution law, thengeneral form of the
Lagrangian modulC is defined in the following form:
ds oS 0S OFY 0g’
=2— =2 2 :
¢ {8F9 899} oC

iC ~’aC + (4.19)
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whereg? is the tensor that composed of growth multipliers. The festtin equation
[4.19 is nothing but the moduli term that is defined in equadidi, . In the absence of
the evolution rule, or in other words, if the growth multgais are scalar independent
constants, then the equation 4.19 reduces to the first tetiner@ise the second term
of equation 4.79 yields to

FI9lge 9T _ _
AT s e (e

1 _
5C [FToC° + CQFI ]
(4.20)
The third and the last term in equation 4.19 is related wighd#finition of the growth

tensorFY and the evolution law of growth terngg.

Since we consider the tissue behaviour as an incompressiefamily fiber rein-
forced (transversely isotropic) that exhibits hyperetastponse, similar to the free
energy decomposition i (4.9), the elastic second Piotakfioff stressS* is defined

as additively decoupled terms, namely volumetric, isatragnd anisotropic such as

S° = 20p.1)° = 8¢, + 8¢, + S (4.21)

150 ant

In line with the [4.21), the elastic Lagrangian modifi can be additively split into

volumetric, isotropic, and anisotropic parts respectivel

Ce — 28 eSe — 48 ecewe - Ce

vol

+Ce

180

+Ce (4.22)

ant

The volumetric part of the elastic second Piola-KirchhtriéssS? , reads

vol

S’lejol = 2806#)6 (Je) - peceil (423)

vol

The Lagrangian moduli expression for the volumetric padatermined as

vol

Clot = 20ce Sya(J) = (p° + R )C @ C — 2p°T e
(4.24)
with 7y, = J 200 (J¢)

VO

where[226P = 1[C5/C%p + CGpChe . The isotropic elastic second Piola-
Kirchhoff stress is obtained as
Se

iso is0

= 20015, (C°) = 207 Vigo1 (4.25)
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Then, the Lagrangian elastic moduli for the isotropic resgocan be derived as

e
Cz‘so

= 2000 55,,(C°) = 40y 1: 5

iso iso

101 (4.26)

The last term of the elastic second Piola-Kirchhoff streshé anisotropic response

due to fiber reinforcement that can be derived as
S(elnl = 2806w2n1(14> == 28 Z\I’amno ® n(] (427)
Finally, the corresponding anisotropic elastic Lagrangreoduli read

e
(Cani

= QGCESZM(LQ =40 ZIE\I]tezni'n’O XNy X ng R ng (428)

By applying pull-back mathematical operation to elastws®l Piola-Kirchhoff stress
S¢such asS = F9"'S°F9~ T, we determine the second Piola-Kirchhoff strésm
reference configuration as following

ov
S = 2% = pCil + 20 ?\I’isgcgil + 20 Z\Ifam‘CQ'n,o X Ny (429)

wherec is the scaling factor that is resultant BF ' - n, = cn, where it depends
on the choice of growth tensdr, and it is formed by growth multiplieg. Then
by applying push forward mathematical operation to secaalKirchhoff stressS
such asr = FSF”, we determine the Kirchhoff stressin spatial configuration as
following

T = 20,0 = pg ™1 + 201 Visob + 201 Voni’n @ my (4.30)

Then corresponding moduli in reference and spatial cordigans can be found by
using equations 4.19 ahd 4113.

4.3 Numerical Examples for Finite Growth

In this section, variety of numerical examples regardingwgh-induced deforma-
tions, such as the inhomogeneous growth of a two-dimenigitata, isotropic growth
of a bilayer formed of a flower petal, and numerical exampbesi$ed on instabilities
such as post-buckling of a two-dimensional bilayer strrectand cortical folding of

the brain in two and three-dimensional cases, will be given.

Inhomogeneous growth of a plate
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This example is demonstrated to reveal the effect of the tirawa simple geometry.
In line with [74] and [137], plain strain assumption has bepplied to 2D rectangular
plate geometry. Geometrical dimensions and finite elemetting have been given

in Figurel4.3. The geometry has been constraint along the Edg 0 and the origin
AY

0.1
(@)

S

(b)

Figure 4.3: (a) Geometric unitless dimensions of the 2Depléb) finite element

setting of the model

corner node aK = 0 andY = 0 are fixed to prevent displacement in any directions.
In the hyperelastic model'2P0 element formulation has been used based on the
following free-energy function:

U= g(il —3)+ g(Je _1)? (4.31)

wherep = 10® andx = 103y that leads to nearly incompressible limit. The growth

tensor is defined inhomogeneous though the height as faltpwi

1+7Y 0 O
9 = 0 1 0 (4.32)
0 01

The growth tensor was applied incrementally in 50 steps. disteibution of growth
component of Jacobia® is given in Figuré 44. Due to the inhomogeneous growth
definition alongY axis as in equatioh 4.82, it creates growth gradient in e&irti
direction and bends the plate. Note that, since there is net@int to prevent its

free-motion, it results in zero volumetric stress, such as0 in the entire domain.

3D growth of a bilayer flower petal

Different growth fractions of each layer of bilayered stiues may lead to a vari-

ety of shapes because of their geometries or surrendemraonst This mechanism
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Figure 4.4: Growth-induced deformation of a 2D plate inefiént time increments
suchag =0,t = 0.33,t = 0.66 andt = 1.0, respectively. The contour provides the
variation of J,.

is very common for plants and even for actuators that mimtaneasuch as a grip-
per. The flower petal is considered a two-layered structutte avfferent mechanical
properties, as proposed by Wang et al. [138] and used by [[##8.top layer which

is not subjected to growth, hasta= 0.03 unit thickness withy, = 1000 unit shear
modulus. The bottom layer that presents the isotropic dgromds has g = 0.02 unit
thickness withu, = 10y, unit shear modulus. The geometric representation of the
single flower petal with its dimensions and finite elementimamfiguration is given

in Figurel4.b. The petal is fixed in three directions to préweavement from the bot-
tom face of the triangular root region. Isotropic type ofwtiotensorF? = (1 + g)1

Figure 4.5: The geometrical dimensions (in mm) of a singkediopetals and zoomed
view of finite element mesh.

has been introduced for the bottom layer of the petal where 0.05 and applied
incrementally. The hyperelastic free-energy functionaired the same as in equa-
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tion[4.31. The bulk modulus of the top and bottom layers afimeé asx, = 103y,
andxk, = 103, respectively. The isotropic growth-induced deformatiaresgiven in
Figure[4.6 for different value of growth multipligr

\\\\\ 4// g =001
W

30
25

20

15

— 10

Figure 4.6: Growth-induced displacement (in mm) contouflafer petal which is
subjected to isotropic growth on bottom layerg$= (1 + g)1.

Two-dimensional growth-induced instabilities of bilayerstructure

Since most of the biological tissues are made of layeredtstress that have differ-
ent mechanical properties. Due to the variation of growitiaition between layers,
there may be compressive stress and resulting instabisitieh as wrinkling or more
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complex post-buckling behaviours. This phenomenon is @agdtured during the de-
velopment of the tissue, observation of pathological issoe the development of
treatment methods. For example, wrinkling of the skin arddifg of the airways

are common observances in terms of growth-induced ingtabil In this example,
two-dimensional growth-induced instabilities will be &red for a thin stiff film on

a compliant soft substrate [68]. The geometrical desanipdind a portion of the finite
element mesh are presented in Fiduré 4.7. The length of thaegey is defined as

h =26 j:}AY ¢
>

stiff film

soft substrate

Figure 4.7: The geometrical unitless dimensions of thiff 8in on compliant soft

substrate and zoomed view of finite element mesh.

L = 120, the height of the substrate l§ = 25 and the height of the stiff film is
hy = 1. The left (X = 0) and right (X = 120) walls are fixed along” axis and the
movement inX is set to free. Additionally, the bottom edge of the substrahere
Y = 0is fixed alongY” axis to prevent motion and kept free ¥ axis. 24, 960 T2 P0

elements have been used in two-dimensional plain-straipl@m.

The hyperelastic free-energy function is defined the same aquatiof4.31. The
shear modulus of the substrate is takemas= 1 and the shear modulus of the film
layer isp; = 100us. In addition, the bulk modulus of the substrate and the stiff
film layers are defined as, = 10%u, andx; = 10%u, respectively which sets the

Poisson’s ratio as = 0.4999.

Two of the layers are subjected to isotropic growth in tworelinsional domain such

asFY = (1+ g)1. There are defined variable incremental sub-steps to cath a
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observe the post behaviours of instabilities such as betwee= 1072 — 1074,

Since the rectangular domain in Figurel4.7 is numericalifeoly generated and
it does not reflect material disorders. Therefore, in sudblems, to initiate the
instabilities, there should be defined perturbations thdthave no effect on the
results. To account that, eccentric traction force (around* order of magnitude)
has been defined in the two nodes at the top of stiff film layenglvertical axis.
The displacement response and corresponding pressu@iceat different growth
increments are given in Figure 4.8. For the predefined méchlaproperties, due

g =0.06

g=024 g=0.18 g¢=0.12

g =0.30

pressure
—-8-6-4-20 2 5
e

Figure 4.8: The deformation pattern and pressure contdubslayer structure in
different growthg increments in left and right columns, respectively.

to the stiffness ratio between the stiff film and soft sulisfraompression stress is
revealed, causing instabilities by releasing the enerdpe first buckling appears at
g = 0.024 as a sinusoidal wrinkling form and the secondary bucklingliserved at
g = 0.2346 as periodic-doubling form.
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Growth-induced cortical folding of the brain

In this sub-section, growth-induced cortical folding o€ thuman brain with different
stiffness ratios between the gray and white matter will bayaed in two and three
dimensions. The brain is mainly composed of white matterusiscortex and gray
matter as cortex. In this study, it is assumed that the bramch is composed of
these tissues and other inner sub-organs, is neglectedraimeis multi-layer layout
and is subjected to compression between layers, resutiimgiding and wrinkling

patterns. The sliced schematic view of the brain is givengufe[4.9. The brain is

gray matter

white matter

Figure 4.9: Main ingredients of the brain in terms of voluraedering. (The section
view of the brain was partly generated using Servier Medicglprovided by Servier,

licensed under a Creative Commons Attribution 3.0 unpdrtethse.)

grown as a complex folded structure, and there have beetfisag research efforts
to understand the brain’s morphologdy [33, 139,1140,[25] 14%Z,143] 144]. The

brain complexity in the outer surface of human brain incesasith ageingl[140].

Budday et al.[[139] mentioned that larger mammals have idvggn and that also
relates the folding complexity. However, cortical thicksecan be different in dif-

ferent species regardless of the size. There is a stiffrmssast between the brain
layers (gray and white matter), which is about order of orfeer€ is also difference
between the growth development of the layers. In this stiidy,assumed that only
gray matter is subjected to isotropic growth but white maden the rest. Budday
et al. [140] suggested the growth ratio between brain laigeadout 100, therefore,
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we neglect the growth in the substrate in this example. THewog Neo-Hooken

free-energy functional has been defined
e\ __ 2 e e >\ 2 e
U(C°) = B (Iy —3—2In(J°)) + Eln (J) (4.33)

where) andy are Lame constant and shear modulus respectively. In litre[d40]
we take shear modulus of gray matter/gs,, = 3.3 x 10~* MPa and the shear
modulus of white matter is defined to examine as a result ofdifferent stiffness
ratio as1/10 and1/5. Bulk modulus of two layers are taken &g, = 10%114,4, @and

Kuwhite = 103 1,nire that results with near-incompressibility condition.

Although the white matter is anisotropic in nature becausth® axonal fibers, in
the literature the brain is mostly modelled as two layeredragpic material as we
follow same here. Axons are not only contributing to the amggy but their layout
is too complex in the brain, see Louis et al. [142]. In ordemtake a realistic simu-
lation, three-dimensional CAD geometry of a human brain talien from [145] by
permission who created the solid geometry of a real human byausing magnetic
resonance imaging. Since the MRI belongs to mature humanalteady folded in
complex pattern. Our aim is to initiate the instabilitiesrfr the unfolded brain ge-
ometry, the STL geometry file is shrink to observe the neamfplded configuration.
Since the brain is partially folded on birth, the examplet tve follow here covers
the brain grown for a fetus. See, Huang etlal. [146] who hamexed the character-
ization of human fetal brain in different time stages. Théerashrinking the brain
geometry to get smooth surface, it is neccessary to definitiaess of gray matter
layer for the human brain. Fischl et al. [147] and Narr et B4g] mentioned that the
cortex has a thickness and varies between 1 to 4.5 mm andShas2an overall av-
erage thickness. The thickness variation is common inreiffieregions of the brain.
In the view of such information, we created a final geometntlie unfolded human
brain that has average thickness of 2.5 mm for the layer of gratter. Since we
perform both two-dimensional and three-dimensional ghoartalysis of the brain,
two geometrical configurations are given in Figlre #.10. rdeo to take computa-
tional efficiency into the account, three-dimensional gsialhas been performed by
using half of the entire brain. In two-dimensional configiom, the sliced geome-
try of the brain was constrained at the bottom edge and ptedenovement in the

vertical axis, see Figule_ 4.110. In three-dimensional canéition, there is defined
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white matter

gray matter

£

Figure 4.10: Geometric representation of half smooth bréa) three-dimensional

demonstration (b) two-dimensional sliced piece

symmetry boundary condition in the half sliced surface @ lthain geometry and
displacements are fixed normal to the surface and other elefjfeeedoms are set to
free. The finite element setting of two of the model are giveRigure[4.111.72P0

VAV
'A‘ XA‘ é %%V
4}'AV ,«AVAYA LE
Ok ‘xyf

(b)
Figure 4.11: Finite element mesh settings of brain geom@dryhree-dimensional

demonstration (b) two-dimensional sliced piece

element formulation has been used for the both model. Thetgreas been defined
isotropically such ag"” = (1 + ¢g)1 and applied incrementally. Since those two-
dimensional and three-dimensional geometries are rigalisterms of their shape,
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they have smooth curvatures. Therefore there is no needited® perturbation as
a traction or displacement. The growth-induced defornmgpiots are given based on
pressure contours for two-dimensional model with difféignay matter/white matter
shear modulus ratios such agyi./(tgray = 1/10 and ynite/ ttgray = 1/5 in Figure
4.12. The plots are given for different incremental growttites The instabilities re-
veals by increasing the growth multipligdue to the energy release of the grown stiff
and thin layer of gray matter. It is also concluded that, tighér shear modulus ratio
causes the instability initiation in a smallgvalue. The growth-induced deformation

[/thite/,ugray = ]-/5 Nwhite/,ugray = 1/10

g =0.05

g =0.10

g=0.15

g=0.20

g=0.25

pressure[kPal

—-20 —-1.5 —1.0 —=0.5 0.0 0.5
| C i

Figure 4.12: Growth-induced deformations and pressuratuans of sliced two-
dimensional brain withu,,nite / tgray = 1/10 @andpiwpite/ figray = 1/5

plots are given based on pressure contours for three-dioreisnodel with differ-
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Figure 4.13: Growth-induced deformations and pressureatians of three-
dimensional brain with,pite/tigray = 1/10 and piynite/ pgray = 1/5 (x2 scaled
view)

ent gray matter/white matter shear modulus ratios sugh,as. /¢,y = 1/10 and
Hawhite/ hgray = 1/5 N Figurel4.1B. For each growth incremental image, two viaes
given, such as the inner and outer views of the brain modéktier observe growth-
induced instabilities. Similarly to the two-dimensionake, when the stiffness ratio
between film and substrate increases, the instability ggéried at an earlier stage.
Therefore, it results in wrinkles that have a higher amggtlevel. Growth-induced
folding patterns of the brain are very clearly seeg at 0.10 growth level. It can be
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noted from Figuré 4.13 that during the buckling and postkbog stages, while con-
cave patterns have positive pressure contours, convexneave negative pressure

distributions.

4.4 Extended Five-field Formulation for Finite Growth

In this section, the scalar conjugate pair type of five-fielded variational formula-
tion in the sense of [104] is extended for growth-induceddehtions. In general,
fibrous soft biological tissues exhibit nearly incomprbsresponses and, in the re-
inforcement direction, nearly inextensible behavior. sltessential to capture and
understand the mechanics behind growth-induced defoonsatnd critical instabil-
ity conditions in three dimensions for fiber-reinforcedties and bilayer structures.
In sectior 4.1, field equations and corresponding statebvias for fiber-reinforced
transversely isotropic hyperelastic solid is already @nésd for growth-induced prob-
lems. Corresponding stress and moduli expressions aredalsced for both La-
grangian and Eulerian configurations. In this section, tireedchvariational formu-
lation, which leads to the quasi-incompressible and qumesitensible element for-
mulation, will be introduced. Finally, a five-field mixed vational formulation and
respective Euler-Lagrange equations are demonstratece $e decomposed the de-
formation gradient into irreversible growth and reversiblastic par# = F°F7, the
elastic part responsible for mapping of incompatible imediate configuration to the
compatible deformed configuration. Therefore the freeiggnis only the function of
elastic part of the deformation gradiefRt and the growth compone®? does not
have any contribution to stress evolution. We will extend tive-field variational
formulation for finite growth based on the additively splitloe free-energy function
into volumetric, isotropic and anisotropic parts as statemtjuation 4.9. The potential

functional can be defined as below for fiirdte elasticity

A

() := " (g) — II*"'() (4.34)

where

" (p) .= [ We(q. F)dV d I () := - pob dV tdA.
(¢) /V (9.F%)dV and TI*'(g) /vwo +/av¢t(435)
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For the elastic loading, the stored energy in the body carebinati byﬁmt(qb), and
11" (¢) refers to the work done by external forces. In equation (¢34 b, andt
are the density, body force, and the surface traction, otispdy. V¢(g, F°) is the
volume-specific elastic Helmholtz free energy. The boupdatue problem can be
determined from the elastic potential by the principle ofiimum potential energy in
the variational form

¢ = Arg{ inf Tl(p, 1)} (4.36)

subject to Dirichlet-type boundary condition
W ={p|dp€B N ¢,=¢ on 0B} (4.37)

Due to the stationary condition of the elastic poten]f[ab), the variation of[(4.36)

along with localization theorem yields the Euler-Lagraegeation
Jdiv[J '] + pob =0 (4.38)

yielding to the balance of linear momentum for static proidein the domainz

along with Neumann-type boundary condition

P - N=1-n=T on 0HB, (4.39)
where we have used the identity&anson’s formulasJF "N dA = n da.

The quasi-incompressible and quasi-inextensible beha&an be sustained by two
additional penalty terms in the decomposed representéiéd) of the free energy
functional as

(¢, p%, 0,5 \) == / (¢, p°, 0,5, \) dV — 11 () . (4.40)
1%

The mixed potential density* in equation[(4.40) is defined as

Tint (9, 0%,0, 5% X) = Viso(g, F°) + p*(J° = 0) + thoat(0) + s°(L = A) + thani(A) -
(4.41)

Here,p®, s¢ are penalty parameters in intermediate state pair to thematic quan-

tities ¢, \. The deformation of a solid body enforced by incompressybéand in-

extensibility constraints is sustained by the mixed sagdiat principle as follows

{0,0,p° X, 5°} = Arg{(;g; inf inf Sup sup ()} (4.42)
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Taking the first variation of (4.40) with respectdo p¢, 0, s¢ and\ provides the weak

form
DII(¢, p°, 0, s¢, \)[6¢p] = / {(Tiso +P°J°g7 " + 25 @ M)
v

5£5pg} dV — 311" (¢) = 0,

DII(eh, 3,0, 52, N [ope] = / 5p° (JE— 0)dV =0
(4.43)

14
DII(¢,p%, 0,54, \)[60] = [ 60 (T

vol(e) _pe) dV = 07
\%

~

DII(¢, p*, 6, 5, \[ose] = / 55 (15— \) dV = 0.
1%

DIi(¢h, 1,0, 5, oA = / SA (W, (\) — ) dV = 0,
Vv

The mixed finite element formulation can be determined baseeéquatiori_4.43.

Taking the first variation df 4.41, Euler-Lagrange equatioan be determined as

1. Jdiv[J 7] + pob =0

2. J°—0 =0
3. Wi (0) —p =0 (4.44)
4. I¢— ) =0
5. Wl (N\) —s° =0

in the Neumann-type boundary conditiofs = {o-n =t on 0%}. The con-
sistent linearization of the mixed potential is the sameedimdd in equation 3.69 in
the reference state. It has been implemented and disatetiZzéython-based open-
source finite element platforiEnICS[12]. The linear Newton iterations are solved
through MUIltifrontal Massively Parallel sparse direct \8a1(MUMPS)[149] in nu-

merical examples.

Growth-induced torsional artificial muscle

Skeletal muscles exhibit tensile stretch activation antop@ angular rotation with
the skeleton[[150]. To be used in soft robotics and wearadecds, artificial mus-
cles studies have been well-attracted by researchers ébogeartificial muscles those

mimic the biological skeleton muscle [151, 152, 150]. Thare different type of
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studies on actuators those can be categorized based oe; rsleapory alloys, piezo-
electric materials, multilayer structures, electroaetpolymers, pneumatic or flu-
idic, fiber-reinforced and nano-reinforced structures.ings fiber-reinforced type
of structure provides the advantage of tuning the stiffa@skthe direction of the ex-
tension/ contraction, or torsion amount. It can also prevatge strain deformations
with reversible twist and untwist behaviour. In order to siate the torsional arti-
ficial muscle, a numerical example has been performed witheelsled one-family
stiff fibers on a soft base matrix. The base matrix is incorsgit#e, and fibers can be
considered inextensible. Therefore, it is very suitablage72P0F0 five-field ele-
ment formulation. Helical fiber layout in a cylindrical basatrix material is able to
generate angular rotation by volume change. The helicdéateiermines the move-
ment direction and behaviour and it is also adjustable bygimg the fiber stiffness.
The definition of the artificial muscle geometry and its mesfolt are presented in
Figure[4.14. The radius of the cylinder is 10 unit, the length60 unit. The base soft

o = —459

L =150

(@) (b) (c)
Figure 4.14: Geometrical unitless description of artifioiascle (a) geometric defini-

tions (b) three-dimensional finite element mesh (c) veatoepresentation of helical
fibers

material is reinforced by one-family stiff fibers with = —45° helical angle. The
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free-energy function is considered as Yeoh model by thevielig form:

UNFY) = (I8 —3) + co(If — 3)% 4 c3(I¢ — 3)3
p (4.45)
+ 1 (J?—2InJ¢ — 1) + pup(l§ — 1)?

wherec; = 0.25 MPa,c; = 0.2 MPa ande; = —0.006 MPa are material constants
taken from[[104] x = 100 MPa is the bulk modulus and; = 100 MPa is the fiber
stiffness, respectively. The cylinder is fixed from the bottcircular face in all direc-
tions to prevent any movement. The growth is defined only éndinection of fibers
that also states the fiber growth condition as given in equ&ilT. For a positive
number of growth multipliey corresponds the volume growth in fiber directions and
for the negativey, the reflects the shrinkage in the fiber direction. Both casses

a reverse torsion to each other. In the numerical exampletiit@al muscle, both
case has been analysed. The fiber growth-induced defomsdto the positive and
negative growth multipliey are given in Figuré 4.15 Figufe 4116 respectively, with

Cauchy-type shear stress contours. While growth in the fibection causes pos-

T 37
= 92 = — P = = — 2 = 2 =
0, =0 7 Oe=m 6= f.=2m 0.=4
Grg[MPa]
0 0.1 0.2 0.30.35
i — -
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Figure 4.15: Cauchy-type shear stress distribution ofi@ei muscle geometry at
different positive growth values?, represents the angular twist around axial direc-
tion.
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Figure 4.16: Cauchy-type shear stress distribution ofi@el muscle geometry at
different negative growth value$, represents the angular twist around axial direc-
tion.

itive torsion with axial expansion, shrinkage in the fiberedtion results in negative
torsion with axial contraction. In both cases, localizegioas are shown up due to
high twist, which also causes element distortion at higklewBy adjusting the fiber
angle and stiffness, the angular twist/axial expansiarifeation ratio can be varied

depending on the requirements.

4.5 Planar Growth of Fiber-reinforced Confined 3D Bilayer Siff film on Com-

pliant Substrate

In this section, we present the growth-induced instabgitf fiber-reinforced bilayer
confined tissue by performing on the finite element analysigi@am FEnICS[[12]
based on extended five-field element formulation. Sincefthetef fiber stiffness on
the instabilities for three-dimensional problems are mg the literature, we out-
lined a procedure starting from two-dimensional case ahofske three-dimensional
boundaries accordingly, then we examined the growth-iaeduestabilities for three-
dimensional bilayer structure in a different range of fibéfreess in both extensible

and inextensible limits. The effect of fiber stiffness orubthation points of primary
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and secondary instabilities have been examined in term®uoftly parametey, wave-
length, displacement amplitudes and energies. Numernitabmes of this study will
help to understand the fiber stiffness effect on the buckding post-buckling be-

haviour of bilayer tissues.

In general, fiber-reinforced rubber polymers, fibrous saftdgical tissues, and re-
inforced composite elastomers exhibit nearly incompl#dsgiesponses and, in the
reinforcement direction, nearly inextensible behavioiis lcommon to observe that
the growth of multi-layered materials (stiff bilayer filmydirogels, etc.) or tissues
(skin, artery, plant, etc.) can cause instabilities in thenf of wrinkles, stripes, and
secondary buckling shapes under residual stresses. Thelayekred materials can
be composed of layers of different isotropic materials wiifferent stiffnesses (e.g.,
stiff film on a compliant soft substrate). They can be formgdcbmbinations of

isotropic and fiber-reinforced anisotropic materials thatusually observe in nature,
see Figuré 4.17. Depending on the physical conditionsethelkds can be subjected
to growth or shrinkage, resulting in compression or tengiaime matrix and fibers,

respectively. A numerical example is demonstrated in thesisn through a bound-

stiff fiber

) stiff film

I
~

~

soft substrate

g

Figure 4.17: Transverse isotropy: stiff fibers embeddeterupper stiff film and stiff

fibers embedded in the compliant soft substrate, respéctive

ary value problem. As a mathematical representative daseffect of the stiffness of
the fibers, which exist in the stiff film, on the critical grdwparameter of instability
state under the planar growth are studied ugia§0FOelement in the open-source
automated finite element prografiEniCSfor a 3D stiff film on a compliant sub-
strate. Since the domain being analyzed is a confined pauit/jgd the tissue, like
a representative volume element, it is necessary to defimedamy conditions prop-

erly to represent the overall behaviour accurately. Themaiic illustration of the
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Figure 4.18: Schematic representation of the 3D bilayeicatre (stiff film on com-
pliant substrate) with its geometric dimensions. L is thgeetength of the square
in-plane section, H is the total height including the film ahd substraten, is the
stiff fiber direction along y axis, & and L, are the critical lowest dimensions needed
to be taken into account to reflect periodic behaviour of RREgresentative Volume

Element)

3D bilayer structure is shown in Figure 4118. In order to fkhe infinitely long
plate analogy along x and y-axes, we assume that bucklingviomir of the structure
repeats itself periodically with a critical wavelengtk.(). Thus, we define periodic
boundary conditions on side walls (blue and purple facesoppdsite faces in 4.18).
In order to define periodic boundary conditions, we consgdithese face pairs by
displacement relations on the left facerat= 0 and on the right face at = L., as

shown below:

yh =y" and uf—uft=0 (4.46)

Similary, we define periodic boundary relations on the fifae aty = 0 and on the

rear face ay = L.,» as show below:

ot = 2B
yF —yP =1L, and uF —uP =0 (4.47)
2= 2B

where the superscrip®, L, F, and B refer to the left, right, front, and back sides,
respectively. Since an infinitely long and wide structuren@deled as a finite-sized

computational domain with periodic boundary conditiors fiber direction is no
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longer significant for the one family fiber configuration. her words, for single-
family fiber models with periodic boundary conditions, tlae® buckling modes are
obtained for different angles. Therefore, the initial filaeglen, is aligned to the
y-direction asny = [0 1 0]7. In addition to periodic boundary conditions on the

sides, the bottom face of the substrate is fixed in all dioesti

In the definition of a periodic boundary condition, it is esis&@ to determine the crit-
ical (characteristic) geometric dimensions; it can alsmtrduced as the minimum
size of RVE, which reflects the actual periodic behavior withenforcing any con-
straint on the overall structural stiffness. The minimuntical lengths along the x
and y-axes are shown in Figure 4.18 ag Bnd L. If the RVE size is not properly
chosen, the computations could miss or artificially enfdneekling mode. In order
to capture the minimum required RVE size, three-dimengilmmay but thin bilayer
structure models are defined along the fiber direction suatyth= 240 unit, H = 4
unit, and¥W = 1 unit dimensions, see Figure 4119. The total height= 4 units,
where3.5 units correspond to the substrate and units to the stiff film. The aim
of the three-dimensional long but thin bilayer structuredeids to identify charac-
teristic wavelengthX..) in a long regime by decreasing the effect of wall boundary
conditions. Since single-family fiber reinforcement isdséw in this study, fibers are
defined along the y-axis. Then periodic boundary conditfon¢eft-right and front-
back face couples are definedlas #.46[and 4.47. In this stuglyatio of the shear
modulus of the film layer() to the substrate;) is 100, which also provides a larger

wavelength([68]. Since this study aims to observe the effeict-plane aligned fibers

Figure 4.19: Representation of the long (L=240 unit) and (W=1 unit) bilayer
structure consist of substrate (red) and stiff film (bluepjté element mesh and

zoomed view of FE mesh respectively.

on bilayer three-dimensional structure buckling, fibefrstiss is the key parameter to
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be tested for a wide range. Accordingly, fiber stiffness galare taken gs;;,.,=100,
250, 750, 1000, 2500. The three-dimensional bilayer sireds subjected to planar
growth on both layers, and the growth parametaronotonically increases with time
step. Itis important to capture buckling modes of the bitagricture with the proper
time step incremenht. The initial time step is defined dsx 10—, and it is divided
by two when a convergence problem is encountered. After theluckling initia-
tion, the time step is also initialized fox 10~* and it is kept constant until it reaches
the secondary buckling stage. This process continueshatNewton-Raphson algo-
rithm does not converge within 20 steps, even at the fifth twfdpe time step division
process. In order to trigger buckling at the critical grow#iue, a perturbation needs
to be applied. In this study, the perturbation is defined asranmal eccentric dis-
tributed load along x and y-directions. The free-energycfiom is considered as the
following form in equatiori4.48 and the corresponding matgrarameters used in

the three-dimensional bilayer structure are given in Tdkle

A
V(F) = S0 - 1)+ g(ff — 2An(J¢) = 3) + pp(I5 — 1)? (4.48)
Table 4.1: Material parameters used in the analysis of tireensional bilayer struc-

ture with free-energy defined in equation 4.48.

Parameter Value Unit Parameter Value Unit
Hfilm 10 [-1] Hsubs 1.0 [-1]
Kpim  10° [-1] Ksubs 10° [-]

W fiber 100, 250, 750, 1000, 2500 [—] no [0,1,0] [-]

In order to determine the critical buckling wavelengi.j and related RVE dimen-
sions, three-dimensional long but thin bilayer structgedmetry (see Figufe 4119)
was analyzed for each fiber stiffnegs .,.) values listed in Table_4.1. It is aimed
to observe the periodicity of the buckling behavior for dltlee fiber stiffnesses and
identifying the critical/characteristic lengths for th& R that are needed for post-

buckling analysis.

Periodic boundary condition enforces the same displaceweetors on boundary re-

gions. Therefore, for a sinusoidal periodicity such as g instability, the wave-
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length of the wrinkling is an essential parameter. Howeshee, to the periodic bound-
ary conditions, the structure is enforced to have an integeyunt of sinusoidal wave
pattern. In order to relax this constraint, we have perfafraealyses for different
lengths () of two-dimensional bilayer structure. Although, Figlrd @ described
the structure length that defined in analysis= 240 unit, we have also examined
the wavelength characteristics of different lengths tistgfrom L = 15, 30, 60, 120
and finally after revealing the convergence trend for eadr Bhiffness we stopped at
L = 240. The wavelength characteristics for different plate lésdtave been shown
in Figure[4.20. In Figure4.20, some of the lines overlapsattheother, however it

14 \
12 \ —— ey
< \ 7 =
\// -
10 Mmm——— s==——=—"
// \\\\ ——————
//
P
Vi P ~~~~ ______
8 L’ u/” s s
15 30 60 120 240
L
=== No fiber ==+= py="750
=== puy =100 —-= py = 1000
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Figure 4.20: Representation of the determined wavelergthdifferent lengths of
bilayer structure such as L=15, 30, 60, 120 and 240 units Wit units.

is clear to identify from the final wavelength results. It Ist@ned that small size of
length outcomes with erroneous wavelength dimensionsdas the stiffness char-
acteristics of the fibers, the wavelength round-up roungrdibe integer value of sine
wave pattern. It is possible to increase length-size furtie the exact wavelength
can be found at infinity. Since small amounth of change in veagth does not effect
the research interest of this study~= 240 provides sufficient results in terms of de-
termining of the critical wavelengths for each fiber stifse Then, the first buckling
mode of bilayer structure without and with fibers has beerenfesi and shown in
Figurel4.21. Due to the contribution of fiber stiffness to directional stiffness of
the film, each model in Figuie 421 leads to a different altgrowth valueg and
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Figure 4.21: First buckling mode shapes of 2D long and thiayer plates with

different fiber stiffness reinforcement (scaled by x5).

a different wavelength. The wavelength information acegliirom Figuré 4.21 will
be used for the three-dimensional rectangular in-planigoseaf the bilayer structure
as shown in Figure 4.18 to examine the first buckling mode ast-puckling be-
havior. As shown in Figurie 4.21, the number of wrinkles dases by increasing the
fiber stiffness: ... It also means that the characteristic/critical wavelemytreases
with the fiber stiffnesg:;.... In order to reflect infinite plate behavior with periodic
boundary conditions and capture at least a single wrinklgénthree-dimensional
RVE, the minimum critical length &, should be at least\(,.) unit. It can also be
concluded that harmonics ok () will also capture the exact buckling shape. Since
the buckling behavior in the x-direction (perpendiculafiters) is likely to be de-
coupled from fibers and represent a behavior similar to thi#eo case, it requires a
smaller wavelength to capture post-buckling mode in thérgetion. Therefore, for
the bilayer model shown in Figure 4]18,1is taken as the same agimaking the
bilayer plate have a square in-plane section. To enlargedherage of the buckling
more precisely within two wrinkles, & is set to 2., which makes the geometrical
dimension\.. x 2\, x H as shown in Figure 4.22.

In the light of these geometrical characteristic informoafithe effects of fiber stiff-
ness over the primary buckling and the post-buckling regivas examined for the
model shown in Figure 4,22. Before deciding the applicatmathod of the perturba-
tion as eccentric distributed load along x and y-directjams examined the sample
instabilities with random perturbation definitions. We &aalivided the top of the
stiff film layer into square small regions. The square smaglions have the same

width with the element sizes. Then, we selected randomlyofesmall regions to
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Figure 4.22: Representation of three-dimensional RVE.téMimies demonstrate the

stiff fibers those are aligned to the y-direction

apply traction perturbations. The perturbation magnitisdalso defined randomly
and it can take a negative or positive amount of load. Two @&tkamples of random
boundaries that have been created for the randomnessseffecshown in Figure
4.23. The first instability results of the two different petiation definitions given

Figure 4.23: Representation of the examples for two ranggeherated perturbation
boundaries (with red colour) for bilayer stucture.

in Figure[4.2B, are presented in Figlre 4.24. It is conclutiatithe location of per-

turbation does not change the critical growth that inigates instability, however, the
magnitude and location of the perturbation causes phaseyehaf the sine form of

the wrinkle. Since we define periodic boundary conditiorhgide-walls, that phase
shift does not affect the results.

Figurel4.2b shows pressure contours in a growth time-linerevthe structure is sub-
jected to planar growth. The resultant units should be detexd accordingly to the
selection of consistent unit system in the modeling. FidguES gives the results
for isotropic bilayer plate and fiber-reinforced bilayenusture that have ;;;,.,=100,
250, 750, 1000 and 2500. It can be seen that in the isotrop& w#hout fiber con-
tribution, the first buckling triggered simultaneously iaxd y-directions at the same
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Figure 4.24: Primary instability deformation shape of taodomly generated per-
turbation boundaries given in Figure 4.23.

time due to isotropic nature. The isotropic case yields talgtinth shape by in-
creasing the growth parameter further, as reported in [B6i.the primary buckling
patterns of fiber-reinforced plates, it is clearly obsertlet buckling behaviors are
similar, but the critical growth value that causes instgbiliffers from each other.
Furthermore, in the first buckling shape, sinusoidal weskare initiated along the
fiber direction, which causes energy relaxation of fiberhedritical growth param-
eter. Post-buckling behavior results as a secondary veriwith a different form and
amplitude in the transverse direction perpendicular tasib®loreover, it is also ob-
tained that the form of wrinkles that are observed in the brgtkling mode shifts
from sinusoidal to triangular shape by increasing fibefregs. It can be noted from
Figure[4.25 that during the buckling and post-buckling staghile concave patterns

have positive pressure contours, convex regions haveivegaessure.

Figurel4.26 presents the effect of fiber stiffness on thécatigrowth parameter that
initiates buckling. While the vertical axis representsfiber stiffness, the horizontal
axis shows the planar growth parameter. Each deformedebilgigte image corre-
sponds to a state having a critical growth parameter thaaies either the first or
the second buckling for each fiber stiffness. It is observed the critical growth

parameter decreases with the fiber stiffness for the firdtlimgc However, the sec-
ondary buckling modes are triggered within a small rangeofth parameters close
to each other. Since fibers are aligned to the y-axis, the siiiféness directly affects
the critical growth in this direction. On the other hand, e x-direction, which is

perpendicular to fibers, the fibers do not affect materiablign. Nevertheless, they
still are not fully decoupled from each other. The geomdtim of the first buck-

ling mode have also an effect on the secondary buckling aiakebuckling stage by

shifting it to higher critical growth compared to isotrogwithout fiber) case.
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(a) Without Fiber
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250 (b) pfiver

2500 (e) M fiber = 1000 (d) Hfiber = 750 (C) Hfiber

(f) Hfiver

Figure 4.25: Pressure distribution of the buckling regirnelmlayer plate with mono-
tonically increasing growthy

Out-of-plane displacement and stored energy variatiomsmgluhe growth are also
significant indicators to determine the critical growthgraeter. The right column in
Figured 4.2 and 4.28 shows the isotropic, volumetric, anisb&ropic energy varia-
tion of the film and substrate separately. The left colummneggnts vertical displace-
ment change during growth at points A, B, and C. These spguifits are located at
the maximum and minimum displacement points on concave andex regions of

deformed shape. For each case in Figures 4.2 anH 4.28lagaitycseen that vertical
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Figure 4.26: Critical growth parameter variation by fibeffis¢ss

displacements of three points are the same until it reattedsiturcation point where
buckling initiates. In the isotropic bilayer plate, the teal displacement patterns
of the three points seem different from anisotropic onese fidason is due to the
isotropic nature of the bilayer plate, where the first buaklis simultaneously trig-
gered both in x and y-directions at the same time. Later, tio&lng shape starts to
evolve to the labyrinth form at the second bifurcation pokiber-reinforced stiff film
models show two different bifurcation points until 0.94evel. These bifurcations
correspond to the first buckling initiation along the fiberedtion, and the second
buckling initiates perpendicular to the fiber direction.alignment with Figuré 4.26,
it is observed that by increasing the fiber stiffness, thicatigrowth parameter de-
creases. For example, the first buckling initiateg at 0.0116 for ri e, = 100,
while it initiates atg = 0.0026 for j sy, = 2500. For the intermediate values of
fiber stiffness, the critical growth parameter is revealetiieen this range. The sec-

ond buckling initiation is observed in a small rangeyof 0.028 — 0.032 levels. The
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second buckling is affected by the geometrical shape oftstebiuckling mode. Dif-
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Figure 4.27: Variation of vertical displacements of poiAtsBB, and C; and variation

of decoupled forms of energy for the film and substrate, tlaosesubjected to incre-

mentally growth for the following cases; without fiber renfement;: ;;,.,=100 and

L river=250, respectively.

ferent parts of the stored energies in the film and the substra shown in the right

column in Figure§ 4.27 arid 4]28. Due to the sudden energgsel@brupt changes

and kinks in energy plots are observed. Tracking energy isteibindicator than

the displacement variations to identify the bifurcatioreasrgy is scalar quantity and

location independent. While the slope of the isotropic gpef the film shows a
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decrease at the first buckling for lower fiber stiffnessesdteases for higher fiber
stiffnesses. It is concluded that the first buckling is theabmation of energy release
of stiff film and stiff fibers. When the fiber stiffness increasthe energy contribution
of fibers to the first instability increases as well. Furthere) the isotropic energy of

the film and substrate layer has a key role in the initiatiothefsecondary buckling.
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Figure 4.28: Continuation of Figure 4127 - Variation of veat displacements
of points A, B, and C; and variation of decoupled forms of ggefor the film

and substrate, those are subjected to incrementally grfawtthe following cases;

1 fiver=150, 4 £iver=1000, 11 £10.,=2500, respectively.
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CHAPTER 5

DISPERSION-TYPE HYPERELASTIC FORMULATIONS FOR
ANISOTROPIC BIOLOGICAL TISSUES

Both soft and hard biological tissues mostly contain fiberfoecements those are in-
tegrated to base isotropic tissue matrix. Volume fractspiffness characteristics and
orientation of the fibers are the main determining factothiefmechanical behaviour
of anisotropic tissue. In previous chapters, the anisatrogntribution of fibers have
been considered as they perfectly aligned in the oriemtalieection. Most of the hy-
perleastic constitutive models are constructed in a phenoiogical way by fitting
the material constants with experimental data. Many erpanis and imaging results
showed that anisotropic tissues contained dispersed fibeusid a mean orientation.
The dispersion characteristics of fibers can be reflectednatdutive models through
histological data. One of the pioneering research has bexroped by Lanir [153].
They proposed a constitutive model that took the nonuniityrof the fiber layouts
into account based on the fibers’ angular distributions. foked free-energy is con-
structed using the angular integral over the fiber oriemtatiirections, which is also
called the angular integration. Based on the proposed wbtlanir, Sacks [[154]
constructed a constitutive model for bovine pericardiuiat tontains fiber orienta-
tions though beta distribution function via angular insdgrHolzapfel et al.[[125]
proposed a constitutive model that contains a scalar paeaitiat is responsible for
the transition between isotropic and anisotropic condgiorhen, Gasser et &l. [155]
proposed an approach for fiber dispersion called the GernedaStructure Tensor
(GST), which is one of the milestones for the next proposedeatsoof research.
The proposed constitutive model reflects the in-plane despe-type anisotropy of
the adventitial and intimal layers of arterial tissue. Thedel uses a new defined

scalar parameter in anisotropic part of the free-energychvts derived though von
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Mises density distribution to characterize the fiber disjwer behaviour. The second
key dispersion-type anisotropic modeling is proposed bgsilé et al. [156]. The
model is also called an Angular Integration (Al) approaddt tises von Mises den-
sity distribution by using different orientation direati® of micro-fibres through the
unit micro-sphere. Then the integral averaging is covehneoluigh several cubarutes
for micro-sphere those contains variety numbers of integrgoints over the unit
sphere. Schriefl et al. [157], observed the fiber dispersnamacteristics of healthy
and diseased abdominal aortic tissues. They highlightat] the out-of-plane dis-
persion characteristics increased for the diseased ti3$figefore it is also essential
to consider out-of-plane dispersion distribution at thestutive level. Holzapfel et
al. [158] pointed out that, since the in-plane dispersiomigh more important than
the out-of-plane dispersion, rotationally symmetric digpon models are not suitable
for human arterial layers. As an extensionof [155], theyadticed a non-symmetric
dispersion constitutive model by defining a new type of strirectensor based on the
von Mises distribution. Then they derived a bivariate vors4i distribution that is
able to reflect the fiber dispersion distribution at the duyplanes for arteries. They
also presented an overview of the proposed or studied dispemodels based on
Al and GST formulations that use Beta, Gaussian, von Midegseidal, and Bing-
ham density distributions. Melnik et al. [159] made the camgon of two family
fibers depends on different dispersion characteristids Aitand GST formulations.
The study contains not only the generalized GST and Al foatnuhs but also the
formulations that exclude the fibers in compression. Theykaled that there ap-
pears a difference between these approaches in the higérslisp occurrence. On
the contrary, Holzapfel et al. [160] showed that the resafitsvo of the formulations,
Al and GST are identical in both small and large deformatidrteey fit each model
to uniaxial data in different directions for the adventiiathe aorta. Volokh[[161],
proposed a dispersion-type constitutive model for theriaitevall that is based on
structure tensors and allows the exclusion of fibers in cesgon. They studied the
auxetic effect based on fiber dispersion. Similarly, Hofebpt al. [162] proposed
a method for the exclusion of fibers in compression for the Gfproach. They
performed simple extension and shear to present the effesictusion of fibers and
they claimed that both Al and GST formulations result in gglént results. Then,

Anssari-Benam et al. [163], presented a transverselyapmty rate-dependent consti-
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tutive formulation based on planar fiber dispersion by usiogentzian distribution

for aortic valve subjected to biaxial deformations undéfedent stretch rates. A new
kind of fiber density function is proposed based on fiber kiatecs. They showed
that the proposed model well-captures the experimentaltsgshear thinning be-
haviour and viscous response of the tissue. Li et al. [7] psed dispersion-type of

formulation that uses triangular integration over unitexjgh This approach is kind of

the representation of separate fiber direction over eaghgular area based on ele
mentary density of the fibers. The summation of each anigimtfder contributions
over unit sphere determined the overall free-energy. Tlenimuum damage and
softening behaviour is implemented on the model by numiegiamples. Their pro-
posed model is able to well-capture the fiber dispersionactearistics, damage and
softening together. Horvat et al.l[8] enlarged the applicabf fiber dispersion for-
mulations to growth and remodeling of arterial walls. ThegdiGST approach with
mixture of growth and remodeling and defined a fiber pre-cted tensorial defini-
tion that is able to work with dispersion model. They perfechmumerical examples
for proposed model to observe the dispersion effect and rmeantation on growth
and stresses in the wall. They also present that, there isgandvel effect of the
dispersion characteristics and layout on the growth-iedwstress evolution. For fur-
ther details regarding to fiber dispersion formulationsi&d in literature, there are
state-of-the-art reviews presented by [27] and [17]. Hofeket al. [27] provides the
critical review of Al and GST models by demonstrating the reuical examples and
fitting capability of the models with experimental data oflaminal aortic aneurysm.
Dal et al. [17], presented the detailed review for invariand fiber dispersion-type
of formulations for soft biological tissues and observeslfitiing performance of the

constitutive models to three different experimental ddtauman tissues.

In this chapter, two main fiber dispersion-type formulasioklmely, Angular Integra-
tion (Al) and Generalized Structure Tensor (GST), for amgguc hyperelastic soft
tissues will be presented. The models will be given in tidigeensional and pla-
nar for GST approach and three-dimensional for Al model whwth of the models
are based on the von Mises density distributions. Then,deraio demonstrate the
characteristics of density distribution functions thoseuwsed for the fiber dispersion,

there will be given polar plots for different kinds of biolicgl soft tissues.
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5.1 Fiber Dispersion Formulations

It has been studied in the literature that not only the fibeamdirection but their
dispersion characteristics have significant effect on teelmanical response of the
tissue. Taking into account of the dispersion in the comisie level helps to un-
derstand the histological relation between experimemtdlraimerical results. It has
also shown that dispersion architecture of healthy andadesgor healthy and injured
tissue exhibit different fiber distribution those were men¢d by [164] and/[[165]
respectively. To reflect the dispersion formulation inte tonstitutive models there
have been proposed different kind of dispersion-type féatans those defines the
stress-strain behaviour. Those models are based on aydprdiability distribution
function that fits with the histological data of the tissu&][1There are two differ-
ent main dispersion-type formulation outlined in the kieire those are generelized
structure tensor (GST) forumulation and angular integreAl) formulation. These

approaches will be introduced in this section.

5.1.1 Generalized structure tensor formulation

The generalized structure tensor formulation is proposefilb5], where the fiber
density distribution is notated agr) that characterize the distribution of fibers in
arbitrary unit vectorr. In the origin of the study, the orientation direction isaals
stated asV/ but we will user notation here. The unit vecteris defined in Eulerian
angles such that defined in the rang&lof [0, 7] and¢ € [0, 27|, demonstrated in
Figure[5.1. Let Lagrangian unit fiber orientatioron an unit sphere and the fiber
density function in the direction af is p(r). The unit fiber orientatiom is described

with spherical coordinates as

r = sin © cos Pe; + sin O sin Pe, + cos Oes, (5.1)

wheree;, e; and ez represents the unit vectors at Cartesian coordinates. &he d
formed state ofr is expressed with stretch vector= F'r. Then, the density

distribution functiornp(r) is defined to present the fiber orientations around the mean
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Figure 5.1: (a) The unit micro-sphere and the orientatiatore(b) mean fiber direc-

tions of two families of fiber lie o, -e, plane.

direction and it is normalized over the unit sphere as foithgy

1

yy u),o(r)dcu =1 (5.2)
wherew = sin ©dOd®. Then the symmetric generalized structure tensor is defined

as
L/p('r(@,(b))'r ® rdA (5.3)
8] Js
where|S| = 4r is the area of the unit sphere. Gasser et[al.|[155] formulated
periodic von Mises distribution as a fiber density distnbataroundM for a planar
condition. The von Mises distribution function is a scalaaqtity which is used for
probability distribution that represents normal disttibo projected over sphere. It
is a function of®© which is centered arourfitland concentration parametewhich is
the determinator of the anisotropy level of the distribatid he standard von Mises

distribution function is

5(0) = exp|[b(cos(20)]

1 ™
27Ty (D) where Iy(b) = ;/o exp(bcos ©)dO (5.4)

where [y(b) represents the notation of modified Bessel function of tte kind of

order zero. By integrating equatibn b.4 according o 5.2githe following relation

N —b) erfi(v/2
[= / 5(0) sin 06 = SP(D) erfitv20) (5.5)
0 2v2rb  Io(b)
where erfiz) = —i erf(z) is the imaginary error function. Then the normalized von
Mises distribution can be determined p{©) = p(0)/I as following:
b explb(cos(20) + 1)]
O) =44/ — . 5.6
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By inserting equatioh 516 into the equation]5.3 , the geimdlstructure tensor can

be written as
. 1 [7
H=krk1+(1-3k)M @M with k= Z/ p(©)sin® ©dO (5.7)
0

x andb parameters are nonlinearly related to each other by eaquséhi® and 517 and
 can be determined by numerical integratioh oh,5The dispersion parametehas
the upper and lower limits due to physical aspects of the nahteehaviour as it can
be defined in the range afe [0, 1/3]. It directly integrated to the constitutive model
with generalized structure tensor as a scalar multiplipregented in equatidon 5.7
The lower limitk = 0 recovers the distinct anisotropy by yielding of concembrat
parameteb to infinity and the upper limik = 1/3 leads to an isotropic constitutive
response which also brings the concentration paranteter 0. The relationship

betweerp — © andx — b are presented graphically in Figlrel5.2. Then, the second

— ) = 5.24
m—h = 3.15
0.3 15 b v
—_—b=0.0
<02 0
0.1 50
0% 5 10 15 20 —Ow/z —x/d o w/A w2
€)) b (b) s}

Figure 5.2: (a) Graphical representation of nonlineartie@icbetween the dispersion
parameter. and the concentration paramete(b) dispersion characteristics through
the density functiom and the angle of dispersigh. The corresponding values are
1/3,4/15,1/5,1/11, 1/20 and0 respectively.

Piola Kirchhoff stress and the Kirchoff stress can be defindgde following form:
a_Ua_J + a\piso% + a\I[am' a_E:|
oJoC 90, oC OE 0C

oU 0J 0V, 0l 0V, OF }

S = 2000 =2 {
(5.8)

———+
0J Og 0l, Og OF Og
wherekFE is construct the strain like scalar quantity in the directsd mean orientation

T:28g\If:2[

and it is defined in Lagrangian and Eulerian configuratiorfekswving

E=H:C—-1 and E=h:g-1 (5.9)
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5.1.2 Generalized structure tensor based bivariate formwtion

Holzapfel et al.[[158], extended the GST approach, whiclviges rotational sym-
metric distribution based on planar distribution, to GSEdzhbivariate formulation.
The formulation not only takes the dispersion charactegshto account in-plane but
also adds the out-of-plane contribution to the formulati®y experimental histologi-
cal observations, they obtained the fiber distribution®onét effective in planar plane
but also there is minor effect on the out-of-plane for aeteriThey concluded that the
in-plane and out-of-plane fiber distributions are uncodtem each other. Then the
fiber density probability function is multiplicatively demposed into in-plang;,(®)

and out of plang,,(©) contributions as follows:

p(r) = pip(®)pop(O). (5.10)

where the angle® and©®© demonstrated over micro-sphere schematically in Figure
B.7,. The probability density function is defined for the in-pdavy a basic von Mises
distribution as follows

expla(cos(20)] 1

pip(®) = To(a) where [y(a) = - /07r exp(a cos a)da (5.11)

wherea is the concentration parameter ahda) is the modified Bessel function of

the first kind of order zero. If the in-plang,(®) density function divided b, the

normalized version can be found. The out of plane probgladinsity distribution is

defined as b(eos(26) — 1)
_ . [2bexplb(cos 20) —1
pop(@) =2 T erf(\/%) . (512)

whereb is the concentration parameter for out-of-plane distrdsut By using the
similar normalized relation defined by equation] 5.2 with= cos ©dOd®, the nor-

malization equations yields

w/2
,oip(q))dq)/ Pop(©) cos OdO =1 (5.13)

—7/2

1 2w
4 Jo

By defining the in-plane normalization as follows

1 2
— i (P)dP =1 5.14
o ) (5.14)
then equatioh 5.13 reduces to out-of-plane normalizatsdmedow
w/2
/ Pop(©) cos OdO = 2 (5.15)
—m/2
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Then, the scalar quantities of dispersion for in-plasg)(and out-of-planex,,) are
defined

" . 1 [7/?
Kip = —/0 pip(®)sin® ®dd  with &, = Z/ , Pop(©) cos® ©dO  (5.16)

The generalized structure tensor can be obtained as

1 ™ w/2
H = —/ / Pip(P) pop(©)N @ N cos OdOdD (5.17)
4m P=—m7 =—m/2

By using the relationship of equations 5.17 and b.16, thecgire tensor yields the

following form
H = 26,,k0p1 4 260p(1 = 2Kp) M § @ M 4+ (1 — 2K0p(1 + ki) ) M, ® M, (5.18)

where M ; and M,, are the mean fiber orientation direction and normal directio
perpendicular to the main plane, respectively, € [0, 1] andx,, € [0,1/2] where
these parameters are determined by using the histologyreaging data of the tissue.
The relationship between the scalar density distributigandjity = and concentration
parameters are given for both in-plane and out-of-plantilbligions in Figurd 5.3.

Note thatx,, andx,, defined in larger range of interval than the given range imifég

0.5 0.50
0.4
0.45
_ 03 .
S S 040
0.2
o 0.35
0.0 5 10 15 20 0.305 5 10 5 2
(@) a (b) b

Figure 5.3: (a) Graphical representation of nonlinearti@habetween the in-plane
dispersion parameter;,, and the in-plane concentration parameitgfb) relationship
between the out-of-plane dispersion parametgand the out-of-plane concentration

parameteb

£.3. However, the negative values of concentration faatepsesents non-physical

behaviour and therefore omitted from plots.
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5.1.3 Angular integration dispersion formulation

Micro-sphere based angular integration formulation fer @nisotropic finite elastic-
ity proposed by Alastrué et al. [156]. The anisotropic citmitiion of the tissue is

defined by using von Mises distribution functions througietation directions. The

micro-fiber directions are considered in the concept of rcii@sed structure. Then
homogenization has been performed by numerical intege the unit sphere. For
the numerical integration step there have been defined alemdratures by Heo et
al. [166] for the micro-sphere. The anisotropic free-epesglefined as the angular-
integration of micro-fiber free energies over the microesplthat contributes in dis-

crete orientation sets based on von Mises probability fangt(r)
1 .
Voni = E/p(r,M)\Dmlc()\f)dA, where |S| = 4, (5.19)
S

where|S| is the total surface area of the unit sphere ddd= sin(0)dOd®. The
notation) s represents the micro-fiber stretch in the directiom ahd it can be intro-

duced by using stretch vectbe= Fr.

A=/t gt (5.20)

The contributions of each chains in the orientations dioestcan also be stated as

following
p

Won = 3 T™(Np), (5.21)
k=1

Each of the orientation direction can also be stated as thieging of the total num-
ber of p contributions of micro-fiber energies as introduced in ¢ignd5.19. The
contribution of each set of orientations to the macrosctgiel can be defined as a

continuous average over micro-sphere as follows
1 u A
0 -5 / (@ dA~Y Wk (o) and Wou(F,r) = (po(r) ") (5.22)
S k=1

wherew*;_, ., are the weight factors of the set integration points relatigd discrete
orientation directiong*;_,., andp is the total number of integration points. Then the
Kirchhoff stress can be written as

OUOT | 0Wiy Ol | 0% O\
0J Og 0l Og OXs Og

T =20,U =2 [ (5.23)
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and the more explicit form of the Kirchhoff stress reads
T = / p(r) W™ N Tt @ tdA — pg~t + 2¢1b (5.24)
S

wherec; is the constant that is determined by the derivativé gf with respect td;.

The m-periodic rotational symmetric von Mises distribution deised as

B b exp[b(cos(20) + 1)]
p(©) = 4\/; e (5.25)

5.2 Examples of Fiber Dispersion Architecture of BiologicaTissues

In this section, there will be presented polar plots for @mar and bivariate von
Mises density distributions those are published in theditee based on histological
data. There have been reported many of fiber dispersion (@€ 27, 158, 164,]7,
8,167,168/ 169, 170], based on von Mises density distobgtfor artery. Since
it is composed of anisotropic layered-type structure aeriahave different fiber
orientations and distributions, the dispersion charasttes of fibers reflects high in-
fluence on mechanical response of the constitutive modéls.dénsity distributions
of the intima, media and adventitia layers based on von Miggsbution are given
in polar plots in Figuré 514. Liu et al.[9] proposed dispersbased formulation
for the intestine walls including submucosa, longitudiaadl circular muscle layers.
Eriksson et al.[[10], presented a formulation for the disjgar characteristics of fiber
and sheet orientations of rabbit myocardium and they fit thegyr von Mises distri-
butions parameters to experimentally measured histadbdeta. The corresponding
planar von Mises distribution architecture of the intestivall layers and fiber-sheet
orientations of a rabbit myocardium are shown by polar plotSigure[5.5. Longi-
tidunal and circular muscle layers of intestinal walls aeanty isotropic with scalar
dispersion parameters,,, = 0.30 andx.;,.. = 0.32. However, submucosa exhibit
slightly anisotropic fiber dispersion with,,, = 0.25. The orientation angles are
O = 65°,40°, 30°, respectively. On the other hand, the rabbit myocardiusugds
highly anisotropic in both fiber and sheet orientationss H$ssumed that the fiber and
sheet directions are orthogonal to each other. The scaperdion parameter for the
fiber isk; = 0.00765 which corresponds tb; = 32.517 and the scalar dispersion

parameter for the sheet directionds = 0.0249 that corresponds tb, = 10.28.
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Figure 5.4: The polar plots of the density distribution ftiosp (a) planar von Mises
distribution of two families of fibers for a medial layer ofiman thoracic aorta [7],(b)
in-plane von Mises distributions of one family of fibers fatima, media and adven-
titia layers of healthy abdominal aorta [8] (c) out-of-ptamon Mises distributions
of one family of fibers for intima, media and adventitia lagyef healthy abdominal

aorta [8]

Since their density localization differ to each other imisrof amplitude, their plots
are given separately to clear view.
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Figure 5.5: The polar plots of the density distribution ftions p (a) planar von
Mises distribution of one family of fibers for intestine whdlyers namely submucosa,
longitudinal and circular muscle layers [9],(b) planar \Wises distributions of fiber
orientation of rabbit myocardium [10] (c) planar von Misestdbutions of sheet
orientation of rabbit myocardium [10]
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CHAPTER 6

ANISOTROPIC VISCOELASTIC CONSTITUTIVE MODELLING OF
HUMAN MYOCARDIUM

6.1 Introduction

The heart is the primary component of the cardiovasculaesysand pathological
conditions related to the heart may have a vital impact ondrulifie. Historically,
cardiovascular diseases (CVDs) are not only a diseaseedetatthe diet of mod-
ern people, but also the most deadly medical conditionsithet always been en-
countered since ancient times [171]. According to the Wetthlth Organization,
CVDs are the leading cause of death, taking the lives of atddah9 million people
each year. In general, clinical therapies for CVDs are moreleof-thumb, than
a systematic therapy design based on scientific criteria heart is an electrome-
chanical pump that supplies blood through the vessels tenltiee living body, and
it is subjected to thermo-electro-chemo-mechanical damrd. Hence, understand-
ing the biomechanics of the heart may lead to the developmwientore accurate
treatment techniques (medical treatments, surgery tgaksj rehabilitation meth-
ods, etc.) alongside understanding the pathology itself.ekample, developing an
artificial pumping system, developing transplantatiomtegues, replacing the heart
valve, developing the left ventricular pacemaker devite, &o this respect, the in-
terest in computational cardiovascular mechanics hasased tremendously in the
last few decades. However, understanding the mechani¢edfdart is a challeng-
ing task due to its sophisticated structure. In this chapteraim to develop a novel

constitutive model that describes the mechanical beha¥itie passive myocardium.
The heart wall is made of three main layers. These are thecandiom, myocardium,
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Fibrous Pericardium

Myocardium

Figure 6.1: The schematic view of the section view of the huimeart, sliced pieced
of the left ventricle and idealized patch of heart wall déssdl within three orthogonal
directions, fiber direction, sheet direction and normaéchion, respectively. (The
realisticimages were partly generated using Servier Mgdict, provided by Servier,

licensed under a Creative Commons Attribution 3.0 unpdrtethse)

and epicardium. Endocardium and epicardium are thin layetsmainly consist of
collagen and elastin, and they create an interface regitimivmer and outer sub-
stances. The myocardium is primarily responsible for trerteepumping function
in the wall. It is made up of parallel fibers that are embeddeshieets by extracel-
lular matrix [88]. The orientation of the myofibers makes aosth transition from
the epicardium to the endocardium in a helical form. In thenhn, myofibers vary
from about -70 degrees at the epicardium to nearly +70 dsgrethe endocardium.
The LV wall thickness is higher than the RV wall thickness tluthe fact that the LV
is subjected to a higher pressure load to pump the blood tadha. The schematic
view of the section view of the human heatrt, sliced piecesefleft ventricle, and
the schematic continuum approach of the myocardium tissigigen, respectively,
in Figure[6.1. The historical remarks on the structuralfezg of the myocardium
have already been mentioned in detail in sedtioh 1.3. Asglnlight to Chaptelr]1, the
mechanical behavior of the tissues is highly influenced bysthuctural arrangement
of fibers. Therefore, morphological studies are essertialéntify the mechanical
response of the tissues. In a recent study, Sommer et algdititatively mea-
sured in-plane and out-of-plane dispersion of fibers fronamiger direction and
sheet direction for samples extracted from human myocardithey also performed

monotonic biaxial and triaxial shear experiments alondhwitclic experiments and
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observed that myocardial tissue exhibits non-linear artipoc material behavior. Be-
fore, Sommer et al[ [11], similar observations were outibg Dokos et al.[[99] for

pig heart.

6.1.1 Hyperelastic constitutive models for passive myocdium

Several hyperelastic constitutive models for myocardsaiute have been proposed in
over years, beginning with the isotropic modeéls [172], aanhg with transversely
isotropic models based on invariants [173] and on Greendrage strain tensdr [174].
Unequivocally, these models were not able to describe tidp@ anisotropic me-
chanical behaviour of the myocardium. Later on, orthottapodels were proposed
by Nash& Hunter [175], and Schmid et al. [176]. One of the most sudaéss
model proposed by Holzapfé Ogden[[106] which is based on invariants. Goktepe
et al. [177] implemented this constitutive model in a gehptapose finite element
program[178] and also showed the fitting performance of tbdehbased on exper-
iments of Dokos et all [99]. Nevertheless, the aforemeetianodels lack describing
dispersed nature of collagen fibers. In fact, the first modehtorporate the dis-
persed structure of collagen fibers was proposed by Land][fts epidermal tissue.
They utilized a density distribution function to descrilbe tdispersion of fibers in
microstructural level and used angular integration toioltae macroscopic mechan-
ical behaviour of the tissue. Following the work of Lanirysral dispersion-based
anisotropic hyperelastic models have been developed faustypes of soft tissues,
e.g., Driessen et al. [179] for aortic valve and arteriallwalastrué et al.[[156, 180]
for blood vessels, Gasser et al. [155] and Holzapfel et &8]for arterial wall. For
the case of myocardium, Eriksson et al./[10] modified the rhotlelolzapfel & Og-
den [106] to take into account of dispersion along the fibersreet directions using
the generalized structure tensor approach proposed byGesd. [155]. The numer-
ical performance of this model was adressed among otherdpy,Gansiz et al[ [18]
and Giltekin et al [1].
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6.1.2 Viscoelastic constitutive models for passive myoadum

The above-mentioned models treat the myocardium as andigséc material. How-
ever, according to the observations of Dokos ef al. [99] grhgiart, myocardial tissue
shows stress relaxation and hysteresis response in all stuetes for the cyclic tri-
axial shear test. Furthermore, Sommer et/all [11] obtaiiradas observations for
the human myocardium when conducting stress relaxatids agsng with cyclic tri-
axial shear and cyclic biaxial tests. In addition, aforetizered studies addressed the
directional dependence of the tissue for different testesod

One of the earliest attempt to model the viscoelastic behafithe myocardium was
made by Loeffler & Sagawa [181]. They developed a one-dinoa@asiviscoelas-
tic model for both passive and active reponse of cat myocardiThe passive re-
sponse was developed by a rheological model consisting pfiagsconnected to
two Maxwell elements in parallel. Later on, YadgTaber [182] proposed a bipha-
sic (consists of fluid and solid phases) viscoelastic mdul takes into account the
contribution of extracellular fluid flow to the viscoelastiehavior of passive cardiac
muscle. Following this work, Huyghe et al. [183] developeticensversely isotropic
biphasic model that also incorporates viscoelasticity tdughear deformation in an
isotropic manner. However, these models were not able taltepf describing
anisotropic viscoelastic behavior of the myocardial teseatirely. More comprehen-
sive models were proposed by Kaliske [184] and Holzagféasser[[185] in finite
linear viscoelastic settings where stress update is demith convolution integral
in analogy to a small strain setting. More general orthatregscoelastic formula-
tion were developed by Cansiz et al. [18] and Gultekin et/Hl. [The equilibrium
response of the both models are identical and based on tpersiisn-based hyper-
elastic formulation proposed by Eriksson et al.l[10]. Onabeer hand, the viscous
response of the myocardial tissue in the sense of Cansiz Ei8ildelivered by a
canonical representation in terms of strain-like intexaalables conjugate to driving
viscous stresses, while Gultekin et al. [1] pursues a cativol representation of the
viscous overstresses. The interested readers may reféittek@d & Dal [186] for the

comparison of these two models [18, 1] based on human myocardataset/[11].
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Furthermore, the recent fractional derivative based omipic viscoelastic model on
passive myocardium, as documented in Nordsletten €t af],[t@monstrates good
fitting performance on the human myocardium dataset.

From the view of modelling overall function of heart, the ionfance of viscoelas-
ticity in cardiac cycle was revealed by Cansiz et al.| [20, 24yl Tikengullari et
al. [188]. Cansiz et al[ [20] presented an unified theory ftn@ropic electro-visco-
elastic response of myocardium by extending the formutatibCansiz et al. [18]
and Goktepe et al. [189]. Later on, Cansiz etlall [21] extdrideir work to reveal the
mechanisms of the defibrillation phenomenon by elaboraimthe bidomain setting
as described by Dal et al. [19]. Recently, Tikgndar et al. [188] succesfully em-
bedded the viscous formulation of Gultekin et al. [1]. Thenoson observation of
these works is adressing the importance of the viscoustgeffieoverall function of
hearth.

In this chapter, firstly, a proper hyperelastic constiteitimodel proposed by [106]
will be presented by deriving the stress and consistentetatngnoduli expressions.
The deformation gradient is multiplicatively decomposei ispherical and unimod-
ular parts; accordingly, the free energy function is adgdl{i decomposed into vol-
umetric and isochoric parts. Then, we adopt the formulatibfilO] and hypere-

lastic formulation will be revised by integration of dispem kinematics. Further,
we also additively decompose the free energy function imgailérium and non-

equilibrium parts with the assumption that non-equilibrigart is related to the
volume-preserving deformations. Rheological Maxwell mlathd convolution inte-

gral formulations have been introduced for non-equilibriesponse of myocardium.
Then, we proposed five novel formulations for the angulagrdtion type dispersion-
based anisotropic viscoelastic constitutive model for aaydium. Non-equilibrium

response of the myocardium is modeled by a rheological deaasisting of a spring
with a Maxwell element in parallel. The viscoelasticity imdelled through one di-
mensional Maxwell branch with a quadratic free energy fioman logarithmic strain

space and a quadratic and power type dissipation potentiehch orientation di-
rection. The overstress response is then obtained by thenzahintegration over
the unit micro-shpere and over the planar circle for theagtimal directions of my-

ocardium.
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6.2 Governing Equations of Hyperelastic Constitutive Modéfor Passive My-

ocardium

In this section, hyperelastic constitutive model of mydaam will be presented
based on the formulation proposed by Holzapfel et al.|[10%. start with the mul-
tiplicative decomposition of the deformation gradidint= F,,F into volumetric
F,,; and unimodula# in order to impose incompressibility nature of the tissuee T
related kinematic relations are already given in equati@dl.3Due to the high water
content of myocardium similar to the most of the biologigs$tes, it is assumed to
reflect an incompressible behaviour [101]. Then Jacobiadddéo.J = F,, = 1
for incompressibility condition. The identity tensor isfied by 1. Isotropic hy-
perelasticity is formulated based on the free energy fong¢twhich is defined per
unit reference volume through isotropic invarias/,, I3 those are constitutively
related to the deformation gradient. For incompressibleerrads, two of the invari-
ants, I, are sufficient to be used in the formulation. The invariambfalation of
hyperelasticity is described by equation 3.23.

For orthotropic tissues, additional unimodular invarsaiaf s ., 15 s », relates the ma-
terial response through distinct unit vectors for filfgr sheets,, and normah. Iso-
choric counterparts of unit vectors in Eulerian configunatare defined ag = F f,,,

s = F'sy, andn = Fn,. Coupled orthotropic behaviour along unit vectors is de-

scribed byls. Unimodular description of orthotropic invariants are defl as

I_4f = .fO ' CfO) I_4s = $So- C'SO, I_4n = MNoy- C"n,o,
_ _ 5 _ ., B )
[5f = fo-C'fy, Isy, = s0-C"sg, Is, = ng-C'ny, (6.1)

]_st = fo'éso, ]_an = fo'é’no, I_BSn = 50-Cny.

Ly, I,y and I, define the material behaviour along distinct fibgfg), sheet &)
normal () directions. It should be noted tha;, 5 and s, are related with; and
I, [106]. Therefore fourth invariants are enough to use theawielir in orthotropic

directions. Then, the orientation related structure tesisan be described as dyadic
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product of orientation vectors as shown below.

H; = f,®f, H, = s5,®sp, H, = ny®mng,

Hfs = Sym(f(] ® SO) ) an = Sym(f(] X nO) 5 Hsn = Sym(so ® nO) 5
(6.2)

Goktepe et al.[[177] mentioned that tifg orientation refers to coiled perimysial
fibers oriented along the long axis of the myocytes, and lyinpe sheet. The ori-
entations, is normal to the sheet plane and refers to sparse directiperohysial
collagens that connect myocardial sheets. The orientatipis orthogonal tof,,
andn,, it represents the tightly bound endomysial collagen insteet and layouts
perpendicular to cardiomyocyte axis. The specific form efidochoric free-energy
function for the passive myocardium is defined as below ia iwith Holzapfel et
al. [106,177]

Ue(C) = 2% {exp[b(I, —3)] — 1} + _Z ;—b {explbi(I; — 1)% — 1}
afs — =1 (63)
-+ Wfs {exp[bfslgfs] — 1} s

where the first term in equation (6.3) accounts for isotropéatrix response , the sec-
ond term contributes for additional stiffness due to amggmt response in the fiber
and sheet directions and the last term is coupled behauelatiye shear) of fiber-
sheet interactiona, a¢, as, as, b, be, bs, bes @are material constants, which should be
non-negative numbers to satisfy the necessary conditiostéility. 1., is omitted
from the free-energy equation above. Since its behaviabtsined by the combina-
tion of I, I,y andl,,; I, is dependent to others [106]. Next, the unimodular elastic

part of the stres8® in can be defined by

S =U{1+ VS, Hy+ V5, H, + 9, Hy,, (6.4)

whereU¢', U5, U5, and W, are the scalar values those are resultant terms of the

derivation with respect to corresponding invariants anaved as below. The volu-
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metric part of the stress can also be determine§tY = pC L.

/

s = 261—1\Ile = aexp[b(l; — 3)],

\Ililf = 28f4que: 2af(l_4f - 1) eXp[bf(I_4f - 1)2] )

., _ _ _ (6.5)
We, = 207 V¢ = 2a,(14s — 1) exp[bs(Lss — 1)7],

\Ifg’fs;: 2(’3f8fs\I/e: 2af.135s exp(byslis,) -
Then, corresponding elastic unimodular part of Lagrangiaduli reads,

C=0{101+VHyo H;+ V|, H, @ H, + Vg, H;, ® Hy,. (6.6)

wherels”, U5, U5, and g, are the scalar coefficients for unimodular elastic mod-
uli those are resultant terms of the second derivation vasipect to corresponding
invariants and they obtained by

U= 402 ; W = 2ab exp[b(I, — 3)],

Wy o= 407 0 =dag[l+ 261y — 1)°] explby (L — 1)°],

- . , i 6.7
B e 4 — dal 4 (T — 1) explba(T — 17, O

Tyslys

= I

Igfsjgfs \ile: 4af5(]' + 2bf5j82fs) eXp(bfsjgfs) :

6.3 Orthotropic Viscoelasticity based on Dispersion-typalyperelastic Consti-

tutive Model for Passive Myocardium

In this section, kinematic equations will be modified basadlee GST dispersion
formulation. Then the general constitutive framework ahotropic viscoelastic-
ity will be presented by the decomposition of the free-epengo equilibrium and
non-equilibrium response. The orthotropic viscoelastrofulation will be given two
separate formulations, namely, convolution integral@spntation and conanical rep-

resentation, in the sense of Gultekin etlal. [1] and Cansit. §18], respectively.

In line with sectiori 5.1]1x; andx, are defined for the two scalar structural param-
eters reflecting the fiber and sheet distributions, resgaygtin sense of [10]. The

modified unimodular fourth invariants in the direction ofditand sheet are defined
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as
lekf = Hfjl + (1 — 3Hf)f4f and st = Hsfl -+ (1 — 3H3)j4s, (68)

In [155], Gasser et al. defined the collagen fiber distributimationally symmetric
around a mean fiber directio®f. They formulatedr-periodic von Mises distribu-
tion as a fiber density distribution aroudd for a planar condition. The von Mises
distribution function is a one-dimensional probabilitgulibution that represents the
normal distribution projected over the unit sphere. Thetbgcal details are givenin
Chaptefb. Then, the modified structure tensors that refieditter dispersion along

orthogonal directiong ands are defined as
H; I/ﬁfl—l—(l —3I€f)f0®f0 and H: :Hsl+(1—31€3>80®80. (69)

Double-contracted of structure tensors in equation (6if) wunimodular part of the
Cauchy-Green tens@ gives the modified fourth invariants in orthogonal direotio
(I_;fﬁs =C: H} ).

The constitutive material formulation is presented in laamgyian configuration which
is based on additive decomposition of the free energy fana@omposed of isotropic
and anisotropic parts. The free energy further split intoineetric and isochoric part
as a function of Jacobian, and unimodular part of the left Cauchy-Green terGor

respectively. The free energy function is described as

~

V:=V(C,H;Z)=V,u(J) +Vi,(C,H;I) + ¥,,,(C;T) (6.10)

whereZ denotes the set of internal variables those reveals viastebehaviour of
the material. With the use of Clasius-Planck inequalitgr¢t07], the second Piola-
Kirchhoff stress tensor) and a stress-like quantity also known as internal fofge (
reads

S =20,V(C,H;Z) and 3= —-0,9(C,H;I), (6.11)

The second Piola-Kirchhoff stress tensor in equafion jedétomposed of volumet-

ric and isochoric parts as,

S = Syl + Siso, Where S, :=20:V,,(J) and S, :=20,V(C,H;T).
(6.12)
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The volumetric part of the second Piola-Kirchhoff stresste reads

Svol =V

vol

(J)JC™', where ¥

vol

(J) = 8,U,(J) and p=JO,0,u(J)
(6.13)

wherep is the internal pressure term. The isochoric part of thersg&dola-Kirchhoff

stress tensor defined as

Siso=98:Q with S:=20,V(C,H,Z) and Q:=9,C (6.14)

whereQ andI are the fourth order deviatoric projection and identitystans, respec-

tively. They are defined as following

(181 +121)  (6.15)

N | —

Q=J2% [H — %C ® C‘l] , where 1 :=

The free-energy function in equation (6.10) can split inboaading to elastic and

viscous response of the material, i.e.

V(C,H;Z)=9°(C,H) +9"(C;T) (6.16)

Similarly, the unimodular part of second Piola-Kirchhoffess ) is also decom-

posed into the elasticS() and viscous$")components as;

S=8+5" (6.17)

The elastic and viscous parts of unimoduar second Piolehkiff stress are defined

as a conjugate of unimodular part of right Cauchy-Greenoiefts)

S°:=20,V°(C,H) and S :=20,V"(C;T) (6.18)

In order to get the solution of a nonlinear problem, it is riegg to solve it with
incremental steps through Newton iterations. In this paahgorithmic tangent is

introduced as the decomposition of volumetric and isochoarts as

AS = C9° . %AC, where C“% = C,q + CH2° (6.19)

180

The volumetric part of the Lagrangian moduli can be derivieelatly from the free-

energy as a closed-form expression

Cuol =403 Vou(J) = [J*V],

vol

(J)+JV, ()] C'@C™ —2JIg-1  (6.20)

vol
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where superscript™ and " /" represent the first and the second derivative with re-
spect to the dependent variablB (The isochoric part of the algorithmic Lagrangian
moduli is expressed as

2
3

Clrr = Q7 T Q+ 2 (8 C) P -

(Siso X Cil + Cil ® Siso) (621)

The unimodular part of algorithmic Lagrangian moduli is adeposed into elastic
and viscous parts
Calso = €, + Calee (6.22)

The equlibrium part of the unimodular algorithmic Lagraargmoduli can be derived
from the free-energy function and the non-equlibrium part be derived in incre-

mental form with time discretization,respectively.

C.=40%:V°(C, H) (6.23)

Then, by inserting the dispersion-type modified invariatgscribed in equatidn 6.8
into the the free-energy function defined in equafion 6.8, tiodified GST based
dispersion-type free-energy function for the equilibrioesponse can be written as
below in line with [10] and[1]

T(C) = o {explb(h =3~ 1} + 37 o {explbi(Ty; — 1)~ 1}
+ Afs. {exp[b I2 ] — 1} o (6.2
Qbfs fst8fs )
As the additively decomposition of the free-energy funtimintroduced in equation
[6.10, the volumetric part of the free-energy which satigfjozstress state in unloaded
condition, is defined as

Vyu(J) =k(J —InJ —1) (6.25)

where x is the bulk modulus, which should not be confused with theelision-
related parameter described in equaltion 6.9. The first ansittond derivatives of the
volumetric free-energy with respect to Jacobidjpdre defined to be used in equations
and 6.20 for the corresponding stress and moduli dems Then, unimodular
part of the elastic stres$® which is defined in equatidn 6.4 can be modified through

dispersion-type generalized structure tensors as below
S =01+ V5, H} + U5, H; + U5, Hy, (6.26)

129



where the modified scalar derivative coefficients are intoed as follows

/

Ue = 261—1\Ile = aexp[b(I; — 3)],
vs, = Qafifxife: 2a(I;; — 1) expbp (I, —1)7],
_, _ _ _ (6.27)
WG, = 20q V¢ =2a,(I;, — 1) exp[bs (I}, — 1)?],
4s
Uip=20; U= 2ay,1sss exp(byslgy,)
Then, corresponding modified elastic unimodular part ofraagian moduli yields,

Co=0{101+V HioH}+ U, H.® H: + V5, H; @ H;, (6.28)

Then the scalar second derivative coefficient are reviséallas/s
e = 46]2J1\I/e = 2ab exp[b(I; — 3)],

WSy = 4a§1ffzf@e = dag[1+ 2bs(I;; — 1)%) expbs (I, —1)7],

= 402 ;. W° = da,[1 4+ 2b,(T5, — 1)) explba(F}, — 1)%).

s 4s

(6.29)

\Ilg;;‘s:: 48128.)03178.703\1/6: 4CLfS(1 —+ 2bf8f82fs> eXp(bfsl:gfs)

6.3.1 Convolution integral formulation

We will follow the convolution integral representation iarse of Gultekin et all [1].
By considering one-dimensional rheological generalizeaxWell model, the first
order linear differential equation for the evolution of asis stresses is defined for
the linear viscoelasticity. The exact integration of theelir evolution equation can

be defined as follows

SY .+ S— — 8¢, S'(t=0)=0 (6.30)

)

where the subscript™is used forf, s, n, fs as separate stress components. The dif-
ferential equation satisfies the zero stress state thoitgdl conditions and it can also
be used to determine viscous strain as an variable the relaxation time in seconds.

It can be defined as = /1, wheren is the viscosity ang: is the shear modulus of
the material through orthogonal directiomsis the positive dimensionless parameter
that work with isochoric stress component. The closed fofsotution of equation

comes out with the convolution integral form as below

— v t t — S -~
S, = [ exp|— €;Sids. (6.31)
0 i
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The approximation of integral 6.B1 can be written in the tinterval [t,,, ¢, 1] as

ot i tn+1 — S =
Sini1 = / exp (— ) €;Sids. (6.32)
0

T;
wheret,.; = t, + At then the integrdl 6.32 can be split into time interval$tas, |

and[t,,t + 1] as below

t
— v " At t, — s =
.S'Z-JLJrl = / exp <_T) exp <— — ) €;S5ds

0 1 7

t+1
tht1 — S =
+ / exp (— = ) €S5ds.
tn T

In order to approximate the integfal 6133, we consider trekpaint rule,

t+1 - . .
/ exp <_tn+175) E@.Sfds = At |:exp <_M) Sf:| (634)
tn T; T;

wheres = (t,, + t,+1)/2. Then the viscous stress yield to the final form as

— At AL\ =, e At e
Si,n+1 = exp (—;) {exp (_;) Si,n - EiSi,n:| + exp (_g) 6iSz‘,n+1 )

The first term in equation 6.85, represents thand the second term represents the

(6.33)

t,+1 contributions, respectively. Then, viscous unimodulat pathe tangent moduli

Cds° can be determined as

Cril =exp (—%) &CrMHl (6.36)

150,10
3

This algorithm is a second order accurate one-step algofithlinear viscoelasticity.

6.3.2 Canonical formulation

Canonical representation for viscoelasticity is a comnypreach for both the linear
and nonlinear evolution of the overstress response of therrah In this approach,
internal variable seT can be either defined in tensorial or scalar strain-likealdes

conjugate to overstress. In sense of Miehe et al.|[190], Dall. §120] and Cansiz et
al. [18], the viscous response of the tissue are defined asiflgnic strain in each

orientation directiong, s andn as following
1 = 1 = 1 -
=g In(\/1sf) , €= 5 In(v/ Iys) En =g In(v I4n), (6.37)
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The relationship between the storagé and the dissipation potentidl,,, is de-
scribed by Biot[[191] as

8811,\If§’(€i, 62)) + aé;;q)disp7i(é$) =0 and €$(0) = €UO (638)

7 0

wherei = f, s, n. For the non-equilibrium response, one-dimensional Maixiveo-
logical model in the logarithmic strain space is introdugedach distinct orthogonal

direction and illustrated schematically in Figlrel6.2. Epecific form of the vicous

\I}E

Siso Siso

g v

M ——]
~— &) # (t) —=

Figure 6.2: Schematically illustration of generalized M&X rheological model.

+
|

Representation of the additively decomposition of isoh@ree-energy into equi-
librium and non-equilibrium parts. The springs are referstored energies and the

dashpot represents the energy dissipation through visegspsnse.

part of the free-energy is described as a quadratic funetsdvelow

- 1
Vese)) =5 >, milei—e), (6.39)

i=f,s,n
wherep" is the viscous shear modulus in orthogonal directions afityeg, sheet and
normal. ¢} is the strain-like internal variables and in total the intdrvariable se
contains three of scalar quantity in this formulation. Togdrithmic stresses and the

thermodynamical forces conjugate to the internal varmhble described as follows

O'Zp = 881@”(81-,5”) and 6@ = —882;\1’1)(62‘,5;)), (640)

i

For the specific choice of the viscous free energy functiéh(o? = 3; equality

can be maintained. The proper choose of the dissipatiompaltend algorithmic
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process of the non-equilibrium response will be presemtélda context of proposed

dispersion-type anisotropic viscoelasticity formulatio the next section.

6.4 Proposed Formulations for Dispersion-type Anisotropt Viscoelasticity

As outlined in the above sections, dispersion-based anictformulations are not
considered in the literature for the rate-dependent behavitissues. Biological tis-
sues are mostly considered as they include reinforced fdmeb®dded in an isotropic
ground tissue matrix. From many of experimental studiesag revealed that fiber
distribution is not perfectly aligned in the specific origmdn but it is dispersed
around a mean fiber direction__[192], [193], [93], [11]. Cunrestate-of-the art
dispersion-based anisotropic models account for the nmécddaesponse of the my-
ocardium using hyperelasticity theory. In this section ps@pose an angular integra-
tion type dispersion-based anisotropic viscoelastic tise models. The defor-
mation gradient is multiplicatively decomposed into sptedrand unimodular parts;
accordingly, the free energy function is additively decosgd into volumetric and
isochoric parts, as introduced in sectionl 6.2. Further, ise additively decompose
the free energy function into equilibrium and non-equilibn parts with the assump-
tion that non-equilibrium part is related to the volumegenering deformations. For
equilibrium response, we adopt the formulation of Eriksebal. [10] and details are
given in sectiom 6J3. Non-equilibrium response of myoaamtis modelled through
one dimensional rheological device consists of a spring wiMlaxwell element in
parallel with a quadratic free energy function in logaritbrstrain space including
density distribution functiomw. The viscous free-energy function introduced as the
additively decomposition of micro-viscous free-energgdtions in each orientation
directions based on the affine approach. Then, quadratipamdr-type dissipation
potentials for each orientation direction have been ptesefor the different pro-
posed models. The overstress response is then obtained hymerical integration
over the unit sphere for the fiber, sheet and normal direstioe quantitatively
investigate the performance of the proposed framework kespect to available ex-

perimental data of Sommer et al. [11] in this chapter.
Firstly, we outline the general framework for a dispersigpe anisotropic viscoelas-
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tic constitutive model for passive myocardium at finite istia Lagrangian config-
uration. Then, by using these relations we will identify thiéerences of proposed

formulations one-by-one.

By using equation 6.10, we decompose the free-energy fiumatto volumetric, iso-
choric and anisotropic parts. The illustration of Maxwékkological model and ide-
alized network over unit sphere of the tissue are present€tjure 6.8.¢ and ¥”
are isochoric parts of elastic and viscoleastic free-aagngspectively ang® is the
energy dissipation due to viscous effeets(t) is the total logarithmic strain quantity
decomposed of elastic(t) and viscoug"(t) parts which are related to each other
through orientation directions on micro-sphere whiers the total number of micro
orientation directions over the unit sphere. Let Lagrangiait fiber orientation- on

\I/(i

Siso

o L

Figure 6.3: (a) Demonstration of generalised Maxwell rbgaal model (b) Ideal-

ization of tissue network for non-equilibrium response, thicro-sphere model

an unit sphere and the fiber density function in the directibn is p(r). The unit

fiber orientationr is described with spherical coordinates as
r = sinflcosge; + sinfsinges + cosbes, (6.41)

defined in Eulerian angles € [0, 7] and¢ € [0, 27], see Figuré 6l4. The deformed
state ofr is expressed with isochoric stretch vector= F'r. The non-equilibrium
part of the model is constructed based on a quadratic fregyefrfienction in the
logarithmic strain space. Quadratic-type or a power-tyfjpéissipation potential are
introduced those leads to the linear or nonlinear evoluéiquations in orientation
directions, respectively. The overstress response willdtermined by the numerical

integration over the unit sphere with, i.e. 21 and 39 quadegboints. The numerical
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integration over the sphere provides a numerical evaloaifoaveraging integrals
by a discrete set of orientations. It provides sufficienuaacy and computationally
inexpensive algebraic expressions [194]. The schemairesentation of integration
points are shown in Figufe 6.5. The micro affine-stretch oha élement in the:

orientation and corresponding logarithmic strain are @efias follows
1
AL = ]4,k Ek = 5 ln()\k), where ]4,k = tél + ti,Q + tz,?n (642)

where subscript is the set of discrete orientations in the micro-sphere.

We proposed two main approaches for formulations of dispersffects through
density distributionp(r). In the first approach, namely local-based dispersion, we
impose the density distribution over the mechanical visquoperties of the tissue,
such asu or 7, viscous shear modulus and viscosity, respectively. Insgmond
approach, we define the density distribution in a global reatirat acts as a multiplier
for the micro-viscous free energies. Both methods reacbwbgall stress and moduli
expressions by integral averaging over the unit micro-sphm the following sub-
sections, we will introduce these two approaches with agoposed formulation for

dispersion-type viscoelasticity.

(@) (b)

Figure 6.4: (a) The unit micro-sphere and the orientatiatore(b) mean fiber direc-

tions of two families of fiber lie o, -e, plane.
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Figure 6.5: Demonstration of fully symmetric integratiooimts over micro-sphere
(a) 21 in half, in total 42 integration points (b) 39 in half,total 78 integration points

6.4.1 Proposed formulations for local-based dispersionype anisotropic vis-
coelasticity

In the local-based dispersion formulations, we introduessity distribution func-
tion p(r) into the micro-viscous free-energy as an mechanical ptppeultiplier.
Accordingly, the non-equilibrium part of the macroscopied energy is defined as
the angular-integration of micro-viscous free energiesy dive unit micro-sphere that

contributes in discrete orientation sets based on von Misgsability functionp(r)

o _ 1 o

V'(C,F;Z)=V",T) = Sl / U (F r) dA, (6.43)
S

where|S| = 4 is the total area of the unit sphere. The contribution of eseth

of orientations to the macroscopic level can be defined asiintmus average over

micro-sphere as follows

1 - k TV . _ micv v
<°>:®/5(°) dAz;wk(.) and T°(C, F:T) = (™ (c, ")), (6.44)

wherew*,_,., are the weight factors of the set integration points relatét dis-
crete orientation directions®;_,., andp is the total number of integration points.
The corresponding orientation directions) @nd weight factors«() are described
in [195], [196] and [[166] with different numbers of integ@t points over the unit

sphere. In these studies, Heo et al. [166] have also workdtleomethodology of
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cubature formulation for the sphere. Differently from th&TGbased dispersion of
the elastic part of the material defined in equafion 5.4; lier\tiscous part, there is
defined bivariate von Mises distribution. In line with [158}e total probability dis-
tribution p(r) is defined in the uncoupled form of multiplicatively decorsjtion of
two distinct probability densities related with in-plapg(®) and out of plane,,(©)
as stated in equatidn 5]10. Then, the logarithmic stregsgshe thermodynamical

forces conjugate to the internal variables are describéollasys:
op =0, U (ep,ep) and [ = —862@?i6”(5k,52), (6.45)

For the specific choice of the micro-viscous free energy tion¢l™<v), o¢ = 3,
equality can be maintained. Accordingly the viscous freergy is defined in the

guadratic form as follows
Ty micv 1 v v\2
\Dk (gka 51}) = §Pk(7°)ﬂ (gk - gk) ) (646)

Then, by using the relation between equationsl6.45 and thédpgarithmic stress
and thermodynamical stress-like thermodynamical foreenatained as following in

the orientation directions
o = pr(r)p’(er, —gp) and fy = oy (6.47)

The dissipated energy in the dashpot of the Maxwell elentews in Figuré 6.3can
be defined by power-type of generic dissipation potentialisarete set of orientation

as
- . oy B m) (),
Cisp(Z) = D Paisps(€})  Where @y (c}) = — E‘gk‘

= n (24 m)
(6.48)

wherej is the stress like parameter takenlasfor unit consistencyy is the viscos-

ity parameter in the orientation direction, andis the parameter that identifies the
transition between linear and nonlinear viscoelastic wiah laws. Equatioh 6.48
will lead to a linear form of evolution equation i = 0 which will end up in a
closed form expression for the internal variabje On the other hand if» > 0, the
evolution equation become the nonlinear function of ovess{? and it will require
local Newton iterations in time discretization. Both lineend nonlinear solution of

the evolution equation will be provided below. The relasbip between the storage
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and the dissipation potential is described by

Linear Evolution Equation

After some mathematical manipulations defined by Biot [1%i] using[6.4B and
[6.45 , the linear evolution equations for the interval Valea can be obtained in the

orientation directions as

S =405, where 3(6) =% (6.50)

To compute the internal variable at current time-step 1, we describe equation

[6.50, by backward Euler integration scheme which leads as follows

Ehnt1 = Ehn T AR (Brns1) (6.51)

By using equations 6.50 and (6151) the internal variablebeatbetermined as a closed

form expression as follows

o (At/n)p(r) ek ni1 + €L
hot (1+ Atp(r)p/n)

(6.52)

Then, the unimodular part of the second Piola-Kirchoffsdref the viscous response

can be written as a continuous average though orientatiogasions

SU = Z 4‘1’2;')"]6 X rrpwg s (653)
k=1:p
whereVy, is the derivative resultant of the micro-viscous free-ggavith respect to
the orientation invariants which is related with the stheis shown in equatidn 642

and defined explicity as follows

Uy, =20, U'(e; ) = %’; , (6.54)

Then, the unimodular part of the algoritmic viscous tangeatuli can be expressed

in the compact form as

@glgo = Z Q\I/Z;;T‘k Rre QT @ rrywy . (655)

k=1:p

138



whereU? is the second derivative of the micro-viscous free-energh respect to
the orientation invariants and defined as

- (Ck — QUk) aa aa 88”, p(T)MT/
\IIU = h = —k = k ]_ —_ k =
W e T T U T, Ty Al

€k €k
(6.56)

Non-linear Evolution Equation

In equation 6.48 m > 0 makes to evolution equation in nonlinear form of overstress
and it is need to be solved by local Newton iterations. By giine relations of equa-
tions[6.48 an@ 6.49,the following evolution equation foast-like internal variables

obtained

m

B—Ak Br (6.57)

B

The evaluation of the internal variabi¢, ,, at the current step is obtained by un-

Ly v v 1
€r = Yk (Br) ,where 7 (Br) = 5

conditionally stable backward-Euler integration schemsé & already introduced in
equatior 6.591. The residual expressigris defined as a function of internal variable
€k

k(€ ni1) = €1 — Ekn — ALY (Brnga) = 0 (6.58)

which requires local Newton iteration stép- 1
v, 1+1 v, 1 ) 7
gk,n—:l = €knt1 T 7/ Kk (6.59)
where the local tangent terig;, is defined as follows

ﬁllc,nJrl
B

The unimodular part of the second Piola-Kirchoff stress emdesponding tangent

1
Tk| , =1—At(mJr )

€k n+1 n

Ki = 0.

Blenia (6.60)

v eV
k,n+1 k,n+1

moduli of the viscous response can be written identical fitva is stated in equations
and 6.55. Then the term in equatiof 6.56 can be obtained as follows

60’k 80’k (1 86};) . 80ki

c - B 8€k N 662 /Ck ’

- 8—5k - 852 (661)

Note that, the last derivative term in equation 6.60 and #revdtive term in equation
are directly depend on the choice of the free-energy.f@y using the relations
of equation$ 6.46 aridd 647 for the specific choice of the émergy, both derivatives

gives the same result asr) .

139



6.4.1.1 Proposed model-I - local-based bivariate von Misekspersion formula-

tion

In proposed model |, there is used single bivariate von Migesity distributiorp(r)
for the sheet and fiber orientations. However, fiber and stheettions formulated
based on their own shear modulus sucluag andy, ; respectively. Since there are
defined different shear moduli for the fiber and sheet dioesiiit requires the integral
averaging over unit micro-sphere for each of the directibhen the micro-viscous

free energy functions along fiber and sheet directions dieetkas follows:

T ep,ep?) = Ip(ro) (e — p7)?
. (6.62)
@ngl;gp(% ey’) = %P("“k)ﬂv’s(ek —&.°)?

wherep is the total number of integration points over micro-sphdteere is defined
two separate free-energy function and it requires twicentarnal variables than the
used integration points. For example, if there is used 2dgnattion points such as
p = 21, then the number of total interval variables will be 42 tmafudes 21 internal
variable for the fiber direction and 21 for the sheet dirawtioln the same logic, the

local tangent term&’i reads

m

m Bf n v
ICI{::Lp =1- At ;?1) k’BH p(ry) !
5 . (6.63)
Iclsc:p-i-l:Qp =1- At(rr;—tl) % p(rk)MV7s
6.4.1.2 Proposed model-Il - local-based planar and bivari®@ combined von

Mises dispersion formulation

In proposed model Il, we formulate an angular-integratygetanisotropic viscoelas-
tic constitutive model at finite strains that uses planarlaigdriate von Mises distri-
bution functions for different orthogonal directions tguare fiber dispersion for soft
biological tissues. It utilizes a quadratic free-energyction in the logarithmic space
and a linear evolution equation in each orientation diogctilhe overstress response
is obtained through distinct orientation directions by mwital evaluation of averag-

ing integrals over the unit micro-sphere by making use,pohumber of quadrature

140



points for the normal contribution and over the unit plangsie by usingp s, number

of quadrature points for the fiber-sheet plane.

Since we present the unit fiber directionn a planar circle forf — s plane, therd

in equation_6.411 drops out amdreduces in two dimensional vectorén — e, plane.
The main reason of the requirement of the planar circle nategn in the in-plane,
is covering even for the nearly anisotropic dispersion bighas such as the cases
where the concentration parameter- 100. Otherwise less number of quadrature
points over micro-sphere cannot sustain the normalizadgfooverall density func-
tion p which can cause inaccurate results, see Figude 6.7. Therrmamiategration
over the circle and sphere provides a numerical evaluafiaweraging integrals for
a discrete set of orientations. The schematic representatiintegration points and

stretch vectors over a planar circle and the micro-sphesieds/n in Figuré 6)6. The

Y

S

Figure 6.6: (a) Demonstration of fully symmetric integoaitpoints over planar circle,
given for 30 integration pointgg,) in half circle (b) Idealization of tissue network
for the non-equilibrium response, the planar circle modgDemonstration of fully
symmetric integration points over micro-sphere, giver2fbmtegration pointsgy,) in
half circle (d) Idealization of tissue network for non-elduium response, the micro-

sphere model.
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micro affine-stretch of a line element in theorientation and corresponding loga-
rithmic strain are defined similarly as in equation 6.42. éNibiat, since the location
of integration points are different in a circle and a sph#ére,orientation directions
are also different from each other, see Figure 6.6. The woil#erium part of the
macroscopic free energy is defined as the angular-integrafi micro-viscous free
energies over the planar circle and micro-sphere in dis@eéntation sets based on
von Mises probability function which is defined equation3.4However, that rela-
tion is valid for unit micro-sphere approach. Note that, wiiee integration to be
performed over planar circléS| will describe the total circumference of the unit
circle which corresponds fdr and the integrandiA should be replaced withio.
By the proposed model Il, it is aimed to sustain the normaiftgispersion of fibers
and sheets in-plane by taking the circular planar integmadind the normal direction
contributes isotropic way by the integral averaging overrthcro-sphere. The model
uses2pys + p, internal variables in total. It is because the planar irdégn points
may be different from the unit-sphere integration points.addition to that, there
have been defined distinct mechanical properties for otghalydirections in fiber,
sheet, and normal, such as shear moduli ¢, and,) and viscosity 4, ns and
n,). Then the resultant micro-viscous free energy forms arergbelow where;
andp, are the same density distributions along the orthogonattons, andg,, is
the density distribution to describe the behaviour for rararientation. It is mainly

contributes to isotropic behaviour of the viscous stregs i taken as 1.

U (ewer’) = spp(r)p (e — ef)?
TP gy Bk 1) = pa(ri) o — }°)? (6.64)
TP (er,6™) = Spn(ri) v (e — &)

The second Piola-Kirchhoff stress of the viscous respoeads to continuous aver-

aging through orientation directions as follows

S’ = Zk:l:pfs 4@3)@:4ka X rpwg

+ Zk:pfs—i—lﬁpfs 4qj§:4krk @ TRW (665)

= .,/
+ Zk:mn 4‘1’2,419""16 @ TRW
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Then corresponding algorithmic viscous tangent modulilmawritten as

Cglgo — Zk‘:l:pfs Q\II?:;k'rk R QT @ rrwy
+ Zk:pfs+1:2pfs Q‘I’g::m""k QT QT @ TrWwg (6.66)

=
+ Zkzlzpn 2\1117;,4167% QT & TK & TRWg

6.4.2 Proposed formulations for global-based dispersiotype anisotropic vis-

coelasticity

In the second approach, we define the density distribytiohin global manner that

acts as an multiplier to the micro-viscous free energiesotier words, the density
distribution is placed outside of the micro-viscous freergy and enters the formu-
lation during the integral averaging of stress and tangedut expressions. Then,
the non-equilibrium part of the macroscopic free energyeneéd as the angular-
integration of micro-viscous free energies over the undrovsphere that contributes

in discrete orientation sets based on von Mises probalfilitgtion p(r)
o - 1 o
V(C,F;I)=V"T) = Sl / p(r)U™e(F r) dA, (6.67)
S

where|S| = 4 is the total area of the unit sphere. By contribution of eatdrpation
set to the macroscopic level can be defined as a continuoresggvever micro-sphere

as follows

1 u o A
o) =15 / (0)dA~ Y w*(e)f and U(C,F;T) = (p"(c,c")),
§ k=1
(6.68)

wherew”;_,., are the weight factors of the set integration points relatét dis-
crete orientation directions®;_,., andp is the total number of integration points.
Then, the logarithmic stresses and the thermodynamicag$aronjugate to the inter-
nal variables can described identical in the form of equd@ig!5. Accordingly the
viscous free energy is defined in the quadratic form as falow

S 1

Wi (g) g,) = §u”(ek —e¥)? (6.69)
Then, by using the relation between equations]6.459 and t69pgarithmic stress

and thermodynamical stress-like thermodynamical foreenatained as following in
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the orientation directions
op :=p'(ex —ep) and By := o} (6.70)

The dissipated energy in the dashpot of the Maxwell elemieniva in Figurd 6.3
is identical to equatiof_6.48. Both linear and nonlineausoh of the evolution
equation will be provided below which will exclude the dewsiistribution p(r)

compared to the local-based formulations.
Linear Evolution Equation

The linear evolution equations for the interval variabled aorresponding backward
Euler integration scheme is identical to equatibns16.50[@bd. By using these
equations, the internal variable can be determined as aalfmsm expression as

follows
o _ (At/n)per,ni1 +€f
BT (14 Atp/n)

Then, the unimodular part of the second Piola-Kirchoffsdref the viscous response

(6.71)

reads as a continuous average though orientations dinsctio
S = Z Ap(r) Wl ri ® Ty, (6.72)
k=1:p

wherel?, is the derivative resultant of the micro-viscous free-ggavith respect to
the orientation invariants and already given in equdfi&d 6. Then, the unimodular

part of the algoritmic viscous tangent moduli can be writien
@glgo = Z 2p('l")\I/Z;’l"k QT QT X TrWi . (673)
k=1:p

where ¥y, is the second derivative of the micro-viscous free-energl vespect to

the orientation invariants and written as

y (e — 20%) do,  Ooy, Oe}, un
gy o= h = — = 1— =— (6.74
A where ¢ Je,  0e% Oep, n+ Atp ( )

Non-linear Evolution Equation

In the previous sub-section, the non-linear evolution équal6.57-6.611 are given in
the general form that includes the specific derivatives i@sst and overstress with

respect to strain and strain-like internal variables, eetipely. Therefore, we do
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not repeat the same steps here. The important point in thealgbased dispersion
formulations is, logarithmic stress and overstress measdo not include density
distribution in local manner, see equation 6.70. Then, bgguequatior 6.69 and
[6.70, the last derivative term in equation 6.60 and the dévie term in equation
[6.61 yield the same result, such @aglue to the specific form of the micro-viscous

free-energy form.

6.4.2.1 Proposed model-lll - global-based bivariate von Mies dispersion for-

mulation

The proposed model Il is formulated similar to model | byngsa single bivariate
von Mises density distributiop(r) for the sheet and fiber orientations. The only dif-
ference is that the density distributions are imposed inodalmanner rather than
embedded in the micro-viscous free energies. The fiber agek slirections formu-
lated based on separate shear modulus suph aand., ; respectively. Since there
are defined different shear moduli for the fiber and sheettines, it requires the
integral averaging over unit micro-sphere for each of theation. Then the micro-
viscous free energy functions along fiber and sheet dinestiwe defined as follows

\Ilmicv,f( v, f

k=1:p €k7€k ) == %Mv’f(gk — 5Z7f)2

(6.75)

\I]micv,s 1 2

k:p1:2p<8k7 81];78) = EMV’S(gk o 51273)

wherep is the total number of integration points over micro-sphe®ence there is
defined two separate free-energy function, it requires oaftinternal variables than

the used integration points. In the similar manner, thell@raent term«C: reads

m

: m+1 Bf’ n Y
l(:g:l:p =1- At(n—f) % M f
1) |8 m (6.76)
Kimpirop =1 - At(”;—t) % e

Then the unimodular part of the second Piola-Kirchhoffsref the viscous response

yields to continuous averaging though orientation diewias follows

"= Ap(m) VY yre@rpwy + Y Ap(r) Wy @ g, (6.77)
k=1:p k=p+1:2p
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wherep;(r) andp;(r) are the density distributions along different orthogoristct
tions. They can either be taken the same or different. Themlasly the unimodular
part of the algorithmic viscous tangent moduli can be wmitis

@glgo — Z 2,0f('r)\I/%krk®rk®rk®rkwk+ Z 2ps(r)ﬁ/§:;krk®rk®rk®rkwk

k=1:p k=p+1:2p

(6.78)

6.4.2.2 Proposed model-IV - global-based planar and bivaaite combined dis-

persion formulation

The proposed model IV is formulated in a similar manner to ehddby using an
angular-integration type anisotropic viscoelastic ciuatste model at finite strains
that uses planar and bivariate von Mises distribution flonstfor different orthogonal
directions such as fiber, sheet, and normal. In model IV, Weita quadratic free-
energy function in logarithmic space and a power-type mogak evolution equation
in each orientation direction. The general frame work isséi@e as model Il except
the definition of the density distributigi(r) acts on the micro-viscous free-energies
in globally. On the contrary to model II, in model IV since wdapt the density
distribution function in global stress and moduli expreassi it is not only satisfy the
normalization condition on linear evolution-law but alseeh the normalization for

non-linear evolution. The micro-viscous free energy fiord are defined as below

\I]micv,f (&_k’ gz,f) — lluv,f(gk o ng)Q

k=Lpys o)
U gy, (€)= 3" (e — €1°)? (6.79)
\Ilgicl‘/;; (Sk,‘y €Z7n) = %Mvvn(gk _ 62,”)2

Then, the unimodular part of the second Piola-Kirchho#ssrof the viscous response

reads to continuous averaging though orientation direstas follows

s' = Zk:l:pfs 4Pf("“)\i’3}f:4k7°k & TRWg
+ Zk:pfs-i—l:prs 4p5(r)@g:4krk & TRW (680)

+ Zk:l:pn 4/%("")‘1’2:4#% & TrW
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Then, similarly the unimodular part of the algorithmic \Wss tangent moduli can be

written as

Cyloe = Zk:1:pfs 2Pf(7°)‘Iﬂ}i/4k7°k D TE QT D TRW
+ Zk:pfs+1:2pfs 2Ps(r)‘i'§;1krk QT QT Q TEWg (6.81)

Y i, 200(P)UY @ T @ T © 7wy

6.4.2.3 Proposed model-V - global-based planar von Misessgiersion formula-

tion

Proposed model-V uses planar von Mises density distributiaction p(r) for the
sheet and fiber orientations and threat the normal diredijonsing isotropic be-
haviour through the unit-micro sphere. Additionally, aster alternative approach,
we also add dispersion in the normal direction. This formaiais similar to model |
however, it also contains the shear modulus regarding tadh@al directiory,, s in
addition to shear modulus of fiber and sheet directions sagh aandy, ; respec-
tively. Since there are defined different viscous propsie orthogonal directions
(fiber, sheet and normal), it requires the integral aveigagirer unit micro-sphere for
each of the direction. Then the micro-viscous free energgtians along orthogonal
directions are defined as follows

i (e epl) = Dt (en — 0 7)?
U o (Ers er”) = 317 (e — )2 (6.82)

\i[;ﬁnicz;:l—l:?)p(gk’ gl?n) = %MV7H<8]? o 81];7”)2

Then, the unimodular part of the second Piola-Kirchho#ssrof the viscous response

reads to continuous averaging though orientation direstas follows

s' = Zk:l:p 4pf(r)q’?:4k7°k @ TRWg
+ Zk:p-i-l:Qp 4:05(”“)@3:4#’% @ TrWk (6.83)

uy
+ D kaopr1ap A0 4k TE ® TRWE
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Then, similarly the unimodular part of the algorithmic wss tangent moduli can be

written as

Coloo — >t pr(r)ﬁ/;:;krk R TE QT Q TRWy
T Dkprizp 2p5(T) U5 uTe ® T @ T © Ty (6.84)

= o\
+ Zk:2p+1:3p 2\1117;,4ka QTE & TE & TRWk

6.4.3 Numerical sensitivity of the Al-based anisotropic dipersion

It is essential to check the numerical sensitivity of theba&lked density distribution
function p, while using different numbers of integration points on thet micro-
sphere or on the unit planar circle. The numerical integrapoints over the unit
micro-sphere varies from 42 to 600, which is also the numbesrientations for
micro-fibers. The visual representation of 42 integratiom{s over the unit micro-
sphere is given in Figufe 6,6Due to the symmetry in the sphere, in numerical ap-
plications half of the total integration points are suffidieo reflect overall behaviour.
Alastrué et al.[[156] stated that 368 directions are sufiicie catch the accurate re-
sults where the concentration paramétet 20. For the higher degree of anisotropy
there should be used much more integration points over themicro-sphere. The
resultant density functions, calculated for planar vonédiand bivariate von Mises
distributions, are given in Figufe 6.7 by the numerical gmétion over micro-sphere.
Figure[6.F represents the planar von Mises density distribution tedyl changing
the concentration parameter 21, 39 and 55 are the numerical integration results
of density functions those are calculated by 21, 39 and S&gration points over
the unit micro-sphere. Thejtiad" is the result of quadrature integral calculated on
Python that provides very close result to exact one. Theapldansity distribution
in satisfies the normalization naturally due to the forimthe density function.
Therefore the quadrature gives the exact results of 1 ex@nygof the concentration
factorb. However, 21 point integration is highly accurate uphtec 2.1, 39 point
integration is highly accurate up o< 4.3 and 55 point integration is highly accurate
up tob < 6.4. These limits are considered of the error is less than %1s diso

shown that by increasing the concentration parantetehile 21 and 39 points of nu-

148



4r 2.0t
1.8
al 8
1.6¢
QU QU
2 1.4t
1’ 12’ /
0 5) 10 15 20 0 ) 10 15 20
(a) Concentration parameter (b))  (0)  Concentration parameter (a, b)

Figure 6.7: (a) Graphical representation of the relatignbletween the normalized
planar density distributiop and the concentration paramebdyy numerical integra-
tion over micro-sphere for different number of integratmoints, (b) Graphical rep-
resentation of the relationship between the normalizedriaite density distribution
p'? and p°? and the concentration parameterandb respectively by the numerical

integration over micro-sphere for different number of gregion points

merical integrals over unit sphere overestimates the tedsstributionp, 55 points
of integration underestimates. It is also concluded thmre should be used much
higher integration points over the unit micro-sphere fghty anisotropic dispersion

histology.

Figure 6.F% represents the numerical results of bivariate von Misesitiedistribution
over the unit micro-sphere by changing the concentratioampatera andb for in-
plane and out-of-plane distributions, respectively. &nty, 21, 39 and55 are the
numerical integration results of density functions thoseaalculated by 21, 39 and
55 integration points over the unit micro-sphere aiyd ‘and "op" denotes the in-
plane and out-of-plane distributions separately. Thelam@ numerical results for
21, 39 and 55 integration points are in divergence trend frleenbeginning. The
out-of-plane integral results does not suffers from theieaxy in the lower values of
concentration factors Since the overall density is multiplicatively decompoged
in-plane and out-of-plane components, their multipli@aproduct is the determinant
of the overall behaviour and it is identical to the numeringdgration results of planar

density distribution which is given in Figure 6.7The out-of-plane accuracy can be
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maintained fo < 4.0 with %1 error. The deviation trend of the out-of-plane résul
are in nonlinear behaviour and gives more accurate resuiSdntegration points
over the unit micro-sphere. To reflect the more accuratdtsefr high anisotropy
for bivariate von Mises density distribution, there shob&lused more integration

points.

Due to the three-dimensional orientation sets of the uniroasphere, integration
points should be spread around the spherical surface in Bades Therefore, it
is necessary to use high number of integration points to ggeraccurate results
for highly anisotropic dispersion histology; otherwisewl numbers of integration
points cause erroneous numerical integration for highisaropic fiber distributions,
which is determined by the concentration parametdherefore, we proposed to use
the unit planar circle integration for planar type of dispen characteristics. Since
planar circle integration reduces the working space frobnt8-2-D, it is possible to
get higher accuracy with small number of integration potaspared to unit micro-
sphere. The visual representation of 60 integration powes the unit planar circle is
given in Figurd_6.6. The numerical sensitivity of the unit planar circular uptation

approach is shown in Figure 6.8 against concentration fécto

2.0
1.57 —_— 3 =— 5:9 =—— f:30
s:3 f:15 s:30
2 1.0 f:6 5:15 =—— [:60
s:6 f:20 =—— 5:60
0.5¢ —_— f:9 5:20
0

0 20 40 60 80 100
Concentration parameter (b)

Figure 6.8: The relationship between the normalized pldeasity distributiorn and
the concentration parameteby numerical integration over the unit planar circle for

different number of integration points.

In the Figure_ 6.8,/ ands refer for the direction vectors for fiber and sheet, respec-

150



tively. Numbers in the legend, represent the half of thegragon points over the
planar circle, such a3, 6, 9, 15, 20, 30, 60 In the sensitivity analysis, the fiber and
sheet is examined in a single numerical integration calimravhich takes the or-
thogonality of fiber and sheet into the account. Therefoteledor the even numbers
of half integration points result with the overlap of fibedasheet density distribution,
the odd numbers of half integration points results with sagi@n of density distribu-
tions for fiber and sheet directions by overestimating ardeuestimating behaviour
in Figure[6.8. It is obvious that even for a low number of im&g@n points over
the unit planar circle (i.e. 9) it is sufficient to the get a@te results up té < 10.
By increasing the integration points up to 30, it provideficient accuracy even for
b = 100 which is nearly distinct anisotropic case. It should be datet for the or-
thogonal fiber families, it is important to use an even nundfe@ntegration points to

keep the symmetry of fiber directions.

6.5 Representative Numerical Examples

In this section, mechanical parameters of the proposed imade fitted numerically
for cyclic triaxial shear and shear relaxation tests pentmt by [11] for human my-
ocardium tissues. The agreement between the numericagisasnbhsed on proposed
models and the experiment has been examined for differear shodes. In order to
validate the proposed models, FEAP was used as a finite eleanalysis program
[178]. It was revealed from the experimerits [101] that, hariedt LV myocardium
presents a highly nonlinear, anisotropic, and viscoelasgponse under large defor-
mations. Biaxial test is not sufficient alone to fit a consieimodel parameters that
may subject to different type of loadings. Therefore, itgsential to develop a con-
stitutive model that also reflects the direction dependeatenal response to shear
loadings. Accordingly, Sommer et dl. [11] performed piairgg experiments to ex-
amine the shear mechanical properties of human myocardssoetby slicing small
cubic specimens from the middle wall of the left ventriclden, they identified the
fiber, sheet, and normal directions of samples to be testetti&xial simple tests
and shear relaxations, as shown schematically in Figuie Bifxial shear loading

scenario represents the six modes of simple shear loadimgtfigonal shear planes
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Figure 6.9: Schmetic demonstration of the experimentalssperformed by Sommer
et al. [11].(The sliced heart Figure was partly generatedguServier Medical Art,

provided by Servier, licensed under a Creative CommonsbAtion 3.0 unported
license)

(fs) mode (sf) mode (nf) mode

(sn) mode (ns) mode

Tno

Figure 6.10: Schematic representation of six triaxial simades namely (fs), (sf),
(nf), (fn), (sn), (ns), reproduced fromi[1]

those are fs), (fn), (sf), (sn), (nf) and (@s). In the notation of shear modes, the
first letter refers for the normal direction of the plane amel$econd letter represents
the loading direction, see Figure 6.10. The correspondéigrchation gradienF”
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for the shear modesgs(«, 5 = f, s,n) is defined as below
F% =1+ ves ® eq (6.85)

wherea # (5. Based on the period defined for the cyclic triaxial shearerpent
in [1], a sinusoidal displacement have been defined in theenigal analysis in the

following form
Y(t) = Ymaxsin(27t / 7), where .. =05 and 7=474s (6.86)

Since elastic mechanical properties of the human myocardissue that is corre-
sponding to quasi-static triaxial shear tests have alréady obtained by [1] based
on the baseline hyperelastic incompressible constitutigeel, here we re-produce
the elastic triaxial shear fits in the same manner and shoWwigurel6.11. The elastic

4

Experimental data (fs)
Experimental data (fn)

Experimental data (sn)
Experimental data (nf)
Experimental data (ns)
Experimental data (ns)

Model fits

O MK X+

Stressy [kPa]

Amount of sheaty [-]

Figure 6.11: Elastic triaxial shear test and numerical tgfs), (sf), (nf), (fn), (sn),
(ns).

parameters are given in Taljle J6.1 . Dispersion parameteithédfiber and for the
sheet have also been identified experimentally by Sommdr gl asx; = 0.08
andr,; = 0.09. These parameters are corresponds fothe- 3.48 anda; = 3.15
as a concentration parameters for the two orthogonal direcstated in the equation
B.11. The polar plot of the density distribution (DD) f¢rand s directions for the
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Figure 6.12: The polar plot of the two families of fibers (f as)ddistribution based

on density distribution (DD) for the myocardium tissue.

Table 6.1: Elastic material parameters for the baselinetglastic constitutive model

[1] wherea, at, ag, ag are in [KPa], and, b;, bs, b are dimensionless.

a b af bf Qs bs Qfs bfs

04 655 3.0 2905 125 36.65 0.15 6.28

human myocardium is given by Figure 6.12. Once completiaryolfic triaxial shear
experiments, relaxation triaxial shear tests have beenpdgormed by Sommer et
al. [11]. They performed shear relaxation tests at 0.5 amolshear for six shear
modes in order to tract the direction dependent viscoelastaxation response of
the tissue. Therefore an instant shear step applied to Qobitnof shear and it was
maintained for 300 seconds. While fitting the viscous matenechanical properties,
Latin Hypercube Sampling Design has been used as a desigp&fiment method.
Randomly, 1000 design points were generated in a paranatgey and optimum
data sets have been obtained. The viscoelastic materaingsers are obtained by
considering both triaxial cyclic and relaxation shear iogd. In the following part,
the fitting performance of the proposed models in sub-seid will be presented

one by one.
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6.5.1 Numerical results of model-I

In this sub-section, triaxial cyclic shear and relaxatibea results of Model-1, which
is introduced in sub-section 6.4.11.1, will be presentece parameter set which pro-
vide the best fit for the both cyclic and relaxation shearstast given in Table 6.2.

Table 6.2: Viscous material parameters for the Model-I whgt, 1., are directional
shear moduli in [kPa], angl;, n, are directional viscosities in [kPa s],is the activa-

tion parameteny s, m, a andb are dimensionless.

py o fs Ny Ns g my mg a b
100 90 400000 300000 1.0 2.0 2.0 50 5.0

Then, corresponding polar plots of the density distribufienctions for the viscous
response of sheetand the fiberf directions at in-plane and for the normadiirection
at out-of-plane are given in Figure 6113.

90° 90°

120° 60°

150° 30° 150°

180° 0° 180°

210° 330° 210°

240° 300°
270° 270°

Figure 6.13: Model I - The polar plots of the two families ofdit(f) and sheet(s)
directions along in-plane distribution and out-of-planstribution through normal

direction (n) for the viscous response of the myocardium.

Figure[6.14 presents the numerical results of Cauchy stessis the cyclic amount
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Figure 6.14: Cauchy stressvs amount of sheay of Model-1 response with respect
to the cyclic triaxial shear test data for six of the shear esadamely (fs), (fn), (sf),
(sn), (nf) and (ns).

of shear under triaxial cyclic shear loading. It is seen,taldhough none of the tri-
axial cyclic shear responses are able to catch the peakrepiedel-I averagely

captures the low-level strain responses. There are dengtor all of the shear direc-
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tions. Due to the decreasing effect of the local-based tedisitribution on nonlinear
evolution law, the continiuous integral averaging canmis$y the normalization of

the numerical integral over the micro-sphere.

16 + + Experimental data (fs) -
14t x x Experimental data (fn)
I % x Experimental data (sf)
12 Experimental data (sn)
E 10§ = = Experimental data (nf)
X
‘g‘ Bi e e Experimental data (ns)
8 F == FEM simulation
A T
ZL\"ﬁ_:—:k :
0 L

0 50 100 150 200 250 300
Time [s]

Figure 6.15: Cauchy stressvs relaxation time of Model-I response with respect to
the triaxial relaxation shear test data for six of the shead@s namely (fs), (fn), (sf),
(sn), (nf) and (ns).

Figure[6.1b presents the relaxation response of Model-euad00-second relax-
ation condition. In the experimental data, it is seen thtgrahe instant loading of

the tissue, there is a rapid decrease around the initial mtam®-5 seconds for all

the shear modes. Then, continuation of the relaxation leadteady-state values of
stress. In the numerical Model-I, the instant decreaseeatnitial moments is ob-

tained for all of the shear modes. All of the responses hadyneanverged to the

experimental values at the end of the test duration and vienet&o reach the steady-
state response. Due to the local-based density distribater the corresponding
shear moduli in each direction, it causes underestimanom@an-accurate observa-
tions.

The main problem in Model-I confronts itself in the integaakraging stage through
stress and moduli calculations. Since, we use local-basedNses dispersion in the
formulation, density distributiop(r) reveals in free-energy definition, see equation
[6.62. Therefore, it has to be part of the stress and ovesstedmitions. Then, it enters

the non-linear evolution equation and is used as a multiplithe local tangent term

157



as defined in equatidn 663. In the local tangent term, thsityedistribution is not
only used as a multiplier of shear modulbut it also ingredient of the overstress. Due
to the nonlinear exponent, the density distribution directly decrease the activatio
of the stress and affects the result of the evolution eqoatiocauses a violation of
the numerical integral averaging during the stress and imncalgulations. Therefore,

it is concluded that the nonlinear evolution equation is sugtable for local-based

formulations.

6.5.2 Numerical results of model-Il

In order to decouple the dispersion characteristics of trenal direction and fiber-
sheet plane, we used a novel planar dispersion integratiotné fiber-sheet plane
and isotropic contribution of normal direction get invaiM@irough integral averaging
over the unit-micro sphere. Since we have reported the noloff Model-I as a nu-
merical issue that cause violation of the normalizatiorhefdensity distributiop(r)

in non-linear evolution equations, in Model-1l we prefaerr® use linear-evolution
law. The best fit parameter sets for both the cyclic and rélaxahear tests are given
in Table[6.8.

Table 6.3: Viscous material parameters for the Model-l rehey, 1 and ., are
directional shear moduli in [kPa], ang, n, andn,, are directional viscosities in [kPa

s], b is the dimensionless concentration parameter.

i Hs s uli Ns M b
90 50 40 100000 50000 3500  20.0

Accordingly, the polar plot of the density distribution (PBunction for f and s
directions in human myocardium is given in Figlire 6.16 fag thiscous response.
For the non-equilibrium response, it is shown that the filvel sheet responses are
more anisotropic. The corresponding concentration paemfier the fiber and the
sheet ish = 20. Figure[6.1V presents the numerical results of Cauchysst&sus
the cyclic amount of shear under triaxial cyclic shear laogdi As revealed by the

experimental studies, hysteresis increaseg as s > n. For (fs) and (fn), it is
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Figure 6.16: The polar plot of the two families of fibers (f asidased on density

distributions (DD) for the viscous response of Model 1.

possible to catch the upper and lower peak values by incrgake fiber and sheet
shear modulusi{) however there is a trade-off between the response of theetis
between cyclic shear and shear relaxation. Thereforeg fpe@mmeters are kept as an
optimum parameter set. Both (sf) and (sn) are very closehetalentical with the
experimental results and reflect an accurate responsan@{ns) capture the average
response of the tissue except for the nonlinear behaviadteatorner peaks. Due to
use of a relatively small shear modulys,) in the normal direction and low viscosity
in the normal directionf,), corner peaks could not captured totally. Additionally,
if relatively higher dispersion had been used for the viscasponse of the model
such ag < 10, then (fs) and (sf) coupling effects increases which caust@sion of
the curves of coupling modes with respect to the origin asdltef a larger slope of

response and deviates from the experimental results.

Figure 6.18 presents the relaxation response of the prdposdel under 300 seconds
relaxation condition. In the Model-I1, the instant decre@scaptured in average man-
ner. All of the responses nearly converges to the experahealues at the end of the
test duration and about to reach the steady-state resgbissgossible to obtain more

consistent relaxation response by decreasing the vigaafsibe isotropic behaviour

based om direction (;,,), however it will cause the decrease of peak responses of the

cyclic triaxial results.
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Figure 6.17: Cauchy stressvs amount of sheay of Model-1l response with respect
to the cyclic triaxial shear test data for six of the shear esogamely (fs), (fn), (sf),
(sn), (nf) and (ns).

Model Il exhibit good agreement with anisotropic natureraf myocardium tissue in
all shear directions. Itis not only take into the accountligpersion characteristics of

viscoelasticity but also it presents an accurate numentadration over unit circle.
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Figure 6.18: Cauchy stressvs relaxation time of Model-1l response with respect to
the triaxial relaxation shear test data for six of the shead@s namely (fs), (fn), (sf),
(sn), (nf) and (ns).

6.5.3 Numerical results of model-IlI

The Model-1ll is formulated based on a global-based bitanan Mises distribution
and is presented in sub-section 6.4.2.1. The model refleethtee-dimensional dis-
persion characteristics through multiplication of two oapled density distributions
namely in-planep;, and out-of-plane,,. Therefore, there are not any mechanical
viscous properties defined for the normal direction becduisealready taken into
account by the bivariate formulation automatically. Themdifference of Model-

[ll from Model-I is comes up with the constitutive modellimgproach through the
density distribution. Model-Ill uses global-based appioand use density distribu-
tion during the integral averaging of stress and modulidatoons which satisfy the
normality of the numerical integral. The parameter set Wigiwes the best fit for the

both cyclic and relaxation shear tests at the same time ae@ gi Tabld 6.4.

Then, corresponding polar plots of the density distribufienctions for the viscous
response of sheetand fiberf directions at in-plane and for the normatlirection at

out-of-plane are given in Figufe 6]19. Figlre 6.20 prestr@sumerical results of
Cauchy stress versus the cyclic amount of shear underdtiexclic shear loading.

(fs), (fn), (sf) and (sn) shear modes exhibit good agreenvéhtexperimental results.
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Table 6.4: Viscous material parameters for the Model-Ileveh. , 1., are directional
shear moduli in [kPa], angl;, n, are directional viscosities in [kPa s],is the activa-

tion parameteny s, m,, a andb are dimensionless.

My fhs Ul Ms B my mg a b
90 80 400000 300000 1.0 2.0 2.0 5 35
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150° 150°

0°  180°

180°
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Figure 6.19: Model Il - The polar plots of the two families fitber (f) and sheet(s)
directions along in-plane distribution and out-of-planstribution through normal

direction (n) for the viscous response of the myocardium.

The curved-shape behaviour can be avoided by decreasiagrabeuli along orthog-
onal directions, but it also causes a decrease in peakestrassorner edges. Another
parameter is viscosity that has major effect on overstress peak results. On the othe
hand, it causes a delay in the relaxation test, which is atodfdfor the choice of
the best parameter set. (nf) and (ns) are not able to catéhrpsponses, but they
exhibit average manner behaviour. In bivariate formutgtibe viscous response of
the normal direction has been imposed by the contributiditbef and sheet direction
through density distribution functiop. In order to narrow the hysteresis regarding
to the normal related shear modes, the out-of-plane coratent parametes should

be increased. However, there is a coupling effect due to gpedsion formulation,
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Figure 6.20: Cauchy stressvs amount of sheay of Model-Ill response with respect
to the cyclic triaxial shear test data for six of the shear esodamely (fs), (fn), (sf),

(sn), (nf) and (ns).

and the decreasing contribution of the normal direction alrrows the hysteresis of
the fiber and sheet directions. Therefore, the parametes selected to represent the

optimal manner for each response.
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Figure[6.21 presents the relaxation response of the Madehdler a 300-second re-
laxation state. The rapid decrease in Model-Ill much smeothan Model-I and II

and more closely to experimental result. It is mostly relatgth the shear modu-
lus of the fiber and sheet directions. All of the responsesresily converged to
the experimental values at the end of the test duration amd aleout to reach the

steady-state response. The global-based bivariate mamlynexhibits anisotropy

16 + + Experimental data (fs)
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I % x Experimental data (sf)
12 Experimental data (sn)
E 105 = = Experimental data (nf)
X
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Figure 6.21: Cauchy stressvs relaxation time of Model-11l response with respect to
the triaxial relaxation shear test data for six of the sheagl@s namely (fs), (fn), (sf),
(sn), (nf) and (ns).

in the preferred fiber and sheet directions and a minor efiecotropic contribu-
tion of the normal direction. The model is close to the tramsgly isotropic nature
of a tissue. Therefore, the trixial cyclic shear responsg ithrelated to the normal

direction covers the experiment in an average sense.

6.5.4 Numerical results of model-1VV

Due to the normalization restrictions of global-based niedering the continuous

integral averaging of stress and moduli, in Model-Il, thieas been used linear evo-
lution law. Since, the global-based formulations direatiget the normalization con-
dition of the numerical integral, we use a nonlinear evolutaw in Model-IV. It has

the same constitutive relations as the Model-1l and the ohBnge is the nonlinear-
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ity of the evolution. In a similar manner, we use circulaegal for the dispersion

characteristics of fiber and sheet directions, and thedpaticontribution of the nor-

mal direction is maintained by using numerical integralra¥® unit micro-sphere.

Accordingly, the optimum parameter set for the both cyahid eelaxation shear tests
are given in Tablé_6]5. Accordingly, the polar plot of the signdistribution (DD)

Table 6.5: Viscous material parameters for the Model-IV wehe;, 1 and ., are
directional shear moduli in [kPa}y, n, andn, are directional viscosities in [kPa s],

B is the activation parameter, , m,, m,, are exponents anis the dimensionless

concentration parameter.

~

Hp o fs fn ur ns M g my ms m, b
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Figure 6.22: The polar plot of the two families of fibers (f asidased on density

distributions (DD) for the viscous response of Model IV.

function for f ands directions in human myocardium is given in Figlre 6.22 fa th
viscous response. For the non-equilibrium response, bggadvantage of the nu-
merical accuracy advantage of the circular integratiors, ffossible to use a higher
value of the concentration factor, which also makes theildigion more anisotropic

in the fiber and sheet directions. The corresponding coretgm parameter for the
fiber and the sheet Is = 20. Figure[6.2B presents the numerical results of Cauchy

stress versus the cyclic amount of shear under triaxiaicgtiear loading. Cyclic
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Figure 6.23: Cauchy stressys amount of sheay of Model-1V response with respect
to the cyclic triaxial shear test data for six of the shear esadamely (fs), (fn), (sf),

(sn), (nf) and (ns).

responses of shear modes (fs), (fn), (sf) and (sn) exhibiepeagreement with the
experimental data. (nf) and (ns) capture the average respafrthe tissue except for

the nonlinear behaviour at the corner peaks. It is mainhabse of the isotropic type
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of contribution in the normal direction.

Figure[6.24 presents the relaxation response of the prdposdel under 300 seconds
relaxation condition. There is an offset between the expental data and the finite
element analysis results, especially for (fs) and (fn) dutaé high shear moduli and
viscosity along the fiber direction. (nf) and (ns) resuleck the experimental data,
and they converge to a steady-state response at the endaofdlysis. The rest of the
shear modes are still in a decreasing trend, and they ard tbhoeach steady-state

response as well.
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Figure 6.24: Cauchy stressvs relaxation time of Model-IV response with respect to
the triaxial relaxation shear test data for six of the sheagl@s namely (fs), (fn), (sf),
(sn), (nf) and (ns).

Model 1V exhibits good agreement with the anisotropic nataf the myocardium
tissue in all shear directions for the cyclic triaxial shéssts. The planar circular
integration allows us to define highly anisotropic dispemsinodeling due to its high

accuracy, and it provides flexibility for fitting the numeaieanodel.

6.5.5 Numerical results of model-V

The Model-V is formulated based onperiodic rotationally symmetric planar von

Mises distribution in fiber and sheet directions. In the firstnerical solution, the
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viscous response in the normal direction is assumed to b&eddoy the isotropic
surrounding tissue and enters the formulation by integrataging over unit micro-
sphere with a concentration factor= 0. At the second numerical solution, there
is assumed to be an additional dispersion along the normadtéhn, and a planar
von Mises distribution is also defined through the normamtation. Although these
formulations are decoupled to each other, there are alsorroamtribution of planar
distribution over distinct orthogonal directigf) s andn. The optimum viscous pa-

rameter set for both the cyclic and relaxation shear testgiaen in Tabl¢ 6)6. The

Table 6.6: Viscous material parameters for the ModelaWerey, 1, w1, are direc-
tional shear moduli in [kPa], ang, 7, 7, are directional viscosities in [kPa d,is

the activation parameter, s, m, a andb are dimensionless.

T TP Ny 7s M, B my ms m, by
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Figure 6.25: Model Y - The polar plot of the two families of fiber (f) and sheet(s)

directions for a planar density distribution

polar plot that reflects the density distribution charastes along fiberf and sheet
s directions are given in Figuie 6]25. Since the viscous biebavs assumed to be
isotropic with a zero concentration parameter, its polat plould be an exact circle
in the polar plot. The numerical results of Cauchy stressugthe cyclic amount

of shear under triaxial cyclic shear loading are shown irufég6.26. The model
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Figure 6.26: Cauchy stressys amount of sheay of Model-V; response with respect
to the cyclic triaxial shear test data for six of the shear esodamely (fs), (fn), (sf),
(sn), (nf) and (ns).

presents good agreement with the experimental test dgiaciedly for (fs), (fn), (sf)
and (sn) and it is even able to catch the highly nonlineariehaat peak corners.

By definition of the planar von Mises distribution, disperseffects for all orthogo-
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nal directions have a minor effect to each other. Therefoyezhanging one of the
parameters in the viscous parameter set, directly chahgé the graphs shown in
Figure[6.26. (ns) and (nf) exhibit average manner agreemightthe experimental
data at mid-levels of shear strains. Peak responses areetleteflected due to the

isotropic formulation of normal orientation.

Figurd 6.27 presents the relaxation response of Modelfder 300 seconds for six of
the shear modes. Shear relaxations exhibit a perfect dsegesiope with an offset.
After the instant loading, the rapid relaxation drop is lgms what is expected from
the experimental data. All of the numerical curves are stilh decreasing trend

toward a steady-state amount of stress.
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Figure 6.27: Cauchy stressvs relaxation time of Model-Yresponse with respect
to the triaxial relaxation shear test data for six of the simeades namely (fs), (fn),
(sf), (sn), (nf) and (ns).

In the previous numerical results for the different forntigas, there is provided a
good agreement with cyclic triaxial experiments, espécfat (fs), (fn), (sf) and (sn)
and average agreement with (ns) and (nf) in the mid-rangenstr It is observed
that a purely isotropic formulatiord < 0) though the normal direction is not able to
reflect the nonlinear behaviour in the cyclic triaxial tedts order to handle this is-
sue, we change the isotropic contribution of the normalctiime to planar von Mises
distribution which will exhibit the orthotropic behavioaf the myocardium. The op-

timum viscous parameter set for the both cyclic and relakaghear tests are given
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in Table[6.7. The corresponding polar plots of the dens#yritiution functions for

Table 6.7: Viscous material parameters for the ModglaWerey, ps, ., are direc-
tional shear moduli in [kPa], ang}, 7, 7, are directional viscosities in [kPa gl,is

the activation parametet s, m,, a andb are dimensionless.

[f s fn ng Ms M B my mg my bpsn
100 60 30 400000 300000 100000 10 20 20 20 50

the viscous response of sheetnd fiberf directions at in-plane and for the normal
direction at out-of-plane are given in Figlre 8.28. FiguZdfresents the numerical
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Figure 6.28: Model VY - The polar plots of the two families of fiber (f) and sheet(s)
directions along in-plane distribution and out-of-planstribution through normal

direction (n) for the viscous response of the myocardium.

results of Cauchy stress versus the cyclic amount of shefarunaxial cyclic shear
loading. By adding the anisotropic dispersion through thenal direction, the fully
orthotropic viscous response is maintained. All of the simeades exhibits perfect
agreement with the experimental data. Figurel6.30 prefiemtelaxation response of
the Model-\4. There is still appears a little offset through upward diethowever

the relaxation slopes of the numerical results are welttoag. All of the stresses are
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Figure 6.29: Cauchy stressvs amount of sheay of Model-V; response with respect
to the cyclic triaxial shear test data for six of the shear esadamely (fs), (fn), (sf),

(sn), (nf) and (ns).

about to converge to the steady-state state and the modefrpea good agreement

also under the relaxation response.
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Figure 6.30: Cauchy stressvs relaxation time of Model-Yresponse with respect

to the triaxial relaxation shear test data for six of the simades namely (fs), (fn),

(sf), (sn), (nf) and (ns).
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CHAPTER 7

CONCLUSIONS

This thesis covers two main parts under biomechanics, namedwth-induced in-
stabilities for soft biological tissue and dispersiongygnisotropic viscoelasticity for
the human myocardium. To begin, we formulated a five-fieldWhashizu type mixed
variational formulation in FEnICS via th€2P0F0 element to investigate primary
and secondary instabilities on bilayer-typed three-disimmal confined tissue. To
the best of our knowledge, this is the first observation cdekdimensional space in
the literature. Since the instability patterns lead toetéht wavelengths based on the
fiber stiffness, we suggested using two-dimensional maetetermine the exact
wavelengths in three-dimensional analysis. We showedtheglength decreases by
increasing the fiber stiffness. While higher fiber stiffnessthe film layer causes
the first instability in the direction of fibers with a loweragvth parameter, g, the
effect of fiber stiffness on the secondary buckling mode & @tinor level, where it
is observed perpendicular to the fiber direction. Anothécame is that the energy
release mechanism at the initiation of buckling is mainlygnposed of isotropic and
anisotropic contributions from the stiff film layer. For agher fiber stiffness, the ef-
fect of the anisotropic energy on the first buckling becomesedominant than other
types of energy components. However, in the secondaryaiisgaisotropic energy
of the film layer plays a key role for the energy release meshanT his study will aid
in understanding the role of fiber stiffness in the buckling post-buckling behavior

of anisotropic multi-layer tissues in incompressibilitydainextensibility limits.

In the second part of the study in this thesis, we have prapfdgenovel global-based
and local-based von Mises dispersion based angular-attegrtype anisotropic vis-

coelasticity formulations that are able to reflect the didtviscous response of the
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tissue based on its fiber distribution architecture. Wet st@&h the decomposition
of the free-energy function into equilibrium and non-edpuiilbm contributions. The
baseline hyperelasticity is defined by the generalizedcaira tensor model. The
non-equilibrium response is described by the rheologicakwell branch with an
integrated elastic spring element. It utilizes a quadragie-energy function in loga-
rithmic space and a power-type evolution equation in eaEntation direction. The
overstress response is obtained through distinct orientdirections by numerical
evaluation of averaging integrals over either the unit oygphere or the unit planar
circle. The validation of proposed constitutive modelsisn carried out for the hu-
man myocardium tissue, which is inhomogeneous, incomilessnisotropic, and
viscoelastic. The parameters of the proposed models weagnel from cyclic tri-
axial shear and triaxial shear relaxation experiments afdmpassive myocardium
conducted by Sommer et &l. [101]. Then, we demonstrate tivgyfitapability of the
proposed dispersion-type anisotropic viscoelasticitynidations on triaxial cyclic
shear and shear relaxation response of the human heartfbyrperg numerical sim-

ulations in the finite element analysis program FEAP.

For the five proposed models, we have used different typesmdity distributions
and integration schemes. For anisotropic dispersion tlessie used bivariate von
Mises and planar von Mises density distributions with aumbius average integrals
over the unit-sphere and unit planar circle for differem¢gration schemes. Since all
of the proposed formulations are based on the angular atiegrmethod, the sen-
sitivity of the numerical integration becomes paramounte Bnalytical integral of
the density distributions is generally formalized to maintthe normalization con-
dition. When the concentration parameteor b is increased, the anisotropy of the
distribution increases as well, and numerical integrafiozduces a deviation based
on the number of integration points used. Therefore, foraranisotropic disper-
sion characteristics, the integral averaging over the migto-sphere will require a
high number of integration points, which is not feasibleamts of the computational
time of the analysis. Numerical integration of the bivaiabn Mises and planar von
Mises density distributions is presented with differentioers of integration points,
which guide the proper selection of total integration pgirih order to overcome the

erroneous numerical integration at high concentratioampaters in planar dispersion
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models, we proposed a planar circular integration scheatgtbvides high accuracy

even forb = 100 where the dispersion is very close to the perfectly anipatrocase.

The fitting performance of the proposed models has beendtestéhe constitutive
level using numerical examples for the cyclic triaxial shest and the triaxial re-
laxation test from the literature. The normalization of themerical integration is
violated in the local-based dispersion models by the nealirevolution rule. This
problem is mainly integrated by the density distributiomdtion directly into the
micro-viscous free energies. Due to the nonlinear expoimetite evolution equa-
tion, the density distribution is exposed to a decreasiagdy and activation stress
cannot be reached. In order to overcome the violation of trenalization state,
we suggest using a linear evolution law that results in ani@ip defined update
regime. Therefore, the density distribution can be pladesttdy as a multiplier of
the free-energy function. Although the local-based fomtiohs provide flexibility
to get into the constitutive level equations and make it pds$o describe different
density distributions for separate mechanical propedi¢ike tissue, in order to keep
the accuracy of the numerical integral averaging, they shanly be used with linear
evolution equations. To avoid violating the normalizatemmdition, we used global-
based formulations at Models I, 1V, and V, where the dgndistribution function
does not enter the micro-viscous free-energy but revesat it the continuous aver-
age integral over the unit-sphere or planar circle durimgstiness and tangent moduli
calculations. This method accurately solves both linedmamlinear evolution equa-

tions using the dispersion-type angular integration seéhem

We have formulated both bivariate von Mises and planar voselldistributions for
fiber and sheet directions. The bivariate von Mises densglyildution contributes
not only to in-plane dispersion but also to out-of-planediions through the normal
direction in the myocardium. Planar von Mises density distion provides rotation-
ally symmetric behaviour in three-dimensional space, Wigsults in a minor effect
on the out-of-plane direction. Both models work well andtoap the experimental
data with a good agreement, especially for cyclic triaxisar tests. However, due
to the isotropic definition in the normal direction in the fifsur models, the nor-
mal direction-related shear modes exhibited an averageesg#iragreement with the

experiments. In order to reflect the true behaviour of thaatropic nature of the
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myocardium tissue, we add dispersion characteristicsetatinmal orientation in ad-
dition to the dispersion formulation of fiber and sheet. Tihatulation well-agreed
with the cyclic triaxial experiment data of the human myaltam. In the trixaial re-
laxation numerical fittings, the same data set that is obthfrom the cyclic triaxial
tests are used. The relaxation slope has been well captutiedome upward off-
set. There is a trade-off between the optimum fitting paramseif the triaxial cyclic
shear and triaxial shear relaxation tests. Therefore, wetke optimum parameter

sets, which are suitable for both tests.

Dispersion-type anisotropic viscoelasticity is promgsframework for the model-
ing of rate-dependent response of soft biological tissudsese constitutive mod-
els provide histological-based modeling which is flexilbeébe used for any type of
anisotropic tissue. Angular integration-based dispersype anisotropic viscoelas-
ticity is able to use any type of distribution function i.@vdriate or planar von Mises
distributions based on different type of numerical intégngeraging schemes such
as over the unit micro-sphere and unit planar circle. Thesg@rframework has
the capability to be used for not only highly dispersed behag but also highly
anisotropic dispersion characteristics by choosing tloggr number of integration

points and integration scheme.

Although, we have tested the proposed models in the unigperiements provided
in the literature for the human myocardium, as a future wharkher numerical tests
can be performed for any other type of soft anisotropic \esastic tissue. More ex-
perimental work is need for the understanding of the rootgisfoelastic response
and its relations to tissue histology. It is also requiredi¢oelop more efficient in-
tegration scheme by providing bias of integration pointgtmlocalized region of
the density distribution function to increase the compatetl efficiency and accu-
racy. Additionally, in order to get a more flexible model imntes of fitting purposes,
the concentration factors in the orthogonal directions lvamefined independently
within an optimization algorithm, which will increase theraputational time and to-
tal number of independent parameters in the analysis bull previde a larger space
of parameter sets. Then, the passive mechanical resporitise eftire heart model
can be constructed and examined numerically under presmds during the cardiac

cycle.
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