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ABSTRACT

PSEUDO-RANDOM QUANTIZATION BASED DETECTION IN ONE-BIT
MASSIVE MIMO SYSTEMS

Yılmaz, Gökhan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ali Özgür Yılmaz

January 2023, 110 pages

Analog-to-digital converter (ADC) units are one of the most power-hungry devices in

the radio-frequency (RF) chains of massive multiple-input multiple-output (MIMO)

systems. Therefore, utilizing low-resolution ADCs in uplink massive MIMO systems

is a practical solution to decrease power consumption. However, when high modulation

orders are employed for high-rate communication, the achievable rate saturates after

a finite SNR value due to the stochastic resonance (SR) phenomenon. This thesis

proposes a novel pseudo-random quantization (PRQ) scheme that can help compensate

for the effects of SR and makes communication with high-order modulation schemes

with one-bit quantization possible. The ADC thresholds at the receiver side of uplink

one-bit massive MIMO systems are changed to work with the PRQ scheme. We

modify linear detectors for one-bit non-zero threshold quantization and propose new

detection methods for the frequency-flat and frequency-selective fading scenarios. For

flat fading, we offer a two-stage detector that works with PRQ. The first stage is an

iterative method called Boxed Newton Detector (BND) that utilizes Newton’s method

to maximize the log-likelihood. The second stage, Nearest Codeword Detector (NCD),

exploits the first stage to create a small set of most likely candidates based on sign

v



constraints to increase performance. For frequency-selective fading, we design a new

frequency-domain equalization (FDE) scheme, called the projected quasi-Newton

detector (PQND), to optimize the log-likelihood using a quasi-Newton approach that

works with PRQ in both orthogonal frequency division multiplexing (OFDM) and

single carrier (SC) systems. The proposed methods outperform the existing detectors

with comparable complexity.

Keywords: massive MIMO, detection, pseudo-random quantization, one-bit quantiza-

tion, one-bit analog-to-digital converter (ADC)
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ÖZ

BİR-BİT KİTLESEL MIMO SİSTEMLERDE SÖZDE RASTGELE
NİCELEME BAZLI TESPİT

Yılmaz, Gökhan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali Özgür Yılmaz

Ocak 2023 , 110 sayfa

Analog-sayısal dönüştürücüler (ADC), kitlesel çok girdili çok çıktılı (MIMO) sis-

temlerin radyo-frekansı (RF) zincirlerinde yer alan en yüksek güç tüketimine sahip

cihazlar arasında yer alır. Dolayısıyla, çıkış-yolu kitlesel MIMO sistemlerde düşük çö-

zünürlüklü ADC kullanımı, güç tüketimini azaltmak adına pratik bir çözümdür. Buna

rağmen, yüksek veri hızlarına ulaşmak için yüksek kipleme dereceleri ile çalışılırken,

erişilebilir veri hızı belli bir işaret-gürültü oranının (SNR) üstüne çıkıldığında stokastik

rezonans (SR) olgusundan dolayı doyuma ulaşır. Bu tezde SR olgusunun olumsuz

etkilerini telafi ederek çıkış yolu bir-bit kitlesel MIMO sistemlerde yüksek kipleme

dereceleri ile çalışılabilmesine olanak sağlayacak yeni bir sözde rastgele niceleme

(PRQ) yöntemi, alıcı tarafta ADC ünitelerinin niceleme eşikleri değiştirilerek elde

edilir. Geleneksel tespit yöntemleri, sıfırdan farklı eşikli bir-bit niceleme senaryosuna

uyarlanır. Ayrıca, biri düz sönümlemeli ve diğeri frekans seçici sönümlemeli kanal-

lar için olmak üzere iki yeni tespit yöntemi sunulur. Düz sönümlemeli kanallar için

sunulan yöntem iki aşamalıdır. Kutulu Newton dedektörü (BND) adlı ilk aşamada

Newton’un yöntemi baz alınarak olabilirlik fonksiyonu iteratif olarak optimize edilir.
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En yakın kodlu-söz dedektörü (NCD) adlı ikinci aşamada ise performansı artırmak

için ilk aşamadan gelen kestirim kullanılarak işaret kısıtlamalarına göre küçük bir en

olasılıklı aday kümesi oluşturulur. Frekans seçici sönümlemeli kanallar için, olabilirlik

fonksiyonunun bir yarı-Newton yöntemle optimize edildiği projeksiyonlu yarı-Newton

dedektörü (PQND) isimli, PRQ ile hem dik-frekans-bölümlemeli çoğullama (OFDM)

hem de tek taşıyıcılı (SC) sistemlerde kullanılabilecek yeni bir frekans bölgesi eko-

layzırı tasarlanır. Önerilen yöntemler kullanılarak benzer hesaplama karmaşıklığı ile

literatürde yer alan yöntemlerden daha yüksek tespit başarımı elde edilir.

Anahtar Kelimeler: kitlesel MIMO, tespit, sözde rastgele niceleme, bir-bit niceleme,

bir-bit analog-sayısal dönüştürücü
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CHAPTER 1

INTRODUCTION

Communication is an essential part of humans as social beings. Every individual de-

sires to communicate ideas and feelings, search for help and wisdom or tell experiences.

Throughout history, there have been various communication tools such as making

signs and gestures, petroglyphs, pictograms, ideograms, all forms of art, and thousands

of languages spread across the earth and time. As societies and technology advanced,

communicating with people over long distances, in other cities, countries, and even

continents became necessary. As the inventor of complex languages, humankind’s

need to communicate ideas over long distances inspired many scientific discoveries

and inventions, such as the telegraph and the telephone, followed by the invention

of more advanced technologies, such as the radio and television [5]. Then, Shannon

revolutionized the field [6], which can be seen as the beginning of the Information Age.

Digital communication systems were studied extensively during the 1960s. Networked

communications systems were developed, starting with the first internet node in 1970.

The transmission control protocol (TCP) and internet protocol (IP) were founded in

1980. A new age started with the invention of the world wide web (WWW) in 1993.

The internet proliferated and provided connections between people, machines, devices,

and processes that led to today’s Internet of Everything (IoE).

During these developments, special attention must be given to cellular communication

systems. The first generation (1G) of cellular networks was used during the 1980s

with analog transmission using the frequency re-usage idea. Second-generation (2G)

cellular communication was used in the 1990s, where both voice and text transmissions

were applicable. It is the first standard to use digital communications, and the global

system for mobile communications (GSM) standard first appeared as part of the 2G
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standard. As the internet progressed, the general packet radio service (GPRS - 2.5G)

and the enhanced data rates for GSM evolution (EDGE - 2.75G) were established

for data communications. The third generation (3G) technology arrived with many

improvements and innovations in 2001, such as code division multiple access (CDMA)

and a significant increase in the bandwidth (from 200 kHz to 5 MHz) to support higher

data rates [7].

After a decade, the fourth generation (4G) standard arrived. The demand for larger data

rates was even higher, with 100 Mbps for high mobility and 1 Gbps for low mobility

communication. The orthogonal frequency division multiple access (OFDMA) scheme

replaced CDMA. Bandwidth usage increased up to 20 MHz. Quadrature phase shift

keying (QPSK) to 64-quadrate amplitude modulation (QAM) schemes were utilized

with turbo and low-density parity-check (LDPC) codes. The most important part of 4G

concerning this thesis is the multiple-input multiple-output (MIMO) systems, where

multiple antennas at the transmitter and the receiver units are utilized to multiply the

data rate. The long-term evolution (LTE) became the dominant standard for 4G, and

LTE Advanced Pro (4.5G) is the widely used standard today. Subsequently, the fifth

generation (5G) standard has also started operating in many parts of the world. The 5G

standard employs both sub-6 GHz and the mmWave band. It offers ultra-reliable low

latency communications (URLLC), enhanced mobile broadband (eMBB), and massive

machine-type communications (mMTC). The network is fully software-defined, and

much larger bandwidths and frequencies are used. A significant development in the

later versions of 4G and 5G is the usage of massive MIMO, where the base stations

(BS) employ large antenna arrays for higher array gains and beamforming capabilities.

1.1 Problem Definition

The number of users of cellular networks, the need for more data rate and better quality

of service (QoS) increase rapidly. Therefore, the physical layer of the communication

systems becomes a critical factor in meeting the demands. Massive MIMO is one of

the most important aspects of the physical layer design of the 5G and future cellular

communication technologies [8]. The area throughput in a cellular network depends

on the average cell density, bandwidth, and spectral efficiency. Cell density and

2



bandwidth can be limiting factors for cellular network designs. Hence, increasing

spectral efficiency is critical for increasing area throughput. Massive MIMO systems

are equipped with much larger numbers of antennas than the conventional MIMO

setting, with the number of antennas at the BS vastly exceeding the number of users

served by the BS. Therefore, massive MIMO can increase spectral efficiency by orders

of magnitude due to much larger multiplexing and diversity gains. In addition to

increased spectral efficiency, massive MIMO can provide hardware efficiency [9].

Distortion due to non-ideal transceiver hardware can be mitigated with a large number

of BS antennas. The source of the hardware impairments could be quantization noise,

sampling offsets or jitters of the analog-to-digital converters (ADCs), non-linearity of

the power amplifiers (PAs), amplitude or phase imbalance in the in-phase/quadrature

(I/Q) mixers, and phase noise in the local oscillators (LOs), among many others.

Despite many advantages, since each antenna at the BS requires separate radio-

frequency (RF) chains, the power consumption and the hardware cost can become a

burden as the number of antennas increases. ADC units are one of the main power-

consuming components in the RF chains. Many studies deal with the modeling of the

power consumption of ADCs [10, 11]. In general, the power consumption of an ADC

increases linearly with the sampling rate and exponentially with the resolution. The

resolution of an ADC is expressed in terms of bits, and the power consumption of an

ADC unit is doubled for each added bit.

Hence, by taking advantage of the hardware efficiency of massive MIMO systems,

low-resolution ADCs have become an attractive solution to deal with the power

consumption issue [12]. Especially one-bit ADCs are very popular due to their

additional benefits, such as having very simple circuitry and not needing automatic

gain control (AGC) units since they work with only a single threshold level. There

are different studies related to the channel capacity [13–16], and the achievable rate

[17–20] of uplink MIMO systems where the BS is equipped with one-bit ADCs. The

channel characteristics and whether the transmitter has access to the channel state

information (CSI) are essential factors that affect the capacity, as in the case of infinite-

resolution systems. One particular outcome for one-bit systems from these studies

is that the channel capacity is finite, and the upper bound is related to the number of

BS antennas. Also, the performance gap between the one-bit and infinite-resolution,
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i.e., unquantized, systems is small at the low signal-to-noise ratio (SNR) regime. It

gets more prominent as the SNR increases. Note that high-resolution systems can be

approximated to an infinite-resolution system when the resolution is high enough, so

the quantization distortion becomes negligible.

1.2 Related Work

An important issue related to nonlinear systems such as one-bit massive MIMO is

the stochastic resonance (SR) phenomenon [21]. Unlike linear systems where a

higher SNR leads to better performance, the nonlinear distortion induced by one-

bit quantization leads to either performance degradation or performance saturation

depending on the scenario [15]. Hence, the high-SNR performance is generally

limited by quantization distortion. One-bit MIMO measurements are generally good at

recovering the phase information compared to amplitude [22]. This limitation causes

significant disadvantages in detecting symbols from high-order QAM constellations.

Hence, previous one-bit massive MIMO literature generally focuses on modulation

schemes such as binary phase shift keying (BPSK) or QPSK [23–25]. Different works

reported performances for multi-user systems or in ISI channels for 16-QAM [2,26,27].

However, the high-SNR error floor or performance saturation was declared a significant

limiting factor in these situations.

Randomization of quantization is an effective tool to mitigate the effects of quantization

distortion [28], which is a version of dithering [29] widely used in audio and visual

systems. Pseudo-random quantization (PRQ), where the digital processor perfectly

knows the dither signal, can be even more beneficial due to additional information

regarding the dither signal [30]. The dithering strategy can be helpful also in quantized

MIMO systems. An antithetic dithering approach is used in [31], where negatively

correlated dither signals are utilized by doubling the ADCs at each branch. Using

uniformly distributed thresholds is also possible, as it is done in [32], where randomly

generated thresholds that are updated for different channel realizations were utilized

during the training of and estimation with the proposed neural network. [33] utilizes

the dithering approach in downlink channels with one-bit quantized signal transmission

at the BS, where a dither signal is added to the unquantized signal before quantization
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and precoding operations.

Regarding detection methods for one-bit uplink massive MIMO systems, the literature

is rich with works on the frequency-flat fading [2,3,23,24,27,34] and on the frequency-

selective fading [3, 4, 35–39] scenarios. Linear processing based approaches [2, 23, 35]

generally suffer from high SNR error floors. More sophisticated methods can result

in better performance but at the cost of increased computational complexity. The

techniques used for both frequency-flat and frequency-selective channels in one-bit

massive MIMO systems are generally unsuitable to support high-order modulations

such as 64-QAM, 256-QAM, or higher. In [20], it is shown that quantization results in

circularly symmetric distortion with Gaussian distribution and radial distortion due

to loss of amplitude information during detection using linear receivers in one-bit

quantized orthogonal frequency division multiplexing (OFDM) systems. [20] also

shows that frequency-selectivity of the wireless channel favors one-bit MIMO-OFDM

systems, and a large number of channel taps helps lower the amplitude distortion. [35]

focuses on linear and iterative block decision feedback equalizers for SC-frequency

domain equalization (FDE). Bayes-optimal joint channel estimation and detection

schemes are proposed for flat-fading systems in [26], and frequency-selective systems

with OFDM in [36]. A reinforcement learning approach is proposed to compensate

for the mismatch due to channel estimation errors while utilizing likelihood-based

detection in [40]. [23] utilizes an ADMM-based algorithm for detection. A message-

passing algorithm for frequency-selective channels is proposed in [37]. A recent study

in [41] utilizes a hybrid scheme with analog processing and adaptive quantization

thresholds to maximize the achievable rate.

The gradient-based optimization techniques have recently enjoyed popularity in one-

bit MIMO detection [2, 4, 24, 34]. [34] is the first detector to rely on first-order

optimization on the likelihood function. However, different system setups require

fine-tuning the algorithm hyperparameters, such as step size. The works in [2, 24]

utilize the deep unfolding technique [42], which unfolds each iteration of the gradient

descent algorithm onto a neural network architecture. With this method, adaptive step

sizes can be learned by determining a fixed number of iterations for the algorithm.

However, different system setups require training for the given specific scenario. The

works from [2, 3, 34] propose two-stage detection techniques for frequency-flat fading,
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where the first stage is an equalizer and the second stage uses the first-stage estimate

to create a set of most likely candidates to apply maximum likelihood (ML) detection

with reduced complexity. [4] proposes the gradient descent algorithm for FDE under

frequency-selective fading for MIMO-OFDM systems. However, it requires fine-

tuning the algorithm step size for different setups and operating SNR values to obtain

fast and favorable convergence.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• While many adopted system setups focus on one-bit quantization where all quan-

tization thresholds are set to zero, we concentrate on non-zero threshold quan-

tization. We derive linear filtering-based traditional detectors for this scenario.

Specifically, we focus on the Bussgang-based and conventional quantization-

unaware linear filters under both frequency-flat and frequency-selective fading.

• We propose a novel pseudo-random quantization (PRQ) scheme for one-bit

uplink massive MIMO systems to reduce the adverse effects of the SR phe-

nomenon on the detection performance. We show that the proposed method

can increase the achievable rate in one-bit single-input multiple-output (SIMO)

systems. Also, by following a coding theoretic approach and taking the one-

bit quantized observations as codewords in space, we show that the minimum

Hamming distance of the codebook for a given channel realization at infinite

SNR is increased in one-bit massive MIMO systems with PRQ, compared to

the scenario where conventional zero-threshold quantization (ZTQ) is used,

especially for high-order QAM constellations.

• Similar to [2, 3, 34], we propose a new two-stage detection technique for one-bit

massive MIMO systems operating under frequency-flat fading. This approach is

based on the PRQ scheme, where quantization thresholds are modified to obtain

a dithering effect. The first stage is called Boxed Newton Detector (BND), for

which Newton’s method, a second-order optimization technique, is adopted for

fast convergence and to omit difficulties of selecting different step sizes since
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Newton’s method [43] selects the appropriate step size in all dimensions at

each iteration. The second stage, called Nearest Codeword Detector (NCD), is

used to refine the first-stage solution as in the existing methods but does so by

taking the one-bit observations as codewords in space and creating a set of most

likely candidates with respect to the minimum Hamming distance criterion. By

using PRQ with BND-NCD methods, we show that massive MIMO systems

can operate with high-order modulation schemes as 256-QAM and 1024-QAM,

which were not attempted before and thus, their performances were not reported

by any of the previous work in the literature to the best of our knowledge.

The proposed detector outperforms the state-of-the-art detectors even when the

conventional ZTQ scheme is employed.

• Then, we turn our focus to one-bit uplink massive MIMO-OFDM systems

operating under frequency-selective fading. Due to severe nonlinear distortion,

the conventional time-domain (TD) and frequency-domain (FD) conversions are

not directly applicable in one-bit systems. Influenced by the BND approach, we

propose a new FDE scheme named Projected Quasi-Newton Detector (PQND).

This second-order optimization method utilizes the properties of massive MIMO

systems with appropriate approximations to obtain low complexity. Due to the

second-order derivative information, the algorithm does not require fine-tuning

of the step size and can work with PRQ, unlike [4] to support high modulation

orders such as 64-QAM and 256-QAM. The proposed method is also extended

as a single carrier-frequency domain equalization (SC-FDE) scheme.

1.4 Notation

Lower-case letters represent scalars, lower-case bold letters represent column vectors,

and upper-case bold letters represent matrices. (.)T represents the transpose and (.)H

the Hermitian of a matrix. Scalars, vectors, and matrices with over-bar notation, e.g.,

ā, ā, Ā are complex-valued, and their real-valued counterparts are shown with no

accent, i.e., a, a, A. The nth element of a vector a is an. The nth row and kth column

of a matrix A is denoted as [A](n,k). ∥.∥ denotes the ℓ2 norm of a vector. diag(.)

operator creates a diagonal matrix by placing the elements of its vector arguments
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on the main diagonal. It eliminates off-diagonal parts of its matrix arguments to

create a diagonal matrix. j =
√
−1 is the imaginary unit. R and C are the set of

real and complex numbers, respectively. Z is the set of integers, and Z+ denotes

the set of positive integers. ℜ{.} and ℑ{.} give their arguments’ real and imaginary

parts, respectively. |.| denotes the absolute value of its scalar arguments and the

cardinality of its set arguments. ⟨.⟩V denotes the modulo V operator. F̄ is the

unitary discrete Fourier transform (DFT) matrix of size V × V , where [F̄ ]n,k =

e−j2π(n−1)(k−1)/V /
√
V . Fv{.} =

∑V−1
m=0{.}e−j2πmv/V /

√
V is the unitary V -point DFT

operator and F−1
m {.} =

∑V−1
v=0 {.}e+j2πmv/V /

√
V is the unitary V -point inverse DFT

operator. CN (µ,Σ) denotes the complex Gaussian distribution with mean vector µ

and covariance matrix Σ. ϕ(x) =
√

1
2π

exp(−x2

2
) is the probability density function

(PDF) of the standard Gaussian distribution. Φ(x) =
∫ x

−∞ ϕ(τ)dτ is the cumulative

distribution function (CDF) of the standard Gaussian distribution. Each function

is applied element-wise to its arguments. H(.) is the entropy, Hb(.) is the binary

entropy, and I(.; .) is the mutual information operator. ⊙ is the Hadamard, and ⊗ is

the Kronecker product. The vectorization property is allowed so that the Hadamard

product of a vector a ∈ RN and a matrix B =
[
b1 b2 . . . bN

]T
∈ RN×K results

in a⊙B =
[
a1b1 . . . a2b2 . . . anbN

]T
= diag(a)B ∈ RN×K .

1.5 Outline

The remainder of this thesis is organized as follows:

• In Chapter 2, the basic system description to obtain the received signal models

in both single-carrier (SC) and multi-carrier (MC) system setups is explained.

Then, an ADC’s operating principles and power consumption are analyzed.

Finally, the benefits of using low-resolution ADCs to obtain power-efficient

massive MIMO systems are discussed.

• In Chapter 3, detection methods under frequency-flat fading are examined.

Traditional linear approaches and their modified forms for non-zero threshold

quantization are obtained. Then, the proposed PRQ scheme is explained by

analyzing the performance of PRQ using approaches from information theory
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and coding theory. A new two-stage detection method, BND-NCD, is derived

that works with the proposed PRQ scheme. The computational complexities

of the proposed methods are compared with the existing techniques from the

literature, and simulation results are shown to discuss the error performances.

• In Chapter 4, detection methods under frequency-selective fading are examined.

The linear processing-based methods are again considered. The method used for

the BND approach is modified for frequency-selective fading. The detector is

simplified with appropriate approximations to obtain a quasi-Newton optimiza-

tion technique, PQND, that can also work with PRQ. Finally, computational

complexity analysis and simulation results are examined and discussed.

• We conclude our discussion in Chapter 5 with a summary of the topics covered

in the thesis and comments on some possible research directions for the future.

9



10



CHAPTER 2

ONE-BIT UPLINK MASSIVE MIMO SYSTEMS AND

ANALOG-TO-DIGITAL CONVERTERS

2.1 Motivation

This chapter aims to obtain the signal and system models in uplink one-bit massive

MIMO systems. We obtain the mathematical models starting with the continuous-time

(CT) signals up to the sampled and quantized discrete-time (DT) received signal. Then,

we investigate the working principle of an ADC and analyze its power consumption

using existing figure of merit (FoM) models to point out how crucial the power con-

sumption issue can get in high-resolution massive MIMO systems and the advantage of

utilizing low-resolution ADCs. While obtaining the signal model for one-bit quantized

observations, we consider a non-zero threshold quantization scenario different than

many other works in the literature [2, 3, 20, 26, 34, 36, 38–40, 44, 45], where ZTQ is

adopted. We focus on the non-zero threshold quantization scenario to be able to use

dithering by changing the quantization thresholds [30] instead of generating analog

dither signals in Section 3.7.2.

Throughout the thesis, we focus on an N ×K uplink massive MIMO system where

K single-antenna users are served by a BS equipped with N receiver antennas, where

N ≫ K. A simple block diagram of the system is shown in Fig. 2.1, where RA

stands for receiver antenna and UE stands for user equipment. Even though we assume

each user has a single antenna, extension to multi-antenna users is straightforward by

assuming each user transmits independent streams from their antennas. Furthermore,

each user transmits bits using a discrete modulation alphabet of size M , such as

M -QAM. The selected modulation alphabet is denoted as M̄. We adopt a block-
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Figure 2.1: A basic illustration of the uplink massive MIMO system model, where RA

stands for receiver antenna, and UE represents user equipment with a single antenna.

fading channel model, where the channel fading process remains constant for at least

a data block duration of V symbols in the time domain (TD). The vth symbol in

the data block of the kth user can be shown as x̄k[v]. Note that the average symbol

power per user is E[|x̄k[v]|2] = Es = 1. Since we deal with the detection task,

we assume the BS has perfect knowledge of the channel state information (CSI),

whose estimation in one-bit massive MIMO systems is extensively studied in the

literature [3, 17, 24, 26, 31, 34, 36, 37, 46, 47]. Both SC and MC (OFDM) transmission

schemes are considered in the thesis. We assume a frequency-selective fading channel

with L taps in both cases. The special case of L = 1 corresponds to a frequency-flat

fading scenario, and only SC transmission is considered for flat fading.

2.2 Single-Carrier (SC) System Description

There are minor differences between the SC and MC system models. Each user

generates bits to be transmitted in the uplink. Throughout the thesis, we assume

uncoded transmission of the users’ bits. Hence, each sequence of log2(M) bits is

mapped to one of the M symbols from the chosen modulation alphabet. After a
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Figure 2.2: Block diagram of UE transmitter unit for uplink SC transmission.

data block of V constellation symbols is generated, each user transmits their symbols

through an ideal digital-to-analog converter (DAC) and a Nyquist pulse shaping filter

pc(t) such as root-raised cosine (RRC). We denote the symbol duration as Ts. Then,

the baseband signal is upconverted in an I/Q modulator unit. Note that if the channel is

frequency-selective, i.e., L > 1, a cyclic prefix (CP) of length LCP ≥ L−1 is added at

the beginning of each data block of length V > L. Inserting CP is a valuable technique

to mitigate the effects of inter-symbol interference (ISI) at the receiver side at the

expense of slightly decreasing the spectral efficiency. Even though CP is generally

used with OFDM systems, it is also helpful with SC-FDE to obtain block circulant

channel matrices, i.e., circular convolution operation. A basic block diagram of a

transmitter unit, i.e., user equipment (UE), is shown in Fig. 2.2.

Due to the advanced synchronization capabilities in 5G, we assume perfect synchro-

nization between the users and no offset in sampling time or carrier frequency. The

only source of hardware impairment in the system is the ADC units. Hence, transmit-

ters, i.e., users, have ideal RF components. The adopted model in this thesis is very

similar to the one used in [48], where a more detailed model for systems employing

temporal oversampling can also be found. Thermal noise at the receiver side at each

antenna z̄n(t) for n = 1, 2, . . . , N is modeled as an independent circularly symmetric

complex Gaussian (CSCG) process with power spectral density (PSD) N0. Once the

transmitted signal passes through the channel and the additive white Gaussian noise

(AWGN) process corrupts the received signal, the bandpass signal is downconverted at

Matched Filter I/Q Demodulator 
(Downconverter)

CP 
Removal

AWGN

Digital Processing
and Detection

1-bit
ADC

Figure 2.3: Block diagram of an RA unit RF chain for uplink SC transmission.

13



each antenna in an I/Q demodulator, and the CP part is discarded. A basic block dia-

gram of an RA unit is shown in Fig. 2.3. As in [48], by denoting the channel impulse

response (CIR) between the user k and receiver antenna n, at time t as h̄(n,k)(t), the

CT baseband received signal at receiver antenna n, at time t can be written as

d̄n(t) =
K∑
k=1

L−1∑
ℓ=0

V−1∑
v=0

h̄(n,k)[ℓ]x̄k[⟨v − ℓ⟩V ]pc(t− vTs) + z̄n(t), (2.1)

for n = 1, 2, . . . , N , where h̄n,k[ℓ] = h̄(n,k)(ℓTs) and ⟨.⟩V denotes the modulo V

operator to express the circular convolution operation due to CP. At each receiver

antenna of the BS, the incoming CT signal is passed through a pulse-matched filter

p∗c(−t), which is the complex conjugate time inverse version of the pulse shaping filter

pc(t). The convolution of the pulse-shaping filter with its matched filter yields

p(t) = pc(t) ∗ p∗c(−t), (2.2)

where ∗ is the convolution operator, and the resulting filter is the raised cosine pulse

whose symbol-rate samples can be found as

p[m] = p(mTs) = δ[m], (2.3)

where δ[0] = 1, δ[m] = 0 for m ̸= 0 is the DT unit impulse function. Convolution of

the white noise process with the RRC filter results in

wn(t) = z̄n(t) ∗ p∗c(−t), (2.4)

for n = 1, 2, . . . , N , where wn(t) is a bandlimited noise process. Once the received

signal in (2.1) is pulse matched filtered, the output becomes

ȳn(t) = d̄n(t) ∗ p∗c(−t)

=
K∑
k=1

L−1∑
ℓ=0

V−1∑
v=0

h̄(n,k)[ℓ]x̄k[⟨v − ℓ⟩V ]p(t− vTs) + w̄n(t).
(2.5)
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Now, the operations related to the RF chains are almost complete, and the remaining

part is related to the analog-to-digital conversion, which includes sampling and quan-

tization. ADCs and quantization operations are explained in detail in the following

section. For now, we focus on the mathematical model of the sampled DT unquantized

signal. Using (2.4), the DT received signal samples at the nth antenna is obtained as

ȳn[m] = ȳn(mTs) =
K∑
k=1

L−1∑
ℓ=0

h̄(n,k)[ℓ]x̄k[⟨m− ℓ⟩V ] + w̄n[m], (2.6)

for n = 1, 2, . . . , N and m = 0, 1, . . . , V − 1, where wn[m] is the CN (0, N0) dis-

tributed noise sample at the nth antenna, at time m. Noise samples are assumed to

be independent both in time and space. Note that the roll-off factor of the RRC pulse

does not play any role in this setup since the receiver employs Nyquist-rate ISI-free

sampling.

When L = 1, the wireless channel is no longer frequency-selective and is modeled as

frequency-flat. For this scenario, CP is no longer necessary and can be omitted. The

resulting DT received signal samples at the nth antenna under flat fading is found as

ȳn[m] =
K∑
k=1

h̄(n,k)[0]x̄k[m] + w̄n[m]

ȳn =
K∑
k=1

h̄(n,k)x̄k + w̄n.

(2.7)

for n = 1, 2, . . . , N . In (2.7), since there is no ISI, the time indices can be dropped.

For a given channel realization, only the symbols sent at a particular time index affect

the observations at the BS. Hence we obtain a memoryless system.

2.3 Multi-Carrier (MC) System Description

The MC system model is similar to the SC model with slight differences. For OFDM

transmission, the overall bandwidth is divided into sub-bands, and each user assigns

one of their constellation symbols from their data block to one of the subcarriers. For
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Figure 2.4: Block diagram of UE transmitter unit for uplink OFDM transmission.

this purpose, a unitary inverse DFT operation is conducted on the data block before

transmission by each user. Note that the well-known fast Fourier transform (FFT)

algorithm is applied in practice to perform the DFT operations. OFDM transmission

does not explicitly utilize pulse-shaping filters. Hence, we utilize a rectangular pulse

pr(t) instead of pc(t), which does not affect the mathematical model. UE and RA units

for uplink OFDM transmission are shown in Fig. 2.4 and 2.5, respectively. By taking

the inverse DFT operation into account, the received signal at the nth antenna can be

written as

d̄n(t) =
K∑
k=1

L−1∑
ℓ=0

V−1∑
v=0

h̄(n,k)[ℓ]s̄k[⟨v − ℓ⟩V ]pr(t− vTs) + z̄n(t), (2.8)

for n = 1, 2, . . . , N , where, s̄k[m] is found as

s̄k[m] =
1√
V

V−1∑
v=0

x̄k[v]e
+j2πmv/V . (2.9)

for k = 1, 2, . . . , K and m = 0, 1, . . . , V − 1. Note that the pulse shaping filter is also

a low-pass filter (LPF) for SC systems. The LPF at the analog front-end for OFDM

serves this purpose. We assume the LPF is an infinitely sharp and perfectly flat filter

in the passband. Hence, there is no interference from an adjacent band. Different than

the SC system, the matched filter block is omitted. After CP is discarded, the sampled

unquantized representation of the DT received signal can be obtained as

I/Q Demodulator 
(Downconverter)

CP 
Removal

AWGN

Digital Processing
and Detection

1-bit
ADC

Low Pass
Filter

Figure 2.5: Block diagram of an RA unit RF chain for uplink OFDM transmission.
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ȳn[m] =
K∑
k=1

L−1∑
ℓ=0

h̄(n,k)[ℓ]s̄k[⟨m− ℓ⟩V ] + w̄n[m]. (2.10)

for n = 1, 2, . . . , N and m = 0, 1, . . . , V − 1. The noise samples are IID with PDF

CN (0, N0) since the bandlimited noise process is sampled to obtain a flat PSD. The

unquantized DT signal models in both SC and MC sections are just representations to

obtain the quantized form as part of the ADC units. The following section covers the

quantized signal model and ADC unit basics.

2.4 Analog-to-Digital Converters (ADCs)

2.4.1 Working Principle of an ADC

ADCs are one of the most crucial electronic components that bridge the real world and

digital devices. The CT signals of real life, such as voltage, temperature, pressure, and

sound need to be represented appropriately as DT signals to be processed digitally.

Since digital devices all have finite memory, analog signals should be represented

with limited samples. The rate at which a bandlimited CT signal should be sampled

to be able to perfectly reconstruct it from its sampled DT version is determined by

the Nyquist-Shannon sampling theorem [49]. The amplitude level of each sampled

DT signal is also stored in digital devices. Hence, storing them in infinite precision

is not an option. Therefore, samples should also be quantized and represented with

the appropriate quantization labels. The basic block diagram of an ADC is shown

in Fig. 2.6. For a fixed sampling period Ts, the analog signal to be digitized should

first go through an anti-aliasing filter with a cutoff frequency chosen according to

Anti-Aliasing 
Filter

Sample and Hold Quantization
Analog Signal Digital Signal 

Analog-to-Digital Conversion

Figure 2.6: Basic configuration of an ADC.
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the sampling theorem. In practice, a filter cannot be infinitely sharp, as illustrated in

Fig. 2.6. However, this will not be of concern in this thesis since a filter can be sharp

enough to be approximated to have a rectangular frequency response. Then comes a

sample and hold block where the CT signal is multiplied with an impulse train, and

its value is captured for one sampling period. Finally, quantization occurs where the

signal amplitude is mapped to one of the quantization levels with finite precision to

produce the digital output. A rigorous explanation and theory of CT to DT conversion

and analog to digital conversion can be found in [50].

2.4.2 Quantized Signal Model

Infinite-resolution quantization would correspond to a quantizer with a linear transfer

function and yield an error-free representation of the sample amplitudes. Unfortu-

nately, finite resolution quantization, applicable in practice, results in quantization

errors/quantization noise. Since binary representation is essential in digital circuits,

ADC resolution is expressed by the number of bits that represent the amplitude in-

formation. For a b-bit quantizer, there can be 2b quantization levels. In a basic

implementation, b-bits would require 2b − 1 comparators. Hence, circuit complexity

and power consumption increase as the ADC resolution increases. Throughout the

thesis, the unquantized, i.e., infinite-resolution, samples of the analog signals will be

used to obtain the quantized signals in the digital domain. The b-bit quantized version

r̄[n] of a DT signal ȳ[n] can be obtained as

r̄[n] = Qb(ℜ{ȳ[n]}) + j Qb(ℑ{ȳ[n]}), (2.11)

where Qb(.) represents the uniform scalar mid-rise quantization operator. In communi-

cation systems, we deal with complex signals with both in-phase (I) and quadrature

(Q) parts. As a result, the quantization of a complex signal occurs in both parts sepa-

rately. Assuming b-bit uniform quantization, a set of 2b − 1 quantization thresholds

must be identified which can be shown as {τ1, τ2, . . . , τ2b−1}, where we can assume

−∞ = τ0 < τ1 < τ2 < . . . < τ2b−1 < τ2b =∞. If we take ∆ ∈ R as the step size of

the quantizer, each threshold value can be found as
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τn = (−2b−1 + n)∆ for n = {1, 2, . . . , 2b − 1}. (2.12)

As a result, for an input x ∈ R, the quantization operator can be defined as

Qb(x) =

 τn − ∆
2
, x ∈ (τn−1, τn] and n ∈ {1, 2, . . . , 2b − 1}

(2b − 1)∆
2
, x ∈ (τ2b−1, τ2b)

. (2.13)

For the special case of one-bit quantization, our main focus in this thesis, b = 1 results

in τ = τ1 = 0 according to (2.12). By taking ∆ = 2, the quantization operator

becomes

Q1(x) = sign(x). (2.14)

Then we can re-write (2.11) as

r̄[n] = sign(ℜ{ȳ[n]}) + j sign(ℑ{ȳ[n]}), (2.15)

where sign(x) for x ∈ R is the signum function which is defined as

sign(x) =

 +1, x ≥ 0

−1, x < 0
. (2.16)

Consequently, one-bit quantization yields only the sign information of the input analog

signal sample, and the amplitude information is completely lost. Note that for mid-rise

uniform one-bit quantization, there is only one quantization threshold and τ = 0.

However, if the threshold is selected such that τ ̸= 0, (2.14) should be re-written as

Q1(x) = sign(x− τ). (2.17)

If we assume a complex representation τ̄ of thresholds for I and Q ADCs, (2.15) can

be updated as
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r̄[n] = sign(ℜ{ȳ[n]− τ̄}) + j sign(ℑ{ȳ[n]− τ̄}). (2.18)

Note that the unquantized representations of the received signal (2.6), (2.7), and (2.10)

can be directly utilized to obtain the one-bit quantized signals using either (2.15) or

(2.18) depending on the scenario.

2.4.3 Power Consumption of an ADC

One-bit ADCs cause significant amplitude distortion on the digital output signal.

What makes one-bit ADCs tolerable in communication systems is massive MIMO

which may mitigate the effects of nonlinear quantization distortion thanks to the large

spatial degrees of freedom provided by a large antenna array setup. Hence, large

numbers of antennas in massive MIMO systems are significant to tolerate quantization

errors. Moreover, what makes one-bit ADCs preferable in such a scenario is the

previously mentioned simple circuitry and low power consumption compared to

the high-resolution systems. The amount of comparator units required by an ADC

increases exponentially as the resolution increases, directly affecting the system’s

overall power consumption.

Different models from the literature characterize the power consumption of an ADC

[10]. Generally, a FoM is defined as a measure of efficiency that depends on several

system properties. The first is the Walden FoM [11], which can be found as

FoMWalden =
P

fs2ENOB , (2.19)

where fs = 1/Ts is the sampling frequency, P is the power consumption, and ENOB

is the effective number of bits of the ADC. ENOB is calculated for a target signal-to-

noise-and-distortion ratio (SNDR) value as

ENOB =
SNDR (dB)− 1.76

6.02
. (2.20)

ENOB is generally close to the actual resolution of the ADC. However, additional
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distortion sources other than quantization results in a lower value for ENOB. As a

result, the Walden FoM predicts that the power consumption of an ADC will double

for each additional bit. A more recent FoM is the Schreier FoM from [51], which can

be found as

FoMSchreier = SNDR (dB) + 10 log10

(
fs
2P

)
, (2.21)

and it predicts that the power consumption will almost quadruple for each added bit.

According to [10], for today’s technology, the Walden FoM is a better measure for

low-resolution ADCs, whereas the Schreier FoM is better suited for high-resolution

systems.

The software radio implementation of ADCs is investigated in [1], where the authors

discuss the design and implementation issues of ADCs. ENOB vs. fs with constant

power consumption curves from [1] are shown in Fig. 2.7. As seen in the figure,

to work with a 100 MHz sampling rate, 10-bit resolution requires 1 W of power

consumption, whereas a 20-bit ADC would require 1 kW, which is an outcome in

accord with the Walden FoM. Power consumption increases almost linearly with the

sampling rate and exponentially with the number of bits. Since the aim is to achieve

higher data rates, larger bandwidths, hence larger sampling rates, cannot be avoided.

As a result, utilizing low-resolution ADCs can be a viable solution to deal with these

issues.

Moreover, a pair of ADCs must be deployed in a massive MIMO setup in each RF

chain. For example, according to Fig. 2.7, the total power dissipation of ADCs

in a 100-antenna system employing a 1 MHz sampling rate would be 0.2 W with

8-bit ADCs, whereas the ADCs would consume around 200 W with 18-bit resolution.

Therefore, the overall system’s power consumption may reach undesirable levels in

massive MIMO systems when high-resolution ADCs are used.

Note that 1− 4 bits of resolution would still be considered low because commercial

systems currently employ ADCs with resolutions higher than 10 bits. For this thesis,

we focus on only one-bit ADCs since their implementation is straightforward with a

single comparator unit. One operational amplifier (OPAMP) is sufficient to realize a

21



10K 100K 1M 10M 100M 1G 10G

2

4

6

8

10

12

14

16

18

20

22

Figure 2.7: Resolution plotted against sampling rate of an ADC with constant power

consumption curves from [1, Fig. 2], using the Walden FoM.

one-bit quantizer. Also, even though it is not visible in Fig. 2.6, an automatic gain

control (AGC) unit must be deployed within a multi-bit ADC unit in practice since the

total received power can vary in time which will require an adaptive selection of the

quantizer step size ∆. On the other hand, one-bit ADCs do not require AGCs, with a

single threshold located at the origin. Due to such additional benefits, our focus will

be on one-bit quantization in this thesis.
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CHAPTER 3

DETECTION UNDER FREQUENCY-FLAT FADING

3.1 Motivation

In this chapter, we work on detection under frequency-flat fading in uplink one-bit

massive MIMO systems. After obtaining the detailed DT system model for which

the fundamentals were given in Chapter 2, we focus on deriving the linear filters and

the ML detector for the non-zero one-bit quantization scenario. To obtain accurate

filtering methods, we utilize the Bussgang decomposition [52, 53] and obtain both

Bussgang-based and conventional quantization-unaware filters. Such classification of

filtering approaches was also used in [2, 23].

After briefly explaining the ML detector, we move on to our proposal for a new two-

stage detection scheme for one-bit massive MIMO systems. The first stage is called

Boxed Newton Detector (BND), which utilizes Newton’s method with box constraints

to optimize the log-likelihood and obtain an equalizer. The second stage is called

Nearest Codeword Detector (NCD), which utilizes the output of a first-stage equalizer

such as BND or linear filters to create a set of most likely candidates by taking the one-

bit quantized observations as codewords in space. Then, the second-stage decisions are

made by selecting the candidate in the reduced set that maximizes the likelihood. Such

two-stage approaches are present in the literature. In [34], the first stage is based on

the gradient descent algorithm, whereas [3] utilizes the support vector machine (SVM)

approach to satisfy the sign constraints imposed by one-bit quantization, and [2]

utilizes the deep unfolding method to optimize the log-likelihood for relatively faster

convergence compared to [34]. For the second stage, [34] employs a nearest neighbor

search algorithm whose complexity can be very large for high modulation orders and
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large numbers of users. [2] tries to lower the second stage complexity by proposing a

recursive algorithm to find a predefined number of candidates. [3] utilizes the work

from [27] as the second stage, which proposes detection from a coding theoretic

perspective by taking quantized observations as binary codewords in space.

In addition to a new detection scheme, we propose a new quantization scheme for

uplink one-bit massive MIMO systems. The adverse effects of the SR phenomenon on

the detection performance of uplink one-bit MIMO systems are encountered frequently

in many studies [2, 3, 14, 19, 23, 24, 26]. Unlike unquantized systems, the performance

is limited by quantization noise at high SNR. Influenced by pseudo-randomization

of quantization for general signal processing applications in [30], we propose a new

pseudo-random quantization scheme for one-bit uplink massive MIMO systems that

can increase the achievable rate per user and support high order modulation schemes

such as 256-QAM and 1024-QAM. We prefer to change the quantization thresholds

instead of generating a dither signal with additional hardware to obtain an efficient

system setup and thus pseudo-randomize the quantization operation in the spatial

domain by relying on the large number of receiver antennas provided by the massive

MIMO setup.

3.2 Contributions

The main contributions of this chapter can be summarized as:

• A novel PRQ scheme is proposed that can help mitigate the negative effects of

SR. The proposed scheme relies on changing the quantization thresholds for

dithering. The achievable rate in low-dimensional SIMO systems is shown to be

increased with PRQ. Also, the minimum Hamming distance between the binary

codewords at infinite SNR obtained via one-bit quantization in massive MIMO

systems is shown to be increased with PRQ, which indicates how the proposed

scheme can mitigate the effects of SR.

• As in [2, 23], Bussgang-based and conventional linear detectors are derived.

However, different than [2,23], linear detectors are modified for non-zero thresh-

old one-bit quantization. With the appropriate scaling factor, conventional linear
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receivers perform very closely to their Bussgang-based counterparts.

• A first-stage detector called the Boxed Newton Detector (BND) is proposed

that relies on Newton’s Method with box constraints to estimate the input. It

outperforms the existing gradient-based detectors [2, 3, 34] in terms of error

performance with comparable complexity. Also, it does not require hyper-

parameter tuning like [2, 34] due to second-order derivative information.

• With a similar motivation as in [2, 3, 34], a second stage detector called the

Nearest Codeword Detector (NCD) is proposed that creates a set of candidate

vectors to refine the first stage solution with limited complexity. However,

unlike [2], it does so by taking the one-bit observations as binary codewords to

find a limited number of candidates based on the minimum Hamming distance

criterion to lower the complexity and increase performance.

• By employing PRQ and BND-NCD, the proposed scheme can outperform the

existing detectors in the literature with much lower error floors. Moreover,

communication with high-order modulations such as 256-QAM, 1024-QAM,

and 4096-QAM, whose performances were not reported by any of the previous

works in the literature, is shown to be possible with PRQ. The proposed detector

has better error performance compared to the state-of-the-art detectors from the

literature, even when ZTQ is employed.

3.3 System Model

In this section, we build upon the system described in Section 2.2 and construct a

vectorized notation to represent the DT baseband received signal. We consider an

uplink massive MIMO system where K single-antenna users are served by a BS

equipped with N antennas. A simple block diagram of the system model is shown

in Fig. 3.1. Each user randomly selects an equally likely symbol from an M -QAM

alphabet denoted by M̄. The vector of transmitted symbols from all users can be shown

as x̄ =
[
x̄1 x̄2 . . . x̄K

]T
, where x̄k ∈ M̄, E[x̄k] = 0, and E[|x̄k|2] = Es = 1 for

k = 0, 1, . . . , K. Users transmit their signals through a Nyquist pulse-shaping filter,

an ideal DAC, and I/Q modulation.
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Figure 3.1: A block diagram that summarizes the single carrier (SC) system model for

the flat-fading scenario.

We assume that the channel impulse response (CIR) between each user and receiver

antenna is perfectly known by the BS and can be modeled with uncorrelated Rayleigh

fading. Hence, CIR between receiver antenna n and user k has complex Gaussian

distribution, i.e., h̄(n,k) ∼ CN (0, 1). The resultantN×K channel matrix is represented

as [H̄ ](n,k) = h̄(n,k). Assuming perfect synchronization, after the received signal is

I/Q demodulated, pulse matched-filtered, and symbol-rate sampled, the unquantized

discrete-time signal ȳ =
[
ȳ1 ȳ2 . . . ȳN

]T
is obtained as

ȳ = H̄x̄+ w̄, (3.1)

where w̄ =
[
w̄1 w̄2 . . . w̄N

]T
is the zero-mean circularly symmetric Gaussian

noise vector with PDF CN (0N , N0IN). IN is the identity matrix of size N ×N and

0N is the all-zero vector of size N . The received signal is quantized by a pair of

one-bit ADCs at each receiver antenna. The unquantized samples and the quantization
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threshold vector τ̄ can be used to obtain the quantized signal

r̄ = sign(ℜ{ȳ − τ̄}) + j sign(ℑ{ȳ − τ̄}). (3.2)

We define the SNR as the average SNR of each user at each receiver antenna:

ρ =
E[|x̄k|2]
E[|w̄n|2]

=
Es

N0

=
1

N0

. (3.3)

The relation between a complex vector ā and its real counterpart a, and a complex

matrix Ā and its real counterpart A can be obtained as

a =

ℜ{ā}
ℑ{ā}

 and A =

ℜ{Ā} −ℑ{Ā}
ℑ{Ā} ℜ{Ā}

 . (3.4)

As a result, the overall input-output relation of the system can be expressed as

r = sign(Hx+w − τ ). (3.5)

Note that each element of x belongs to the set of values a symbol from the modulation

alphabet can take in one dimension. We denote this set asM. For example, when M̄
is the 16-QAM alphabet,M can be expressed as the 4-PAM alphabet with an average

power of 1/2.

3.4 Linear Detection Methods

Linear detectors can be very advantageous in communication systems due to their low

complexities. As in [2,23], we define two classes of linear filters: Bussgang-based and

conventional. In the following subsections, the maximum ratio combining (MRC) and

zero-forcing (ZF) filters are derived for both classes.
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3.4.1 Bussgang-Based Linear Filters

One-bit quantization introduces significant nonlinear distortion on the received signal.

Therefore, the overall system is no longer linear. Since we deal with a nonlinear

system, the Bussgang theorem is a handy tool to characterize the received quantized

signal’s first and second-order statistics. Since the original work in [52], the Bussgang

theorem has been widely used to design and analyze nonlinear systems. Naturally, it is

also used in the design and analysis of one-bit MIMO systems as in [2, 23, 35, 48, 54],

among many others.

For one-bit MIMO systems, the theorem takes the form of Bussgang decomposition,

where nonlinear distortion, i.e., quantization noise, takes an additive form and is

represented linearly on top of the received signal. This linear representation minimizes

the variance of quantization noise, and quantization noise becomes uncorrelated with

quantized and unquantized observations. The conventional Bussgang decomposition

focuses on one-bit quantization when all thresholds are set to zero, i.e., τ̄ = 0N .

In [53], many practical derivations and a thorough analysis of the Bussgang theorem

are included.

Note that the Bussgang decomposition is valid only when the input to the quantizer

has Gaussian distribution. However, since the constellation symbols are chosen

from a discrete alphabet, the unquantized observation vector does not have Gaussian

distribution. Despite not having Gaussian distribution, especially at low SNR when

the noise term is dominant or due to the central limit theorem (CLT) when the number

of users is high, the distribution of ȳ is very close to Gaussian [17, 19]. Therefore,

applying the Bussgang decomposition for designing and analyzing low-resolution

systems is a common practice [2, 17, 19, 23, 41, 53, 54]. Since we focus on a more

general scenario where thresholds can take arbitrary values, the generalized version of

the Bussgang theorem must be used.

In [47], the Bussgang theorem is generalized for the non-zero threshold quantization

scenario by taking the selection process of the Bussgang gain and bias terms as the

problem of finding the minimum mean square error (MMSE) estimate of the quantized

observation vector r̄ using the unquantized observation ȳ such that
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r̄ − b̄ = ḡ ⊙̄ ȳ + d̄, (3.6)

where b̄ = E[r̄ | τ̄ ] is the bias vector, ḡ ∈ CN is the Bussgang gain vector which can

also be represented as a diagonal matrix composed of the entries of this vector, i.e.,

the MMSE filter, and d̄ ∈ CN is the quantization noise vector. Note that unlike [47],

we adopt a notation with complex numbers by defining a complex extension to the

Hadamard product such that

ū ⊙̄ v̄ = ℜ{ū} ⊙ ℜ{v̄}+ jℑ{ū} ⊙ ℑ{v̄}. (3.7)

Using the derivations from [47], the Bussgang gain vector and the bias vector can be

calculated respectively as

ḡn =

√
4

π[C̄y](n,n)

(
exp

(
− ℜ{τ̄n}

2

[C̄y](n,n)

)
+ j exp

(
− ℑ{τ̄n}

2

[C̄y](n,n)

))
, (3.8)

b̄n = 2Φ

− ℜ{τ̄n}√
[C̄y](n,n)/2

− 1 + j

2Φ

− ℑ{τ̄n}√
[C̄y](n,n)/2

− 1

 , (3.9)

where C̄y = E[ȳȳH ] = H̄H̄H +N0IN is the covariance matrix of the unquantized

observation vector.

For ease of notation, we define the conditionally zero-mean version of the quantized

observation vector such that

r̄e = r̄ − b̄ = ḡ ⊙̄ H̄x̄+ ḡ ⊙̄ w̄ + d̄

= H̄ex̄+ w̄e,
(3.10)

where H̄e ∈ CN×K is the effective channel matrix which takes the Bussgang gains

into account and w̄e ∈ CN is the effective noise vector which is the combination of

quantized thermal noise and quantization distortion.
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Now that we defined the linearized version of the input-output relation, we can move

on to define the Bussgang-based MRC (BMRC) filter as in the well-known unquantized

MIMO setup as

F̄BMRC = λ̄e ⊙ H̄H
e , (3.11)

where λ̄e is the scaling constant to make sure we obtain a non-scaled estimate, and it

is determined as

λ̄ek =
1∑N

n=1 |[H̄e](n,k)|2
, (3.12)

for k = 1, 2, . . . , K.

Next, the Bussgang-based ZF (BZF) filter can be defined as

F̄BZF = (H̄H
e H̄e)

−1H̄H
e . (3.13)

Note that the MRC filter tries to maximize the SNR, whereas the ZF filter focuses

on maximizing the signal-to-interference ratio (SIR). However, unlike unquantized

massive MIMO, an additional quantization distortion term limits the high SNR per-

formance. A more advanced approach would be calculating the MMSE filter for

this scenario. Unfortunately, a compact analytical expression for the Bussgang-based

MMSE (BMMSE) filter [45] can not be found as indicated in [47]. The unavailability

of a compact analytical form is due to Arcsine law [55] not being valid for non-zero

threshold quantization.

Once a filter F̄ to be applied on the conditionally zero-mean observation vector r̄e is

selected, the estimates can be obtained as

˜̄x = F̄ r̄e. (3.14)

Finally, if no further processing is to be applied, decisions can be obtained by

symbol-by-symbol detection, i.e., element-wise minimum distance mapping for k =
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1, 2, . . . , K such that

ˆ̄xk = arg min
x̄∈M̄

|˜̄xk − x̄|. (3.15)

3.4.2 Conventional Linear Filters

The conventional class of linear filters for unquantized MIMO detection are well-

known and well-studied [56]. Like the Bussgang-based filters, they can be used for

quantized MIMO detection as in many studies such as [2,19,23,46,54]. However, since

one-bit measurement causes the loss of amplitude information, inserting appropriate

labels to our quantized observations is a helpful way to work with variable-amplitude

modulation schemes.

Note that the Bussgang decomposition tries to find the appropriate scaling each

element of the unquantized observation vector goes through during one-bit quantization.

Finding a quantization label is similar to this operation, except that all scaling must

be the same to define a common quantization label. Hence, we continue with the

Bussgang decomposition and look for approximations that make all entries of ḡn the

same in both the I and Q parts. To do so, we first assume the threshold values are

unknown and τ̄ ∼ CN (0N , σ
2
τ ). This can be a useful assumption if the empirical

distribution of the thresholds is close to Gaussian. When we take the threshold values

as random with Gaussian distribution, they can be seen as an additional form of noise

over AWGN. Therefore the effective noise variance becomes σ2
e = N0 + σ2

τ since the

thermal noise and threshold selections are independent. With this selection, we can

also act as if τ̄ = 0N . Now, the effective unquantized observation covariance matrix

becomes C̄y,e = H̄H̄H + (N0 + σ2
τ )IN .

Finally, the wireless channel’s effect must be considered to obtain a label that is the

same for all branches. As stated in [45], at low SNR or when the number of users

is large, the unquantized observation covariance matrix can be approximated by a

diagonal matrix such that C̄y,e
∼= (K +N0 + σ2

τ )IN . By using these approximations,

the bias vector becomes b̄ = 0N and each element of the Bussgang gain vector can

be approximated as ḡn ∼=
√

4
π(K+N0+σ2

τ )
(1 + j). Since the I and Q parts are now the

31



same, the input-output relation can be simplified as

r̄e = r̄ =

√
4

π(K +N0 + σ2
τ )
ȳ + d̄. (3.16)

By defining the quantization label ℓq as

ℓq =

√
π(K +N0 + σ2

τ )

4
, (3.17)

and multiplying both sides of (3.16) with ℓq, we can get

ℓqr̄ = ȳ + ℓqd̄

= H̄x̄+ w̄ + ℓqd̄.
(3.18)

Using this quantization label, a non-scaled estimate of the x̄ vector can now be obtained

when conventional linear filters are used. Finding the conventional MRC and ZF filters

is now straightforward. The MRC filter can be calculated as

F̄MRC = λ̄⊙ H̄H , (3.19)

where the elements of scaling vector λ̄ for k = 1, 2, . . . , K can be found as

λ̄k[v] =
1∑N

n=1 |[H̄(n,k)|2
. (3.20)

Similarly, the ZF filter can be calculated as

F̄ZF = (H̄HH̄)−1H̄H . (3.21)

Our motivation here is to introduce appropriate quantization labels to obtain a non-

scaled estimate which can be critical while working with high-order modulation

schemes such as 16-QAM or 64-QAM. BPSK or QPSK modulations do not require

such a label since they have constant amplitude, and a scaled version of the estimate
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would not cause any problems during detection. Also, we omit the conventional

MMSE filter for this scenario since it reportedly has the same performance as that of

the ZF filter [2].

Once a filter of choice F̄ is selected, it is applied on the quantized observation vector

r̄ to obtain the estimates as

˜̄x = ℓqF̄ r̄. (3.22)

Lastly, if no further processing is applied, decisions can be obtained as in (3.15).

3.5 Maximum Likelihood (ML) Detection

When the receiver perfectly knows CSI, the detection operation can be conducted

using the likelihood function. Likelihood-based detectors have an important advantage

against linear detectors in terms of bit error rate (BER) performance, especially at

high SNR [2]. As explained in different works such as [2, 32, 34], the conditional

probability mass function (PMF) of the quantized observations can be expressed as

p(r|x, τ ,H) =
2N∏
n=1

Φ

(
rn(h

T
nx− τn)√
N0/2

)
, (3.23)

where hT
n is the nth row of the channel matrix H , i.e., H =

[
h1 h2 . . . h2N

]T
,

and Φ(x) is the CDF of the standard Gaussian random variable. Then, by utilizing the

log-likelihood, we can construct the ML detector as

x̂ML = arg max
x∈M2K

{
1N ln

(
Φ

(√
2

N0

r ⊙ (Hx− τ )

))}
, (3.24)

where the natural logarithm ln(.) and Φ(.) are applied element-wise to their arguments,

and 1N is the column vector of size N which is composed of entries that are all equal

to 1.
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3.6 Proposed Detection Method: BND-NCD

3.6.1 First Stage: Boxed Newton Detector (BND)

When the modulation order M or the number of users K is large, complexity becomes

infeasible for ML detection. Different works in the literature focus on a gradient-based

approach to maximize the log-likelihood function [2, 24, 32, 34]. In this subsection, a

similar procedure is followed with a new iterative receiver that uses a modified cost

function and the Hessian information for faster convergence via Newton’s method. For

compactness, we denote the log-likelihood as

L(x) = 1N ln

(
Φ

(√
2

N0

r ⊙ (Hx− τ )

))
. (3.25)

To begin with, we relax the constraint that x belongs to a finite input set and reformulate

the ML detection problem as

x̃ = arg max
x∈R2K

{L(x)} . (3.26)

Gradient-based optimization can be utilized for this problem due to the log-concavity

of Φ(.). However, this approach is not helpful at high SNR since each entry of the

input vector can take any value from the real numbers, which causes an increase in the

saddle points of the log-likelihood function. To prevent diverging from the boundaries

of the discrete constellation set, we insert a box constraint on each element of x, as

in [4]. For M -QAM, the in-phase or quadrature part of the symbol sent from any of

the users must satisfy

|xk| ≤Mb =

√
3(
√
M − 1)2

2(M − 1)
, for k = 1, 2, . . . , 2K, (3.27)

where Mb denotes the constellation boundary on a single dimension. The new con-

strained optimization problem can be written as
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Figure 3.2: An illustration of the penalty function that enforces the box constraint

on each element of the x vector during the iterative updates of BND for M -QAM

constellation, where d =
√

3
2(M−1)

.

x̃ = arg max
|xk|≤Mb

k=1,2,...,2K

L(x). (3.28)

Optimization with iterative approaches that rely on the gradient of the objective

function requires the problem to be converted back to unconstrained optimization.

Therefore, a penalty function is inserted into the objective function, which can be

written as

P(x) = θ

2

2K∑
k=1

R(|xk| −Mb)
2, (3.29)

where θ ∈ R is a constant that determines the strength of box constraints, and R(x) =

max{0, x} is the unit-ramp function. If we denote the penalty function applied on a

single element in the set that reflects the box constraint as f(xk) = R{|xk| −Mb}2,
we can visualize it as shown in Fig. 3.2. Hence, the final form of the unconstrained

optimization problem to be solved can be obtained as

x̃ = arg max
x∈R2K

{L(x)− P(x)}. (3.30)

By denoting the argument of (3.30) as our cost function J (x) = L(x)− P(x), the

iterative update equation of Newton’s Method becomes
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xk+1 = xk − (∇2J (xk))−1∇J (xk), (3.31)

where ∇ =
[

∂
∂x1

. . . ∂
∂x2K

]T
can be expressed as a vector of size 2K, and ∇2 can

be expressed as the outer product of the∇ operator with itself: ∇2 = ∇∇T . Hence,

the∇2 operator can be considered a 2K × 2K matrix. ∇J (xk) is the gradient of the

cost function J with respect to x calculated at xk, i.e., the estimate of x at iteration k.

Similarly,∇2J (xk) is the Hessian of the cost function J with respect to x calculated

at xk.

We should go over the log-likelihood and penalty functions’ first and second-order

derivatives before expressing the gradient and Hessian information. The first-order

derivatives of the log-likelihood function and the penalty function can be expressed as

d

dxk
L(x) =

√
2

N0

2N∑
n=1

rn[H ](n,k)φ (un) , (3.32)

d

dxk
P(x) = θ sign(xk) R(|xk| −Mb), (3.33)

respectively, for k = 1, 2, . . . , 2K, where u =
√

2
N0

r ⊙ (Hx − τ ), and φ(x) =

d
dx

ln(Φ(x)) = ϕ(x)
Φ(x)

. Then the second-order derivatives can be obtained as

d2

dxkdxm
L(x) = 2

N0

2N∑
n=1

[H ](n,k)[H ](n,m)ψ (un) , (3.34)

d2

dxkdxm
P(x) = θU(|xk| −Mb)δ[k −m], (3.35)

for k = 1, 2, . . . , 2K andm = 1, 2, . . . , 2K, whereψ(x) = d2

dx2 ln(Φ(x)) = −xφ(x)−
φ2(x) and U(x) = max{0, sign(x)} is the unit-step function. psi(.) is the PDF of the

standard Gaussian random variable.

Due to linearity of differentiation, we have∇J (x) = ∇L(x)−∇P(x). As in [32],

the gradient of the log-likelihood function can be found as
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∇L(x) =
√

2

N0

HT (r ⊙ φ (u)) , (3.36)

where ⊙ denotes the Hadamard product, and φ(.) is applied element-wise to its

arguments. Then, the gradient of the penalty function can be found as

∇P(x) = θ sign(x)⊙ R(|x| −Mb12K), (3.37)

where R(.) is applied element-wise to its arguments. Similarly, we have ∇2J (x) =
∇2L(x)−∇2P(x). The Hessian of the log-likelihood function or the Fisher informa-

tion matrix can be calculated as

∇2L(x) = 2

N0

HT diag (ψ (u))H , (3.38)

where ψ(.) is applied element-wise to its arguments. Since Φ(x) can approach zero

exponentially fast, computations of ln(Φ(x)), φ(x), and ψ(x) in finite precision can

cause problems such as divergent behavior or uncertainties. This problem is solved in

Appendix A. Finally, the Hessian of the penalty function is

∇2P(x) = θ diag(U(|x| −Mb12K)), (3.39)

where U(.) is applied element-wise to its arguments.

Now that the update rule is wholly defined, an initial solution x0 that is preferably

not far away from the final solution should be found. The MRC estimate is a suitable

selection for this purpose, and it can easily be found using (3.19) and (3.22). Note

that at high SNR, when N0 is very small, the Hessian matrix can become very close

to singular since ψ(x)→ 0 as x→∞. To avoid such behavior, we define a damping

factor ζ such that

ζ = max{1, ρ/ρt}, (3.40)
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Algorithm 1 Boxed Newton Detector (BND)
Input: r,H , τ , θ, ϵ,Mb, Tmax, N0, ζ

Output: x̃

1: Set the initial solution to the MRC estimate x̃← x0 using (3.19)

2: Apply the damping factor N0 ← ζN0

3: for i = 1 to Tmax do

4: Calculate the gradient∇J (x̃) using (3.36) and (3.37)

5: Calculate the Hessian∇2J (x̃) using (3.38) and (3.39)

6: Calculate the step ∆x← (∇2J(x̃))−1∇J(x̃)
7: Iterative update x̃← x̃−∆x as in (3.31)

8: if ∥∆x∥2 < ϵ ∥x∥2 then

9: return x̃

10: end if

11: end for

12: return x̃

where ρt is the threshold SNR. Before starting the iterative updates, N0 is multiplied

with this term to provide numeric stability. If the SNR is above the threshold, we

process the signals as if the SNR is at the threshold level, and if the SNR is below

the threshold, we operate with the actual SNR value. The complete procedure for

BND is summarized in Algorithm 1. Once the iterative updates start, the algorithm is

terminated if the maximum number of iterations Tmax is reached or if further iterations

do not cause significant changes, which is determined by the termination threshold

ϵ. If a maximum exists, we expect each step’s norm to get smaller at each iteration.

Hence at each iteration, we measure how close we are to the maximum, as in line 8,

and if we are close enough, the algorithm is terminated. The output of the algorithm x̃

is the first-stage solution, and if a one-stage approach is to be followed, then symbol-

by-symbol detection is applied on the estimate as in (3.15). If not, the estimate is

supplied to the second stage for further processing.

3.6.2 Second Stage: Nearest Codeword Detector (NCD)

After finding an estimate using a first-stage method, NCD can be utilized to make more
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Algorithm 2 Nearest Codeword Detector (NCD)
Input: x̃, r,H , τ , P, γ, Umax, N0

Output: x̂

1: Find the nearest decision boundaries t as in (3.42)

2: Obtain the sets of reliableR (3.43) and unreliable U (3.44) indices

3: while |U| > Umax do

4: Decrease the size of the unreliable region as γ ← 0.95γ

5: Reobtain the setsR and U according to the new γ

6: end while

7: Find the candidate element sets (Xk)
2K
k=1 using (3.45)

8: Generate the candidate vector set X using (3.46)

9: if |X | > P then

10: Apply symbol-by-symbol detection to get

x̌k ← arg minx∈M |x̃k − x| for k = 1, 2, . . . , 2K

11: Remove the symbol-by-symbol detected vector from the set X ← X \ {x̌}
12: if |X | > 1 then

13: Sort X according to the H (.) metric as in (3.50)

14: Discard all elements of X except the first P − 1

15: end if

16: Add x̌ back to the set to obtain the result from (3.51) X ← X ∪ {x̌}
17: end if

18: Apply ML detection on the set X
19: return x̃

accurate decisions compared to symbol-by-symbol detection. In this part, the first step

is to decide on the reliability of each element of the first-stage estimate. Then, a set of

candidate vectors is formed based on the reliability information of each element, very

similar to the ideas from [2, 3, 34]. The candidate set is then narrowed down based

on the minimum Hamming distance criterion in the codeword domain. Finally, ML

detection is conducted on the smaller candidate set to make the final decisions. The

complete summary of the proposed second stage detector is made in Algorithm 2, and

the detailed explanation of the whole procedure is made in the following parts.

The set of decision boundaries utilized during symbol-by-symbol detection for M -
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QAM constellations is found as

T =

{
±n
√

6

M − 1

∣∣∣∣n ∈
{
0, 1, . . . ,

√
M − 2

2

}}
. (3.41)

For example, the decision boundary set for the QPSK constellation is {0}, and for

16-QAM constellation, it is
{
0,±2

√
1
10

}
. Then, the closest decision boundary to the

kth element of the estimate x̃ is defined as

tk = arg min
t∈T

|x̃k − t|, (3.42)

for k = 1, 2, . . . , 2K. The set of reliable and unreliable indices of the estimate can be

found as

R = {k | k ∈ {1, 2, . . . , 2K}, |x̃k − tk| > γ}, (3.43)

U = {k | k ∈ {1, 2, . . . , 2K} \ R}, (3.44)

respectively. If the kth element of the estimate is within a certain margin of its closest

decision boundary defined by the hyperparameter γ ∈ R, then it is not reliable to

conduct symbol-by-symbol detection on x̃k, for k = 1, 2, . . . , 2K. Now, the set of

possible assignments for each element of the estimate can be found as

X̃k =


{arg minx∈M |xk − x|} , k ∈ R

{
tk ±

√
3

2(M−1)

}
, k ∈ U

, (3.45)

for k = 1, 2, . . . , 2K. If the kth element of the estimate is reliable, then there is only

one possible assignment to this element obtained by the minimum distance rule. If

it is unreliable, the potential assignment is a set composed of two elements that are

the neighbors to the closest decision boundary. Hence, each set’s cardinality can be 1
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Reliable estimate

Unreliable estimate

Reliable estimate

Unreliable estimate

Figure 3.3: The candidate set formation example when K = 2 and M = 16, where

d =
√

3
2(M−1)

. The blue dots correspond to the estimates obtained from a first-stage

detector. Each interval between the red dashed lines is mapped as unreliable, and

outside of these intervals is mapped as reliable. The element sets X̃k are formed as in

(3.45), and the resultant example vector set obtained via (3.46) is shown in (3.47).

or 2. As in [2], the resultant set of candidate vectors from the combinations of each

candidate element set can be obtained as

X̃ = X̃1 × X̃2 × . . .× X̃2K , (3.46)

where × denotes the Cartesian product. An example of the set formation is shown in

Fig. 3.3, and the resultant color-coded set X̃ can be shown as

X̃ =




−3d
−3d
d

d

 ,

−3d
−3d
d

3d

 ,

−3d
−d
d

d

 ,

−3d
−d
d

3d




. (3.47)

The cardinality of the candidate vector set |X̃ | is at most 22K , which means the set can

grow exponentially as the number of users increases, which can cause two problems.

First, the size of the set may get too large when |U| is large, which can cause memory
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problems. Also, a large candidate set would cause an undesirable complexity increase

for ML detection at the final step. The first problem is dealt with adaptively changing

γ, which can adjust the size of the unreliable region, and it is addressed in lines 3-6 of

Algorithm 2. If the size of U is large, i.e., it is greater than Umax, then decreasing γ

can help us obtain a smaller unreliable region, hence a smaller set size for X̃ . For the

second problem, similar to the idea from [2], the aim is to limit the search complexity

by finding a subset X of X̃ that includes the most likely candidates. In [34] and [3],

the search complexity is not limited in the second stage, and in [2], a limited number

of nearest neighbors to the estimate from the candidate set X̃ are found. However,

especially at high SNR, detection performance can benefit from the sign constraints

imposed by one-bit quantization. Since quantized observations take binary values, r

can easily be seen as a codeword in the spatial domain. In [27], this idea is exploited

by a coding theoretic approach, and a new metric called weighted Hamming distance

is proposed for detection. Since a first-stage solution already exists, a sophisticated

metric such as the weighted Hamming distance is not required in this case. Hence,

the size of the set of candidate vectors can be limited by finding their codeword

representations, then ordering them according to their Hamming distance to the actual

quantized observation vector. The spatial codeword representation c(.) of a candidate

vector x́ ∈ X̃ is defined as

c(x́) = sign (E[ ý − τ | x́,H , τ ])

= sign (Hx́− τ ) ,
(3.48)

where ý is the unquantized observation vector obtained when x́ is sent. The Hamming

distance between r and the spatial codeword representation of a selected vector x́ can

be expressed as

H (x́) = dH(r, c(x́)), (3.49)

where dH{ . , . } denotes the Hamming distance between its arguments. Now, the

aim is to create a set X ⊆ X̃ whose cardinality is a hyperparameter denoted as

P . It consists of the symbol-by-symbol detected vector x̌ whose kth element is
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x̌k = arg minx∈M |x̃k − x| for k = 1, 2, . . . , 2K, and the P − 1 candidate vectors

from X̃ such that the Hamming distance between their spatial codeword representations

and r are the smallest. Including the symbol-by-symbol detection result as a candidate

is enforced due to favorable performance, especially at low SNR. Next, to sort the

candidate vectors according to the Hamming distance between their spatial codeword

representations and the quantized observation vector, an ordered vector sequence is

defined as

(x́i)
|A|
i=1 ∈ X̃ \ {x̌} such that H (x́i) ≤H (x́i+1). (3.50)

Sequence indexing is a useful way to find the first P − 1 candidates. Indexing may

not be unique, and encountering a situation such as H (x́P−1) = H (x́P ) is possible.

However, the performance gain obtained by the second stage increases as the SNR

increases, and for large enough K, a situation such as H (x) = H (x́P−1) is not

likely. Hence, another approach to sort the candidates whose Hamming distances

between their spatial codeword representations and r are equal to H (x́P−1), is not

necessary. The final set X of size P can be found as

X = {x́1, x́2, . . . , x́P−1} ∪ {x̌}. (3.51)

Finally, ML detection (3.24) is applied on the reduced set X instead ofM2K to obtain

the second-stage solution.

3.7 Proposed Quantization Method: Pseudo-Random Quantization (PRQ)

3.7.1 Stochastic Resonance and Dithering

SR is a counter-intuitive effect in nonlinear systems where the maximum performance

is achieved at a finite SNR value in contrast to linear systems where higher SNR

leads to better performance [21]. When the signal to be detected is not distinguish-

able by a sensor, the presence of white noise in a nonlinear system’s input can help

increase the detectability of the input signal [57]. Therefore, this phenomenon is
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of multidisciplinary interest and can be encountered in electronics, biology, physics,

and neuroscience. Electronic circuitry with thresholds [58], bistable and multistable

dynamical systems [59], image processing and medical imaging [60], biological neu-

rons [61], and artificial neural networks [62, 63] are examples of systems where SR is

observed.

When the SNR of a nonlinear system is high, the intentional addition of noise into

the system’s input to reduce quantization errors is called dithering. SR and dithering

are closely related, and dithering can be seen as a method for exploiting the SR

phenomenon [29]. Generating artificial noise with a particular distribution is one way

of dithering the input signal. However, the same dithering effect can be achieved by

shifting the quantization thresholds. Thus, dithering can also be called randomized

quantization, with both random [28] and pseudo-random [30] applications.

Even though there are not many studies regarding dithering in one-bit MIMO systems,

there are some notable works related to non-zero threshold quantization. The idea of

non-zero thresholds is also exploited in [47], where a channel estimation procedure

with threshold design based on a set partitioning scheme is proposed, which requires

computing and updating threshold values during channel estimation. Another channel

estimation method is proposed in [41], where an adaptive threshold design procedure

is utilized to minimize the estimation error. The thresholds are changed at consecutive

symbol periods to increase estimation accuracy in both [47] and [41]. Recent work in

[64] proposes a hybrid scheme that utilizes analog processing and adaptive quantization

thresholds to maximize the achievable rate.

3.7.2 Pseudo-Random Quantization (PRQ) Scheme

Randomizing the quantization process can be a handy tool to mitigate quantization

noise in low-resolution systems [28, 30]. Randomized quantization exploits dithering,

where a randomly generated analog signal is added to/subtracted from the input to the

quantizer. Suppose the randomly generated signal is kept in the memory of the digital

processor. In that case, the procedure is pseudo-random (PRQ) since the operation is

entirely deterministic. Otherwise, it is named random (RQ). Generating analog signals

requires additional hardware, which may not be desirable. Therefore, a preferable
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alternative is to change the quantization threshold of each ADC unit, which will result

in the same dithering effect as generating an analog signal and subtracting it from

the input signal. We change the domain of dithering from temporal (time) to spatial

(antennas) with this approach.

In Fig. 3.4, the first version of dithering is illustrated where a randomly generated

analog signal is subtracted from the incoming analog signal with the help of an

additional DAC. PRNG is a pseudo-random number generator and helps obtain random

sequences from a selected probability distribution. As seen in the figure, the advantage

of PRQ is that we can utilize threshold values during the detection operation. However,

employing an additional DAC in the RF chain can be undesirable since it increases the

cost and power consumption of the system.

To obtain a more efficient system, we can rely on variable-threshold quantizers to help

get the same effect as generating the dither signal and subtracting it from the received

signal. The resulting setup is shown in Fig. 3.5. As seen in the figure, we rely on

changing the quantization threshold instead of using an additional DAC. However,

in practice, the response time of the ADC can become a burden if the threshold is

varied at every symbol period. Hence, keeping the thresholds constant during channel

coherence time would be preferable. Also, since we deal with massive MIMO systems,

Sample and
Hold

Quantizer

PRNG

Digital
Processor

DAC

Figure 3.4: Illustrations of random (without the dashed line connection) and pseudo-

random (with the dashed line connection) quantization schemes where the dither signal

that is generated in the analog domain is subtracted from the incoming received signal,

and the quantizer threshold is set to zero.
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Sample and
Hold

Quantizer

PRNG

Digital
Processor

Figure 3.5: Illustrations of random (without the dashed line connection) and pseudo-

random (with the dashed line connection) quantization schemes where the dithering

effect is obtained by modifying the quantization thresholds. (It is assumed that

τ [n] > 0.)

randomization does not have to occur in time but can be utilized in space.

In the literature, different techniques for adaptive threshold optimization, such as

[41,47], depend on the channel realization. However, these techniques require updating

at different symbol periods or channel realizations. With the intuition we get from

massive MIMO, we propose to randomize the spatial oversampling operation with

the large antenna array equipped with one-bit ADCs. We propose a new quantization

scheme for uplink one-bit massive MIMO systems to overcome the adverse effects

of the SR phenomenon at high SNR, especially when the sum interference is small.

From our previous observations, it is clear that the performance degradation does not

occur at low SNR where thermal noise is the dominant distortion, which is reported by

many other works from the literature [13, 54, 65]. However, at high SNR, either the

performance peaks at a unique SNR value or a performance saturation occurs after a

finite SNR.

When a dithering scheme is applied in the system, the distribution of the dither signal,

the threshold values for our scenario, must be selected. By observing different scenar-

ios, we saw that selecting the Gaussian distribution is a useful technique. Different

selections, such as continuous uniform, and discrete uniform with binary or ternary

alphabets, can also increase the high SNR performance. The selection of the appropri-

ate distribution for the pseudo-random thresholds is also a noteworthy topic, which
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is left as future work. In the context of this thesis, we focus on Gaussian distributed

threshold values.

In general, one-bit massive MIMO systems are better at detecting phase than amplitude

since the cardinality of the amplitude alphabet of the quantized observations is 1,

but the cardinality of the phase alphabet is 4. Also, the fading channel introduces

uniformly distributed phase shifts between all users and receiver antennas. Even

though the channel also introduces amplitude variations, one-bit quantization causes

a black/white or -1/+1 situation where the message to be decoded is a gray tone or

a number between -1 and 1. Suppose that we have a real-valued AWGN channel

scenario at a very high SNR to decode a message that can take values {±1.0,±0.5},
and we have four independent observations to decode the message. If the message

0.5 is sent, all we can deduce in a one-bit quantized scenario where the thresholds are

set to zero is that the message is most likely greater than zero. However, suppose we

change the thresholds to uniformly sample the region between −1 and +1. In that

case, we can better understand the amplitude of the message rather than just its sign

information. Thermal noise is a great help in understanding the signal’s amplitude in

such a coarsely quantized scenario, which relates to the SR phenomenon.

After deciding on the Gaussian distribution, the mean and the variance of the thresh-

olds must also be selected. Since we are trying to detect signals with zero-mean and

our unquantized observations are zero-mean, the intuitive selection is to generate the

threshold with zero-mean. The selection of the variance parameter is more challenging

than the mean since it is hard to analytically track the effects of the empirical distribu-

tion of a pseudo-random selection. From many trials and observations, we saw that the

variance selection depends on system parameters such as the number of BS antennas,

the number of users, and the SNR. If the variance is too small, the performance is not

affected. If it is selected as too large, the performance gets worse since the threshold

values become too large to differentiate relatively small amplitude differences.

Again, after many trials and observations, when all other parameters are fixed, we saw

that increasing the number of BS antennas N requires the variance to be increased,

whereas increasing the number of users K requires the SNR to be decreased. Also,

the PRQ approach does not yield any benefits and causes performance degradation
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Figure 3.6: The BER plots obtained by the ML detector with ZTQ and PRQ in 64× 1

and 64× 2 systems with 16-QAM and 128× 1 system with 64-QAM in the Rayleigh

fading channel.

below a particular SNR value. Hence, gradually increasing the threshold variance after

a starting SNR value ρstart is an appropriate technique. In order to avoid selecting

different variances for different scenarios, we parameterize the starting SNR value as

ρstart = 5 log10

(
100

K

N

)
dB. (3.52)

This selection may not be optimal and relies only on empirical findings and observa-

tions. Now that the starting SNR value is selected, the threshold variance can be found

accordingly using

σ2
τ = R

(
Es

ρstart
−N0

)
= R

(
1

ρstart
−N0

)
. (3.53)

The effective nonlinear channel between the users and the receiver antennas changes

when the threshold information is used during baseband processing. If the information

were not used, the effective nonlinear channel would have remained the same, and only

a decrease in the SNR would occur since the thresholds would act as an additional

form of noise over AWGN, as discussed while computing the conventional linear

filters in Subsection 3.4.2.
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Upon generation, rescaling the thresholds to strictly satisfy ∥τ∥2 = Nσ2 is helpful to

obtain more stable results. The proposed PRQ scheme does not require updates for

different channel realizations and depends only on the SNR. In Fig. 3.6, BER curves

of 64× 1 and 64× 2 systems with 16-QAM, and a 128× 1 system with 64-QAM are

shown both with ZTQ and PRQ in the Rayleigh fading channel. The peak performance

is achieved, i.e., SR occurs, between 5-10 dB of SNR for each system with ZTQ. The

two-user performance with 16-QAM is better than that of the single-user at high SNR

with ZTQ, which shows how multi-user interference (MUI) can act as a dither source.

With PRQ, we not only stop the performance degradation but also obtain superior

performance while approaching and at the SR point.

In addition to quantization, changing the sampling characteristics can help obtain

better performance. In [16, 46, 54, 66], the merits of temporal oversampling in massive

MIMO systems are shown. Instead of fixed-rate oversampling, dynamic oversampling

is proposed as an efficient method to increase the achievable rate in [67]. Randomized

sampling applications such as sampling with jitter can also be a valuable method for

low-resolution systems, as discussed in [68]. However, due to correlation, changing

the sampling characteristics complicates the noise and channel models. Symbol-rate

sampling eases the baseband processing techniques and lowers the computational

complexity of detection and estimation techniques.

3.7.3 Achievable Rate in One-Bit SIMO Systems

In this subsection, the achievable rate analysis in low-dimensional SIMO systems

is made to better understand the merits of PRQ. Again, based on observations, we

have seen that the thresholds should be optimized according to the given channel

realization for the conventional MIMO systems, i.e., when the number of antennas is

small. Thankfully, massive MIMO systems can benefit from a more robust approach

due to a large number of antennas, and important performance gains can be obtained

without optimizing the thresholds and utilizing PRQ. Threshold optimization is also

tricky since the mutual information or the error probability should be optimized. There

is no analytical formulation for the error probability, and the mutual information

calculation is very costly and not even possible for large-scale systems due to memory
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requirements. The problem of finding the capacity-achieving quantization thresholds

in the case of availability of CSI only at the receiver can be written as

τ̂ = arg max
τ∈R2N

I(r;x |H , τ ), (3.54)

for fixed p(x), where I(r;x | H , τ ) denotes the conditional mutual information

between the quantized observation and the transmitted signal vectors given the channel

realization H and the selected quantization threshold vector τ . For our setup, the

analytical expression for the conditional mutual information can be written as

I(r;x |H , τ ) =

− 1

MK

∑
x1∈M2K

∑
r∈{±1}2N

p(r | x1,H , τ ) log2

 1

MK

∑
x2∈M2K

p(r | x2,H , τ )


− 1

MK

∑
x3∈M2K

2N∑
n=1

Hb

(
Φ
(√

2ρ(hT
nx3 − τn)

))
, (3.55)

where p(r | x,H , τ ) =
∏2N

n=1 Φ
(√

2ρ rn(h
T
nx− τn)

)
is the likelihood function, and

Hb(.) is the binary entropy function. A detailed derivation of mutual information is

given in Appendix B.

Finding the optimal thresholds is difficult since the solution is not necessarily unique,

and the dimensionality is very high for the massive MIMO setup. To observe the

effects of PRQ with the previously explained distribution of the thresholds for SIMO

systems, we resort to random sampling by utilizing the Monte Carlo method. For the

simulations, we aim to find the achievable rate with ZTQ and PRQ in a SIMO system

where a BS equipped with 4 antennas is serving a single user in AWGN and Rayleigh

fading channels. The conditional mutual information for any given channel realization

is calculated for 500 random realizations of the thresholds for the PRQ scheme and

1 with zero thresholds for ZTQ. The average rate and the maximum rate obtained

during trials for each channel are recorded with PRQ. Since the AWGN channel is

deterministic with a unit CIR, only a single channel realization is utilized. For the

Rayleigh channel, the average is calculated over 1000 channel realizations to reach the
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Figure 3.7: Mutual information plotted against SNR for both AWGN (a) and Rayleigh

(b) channels where N = 4, K = 1, and M = 4, 16, 64 with one-bit ZTQ (lines) and

PRQ (markers) schemes. The average and the maximum rate obtained with the PRQ

scheme are recorded.

final results.

The mutual information plots with respect to SNR are shown in Fig. 3.7a for the

AWGN channel and in Fig. 3.7b for the Rayleigh fading channel. The performances

in both channels exhibit no significant difference when the QPSK constellation is

used. This is an intuitive result since each pair of ADCs from each antenna divides

the 2D space into four regions, the cardinality of the QPSK alphabet is also four, and

the modulation scheme is amplitude-invariant, i.e., the amplitude of each symbol is

equal to
√
Es. However, the behavior changes drastically for 16-QAM and 64-QAM.

The SR phenomenon is visible in the AWGN channel with 16-QAM and 64-QAM

constellations. We can no longer observe SR in this 4-antenna scenario for the Rayleigh

fading channel. This seems to be due to the amplitude and phase-varying nature of

the Rayleigh fading channel, which helps obtain different instantaneous SNR values

at each branch. Nonetheless, the PRQ scheme outperforms the ZTQ scheme for both

channel types, even on average. If the thresholds are optimized with respect to the

given channel realization, the rate can be increased further in this low-dimensional

setup.
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3.7.4 Minimum Hamming Distance Analysis

Calculating mutual information for the massive MIMO setup is not feasible due to

very large dimensionality. Therefore, another approach is followed to grasp how

the PRQ scheme works for massive MIMO systems using an intuition from coding

theory [27, 69]. Quantized observations can be seen as binary codewords in space for

each given channel realization. Channel coding starts with the transmission of symbols

from the uplink users. The signals pass through the channel and arrive at the receiver

antennas. Additive noise corrupts the incoming signals, and the quantization operation

occurs. The only quantization variable for our scenario is the vector of quantization

thresholds. Hence, we can only intervene in the encoding process by changing the

thresholds. The resultant spatial channel code will determine our error performance.

A measure of the performance of a code is its minimum Hamming distance, which

determines the diversity order of a code in fading channels [70]. In this part, we will

investigate the average of the minimum Hamming distance of the space code obtained

in the Rayleigh fading channel via Monte Carlo simulations at infinite SNR with both

ZTQ and PRQ schemes. The infinite SNR scenario is chosen to understand the high

SNR behavior, which is a critical part of our purposes. For a given channel and a given

threshold realization, the minimum Hamming distance of the codebook is calculated

for the infinite-SNR scenario as

dmin
H = min

x1,x2∈M2K
dH(c(x1), c(x2)), (3.56)

where c(.) is the spatial codeword representation of its argument vector, which was

defined in (3.48).

The average of the minimum Hamming distance in the Rayleigh fading channel is

obtained for both ZTQ and PRQ scenarios where 104 randomly generated channel

realizations are matched with randomly generated quantization thresholds. Table 3.1

shows the results for different scenarios. An interesting result obtained from these sim-

ulations is that when ZTQ is employed with M ≥ 16, the minimum Hamming distance

of the space code is 0, which means that the code is not uniquely decodable. Errors will

indeed occur during the decoding operation due to the SR phenomenon; however, if we
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Table 3.1: Average Minimum Hamming Distance of the Space Code in the Rayleigh

Fading Channel Calculated Using (3.56)

N K M with ZTQ with PRQ

64 1 4 64.00 47.59

64 2 4 35.41 28.98

64 1 16 0.00 11.92

64 2 16 0.00 5.03

64 1 64 0.00 1.85

128 1 16 0.00 25.63

128 1 64 0.00 6.39

utilize the PRQ scheme, which gives us a chance to intervene in the codebook design,

the minimum Hamming distance of the code increases. Hence, a superior performance

compared to the ZTQ scheme will be obtained. QPSK modulation does not benefit

from PRQ, as was the case during the mutual information calculations. Also, a larger

alphabet size leads to a smaller minimum Hamming distance, whereas a larger number

of antennas, i.e., larger codeword length, leads to an increased minimum Hamming

distance for the space code with PRQ. Since the rate of the code is Rc =
K log2(M)

2N
,

increasing K or M results in a lower, and increasing N leads to a larger minimum

Hamming distance.

3.8 Computational Complexity Analysis

In this part, we compare the computational complexities of the proposed methods

with that of the existing detectors. A downside of using Newton’s method in the

proposed first-stage detector BND is that it requires matrix inversion. Even though

the gradient descent algorithm may not require matrix inversion, Newton’s method

requires much fewer iterations to reach the optimum [43, 71]. The part that dominates

the complexity of BND is the calculation of the step towards the optimum, shown in

line 7 of Algorithm 1. Multiplication of the inverse of the Hessian and the gradient

does not require calculating the inverse of the matrix directly. However, calculating the
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Table 3.2: Computational Complexity Comparison of the Proposed Detectors with the

Existing Detectors from the Literature

Method Preprocessing Stage 1 Stage 2

BND-NCD - O(NK2T ) O(NK2)

MRC/BMRC O(NK) O(NK) -

ZF/BZF O(NK2) O(NK) -

ML O(NK|M|2K) O(N |M|2K) -

SVM-based - O(NKκ(N)) -

OBMNet-NNS Offline Training O(NKL) O(max(M,N)KM)

Hessian matrix itself is a more computationally complex procedure since it involves

a complexity of O(NK2) where N ≫ K for massive MIMO systems. Since this

procedure is repeated until the termination of the algorithm, the resulting complexity

isO(NK2T ), where T denotes the number of iterations of the algorithm. The average

number of iterations of BND is around 3 − 5, and the number of unreliable indices

for NCD is generally small at high SNR. Therefore, the complexity-dominant part of

NCD is the last part where ML detection is applied on the reduced set with cardinality

P . Even though we let P get as large as 2K during simulations, the average cardinality

of the candidate set is small at high SNR, resulting in a complexity of O(NK2) also

for NCD. Note that computation of the nonlinear function ψ(x) can be made using

only φ(x) since they have the same arguments.

The complexities of the proposed BND-NCD and the existing detectors from the

literature are shown in Table 3.2. The MRC-based detectors offer the lowest complexity

with poor error performance. Then comes ZF-based detectors offering better but

inadequate performance and with higher computational complexity due to matrix

inversion. The ML detector has the highest complexity, which is not feasible to operate

in commercial systems. SVM-based detector from [3] reportedly has complexity

O(NKκ(N)), where κ(.) is a super-linear function, and large values of N may lead

to unaffordable complexity. OBMNet from [2], reportedly has complexity O(NKL)
in its first stage, where L is the number of layers of the proposed deep neural network

(DNN) architecture and a complexity of O(max(M,N)KM) in its second stage NNS
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algorithm. Even though OBMNet does not require matrix inversion, the neural network

needs an offline training stage. A much fewer number of iterations is necessary by

BND, which makes the complexities of the detectors comparable. Also, the algorithm

can be terminated early when BND’s stopping criterion is satisfied. In contrast,

the number of layers defined as part of the deep unfolded network architecture is a

constant for OBMNet. Finally, the second stage NNS algorithm of [2] is a recursive

algorithm with many for-loops. NCD omits for-loops and calculates the candidate

set efficiently. MMSE-based filters are not included in the discussions since their

complexity-performance trade-off is poor compared to the ZF-based filters. The

MMSE filter performs the same as the ZF filter, and the BMMSE filter for non-zero

threshold quantization does not have a compact analytical expression.

3.9 Simulation Results

In this section, the error performances of the proposed methods are investigated.

For BND, the maximum number of iterations Tmax = 15, the damping factor ζ is

calculated by taking ρt = 20 − 160K
N

dB, the penalty control parameter θ = 20,

and the termination threshold ϵ = 10−4

log2(M)
. For NCD, the maximum size of the set

of nearest spatial codewords P = 2K, to adjust the size of the unreliable region,

γ = d/2 with d =
√

3
2(M−1)

, and the maximum size of the set of unreliable indices

Umax = K. While using PRQ, the starting SNR ρstart is chosen according to (3.52),

and the generated threshold values are chosen using (3.53). All simulation results are

obtained with the uncorrelated Rayleigh fading channel model as explained in Section

3.3.

3.9.1 Performance Comparison of Detection Methods with ZTQ and PRQ

We now compare the performances of the linear detectors with that of the proposed

methods. The linear detectors are also matched with the proposed NCD in the second

stage. The resultant BER curves obtained by ZTQ and the proposed PRQ schemes

are shown in Fig. 3.8. We have a 128 × 4 uplink MIMO system with the 16-QAM

constellation. BND outperforms the linear detectors, ZF-type receivers top their MRC-
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Figure 3.8: One and two-stage BER performances of the linear and the proposed

detectors in a 128 × 4 system with 16-QAM using ZTQ (a) and PRQ (b) schemes,

where linear detectors are also matched with the proposed NCD for the second stage.

type counterparts, and the Bussgang-based receivers perform slightly better than the

conventional linear receivers. The performance gap between the conventional linear

and Bussgang-based linear detectors is smaller than the previously reported works

from the literature [2, 23] due to the quantization label ℓq. Substantial gains can be

obtained by utilizing a two-stage approach for all scenarios. Linear detectors do not

benefit much from PRQ, and only the second stage performance of BZF differs where a

slightly lower error floor is obtained. While the linear detectors utilize only the first and

second-order statistics of the unquantized input signal with Gaussian assumption for

the Bussgang decomposition, the likelihood-based detectors can perfectly characterize

the posterior probability. SR is visible for all detectors with ZTQ, whereas it is no

longer observed at least down to BER = 10−5 for BND and BND-NCD with PRQ.

3.9.2 Effect of Changing the Number of Users and the Number of BS Antennas

on the High SNR Performance

Next, we investigate the effect of the number of users on the system’s performance

with the proposed BND-NCD by utilizing both ZTQ and PRQ. BER performances

for N = 64 with M = 16, N = 128 with M = 64, and N = 256 with M = 256

with respect to the number of users at ρ = 30 dB are plotted in Fig. 3.9. Starting with
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Figure 3.9: The BER performance of BND-NCD obtained by ZTQ and PRQ at ρ = 30

dB with respect to the number of users when N = 64 with 16-QAM, N = 128 with

64-QAM, and N = 256 with 256-QAM.

K = 1, increasing the number of users results in better performance up to a certain

point with ZTQ, which also shows how MUI acts as a source of dither. As the number

of users increases, the performance gap between the ZTQ and PRQ schemes decreases.

They perform the same after some point, which happens at K = 8 for N = 64 and

larger values of K for both N = 128 and N = 256. As N increases, the starting point

where ZTQ and PRQ schemes perform the same is delayed to a larger value of K,

which means that the merits of the PRQ scheme get more evident as the number of BS

antennas increases.

The performance in SIMO systems that employ ML and the proposed BND-NCD

with various high-order modulations, specifically, M = 256, 1024, 4096, are now

examined. The BER performances obtained with ZTQ and PRQ schemes against the

logarithm of the number of BS antennas are shown in Fig. 3.10. Based on this and the

previous results, we can state that when K/N is small, the spatial degrees of freedom

of the system is not adequately utilized with the ZTQ scheme. Moreover, we can

also see that modulation orders such as 256, 1024, and 4096 can be used in one-bit

quantized systems with PRQ if a sufficient number of BS antennas are utilized. Note

that a different hyperparameter selection for NCD is made for this part, as indicated in

the caption, to increase the performance of the proposed detector for the single-user
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Figure 3.10: BER performance with respect to the number of antennas at ρ = 30 dB

obtained for 256-QAM, 1024-QAM and 4096-QAM when K = 1 using ML with

ZTQ and PRQ, and BND-NCD with PRQ. For this simulation only, Umax = 2 and

P = log2(M)/2.

system. The proposed two-stage detector can perform very close to ML with much

lower computational complexity. For example, for 4096-QAM, ML needs to search for

all the 4096 symbols to maximize the log-likelihood function. The proposed scheme

requires 3 − 4 iterations of BND and a search within a much smaller set X with

cardinality at most log2(M)/2 = 6.

3.9.3 Performance Comparison of the Proposed and Existing Methods

The performances of the proposed detector and the existing detectors from the literature,

namely, SVM-based from [3], and OBMNet from [2] are compared in Fig. 3.11, where

the BER performances of one and two-stage detectors for a 128 × 8 system are

obtained with 16-QAM. The second stage for OBMNet is the nearest neighbor search

(NNS) algorithm from [2], and the SVM-based detector is utilized as a single-stage

detector. The cardinality of the set of nearest neighbors to conduct ML detection

for the second stage detector of OBMNet is also chosen as 2K = 16. The plots

show that the high-SNR error floor of the one-stage BND coincides with that of

the two-stage OBMNet-NNS, the most recently proposed high-order modulation

supporting detection scheme from the literature. Even when ZTQ is employed, BND-
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Figure 3.11: The BER performance comparison of the proposed detector with OBMNet

[2] and SVM-based [3] detectors from the literature in a 128× 8 system that employs

16-QAM. NNS is the nearest neighbor search algorithm, the second-stage detector

from [2]. The maximum cardinality of the set of nearest neighbors for NNS is chosen

as 2K = 16, the same as NCD.

NCD outperforms both machine learning based approaches. Also, unlike any of the

detectors included for comparison, the proposed two-stage BND-NCD with PRQ

reduces the error floor below 10−6. BND requires 4.5 iterations on average, whereas

the number of layers of OBMNet, which is a DNN-based detector, is 15. Note that

the SVM-based detector and OBMNet are selected among other candidates since they

support 16-QAM, and their complexities are comparable to that of the BND-NCD

method.

3.9.4 Performance and Complexity with Multi-User and High-Order Modula-

tions

The error performances of several high-order modulation schemes in multi-user settings

are examined as a final comparison. Additionally, complexity-related measurements

regarding the average number of iterations of BND and the average size of the reduced

set X are also made. BER performances of systems employing 512 BS antennas are

obtained for K = 4 with 1024-QAM, K = 8 with 256-QAM, and K = 12 with

64-QAM in Fig. 3.12a with ZTQ and PRQ, and complexity-related measurements are
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Figure 3.12: BER performance (a) and complexity-related measurements (b) against

SNR obtained with BND-NCD when N = 512 for K = 4 with 1024-QAM, K = 8

with 256-QAM, K = 12 with 64-QAM. BER plots are obtained with ZTQ and PRQ,

whereas complexity-related measurements are recorded with PRQ. Tavg is the average

number of iterations of BND, and |X |avg is the average size of the reduced set in NCD.

plotted in Fig. 3.12b with PRQ. The proposed PRQ scheme can mitigate the effects

of SR and lower the error floors. Hence, the sources of spatial degrees of freedom

are better exploited by PRQ for such a large value of N . For complexity, we can see

that 3− 5 iterations are required for BND, and the number of iterations increases as

K increases. |X |avg decreases as SNR increases, which means that employing only

the first-stage BND is sufficient at low SNR since the performance gaps between the

one and two-stage approaches are very small at low SNR, which was shown in Fig.

3.8. At high SNR, even though the number of users is the largest for 64-QAM, it

also has the smallest |X |avg. Therefore, as M increases, a more accurate estimation

of the amplitudes is required. Note that the termination threshold ϵ of BND and the

maximum size of the set of candidates P of NCD can be changed to obtain a trade-off

between error performance and computational complexity.

3.10 Discussion

This chapter proposes a new two-stage detector for uplink one-bit massive MIMO

systems that operate with pseudo-random quantization (PRQ). In the first stage, BND
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estimates the transmitted signal using the log-likelihood function via Newton’s Method.

A penalty method to realize the box constraints related to the chosen constellation is

also utilized to avoid saddle points during optimization. The second-stage detector,

NCD, is proposed to refine the estimate from the first stage to enhance detection

performance. The second stage creates a small set to select the candidate that max-

imizes the likelihood using the first-stage estimate. The set formation is based on

the sign constraints imposed by one-bit quantization. The proposed PRQ scheme

helps mitigate the detrimental effects of SR on detection performance. With the pro-

posed two-stage detector and PRQ, one-bit multi-user massive MIMO systems can

operate with high-order modulation schemes such as 256-QAM or 1024-QAM, and

superior error performance to the existing detectors can be obtained with comparable

complexity.

61



62



CHAPTER 4

DETECTION UNDER FREQUENCY-SELECTIVE FADING

4.1 Motivation

The BND-NCD approach is advantageous for SC-MIMO systems that employ PRQ

under frequency-flat fading. However, frequency-selective fading is a more frequently

encountered scenario where the wireless channel introduces ISI on the received signal

at the BS. Time-domain equalization (TDE) can be very costly since both the channel

length (L) and the data block length (V ) can be very large in practice. Therefore,

resorting to frequency-domain equalization (FDE) tools is beneficial. However, since

it is not easy to statistically model the quantization distortion in the FD in one-bit

MIMO systems, FDE based on the likelihood function is not straightforward. The

motivation to utilize a detection scheme based on the likelihood function comes from

our observations in Chapter 3, where we saw that the linear methods do not benefit

much from PRQ compared to the likelihood-based BND-NCD. Therefore, just like

the idea from the BND-NCD approach in Chapter 3, a detection scheme that would

be compatible with the non-zero threshold idea to employ PRQ and optimize the log-

likelihood with affordable computational complexity is the motivation in this chapter.

We develop the system model by building upon Sections 2.2 and 2.3. Then, we again

focus on linear detectors by utilizing the Bussgang decomposition. Next, we develop a

low-complexity FDE scheme called PQND. With a similar motivation as in Chapter 3,

we adopt the PRQ scheme also for the frequency-selective fading scenario and explain

its usage. In the end, we discuss the computational complexity and obtain the error

performances of the proposed methods.

Different solutions for detection have been proposed for low-resolution systems op-

63



erating under frequency-selective fading. Many of these methods focus on an SC

transmission scheme to benefit from the relatively low peak-to-average power ratio

(PAPR) and amplitude variation compared to OFDM. Various types of message-

passing algorithms are present in the literature. An algorithm based on Bussgang

decomposition and Ungerboeck factorization for CP-free SC systems is presented

in [37]. In [22], phase-only measurements are utilized for detection, and in [72],

massive MIMO with spatial modulation is considered. Even though SC transmission

can be favorable, OFDM is a widely used scheme with many advantages in resource

allocation and has variants such as OFDMA. In [4], a first-order projected gradient

descent algorithm, 1BOX, is utilized in one-bit OFDM systems, which will be used as

the benchmark algorithm in this chapter. Exact and inexact expectation maximization

(EM) algorithms are deployed in [39] and [38], respectively. Note that 1BOX is chosen

as the benchmark since exact EM requires high complexity, and inexact EM performs

very close to 1BOX in terms of error rate. A significant setback of the 1BOX method is

that it utilizes a first-order optimization technique, i.e., the gradient descent algorithm,

and different system setups require the algorithm step size to be adjusted for fast

convergence.

4.2 Contributions

The main contributions of this chapter can be summarized as follows:

• As in the case of SC systems in Chapter 3, we utilize PRQ in our system

to exploit dithering by modifying the quantization thresholds to mitigate the

negative effects of SR on detection performance in frequency-selective fading

channels with OFDM and SC-FDE.

• With a similar motivation as in Section 3.4, we obtain the appropriate modifica-

tions for linear detectors under frequency-selective fading, this time by utilizing

FD relations.

• We formulate equalization in one-bit MIMO-OFDM systems as a constrained

optimization problem, and propose to solve it using a second-order optimization

technique, projected Newton’s method. Unlike the 1BOX method from [4],
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this approach does not require selecting suitable step sizes for different system

setups due to the additional second-order derivative information.

• After deriving the necessary relations using Newton’s method, we utilize two

approximations to decouple equalization among different subcarriers and to

avoid matrix inversion to reach the proposed Projected Quasi-Newton Detector

(PQND).

• By employing the PRQ scheme and the proposed PQND, we show that one-

bit uplink massive MIMO-OFDM systems can support high-order modulation

schemes such as 64-QAM and 256-QAM in multi-user settings, and the pro-

posed detector outperforms the benchmark detector from [4] in terms of error

performance with very similar computational complexity.

4.3 System Model

The fundamentals of the signal and system models were discussed in Chapter 2.

Building upon the multi-carrier system description in Section 2.3 to obtain compact

and vectorized forms, we consider an N ×K uplink massive MIMO-OFDM system

with V subcarriers, where K single-antenna users are served by a BS equipped with N

antennas. Extension to CP-SC systems is straightforward and will be discussed in the
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Figure 4.1: A block diagram that summarizes the OFDM system model in the

frequency-selective fading scenario. S/P is for serial-to-parallel, and P/S is for parallel-

to-serial.
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following sections. Constellation symbols to be transmitted are selected independently

from an M -QAM alphabet, denoted as M̄, with equal likelihood at all subcarriers

and for all users. A block diagram that summarizes the adopted system model is

shown in Fig. 4.1. The FD symbol of the kth user at the vth subcarrier is shown as

x̄k[v] for k = 1, 2, . . . , K and v = 0, 1, . . . , V − 1, where E[|x̄k[v]|2] = Es = 1.

We denote the vector containing the FD symbols of all users at the vth subcarrier

as x̄[v] =
[
x̄1[v] x̄2[v] . . . x̄K [v]

]T
for v = 0, 1, . . . , V − 1. The concatenated

version of an FD vector for all subcarriers or a TD vector for all time indices can be

obtained as

x̄ =
[
x̄[0]T x̄[1]T . . . x̄[V − 1]T

]T
. (4.1)

Each user takes their FD symbols’ inverse unitary DFT before transmission to obtain

their TD signals, which can be shown as

s̄[m] =
1√
V

V−1∑
m=0

x̄[v]e+j2πmv/V , (4.2)

for m = 0, 1, . . . , V − 1. Equivalently,

s̄ = Q̄H
Kx̄, (4.3)

where Q̄i = F̄ ⊗ Ii for i ∈ Z+ and F̄ is the unitary DFT matrix of size V ×V , whose

nth row and kth column can be expressed as

[F̄ ](n,k) =
1√
V

exp

(
−j2πnk

V

)
, (4.4)

for n = 0, 1, . . . , V − 1 and k = 0, 1, . . . , V − 1. Hence, Q̄H
K corresponds to each

user’s unitary inverse DFT operation separately.

We assume the BS has perfect knowledge of the CIR and the multipath channel has

L taps. Hence, each user adds a CP of length LCP ≥ L − 1 to the beginning of

their TD signals to help mitigate the effects of ISI at the receiver side. Then, the
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CP-added version of the TD signal vector is passed through an ideal DAC and I/Q

modulated. The CIR at the ℓth tap, between the kth user and nth receiver antenna is

denoted as h̄(n,k)[ℓ] for k = 1, 2, . . . , K, n = 1, 2, . . . , N , and ℓ = 0, 1, . . . , L − 1.

The ℓth tap of the CIR between all users and BS antennas can be represented as

H̄ [ℓ], where [H̄ [ℓ]](n,k) = h̄(n,k)[ℓ] with
∑L−1

ℓ=0 E[|h̄(n,k)[ℓ]|2] = 1. Assuming perfect

synchronization, the received signal is I/Q demodulated, symbol-rate sampled, and CP

is discarded. The unquantized received TD signal at time m can be expressed as

ȳ[m] =
L−1∑
ℓ=0

H̄ [ℓ]s̄[⟨m− ℓ⟩V ] + w̄[m], (4.5)

for m = 0, 1, . . . , V − 1, where ȳn[m] and w̄n[m] for n = 1, 2, . . . , N represent the

unquantized version of the received signal and the thermal noise sample at antenna

n and time m, respectively. w̄[m] ∼ CN (0N , N0IN) for m = 0, 1, . . . , V − 1, and

there is no temporal correlation among noise samples. An equivalent fully vectorized

form of (4.5) can also be obtained. To do so, we define the block circulant MIMO

channel circular convolution matrix of size NV ×KV as

H̄b =



H̄ [0] 0N×K . . . 0N×K H̄ [L− 1] . . . H̄ [1]

H̄ [1] H̄ [0]
. . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . H̄ [L− 1]

H̄ [L− 1] . . . H̄ [1] H̄ [0] 0N×K . . . 0N×K

0N×K
. . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . 0N×K

0N×K . . . 0N×K H̄ [L− 1] . . . H̄ [1] H̄ [0]


,

(4.6)

which, due to CP, can be expressed as

H̄b = Q̄H
NΛ̄bQ̄K , (4.7)

where Λ̄b is the block diagonal FD MIMO channel matrix, which can be shown as
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Λ̄b =


Λ̄[0] 0N×K . . . 0N×K

0N×K Λ̄[1]
. . . ...

... . . . . . . 0N×K

0N×K . . . 0N×K Λ̄[V − 1]

 . (4.8)

The decomposition shown in (4.7) utilizes the fact that the columns of the DFT matrix

are eigenvectors of any circulant matrix [73] and applies this to the MIMO scenario

as in [46]. Hence, the unquantized representation of the received signal can be found

using

ȳ = H̄b Q̄
H
K x̄+ w̄

= Q̄H
NΛ̄b x̄+ w̄

= Ḡ x̄+ w̄,

(4.9)

where Ḡ = Q̄H
NΛ̄b represents the effective channel matrix, w̄ is the spatially and

temporally white thermal noise vector. Then, the unquantized representation of the

observations can be used to find the one-bit quantized observations as

r̄ = sign(ℜ{ȳ − τ̄}) + j sign(ℑ{ȳ − τ̄}), (4.10)

where τ̄ is the time-invariant quantization threshold vector with components τ̄ [m1] =

τ̄ [m2] = τ̄ for m1,m2 ∈ {0, 1, . . . , V − 1}. These thresholds need not be updated

for different channel realizations. The detailed procedure regarding pseudo-random

threshold assignment is explained in Section 4.7. The quantized observation from

the nth antenna at time m can be shown as r̄n[m] for n = 1, 2, . . . , N and m =

0, 1, . . . , V − 1.

Due to the structure of the proposed detector, we need to be able to work with real

numbers only. Using the notation with real numbers as defined in (3.4), (4.10) can be

written as

r = sign (Gx− τ +w) . (4.11)
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We define the SNR as the ratio of the average received signal power per user to the

average noise power at each antenna such that

ρ =
E
[∑L−1

ℓ=0 |h̄(n,k)[ℓ]s̄k[⟨m− ℓ⟩V ]|2
]

E[|w̄n[m]|2]
=
Es

N0

=
1

N0

. (4.12)

4.4 Linear Detection Methods

Due to their low complexities, linear methods are also popular for the frequency-

selective fading scenario [35, 48]. However, ISI introduced by the channel increases

the complexity and analysis of one-bit MIMO systems under frequency-selective

fading. Conversion to the FD from TD is not straightforward as in unquantized

systems due to the nonlinearity of one-bit quantization that occurs in the TD. In this

section, just like in Section 3.4, we derive the Bussgang-based and conventional linear

filters for one-bit massive MIMO systems, this time for the frequency-selective fading

scenario. Before starting, defining the FD counterparts of the relations shown in the

system model would be helpful. We define the FD representations of the TD quantized

and unquantized observations, the TD thermal noise samples, and the TD CIR matrices

as

κ̄[v] =
1√
V

V−1∑
m=0

r̄[m]e−j2πmv/V , (4.13)

η̄[v] =
1√
V

V−1∑
m=0

ȳ[m]e−j2πmv/V , (4.14)

q̄[v] =
1√
V

V−1∑
m=0

w̄[m]e−j2πmv/V , (4.15)

Λ̄[v] =
L−1∑
ℓ=0

H̄ [ℓ]e−j2πℓv/V , (4.16)

for v = 0, 1, . . . , V −1, respectively. As a result, the unquantized input-output relation

of the system can be expressed in the FD as
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η̄[v] = Λ̄[v]x̄[v] + q̄[v], (4.17)

for v = 0, 1, . . . , V − 1. Since the TD noise samples w̄[m] are Gaussian, and DFT is

a linear and unitary transform, the distribution of the FD noise samples q̄[v] are the

same as the TD samples, i.e., CN (0N , N0IN).

4.4.1 Bussgang-Based Linear Filters

We need to linearize the system’s input-output relation in the TD as we did for the

frequency-flat systems. Note that derivations are made for a system employing OFDM

transmission, but they can easily be extended to an SC system. As in Section 3.4, by

adopting the generalized Bussgang decomposition for non-zero threshold quantization

from [47], the linearized input-output relation using the fully vectorized notation can

be expressed as

r̄e = r̄ − b̄ = ḡ ⊙̄ ȳ + d̄, (4.18)

where r̄e ∈ CNV is the conditionally zero-mean version of the quantized observations,

d̄ ∈ CNV is the quantization noise vector, ḡ ∈ CNV is the vector of Bussgang gains,

and b̄ ∈ CNV is the bias vector over all time indices. Using the relations (3.8) and (3.9)

from the frequency-flat scenario, the stationarity of the observations due to CP [46],

and the time-invariance of the threshold vector we can state that

ḡ = ḡ[0] = . . . = ḡ[V − 1] ∈ CN , (4.19)

b̄ = b̄[0] = . . . = b̄[V − 1] ∈ CN . (4.20)

Hence, the Bussgang gain and bias vectors are time-invariant over a data block. We

can write an alternative form of the linearized input-output as
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r̄e[m] = r̄[m]− b̄ = ḡ ⊙̄ ȳ[m] + d̄[m]

=
L−1∑
ℓ=0

(
ḡ ⊙̄ H̄ [ℓ]

)
s̄[⟨m− ℓ⟩V ] + ḡ ⊙̄ w̄[m] + d̄[m]

=
L−1∑
ℓ=0

H̄e[ℓ]s̄[⟨m− ℓ⟩V ] + w̄e[m],

(4.21)

for m = 0, 1, . . . , V − 1, where r̄e[m] = r̄[m]− b̄ is the bias compensated quantized

observation vector at timem, H̄e[ℓ] = ḡ ⊙̄ H̄ [ℓ] for ℓ = 0, 1, . . . , L−1 is the effective

channel matrix, and w̄e[m] = ḡ ⊙̄ w̄[m]+d̄[m] form = 0, 1, . . . , V −1 is the effective

noise vector. Similar to the frequency-flat scenario, the Bussgang gain vector and the

bias vector can be calculated as

ḡn =

√
4

πβn

(
exp

(
−ℜ{τ̄n}

βn

)
+ j exp

(
−ℑ{τ̄n}

βn

))
, (4.22)

b̄n = 2Φ

(
− ℜ{τ̄n}√

βn/2

)
− 1 + j

(
2Φ

(
− ℑ{τ̄n}√

βn/2

)
− 1

)
, (4.23)

where the vector β ∈ RN consisting of the diagonal part of the TD cross-covariance

matrix C̄y[m] = E[ȳ[n+m]ȳ[n]H ] calculated at time m = 0 can be found as

βn = [C̄y[0]](n,n) =
1

V

V−1∑
v=0

[C̄(v)
η ](n,n), (4.24)

and C̄
(v)
η = E[η̄[v]η̄[v]H ] = Λ̄[v]Λ̄[v]H + N0IN . This approach is taken from [46]

to efficiently calculate the TD covariance matrices using the FD covariance matrices

since calculations in the TD require taking the ISI introduced by the channel into

account.

Now, the linearized TD relation can be transferred to the FD by taking the unitary DFT

of both sides of (4.21) to obtain

κ̄e[v] = Λ̄e[v]x̄[v] + q̄e[v], (4.25)
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for v = 0, 1, . . . , V − 1, where the FD representations of the bias compensated

quantized observation vector r̄e[m], the effective channel matrix H̄e[ℓ], and effective

noise vector w̄e[v] for v = 0, 1, . . . , V − 1 can be calculated respectively as

κ̄e[v] =
1√
V

V−1∑
m=0

r̄e[m]e−j2πmv/V , (4.26)

q̄e[v] =
1√
V

V−1∑
m=0

w̄e[m]e−j2πmv/V , (4.27)

Λ̄e[v] =
L−1∑
ℓ=0

H̄e[ℓ]e
−j2πℓv/V . (4.28)

For SC transmission, we can replace x̄[v] with

ā[v] =
1√
V

V−1∑
m=0

x̄[m]e−j2πmv/V , (4.29)

to obtain the FD relations since the constellation symbols are now transmitted in the

TD.

According to (4.25), subcarrier-level processing is applicable in the FD, and it is

straightforward to calculate the BMRC and BZF filters. The BMRC and BZF can be

calculated, respectively as

F̄BMRC[v] = λ̄e[v]⊙ Λ̄e[v]
H , (4.30)

F̄BZF[v] = (Λ̄e[v]
HΛ̄e[v])

−1Λ̄e[v]
H , (4.31)

where the MRC scaling vector is obtained as

λ̄ek[v] =
1∑N

n=1 |[Λ̄e[v]](n,k)|2
. (4.32)
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As in the frequency-flat scenario, the BMRC filter maximizes the SNR, whereas the

BZF filter maximizes the SIR for the given scenario. The BMMSE filter is again

not included in our discussion due to the unavailability of a compact representation

for the covariance matrix of the quantized observations for the non-zero threshold

quantization scenario since the Arcsine law cannot be used.

For an OFDM system, a Bussgang-based linear filter of choice F̄ [v] is applied to the

FD representation of the bias-compensated quantized observations to obtain estimates

as

˜̄x[v] = F̄ [v]κ̄e[v], (4.33)

for v = 0, 1, . . . , V −1. For SC systems, x̄[v] and ˜̄x[v] are replaced with ā[v] and ˜̄a[v],

respectively. For SC systems, after the estimates ˜̄a[v] are found, they are converted

back to the TD to obtain the estimates of the constellation symbols as

˜̄x[m] =
1√
V

L−1∑
v=0

˜̄a[v]e+j2πmv/V . (4.34)

If further processing is not applied to the estimates, decisions are obtained by element-

wise minimum distance mapping, i.e., symbol-by-symbol detection, as

ˆ̄xk[m] = arg min
x̄∈M̄

|˜̄xk[m]− x̄|, (4.35)

for k = 1, 2, . . . , K and m = 0, 1, . . . , V − 1.

4.4.2 Conventional Linear Filters

As in Subsection 3.4.2, we try to find the appropriate quantization label to utilize

the quantization-unaware conventional linear filters. As discussed before, due to the

stationarity of the observations as a result of using CP, by utilizing the approximations

and assumptions from Subsection 3.4.2, the quantization label can be found as
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ℓq =

√
π(K +N0 + σ2

τ )

4
, (4.36)

where we assume the effective covariance matrix of the unquantized observations at

m = 0 is C̄y,e[0] = (K+N0+σ
2
τ )IN which can be valid when the number of channel

taps L and the number of users K is large or for the low SNR regime.

The MRC and ZF filters [56] can be found as

F̄MRC[v] = λ̄⊙ Λ̄[v]H , (4.37)

F̄ZF[v] = (Λ̄[v]HΛ̄[v])−1Λ̄[v]H , (4.38)

where the elements of the MRC scaling vector for k = 1, 2, . . . , 2K are defined as

λ̄k[v] =
1∑N

n=1 |[Λ̄[v]](n,k)|2
. (4.39)

Similar to (4.33), a conventional linear filter of choice F̄ [v] is applied to the FD

representation of the quantized observations κ̄[v] as

˜̄x[v] = ℓqF̄ [v]κ̄[v], (4.40)

for v = 0, 1, . . . , V − 1. (4.34) is again valid for the SC transmission and (4.35) is

used for symbol-by-symbol detection. Note that the MMSE filter is again not included

in our discussions since it yields the same performance as the ZF filter [2, 23].

4.5 Maximum Likelihood Sequence Detection (MLSD)

In the presence of independent AWGN on each branch of a one-bit quantized channel,

as in [2, 4, 32, 34], the log-likelihood of a quantized observation vector r, given a

transmitted signal x, a MIMO channel G, a vector of quantization thresholds τ , can

be expressed as
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L(x) = 1T
2NV ln

(
Φ

(√
2

N0

r ⊙ (Gx− τ )

))
. (4.41)

Then, we construct the maximum likelihood sequence detection (MLSD) for this

problem as

x̂MLSD = arg max
x∈M2KV

L(x) (4.42)

whereM is the set of possible values an FD symbol can take in either the in-phase or

quadrature part.

Even though the MLSD approach can provide high performance in terms of achievable

rate, it is not feasible for practical systems where V is generally very large, and

the search space consists of MKV candidates. Equivalents of MLSD with lower

complexity can be derived. For example, in [74], the Viterbi equalizer is constructed

for a one-bit CP-free SC system. However, the complexity is still large in multi-user

systems or when utilizing high modulation orders. Note that subcarrier-wise ML

detection in the FD is not applicable since conversion to the FD causes an unknown

conditional distribution for the quantized observations due to quantization noise.

4.6 Proposed Detection Method: Projected Quasi-Newton Detector (PQND)

To derive a low-complexity FDE scheme that can work with non-zero thresholds,

we start with MLSD. Then, we construct an equalizer using Newton’s method with

additional constraints. Since Newton’s method prevents subcarrier-wise processing and

requires matrix inversion, we move one step further with approximations to construct

a quasi-Newton method for equalization.

4.6.1 Equalization with Newton’s Method

To utilize gradient-based optimization techniques, we relax the discrete input set

constraint in (4.42) and reformulate the problem as
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x̃ = arg max
x∈R2KV

L(x)

subject to |xi| ≤Mb, i = 1, 2, . . . , 2KV,

∥x∥2 = KV,

(4.43)

where Mb is the boundary of the chosen constellation in one of the I/Q parts. For

M -QAM, Mb can be found as in (3.27).

While relaxing the discrete input set constraint, we utilize two restrictions. Each

element of x is inside the boundaries of the constellation, which is named as box

constraint [4], and the norm of x is set to KV , which is named as norm constraint.

The box constraint prevents diverging from the constellation’s boundaries during

equalization, using a priori knowledge of the chosen constellation scheme. The

norm constraint is related to the law of large numbers (LLN), for which we utilize

practical values of V being large in commercial systems. We assume the total number

of constellation symbols sent from all users in one OFDM symbol duration KV is

large. Since DFT operations are all unitary, we have E[∥x∥2] → KV Es = KV as

KV →∞.

Different strategies, such as the penalty method in Chapter 3 or the projection method

[2,4], can be followed to apply constraints with gradient-based optimization. We resort

to the projection method for both constraints, which does not require modifying the

cost function. To solve (4.43), we start with Newton’s method with projection. The

update equation of Newton’s method can be written as

x(t) = P(t)
(
x(t−1) − α(∇2L(t−1))−1∇L(t−1)

)
, (4.44)

where α ∈ R is the step size, and P(t)(.) is the projection function at iteration t which

is formally addressed in the next subsection. For now, we deal with only gradient and

Hessian calculations.

Similar to Section 3.6.1, in (4.44), ∇ ≜
[

∂
∂x1

. . . ∂
∂x2KV

]T
can be expressed as a

vector of size 2KV , and ∇2 can be expressed as the outer product of ∇ operator with

itself: ∇2 = ∇∇T . Hence, the ∇2 operator can be considered a 2KV × 2KV matrix.
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∇L(t) is the gradient of the log-likelihood function L with respect to x calculated

at iteration t. Similarly, ∇2L(t) is the Hessian of the log-likelihood function L with

respect to x, i.e., the Fisher information matrix, at iteration t. The gradient and Hessian

are functions of x, and we drop the argument for ease of notation. Also, we define a

new vector

u =

√
2

N0

r ⊙ (Gx− τ ), (4.45)

for compactness. Then, the gradient of the log-likelihood function can be found as

∇L =

√
2

N0

GT (r ⊙ φ (u)) , (4.46)

where φ(x) ≜ d
dx

ln(Φ(x)) = ϕ(x)/Φ(x). The Hessian matrix can be found as

∇2L =
2

N0

GT diag (ψ (u))G, (4.47)

where ψ(x) ≜ d2

dx2 ln(Φ(x)) = −xφ(x) − φ2(x), and it is applied element-wise to

its arguments. Since Φ(x) can approach zero exponentially fast, the computations

of ln(Φ(x)), φ(x), and ψ(x) in finite precision can cause problems such as divergent

behavior and uncertainties. The solution in Appendix A is also used herein.

4.6.2 Equalization with the Proposed Quasi-Newton Method

Newton’s method can provide complexity reduction compared to the MLSD approach.

However, it does not allow subcarrier-level equalization and requires a large matrix

inversion. In this subsection, we attempt to solve these problems using approximations

to obtain an equalization method with lower complexity. We define the step ∆x =

(∇2L)−1∇L, which can be written as

∆x =

(
2

N0

GT diag (ψ (u))G

)−1(√
2

N0

GT (r ⊙ φ (u))

)
. (4.48)

Since G = QT
NΛb, a more explicit form can be obtained as
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∆x =

√
N0

2

(
ΛT

b QN diag (ψ (u))QT
NΛb

)−1 (
ΛT

b QN (r ⊙ φ (u))
)
. (4.49)

The matrix to be inverted in (4.49) is a 2KV × 2KV matrix without any additional

property for simplification. To simplify the relations, we first aim to approximate

diag(ψ(u)) to a multiple of the identity matrix γI2NV such that

γ =
1

2NV

2NV∑
n=1

ψ(un). (4.50)

This assumption is valid for the low SNR regime when N0 is large so that the elements

of ū are very close to zero. For the high SNR regime, it is very likely that all elements

of ū are positive and large values. Since the rate of change of ψ(.) is very low for

large positive arguments, this assumption is also helpful for high SNR.

While diag(ψ(u)) helps obtain the second-order derivative information in each branch,

we replace it with the sample mean to obtain a form that helps simplify the matrix

multiplications and not deviate much from Newton’s method to obtain fast convergence.

A similar approximation was made in [75] to calculate feed-forward and feedback

filters in an iterative equalizer for SC systems to obtain block diagonal form in the FD.

The resultant expression for ∆x can be obtained as

∆x ∼=
1

γ

√
N0

2

(
ΛT

b Λb

)−1
ΛT

b QN (r ⊙ φ (u)) . (4.51)

Note that with this approximation, decoupling between the real and imaginary parts

due to second-order derivative calculation can also be avoided. We can now safely go

back to the notation with complex numbers. The complex counterpart of (4.44) for the

quasi-Newton approach can be obtained as

x̄(t) = P(t)
(
x̄(t−1) − α∆x̄(t−1)

)
, (4.52)

where, using (4.51), ∆x̄ can be written as
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∆x̄ =
1

γ

√
N0

2

(
Λ̄

H
b Λ̄b

)−1

Λ̄
H
b Q̄N (r̄ ⊙̄ φ̄ (ū)) , (4.53)

by defining φ̄(ā) as

φ̄(ā) = φ(ℜ{ā}) + j φ(ℑ{ā}). (4.54)

Note that ū from its each component {ū[m]}V−1
m=0, and γ can be found with the complex

notation as

ū[m] =

√
2

N0

r̄[m] ⊙̄
(
F−1

m {Λ̄[v]x̄[v]} − τ̄
)
, (4.55)

γ =
1

2NV

N∑
n=1

V−1∑
m=0

ψ (ℜ{ūn[m]}) + ψ (ℑ{ūn[m]}) , (4.56)

respectively, where F−1
m = 1√

V

∑V−1
v=0 (.)e

+j2πmv/V denotes the unitary inverse DFT

operation. Since Λ̄b is a block diagonal matrix, subcarrier-level processing is now

applicable. (4.53) can be written for each subcarrier v = 0, 1, . . . , V − 1 separately as

∆x̄[v] =
1

γ

√
N0

2

(
Λ̄[v]HΛ̄[v]

)−1
Λ̄[v]HFv {r̄[m] ⊙̄ φ̄ (ū[m])} , (4.57)

where Fv = 1√
V

∑V−1
m=0(.)e

−j2πmv/V denotes the unitary DFT operation. To avoid

matrix inversion, we introduce one last approximation using the properties of massive

MIMO systems. Notice that
(
Λ̄[v]HΛ̄[v]

)−1
Λ̄[v]H from (4.57) is the ZF filter. By ex-

ploiting large numbers of BS antennas, we assume Λ̄[v]HΛ̄[v] is diagonally-dominant,

and
(
Λ̄[v]HΛ̄[v]

)−1 can be approximated by the diagonal matrix diag(λ[v]), where

λ[v] corresponds to the MRC scaling vector from (4.39).

Hence, we replace the ZF filter expression during the step calculations with the MRC

filter by relying on massive MIMO, i.e., N ≫ K, to obtain the final form

∆x̄[v] ∼=
1

γ

√
N0

2
λ[v]⊙

(
Λ̄[v]HFv {r̄[m] ⊙̄ φ̄ (ū[m])}

)
. (4.58)
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The projection function at iteration t, P(t)(.) can be expressed as

P(t) (x̄) =

 Pbox (x̄) , 1 ≤ t < T

Pnorm (x̄) , t = T
, (4.59)

where T denotes the total number of iterations. The box projection function Pbox(.)

can be found as

Pbox(x̄) = PI
box (ℜ{x̄}) + jPQ

box (ℑ{x̄}) , (4.60)

where PI
box(.) = PQ

box(.) which is defined as

PI
box(x) = sign(x)min{|x|,Mb}, (4.61)

and each function is applied element-wise to its arguments. We define the norm

projection function Pnorm(.) as

Pnorm(x̄) =

√
KV

∥x̄∥
x̄. (4.62)

Note that utilizing box projection is redundant at the last iteration T since minimum

distance mapping is conducted on each element of the estimate after equalization is

complete. Also, utilizing the norm projection function at each iteration may cause

problems during convergence. As in [2], norm projection is applied only at the last

iteration.

Before starting the iterative updates, an initial solution should be found, preferably

not far from the optimum. MRC estimate is a suitable choice with its low complexity,

which can be found using (4.37) and (4.40).

At high SNR, singular Hessian matrices can be encountered during the iterative updates

since N0 takes very small values and ψ(x)→ 0 as x→∞. To avoid singularities in

such circumstances, we again utilize a damping factor ζ as in (3.40) with ρt as the

threshold SNR. The actual N0 is multiplied with ζ before starting the iterative updates

to operate as if we are at the threshold SNR if the actual SNR exceeds the threshold.
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Algorithm 3 Projected Quasi-Newton Detector (PQND)

Input: {r̄[m]}V−1
m=0, {Λ̄[v]}V−1

v=0 , τ̄ , α, T,N0, ζ

Output: { ˆ̄x[v]}V−1
v=0

1: Calculate {λ[v]}V−1
v=0 as in (4.39)

2: Set the initial solution { ˜̄x[v]← x̄0[v]}V−1
v=0 by using (4.37)

3: Apply the damping factor N0 ← ζN0 (3.40)

4: for t = 1 to T do

5: Calculate {ū[m]}V−1
m=0 using (4.55)

6: Calculate γ as in (4.56)

7: Calculate the step {∆x̄[v]}V−1
v=0 using (4.58)

8: Update { ˜̄x[v]← ˜̄x[v]− α∆x̄[v]}V−1
v=0 as part of (4.52)

9: if t < T then

10: Apply box projection as part of (4.52) using (4.60)

{ ˜̄x[v]}V−1
v=0 ← Pbox

(
{ ˜̄x[v]}V−1

v=0

)
11: else

12: Apply norm projection as part of (4.52) using (4.62)

{ ˜̄x[v]}V−1
v=0 ← Pnorm

(
{ ˜̄x[v]}V−1

v=0

)
13: end if

14: end for

15: Apply minimum distance mapping as in (4.35)

{{ˆ̄xk[v]← arg minx̄∈M̄ |˜̄xk[v]− x̄|}Kk=1}V−1
v=0

16: return { ˆ̄x[v]}V−1
v=0

After the iterative updates are complete, symbol-by-symbol minimum distance map-

ping is applied on the estimate for k = 1, . . . , K and v = 0, . . . , V − 1 to obtain the

final decisions as in (4.35).

The complete procedure for the proposed PQND is summarized in Algorithm 3.

We started with the update equation of Newton’s method (4.44) and utilized two

approximations to obtain a low-complexity equalization scheme. The first is related

to the identity approximation of the diagonal matrix diag(ψ(u)) ∼= γINV as in

(4.51). The second is the diagonally dominant approximation for
(
Λ̄[v]HΛ̄[v]

)−1 ∼=
diag(λ[v]) as in (4.58). Therefore, a projected quasi-Newton method is constructed
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that does not require matrix inversion. Note that the proposed method can easily

be modified for channel estimation purposes, which is left as future work. Finally,

notice that a second-stage approach such as NCD was not proposed in addition to

PQND. This issue is related to the complexity of the nearest neighbor search being

unfeasible under frequency-selective fading and subcarrier-wise ML detection not

being an option.

4.6.3 Extension to SC-FDE

As discussed in Section 4.4, both OFDM and SC systems can benefit from the circular

convolution properties in situations where the system employs CP. Hence, the OFDM

model can easily be extended for SC-FDE. For OFDM transmission, the transmitted

TD signal is the unitary inverse DFT of the constellation symbols as shown in (4.9). For

SC-FDE, the transmitted TD signal directly corresponds to the constellation symbols.

Hence, for SC-FDE, (4.9) can be re-written as

ȳ = H̄b x̄+ w̄

= Q̄H
NΛ̄b Q̄K x̄+ w̄

= Ḡ ā+ w̄,

(4.63)

where Ḡ = Q̄H
NΛ̄b again, and ā = Q̄K x̄. Hence, the signal to be equalized is the

unitary DFT of the transmitted constellation symbols. The whole procedure is the

same as that of the OFDM system, except before applying the box constraints, the

FD signal must be converted to the TD, and after the projection, it must be converted

back to the FD to continue the iterative updates. After equalization is complete, the

equalized signal is converted back to the TD to obtain the estimates of the constellation

symbols.

4.7 Proposed Quantization Method: Pseudo-Random Quantization (PRQ)

We utilize the PRQ scheme to mitigate the effects of the SR phenomenon under

frequency-selective fading, which is discussed thoroughly for the flat-fading scenario
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in Section 3.7. Each pair of ADCs in the BS RF chains have a complex-valued threshold

that separately represents the thresholds in I/Q parts. The thresholds are generated

from the Gaussian distribution, i.e., τ̄ ∼ CN (0N , σ
2
τIN). Multipath diversity or

frequency-selectivity is an important factor in one-bit massive MIMO systems that

helps deal with SR [20]. Hence, different from the frequency-flat fading scenario, the

number of channel taps (L), in addition to the number of BS antennas (N ) and the

number of users (K), must be used to determine the threshold variance. By relying

on many observations, we parameterize the starting SNR ρstart, which determines the

point of SNR above which pseudo-random thresholds are utilized, as

ρstart =

 0.15K2 + Ls − 2.50 log2(N) + 14 dB, for OFDM

0.15K2 + Ls − 2.50 log2(N) + 16 dB, for SC-FDE
(4.64)

where Ls is the number of strong, i.e., high-power channel taps, which is determined

as

Ls =
L−1∑
ℓ=0

sign(pd[ℓ]− 1/L) + 1

2
, (4.65)

and pd[ℓ] = E[|h̄n,k[ℓ]|2] is the power delay profile (PDP) of the channel. Hence, the

number of strong taps is equal to the number of taps whose power is greater than the

power distributed between the taps of a uniform PDP channel. The proposed PRQ

scheme does not require updates for different channel realizations and depends only

on the SNR. The threshold variance is selected accordingly as in (3.53).

The starting SNR for SC-FDE is chosen as 2 dB higher than OFDM. According

to our trials, this selection seemed more appropriate. This can be related to the

higher amplitude variation in OFDM signals, which requires a larger variance in the

dither signal, i.e., the quantization thresholds. We can think of the OFDM or SC

transmission process under frequency-selective fading as V K log2(M) message bits

being transmitted in one data block, and a codeword of length 2V N is getting received.

The channel state and quantization thresholds are essential factors affecting coding

performance. Utilizing PRQ in frequency-selective channels is a way to intervene

in the codebook design to obtain better performance thanks to the more accurate
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amplitude recovery of the one-bit quantized signals. A detailed analysis for frequency-

selective fading is not included since the analysis becomes too complicated due to the

nonlinear distortion introduced in the TD.

4.8 Computational Complexity Analysis

In the proposed PRQ scheme, the ADC thresholds are kept the same for different

channel realizations as long as the average SNR remains the same. If the SNR changes,

appropriate scaling of the thresholds is sufficient, and there is no need for regenerating

the pseudo-random numbers. The proposed PQND algorithm has many advantages.

PQND can be adapted to different non-zero quantization threshold scenarios, making

likelihood function-based FDE possible. Hence, a large number of channel taps is

not a significant source of complexity. The computational complexity analysis of

the proposed PQND is given in Table 4.1, where the complexity-dominant parts are

examined with respect to their positions in Algorithm 3. Line 2 is the computation of

the MRC estimate as an initial solution. Then, the remaining parts are repeated for

T iterations as part of PQND. The arguments {ū[m]}N−1
m=0 of the nonlinear functions

are calculated in Line 5. The sample mean of the average second-order derivative

information γ is computed in Line 6. Note that computation of the nonlinear function

ψ(x) can be made using only φ(x). Therefore, computing φ(.) is sufficient, which can

easily be handled using a look-up table. The step {∆x̄[v]}V−1
v=0 towards the optimum

for a given iteration is calculated in Line 7.

Since N ≫ K for massive MIMO, the complexity-dominant parts of the algorithm

are Lines 5 and 7 both with complexity O(TV N log2(V )) + O(TV NK). Hence,

Table 4.1: Computational Complexity Analysis per Data Block of the Proposed

Projected Quasi-Newton Detector (PQND)

Line in Algorithm 3 Number of Flops

2 O(V NK)

5 O(TV N log2(V )) +O(TV NK)

7 O(TV N log2(V )) +O(TV NK)
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we can state that the complexity of PQND increases linearly with the number of BS

antennas and users and super-linearly with the number of subcarriers due to the usage

of the Fast Fourier Transform (FFT) algorithm. The complexity does not depend

on the modulation order. However, increasing the number of iterations when the

modulation order is high can be preferable to obtain a more accurate equalizer. The

benchmark algorithm to compare with the proposed PQND is the 1BOX detector

from [4], which also utilizes FDE tools based on the likelihood function. However,

it does so by using first-order optimization. PQND and 1BOX have comparable

complexity with similar computation steps. However, since PQND involves a second-

order optimization technique, it requires fewer iterations to achieve a target error

rate compared to 1BOX, as can be seen in Section 4.9. The complexity of MRC is

O(V NK), and it is O(V NK2) for ZF with poor performance at high SNR. Other

nonlinear methods in the literature generally have high complexities [3, 36, 39]. The

work in [38] offers a comparable complexity to 1BOX and PQND. However, the error

performance of the detector is reportedly very similar to that of 1BOX.

4.9 Simulation Results

In this section, the error performance of the proposed detector is investigated for

different scenarios. For PQND, there are three user-defined parameters. The step size

of the proposed quasi-Newton optimization technique is chosen as α = 0.7 for all

scenarios. Newton’s method can generally work with α = 1. Due to approximations

used while obtaining PQND, relatively smaller step size is used to avoid divergence.

T = 6 iterations are considered for all scenarios. The threshold SNR for PQND is

determined as ρt = 20 − 150K
N

dB, and the damping factor ζ is found accordingly

as in (3.40). The variance of quantization thresholds is determined as in (4.64) and

(3.53) when PRQ is utilized. The number of subcarriers is chosen as V = 1024. The

frequency-selective wireless channel is modeled with Rayleigh fading, i.e., h̄(n,k)[ℓ] ∼
CN (0, pd[ℓ]), and each coefficient is statistically independent both in space and time.

BER performance is investigated with two PDPs throughout the simulations. The

power of each tap in an exponential PDP channel can be calculated as
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pd[ℓ] =
exp(−µℓ)∑L−1

m=0 exp(−µm)
, (4.66)

where µ is the power decay rate, the sum in the denominator is added to satisfy unit

average power. To model a small delay spread (SDS) channel, we use exponential

PDP where L = 8 and µ = 1, which results in Ls = 3. To model a large delay spread

(LDS) channel, we utilize TDL-A delay profile from [76], which is a tapped delay line

(TDL) channel model introduced by 3GPP for link level simulations of 5G systems,

for which L = 23 and Ls = 7.

4.9.1 Performance Comparison of Linear Detectors with ZTQ and PRQ

We start by comparing the ZTQ and PRQ performances of the linear detectors in

the SDS channel. As shown in Fig. 4.2, the linear detectors perform the same for

ZTQ and PRQ. We observed similar findings for the frequency-flat fading scenario in

Section 3.9. Hence, we can again state that PRQ does not increase the performance of

linear methods. Also, for this setup where a small number of users is being served,

the SC-FDE scheme significantly outperforms the OFDM scheme, which suggests

that the amplitude variation in OFDM systems causes a disadvantage for one-bit
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Figure 4.2: The BER performance comparison of the linear detectors using OFDM and

SC-FDE with 16-QAM constellation in a 128× 2 MIMO system in the SDS channel

using ZTQ (a) and PRQ (b).
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Figure 4.3: The BER performance of PQND in the SDS (a-c) and LDS (b-d) channel

models using OFDM (a-b) and SC-FDE (c-d) schemes with respect to SNR (ρ) when

K = 2 for N = 64 with 16-QAM, N = 128 with 64-QAM, and N = 256 and

256-QAM obtained with ZTQ and PRQ schemes.

MIMO systems when linear detectors are used. Similar findings were also reported

in [77], where it is shown that the SC-FDE scheme shows more tolerance to hardware

impairments compared to OFDM.

4.9.2 OFDM and SC-FDE Performance in the SDS and LDS Channels with

ZTQ and PRQ

In Fig. 4.3, the performances of systems with two users are investigated when ZTQ

and PRQ schemes are utilized with high-order modulations in both SDS and LDS

channels and using PQND with both OFDM and SC-FDE schemes. The results are
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obtained for N = 64 with M = 16, N = 128 with M = 64, and N = 256 and

M = 256. In general, the high SNR performance starts to saturate with ZTQ after

some point. The spatial degrees of freedom are exploited much better with PRQ,

and the high SNR error floors are decreased to significantly lower levels. Most of

the proposed methods for frequency-flat and frequency-selective channel scenarios

focus on QPSK and 16-QAM constellations. According to Fig. 4.3, higher-order

modulation schemes can also be applicable in one-bit massive MIMO systems under

frequency-selective fading with the PRQ scheme. In general, the error performance

of SC-FDE seems to be superior to that of OFDM with ZTQ, and similar findings

were reported in [77]. However, an interesting outcome of using PRQ is that the

performances obtained with SC-FDE and OFDM become very similar. Hence, from

these observations, in a scenario with a small number of users, the performances of

OFDM and SC-FDE schemes can be increased to similar levels using PRQ. It can also

be seen that the influence of PRQ is more critical in the SDS channel. Hence, it can be

observed that increased frequency-selectivity helps obtain larger multipath diversity

to reduce amplitude distortions. Similar findings were also reported in [78], where

the error performance of an unquantized system is studied. As in Chapter 3, a larger

number of BS antennas increases the performance gains obtained with PRQ. While all

setups benefit from PRQ in the SDS channel, ZTQ and PRQ result in the same error

performance for the 64× 2 system in the LDS channel due to the higher ISI induced

by the LDS channel compared to the SDS channel.

4.9.3 Effect of Changing the Number of Users and the Number of BS Antennas

on the High SNR Performance

So far, the merits of PRQ are more evident for the SDS channel for a fixed number of

users. In Fig. 4.4, the error performances in the SDS and LDS channels with respect to

the number of users are plotted at ρ = 30 dB of SNR again for N = 64 with 16-QAM,

N = 128 with 64-QAM, and N = 256 with 256-QAM both using ZTQ and PRQ with

the PQND method for OFDM transmission. Since the high SNR performance is the

limiting factor for high-order modulations, ρ = 30 dB is selected to better understand

the high SNR behavior of ZTQ and PRQ. Similar to the findings from Chapter 3,

starting with the single-user scenario, increasing the number of users results in better
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performance at the beginning, which are implications of the SR phenomenon and

MUI serving as a source of dither. The performance gain obtained with PRQ is more

prominent when the number of users is small. With the increased ISI and multipath

diversity, performance in the LDS channel is again better compared to the SDS channel.

Starting with K = 1, the number of users for which ZTQ and PRQ begin to perform

the same is smaller for the LDS channel. These results suggest that at high SNR, up to

a certain point of sum interference composed of MUI and ISI, massive MIMO-OFDM

systems can benefit from PRQ to achieve higher rates per user by employing higher

modulation orders as opposed to the conventional ZTQ scheme.

In Fig. 4.5, we check the 64-QAM, 256-QAM, and 1024-QAM error performances

in a SIMO system with respect to the number of antennas at ρ = 30 dB both in the

SDS and LDS channels using PQND. As can be seen, the SDS channel does not allow

the usage of these high-order modulation schemes with the conventional ZTQ, even

when the number of antennas is very large. Among the chosen modulation schemes,

only 64-QAM transmission seems viable in the LDS channel. Hence, in the SIMO

scenario where there is no MUI, ISI helps lower the amplitude distortion as suggested

in [20] to support high-order modulation schemes with variable amplitudes. However,

even in the LDS channel, employing PRQ is necessary to work with 256-QAM and
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Figure 4.4: BER performances in the SDS (a) and LDS (b) channel models with

respect to the number of users (K) at ρ = 30 dB of SNR for N = 64 with 16-QAM,

N = 128 with 64-QAM, and N = 256 with 256-QAM obtained with ZTQ and PRQ

schemes using PQND and OFDM.
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Figure 4.5: The BER performance of a SIMO system in the SDS (a) and LDS (b)

channel models with respect to the logarithm of the number of antennas (log2(N)) at

ρ = 30 dB of SNR with 64-QAM, 256-QAM, and 1024-QAM obtained with ZTQ and

PRQ schemes using PQND and OFDM.

1024-QAM.

4.9.4 Performance with Multi-User and High-Order Modulations

Finally, the BER performances of different detectors from the literature are compared

in Fig. 4.6 in both SDS and LDS channels. The results are obtained for K = 10 users

for two setups where N = 128 with 16-QAM for the first and N = 256 with 64-QAM

for the second. Linear detectors MRC and ZF are used for comparison along with

1BOX from [4] and the proposed PQND. The BMRC and BZF filters are not included

in the comparison since they perform very similarly to their conventional quantization-

unaware counterparts, as shown in Fig. 4.2. 1BOX is a first-order optimization-based

equalization method from [4], for which derivations are similar to PQND except for

the Hessian information. 1BOX involves only box projections at each iteration, though

for fairness during comparison, we utilize the same projection function for 1BOX as

PQND as described in (4.59). Hence, different than [4], norm projection is used at the

final iteration of 1BOX, which leads to better performance. Regarding the damping

constant, a similar discussion about acting as if the SNR is lower than its actual value

is made in [4]. From several trials, we saw that choosing ρt = 15 dB for 1BOX is
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Figure 4.6: Comparison of the BER performances of MRC, ZF, 1BOX [4], and PQND

methods in the SDS (a-c) and LDS (b-d) channel models using OFDM (a-b) and

SC-FDE (c-d) with respect to SNR for a 128×10 system with 16-QAM and a 256×10

system with 64-QAM.

suitable for both system setups. T = 6 iterations of 1BOX are utilized, the same as

PQND. The step size is an issue for first-order optimization methods, especially for

varying SNR. Again, by observing the performance for different setups, we select the

step size of 1BOX as 0.007 (defined as κ in [4]). Note that even though the gradient

expression involves the
√
N0/2 constant at the beginning, as can be seen in (4.46),

first-order optimization-based methods generally discard the term and take it as part of

the step size, examples of which can be found in [2, 34]. However, for the proposed

PQND, the SNR-dependent scaling is not discarded and becomes helpful with the

second-order derivative information to select a fixed step size for all scenarios.
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By comparing the plots, we can see that the LDS channel helps obtain better error

performance than the SDS channel. Linear detectors MRC and ZF perform much

poorly compared to the more sophisticated likelihood-based methods 1BOX and

PQND. Note that all plots from Fig. 4.6 are obtained with ZTQ since ZTQ and PRQ

perform the same when K = 10 according to Fig. 4.4. Hence the results with PRQ can

be considered the same. For a fixed iteration number, the proposed PQND outperforms

1BOX in all scenarios, which is expected since second-order techniques converge

faster than the first-order methods [71]. The performance of both OFDM and SC-FDE

are very similar in this scenario as opposed to Fig. 4.3, where 2-user performances

are shown. In this case, for the 10-user performance, OFDM is no longer inferior to

SC-FDE, and both schemes perform almost the same. Even though SC-FDE may have

lower amplitude variation than OFDM, in multi-user settings where the number of

users is large, the received unquantized signals of both SC-FDE and OFDM schemes

should share very similar statistical properties as a result of the central limit theorem

(CLT). In [19, 45], it is also stated that the validity of assuming Gaussian distribution

for the received signal increases at low SNR or when the number of users is large.

The frequency-selective ISI channel is also important for this assumption since the

unquantized received signal is a mixture of K users’ last L transmitted signals.

4.10 Discussion

This chapter proposes a new detection method, PQND, that operates with PRQ for

one-bit massive MIMO-OFDM and CP-SC massive MIMO systems. PQND is derived

based on Newton’s method with additional approximations to obtain a quasi-Newton

method to optimize the log-likelihood function by operating at subcarrier level in

the FD. By utilizing PQND and PRQ, one-bit massive MIMO systems can support

high-order modulation schemes in low-user regimes and benefit from higher rates

per user at high SNR with both OFDM and SC transmission schemes. The proposed

detector outperforms the first-order optimization-based benchmark method 1BOX

from [4] with comparable complexity.
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CHAPTER 5

CONCLUSION

5.1 Summary

In this thesis study, detection methods in one-bit pseudo-randomly quantized uplink

massive MIMO systems under both frequency-flat and frequency-selective fading

scenarios are studied. We start with introductory chapters explaining how employing

low-resolution ADCs can be an important solution to possible power consumption

burdens in massive MIMO systems and provide the system description.

The main part of the work begins with detection under frequency-flat fading. We derive

the Bussgang-based and conventional linear filters modified for non-zero threshold

quantization. Moreover, we propose a new two-stage detection scheme that relies

on Newton’s method with box constraints and a nearest neighbor search algorithm

based on the sign constraints imposed by one-bit quantization in the second stage.

Then, we discuss a new pseudo-random quantization scheme for one-bit massive

MIMO systems that modifies quantization thresholds to obtain a dithering effect. The

proposed scheme does not require updates for different channel realizations, and it is

not affected by different realizations of the thresholds in massive MIMO setups thanks

to a large number of BS antennas. By combining the proposed BND-NCD and PRQ,

uplink one-bit massive MIMO systems can operate with high modulation orders such

as 256-QAM and 1024-QAM. Also, the proposed scheme outperforms existing high

modulation order supporting detection schemes used for frequency-flat fading with

comparable complexity.

Then, we turn our attention to frequency-selective fading. Using FDE tools, we

also derive the linear filtering approaches for non-zero threshold quantization un-
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der frequency-selective fading. Influenced by the BND method, we construct an

equalizer for the frequency-selective fading channels using Newton’s method. How-

ever, since the complexity of Newton’s method becomes a significant burden under

frequency-selective fading, we utilize two approximations to decouple equalization

among subcarriers and to avoid matrix inversion. The proposed second-order PQND

method can outperform the benchmark detector 1BOX that utilizes first-order opti-

mization with similar complexity. Also, communication with high modulation orders

such as 64-QAM and 256-QAM are shown to be possible using the proposed PQND

and PRQ schemes under frequency-selective fading in one-bit massive MIMO-OFDM

and one-bit CP-SC massive MIMO systems.

5.2 Future Research Directions

Changing quantization characteristics as shown in this thesis or sampling character-

istics as in [16, 46, 48, 66, 67] can be very beneficial to increase the achievable rate

in low-resolution massive MIMO systems. Conventional approaches such as zero-

threshold quantization and Nyquist-rate sampling can sometimes be replaced with

more sophisticated techniques, as in this study and the previously mentioned work.

Since the demand for more data-rate will surely increase, low-resolution systems

may require unconventional approaches that may result in significant performance

improvements, as in this thesis.

Even though this thesis covers detection with PRQ under perfect CSI at the receiver

assumption, channel estimation is a crucial task in practice. Many studies in the

literature focus on the channel estimation task in one-bit massive MIMO systems

such as [3, 4, 17, 31, 34, 47]. However, investigating the performance of PRQ for

the channel estimation task can also be worth attention since PRQ provides better

amplitude recovery of the signal to be estimated.

Coarse quantization induces significant nonlinearity in the input-output relation. There-

fore artificial intelligence (AI) based methods have enjoyed popularity for the past few

years. Many recent works in the literature use machine learning or deep learning algo-

rithms for various tasks in communication systems. In [44], a survey on AI techniques
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for the physical layer design of one-bit MIMO systems is discussed. Examples of AI

applications for one-bit MIMO systems can be found in [2, 3, 24, 32, 40, 79]. AI tools

can be a great solution for nonlinear and complex system architectures. For future

studies, it can be important to search for AI tools that can optimize the system parame-

ters, such as the thresholds, or use them with detection and estimation algorithms in

more complex system models.

Multi-bit ADCs and oversampling effects are also interesting topics to be considered

with PRQ for future research. It would be easy to modify the proposed BND and

PQND methods for multi-bit ADCs since only the likelihood function needs to be

updated to consider the probability of an interval between the quantization thresholds.

However, oversampling would complicate the structure greatly due to the temporal

correlation among noise samples. In such a scenario, resorting to machine learning

tools would be preferable. It would also be very interesting to consider PRQ within

such systems.

There are many works from the literature that focus only on in-band interference

[2, 3, 23, 26, 32, 35, 36, 38–40, 67]. Considering the adjacent channel interference as

in [46] would yield a more accurate characterization of the system setup when there is

considerable leakage in the front-end filters. This work can be considered a starting

point to build upon more complex scenarios.
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APPENDIX A

COMPUTATIONS OF THE NONLINEAR FUNCTIONS RELATED TO THE

LOG-LIKELIHOOD

Computation of ln(Φ(x)) can be a problem when x is small, and divergence towards

−∞ for small arguments in finite precision can be encountered. We can approximate

ln(Φ(x)) using its first-order derivative to avoid possible divergent behavior as

ln(Φ(x)) ∼= ln(Φ(c)) + φ(c)(x− c), (A.1)

for x < c ∈ R, where φ(x) = d
dx

ln(Φ(x)) = ϕ(x)
Φ(x)

is the first order derivative of

ln(Φ(x)). c = −38.2 is a suitable choice for MATLAB’s arithmetic calculations since

divergent behavior is observed for smaller values. However, the first and second-order

derivatives φ(x) and ψ(x) also show divergent behavior around the same point c. The

asymptotic behavior of φ(x) towards −∞ can be found as

lim
x→−∞

ϕ(x)

Φ(x)
= lim

x→−∞
−xϕ(x)
ϕ(x)

= lim
x→−∞

−x, (A.2)

which means that for x < c, φ(x) = −x and d2

dx2 ln(Φ(x)) = ψ(x) = −1 can be

utilized in practice. Note that a look-up table can be generated to calculate nonlinear

functions to decrease the complexity.
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APPENDIX B

DERIVATION OF THE CONDITIONAL MUTUAL INFORMATION

BETWEEN THE QUANTIZED OBSERVATION AND TRANSMIT SIGNAL

VECTORS

Starting with the definition of conditional mutual information:

I(r;x |H , τ ) = H(r |H , τ )−H(r | x,H , τ ), (B.1)

where H(.) is the entropy function. The first term in (B.1) can be calculated by the

definition of conditional entropy as

H(r |H , τ ) = −
∑

r∈{±1}2N
p(r |H , τ ) log2(p(r |H , τ )), (B.2)

where p(r |H , τ ) can be found by averaging the likelihood function p(r | x,H , τ ) =∏2N
n=1 Φ

(
rn(hT

nx−τn)√
N0/2

)
over all possible x vectors such that

p(r |H , τ ) =
1

MK

∑
x′∈M2K

p(r | x = x′,H , τ ). (B.3)

Now that the first term in (B.1) is found, we can move on to the second term. Due to

the conditional independence of the quantized observations given the input vector, the

channel matrix, and the quantization thresholds, we can write

H(r | x,H , τ ) =
2N∑
n=1

H(rn | x,H , τn). (B.4)
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Then, we can find the conditional entropy as

H(rn | x,H , τn) =
1

MK

∑
x′∈M2K

H(rn | x = x′,H , τn), (B.5)

for n = 1, ..., 2N . Again, by definition, and since each rn is a binary random variable,

H(rn | x,H , τn) =
∑

rn∈{±1}

p(r | x,H , τ ) log2(p(r | x,H , τ ))

= Hb

(
Φ

(
hT

nx− τn√
N0/2

))
.

(B.6)
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