
Middle East Technical University

Institute of Applied Mathematics

Post-Quantum Cryptography

and

NTT as a Polynomial Multiplication Method

Aslı Ebru KAYA

(Cryptography)

Advisor: Assoc. Prof. Dr. Oğuz YAYLA

Term Project Report

January 2023

Abstract

Cryptology has been a crucial element in the rapidly evolving technology. Without a suc-

cessful encryption, no one and no system can be secure. The advancements in another aspect

of technology, namely the quantum computers, have turned out to be the destructive game

changer for the schemes used in crypto-systems, which have been deemed to be safe until now

in the era of classical computers. The widely used state of the art public-key crypto-schemes

are not resistant to predicted quantum attacks. The threat posed by quantum comput-

ers gave a way for new research area, which is called post-quantum cryptology. Lattice

based schemes seem to be the most promising crypto-systems among possible post-quantum

cryptographic schemes. Polynomial multiplications are the bottleneck of the lattice based

schemes since they are fundamentally used in these schemes and take considerable amount

of time and power. There are different methods for polynomial multiplications with various

levels of complexity. Simple and straightforward schoolbook method has a quadratic com-

plexity which makes it unfeasible to be utilized in the crypto-schemes. Number Theoretic

Transform, which is a specific case of Fast Fourier Transform, seems to be the most favor-

able polynomial multiplication method over finite fields with its almost linear complexity of

O(nlogn). Since post-quantum cryptographic lattice based schemes deal with polynomials

that have coefficients of integers, Number Theoretic Transform, in which all procedure is

applied in the ring of integers, suits well to avoid any round-off error and accelerate the

computations while reducing computational complexity considerably.

1

Öz

Kriptoloji, hızla gelişen teknolojide çok önemli bir unsur olmuştur. Başarılı bir şifreleme

olmadan hiç kimse ve hiçbir sistem güvende olamaz. Teknolojinin bir başka alanındaki

gelişmeler, yani kuantum bilgisayarlar, klasik bilgisayarlar çağında bugüne kadar güvenli

kabul edilen kripto-sistemlerde kullanılan şemalar için yıkıcı bir oyun değiştirici haline geldi.

Yaygın olarak kullanılan son teknoloji açık anahtarlı kripto şemaları, gelecekteki kuantum

saldırılarına karşı dirençli değildir. Kuantum bilgisayarların oluşturduğu tehdit, kuantum

sonrası kriptoloji adı verilen yeni bir araştırma alanının doğmasına yol açtı. Kafes tabanlı

şemalar, olası kuantum sonrası kriptografik şemalar arasında en umut verici şifreleme sis-

temleri olarak görünmektedir. Polinom çarpımları, bu şemalarda temelde kullanıldıkları

ve önemli miktarda zaman ve güç harcadıkları için kafes tabanlı şemaların darboğazıdır.

Çeşitli karmaşıklık seviyelerine sahip polinom çarpımları için farklı yöntemler bulunmak-

tadır. Basit ve anlaşılır olan standart yöntem, kripto şemalarında kullanılmasını olanaksız

kılan ikinci dereceden bir karmaşıklığa sahiptir. Hızlı Fourier Dönüşümünün özel bir du-

rumu olan Sayı Teoretik Dönüşüm, neredeyse doğrusal O(nlogn) karmaşıklığı ile sonlu cisim

üzerinde en uygun polinom çarpım yöntemi olarak değerlendirilmektedir. Kuantum sonrası

kriptografik kafes tabanlı şemalar, tamsayı katsayılarına sahip polinomlarla ilgilendiğinden,

tüm prosedürü tamsayılar alanında uygulanan Sayı Teoretik Dönüşüm metodu, hesaplama

karmaşıklığını önemli ölçüde azaltırken, herhangi bir yuvarlama hatasından kaçınmak ve

hesaplamaları hızlandırmak için de uygundur.

2

Contents

1 Introduction 4

2 Number Theoretic Transform 8

2.1 Formulation of NTT . 8

2.2 NTT Radix-2 Method Using Cooley-Tukey Butterfly 12

2.2.1 NTT Radix-2 Cooley-Tukey Butterfly Procedure 18

2.2.2 Complexity of NTT Radix-2 Cooley-Tukey Butterfly Procedure . . . 19

3 Formulation for Radix-3 NTT Using Cooley-Tukey Butterfly Methodology 20

3.1 Complexity of NTT Radix-3 Cooley-Tukey Butterfly Procedure 25

4 Formulation for Radix-N NTT Using Cooley-Tukey Butterfly Methodol-

ogy 27

5 Incomplete NTT Methodology 32

6 Conclusion 34

3

Chapter 1

Introduction

Advancement in technology is pleasant most of the time, but sometimes technology itself

can be the enemy of the advancement. Interconnectedness and data are the very crucial

characteristics of the technology as we know it for the last decade or two, and it seems

that future technology will gradually be more dependent on information exchange. Devices

are in a fast trend to become smart. Any frequently used technological device conducts a

sort of communication with any other distant party on peer to peer level or via a cloud.

Home appliances, cellular phones, watches, even basic ordinary new cars are in the big

interconnected architecture and it is almost certain that internet of things will be the very

basic aspect of the technology in the next era. There is one very fundamental requirement

that is needed to be complied with for the sustainability of this technological perspective. It

is security. Sharing the information securely within the aspects of the technology is the main

enabler. Security is not only against adversaries but also to preserve the integrity of the data.

Any corrupted data entered into or information leakage from the insecure system, which may

be a result of any deliberate action or unintentional error, can end up with a catastrophe in

the highly interconnected and cross-dependent technological environment.

“Cryptology” is derived from Greek words “kryptos” and “logos” which means hidden word.

Cryptology, as a branch of science, deals with the data and communication security. Im-

portance of the cryptology became evident in World War II when Germany designed and

started to use the machine called Enigma. Enigma had a key-space of about 18 bits. With

the help of the encryption, Germany could send messages of plans and strategies to distant

troop centers ordering the type, place, time of the attacks without being disclosed. This was

almost the end of the other part in the war if they could not decrypt the message. Enigma

was believed to be so secure that even crucial top-secret military communication was accom-

4

plished over the machine. However, Enigma codes were broken in the end and faith of the

war had been turned very rapidly.

Cryptology has been a crucial element in the rapidly evolving technology. Without a success-

ful encryption, no one and no system can be secure. However, the advancements in another

aspect of technology, namely the quantum computers, have turned out to be life-threatening

for the schemes used in crypto-systems, which have been deemed to be safe in the era of

classical computers. Techniques used in cryptology are as secure as the hardness of the

mathematical problems that they are built-on.

Two main types, namely symmetric and asymmetric, of schemes are used in the current

cryptosystems. In symmetric scheme, a single secret key is used between the parties. Same

key is used to encrypt the message and to decrypt it back. This key should be shared between

the two parties and be kept secret from the third ones. As the number of the related parties

and number of the messages to be encrypted increase, so the number of the keys do, which

ultimately requires a key management system so that keys are shared between the relevant

parties without breaking the confidentiality and stored with respect to the relevant message.

Symmetric scheme was the only encryption method until 1976, when asymmetric scheme was

introduced by Diffie and Hellman [1]. There are two keys, which are called public key and

private key, in asymmetric cryptography. This scheme is also called public key cryptosystem.

The two keys are mathematically related to each other but it is not feasible to compute the

private key by using the public key alone. Thus, public key can be sent openly as long as

the mathematical interrelation between the two keys are kept secret. In this cryptosystem,

public key is used to encrypt the message and the private key is needed to decrypt the

cyphertext to its original plaintext. In 1978, a practical public key system was designed by

three scientists, known then as RSA, which was formed by the first letters of the names of

the scientists [2].

RSA, and public key algorithms in general, have been the most widely used cryptosystems.

The security of this cryptosystem relies on the complexity of the computations needed to

decipher the relation of the two keys used. These high computation cost, hard problems are

mostly originated from number theory, such as integer factorization and discrete logarithm

problems. For example, RSA is based on integer factorization such that two large prime

numbers, which is enlarging with the increase in computation power, are selected to form a

product. Basically, this product is the public key while the prime numbers are private key

and it is very time consuming with the computation capability of classical computers to find

the prime numbers by just knowing the product. Quantum computers are preparing to be

the destructive game changer in the future of cryptology. It is anticipated that quantum

5

computers are much more efficient to find solutions to integer factorization and discrete

logarithmic problems than classical computers and the cryptosystems such as RSA, Elgamal,

Diffie-Hellman Elliptic Curve and Key Exchange are susceptible to be broken by quantum

computers with large enough qubits [3]. Shor showed that his algorithm that can be run

on a quantum computer can solve integer factorization and discrete logarithm problems in

polynomial time [4].

The widely used state of the art public-key cryptoschemes are not resistant to predicted

quantum attacks. It seems that it is just a matter of time for large enough quantum com-

puters to be realized. The threat posed by quantum computers gave a way for new research

area, which is called postquantum cryptology. In post-quantum cryptology, main aim is to

develop a cryptographic technology which stays secure against quantum attacks. Lattice

based schemes seem to be the most promising cryptosystems among the other post quantum

cryptographic schemes, which are symmetric cipher and hash based schemes, multivariable

based schemes, isogeny based schemes, and code based schemes, since lattice based schemes

can be efficiently run with adequate bandwidth and they are secure against quantum attacks

[5].

Technology has become a serious threat to technology itself. Without secured data, no

technology can survive. Total collapse of the technology as we know it today is a real risk if

no viable solution to secure the data could be found. To identify the main standards of the

post-quantum cryptology, National Institute of Standards and Technology (NIST) of United

States kicked-off a worldwide competition for standardization process in 2016. China also

started a national competition based on public key post-quantum cryptology algorithms by

its Chinese Association for Cryptologic Research (CACR) [6]. In the first round of NIST

in 2016, 64 candidates were selected to continue and 26 of them were lattice based. In the

second round, 12 lattice based schemes made it with 14 other schemes in 2019. In the third

round in 2020, number of lattice based schemes were 5 in 7 candidates. And finally, in 2022,

NIST announced the cryptoschemes to be standardized, of which 3 out of 4 are lattice based

schemes [5, 6]. IN CACR competition, 26 schemes were lattice based in 38 proposals. 14

schemes were awarded and 11 of them were lattice based.

Lattice based schemes seem to have dominated the competition processes in the end. These

lattice based cryptographs are based on mathematically hard problems such as Learning

With Errors (LWE) [7], Ring LWE (RLWE) [8], Module LWE (MLWE) [9], Learning With

Rounding (LRW) [10], Ring LRW (RLRW) [10], Module LWR (MLWR) [11].

Polynomial multiplications are the bottleneck of lattice based schemes since they are funda-

mentally used in these schemes and take considerable amount of time and power. The award

6

winning lattice based schemes Dilithium, Kyber and Falcon in NIST use multiplication in

polynomial quotient rings with integer cofficients such that Zq[x]/ϕ(x) where coefficients are

smaller than q.

There are various methods for polynomial multiplications such as schoolbook method, Karat-

suba method [12], Toom-Cook method [13] and Fourier Transform based methods Discrete

Fourier Transform (DFT), Fast Fourier Transform (FFT) [14] and Number Theoretic Trans-

form (NTT) [15]. Simplest and most straightforward of these methods is schoolbook polyno-

mial multiplication where a convolution process is performed between the two polynomials.

However, this method requires every element of the polynomials to be multiplied one an-

other so that multiplication of two length n polynomials requires n2 calculations, thus it has

a quadratic computational complexity of O(n2). Given the lengthy cryptographic schemes,

it is not feasible to apply schoolbook method on most of the platforms because of its high

computational cost and power requirements. Karatsuba algorithm is based on divide and

conquer with a complexity order of O(n1.58). Being a generalization of Karatsuba, Toom-

Cook method has the complexity of O(nlogk(2k−1)). Although näıve computation of DFT still

has O(n2), different algorithms based on DFT perspective have decreased the computational

effort considerably. In 1965, Cooley and Tukey introduced a divide and conquer based algo-

rithm but with exploiting the symmetry properties of the DFT matrix. This FFT algorithm

has had the lowest complexity of O(nlogn) so far.

NTT is just a specific case of FFT with the same complexity of FFT. NTT uses integers

over a finite field whereas FFT operates under complex field. Most of the techniques in

FFT are used in NTT. Since the polynomial multiplications are performed in a finite field

in post-quantum cryptoschemes, NTT is the preferred algorithm in these systems.

In this project paper, a thorough definition of FFT is given in Chapter-2 to systematically

cover the basic perspective of FTT to comprehend NTT. Fundamental differences between

the FFT and NTT are stated. FTT Radix-2 procedure is explained and NTT Radix-2 al-

gorithm is formed with respect to the FFT algorithm. Then, NTT Radix-3 algorithm is

explained in Chapter 3 by using the main perspective gained from NTT Radix-2 proce-

dure. In Chapter 4 a generalized formulation is given for NTT Radix-N algorithm. A brief

explanation for the incomplete NTT methodology is stated in Chapter 5.

7

Chapter 2

Number Theoretic Transform

Discrete Fourier Transform (DFT) can efficiently be used for multiplications in polynomials.

Although the standard form of DFT has the complexity of O(n2), which is the same level of

complexity with that of schoolbook polynomial multiplicaftion, number of operations in the

multiplication process can be reduced by using FFT methodology.

There had been different FFT algorithms with various levels of complexity reduction with

respect to the original DFT until Cooley and Tukey came up with an algorithm which

reduces the number of operations to O(nlogn). By using the symmetrical properties of the

DFT matrix, Cooley and Tukey reduced the number of computations from quadratic level

to almost linear level with their butterfly methodology.

Number Theoretic Transform (NTT) is a special case of DFT and thus FFT techniques can

be applied to NTT, so that the computations can be completed faster in a resource friendly

way. In DFT, computations are done in complex field with a complex nth root of unity,

which makes the computation process prone to error because of the floating point precision.

Since post-quantum cryptographic lattice based schemes deal with polynomials that have

coefficients of integers, NTT suites well to avoid this round-off error since all procedure is

applied in the field of integers while reducing computational complexity considerably.

2.1 Formulation of NTT

Since NTT is a special case of FFT, FFT will be described first, then differences of NTT

will be stated as a special case.

Schoolbook multiplication of two polynomials, say a(x) and b(x), requires convolution process

8

of O(n2) where each coefficient of both polynomials are convoluted with one another and

summed up.

Definition 1 (Schoolbook Linear Convolution). Let a(x) =
∑n−1

i=0 aix
i and b(x) =

∑n−1
i=0 bix

i

be two length-n polynomials. Their multiplication is done by performing linear convolution,

such that a(x)b(x) = c(x) has 2n− 1 terms and degree of 2n− 2:

c(x) =
2n−2∑
i=0

cix
i

ci =
i∑

j=0

aibi−j

However, element-wise multiplication is enough by using FFT forms of both polynomials

FFTa(x) and FFTb(x) to find FFTc(x), where FFTc = (FFTa) · (FFTb) in frequency

domain. To be able to get the result back in time domain, inverse FFT process should be

completed so that c(x) recovered.

Let P be a length n polynomial with coefficients ai, where i ∈ {0, 1, . . . , n−1} such that,

P (x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1.

FFT considers point-value representation of the polynomials during the multiplication pro-

cess instead of the function itself. In order to describe an nth order polynomial, n distinct

points are required. Thus, point-value representation of a polynomial can be given as,

{y0, y1, . . . , yn−1} = {P (x0), P (x1), . . . , P (xn−1}).

FFT intentionally uses primitive nth root of unity values for {x0, x1, . . . , xn−1} to exploit the

symmetric properties of the resulting FFT matrix. Thus, FFT of a polynomial is stated

as,

FFTp := FFTp[j] where,

FFTp[j] := P (ωj) for j ∈ {0, 1, 2, . . . , n− 1}.

Definition 2 (Primitive nth root of unity). ω ∈ C is defined as nth root of unity iff ωn = 1.

ω ∈ C is defined as primitive nth root of unity if ω also holds the inequality ωk ̸= 1 for

k ∈ {1, 2, . . . , n− 1}.

9

ω = e
2Πi
n is a primitive complex nth root of unity since ωk ̸= 1 for k < n, ωn = e2πi and from

Euler’s formula,

ωn = cos 2π + i sin 2π

ωn = 1

Lemma 1 (Periodicity). ωk+n = ωk.

proof. ωk+n = (e
2Πi
n)k+n = e

2Πi
n

ke
2Πi
n

n = e
2Πi
n

k(1) = ωk ■

Lemma 2 (Symmetry). ωk+n
2 = −ωk.

proof. ωk+n
2 = (e

2Πi
n)k+

n
2 = e

2Πi
n

ke
2Πi
n

n
2 = e

2Πi
n

k(−1) = −ωk ■

In the FFT method, the polynomial is divided into two sub-polynomials, namely even and

odd parts. Then, each even and odd parts are divided again into their even and odd parts

such that FFT of length n polynomial is divided into two FFTs with length n/2, those two

FFTs with length n/2 is divided into four FFTs with length n/4 and so on until n FFTs are

left with degree 0. This method is also called Radix-2 FFT. With the help of the symmetry

properties of ω, multiplications are done regarding the half of the FFT.

Definition 3 (Radix-2 FFT). Let P (x) be a length n polynomial with the coefficients ai,

i ∈ {0, 1, . . . , n− 1}, n ∈ N be power of 2, FFTp := [FFTp[0], . . . , FFTp[n− 1]] be FFT of

P (x).

FFTp[i] =
n−1∑
k=0

ak(ω
i)k

FFTp[i] =

n
2
−1∑

k=0

a2k(ω
i)2k +

n
2
−1∑

k=0

a2k+1(ω
i)2k+1

FFTp is formed by [FFTp[i] FFTp[i+ n
2
]], i ∈ {0, 1, . . . , n

2
− 1}. Then,

FFTp[i] =

n
2
−1∑

k=0

a2k(ω
2)ik + ωi

n
2
−1∑

k=0

a2k+1(ω
2)ik

FFTp[i+
n

2
] =

n
2
−1∑

k=0

a2k(ω
2)(i+

n
2
)k + ω(i+n

2
)

n
2
−1∑

k=0

a2k+1(ω
2)(i+

n
2
)k

10

FFTp[i+
n

2
] =

n
2
−1∑

k=0

a2k(ω
2)ik(ωn)k − ωi

n
2
−1∑

k=0

a2k+1(ω
2)ik(ωn)k

FFTp[i+
n

2
] =

n
2
−1∑

k=0

a2k(ω
2)ik − ωi

n
2
−1∑

k=0

a2k+1(ω
2)ik

Lemma 3. Let ω be nth root of unity. Then ω2 is (n/2)th root of unity.

proof. ω2 = (e
2πi
n)

2
= e

2πi
n
2 ■

Thus, coefficients of the FFT of the regarding polynomial can be found by dividing the

polynomial to its odd and even parts and by using symmetry of upper and lower FFT

matrix. Regarding odd and even parts are length n/2 polynomials, thus FFT computations

are performed by using (n/2)th root of unity.

In short, for i ∈ {0, 1, . . . , n
2
− 1},

FFTp[i] = FFTpeven[i] + ωiFFTpodd[i]

FFTp[i+
n

2
] = FFTpeven[i]− ωiFFTpodd[i]

This procedure is performed iteratively until even and odd parts are left to be degree 0.

When multiplying two polynomials a(x) and b(x), FFT of both polynomials should be per-

formed by the steps stated above, so that FFTa and FFTb are computed. To find FFTc,

both FFTs should be multiplied by element-wise such that,

FFTc = FFTa · FFTb

FFTc[i] = FFTa[i] · FFTb[i], i ∈ {0, 1, . . . , n− 1}

In order to find c(x), a procedure called inverse FFT (IFFT) should be performed so that

coefficients of c(x) is recovered from FFTc.

Definition 4 (Inverse FFT). Let FFTc with the terms FFTc[i] be the FFT of length n

polynomial c(x) with the coefficients n−1ci, i ∈ {0, 1, . . . , n− 1}, n ∈ N be power of 2.

11

ci =
n−1∑
k=0

FFTc[k]ω−ik

ci =

n
2
−1∑

k=0

FFTc[2k](ωi)−2k +

n
2
−1∑

k=0

FFTc[2k + 1](ωi)−2k−1

ci is formed by [ci ci+n
2
], i ∈ {0, 1, . . . , n

2
− 1}. Then,

ci =

n
2
−1∑

k=0

FFTc[2k]ω−2ik + (ω−1)
i

n
2
−1∑

k=0

FFTc[2k + 1]ω−2ik

ci+n
2
=

n
2
−1∑

k=0

FFTc[2k](ω2)
−(i+n

2
)k
+ ω−(i+n

2
)

n
2
−1∑

k=0

FFTc[2k + 1](ω2)
−(i+n

2
)k

ci+n
2
=

n
2
−1∑

k=0

FFTc[2k]ω−2ik(ωn)−k − (ω−1)i

n
2
−1∑

k=0

FFTc[2k + 1]ω−2ik(ωn)−k

ci+n
2
=

n
2
−1∑

k=0

FFTc[2k]ω−2ik − (ω−1)i

n
2
−1∑

k=0

FFTc[2k + 1]ω−2ik

Thus, coefficients of the c(x) can be found by dividing the FFTc to its odd and even parts and

by using symmetry of upper and lower FFT matrix. In short, for i ∈ {0, 1, . . . , n
2
− 1},

ci = ci,even + ω−ici,odd

ci+n
2
= ci,even − ω−ici,odd.

This procedure is performed iteratively until even and odd parts are left to be single term.

Coefficients of the c(x)are computed as n−1ci, i ∈ {0, 1, . . . , n− 1}.

2.2 NTT Radix-2 Method Using Cooley-Tukey But-

terfly

NTT is a special case of FFT, where the computations are done under finite field of inte-

gers.

12

Definition 5 (polynomial quotient rings with integer cogefficients). Let Zq[x] be a polyno-

mial ring over Zq where Z is an integer ring, q is a prime number and Zq := {0, 1, . . . , q−1}.
Let ϕ(x) be polynomial with coefficients of integers. Zq[x]/ϕ(x) is defined as polynomial

quotient ring with integer coefficients such that coefficients are smaller than q.

Given a polynomial ring Zq[x]/ϕ(x), if ϕ(x) is a length n polynomial with integer coefficients,

a polynomial in this ring is in the form of,

a(x) =
n−1∑
a=1

aix
i

ai = {a0, a1, . . . , an−1}, ai ∈ Zq

Since it is widely applied in post-quantum cryptographic lattice based scheme, the quotient

ring form of Zq[x]/x
n − 1 was studied, i.e. ϕ(x) = xn − 1. For standard Radix-2 NTT, n

should be power of 2. With the help of being radix-2, original polynomial can be divided

into two parts of half length.

Since computations are to be performed under the given integer ring with quotient xn − 1,

complex nth root of unity is not a choice any more. Thus, it should be made sure that an

integer primitive nth root of unity exists in the finite field bounded by the modulus of q.

Definition 6 (nth root of unity in Zq[x]/x
n − 1). Let n be a power of 2, q be a prime

number. nth root of unity ω exists in Zq if q = 1(modn). ωn is defined as primitive nth root

of unity if ωn = 1(modq) and ωk ̸= 1(modq) for k ∈ {1, . . . , n − 1}. All nth roots of unity

under Zq[x]/x
n − 1 are given as ωj for j ∈ {1, . . . , n− 1}.

Thus, from the definition, primitive nth roots of unity exist as long as q = kn + 1, i.e. n

divides (q − 1).

Symmetry and periodicity properties stated for complex nth root of unity in FFT also hold

for ωn in NTT.

Proposition 1. Periodicity of nth root of unity in Zq: ωk+n = ωk.

Proposition 2. Symmetry of nth root of unity in Zq: ωk+n
2 = −ωk.

NTT uses nth roots of unity for the roots {x0, x1, . . . , xn−1} of the polynomial p(x) over the

quotient ring Zq[x]/x
n − 1 to exploit the symmetry and periodicity properties. Thus, NTT

of a polynomial is stated as:

NTTp := NTTp[j] where,

13

NTTp[j] := P (ωj) for j ∈ {0, 1, 2, . . . , n− 1}

NTTp can be computed by the DFT matrix comprising the nth roots of unity of the regarding

polynomials.

Definition 7 (DFT matrix of nth roots of unity). Let p(x) be a length n polynomial with

the coefficients ai over the polynomial quotient ring Zq[x]/x
n−1. i ∈ {0, 1, . . . , n−1}, n ∈ N

be power of 2. Ωn := [Ωn[0], . . . ,Ωn[n− 1]]nxn mod q is the DFT matrix of nth roots of unity,

where Ωn is an n-by-n matrix with elements of (ωn
j)

k
and j, k ∈ {0, 1, . . . , n− 1}.

Ωn =


(ωn

0)
0

(ωn
0)

1
. . (ωn

0)
n−1

(ωn
1)

0
(ωn

1)
1

. . (ωn
1)

n−1

: : . . :

(ωn
n−1)

0
(ωn

n−1)
1

. . (ωn
n−1)

n−1

 mod q

Definition 8 (NTT using DFT matrix). Let p(x) be a length n polynomial with the

coefficients ai over the polynomial quotient ring Zq[x]/x
n − 1, i ∈ {0, 1, . . . , n − 1}, n ∈ N

be power of 2, Ωn := [Ωn[0], . . . ,Ωn[n− 1]]nxn be the DFT matrix of nth roots of unity.

NTTp := [NTTp[0], . . . , NTTp[n− 1]] be NTT of p(x).

[NTTp] = [Ωn][ai] mod q

[NTTp] =


(ωn

0)
0

(ωn
0)

1
. . (ωn

0)
n−1

(ωn
1)

0
(ωn

1)
1

. . (ωn
1)

n−1

: : . . :

(ωn
n−1)

0
(ωn

n−1)
1

. . (ωn
n−1)

n−1




a0

a1

:

an−1

 mod q

The DFT matrix of nth roots of unity is multiplied by the polynomial coefficients to compute

the NTT of the polynomial. However, direct use of DFT matrix does not reduce computa-

tional complexity. In order to reduce the complexity, the butterfly method introduced by

Cooley and Tukey can be used.

With the help of the periodicity and symmetry properties of nth roots of unity, complexity

reduction is achieved by just performing the computations regarding only the half of the

DFT matrix. Based on the Cooley-Tukey butterfly algorithm, n term NTT is divided into

two n/2 term NTTs iteratively with divide and conquer perspective until n NTTs are left

with single element.

14

Definition 9 (Radix-2 NTT using Cooley-Tukey Butterfly). Let p(x) be a length n

polynomial with the coefficients ai over the polynomial quotient ring Zq[x]/x
n − 1, i ∈

{0, 1, . . . , n − 1}, n ∈ N be power of 2, NTTp := [NTTp[0], . . . , NTTp[n − 1]] be NTT of

p(x).

NTTp[i] =
n−1∑
k=0

ak(ω
i)kmodq

NTTp[i] =

n
2
−1∑

k=0

a2k(ω
i)2k +

n
2
−1∑

k=0

a2k+1(ω
i)2k+1

 mod q

NTTp is formed by
[
NTTp[i] NTTp[i+ n

2
]
]
, i ∈ {0, 1, . . . , n

2
− 1}. By the symmetry and

periodicity property of nth roots of unity,

NTTp[i] =

n
2
−1∑

k=0

a2k(ω
2)ik + ωi

n
2
−1∑

k=0

a2k+1(ω
2)ik

 mod q.

NTTp[i+
n

2
] =

n
2
−1∑

k=0

a2k(ω
2)ik − ωi

n
2
−1∑

k=0

a2k+1(ω
2)ik

 mod q.

Proposition 3. Let ω be nth root of unity in Zq[x]/x
n − 1. Then ω2 is (n/2)th root of

unity.

For i ∈ {0, 1, . . . , n
2
− 1},

NTTpeven[i] =

n
2
−1∑

k=0

a2k(ω
2)ikmodq

NTTpodd[i] =

n
2
−1∑

k=0

a2k+1(ω
2)ikmodq

Then,

NTTp[i] = NTTpeven[i] + ωiNTTpodd[i]

NTTp[i+
n

2
] = NTTpeven[i]− ωiNTTpodd[i].

15

Thus, to compute NTTp, polynomial was divided into two parts, namely NTTpeven and

NTTpodd. These parts have n/2 terms and it is just a simple arithmetic to compute n term

NTTp by using nth roots of unity.

This process of forming NTTp with NTTp[i] and NTTp[i+ n/2] and computing the whole

NTTp by using only the halves NTTpeven and NTTpodd is called Cooley-Tukey Butterfly,

which reduces the complexity of the computation from quadratic level to quasi-linear manner.

A schematic of the forward butterfly methodology can be seen in Figure 2.1.

Figure 2.1: Cooley-Tukey Butterfly for NTT calculation

In order to multiply two polynomials a(x) and b(x), NTT of both polynomials should be

performed over Zq[x]/x
n−1, so that NTTa and NTTb are computed. To find NTTc, which

is NTT of c(x), both NTTs should be multiplied element-wise such that,

NTTc = (NTTa modq) · (NTTb mod q)

NTTc[i] = (NTTa[i] ·NTTb[i]) mod q, i ∈ {0, 1, . . . , n− 1}

Getting polynomial c(x) back in time domain requires a procedure called inverse NTT

(INTT). With the help of INTT, the coefficients of c(x) is recovered fromNTTc mod q.

Definition 10 (Inverse NTT). Let NTTc with the terms NTTc[i] be the NTT of length n

polynomial c(x) over Zq[x]/x
n − 1 with the coefficients n−1 · ci, i ∈ {0, 1, . . . , n− 1}, n ∈ N

be power of 2.

ci =
n−1∑
k=0

NTTc[k]ω−ikmodq

ci =

n
2
−1∑

k=0

NTTc[2k](ωi)−2k +

n
2
−1∑

k=0

NTTc[2k + 1](ωi)−2k−1

 mod q

16

ci is formed by
[
ci ci+n

2

]
, i ∈ {0, 1, . . . , n

2
− 1}. Then,

ci =

n
2
−1∑

k=0

NTTc[2k]ω−2ik + (ω−1)
i

n
2
−1∑

k=0

NTTc[2k + 1]ω−2ik

 mod q

ci+n
2
=

n
2
−1∑

k=0

NTTc[2k]ω−2ik − (ω−1)
i

n
2
−1∑

k=0

NTTc[2k + 1]ω−2ik

 mod q

Thus, coefficients of the c(x) can be found by dividing the NTTc to its odd and even parts

as in the forward computation using the butterfly methodology.

For i ∈ {0, 1, . . . , n
2
− 1},

ci,even =

n
2
−1∑

k=0

NTTc[2k]ω−2ikmodq

ci,odd =

n
2
−1∑

k=0

NTTc[2k + 1]ω−2ikmodq

Then,

ci = ci,even + ω−ici,odd

ci+n
2
= ci,even − ω−ici,odd.

This procedure is performed iteratively until even and odd parts are left to be single term.

Coefficients of the c(x) are computed as n−1 · ci, i ∈ {0, 1, . . . , n− 1}.

Proposition 4. Let a be a polynomial over Zq[x]/x
n−1. Then a = INTT (NTT (a)).

The process of forming coefficients back with ci and ci+n
2
and computing the whole coefficients

of the resulting polynomial by using only the halves ci,even and ci,odd is called Cooley-Tukey

Butterfly as in the forward case. In the INTT butterfly procedure, inverse of the nth roots

of unity ω−1 are used in the defined finite field. A schematic of the butterfly methodology

in the INTT procedure can be seen in Figure 2.2.

17

Figure 2.2: Cooley-Tukey Butterfly for INTT calculation

2.2.1 NTT Radix-2 Cooley-Tukey Butterfly Procedure

Computations are performed over the polynomial quotient ring Zq[x]/x
n − 1.

Input:

a(x) =
∑n−1

i=0 aix
i = a0 + a1x+ a2x

2 + . . .+ an−1x
n−1

b(x) =
∑n−1

i=0 bix
i = b0 + b1x+ b2x

2 + . . .+ bn−1x
n−1

Output:

c(x) =
∑n−1

i=0 cix
i mod q = c0 mod q + c1x mod q + c2x

2 mod q + . . .+ cn−1x
n−1 mod q

where c(x) is the result of the multiplication of linear convolution of a(x) and b(x), with

coefficient of modulus q and polynomial roots of modulus xn−1.

Process:

a = [a0, a1, a2, . . . , an−1]

b = [b0, b1, b2, . . . , bn−1]

NTTa = NTT (a)

NTTb = NTT (b)

NTTc = [NTTa[0] ·NTTb[0], . . . , NTTa[n− 1] ·NTTb[n− 1]]

n · c = INTT (NTTc)

c := [cn−1, . . . , c2, c1, c0]

18

2.2.2 Complexity of NTT Radix-2 Cooley-Tukey Butterfly Proce-

dure

With the help of the symmetry and periodicity properties of the nth order roots of unity used

in NTT Cooley-Tukey Butterfly method, the length n polynomial is iteratively divided into 2

length n/2 polynomials and calculations are performed by using the half of the original poly-

nomial. In each iteration, there are n additions(shown as +○) and n/2 multiplications(shown

as x○) as shown in Figure 2.1 and Figure 2.2. The complexity of the procedure can be

calculated as follows:

T (n) = 2T
(n
2

)
+

n

2
x○ + n+○, where T (1) = 0

T (n) = 2
[
2T
(n
4

)
+

n

4
x○ +

n

2
+○
]
+

n

2
x○ + n+○ = 4T

(n
4

)
+ n x○ + 2n+○

T (n) = 4
[
2T (

n

8
) +

n

8
x○ +

n

4
+○
]
+ n x○ + 2n+○ = 8T

(n
8

)
+

3n

2
x○ + 3n+○

Since n = 2h and log2 n = h where h ∈ Z+,

T (n) = 2hT
(n

2h

)
+

hn

2
x○ + hn+○ = nT (1) +

log2 n

2
n x○ + n log2 n+○

T (n) = O(nlogn)

19

Chapter 3

Formulation for Radix-3 NTT Using

Cooley-Tukey Butterfly

Methodology

The original standard NTT Cooley-Tukey Butterfly method is designed for Radix-2 polyno-

mials. However, by using a similar methodology, computations can be formulized for Radix-3

case where polynomial length n is power of 3. It should be noted that periodicity property

of nth root of unity still holds for Radix-3.

Definition 11 (Radix-3 NTT based on Cooley-Tukey Butterfly Methodology). Let p(x) be a

length n polynomial with the coefficients ai over the polynomial quotient ring Zq[x]/x
n − 1.

i ∈ {0, 1, . . . , n− 1}, n ∈ N be power of 3. NTTp := [NTTp[0], . . . , NTTp[n− 1]] be NTT

of p(x).

NTTp[i] =
n−1∑
k=0

ak(ω
i)k mod q

NTTp[i] =

n
3
−1∑

k=0

a3k(ω
i)3k +

n
3
−1∑

k=0

a3k+1(ω
i)3k+1 +

n
3
−1∑

k=0

a3k+2(ω
i)3k+2

 mod q

NTTp is formed by
[
NTTp[i] NTTp[i+ n

3
] NTTp[i+ 2n

3
]
]
, i ∈ {0, 1, . . . , n

3
− 1}. By the

periodicity property of nth roots of unity,

20

NTTp[i] =

n
3
−1∑

k=0

a3k(ω
3)ik + ωi

n
3
−1∑

k=0

a3k+1(ω
3)ik + (ωi)

2

n
3
−1∑

k=0

a3k+2(ω
3)ik mod q

NTTp[i+
n

3
] =

(n
3
−1∑

k=0

a3k(ω
3)(i+

n
3
)k + ω(i+n

3
)

n
3
−1∑

k=0

a3k+1(ω
3)(i+

n
3
)k

+ ω2(i+n
3
)

n
3
−1∑

k=0

a3k+2(ω
3)(i+

n
3
)k

)
mod q

NTTp[i+
n

3
] =

(n
3
−1∑

k=0

a3k(ω
3)ik(ωn)k + ω(i+n

3
)

n
3
−1∑

k=0

a3k+1(ω
3)ik(ωn)k

+ ω2(i+n
3
)

n
3
−1∑

k=0

a3k+2(ω
3)ik(ωn)k

)
mod q

NTTp[i+
n

3
] =

(n
3
−1∑

k=0

a3k(ω
3)ik + ω(i+n

3
)

n
3
−1∑

k=0

a3k+1(ω
3)ik

+ ω2(i+n
3
)

n
3
−1∑

k=0

a3k+2(ω
3)ik
)

mod q

NTTp[i+
2n

3
] =

(n
3
−1∑

k=0

a3k(ω
3)(i+

2n
3
)k + ω(i+ 2n

3
)

n
3
−1∑

k=0

a3k+1(ω
3)(i+

2n
3
)k

+ ω2(i+ 2n
3
)

n
3
−1∑

k=0

a3k+2(ω
3)(i+

2n
3
)k

)
mod q

NTTp[i+
2n

3
] =

(n
3
−1∑

k=0

a3k(ω
3)ik(ωn)2k + ω(i+ 2n

3
)

n
3
−1∑

k=0

a3k+1(ω
3)ik(ωn)2k

+ ω2(i+ 2n
3
)

n
3
−1∑

k=0

a3k+2(ω
3)ik(ωn)2k

)
mod q

21

NTTp[i+
2n

3
] =

(n
3
−1∑

k=0

a3k(ω
3)ik + ω(i+ 2n

3
)

n
3
−1∑

k=0

a3k+1(ω
3)ik

+ ω2(i+ 2n
3
)

n
3
−1∑

k=0

a3k+2(ω
3)ik
)

mod q

Proposition 5. Let ω be nth root of unity in Zq[x]/x
n−1. Then ω3 is (n/3)th root of unity.

For i ∈ {0, 1, . . . , n
3
− 1}, let,

NTTpnull[i] =

n
3
−1∑

k=0

a3k(ω
3)ik mod q

NTTpodd[i] =

n
3
−1∑

k=0

a3k+1(ω
3)ik mod q

NTTpeven[i] =

n
3
−1∑

k=0

a3k+2(ω
3)ik mod q

Then,

NTTp[i] = NTTpnull[i] + ωiNTTpodd[i] + ω2iNTTpeven[i]

NTTp[i+
n

3
] = NTTpnull[i] + ω(i+n

3
)NTTpodd[i] + ω2(i+n

3
)NTTpeven[i]

NTTp[i+
2n

3
] = NTTpnull[i] + ω(i+ 2n

3
)NTTpodd[i] + ω2(i+ 2n

3
)NTTpeven[i]

Thus, to compute NTTp, polynomial was divided into three parts, namely NTTpnull,

NTTpeven and NTTpodd. These parts have n/3 terms and it is just a simple arithmetic

to compute n term NTTp by using nth roots of unity.

By using a similar approach based on the Cooley-Tukey Butterfly methodology used in

Radix-2 NTT and thus forming NTTp with NTTp[i], NTTp[i+ n
3
], and NTTp[i+ 2n

3
], whole

22

NTTp can be computed by using NTTpnull, NTTpeven and NTTpodd. This procedure helps

to reduce the complexity of the computation from quadratic level to quasi-linear level.

As it is the case in Radix-2 NTT, in order to multiply two polynomials a(x) and b(x), NTT

of both polynomials should be performed over Zq[x]/x
n − 1, so that NTTa and NTTb are

computed. To find NTTc, which is NTT of c(x), both NTTs should be multiplied element-

wise. Getting polynomial c(x) back in time domain requires a procedure called inverse

NTT (INTT). With the help of INTT, the coefficients of c(x) is recovered from NTTc

mod q.

Definition 12 (Inverse NTT in Radix 3). Let NTTc with the terms NTTc[i] be the NTT of

length n polynomial c(x) over Zq[x]/x
n−1 with the coefficients n−1 · ci, i ∈ {0, 1, . . . , n−1},

n ∈ N be power of 3.

ci =
n−1∑
k=0

NTTc[k]ω−ik mod q

ci =

n
3
−1∑

k=0

NTTc[3k](ωi)−3k +

n
3
−1∑

k=0

NTTc[3k + 1](ωi)−3k−1 +

n
3
−1∑

k=0

NTTc[3k + 2](ωi)−3k−2

 mod q

ci is formed by
[
ci ci+n

3
ci+ 2n

3

]
, i ∈ {0, 1, . . . , n

3
− 1}. Then,

ci =

(n
3
−1∑

k=0

NTTc[3k](ω3)−ik + (ω−1)
i

n
3
−1∑

k=0

NTTc[3k + 1](ω3)−ik

+ (ω−1)
2i

n
3
−1∑

k=0

NTTc[3k + 2](ω3)−ik mod q

ci+n
3
=

(n
3
−1∑

k=0

NTTc[3k](ω3)−(i+n
3
)k + ω−(i+n

3
)

n
3
−1∑

k=0

NTTc[3k + 1](ω3)−(i+n
3
)k

+ ω−2(i+n
3
)

n
3
−1∑

k=0

NTTc[3k + 2](ω3)−(i+n
3
)k

)
mod q

23

ci+n
3
=

(n
3
−1∑

k=0

NTTc[3k]ω−3ik(ωn)−k + ω−(i+n
3
)

n
3
−1∑

k=0

NTTc[3k + 1]ω−3ik(ωn)−k

+ ω−2(i+n
3
)

n
3
−1∑

k=0

NTTc[3k + 2]ω−3ik(ωn)−k

)
mod q

ci+n
3
=

(n
3
−1∑

k=0

NTTc[3k]ω−3ik + ω−(i+n
3
)

n
3
−1∑

k=0

NTTc[3k + 1]ω−3ik

+ ω−2(i+n
3
)

n
3
−1∑

k=0

NTTc[3k + 2]ω−3ik

)
mod q

ci+ 2n
3
=

(n
3
−1∑

k=0

NTTc[3k](ω3)−(i+ 2n
3
)k + ω−(i+ 2n

3
)

n
3
−1∑

k=0

NTTc[3k + 1](ω3)−(i+ 2n
3
)k

+ ω−2(i+ 2n
3
)

n
3
−1∑

k=0

NTTc[3k + 2](ω3)−(i+ 2n
3
)k

)
mod q

ci+ 2n
3
=

(n
3
−1∑

k=0

NTTc[3k]ω−3ik(ωn)−2k + ω−(i+ 2n
3
)

n
3
−1∑

k=0

NTTc[3k + 1]ω−3ik(ωn)−2k

+ ω−2(i+ 2n
3
)

n
3
−1∑

k=0

NTTc[3k + 2]ω−3ik(ωn)−2k

)
mod q

ci+ 2n
3
=

(n
3
−1∑

k=0

NTTc[3k]ω−3ik + ω−(i+ 2n
3
)

n
3
−1∑

k=0

NTTc[3k + 1]ω−3ik

+ ω−2(i+ 2n
3
)

n
3
−1∑

k=0

NTTc[3k + 2]ω−3ik

)
mod q

Thus, coefficients of the c(x) can be found by dividing the NTTc to its null, odd and even

parts as in the forward computation.

24

For i ∈ {0, 1, . . . , n
3
− 1}, let,

ci,null =

n
3
−1∑

k=0

NTTc[3k]ω−3ik mod q

ci,odd =

n
3
−1∑

k=0

NTTc[3k + 1]ω−3ik mod q

ci,even =

n
3
−1∑

k=0

NTTc[3k + 2]ω−3ik mod q

Then,

ci = ci,null + ω−ici,odd + ω−2ici,even

ci+n
3
= ci,null + ω−(i+n

3
)ci,odd + ω−2(i+n

3
)ci,even

ci+ 2n
3
= ci,null + ω−(i+ 2n

3
)ci,odd + ω−2(i+ 2n

3
)ci,even

This procedure is performed recursively until null, even and odd parts are left to be single

term. Coefficients of the c(x) are computed as n−1 · ci, i ∈ {0, 1, . . . , n− 1}.

3.1 Complexity of NTT Radix-3 Cooley-Tukey Butter-

fly Procedure

With the help of the periodicity properties of the nth order roots of unity used in NTT

Cooley-Tukey Butterfly method, the length n polynomial is iteratively divided into 3 length

n/3 polynomials and calculations are performed by using the 1/3 of the original polynomial.

In each iteration, there are 2n additions(shown as +○) and 2n multiplications(shown as x○).

The complexity of the procedure can be calculated as follows:

T (n) = 3T
(n
3

)
+ 2n x○ + 2n+○, where T (1) = 0

T (n) = 3

[
3T
(n

32

)
+

2n

3
x○ +

2n

3
+○
]
+ 2n x○ + 2n+○ = 32T

(n

32

)
+ 4n x○ + 4n+○

25

T (n) = 32
[
3T (

n

33
) +

2n

32
x○ +

2n

32
+○
]
+ 4n x○ + 4n+○ = 33T

(n

33

)
+ 6n x○ + 6n+○

Since n = 3h and log3 n = h where h ∈ Z+,

T (n) = 3hT
(n

3h

)
+ 2hn x○ + 2hn+○ = nT (1) + 2n log3 n x○ + 2n log3 n+○

T (n) = O(nlogn)

26

Chapter 4

Formulation for Radix-N NTT Using

Cooley-Tukey Butterfly

Methodology

NTT formulization can be generalized to Radix-N by using the insight gained from Radix-2

and Radix-3 cases. Thus, for any polynomial length n, where n is power of N , the gener-

alized NTT approach explained in this chapter can be utilized to perform the polynomial

multiplication with nlogn complexity.

It should be noted that periodicity property of nth root of unity still holds for Radix-N.

Definition 13 (Generalized NTT formulation in Radix-N). Let p(x) be a length n polyno-

mial with the coefficients ai over the polynomial quotient ring Zq[x]/x
n−1. i ∈ {0, 1, . . . , n−

1}, n ∈ N be power of N . NTTp := [NTTp[0], . . . , NTTp[n− 1]] be NTT of p(x).

NTTp[i] =
n−1∑
k=0

ak(ω
i)k mod q

NTTp[i] =

 n
N
−1∑

k=0

aNk(ω
i)Nk +

n
N
−1∑

k=0

aNk+1(ω
i)Nk+1 + . . .+

n
N
−1∑

k=0

aNk+(N−1)(ω
i)Nk+(N−1)

 mod q

NTTp is formed by
[
NTTp[i] NTTp[i+ n

N
] . . . NTTp[i+ (N−1)n

N
]
]
, i ∈ {0, 1, . . . , n

N
−

1}. By the periodicity property of nth roots of unity,

27

NTTp[i] =

 n
N
−1∑

k=0

aNk(ω
N)ik + ωi

n
N
−1∑

k=0

aNk+1(ω
N)ik + . . .+ (ωi)

N−1

n
N
−1∑

k=0

aNk+(N−1)(ω
N)ik mod q

NTTp[i+
n

N
] =

(n
N
−1∑

k=0

aNk(ω
N)(i+

n
N
)k + ω(i+ n

N
)

n
N
−1∑

k=0

aNk+1(ω
N)(i+

n
N
)k + . . .

+ ω(N−1)(i+ n
N
)

n
N
−1∑

k=0

aNk+(N−1)(ω
N)(i+

n
N
)k

)
mod q

NTTp[i+
n

N
] =

(n
N
−1∑

k=0

aNk(ω
N)ik(ωn)k + ω(i+ n

N
)

n
N
−1∑

k=0

aNk+1(ω
N)ik(ωn)k + . . .

+ ω(N−1)(i+ n
N
)

n
N
−1∑

k=0

aNk+(N−1)(ω
N)ik(ωn)k

)
mod q

NTTp[i+
n

N
] =

(n
N
−1∑

k=0

aNk(ω
N)ik + ω(i+ n

N
)

n
N
−1∑

k=0

aNk+1(ω
N)ik + . . .

+ ω(N−1)(i+ n
N
)

n
N
−1∑

k=0

aNk+(N−1)(ω
N)ik

)
mod q

NTTp[i+
(N − 1)n

N
] =

(n
N
−1∑

k=0

aNk(ω
N)(i+

(N−1)n
N

)k+ω(i+
(N−1)n

N
)

n
N
−1∑

k=0

aNk+1(ω
N)(i+

(N−1)n
N

)k+. . .

+ ω(N−1)(i+
(N−1)n

N
)

n
N
−1∑

k=0

aNk+(N−1)(ω
N)(i+

(N−1)n
N

)k

)
mod q

NTTp[i+
(N − 1)n

N
] =

(n
N
−1∑

k=0

aNk(ω
N)ik(ωn)(N−1)k+ω(i+

(N−1)n
N

)

n
N
−1∑

k=0

aNk+1(ω
N)ik(ωn)(N−1)k+. . .

+ ω(N−1)(i+
(N−1)n

N
)

n
N
−1∑

k=0

aNk+(N−1)(ω
N)ik(ωn)(N−1)k

)
mod q

28

NTTp[i+
(N − 1)n

N
] =

(n
N
−1∑

k=0

aNk(ω
N)ik + ω(i+

(N−1)n
N

)

n
N
−1∑

k=0

aNk+1(ω
N)ik

+ ω(N−1)(i+
(N−1)n

N
)

n
N
−1∑

k=0

aNk+(N−1)(ω
N)ik

)
mod q

Proposition 6 Let ω be nth root of unity in Zq[x]/x
n − 1. Then ωN is (n/N)th root of

unity.

For i ∈ {0, 1, . . . , n
N
− 1}, let,

NTTp1[i] =

n
N
−1∑

k=0

aNk(ω
N)ik mod q

NTTp2[i] =

n
N
−1∑

k=0

aNk+1(ω
N)ik mod q

. . .

. . .

NTTpN [i] =

n
N
−1∑

k=0

aNk+(N−1)(ω
N)ik mod q

Then,

NTTp[i] = NTTp1[i] + ωiNTTp2[i] + . . .+ ω(N−1)iNTTpN [i]

NTTp[i+
n

N
] = NTTp1[i] + ω(i+ n

N
)NTTp2[i] + . . .+ ω(N−1)(i+ n

N
)NTTpN [i]

. . .

. . .

NTTp[i+
(N − 1)n

N
] = NTTp1[i] + ω(i+

(N−1)n
N

)NTTp2[i] + . . .+ ω(N−1)(i+
(N−1)n

N
)NTTpN [i].

Thus, to compute NTTp, polynomial was divided into N parts, namely NTTp1, NTTp2

upto NTTpN . These parts have n/N terms and it is just a simple arithmetic to compute n

29

term NTTp by using nth roots of unity.

By using a similar approach based on the Cooley-Tukey Butterfly methodology used in

Radix-2 NTT and thus forming NTTp with NTTp[i], NTTp[i+ n
N
], and NTTp[i+ (N−1)n

N
],

whole NTTp can be computed by using NTTp1, NTTp2, . . . , NTTpN . This procedure

helps to reduce the complexity of the computation from quadratic level to quasi-linear level.

As it is the case in Radix-2 NTT, in order to multiply two polynomials a(x) and b(x), NTT

of both polynomials should be performed over Zq[x]/x
n − 1, so that NTTa and NTTb are

computed. To find NTTc, which is NTT of c(x), both NTTs should be multiplied element-

wise. Getting polynomial c(x) back in time domain requires a procedure called inverse NTT

(INTT). With the help of INTT, the coefficients of c(x) is recovered from NTTc mod q.

Definition 12 (Inverse NTT in Radix-N). Let NTTc with the terms NTTc[i] be the NTT of

length n polynomial c(x) over Zq[x]/x
n−1 with the coefficients n−1 · ci, i ∈ {0, 1, . . . , n−1},

n ∈ N be power of N.

ci =
n−1∑
k=0

NTTc[k]ω−ik mod q

ci =

(n
N
−1∑

k=0

NTTc[Nk](ωi)−Nk +

n
N
−1∑

k=0

NTTc[Nk + 1](ωi)−Nk−1 + . . .

+

n
N
−1∑

k=0

NTTc[Nk + (N − 1)](ωi)−Nk−(N−1)

)
mod q

ci is formed by
[
ci ci+ n

N
. . . c

i+
(N−1)n

N

]
, i ∈ {0, 1, . . . , n

N
− 1}. Then, Then, similar ap-

proach in the forward NTT can be applied. ω−1 should be used instead of ω in the formula-

tions. Thus, coefficients of the c(x) can be found by dividing the NTTc to its N sub-parts

as in the forward computation.

For i ∈ {0, 1, . . . , n
N
− 1},

ci,1 =

n
N
−1∑

k=0

NTTc[Nk]ω−Nik mod q

30

ci,2 =

n
N
−1∑

k=0

NTTc[Nk + 1]ω−Nik mod q

. . .

. . .

ci,N =

n
N
−1∑

k=0

NTTc[Nk + (N − 1)]ω−Nik mod q.

Then,

ci = ci,1 + ω−ici,2 + . . .+ ω−(N−1)ici,N

ci+ n
N
= ci,1 + ω−(i+ n

N
)ci,2 + ω−(N−1)(i+ n

N
)ci,N

. . .

. . .

c
i+

(N−1)n
N

= ci,1 + ω−(i+
(N−1)n

N
)ci,2 + ω−(N−1)(i+

(N−1)n
N

)ci,N

This procedure is performed recursively until sub-parts are left to be single term. Coefficients

of the c(x) are computed as n−1 · ci, i ∈ {0, 1, . . . , n− 1}.

31

Chapter 5

Incomplete NTT Methodology

Complete NTT methodology relies on dividing the polynomials into sub-parts until single

term is left such that n = 1 with FFTa = a. In the incomplete case, the procedure does not

have to be followed until n = 1 but can be cut down earlier at higher n value. Since NTT

method is advantageous for higher n values, it can be more beneficial to use other polynomial

multiplication methods such as schoolbook when n becomes smaller. Thus, NTT can be used

at the beginning of the multiplication process for large n values but when n is reduced to a

certain limit, methodology can be switched from NTT to any other procedure. This early

cut-off of the NTT process is called Incomplete NTT Method.

Incomplete NTT can also be used when the length of the polynomial is not in the neigh-

bourhood of any power of an integer in the finite field. If n can be defined as a result of

multiplicative factor with a power of an integer, i.e. n = mN j, then NTT procedure can be

used starting at the level n = mN j and switched off to any other preferable method after a

number of j recursions at the level n = m. For instance, in the standard use of NTT, n is

power of 2. In case polynomial length n is 12, i.e. n = 3.22, incomplete NTT methodology

can be used such that standard Radix-2 NTT procedure is applied from level n = 12 for

j = 2 recursions until each sub-part would have m = 3 elements at the level n = 3. Unlike

the complete NTT case where final sub-parts have single elements, incomplete Radix-2 NTT

procedure ends up with m = 3 elements in this example. Thus, polynomials are divided into

sub-parts of aeven and aodd by groups of 3 elements:

aeven = [(a8, a7, a6), (a2, a1, a0)]

aodd = [(a11, a10, a9), (a5, a4, a3)]

32

In this example of incomplete NTT, recursive level reductions are performed in groups of

m = 3 elements. In order to multiply the two polynomials a(x) and b(x), first, NTT of the

polynomials NTTa and NTTb are computed using the standard NTT procedure. Then,

NTTc can be found by multiplying NTTa and NTTb element-wise in the integer quotient

ring Zq[x]/x
m − ωi for i ∈ {0, 1, . . . ,m}.

NTTc[i] = NTTa[i] ·NTTb[i]c(q, xm − ωi), i ∈ {0, 1, . . . ,m}

NTTa and NTTb are composed of N j parts with m elements in each part. In our example,

n = 3x22, aeven and aodd has 2 parts with 3 elements in each part, NTTa has 4 parts with 3

elements in each part. The same applies fore NTTb. NTTc can be computed by schoolbook

method since NTTa and NTTb parts are polynomials with m elements.

In order to find c(x) back in continuous domain, standard INTT procedure is applied using

ω−1.

33

Chapter 6

Conclusion

Data and information security is the backbone of the interconnected and interdependent

technology of today and tomorrow. With the advancement of quantum computer technol-

ogy, an existential problem has arisen about the cryptographic security. Thus, technology

has become a serious threat to technology itself. Considering that no technology can be

implemented sustainably without secured data, the complete collapse of the technology we

know today stands before us as a real risk if no viable solution can be found for proper

cryto-schemes.

Post-quantum cryptography is a new research area appeared with the development in quan-

tum computation technology. There were held world-wide competitions where the standards

of the post-quantum cryptography were determined. The majority of the schemes that were

selected for use in standardization process were lattice-based cryptographic systems in these

competitions.

Implementation of any cryptographic scheme on different platforms is only possible if ade-

quate amount of resources are provided, given the amount required by the schemes. Poly-

nomial multiplications are intensively used in lattice based post-quantum cryptographic

systems and since they consume extensive process power, polynomial multiplications be-

come bottleneck for post-quantum crypto-schemes. In order to reduce the resource need

of these schemes, it is a vital requirement to lower the computational complexity of the

polynomial multiplications. Although there are particular multiplication methods, the NTT

method described in this report enables polynomial multiplications with the lowest known

computational complexity of O(nlogn), which are performed in lattice-based schemes using

polynomials defined on an integer ring.

34

The Radix-2, Radix-3 and generalized Radix-N NTT methods described in this report have

been formulated in a clear way so that it can be applied on various platforms without much

effort. Incomplete NTT method has also been mentioned in the report in case the polynomial

quotient ring over which the multiplications are performed is not a power of some integer.

With the help of NTT method, complexity level is reduced from O(n2) quadratic regime

to O(nlogn) quasi-linear quantity. This denotes a substantial reduction of complexity with

respect to standard schoolbook method.

35

Bibliography

[1] Diffie W, Hellman M, 1976, ”Multi-user cryptographic techniques”, AFIPS Proceedings,

45, 109-112

[2] Rivest RL, Shamir A, Adleman A., 1978, ”A method for obtaining digital signatures

and public-key cryptosystems”, Communications of the ACM, 21 (2), 120-126

[3] Lips BAM, 2021, ”The efficiency of polynomial multiplication methods for ring based

PQC algorithms of round-3 of the NIST PQC competition”, MSc Thesis, Eindhoven

University of Technology

[4] Shor PW., 1994, ”Algorithms for quantum computation: discrete logarithms and factor-

ing”, 124–134.

[5] Liang Z, Zhao Y., “Number Theoretic Transform and Its Applications in Lattice-based

cryptosystems: A Survey”.

[6] Wang A, Xiao D, Yu Y, 2022, ”Lattice-based cryptosystems in standardisation pro-

cesses: A survey”, IET Inf Secur, 1-17

[7] Regev O., 2009, ”On lattices, learning with errors, random linear codes, and cryptogra-

phy”, J ACM, 56(6), 34(1)-34(40)

[8] Lyubashevsky V, Peikert C, Regev O., 2010, ”On ideal lattices and learning with errors

over rings”, In Eurocrypt, 6110, 1–23

[9] Langlois A, Stehlé D., 2015, Worst-case to average-case reductions for module lattices,

Des Codes Cryptogr, 75(3), 565–599

[10] Banerjee A, Peikert C, Rosen A., 2012, Pseudorandom functions and lattices, In Euro-

crypt, 7237, 719–737

[11] Alperin-Sheriff J, Apon D., 2016, Dimension-preserving reductions from LWE to LWR,

IACR Cryptol, 589

36

[12] Karatsuba A, Ofman Y., 1962, Multiplication of many-digital numbers by automatic

computers, Doklady Akademii Nauk, 145(2), 293–294

[13] Toom L., 1963, The complexity of a scheme of functional elements realizing the multi-

plication of integers, Soviet Mathematics Doklady, 3(4), 714–716

[14] Cooley JW, Tukey JW., 1965, An algorithm for the machine calculation of complex

fourier series, Mathematics of Computation, 19(90), 297–301

[15] Pollard JM., 1971, The fast fourier transform in a finite field. Mathematics of compu-

tation, 25(114), 365–374

37

