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ABSTRACT 

 

ACCURACY ANALYSES OF NUMERIC WEATHER PREDICTION-

BASED STRATIFORM AND CONVECTIVE PRECIPITATION SHORT-

TERM FORECASTS OVER TURKEY 

 

 

Aydın, Beril 

Master of Science, Civil Engineering 

Supervisor: Prof. Dr. İsmail Yücel 

Co-Supervisor: Assoc. Prof. Dr. M. Tuğrul Yılmaz 

 

 

January 2023, 93 pages 

 

This study was carried out to determine whether convective and stratiform (large-

scale) precipitation datasets obtained from 5 model forecast-based products would 

be an adequate alternative for regions where station-based observation networks are 

sparse. Verification of precipitation types (convective or stratified) from numerical 

weather forecast (NWP) models (ALARO, CFS, ECMWF HRES, GFS, WRF) is 

done using station-based observations. Statistical assessments between these 

precipitation types in different topographies (complex and non-complex) are 

available between 2015 and 2018. Reference data are obtained from 836 Automatic 

Observation Stations (OMGI) operated by the Turkish State Meteorological Service 

(TSMS). Accuracy assessments are reviewed separately for each precipitation type 

(total, convective, stratiform) and topography (entire area, complex regions, non-

complex regions). The results show that all model products have an average 

correlation of 0.6 in total and large-scale precipitation for all areas. In contrast, the 

convective component of precipitation has an average correlation of 0.16 and 0.19 

for complex and non-complex regions, respectively. In complex areas where the risk 

of flash flooding is high and the slope is more than 5% under the influence of 

convective precipitation, the low prediction performance of model products reduces 
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the ability to take precautions for dangerous situations. Overall, the ECMWF HRES 

product has the highest accuracy in total precipitation for all areas, while the WRF 

product has the highest correlation coefficient and closest spatial distributions in all 

regions for convective precipitation. The findings of this study will assist the global 

literature examining regions with complex topography not only over the entire study 

area but for future hydrological and hydrometeorological studies. 

Keywords: Complex Topography, Numerical Weather Prediction, Convective 

Precipitation, Stratiform Precipitation, Accuracy Assessments 
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ÖZ 

 

TÜRKİYE ÜZERİNDE KONVEKTİF VE CEPHESEL YAĞIŞ 

TAHMİNİNDE MODEL-TABANLI KISA VADELİ YAĞIŞ 

TAHMİNLERİNİN DOĞRULUK DEĞERLENDİRMESİ 

 

 

Aydın, Beril 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Prof. Dr. İsmail Yücel 

Ortak Tez Yöneticisi: Doç. Dr. M. Tuğrul Yılmaz 

 

 

Ocak 2023, 93 sayfa 

 

Bu çalışma, tahmine dayalı 5 model üründen elde edilen konvektif ve stratiform 

(büyük ölçekli) yağış veri setlerinin, istasyon tabanlı gözlem ağlarının seyrek olduğu 

bölgeler için yeterli bir alternatif olup olmayacağını belirlemek amacıyla yapılmıştır. 

Sayısal hava tahmini (NWP) modellerinden (ALARO, CFS, ECMWF HRES, GFS, 

WRF) yağış türlerinin (konvektif veya cephesel) doğrulanması, istasyon tabanlı 

gözlemler kullanılarak yapılır. Farklı topografyalardaki (karmaşık ve karmaşık 

olmayan) bu yağış türleri arasındaki istatistiksel değerlendirmeler 2015 ile 2018 

yılları arasında mevcuttur. Referans veriler, Meteoroloji Genel Müdürlüğü (MGM) 

tarafından işletilen 836 Otomatik Gözlem İstasyonundan (OMGI) elde edilmektedir. 

Doğruluk değerlendirmeleri, her yağış türü (toplam, konvektif, cephesel) ve 

topografya (tüm alan, karmaşık bölgeler, karmaşık olmayan bölgeler) için ayrı ayrı 

incelenir. Sonuçlar, tüm model ürünlerin toplam ve tüm alanlar için cephesel yağışta 

ortalama 0.6 korelasyona sahip olduğunu göstermektedir. Buna karşılık, yağışın 

konvektif bileşeni, karmaşık ve karmaşık olmayan bölgeler için sırasıyla 0.16 ve 

0.19'luk bir ortalama korelasyona sahiptir. Ani sel riskinin yüksek olduğu ve 

konvektif yağış etkisinde eğimin %5'ten fazla olduğu karmaşık alanlarda, model 
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ürünlerin düşük tahmin performansı, tehlikeli durumlar için önlem alma yeteneğini 

azaltır. ECMWF HRES ürünü, tüm alanlar için toplam yağışta en yüksek doğruluğa 

sahipken, WRF ürünü, konvektif yağış için tüm bölgelerde en yüksek korelasyon 

katsayısına ve en yakın mekansal dağılımlara sahiptir. Bu çalışmanın bulguları, 

sadece tüm çalışma alanı üzerinde değil, aynı zamanda gelecekteki hidrolojik ve 

hidrometeorolojik çalışmalar için karmaşık topografyaya sahip bölgeleri inceleyen 

küresel literatüre yardımcı olacaktır. 

Anahtar Kelimeler: Karmaşık Topografya, Sayısal Hava Tahmini, Konvektif Yağış, 

Cephesel Yağış, Doğruluk Değerlendirmeleri 
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CHAPTER 1  

1 INTRODUCTION 

1.1 Motivation 

Water is one of the most fundamental components of the Earth's climate. Today, 

sustainable water resources management is one of the most critical issues in the 

whole world. The amount of precipitation determines the amount of drinking water, 

irrigation, and hydropower plants (Zahedi et al., 2022). Precipitation affects all areas 

of daily human life, from residential areas to tourism, from transportation to 

agriculture (Jodar-Abellan et al., 2019). Besides, there are extreme precipitation 

events that may result in flash floods or landslides which are direct threats to all 

living things (Talchabhadel et al., 2022). These extreme events can also affect by 

various factors, such as topographical complexity (L. Yu et al., 2020). For these 

reasons, it is essential to make precipitation forecasts accurately. 

Unknown future precipitation amounts make it difficult to take precautions against 

losses. Spatio-temporal alterations of precipitation have caused more undesired 

hazards in recent decades and show different patterns in global, continental and 

regional scales (IPCC, 2014; Mathew et al., 2021). Numerical weather prediction 

(NWP) models with different scales, established in many NWP centers to carry 

through short-term weather forecasts (Ren et al., 2022). These NWP models are an 

alternative to predicting precipitation components in regions with complex 

topography where meteorological stations are sparse (Amjad et al., 2020). The 

accuracy of the NWP models is related to the horizontal resolution and physical 

parametrization. Moreover, this accuracy is also limited with initial and boundary 

conditions such as temperature, pressure, moisture or solar radiation and their 

domains (Bližňák et al., 2017). With technology-advancing computational 

techniques, NWP models can fulfill the needs for precipitation forecasts. Worldwide 
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studies have been and are being conducted to evaluate the dependability of these 

NWP models in predicting precipitation (Amjad et al., 2020; Saedi et al., 2020; 

Singhal et al., 2022a; Sokol et al., 2022). Some of the NWP models with various 

spatial and temporal resolutions obtained from different centers are European Centre 

for Medium-Range Weather Forecasts (ECMWF), ECMWF-High Resolution 

(ECMWF HRES) (Singhal et al., 2022b), ALADIN (Aire Limitée Adaptation 

Dynamique Développement International)-AROME (Application of Research to 

Operations at Mesoscale) (ALARO) (De Troch et al., 2013), Weather Research and 

Forecasting Model (WRF) (Duzenli et al., 2021), Global Forecast System (GFS) 

(Ashrit et al., 2020; Rao et al., 2022; Sridevi et al., 2020) and The Climate Forecast 

System (CFS) (Hazra et al., 2016). Hydrological studies require reliable precipitation 

predictions since the point form station observations lack the information. 

While the NWP models are used to reduce the uncertainties in estimating, the 

accuracy of these models has great importance since these uncertainties impact 

whole hydrometeorological calculations (Edouard et al., 2018). One of the main 

reasons for these uncertainties is whether the topography in the indicated area is 

complex. Topography may be one of the most substantial of these because the 

topography and precipitation relationship is not just about height change; there are 

local interactions such as air pressure, slope or slope direction (Li et al., 2021). These 

kinds of perilous weather events, which develop depending on many parameters 

(Guo et al., 2021; Špitalar et al., 2014), make it difficult for the models to make 

accurate predictions, as the numerical precipitation amount is not homogeneously 

spread over the complex topographies (Roberts, 2008). Extreme precipitation 

estimation with exact location and intensity is vital since floods happen rapidly in 

mountainous regions in such complex topographies. 

The existence of precipitation components with different obvious cloud 

microphysical properties has been known for a long time (Kirsch et al., 2019). The 

convective component of precipitation is at the forefront in the formation of flash 

floods that increase the severity of events associated with deep convective clouds 

(Llasat et al., 2016). Convection has a principal role in cloud formation that 
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designates the intensity and impact of the precipitation, which comprises a rapid 

increase in warmed air in heavy rainfalls (Zeng et al., 2021). While such precipitation 

has high intensities in small areas, stratiform precipitation plays a significant role in 

natural water cycles with low precipitation intensity in large areas. In addition to the 

importance of the total precipitation forecast, the correct estimation of the 

precipitation components affects many areas in terms of social and economic aspects. 

Differentiation of convective and stratiform precipitation in regions with complex 

topography and evaluation of the performance of numerical weather forecast models 

allows many hydrological studies to be carried out. 

1.2 Literature Review 

While investigation of the precipitation accuracy is widely performed (Akinyemi et 

al., 2020; Chen et al., 2021; Jafarpour et al., 2022; Jiang et al., 2021; C. Yu et al., 

2020; Zhang et al., 2022; Z. Zhang et al., 2019), the number of studies investigated 

the performance over complex topography is much less (Amjad et al., 2020; Lei et 

al., 2021; Ward et al., 2011; L. Yu et al., 2020). On the other hand, there are only a 

few studies explicitely investigated the accuracy of convective and stratiform 

components of the precipitation products (Feloni et al., 2019; Kyselý et al., 2016; 

Wang et al., 2021). Past studies focused on flat regions (Bližňák et al., 2019; Šaur et 

al., 2021; Yang et al., 2019). However, not many studies intercompared the accuracy 

of convective and stratiform precipitation using different NWP models over complex 

topographies (Amjad et al., 2020; Duzenli et al., 2020; Foth et al., 2021; Sahlaoui et 

al., 2020; Yucel and Onen, 2014; Zhao et al., 2021).  

This study intercompared the accuracy of 5 NWP model forecasts (ALARO, 

ECWMF, GFS, CFS, WRF) over a complex region in Turkey. The data used in the 

study are evaluated for the first time regarding the number of models, study time, 

and study area. Analyses are performed over Turkey for three different precipitation 

types (total, convective, and large-scale) concerning observation data from 836 

measuring stations. Evaluation studies for total, convective, and large-scale 
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precipitation include precipitation statistics, error precipitation statistics, 

precipitation frequency analyses, categorical performance indices and spatial 

distributions to compare the models' performances in complex and non-complex 

areas. 

The data used in the study are evaluated for the first time regarding the number of 

models, study duration, and study area. This study reveals many original and new 

results for our country and the literature with the following items. 

1) In our country, the precipitation data obtained over the whole country is divided 

into two convective and stratiform and separately evaluated using different weather 

forecast models and ground observation data. 

2) High-resolution convective and stratiform precipitation forecasts from ECMWF 

(HRES), ALARO, WRF, GFS, and CFS presented in Turkey have been 

comparatively evaluated over Turkey. 

3) Extensive analyses of model-based assessment of precipitation products over 

complex topography have been performed. 

4) The temporal and spatial variation of the uncertainty of both convective and 

stratiform precipitation of different models in different regions of Turkey has been 

demonstrated. 

5) In which regions of our country is there more convective and stratiform 

precipitation and the rates of these precipitations have been investigated numerically. 

This study reveals the percentage of convective precipitation in all precipitation and 

its spatial distribution with ground observation data and models. 

The results of this study will contribute in many ways to the ongoing and future 

studies in various fields that need precipitation data and will prepare the ground for 

them. The importance of this study is that it analyzes the model-based accuracies of 

precipitation components throughout Turkey.
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CHAPTER 2  

2 METHODOLOGY 

Accuracy analyzes are carried out between 5 different NWP models and ground 

observation stations used as references in this study, which is carried out on an area 

with a complex topography such as Turkey. 

Different features of NWP models such as parameterization, resolution or sensitivity, 

cause different estimation results. In this context, accuracy analysis has a great 

essence. As shown in Figure 2.1, precipitation statistics, categorical performance 

indices are calculated for more detailed interpretation, intensity-frequency relations 

are discussed and their spatial distribution maps are examined. Finally, these results 

are  compared at various time scales. 

  

Figure 2.1. Flow chart of the study 
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2.1 Study Area 

The study area is selected as entire Turkey that is widely known for its complex 

topography with a mean elevation of 1132 m, where it has a surface area of 783,562 

km2 (Amjad et al., 2020; Bostan et al., 2012). It is located in the Eastern 

Mediterranean region with an annual average precipitation of 573.4 mm (Turkish 

State Meteorological Service (TSMS), 2020). Latitude and longitude coordinates are 

35-43 and 25-45, respectively. Due to its coasts to the Mediterranean, Black Sea, and 

the Aegean Sea, more than one climate type is observed all year round. The effect of 

greenery and topography on the existence of diverse climatic conditions is relatively 

high (Amjad et al., 2020). While the mild climate is dominant in the coastal regions, 

the summers are hot and dry in the interior regions and the winters are cold (Sensoy 

et al., 2008). The Black Sea coast has the highest rainfall rate throughout the year, 

known for its Oceanic climate, as it receives precipitation at all times of the year. 

Primarily the eastern part of the Black Sea receives the most precipitation in the 

country, with an annual 820-2300 mm (TSMS, 2018). This amount of precipitation 

falls below 400 mm per year in the driest regions of the central area (TSMS, 2018). 

Mountains may induce such differences by acting as barriers. Since mountains cut 

the wind suddenly, the orographic effect is prevalent and determines the amount of 

precipitation rate (Gottardi et al., 2012). For example, the Hopa region in Artvin, one 

of the study area's rainiest districts, is located in the coastal area without being 

affected by the mountain blockage. However, Bayburt station, located in the same 

region's interior, receives almost one-fifth of the Hopa. The most rugged and 

mountainous regions are located mainly on the eastern side. In addition, there are 

some principal areas with complex topographies on the other sides: the Northern 

Anatolian Mountains, where the mountains are parallel to the sea and the Taurus 

Mountains in the south. Local topographical variations show its effect dominantly in 

complex parts since these regions demonstrate high sensitivity microphysical cloud 

processes that affect the formation of convective precipitation (Gao et al., 2018). In 

addition to this formation, as the air warms up, the rising air moves parallel to the 
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slope, causing the moisture to condense and fall. Therefore, the diversity of the 

topography affects the distribution of precipitation; as the slope increases, the 

amount of precipitation increases (Hughes et al., 2009). Moreover, the opportunities 

are limited while measuring precipitation using ground observation stations with 

high accuracy where the topographic conditions are not favorable. Since the placing 

and installing of these stations are laborious in such rough terrains due to sparseness. 

For this reason, it is crucial to compare the NWP models in such places and evaluate 

their performances to increase the dependability in hydrological studies. 

Furthermore, it would not be correct to directly relate the complexity of the 

topography with the elevation because a region may have a flat surface even though 

it has a high elevation (Elibüyük and Yılmaz, 2010; Seastedt et al., 2004). In this 

study, the term complex refers to places with more than a 5 percent slope, even if the 

elevation is low. If the change in slope per unit distance is more than 5 percent, it is 

classified as a complex region. Otherwise, it is classified as a non-complex region 

(Amjad et al., 2020). 

2.2 Datasets 

The performances of the five model-based precipitation products (ALARO, CFS, 

ECMWF, GFS, WRF) are evaluated by taking the ground observation stations (836 

in total) data as the reference dataset. 

2.2.1 Ground-based gauge precipitation data 

Receiving meteorological data such as precipitation in Turkey, which has a very 

complex topography, is a very laborious task due to the difficulty of station 

installation. Such problems also increase the importance of model-based 

precipitation forecasts. The most dependable measurements to be used in the 

validation of model-based datasets are again at ground source measurement stations 
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and this method is correspondingly widely used in the literature (Amjad et al., 2020; 

Bağçaci et al., 2021; Chen et al., 2018).  

In this study, we performed accuracy analyses on complex and non-complex areas 

for the two precipitation components. In contrast to earlier studies, this study seeks 

to overcome the effect of topography in precipitation estimations intercompared with 

five different NWP models. In previous approaches, there are different convective 

and stratiform precipitation separation methods. Precipitation texture algorithm 

(Churchill and Houze Jr, 1984), vertical wind speed (Poujol et al., 2020), intensity 

and sharpness of the maximum horizontal models of radar reflectivity (Steiner et al., 

1995), raindrop size distribution measured by a disdrometer (Das and Maitra, 2018; 

Foth et al., 2021; Ghada et al., 2019; Seela et al., 2018; A. Zhang et al., 2019), 

precipitation intensity and lightning (Chen et al., 2020; Gaal et al., 2014; Xu et al., 

2014), determining a width threshold for the convective zone (Caniaux et al., 1994) 

and setting a specific threshold (Churchill and Houze Jr, 1984; Dutton and 

Dougherty, 1979; Llasat et al., 2016; Watson and Holle, 1982; Xu et al., 1995). 

Among these methods, determining a specific threshold value according to the 

precipitation intensity is the most consistent regarding applicability to ground 

observation stations. According to this method, precipitation is classified as 

convective if it has an intensity above the determined value and stratified if not. 

Applying the determined threshold value in different topographies provides 

convenience for comparison because there are no other parameters to be considered 

while making this classification. These data are obtained from the Turkish State 

Meteorological Service (TSMS). The total number of stations is 836 after the quality 

control process. These stations are classified according to a five percent slope; 205 

are in the complex and the remaining 631 are in the non-complex topography area. 

The available data is on a daily and hourly time scale and covers four years, from 

2015 to 2018.  
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2.2.2 Model-based precipitation data 

NWP models use mathematical formulas based on physical principles of 

atmospheres and oceans to estimate weather conditions. They use a group of 

governing equations such as conservation of momentum, conservation of mass, 

conservation of energy, or ideal gas law to determine the flow of fluids. Afterwards, 

these equations are translated into computer codes combined with initial and 

boundary conditions. Many models operated by several countries in global or 

regional domains using instant weather conditions. The need for higher-resolution 

regional models increases due to global models' relatively low horizontal and vertical 

resolutions. These NWP models produce short-term weather predictions or long-

term climate projections. The forecast ability of these models depends on the 

intensity and quality of observations used as inputs and they require powerful 

supercomputers as they are computationally expensive. Uncertainties due to the 

chaotic nature of the atmosphere, initial and boundary conditions or physical 

parameters affect the quantitative predictions of NWP models (Koukoula et al., 

2019). Some meteorological events are microscopic scale or complicated. Each 

process cannot be directly estimated; parametrization is required based on physical 

and statistical expressions. So, almost every step contains estimations and 

approximations. Figure 2.2 depicts some of the parameters and physical processes. 

Hence, parameterization becomes a part of it because models cannot be clearly 

estimated in detail in forecast equations. 
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Figure 2.2. Physical parametrized processes in a NWP model (ECMWF, 2020)  

 

This study uses five NWP model products: ALARO, CFS, ECMWF HRES, GFS, 

and WRF. Physical processes in the atmosphere are shown in NWP models with a 

series of parametrization (McTaggart‐Cowan et al., 2019). Each model uses different 

numerical solutions with different sensitivities, so, they have distinctive predictions. 

ALARO, ECMWF, and WRF models’ Turkey domain as seen in Figure 2.3. 

Regional models may have finer grid spacing and less computational effort.  
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 Figure 2.3. ALARO, ECMWF and WRF precipitation products domains (Aksoy, 

2020) 

2.2.2.1 ALARO 

AROME (Applications of Research to Operations at Mesoscale) software is a small-

scale Digital Weather Forecast model run by Meteo-France in 2008. Since AROME 

software is costly in real-time weather forecast calculation, the ALARO (ALadin-

AROme) model is based on the French-origin Aire Limitée Adaptation Dynamique 

Development International (ALADIN) model has been developed with 10 km 

resolution (Simon et al., 2021). The AROME model has 2.5 km inter-scale resolution 

and mesoscale convection, which has a limited area and is used for fine modeling 

(Yessad, 2013). ALARO is a version of ALADIN used in several central and eastern 

European countries. The ALARO model has horizontal a resolution of 4.5 km and 

has 60 vertical layers. The parameterization of the ALARO model is projected to run 

at a resolution prone to convection generation. In the last decade, a physical 

parameterization scheme named 3MT (Modular Multiscale Microphysics and 

Transport) has been developed. It is based on a parameterization of deep and shallow 
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convection (Giot et al., 2015). Several countries have used and tested for regional 

studies (Top et al., 2021) and other parameterization schemes were also carried out 

in accordance with 3MT. Boundary conditions are obtained in global ARPEGE 

(Small-Scale Large-Scale Research Action, Action de Recherche Petite Echelle 

Grande Echelle) at 3-hour intervals. ARPEGE model is used in Meteo-France and 

ECMWF. At ECMWF, it is called IFS (Integrated Forecast System). A limited space 

version of the ARPEGE global model opened in 1990 covers the countries of 

Bulgaria, Hungary, Czech Republic, Poland, Romania and Slovakia. Algeria, 

Belgium, Morocco, Tunisia, Portugal, Austria, Croatia, Slovenia and Turkey were 

included in the next period. (Karadavut, 2014). ALARO model is operated four times 

daily (00, 06, 12, and 18 UTC) in TSMS. The datasets of the ALARO model are 

obtained from the TSMS. 

2.2.2.2 CFS 

Provided by the United States National Centers for Environmental Prediction 

(NCEP) in 2004, CFS is a model that reflects the interaction between Earth's 

atmosphere, lands, oceans, and seas to act as a bridge between weather and climate. 

The CFS model used in this study with a spatial resolution of 0.5° is used to analyze, 

reanalyze and predict precipitation data. This model is lower-resolution version of 

GFS. The model is called CFSv1 between 2004-2011 and CFSv2 after 2011, the 

enhanced quality of version It is a fully-coupled global climate model that makes 

past, present and future climates with high-performance computers (Saha et al., 

2006). Convective parameterization uses simplified Arakawa-Schubert convection. 

The CFS model has a 4-layer NOAH land surface model and a two-layer dynamic 

sea ice model. It implements mountain blockage and orographic gravitational wave 

resistance at sub-grid scale. CFS scientifically combines data from many sources 

such as ground observations, air balloon observations, satellite and aircraft (NCEP, 

2022). This model is initialized four times per day (00, 06, 12, and 18 UTC). In this 

study, 1-daily accumulated which is derived from 6-hourly total and convective 



 

 

13 

precipitation is obtained from NCAR archive. Large-scale precipitation is procured 

from subtracting convective precipitation from total precipitation. 

2.2.2.3 ECMWF HRES 

ECMWF is a weather forecasting model used for atmospheric research purposes 

established in 1975 with 13 countries and requires 4DVAR (4-dimensional variation 

data assimilation system) to be started (ECMWF, n.d.). It is supported by most of 

the countries in Europe, Turkey became a member of ECMWF in 1976. ECMWF 

provides hydrological estimations, air quality analysis, climate monitoring, ocean 

circulation analysis, global numerical weather predictions, and atmospheric 

composition monitoring. Also, the center plays a crucial role in developing data 

assimilation and modeling systems. Thus, it improves the accuracy of model 

forecasting. The products presented from the medium-term forecasts have a spatial 

resolution of 2.5°, while the dataset used in this study has a spatial resolution of 0.1°. 

While ECMWF estimates 52 ensemble members separately based on IFS created 

twice a day, one of these members has a higher resolution than the others and is 

called HRES in ECMWF (Yang et al., 2022). The initial conditions of ECMWF 

HRES are the most accurate prediction of instant state and use the best description 

of model physical parameters. These products make separate forecasts for the 

convective and large-scale components of the precipitation and the total precipitation 

forecast. The cloud scheme describes the large-scale precipitation and the convection 

scheme in the IFS generates the convective precipitation (ECMWF, 2022). In this 

study, 1-daily accumulated precipitations from deterministic forecast are used. The 

datasets are obtained from the Meteorological Archival and Retrieval System 

(MARS) of ECMWF.  
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2.2.2.4  GFS 

The GFS model used in this study, produced by the National Centers for 

Environmental Prediction (NCEP) and started operating in 2015, is obtained from 

the National Atmospheric Research Center (NCAR) with a resolution of 0.25°, 

covering the entire globe. The GFS model can be run at different spectral resolutions 

on a hybrid sigma/pressure coordinate (Lien et al., 2016). It is one of the most 

advanced NWP models in the world. A weather prediction model generates data for 

many atmospheric and land-soil variables—for instance, soil moisture, wind, 

precipitation, or temperature (NCEP, 2022). The system combines four models (sea 

ice, atmosphere, ocean, and land) to get accurate weather predictions. However, it 

does not take into account the topography near water bodies, resulting in poor 

accuracy in these areas. In the 2015s, the system was upgraded with new 

supercomputers 2017 after failing to predict Hurricane Sandy and lagging behind 

other models. Regular changes are still made to improve the estimation performance 

of the GFS model. It is a constantly evolving weather model. The model is run four 

times a day and produces predictions up to 16 days. As any numerical model, forecast 

skill decreases with time, only larger scale forecasts can remain with high accuracy. 

In this study, 1-daily accumulated, which is derived from the 6-hourly total, 

convective and large-scale precipitation, is obtained from NCAR archive. 

2.2.2.5 WRF 

The WRF model, run by the Mesoscale and Microscale Meteorology Laboratory 

(MMM) within the National Center for Atmospheric Research (NCAR). It produces 

simulations based on observations and analysis, that is, real conditions or idealized 

conditions. Since the state-of-art WRF model is open-source and has compressible 

equations which are Eulerian, non-hydrostatic. The model is designed for operational 

forecasting and atmospheric research since it serves wide range of meteorological 

applications. It can be developed by many users and can be used in many 
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atmospheric research centers such as universities and institutes. WRF simulations 

are based on actual atmospheric conditions, serving a variety of meteorological 

studies at many scales ranging from few meters to thousands of kilometers. It can be 

used in a resolution of 1-10 km. It is suitable for use in many fields such as research 

and operational numerical weather prediction, data-assimilation, parameterized-

physics research, downscaling climate simulations, driving air quality models and 

ideal simulations (Jain, 2015). The model can be operated in two ways: ARW 

(Advanced Research WRF) developed by NCAR and NMM (Non-hydrostatic 

Mesoscale Model). The ARW solver uses a vertical coordinate system that follows 

the change of terrain structure based on topography; NMM was developed for 

operational use. However, there are no significant differences between dynamic 

solvers. Collaborators of the model include the National Center for Oceanic and 

Atmospheric Research (NOAA), the Air Force Weather Agency (AFWA), the Naval 

Research Laboratory, the University of Oklahoma, and the FAA (Federal Aviation 

Administration) (NCAR, 2022). The WRF modeling system is successful in 

predicting heavy precipitation over complex terrains and medium-sized convective 

systems in several regions (Yucel et al., 2015) .The WRF datasets used in this study 

are obtained from TSMS with a spatial resolution of approximately 4 km and updated 

for six hours (00, 06, 12, and 18 UTC).  
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2.2.3 Study Period 

Table 2.1 shows the informations about the datasets used. Due to different 

availability conditions, the possible common period that can be used in the study is 

determined as 2015-2018 for daily scale, 2015-2020 for hourly scale. 

Table 2.1. Information about the datasets used in this study 

Sr. 

No 
Dataset 

Spatial 

Resolution 

Temporal 

Resolution 
Period Source 

1 
Observation - 

Daily 

Hourly 
2003-2020 TSMS 

2 ALARO ~0.045o Daily 2011-2018 TSMS 

3 
CFS 0.5° 

Daily 

Hourly 
2013-2020 

NCEP, NCAR 

Archive 

4 
ECMWF 

HRES 
0.1° 

Daily 

Hourly 
2007-2020 

ECMWF 

MARS 

Archive 

5 
GFS 0.25° 

Daily 

Hourly 
2015-2020 

NCEP, NCAR 

Archive 

6 WRF ~0.040o Daily 2013-2018 TSMS 

 

2.3 Pre-processing of Data 

2.3.1 Gridded Data to Point Data Conversion 

This study's reference data measured from ground observation stations are in point 

form. As the examples are widely seen in the literature, the model data are also 

converted from gridded to point forms (Amjad et al., 2020; El Kenawy et al., 2015). 

Due to the inadequate number of ground-based stations in Turkey, the opposite path 
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could not be followed, which is point data to gridded data conversion. Point form 

model products are obtained by selecting the closest station to the existing grid 

center. 

2.3.2 Quality Control Process 

Automatic Meteorology Observation Stations (OMGI), which started to be 

established in Turkey in the 2000s and whose number is increasing day by day, have 

sometimes been replaced with manual measurement stations. They have gained 

function by being established in regions without a station. Obtaining meteorological 

data such as precipitation in Turkey, which has a very complex topography, is a very 

laborious task due to the difficulty of station installation. Such problems again 

increase the prominence of model-based precipitation forecasts. Again, the most 

reliable measurements to validate model-based datasets are at ground-based 

measurement stations. This method is also widely used in the literature, and in this 

study, it is obtained by comparing the precipitation error statistics with the reference 

data. The ground observation station data used in this study are obtained from the 

TSMS. Today, there are more than 2000 stations, and only about 10 percent are 

measured manually. 

The minutely raw data obtained from TSMS are subjected to quality control due to 

lack of data, inconsistency, and discontinuance. This quality control process filter 

values greater than the maximum precipitation values given by TSMS for various 

periods. These values are determined as 50.5 mm/5min, 131 mm/hour and 490 

mm/day. Afterward, stations are filtered according to monthly mean, standard 

deviation and long-term mean criteria. These are common simple methods to reduce 

noise in the datasets. At the end of this filtering process, the hourly and daily 

precipitation data of the remaining 836 ground observation stations between 2003 

and 2020 are taken as reference and these datasets are used in the evaluations (Figure 

2.4). In line with this method, all the precipitation data are extracted for 5 model 

predictions from gridded data covering the location of 836 observation stations. As 
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a result, a total of 6 datasets, including observation, are made ready for analysis.

 

Figure 2.4. Locations of total kept and skipped stations in Turkey 

2.3.3 Classification of Stations as Complex or non-Complex 

The varying topography has a massive impact on climate. Topographical diversity 

may create microclimates by causing different winds, rain and snowfall. It is 

necessary to understand the spatial pattern and effect of topography in regions where 

the station density is low. Meteorological station data should be supported by other 

information to assess the precipitation amount and understand the impact of 

topographical complexity (Johansson and Chen, 2003).  

In this study, complex and non-complex classification is made according to the 

percent slope of 836 stations located in the study area. The stations are divided into 

2 classes, with a threshold slope value of 5 percent, as complex above 5 percent and 

as non-complex, those below 5 percent (This threshold is selected based on the study 

of Amjad et al., 2020). The distributions of complex and non-complex stations are 

as shown in Figure 2.5. At the end of this classification, 205 stations are classified 

as complex and 631 stations are non-complex. Complex stations are concentrated in 
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the Black Sea Region, especially Eastern Black Sea as expected, while non-complex 

stations are generally concentrated in the Central Anatolian Region. 

 

Figure 2.5.  Locations of stations by topographical type 

2.3.4  Classification of Observed Precipitation Data as Convective and   

Stratiform 

Churchill and Houze (1984) determined precipitation above 20 mm/h as the 

threshold value for convective precipitation. Similarly, Xu (1995) suggested this 

value as 10-25 mm/hour, and Dutton and Dougherty (1979) and Watson (1982) 

suggested this value as approximately 50 mm/hour. The common point of all these 

values is the possibility that convective precipitation did not rain homogeneously in 

the same hour. Therefore, a smaller scale is required for analysis. 

In the direction of the literature, Llasat (2001) suggests that convective precipitation 

is greater than 2.92 mm (35 mm/hr) in a 5-minute time interval, which is consistent 

as the threshold value is in the range of 10-50 mm/hr compared to others. This study 

(Llasat, 2001) was carried out in Barcelona, Spain and had a mediterranean climate 

that shows several characteristics in common with Turkey. January is the wettest 
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month ( ̴ 96 mm) and July is the driest month ( ̴ 22 mm) in Barcelona, where the 

annual average precipitation is approximately 565 mm. (Servei Meteorolόgic de 

Catalunya). In this context, in this study, if the precipitation value is greater than 2.92 

mm in 5 minutes, it is classified as convective. If it is small, it is classified as 

stratiform precipitation.  

The minutely station data received from TSMS is converted to 5-minutely and the 

convective-stratiform distinction is made on this dataset. After the seggregation is 

made, the reference dataset is made ready for analysis by converting it to hourly and 

daily forms.  

2.4 Evaluation Metrics 

All products (ALARO, CFS, ECMWF HRES, GFS, WRF) are evaluated and 

compared separately in daily, monthly and annual time scales. On the hourly time 

scale, evaluations are made with the available products (CFS, ECMWF HRES, 

GFS). 

2.4.1 Hourly Scale 

All five products are evaluated in a daily scale. Precipitation statistics, categorical 

performance indices, intensity-frequency distributions and seasonal spatial 

distribution maps are prepared. In addition, all these statistics and distribution maps 

have been prepared to evaluate the accuracy on a seasonal basis. 

The existing 3 model products (CFS, ECMWF HRES and GFS) are evaluated in 

hourly scale. In order to measure the performance of the hourly datasets of the 

models, precipitation statistics, categorical performance indices, and intensity-

frequency distributions are performed. 
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2.4.1.1 Precipitation Statistics 

The verification of five different precipitation datasets (ALARO, CFS, ECMWF 

HRES, GFS, WRF) for 3 types of precipitation (total, convective, large-scale) is 

carried out concerning the station dataset. Daily mean evaluation statistics include 

mean (Equation 2.1), standard deviation (SD) (Equation 2.2). At the same time, error 

statistics; bias (Equation 2.3), root mean square error (Equation 2.4), standard 

deviation of the error (ERRor Standard Deviation, ErrSD) (Equation 2.5) and 

correlation coefficient (CC) (Equation 2.6) and signal aspect ratio (Signal to Noise 

Ratio, SNR) (Equation 2.7) is evaluated with the help of the following equations: 

MEANn =  
1

t
 ∑ Pi

t

i=1
 2.1 

                                                                                                                                     

SDn =  √
1

t
 ∑ (Pi − P̅n)

t

i=1
 2.2 

  

BIASn =  
1

t
∑ Pp,i −  

1

t
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i=1
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i=1
 2.3 

    

ErrSDn  = SD [∑ (Pp,i −  Po,i)
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i=1
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RMSE = √
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CCn  =  
∑ (Pp,i

t
i=1  −  P̅p)(Po,i −  P̅o)

√∑ (Pp,i −  P̅p)
2t

i=1  . √∑ (Po,i − P̅o)
2t

i=1  

 2.6
 

       

SNRn  =  
2 ∗  CC

(SDx SDy ⁄  +  SDy SDx ⁄ −  2 ∗  CC)
 2.7 

  

To the n station numbers in the equations; t day; The "o" and "p" subscripts 

correspond to the observation and the model, respectively.  

Pp,i model precipitation prediction (mm/day); 

 Po,i observed precipitation (mm/day); 

 P̅p model mean precipitation (mm/day); 

P̅o observed mean precipitation (mm/day); 

SDx and SDy are the standard deviations of the observations and models, 

respectively. 

2.4.1.2 Categorical Performance Indices 

Categorical performance indices allow to commenting on the precipitation detection 

capabilities of the models  (Duzenli et al., 2021). Categorical performance indices 

are calculated to compare the performances of the models for each precipitation type. 

These are detection probability (Probability of Detection, POD) (Equation 2.8), false 

alarm rate (False Alarm Ratio, FAR) (Equation 2.9), critical success index (Critical 

Success Index, CSI) (Equation 2.10) and percent correct (Percent Correct, PC) 
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(Equation 2.11). These categorical performance indices are calculated as:  

   

POD =  
H

H + M
 2.8 

         

FAR =  
F

H + F 
 2.9 

            

CSI =  
H

(H + M + F)
  2.10 

  

PC =  

H
CN
E

 2.11 

          

 H is a hit, it is the case of predicting the presence of precipitation correctly in the 

observation and forecast, and M is a miss. It is the case of the model estimating no 

precipitation when there is precipitation in the observation. F is a false alarm 

situation when the model makes predictions in the direction of precipitation when 

there is no precipitation in the observation and E is the total number of prediction 

(Table 2.2).  

Table 2.2. Algorithm for categorical performance indices 

 

Observation 

Above Threshold Below Threshold 

Product 

Above Threshold  Hit, H  False alarm, F 

Below Threshold  Miss, M  Correct negative, CN 
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2.4.2 Daily Scale 

All five products are evaluated on a daily time scale. Precipitation accuracy statistics, 

categorical performance indices, and intensity-frequency distributions are performed 

to compare the performances. Also, complex and non-complex station classifications 

are obtained, and the same evaluations are performed (precipitation accuracy 

statistics, categorical performance indices, and intensity-frequency distributions). 

Subsequently, these daily datasets are converted to monthly, seasonal, and annual 

forms. In monthly accumulated data, time series and false alarm ratios are shown for 

each precipitation type. In seasonal and annual scales, spatial distribution maps are 

obtained to demonstrate spatial variation. In addition, precipitation statistics are 

evaluated on a seasonal basis.
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CHAPTER 3  

3 RESULTS AND DISCUSSION 

The evaluation of precipitation data acquired from five different real-time model data 

is carried out with the observation data provided by the stations on a daily, hourly, 

monthly and annual scale. Obtained results are shown and interpreted in the 

following. 

Evaluations of hourly (Observation, CFS, ECMWF HRES, GFS) and daily 

(Observation, ALARO, CFS, ECMWF HRES, GFS, WRF) available data are 

discussed below. In addition to mean and standard deviation values, precipitation 

error statistics, intensity histograms and spatial distribution maps are also included 

and discussed. 

3.1 Hourly Scale 

The assessment of the hourly precipitation time series across the country is carried 

out for 6 years (2015-2020) and the products other than WRF and ALARO are 

compared. Percentages of precipitation components in available hourly datasets are 

shown in Figure 3.1. There is a huge difference between station-based observations 

and model-based product percentages in the convective component of the 

precipitation. The most striking point is that the percentage of convective 

precipitation is less than 25 percent in hourly station-based observations. 
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Figure 3.1. Percentages of hourly available datasets 

3.1.1 Accuracy Statistics 

In the hourly data of total and convective precipitation, ECMWF HRES gave the 

closest deviation values to the observation (Table 3.1). In large-scale precipitation, 

the CFS product obtained results closer to the observation in mean and standard 

deviation (0.06 mm/hr and 0.26 mm/hr, respectively). 

When precipitation is divided into convective and large-scale components, it is 

deduced that the GFS product has the highest ErrSD, RMSE and Bias values (Table 

3.2) which may be related to its coarse resolution. Correlations on this time scale are 

low due to the infrequent precipitation (Table 3.3). At the same time, since 

convective precipitation is short-term and small-scale heavy precipitation, it is more 

challenging to get accurate predictions between models at this scale. Moreover, 

lowest SNR value of large-scale precipitation is observed in ECMWF HRES (0.0963 

mm/hr) products since it has the least percentage in Figure 3.1. However, it has the 

highest SNR values for total and convective precipitations (0.3986 mm/hr and 

1.0312 mm/hr, respectively). 
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Table 3.1. Mean and standard deviation values of hourly datasets 

 
Dataset TP CP LSP 

M
ea

n
 

(m
m

/h
r)

 
Observation 0.0720 0.0057 0.0663 

CFS 0.0910 0.0298 0.0611 

ECMWF 0.0817 0.0415 0.0402 

GFS 0.0799 0.0355 0.0445 

S
ta

n
d

a
rd

 

D
ev

ia
ti

o
n

 

(m
m

/h
r)

 

Observation 0.5534 0.2649 0.4256 

CFS 0.3043 0.1193 0.2575 

ECMWF 0.3320 0.2163 0.2040 

GFS 0.3093 0.1639 0.2473 

 

Table 3.2. Bias, ErrSD and RMSE values of hourly datasets 

 
Dataset TP CP LSP  

B
ia

s 

(m
m

/h
r)

 CFS 0.0190 0.0242 -0.0051 

ECMWF 0.0098 0.0359 -0.0261 

GFS 0.0080 0.0299 -0.0218 

E
rr

S
D

 

(m
m

/h
r)

 CFS 0.5535 0.2939 0.4193 

ECMWF 0.5506 0.3458 0.3967 

GFS 0.5440 0.3131 0.4089 

R
M

S
E

 

(m
m

/h
r)

 CFS 0.5514 0.2922 0.4183 

ECMWF 0.5502 0.3437 0.3957 

GFS 0.5427 0.3111 0.4078 
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Table 3.3. CC and SNR ratios of hourly datasets 

 
Dataset TP  CP LSP 

C
C

  

w
it

h
 t

h
e 

o
b

se
rv

a
ti

o
n

 

CFS 0.2966 0.0529 0.3348 

ECMWF 0.3119 0.0444 0.3736 

GFS 0.3157 0.0538 0.3566 

S
N

R
  

w
it

h
 t

h
e 

o
b

se
rv

a
ti

o
n

 

CFS 0.3273 0.5282 0.3623 

ECMWF 0.3986 1.0312 0.0963 

GFS 0.3353 0.7658 0.3031 

 

3.1.2 Categorical Performance Indices  

When the performance indices for hourly data sets are examined in Figure 3.2, it is 

observed that the probability of detection (POD) is around 0.4 for all precipitation 

types. It shows that the models successfully detect precipitation in hourly datasets 

analysis. However,  high false alarm ratio (FAR) values and low critical success 

index (CSI) values support each other. These results are not unexpected in hourly 

analyses because the scale is relatively small. Another notable point is there are no 

apparent outliers in total precipitation CPI. Although the values are close, In 

convective and stratiform precipitation, the highest POD belongs to the GFS model 

(Figure 3.2 (d)). It demonstrates the success of GFS in catching hourly precipitation. 

However, low CSI and high FAR values with a narrow interquartile range in 

convective precipitation show that model products are not successfully catching the 

dry hours (Figure 3.2 (e) and Figure 3.2 (f)). Moreover, the CFS product has so many 

outliers than the others in FAR and CSI values of convective precipitation, it does 

not normally distributed. The ECMWF HRES has the lowest FAR value in hourly 

stratiform precipitation, which is successful detecting the dry hours. All model 

products almost show no outliers in CPI for stratified precipitation. Overall, the data 

skewnesses are generally normally distributed and less dispersed in all CPI. These 

results are also underlines, especially in convective precipitation, high FAR and low 



 

 

29 

POD and CSI values in all types of precipitation can be misleading as there is too 

much data in this time scale. 

 

Figure 3.2 POD, FAR, CSI values of hourly precipitation datasets ((a), (d), (g) for 

total precipitation, (b), (e), (h) for convective precipitation, (c), (f), (i) for stratiform 

precipitation) 

3.1.3 Intensity-Frequency Histograms 

 Hourly datasets distributions for the years between 2015 and 2020 are shown below. 

Due to the small hourly scale, similar distributions emerged between station-based 

observations and model-based products. While total and large-scale distributions 

primarily pursue the same path (Figure 3.3, Figure 3.5), convective precipitation has 

a slightly higher distribution in lighter intensities (Figure 3.4). All model products 

overestimate the convective precipitation, but even so, the CFS product has the 

closest intensity distribution to the station-based dataset. Model products have a 

spread close to reference data, as there are so many data in six years on an hourly 

scale. Overall, the CFS product has the highest accuracy while matching these light 

intensity frequencies, while the GFS product has a more linear distribution than 
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observation for the convective precipitation. In the large-scale precipitation 

distributions, it can be seen that GFS product underestimated, ECMWF HRES 

slightly overestimated in lighter intervals.  

 

 

Figure 3.3. Hourly total precipitation histograms for 2015-2020 

 

 

Figure 3.4. Hourly convective precipitation histograms for 2015-2020 
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Figure 3.5. Hourly large-scale precipitation histograms for 2015-2020 

3.2 Daily Scale 

The daily precipitation time series assessment across the country is carried out for 4 

years (2015-2018) with all available products (ALARO, CFS, ECMWF HRES, GFS 

and WRF). Figure 3.6 illustrates the percentages of convective and stratiform 

precipitations in available daily datasets. As on the hourly scale, ECMWF HRES 

shows the highest convective precipitation percentage higher than other model 

producs. Ratios are close to each other among other model-based datasets. Moreover, 

station-based observation dataset has a remarklable percentage difference same with 

the hourly scale.  
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Figure 3.6. Percentages of precipitation components in daily datasets 

3.2.1 Accuracy Statistics 

 The products in the daily precipitation datasets showed relative mean and standard 

deviation values in total precipitation and its stratiform component (Table 3.4). For 

total and convective precipitation GFS and ALARO, for stratiform precipitation CFS 

product has the lowest bias values (Table 3.5). While the CFS product has the lowest 

ErrSD and RMSE values for the convective component of the precipitation, ECMWF 

HRES has the lowest ErrSD and RMSE values for total and stratiform precipitations 

(Table 3.5). Furthermore, ECMWF HRES has the highest correlation (CC) for total 

and large-scale precipitation (0.67 and 0.65, respectively), WRF has the highest CC 

for convective precipitation (0.21) in Table 3.6. The CC values for convective 

precipitation are low since it is very tough to catch for NWP models and 

meteorological stations; this kind of precipitation has a high intensity but in a small 

area and duration. High SNR values of convective precipitation also support these 

results which are below 0.25 



 

 

33 

Table 3.4. Mean and standard deviation values of daily datasets 

 

 

 

 

 

 

 

 

 

 

 

 
Dataset TP CP LSP 

M
ea

n
 

 (
m

m
/d

a
y
) 

Observation 1.79 0.16 1.64 

ALARO 1.60 0.74 0.96 

CFS 2.29 0.79 1.50 

ECMWF 2.02 1.07 0.95 

GFS 1.94 0.90 1.04 

WRF 2.10 0.90 1.20 

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 

(m
m

/d
a
y
) 

Observation 5.66 1.79 4.79 

ALARO 4.79 2.61 2.92 

CFS 5.35 2.21 4.37 

ECMWF 4.68 2.57 2.96 

GFS 4.72 2.58 3.62 

WRF 5.55 3.06 4.03 
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Table 3.5. Bias, ErrSD and RMSE values for daily datasets 

 
Dataset TP CP LSP 

B
ia

s 

 (
m

m
/d

a
y
) 

ALARO -0.20 0.59 -0.68 

CFS 0.50 0.63 -0.14 

ECMWF 0.23 0.92 -0.69 

GFS 0.14 0.75 -0.60 

WRF 0.31 0.75 -0.44 

E
rr

S
D

  

(m
m

/d
a
y
) 

ALARO 4.99 3.13 3.73 

CFS 5.17 2.83 4.12 

ECMWF 4.41 3.05 3.62 

GFS 4.91 3.11 3.92 

WRF 5.00 3.41 3.86 

R
M

S
E

  

(m
m

/d
a
y
) 

ALARO 5.02 3.20 3.80 

CFS 5.28 2.92 4.18 

ECMWF 4.44 3.21 3.69 

GFS 5.00 3.22 4.00 

WRF 5.03 3.51 3.90 
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Table 3.6. CC and SNR ratios for daily datasets 

 
Dataset TP CP LSP 

C
C

  

w
it

h
 t

h
e 

 o
b

se
rv

a
ti

o
n

 

ALARO 0.58 0.15 0.63 

CFS 0.60 0.19 0.61 

ECMWF 0.67 0.17 0.65 

GFS 0.61 0.17 0.61 

WRF 0.63 0.21 0.63 

S
N

R
  

w
it

h
 t

h
e 

 o
b

se
rv

a
ti

o
n

 

ALARO 1.52 0.15 1.41 

CFS 1.53 0.20 1.61 

ECMWF 2.09 0.17 1.50 

GFS 1.48 0.17 1.42 

WRF 1.79 0.20 1.76 

 

Table 3.7 show the cross-correlation values of available NWP model datasets. 

Results reveal the similarity between the model datasets. It is seen that convective 

precipitation has lower correlation values than the other two precipitations. This can 

be attributed to the fact that each model has convective precipitation parameters with 

different sensitivity. When all correlation values are examined, it is seen that the 

highest values are between ECMWF HRES and WRF model products in all  

Table 3.7. Cross-correlation values of the NWP models 

 
CC  

Datasets TP CP LSP 

ALARO-CFS 0.60 0.42 0.59 

ALARO-ECMWF 0.68 0.54 0.63 

ALARO-GFS 0.58 0.40 0.58 

ALARO-WRF 0.62 0.46 0.60 

CFS-ECMWF 0.75 0.57 0.73 

CFS-GFS 0.75 0.59 0.77 

CFS-WRF 0.66 0.56 0.66 

ECMWF-GFS 0.75 0.56 0.77 

ECMWF-WRF 0.79 0.61 0.78 

GFS-WRF 0.66 0.53 0.68 
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3.2.2 Categorical Performance Indices  

 In the study area, the distributions of daily categorical performance indices for all 

three precipitation types are given in the figures below. For the daily total 

precipitation, all model products gave a high percentage of correct values (PC>0.7) 

(Figure 3.7). At the same time, values close to 1 are presented by all products, 

especially ECMWF HRES for POD and CSI. This indicates the success of the model 

products in predicting wet days. The models have almost the same values for the 

FAR, but it is clear that ALARO has a value closest to 0 (FAR<0.4). In this case, 

ALARO is more successful than other products in predicting dry days in daily total 

precipitation. Model products show significant outliers in total precipitation since 

these datasets have the largest sample size. In addition to the high FAR values for 

convective precipitation, the CSI values of all products are also supportively low 

(Figure 3.8). These results indicate that the PC values of the ALARO and WRF 

models are relatively high (PC>0.8) compared to the other model products. Among 

the detection possibilities, the ECMWF HRES has a higher distribution (POD>0.8) 

than the others, which reveals that the ECMWF product is more successful than other 

products in predicting wet days in the daily values of convective precipitation. 

Besides, all model products have an unbalanced lower and upper quartile distance, 

called whiskers; they also show different thicknesses, meaning they have different 

spreads of data. Finally, it can be seen in Figure 3.9 that daily large-scale 

precipitation results in similar values to total precipitation. The highest POD and CSI 

values of ALARO and ECMWF products can be interpreted as these two models are 

good at predicting the existence of stratiform precipitation. Likewise, all products 

except CFS, have low FAR values (FAR<0.4), which means model products are 

good at predicting dry days. At the same time, the detection probabilities of all 

models are almost above 0.8, so the products have high POD values, just like the 

total daily precipitation. 
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Figure 3.7. CPI for total precipitation of daily data 

 

Figure 3.8. CPI for convective precipitation of daily data 
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Figure 3.9. CPI for stratiform precipitation of daily data 

 

3.2.3 Intensity-Frequency Histograms 

The distributions of the reference data and model products for the 3 precipitation 

types are as follows. There is a very close distribution between the histograms of the 

total precipitation years between 2015 and 2018 in Figure 3.10. Moreover, most of 

the total precipitation is in lighter densities (0-1 mm excluded), and all histograms 

are right-skewed. CFS product depicts a slight underestimation in total precipitation 

distribution 
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Figure 3.10. Daily precipitation histograms for total precipitation 

 

In the observed distribution of convective precipitation, it is seen that precipitation 

is collected in the first interval (1-2 mm), excluding the 0-1 mm interval. There is a 

similar result in model precipitation products, precipitation is at high frequency with 

light intensities, but they still have a linear distribution. For this reason, although the 

models showed a different result from the observation, they demonstrated a 

consistent result among themselves (Figure 3.11). 

 

Figure 3.11. Daily precipitation histograms for convective precipitation 
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Furthermore, there is a consistent linear distribution similar to total precipitation 

distributions for stratiform precipitation in Figure 3.12. When examined in detail, it 

is seen that the CFS and WRF models show a closer distribution to the observation 

than other models. ALARO, GFS and ECMWF HRES have a higher frequency than 

observation in lighter precipitations.  

 

 

Figure 3.12. Daily precipitation histograms for large-scale precipitation 

3.2.4 Evaluation of Complex and non-Complex Regions 

3.2.4.1 Accuracy Statistics 

 The Taylor diagram summarizes three frequently used metrics to evaluate 

hydrological or climate data (Zhou et al., 2021). These metrics are correlation, root 

mean square difference, and standard deviation of models and observations (Taylor, 

2001). The correlation coefficients are shown with the azimuth angle, and standard 

deviation with the distance from the origin. Root-mean-square error is centered by 

subtracting the respective means proportional to the observation point located on the 

x-axis (Kim and Park, 2016). Thus, bias is not measured in the Taylor diagram. 

Figure 3.13 covers the Taylor diagrams of the daily total, convective and large-scale 

precipitations of complex and non-complex areas. Each point indicates the existing 
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datasets (Observed, ALARO, CFS, ECMWF, GFS and WRF). The correlation 

values of models are around 0.6 and root-mean-square errors are very similar for 

both areas of daily total and large-scale precipitations. The closest point to the 

observation dot is the optimal result corresponding to the most satisfactory 

performance in the Taylor diagrams. These points show more consistency in total 

and large-scale precipitations. There is a specific scattering in the models for 

convective precipitation in complex areas. The distances between the reference point 

and individual model datasets are much larger when the area is complex. The spread 

between the azimuth angle and radial direction among the regions indicates the 

spread in spatial pattern and magnitude. Although the model ECMWF HRES product 

seems to be the closest to the optimal point, the variation of the correlations between 

0.1 and 0.2 reveals that the models are weak in estimating this type of precipitation 

compared to other precipitations. 
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Figure 3.13. Taylor diagram for complex and non-complex areas. Outermost 

quarter black circle corresponds to correlation coefficients, blue circles to 

standard deviation values, magenta to root-mean-square error values. 

 

Observed 

Observed Observed 

Observed Observed 
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3.2.4.2 Intensity-Frequency Analysis 

 It is seen in Figure 3.14 and Figure 3.16 that the model products have a similar 

distribution with the observation in total and stratiform precipitation without dry 

days (0-1 mm interval) in complex areas, which comprise 205 stations. Although 

model products have this close trend, the CFS product underestimated total 

precipitation in lighter intensities. In contrast, convective precipitation in complex 

areas accumulated at lower intervals in both observation and model products, a 

considerable amount of the precipitation accumulated in 0-1 mm intervals in 

observation and all model products are overestimated (Figure 3.15). However, the 

model products make a consistent estimation of each other. The topography has a 

significant influence on this result since it has a direct effect on both the reference 

dataset and model performances. It is also tough to catch short-term and small-area 

cover convective precipitation by ground observation stations which are in a point 

form and sparse in complex areas. This situation is observed mainly in the Eastern 

Black Sea region, where complex stations are concentrated. Since most of the total 

precipitation belongs to stratiform precipitation, their observed station distribution is 

also imitative (Figure 3.16). They both show right-skewed distributed histograms. 

ALARO and ECMWF HRES products again overestimated in lighter intensities (1-

2 mm). WRF is the most successful product by capturing low-frequency precipitation 

at high-intensities close to station observation where the slope is greater than 5%. 

 

Figure 3.14. Daily precipitation histograms for total precipitation in complex areas 
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Figure 3.15. Daily precipitation histograms for convective precipitation in complex 

areas 

 

Figure 3.16. Daily precipitation histograms for large-scale precipitation in complex 

areas 

 Furthermore, the distribution of total precipitation in 631 non-complex stations is 

successfully catched by the model products. However, it is observed that the CFS 

and WRF products underestimate lighter intensities in total precipitation (Figure 

3.17). In the convective component of the precipitation, the same result is observed 

in the non-complex regions; the precipitation in the observation accumulated at low 

densities for all datasets. Otherwise, products have followed a right-skewed 

distribution and consistent among themselves (Figure 3.18). Since most of the total 

precipitation is stratiform, they demonstrated a similar distribution in non-complex 

areas as well. All models illustrated a successful performance, except for the 
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overestimation in ALARO and ECMWF HRES products distribution in the 1-2 mm 

range (Figure 3.19). 

 

Figure 3.17. Daily precipitation histograms for total precipitation in non-complex 

areas 

 

Figure 3.18. Daily precipitation histograms for convective precipitation in non-

complex areas 
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Figure 3.19. Daily precipitation histograms for large-scale precipitation in non-

complex areas 

3.2.4.3 Categorical Performance Indices 

 When the categorical performance indices of the models in complex areas are 

examined, the lower POD and FAR values of the ALARO product for total 

precipitation stand out (Figure 3.20). Meanwhile, it has the highest PC values, which 

leads that the ALARO product may be practical for dry day estimations. In 

convective precipitation distributions (Figure 3.21), model products have almost 

similar outcomes and the most striking point is the high FAR and low CSI values. 

However, ECMWF HRES has higher POD and FAR and lower CSI and PC values. 

From this result, it can be deduced that the ECMWF HRES product overestimates 

convective precipitation forecasts in complex areas. Hence, it is convenient for wet-

day estimation studies. 

On the contrary, such high FAR values can adversely affect many operations, 

especially in an economical way. Subsequently, when the categorical performance 

indices for stratiform precipitation are examined in 205 stations (Figure 3.22), it is 

apparent that they have consequent results with total precipitation. As a result, it is 

revealed that the models performed poorer in capturing high-intensity rapid 

precipitation than lighter precipitation intensities. This is relatable with a more 

considerable amount of total precipitation consisting of stratified precipitation. 
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Overall, the unpredictability of convective precipitation with that much FAR value 

can cause errors in the measures to be taken in water resource management. 

The fact that the ECMWF HRES product has the highest POD (>0.8) value in total 

precipitation shows that it is successful in wet day forecasts as in complex areas 

(Figure 3.20). The ALARO product with the lowest FAR value (<0.4) shows a good 

result in the dry day forecast of total precipitation. Overall, all model products 

performed well in total precipitation, as expected. In convective precipitation (Figure 

3.21), the high FAR values of the models are again one of the most remarkable 

results. Although the models with high POD values showed good performance in 

wet day forecasts, they still showed poor results in catching dry days compared to 

other precipitation components. The ALARO product, which has the highest PC 

values (>0.7), is partially more successful in flat areas than other models. In the 

large-scale component of precipitation (Figure 3.22), a result parallel to the total 

precipitation is evident. The CFS product is more successful in capturing large-scale 

precipitation as expected, with higher POD values, but the low FAR (<0.3) and high 

CSI (>0.5) as well as the highest PC (>0.8) result with the highest median value 

belongs to the ECMWF HRES product. 
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Figure 3.20. CPI for daily total precipitation in complex areas 

 

Figure 3.21. CPI for daily convective precipitation in complex areas 
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Figure 3.22. CPI for daily large-scale precipitation in complex areas 

 

In non-complex 631 stations (Figure 3.23), for total precipitation, ECMWF HRES 

shows an obvious highest result in POD, which is higher than 0.8 and ALARO 

product gives the lowest FAR among others less than 0.4. After investigating the CSI 

and PC, it can be concluded that all models show a satisfying performance where the 

topography is flatter. Furthermore, for the convective precipitation CPIs (Figure 

3.24), the first noticeable point is models have lots of outliers in FAR and CSI with 

very high FAR and low CSI results. These results are consistent with other regions. 

However, ALARO shows slightly lower FAR and higher PC values among the other 

products. It also has the narrowest interquartile range in all CPIs. In large-scale box 

plots (Figure 3.25), all models are good performers since they have very high PC and 

minimal interquartile ranges. Supportively, they have high POD and CSI, and low 

FAR values. Although they have small interquartile ranges, they have a lot of outliers 

in each CPI. ALARO and ECMWF HRES are the best two performers with their 

higher POD, CSI and PC, lower FAR and less outliers.
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Figure 3.23. CPI for daily total precipitation in non-complex areas 

 

Figure 3.24. CPI for daily convective precipitation in non-complex areas 
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Figure 3.25. CPI for daily large-scale precipitation in non-complex areas 

3.2.5 Monthly Scale 

Figures 3.26 and 3.27 illustrate monthly total precipitation in complex and non-

complex area time series. All model products catch a sharp rise in August 2016 

except ALARO in both regions. Although models and station measurements 

followed the same trends, more precipitation is seen in complex areas. In the summer 

months of 2017, it was seen that the amount of precipitation was below average. 

Moreover, in January 2017, the precipitation amount was almost zero, which is 

catched by all model products. It is also observed that model products other than the 

ALARO and ECMWF HRES products cause a high amount of overestimation, while 

the ALARO product occasionally underestimates in both topographies. CFS product 

makes the most overestimation in both topographies depending on its coarser 

resolution. 
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Figure 3.26. Monthly total precipitation for observation and 5 NWP models over 

complex areas 

 

Figure 3.27. Monthly total precipitation for observation and 5 NWP models over 

non-complex areas 
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Variability at monthly precipitation time series is investigated in more detail by 

plotting the convective precipitation for observation and all products (Figure 3.28 

and Figure 3.29) for complex and non-complex areas. While the results reveal a 

significant increase in convective precipitation in both topography types in the 

summer of 2016, the ALARO product gives the closest result to the observation at 

this peak point. However, the other model products are consistent among themselves. 

ECMWF HRES product showed a different behavior from other products in the 

winter months of 2016, predicting significantly higher precipitation than the 

observation in both areas. It is expected that convective precipitation will increase in 

the summer months due to the increase in convection as the weather warms up. 

Overall, models overestimated the convective precipitation but showed trends 

similar to the station-based results as the previous results. 

 

Figure 3.28. Monthly convective precipitation for observation and 5 NWP models 

over complex areas 
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Figure 3.29. Monthly convective precipitation for observation and 5 NWP models 

over non-complex areas 

 

When Figures 3.30 and 3.31 are examined, it is observed that the distribution of the 

stratiform component of the precipitation is slightly different from the other two 

precipitations. First, although the model products followed a similar trend to total 

precipitation in convective precipitation, stratiform precipitation has slumped in 

August 2016 until January 2018 in both regions. In addition, it reveals that the trend 

of station-based observation precipitation is quite similar to that of the total 

precipitation and larger part of the total precipitation consists of stratified 

precipitation. Although the model products are close to catching the observation, it 

is shown that they underestimate the stratiform precipitation for 4 years, especially 

in 2016 and 2017. However, the product that managed to catch the closest trend is 

CFS in both complex and non-complex areas. 
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Figure 3.30. Monthly large-scale precipitation for observation and 5 NWP models 

over complex areas 

 

Figure 3.31. Monthly large-scale precipitation for observation and 5 NWP models 

over non-complex areas 
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Figure 3.32 illustrates that the monthly average FAR values of the model products 

in total precipitation follow a similar trend each other. The product with the lowest 

FAR value is ALARO, which shows its success in catching rainless days. There is a 

gradual increase between the January and July FAR values. After that, it rapidly 

decreased until December. The conclusion drawn from this figure is; the models have 

difficulty catching the times when there is no precipitation compared to the winter 

months, as convective precipitation prevails throughout our country in summer.

 

Figure 3.32. Monthly average FAR values of total precipitation in the entire area 

 

Due to the overestimation of convective precipitation in the models, the monthly 

average of the 4-year FAR values are shown in the Figure 3.33. The FAR values 

obtained are pretty high; however, due to the dominance of convective precipitation 

throughout our country in the summer months, it has dramatically declined in the 

summer months, as expected. The fact that the models catch the trend in FAR but 
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with high values can be associated with the low amount of precipitation in the 

reference dataset. 

 

Figure 3.33. Monthly average FAR values of convective precipitation in the entire 

area 

 

It has been observed that the monthly FAR values of the large-scale precipitation are 

similar to the total precipitation (Figure 3.34), but the models follow more discrete 

trends from each other. There is a rapid increase from June to July due to the 

increased convective precipitation. GFS product gives to best (<0.4) and CFS gives 

the worst (>0.4) FAR values in this precipitation component. 
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Figure 3.34. Monthly average FAR values of large-scale precipitation in the entire 

area 

3.2.6 Seasonal Scale 

3.2.6.1 Spatial Distributions 

 The seasonal precipitation variation in our country directly affects many areas, from 

agriculture to tourism, transportation to energy (Luo et al., 2007). In general, it is 

deduced that there is less precipitation in summers and more precipitation in winters 

in Turkey, so the distribution of precipitation varies from different seasonal and 

regional scales. For instance, while the precipitation in the winter season of 2020 is 

233.5 mm, this amount decreased to 65.7 mm in the summer season (TSMS, 2020). 

This study shows the seasons' spatial distributions and accuracy statistics for the 3 

precipitation types (total, convective, stratiform) below. 

 In Turkey, where the Mediterranean climate is generally prevailing, the region that 

receives the most precipitation in autumn is the Eastern Black Sea region. The 

Eastern Black Sea region receives much precipitation compared to others. It is a rainy 
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region in all seasons of the year and shows a significant spatial distribution difference 

(Figure 3.35). Disasters such as floods overflows and landslides, which are common 

problems today, occur on the eastern and western Black Sea coasts with the blocking 

of the fronts and the increase in daily precipitation intensity. This once again 

increases the importance of seasonal spatial distribution analyses. As can be seen in 

Figure 3.35, all products, except GFS, managed to catch the heavy rainfall in the 

Eastern Black Sea Region. In other regions, it can be deduced that the Mediterranean 

Region and the western Black Sea region are also rainy in autumn and that the models 

that best capture this situation are ALARO, WRF, and ECMWF HRES (Figure 

3.35(b), Figure 3.35(c), Figure 3.35(f)). CFS product overestimated the observed 

precipitation in our country (Figure 3.36(e)). When the stratiform and convective 

precipitations are evaluated in autumn, it seems that the models that best capture the 

stratiform precipitation distribution are ALARO, WRF and ECMWF HRES (Figure 

3.36(b), Figure 3.36(c), Figure 3.36(f) on the right side). With the cooling of the air 

towards winter, the convection decreases and rapid and heavy precipitation begins 

to be seen less frequently. It is observed slightly east of the Black Sea and on the 

Mediterranean coasts (Figure 3.36). This is because the mountains in these regions 

are parallel to the sea and the heated air rises rapidly with the effect of humidity. 

Although all products overestimate convective precipitation distributions, it can be 

said that the WRF product has the closest distribution to the observation (Figure 

3.36(c) on the left side). 
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Figure 3.35. Spatial distributions of daily total precipitation (mm/day) in autumn 

season 

 

Figure 3.36. Spatial distributions of daily convective (left) and stratiform (right) 

precipitations (mm/day) in autumn season 

 

 The places with the highest total precipitation in Turkey during the winter months 

can be listed as the Menteşe Region in the Aegean, the Mediterranean coastline, the 

Southeastern Taurus Mountains and the Eastern Black Sea coasts. The spatial 

distribution of the total precipitation in Figure 3.37 shows that the models that 
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capture the precipitation on the Mediterranean coast are ALARO, WRF and 

ECMWF HRES. In addition, the products that reveal the difference in precipitation 

intensities in Southeast and Central Anatolia with the sharp change of colors can be 

interpreted as WRF and ECMWF HRES. 

  Stratiform precipitation affects large areas due to the meeting of heat and cold air 

waves coming from different directions. In our country, a result of the frontal 

movements indicates its effect, especially in the regions where the Mediterranean 

climate is dominant, starting from the Mediterranean coasts and towards the 

southeast during the winter months. In these regions, which receive annual average 

precipitation of 660 mm (TSMS, 2021), more precipitation is seen compared to the 

Eastern Black Sea Region due to the hot and humid weather. As seen in Figure 3.38 

(right side), stratiform precipitation in the winter season starts from the 

Mediterranean coast and extends towards the Southeastern Anatolia Region. The 

product that best captures the spatial distribution of stratiform precipitation for the 

winter season is WRF (Figure 3.38(c)). In contrast, the second and third products 

that best capture the spatial distribution are ECMWF and ALARO (Figure 3.38(f), 

Figure 3.38(b)). In other products, although there is a rather dispersed distribution, 

it is seen that there is both excessive precipitation and stratiform precipitation in very 

different regions from the observation. 

  Fronts in Turkey have the most activity in winter. For this reason, most of the total 

precipitation belongs to stratiform precipitation in winter. As seen in Figure 3.38 

(left side), convective precipitation distribution is not transparent in the observation 

and the product. ALARO, ECMWF and WRF showed similar distributions and 

revealed convective precipitation distributions more clearly. 
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Figure 3.37. Spatial distributions of daily total precipitation (mm/day) in winter 

season 

 

Figure 3.38. Spatial distributions of daily convective (left) and stratiform (right) 

precipitations (mm/day) in winter season 

 

With the spring season, significant changes begin to occur in our country in terms of 

both precipitation and temperature. In the winter months, the total precipitation 

decreases in the coastal areas where precipitation is intense, and precipitation 

increases in Anatolia's inner parts. One of the most apparent changes is the 
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precipitation intensity in the Iğdır, Erzurum-Kars-Ardahan plateau in Northeastern 

Anatolia, as seen in Figure 3.39(a). Those who follow this change in products most 

closely are seen as GFS and CFS. However, considering that they overestimate the 

distribution of those products over the whole of Turkey, it can be concluded that the 

forecast performances of the products in the spring season are not very successful. 

 When the distribution of stratiform precipitation across the country is examined, it 

can be observed in Figure 3.40(a) (right side) that there is a significant density in 

Northeast Anatolia. None of the products are successful in catching this density, and 

when the general distributions are examined, it can be said that the product closest 

to the observation is WRF. 

 Convective precipitation, also called showers, is short-term, high-intensity 

precipitation. They occur when the air is saturated with moisture as the warm air 

rises. This results in increased precipitation in the spring and summer months. 

Prediction phases are challenging as they are short-term precipitations. As seen in 

Figure 3.40 (left side), there is no consistent distribution between observations and 

models. 

 

 

Figure 3.39. Spatial distributions of daily total precipitation (mm/day) in spring 

season 



 

 

64 

 

Figure 3.40. Spatial distributions of daily convective (left) and stratiform (right) 

precipitations (mm/day) in spring season 

 

 On the other hand, summer months are the months with the least precipitation in the 

country. With the dominance of tropical pressure, precipitation due to convection 

occurs in the northeast part of the country. While most of the total precipitation is 

seen especially in the Eastern Black Sea Region during the summer (Figure 3.41(a)), 

the most striking feature of the summer season in our country is the drought 

prevailing in other parts of Anatolia apart from this region. The product that captures 

this difference closest to the observation in total precipitation is the ECMWF HRES 

(Figure 3.41(f)). 

  In stratiform precipitation distributions, all products, except GFS, give convenient 

results considering the color grading (Figure 3.42 (right side)). Although convective 

precipitation dominates in summer with the warming of the air, contrary to the 

stratiform precipitation forecasts, all products failed to catch the observation since 

they all overestimated. While the closest ECMWF HRES and ALARO are observed 

in terms of catching the precipitation in near-coastal regions (Figure 3.42(b), Figure 

3.42(f) (left side)), these two products did not achieve a successful result by showing 

the intensity of precipitation much higher than the observation. 
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Figure 3.41. Spatial distributions of daily total precipitation (mm/day) in summer 

season 

 

Figure 3.42. Spatial distributions of daily convective (left) and stratiform (right) 

precipitations (mm/day) in summer season 
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3.2.6.2 Accuracy Statistics 

When the total daily precipitation is analyzed according to the seasons, the lowest 

deviation, closest mean and best bias belong to the ALARO product for all seasons 

(Table 3.8 and Table 3.9). Although all models have close results, the lowest error 

values (ErrSD and RMSE) belong to ECMWF HRES for all seasons (Table 3.9).  

When the correlations are examined (Table 3.10), the products are more successful 

in colder months. The reason may be that the precipitation in the summer months is 

in the form of showers, and the models need help catching these precipitations that 

start and end quickly. The most successful model for CC values is ECMWF HRES 

as well. 

Table 3.8. Mean and standard deviation values of daily total precipitation according 

to seasons 

Precipitation Type (mm) TP 
 

Dataset Autumn Winter Spring Summer 

M
ea

n
 

(m
m

/d
a
y
) 

Observation 1.57 2.6 2.04 0.99 

ALARO 1.55 1.97 1.97 0.9 

CFS 1.82 3.24 2.82 1.29 

ECMWF 1.7 2.85 2.49 1.04 

GFS 1.49 2.68 2.44 1.17 

WRF 1.67 2.75 2.46 1.49 

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 

(m
m

/g
ü

n
) 

Observation 5.3 6.38 5.37 3.69 

ALARO 5.07 4.76 4.83 2.91 

CFS 4.99 6.46 5.3 3.18 

ECMWF 4.69 5.69 4.46 2.54 

GFS 4.61 5.85 4.61 2.75 

WRF 5.19 6.32 5.19 3.97 
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Table 3.9. Bias, RMSE and ErrSD values of daily total precipitation according to 

seasons 

Precipitation Type (mm) TP 
 

Dataset Autumn Winter Spring Summer 

B
ia

s 

 (
m

m
/d

a
y
) 

ALARO -0.02 -0.63 -0.07 -0.09 

CFS 0.24 0.64 0.78 0.29 

ECMWF 0.13 0.26 0.45 0.05 

GFS -0.09 0.08 0.41 0.17 

WRF 0.1 0.16 0.43 0.5 

E
rr

S
D

  

(m
m

/d
a
y
) 

ALARO 4.5 5.02 4.87 4 

CFS 4.64 5.15 5.25 4.12 

ECMWF 4 4.36 4.33 3.52 

GFS 4.55 4.69 4.98 4.06 

WRF 4.41 4.77 4.85 4.36 

R
M

S
E

  

(m
m

/d
a
y
) 

ALARO 4.52 5.13 4.91 4.03 

CFS 4.74 5.33 5.44 4.21 

ECMWF 4.02 4.44 4.39 3.54 

GFS 4.64 4.83 5.13 4.18 

WRF 4.43 4.82 4.91 4.42 
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Table 3.10. CC and SNR values of daily total precipitation according to seasons 

Precipitation Type 

 (mm) 

TP 

 
Dataset Autumn Winter Spring Summer 

C
C

  

w
it

h
 t

h
e 

 

o
b

se
rv

a
ti

o
n

 

ALARO 0.66 0.63 0.60 0.37 

CFS 0.64 0.72 0.58 0.34 

ECMWF 0.71 0.77 0.66 0.41 

GFS 0.64 0.74 0.59 0.35 

WRF 0.68 0.74 0.62 0.39 

S
N

R
 

w
it

h
 t

h
e 

 

o
b

se
rv

a
ti

o
n

 

ALARO 2.11 2.00 1.64 0.51 

CFS 1.84 2.60 1.41 0.54 

ECMWF 2.49 3.63 2.07 0.70 

GFS 1.69 2.81 1.39 0.45 

WRF 2.25 3.18 1.74 0.66 

 

In the statistics of the convective component of precipitation, it can be inferred that 

the products have difficulty catching the observation since, in Table 3.11, the 

products showed values far from the mean and standard deviations of the 

observation. At the same time, the high error values in Table 3.12 reveal that the 

performance of the models could be better. Although the small number of data in the 

reference dataset significantly affects the low values, the data also dramatically 

affects the best CC values in the autumn season (Table 3.13). In the CC values, the 

WRF product is more successful in partially convective precipitation predictions 

than the others in all seasons. 
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Table 3.11. Mean and standard deviation values of daily convective precipitation 

according to seasons 

 

 

 

 

 

 

 

 

Precipitation Type (mm) CP 
 

Dataset Autumn Winter Spring Summer 

M
ea

n
  

(m
m

/d
a
y
) 

Observation 0.15 0.09 0.15 0.24 

ALARO 0.82 0.69 0.9 0.57 

CFS 0.69 0.38 1.13 0.94 

ECMWF 0.88 1.01 1.62 0.76 

GFS 0.74 0.41 1.36 1.06 

WRF 0.74 0.46 1.18 1.21 

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 

(m
m

/d
a
y
) 

Observation 1.31 0.75 1.45 1.82 

ALARO 2.87 1.93 2.55 2.05 

CFS 2.12 1.1 2.4 2.26 

ECMWF 2.5 2.24 2.93 1.87 

GFS 2.34 1.21 3 2.53 

WRF 2.8 1.45 3 3.33 
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Table 3.12.  Bias, RMSE and ErrSD values of daily convective precipitation 

according to seasons 

Precipitation Type  

(mm) 

CP 

 
Dataset Autumn Winter Spring Summer 

B
ia

s 

 (
m

m
/d

a
y
) 

ALARO 0.67 0.6 0.76 0.33 

CFS 0.54 0.29 0.98 0.7 

ECMWF 0.73 0.92 1.48 0.52 

GFS 0.59 0.32 1.22 0.82 

WRF 0.6 0.38 1.04 0.97 

E
rr

S
D

  

(m
m

/d
a
y
) 

ALARO 2.96 2.23 3.08 2.66 

CFS 2.4 1.47 2.94 2.84 

ECMWF 2.64 2.49 3.34 2.44 

GFS 2.6 1.46 3.5 3.11 

WRF 2.83 1.79 3.42 3.55 

R
M

S
E

  

(m
m

/d
a
y
) 

ALARO 3.05 2.34 3.19 2.7 

CFS 2.47 1.53 3.15 2.97 

ECMWF 2.75 2.69 3.71 2.51 

GFS 2.68 1.52 3.76 3.27 

WRF 2.89 1.85 3.61 3.7 
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Table 3.13.  CC and SNR values of daily convective precipitation according to 

seasons 

Precipitation Type 

(mm) 

CP 

 
Dataset Autumn Winter Spring Summer 

C
C

 

w
it

h
 t

h
e 

 o
b

se
rv

a
ti

o
n

 

ALARO 0.21 0.13 0.15 0.15 

CFS 0.23 0.14 0.19 0.19 

ECMWF 0.25 0.15 0.17 0.2 

GFS 0.24 0.14 0.17 0.18 

WRF 0.27 0.15 0.2 0.21 

S
N

R
 

 w
it

h
 t

h
e 

o
b

se
rv

a
ti

o
n

 

ALARO 0.23 0.09 0.13 1.62 

CFS 0.26 0.14 0.17 2.16 

ECMWF 0.26 0.10 0.13 1.65 

GFS 0.25 0.13 0.13 2.48 

WRF 0.30 0.12 0.15 3.01 

 

The seasonal statistics of stratiform precipitation in our country show that the 

slightest deviation from the observation belongs to the CFS model (Table 3.14). The 

slightest error values in all seasons belong to ECMWF HRES and ALARO (Table 

3.15). As expected, the CC values of the stratiform precipitations, which are most 

prominent in the winter, are pretty high compared to other seasons. CFS, which 

stands out again in signal-noise ratios, has values close to ALARO and ECMWF 

HRES products in CC values (Table 3.16) and can be called the most successful 

product in stratiform precipitation. 
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Table 3.14. Mean and standard deviation values of daily large-scale precipitation 

according to seasons 

Precipitation Type 

 (mm) 

LSP 

 
Dataset Autumn Winter Spring Summer 

M
ea

n
  

(m
m

/d
a
y
) 

Observation 1.43 2.51 1.9 0.75 

ALARO 0.9 1.39 1.17 0.37 

CFS 1.13 2.86 1.69 0.35 

ECMWF 0.82 1.84 0.86 0.28 

GFS 0.75 2.27 1.08 0.11 

WRF 0.93 2.29 1.28 0.28 

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 

(m
m

/d
a
y
) 

Observation 4.6 5.98 2.58 2.44 

ALARO 2.95 3.43 2.99 1.18 

CFS 3.85 5.91 4.15 1.64 

ECMWF 2.83 4.19 2.33 0.97 

GFS 3.21 5.35 3.07 0.66 

WRF 3.55 5.58 3.56 1.27 
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Table 3.15. Bias, ErrSD and RMSE values of daily large-scale precipitation 

according to seasons 

Precipitation Type  

(mm) 

LSP 

 
Dataset Autumn Winter Spring Summer 

B
ia

s 

 (
m

m
/d

a
y
) 

ALARO -0.52 -1.12 -0.72 -0.37 

CFS -0.3 0.35 -0.21 -0.4 

ECMWF -0.6 -0.67 -1.03 -0.47 

GFS -0.68 -0.24 -0.81 -0.64 

WRF -0.5 -0.22 -0.61 -0.47 

E
rr

S
D

  

(m
m

/d
a
y
) 

ALARO 3.45 4.59 3.61 2.25 

CFS 3.87 4.71 4.25 2.63 

ECMWF 3.42 4.14 3.67 2.31 

GFS 3.87 4.46 3.96 2.39 

WRF 3.69 4.45 3.81 2.49 

R
M

S
E

 

 (
m

m
/d

a
y
) 

ALARO 3.51 4.75 3.69 2.29 

CFS 3.93 4.86 4.32 2.68 

ECMWF 3.48 4.25 3.82 2.37 

GFS 3.96 4.61 4.09 2.48 

WRF 3.74 4.52 3.87 2.55 
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Table 3.16. CC and SNR values of daily large-scale precipitation according to 

seasons 

Precipitation Type 

 (mm) 

LSP 

 
Dataset Autumn Winter Spring Summer 

C
C

 

 w
it

h
 t

h
e 

o
b

se
rv

a
ti

o
n

 

ALARO 0.69 0.62 0.29 0.39 

CFS 0.63 0.71 0.61 0.26 

ECMWF 0.67 0.74 0.4 0.33 

GFS 0.62 0.72 0.36 0.22 

WRF 0.65 0.73 0.6 0.27 

S
N

R
  

w
it

h
 t

h
e 

 o
b

se
rv

a
ti

o
n

 

ALARO 1.84 1.49 1.45 0.46 

CFS 1.73 2.52 1.28 0.32 

ECMWF 1.66 2.63 1.09 0.30 

GFS 1.39 2.55 1.09 0.14 

WRF 1.83 2.84 1.47 0.29 

 

3.2.6.3 Correlation Maps 

Spatially distributed daily correlation coefficient maps are illustrated in Figure 3.43 

with a resolution of 0.5°. This process is performed using inverse weighted distance 

interpolation. In other words, closest 3 stations are selected in the specified grid and 

their weighted averages are calculated proportional with their distances. Results 

show that CC are very similar between TP and LSP distributions. Moreover, it can 

be deduced that ECMWF HRES is the best performer in these two precipitation 

types, since it shows a darker coloring in more areas. In CP distributions, the CC 

values are quiet smaller than other precipitation types. However, the WRF product 

shows a slightly higher CC distribution among others. All model products show a 

moderately higher correlations in mediterranean costs. The worst performer in CP is 
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GFS product, as it has the lowest CC values in the entire area. These distributions 

are also supporting the accuracy statistics, since they have paralell results. 

 

Figure 3.43. Daily spatial correlation maps for each precipitation type 

3.2.7 Annual Scale 

3.2.7.1 Spatial Distribution Maps 

The spatial distribution of annual mean precipitation is shown in Figure 3.43 and 

Figure 3.44 for the observation and model-based products. The maps are obtained 

by equating the resolutions of each dataset at 0.05°. This process is performed using 

inverse weighted distance interpolation. In detail, the closest 3 stations are obtained 

and their influences are taken into account in direct proportion to their distance while 

obtaining the given resolution grid values. In other words, point form datasets are 
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converted to gridded form. First, when looking at the total precipitation maps, it is 

observed that the ALARO product (Figure 3.43 (b)) captures the observed annual 

precipitation better than other models, while the distribution of ECMWF HRES is 

the second best one, showing rather close but excessive precipitation. For example, 

the Eastern Black Sea region of our country has a very high precipitation rate 

(approximately 820-2300 mm/year, (TSMS, 2018)) and Central Anatolia is one of 

the regions receiving the least precipitation (approximately 400-500 mm/year, 

(TSMS, 2020)), this difference is reflected in the Figure 3.43 (a). The models that 

best capture this transition are observed primarily as ALARO and ECMWF HRES. 

After these two models, it can be interpreted that the WRF product has the highest 

performance since it captures the color transitions better (Figure 3.43 (c)). However, 

in this product's west side of the Black Sea, it can be observed that the WRF product 

overestimated the existing amount. On the other hand, CFS and GFS underperformed 

(Figure 3.43 (d), Figure 3.43 (e)) and could not capture the distribution very well. 

 While a clear distribution could not be observed in the spatial distribution of the 

observed convective precipitation (Figure 3.44, right side), there needs to be a more 

consistent distribution among the models. Considering that tonvective precipitation 

is more intense in humid and warm regions in our country; ECMWF HRES (Figure 

3.44 (f), right side) shows this precipitation distribution on the Mediterranean coasts, 

especially ALARO and WRF (Figure 3.44 (b), Figure 3.44 (c), right side) show a 

consistent distribution as well. Moreover, the ALARO product shows a very high 

convective precipitation distribution in the Eastern Black Sea, which is relatable with 

convective precipitation conditions. GFS and CFS (Figure 3.44 (d), Figure 3.44 (e) 

right side) products visualized the worst distribution; they reflect an uneven spatial 

distribution for convective precipitation. 

Although almost every product has caught the heavy stratiform precipitation in the 

east of the Black Sea, there is a similar underestimation in ALARO and ECMWF 

HRES products across the country (Figure 3.44 (b), Figure 3.44 (e), left side). The 

Mediterranean coast and the northeastern part of our country have high-density 
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precipitation in observation (Figure 3.44 (a), left side) that is catched by all products 

except GFS. Overall, GFS is the worst performer due to its messy illustration. 

 

 

 

 

 

  

 

 

 

  

 

  

  

 

  

The spatial distributions of five products are shown in Figure 3.45. Although 

ALARO (Figure 3.45 (a)), ECMWF HRES (Figure 3.45 (c)) and WRF (Figure 3.45)) 

show a smooth transitions between regions, other two products show a sharper 

Figure 3.44. Annual spatial distribution of total precipitation (mm/year) 

Figure 3.45. Annual spatial distributions of convective (left side) and stratiform 

(right side) precipitations (mm/year)  
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transitions due to their coarser resolutions. High-intensity precipitation in the eastern 

Black Sea and Mediterranean coasts is captured in these three high-resolution model 

products. CFS and GFS products are underperformed due to their lower resolutions. 

 

 

Figure 3.46. Spatial distribution maps of annual mean precipitation at the 

resolutions of the model datasets (mm/year) 

 

Table 3.17 shows the spatial correlation coefficients of existing model datasets. It 

can be deduced that ALARO is the most successful product for TP, CP and LSP. 

ECMWF HRES and WRF products are also good performers while CFS and GFS 

products lower performed. The results are consistent with products’ resolutions. 

 
Dataset TP CP LSP 

  
  
  
  
  
  
  
 C

C
  
  
  
  
  
  
  
  

 

  
w

it
h

 t
h

e 

o
b

se
rv

a
ti

o
n

 

ALARO 0.887 0.816 0.880 

CFS 0.465 0.372 0.543 

ECMWF 0.882 0.689 0.857 

GFS 0.418 0.311 0.533 

WRF 0.827 0.714 0.799 

Table 3.17.  Annual spatial correlation coefficients of model products 
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CHAPTER 4  

SUMMARY, CONCLUSION, AND RECOMMENDATION 

This study investigates the prediction performance of precipitation components 

(total, convective, stratiform) of 5 different NWP models (ALARO, CFS, ECMWF 

HRES, GFS, WRF) with 836 ground-based stations as a reference on a variable 

topography over four (2015-2018) and six years (2015-2020) for daily and hourly 

scales, respectively. The topographical difference is separated in line with the study 

(Amjad. 2020) which sets a 5% limit on the slope. 205 stations are classified as 

complex and 631 stations as non-complex. Evaluations are carried out for all 

precipitation components separately for the entire area, complex and non-complex 

zones in daily scale and in hourly scale. In addition to the mean, standard deviation, 

bias, error standard deviation, correlation coefficient and signal-to-noise ratio values; 

CPI statistics, intensity-frequency analyses and spatial distribution maps are also 

obtained on a daily time scale. The monthly time series of precipitation datasets and 

monthly average FAR values are investigated for the convective precipitation. The 

main outcomes are: 

• Prediction performances of NWP models in hourly time scale are similar in 

each precipitation type. 

• While the ECMWF HRES has the largest CC values for large-scale and total 

precipitation in all regions, the WRF product has a relatively higher CC in all 

regions for convective precipitation. 

• In both topographical type, the CFS product has the highest ErrSD values in 

total and large-scale precipitation while it has the lowest ErrSD values in 

convective precipitation. 
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• According to the CPI values, it can be deduced that the ALARO product can 

be useful in dry day estimations in total and large-scale precipitation in 

complex areas. High POD and FAR values show that all products fail to catch 

the absence of convective precipitation. However, all products, particularly 

the ECMWF HRES, have a skill to detect high intensity precipitation. 

• In the daily histograms of precipitation, almost all the products in total and 

large-scale precipitations are found to be close to the observation but the 

WRF product barely succeeds. While in convective precipitation 

distributions, although all the products are consistent among themselves, they 

have dramatically higher distributions than the observation. 

• In the monthly distributions; all products overestimated the total and 

convective precipitations, underestimated the large-sale precipitation. 

Overall, when the evaluations are examined, the forecast performances of the 

products in total precipitation and large-scale precipitation are pretty successful in 

all complex and non-complex areas. In this study, gridded data are converted to the 

closest point data and made comparable to the reference data. For this reason, 

catching precipitation, especially in small areas with short durations such as 

convective precipitation, is quite tricky, directly depending on model-based product 

resolution since some model products have a coarser resolution (e.g., 0.5° for CFS). 

Another direct effect is the measurement accuracy, number and distribution of 

ground observation stations that are also related to topographical features. Since 

convective precipitations are challenging to catch in the prediction due to rapid and 

heavy precipitation, model performances decrease compared to other precipitation, 

especially in poorly measured regions. In this context, the fact that topography has a 

great impact cannot be ignored. Especially the inadequacy of the number of ground 

observation stations in complex areas compared to non-complex areas and the 

decrease in measurement capabilities directly affect the accuracy analysis results. 

This also implies that model performances should be improved to perform more 

sensitive predictions due to the difficulty of making station-based observations for 

convective precipitations. Additionally, the limit values used in this study have an 



 

 

81 

impact while classifying the topographical type and precipitation seggregation. All 

results show the dependability of threshold values when determining the convective 

precipitation amount in the station-based dataset and number of complex and non-

complex stations. Reflectivity and rainfall intensity relationships may be useful to 

define a more accurate threshold by using drop size distributions obtained from 

consistent disdrometer measurements for the future studies. 

Today, floods and other disasters caused by excessive precipitation affect the regions 

in many ways; such as the economy, society, or industry. In our world, which is 

getting warmer every day, the possibility of rapid and heavy precipitation is 

increasing. According to the results of this study, precipitation accuracy analysis 

studies in both complex and flat areas should be developed and diversified with more 

available and comparable data in future studies. 
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