
ONLINE EMBEDDING AND CLUSTERING OF EVOLVING DATA STREAMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALAETTİN ZUBAROĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JANUARY 2023

Approval of the thesis:

ONLINE EMBEDDING AND CLUSTERING OF EVOLVING DATA
STREAMS

submitted by ALAETTİN ZUBAROĞLU in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. M. Volkan Atalay
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Fazlı Can
Computer Engineering, Bilkent University

Prof. Dr. M. Volkan Atalay
Computer Engineering, METU

Prof. Dr. Pınar Duygulu Şahin
Computer Engineering, Hacettepe University

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Assoc. Prof. Dr. Hande Alemdar
Computer Engineering, METU

Date:18.01.2023

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Alaettin Zubaroğlu

Signature :

iv

ABSTRACT

ONLINE EMBEDDING AND CLUSTERING OF EVOLVING DATA
STREAMS

Zubaroğlu, Alaettin

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. M. Volkan Atalay

January 2023, 123 pages

Number of connected devices is steadily increasing and this trend is expected to con-

tinue in the near future. Connected devices continuously generate data streams and

the data streams may often be high dimensional and contain concept drift. Real-

time processing of data streams is arousing interest despite many challenges. When

limited information is available about the data and its labels, unsupervised learning

and particularly clustering becomes an important method of analysis. However, most

clustering algorithms require the number of clusters to be known a priori and to be

given as an input to the algorithm. Moreover, data stream clustering differs from tra-

ditional clustering in many aspects and it has several challenging issues. The number

of clusters even changes due to the fact that data streams evolve over time. There-

fore, not only the initial number of clusters but the change in the number of clusters

should also be predicted throughout the stream. Also, data embedding makes the

visualization of high dimensional data possible and may simplify clustering process.

There exist several data stream clustering algorithms in the literature, however no data

stream embedding method exists. Uniform Manifold Approximation and Projection

(UMAP) is a data embedding algorithm that is suitable to be applied on stationary

v

(stable) data streams, though it cannot adapt concept drift. In this study, we describe

two novel methods, NoCStream that predicts the number of clusters continuously;

and EmCStream, to apply UMAP on evolving (non-stationary) data streams, to de-

tect and adapt concept drift and to cluster embedded data instances using a distance

or partitioning based clustering algorithm. NoCStream determines the optimal num-

ber of clusters and EmCStream embeds and clusters high dimensional evolving data

streams continuously in real-time. We have evaluated EmCStream against the state-

of-the-art stream clustering algorithms using both synthetic and real data streams con-

taining concept drift. EmCStream outperforms DenStream and CluStream, in terms

of clustering quality, on both synthetic and real evolving data streams. We have also

evaluated NoCStream and compared its performance with other methods in terms of

the prediction of number of clusters, clustering quality and its genericity. NoCStream

outperforms other methods on both synthetic and real evolving data streams.

Keywords: data streams, stream clustering, evolving data streams, concept drift, drift

detection, drift adaptation, number of clusters, k prediction

vi

ÖZ

DEĞİŞKEN VERİ AKIŞLARININ ÇEVRİMİÇİ BOYUTSAL
KÜÇÜLTÜLMESİ VE KÜMELENMESİ

Zubaroğlu, Alaettin

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Volkan Atalay

Ocak 2023 , 123 sayfa

Bağlantılı cihazların sayısı giderek artmakta ve bu eğilimin yakın gelecekte de de-

vam etmesi beklenmektedir. Bağlantılı cihazlar sürekli olarak akan veri üretir ve akan

veri genellikle yüksek boyutlu olabilir ve kavram kayması içerebilir. Veri akışlarının

gerçek zamanlı olarak işlenmesi, birçok zorluğa rağmen ilgi uyandıran bir araştırma

konusudur. Veriler ve etiketleri hakkında sınırlı bilgi mevcut olduğunda, denetim-

siz öğrenme ve özellikle kümeleme, önemli bir analiz yöntemi haline gelir. Bununla

birlikte, çoğu kümeleme algoritması, küme sayısının önceden bilinmesini ve algo-

ritmaya bir girdi olarak verilmesini gerektirir. Ayrıca, akan veri kümelemesi birçok

açıdan geleneksel kümelemeden farklıdır ve çeşitli zorlayıcı durumları bulunmakta-

dır. Akan verinin zaman içinde değişmesi nedeniyle küme sayısı değişebilir. Bu ne-

denle, yalnızca başlangıçtaki küme sayısının değil, akış boyunca küme sayısındaki

değişimin de tahmin edilmesi gerekir. Veri gömme, yüksek boyutlu verinin görselleş-

tirilmesini mümkün kılar ve kümeleme sürecini kolaylaştırabilir. Literatürde çeşitli

akan veri kümeleme algoritmaları vardır, ancak akan veri gömme yöntemi yoktur.

Uniform Manifold Approximation and Projection (UMAP), durağan, kavram kay-

vii

ması içermeyen akan veriye uygulamaya uygun bir veri gömme algoritmasıdır, an-

cak kavram kaymasına adapte olamamaktadır. Bu çalışmada iki yeni yöntem sunduk.

NoCStream, küme sayısını sürekli tahmin eder. EmCStream, UMAP algoritmasını

kavram kayması içeren akan veriye uygulayarak kavram kaymasını algılar, adapte

olur ve mesafe ya da bölümleme tabanlı bir kümeleme yöntemi kullanarak akan ve-

riyi kümeler. EmCStream yöntemini, kavram kayması içeren sentetik ve gerçek akan

veri kullanarak, en çok bilinen akan veri kümeleme algoritmalarına karşı değerlendir-

dik. EmCStream, değişken sentetik ve gerçek akan veri üzerinde, kümeleme kalitesi

bakımından DenStream ve CluStream’den daha iyi sonuç verdi. Ayrıca NoCStream

yömtemini de değerlendirmek için, küme sayısı tahmini, kümeleme kalitesi ve ge-

nelliği bakımından diğer yöntemlerle karşılaştırdık. NoCStream, değişken sentetik ve

gerçek akan veri üzerinde, diğer yöntemlerden daha iyi sonuç verdi.

Anahtar Kelimeler: akan veri, akan veri kümeleme, değişken akan veri, kavram kay-

ması, kavram kayması algılama, kavram kayması adaptasyonu, küme sayısı, k tah-

mini

viii

To my dear wife Pelin and lovely daughter Farah Ekin

ix

ACKNOWLEDGMENTS

First and foremost, this dissertation would not have been possible without the patient

guidance and never ending support of my advisor, Prof. Dr. M. Volkan Atalay. I

am truly grateful for having the opportunity to work under his supervision, not only

because his deep knowledge and detail-oriented endeavors allowed me to create my

academic persona, but also because his passionate dedication and optimistic motiva-

tion always encouraged me to do my best, in every aspect of life. Thank you, Prof.

Atalay, for all your psychological and emotional support, as well as academic.

I am absolutely honored to work with members of my thesis progress committee Prof.

Dr. Pınar Duygulu Şahin and Assoc. Prof. Dr. Hande Alemdar throughout my thesis

studies. I have always been inspired by their unique perspectives and motivated by

their kind encouragement.

I am grateful to the members of the examining committee Prof. Dr. Fazlı Can and

Prof. Dr. Pınar Karagöz for their valuable contributions.

I am indebted to my parents, Azize Zubaroğlu and Suphi Zubaroğlu, for their con-

tinuous support, confidence in me, encouragement and love throughout my life. You

have both made substantial sacrifices to help me attain my goals and you will never

know the degree of my appreciation or admiration of you.

I am grateful to my siblings, Güler İstanbullu, Tahsin İstanbullu, Arif Zubaroğlu, Nes-

rin Zubaroğlu, Tahsin Zubaroğlu and Zehra Zubaroğlu for their continuous support,

encouragement and love throughout my life.

I wish to thank my nieces İris İstanbullu, Sara Ada İstanbullu, Mira Zubaroğlu and

Nefes Zubaroğlu, and my nephews Nathan Ali İstanbullu and expected Baby Zubaroğlu

for their cuteness and love.

I express my thanks to my parents in law Fevziye and Hasan Koşman, and to my

siblings in law Sinem and Alican Koşman for their continuous support and love.

x

I am fortunate to have many friends and colleagues, who always showed me their

support and encouragement. I thank you all without mentioning your names, for fear

of forgetting to mention any of you.

Finally, I wish to express my gratitude and my special thanks to my love, Pelin

Zubaroğlu, for her endless love, support, confidence in me, encouragement and un-

derstanding all these years. You are the real owner of this thesis. My daughter Farah

Ekin, you have no idea how you always make me feel better and support me emo-

tionally with your pure love. Although it is not enough in return, I dedicate this work

to my wife Pelin and daughter Farah Ekin. Farah Ekin Zubaroğlu, hope these lines

encourage you to pursue your dreams whenever you read, now it is time for us to play.

xi

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xii

LIST OF TABLES . xvii

LIST OF FIGURES . xix

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Related Work . 5

1.3 The Outline of the Thesis . 7

2 BACKGROUND INFORMATION . 9

2.1 Introduction . 9

2.2 Concepts in Data Stream Clustering 10

2.2.1 Concept Drift . 11

2.2.2 Data Structures for Data Streams 12

2.2.3 Time Window Models . 12

xii

2.2.3.1 Damped Window . 12

2.2.3.2 Landmark Window . 13

2.2.3.3 Sliding Window . 13

2.2.4 Outlier Detection . 14

2.3 Stream Clustering Algorithms . 16

2.3.1 Adaptive Streaming k-Means (2017) 20

2.3.2 FEAC-Stream (2017) . 23

2.3.3 MuDi-Stream (2016) . 26

2.3.4 CEDAS (2016) . 31

2.3.5 Improved Data Stream Clustering Algorithm (2017) 34

2.3.6 DBIECM (2017) . 36

2.3.7 I-HASTREAM (2015) . 38

2.4 Comparison of the Algorithms . 39

2.5 Open Problems . 43

2.6 Popular Data Repositories and Datasets 45

2.6.1 Data Repositories . 45

2.6.1.1 Citi Bike System Data 45

2.6.1.2 Meetup RSVP Stream 45

2.6.1.3 National Weather Service Public Alerts 46

2.6.1.4 Stream Data Mining Repository 46

2.6.1.5 MOA . 46

2.6.1.6 Other Repositories . 46

2.6.2 Popular Datasets . 47

xiii

2.6.2.1 Synthetic Data Streams 47

2.6.2.2 Forest Cover Type Dataset 47

2.6.2.3 Network Intrusion Detection Dataset 48

2.6.2.4 Charitable Donation Dataset 49

2.6.2.5 Various Spam Mail Datasets 49

2.6.2.6 Various Sensor Network Datasets 49

2.7 Data Stream Processing Tools . 49

2.7.1 MOA . 49

2.7.2 RapidMiner . 50

2.7.3 R . 50

2.8 Data Stream Processing Platforms 51

2.9 Conclusions . 52

3 DATASETS . 55

3.1 Synthetic Datasets . 55

3.2 Real World Datasets . 56

3.2.1 Meteorological Datasets . 56

3.2.2 Keystroke Dynamics . 57

3.2.3 Sensor Data . 58

3.3 Drifts in the Datasets . 59

4 METHODS . 63

4.1 Online Embedding and Clustering of Evolving Data Streams 63

4.1.1 Complexity Analysis . 68

xiv

4.2 Determining the Optimal Number of Clusters on High Dimensional
Evolving Data Streams . 69

4.2.1 Introduction . 69

4.2.2 Traditional Methods for Predicting the Number of Clusters . . 70

4.2.2.1 Elbow Method . 70

4.2.2.2 Silhouette Method . 71

4.2.2.3 Density Based Methods 72

4.2.2.4 Other Methods . 72

4.2.3 Method . 72

4.2.3.1 Mean Shift Algorithm 73

4.2.3.2 NoCStream . 74

5 EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION . . . 77

5.1 Experimental Setup . 77

5.1.1 Environment . 77

5.1.2 Metrics . 77

5.1.2.1 Adjusted Rand Index 78

5.1.2.2 Purity . 78

5.2 Online Embedding and Clustering of Evolving Data Streams 78

5.2.1 Selection of Hyperparameter Values 79

5.2.2 Evaluation on Synthetic Datasets 80

5.2.3 Evaluation on Real World Datasets 82

5.2.4 Embedded Dimensions . 84

5.2.5 Detected Drift Count . 84

xv

5.2.6 Execution Time . 86

5.2.7 Visualization and Drift Check 88

5.2.8 Discussion . 89

5.3 Determining the Optimal Number of Clusters on High Dimensional
Evolving Data Streams . 90

5.3.1 Evaluation Methodology . 90

5.3.2 Selection of Hyperparameter Values 91

5.3.3 Evaluation Results . 92

5.3.3.1 k Prediction Evaluation 92

5.3.3.2 Clustering Evaluation 95

5.3.3.3 Genericity Evaluation 98

5.3.4 Discussion . 101

6 CONCLUSIONS . 103

REFERENCES . 107

xvi

LIST OF TABLES

TABLES

Table 2.1 Advantages and disadvantages of clustering algorithms based on

traditional categorization. 19

Table 2.2 Comparison of recent data stream clustering algorithms. 40

Table 2.3 Comparison of recent data stream clustering algorithms (continued

from Table 2.2). 41

Table 2.4 Properties of popular datasets. 48

Table 3.1 Characteristics of synthetic data streams. Number of instances is

50,000. 56

Table 3.2 Characteristics of real world data streams. 58

Table 5.1 Algorithm parameters used during evaluation. 79

Table 5.2 Adjusted Rand index comparison on synthetic data streams. 81

Table 5.3 Purity comparison on synthetic data streams. 82

Table 5.4 Adjusted Rand index comparison on real world data streams. 83

Table 5.5 Purity comparison on real world data streams. 83

Table 5.6 Performance comparison (in terms of total adjusted Rand index) of

EmCStream when 2D embedding space and 3D embedding space are used. 85

Table 5.7 Number of detected drifts by EmCStream algorithm. 86

xvii

Table 5.8 Execution times (in seconds) of the algorithms on synthetic data

streams. 87

Table 5.9 Evaluation Parameters. 93

Table 5.10 Number of windows in which k is predicted successfully, on syn-

thetic data streams. 94

Table 5.11 Number of windows in which k is predicted successfully, on real

world data streams. 96

Table 5.12 Adjusted Rand index comparison on synthetic data streams. 97

Table 5.13 Adjusted Rand index comparison on real world data streams. 98

Table 5.14 Spectral clustering adjusted Rand index comparison on synthetic

data streams. 100

Table 5.15 Spectral clustering adjusted Rand index comparison on real world

data streams. 101

xviii

LIST OF FIGURES

FIGURES

Figure 2.1 Time window models. 14

Figure 2.2 Classification of data stream clustering algorithms. 17

Figure 2.3 Recent data stream clustering algorithms. 20

Figure 3.1 Visualization of different number of data instances from the first

part of synthetic Stream-5. Only two features of the data are visualized.

Properties of the data instances change and the cluster centroids move

over time. This change is called concept drift. Samples of three clusters

present in the same region in different time intervals, as a result of the

concept drift. Because the data stream is synthetic and drift speed is

constant, movement of the data seems straight. 60

Figure 3.2 Visualization of different number of data instances from the first

part of meteorology data of Turkey. Only temperature feature is visu-

alized over time. (a) shows the daily night-day temperature difference

clearly, which is a local concept drift. In (b) a slight rise appears in the

data. In (c) a significant seasonal temperature rise appears and in (d) the

rise is followed by a decrease because the visualization includes more

than a full year data. Seasonal climate change is a concept drift. 61

Figure 4.1 Main flow of EmCStream. 65

Figure 4.2 Main flow of NoCStream. 76

xix

Figure 5.1 Visualization of how EmCStream checks for a concept drift, on

Keystroke-4 dataset. The same data instances are embedded twice. In

(a) the data are embedded according to previous knowledge, acquired

in the initialization, in (b) the data are embedded using no previous

knowledge. Both figures are colored according to clustering results of

(a), in order to show the coherency between the two embedding. This

situation is accepted as no drift because clustering of (a) and (b) are

coherent, as shown by coloring. 88

Figure 5.2 Visualization of how EmCStream checks for a concept drift, on

Keystroke-4 dataset. The same data instances are embedded twice. In

(a) the data are embedded according to previous knowledge, acquired

in the initialization, in (b) the data are embedded using no previous

knowledge. Both figures are colored according to clustering results of

(a), to show the coherency between the two embedding. This situation

is accepted as a drift because clustering of (a) and (b) are not coherent

for a number of instances, as shown by coloring. 89

xx

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

EmCStream Embedding and Clustering of High Dimensional Evolving Data

Streams

NoCStream Number of Clusters on High Dimensional Evolving Data Streams

t-SNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

xxi

xxii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

More devices and sensors in different sectors (healthcare, production, energy, con-

sumption etc.) are becoming interconnected and these devices continuously generate

data at high speed, which is called data stream. These data streams are often high

dimensional and contain concept drift. Data generated by connected devices need to

be processed in temporal order in real time because offline processing of such huge

amount of data requires growing storage capacity and causes delayed analysis. Hence,

real-time processing of data streams has become an active research area.

A data stream is a potentially unbounded, ordered sequence of instances. A data

stream S may be shown as

S = {x1, x2, x3, ..., xN}

where N goes to infinity and xi is ith data instance, which is a d-dimensional feature

vector. Data stream differs from the traditional, stored data in many aspects. In most

cases, true class labels are not available for stream instances and there is no prior

knowledge about the number of classes. Therefore, being unsupervised, clustering

is one of the most suitable data mining and data analysis methods for data streams.

However, most clustering algorithms require the number of clusters to be known a

priori and to be given as an input to the algorithm. Sample data stream clustering

applications are earthquake forecasting systems, network intrusion detection, stock

market analysis, real-time patient tracking, internet of things (IoT) device tracking,

auto monitoring of surveillance cameras and border security using sensors.

1

Data clustering, is the task of grouping instances such that the instances in the same

group are similar to each other and the instances in different groups are dissimilar

according to the properties of the instances [1]. Hence, the objective of clustering is

to minimize intra-cluster distance and maximize inter-cluster distance. However, data

stream clustering differs from traditional clustering in many aspects and it has several

challenging issues. Data stream clustering is a real-time task, while traditional clus-

tering is an offline task. Data stream instances arrive on the fly, during the processing,

and they can be read only once, in a certain order. Moreover, data stream instances

must be processed in a short time interval, before the next instance is received. Data

streams cannot be stored, only a synopsis of the stream is stored, if required. Because

of these limitations, approximate results are often acceptable in stream clustering,

while accurate results are expected in traditional clustering.

Data generated by connected devices are often high dimensional. Moreover, data

may contain outliers and stream instances may evolve over time, which is called con-

cept drift. Concept drift is the unforeseen change in the properties of the input data

instances. A concept drift may also be in the form of new cluster creation, cluster

disappearance, or split or merge of clusters. Such concept drifts give rise to changes

in the number of clusters. For the case of the traditional data, the whole dataset is

available, and properties of the instances and number of clusters do not change dur-

ing the processing of the data. This makes the concept drift a data stream specific

challenge. A data stream clustering algorithm should detect and adapt concept drift

to obtain more accurate results. According to Bezdek and Keller [2], anomaly and

concept drift detection are two most important objectives of stream data analysis.

Clustering is a more difficult task when the data are high dimensional. In order to

overcome this difficulty and make visualization possible, we study online embedding

of data streams into two dimensions (projection). Two most popular data embed-

ding algorithms in the literature are t-Distributed Stochastic Neighbor Embedding

(t-SNE) [3] and Uniform Manifold Approximation and Projection (UMAP) [4]. We

adjust these algorithms to apply them on data streams and we perform clustering on

the embedded data. In this particular case, when compared against t-SNE, UMAP

shows better performance in terms of execution time and silhouette score of the em-

bedded data, and therefore, UMAP is more suitable for data streams [5]. This finding

2

is also supported by Bahri et al. [6] where they survey dimensionality reduction tech-

niques and empirically compare five of them, as applied on data streams. UMAP

offers the most interesting visualization while separating classes, among the methods

t-SNE, Random Projection (RP) [7], Principal Component Analysis (PCA) [8] and

Hashing Trick (HT) [9].

Our method, online embedding and clustering of data streams (EmCStream) [10] con-

tinuously embeds high dimensional input data into two dimensions and clusters the

embedded data using k-means algorithm. EmCStream continuously checks for con-

cept drift and when a concept drift occurs, it detects and automatically adapts concept

drift. It is possible to replace k-means algorithm by any other distance or partitioning

based clustering algorithm. Being the most popular and easy-to-implement clustering

algorithm, we have employed k-means algorithm in our method. The main contribu-

tion of EmCStream is to successfully cluster evolving data streams, detecting and

adapting concept drift, with the help of embedding.

Most clustering algorithms require the number of clusters to be known a priori and

to be given as an input to the algorithm. The number of clusters even changes due

to the fact that data streams evolve over time. Therefore, not only the initial number

of clusters but the change in the number of clusters should also be predicted through-

out the stream. Here, we also describe a novel method, NoCStream to determine the

optimal Number k Of Clusters throughout a data stream. NoCStream determines the

optimal number of clusters on high dimensional evolving data streams by continu-

ously embedding high dimensional data streams into two dimensions and predicting

the number of clusters in real-time. NoCStream is employed by EmCStream in order

to determine the optimal number of clusters.

UMAP [4] is a manifold learning based non-linear dimension reduction technique.

Although UMAP is designed to work on the whole data, it is possible to embed new

data instances after training the UMAP reducer. Therefore, UMAP is suitable to be

applied on stationary (stable) data streams. In this study, we adapt and apply UMAP

on evolving (non-stationary) data streams; that is, we employ UMAP for data stream

embedding and concept drift detection.

k-means [11] is a well known and popular partitioning based clustering algorithm.

3

The number of clusters, k, is a hyperparameter of the algorithm. After deciding

on k cluster centers in the initialization phase, k-means at each iteration, associates

each data instance to the cluster whose center is the closest one and then the algo-

rithm recalculates the cluster centers according to the elements associated with them.

k-means algorithm stops when a predefined maximum number of iterations (i) is

achieved or cluster centers and labels of the instances do not change any more, which

means an optimal solution is achieved.

Concept drift is the unforeseen change in the properties of the input data instances of

a data stream and it is a data stream specific problem. In order to cluster successfully

data stream instances, concept drift should be detected and adapted. Moreover, num-

ber of clusters should be continuously predicted throughout the whole data stream.

Furthermore, data have often more than three dimensions, and therefore, they cannot

be visualized directly. A common problem among the existing data stream clustering

methods is that for each window, cluster labels are generated independent from the

labels of the other windows and therefore, it is not possible to merge cluster labels

across the windows during the stream and at the end of the stream. Moreover, exist-

ing methods do not allow the visualization of the high dimensional data and most of

them do not detect and notify concept drift. Furthermore, most of the existing data

stream clustering methods require the number of clusters to be known a priori and to

be given as an input to the algorithm.

Motivated by these observations, we describe two novel methods, NoCStream to de-

termine the optimal Number k Of Clusters throughout a data stream; and a data stream

clustering method, EmCStream. EmCStream embeds and clusters continuously high

dimensional evolving data streams, and detects, notifies and adopts concept drift and

makes visualization possible. Furthermore, EmCStream outperforms two state-of-

the-art stream clustering algorithms, DenStream [12] and CluStream [13], in terms

of clustering quality, on both synthetic and real world data streams. NoCStream also

outperforms DenStream [12] in terms of the prediction of number of clusters.

The contributions of this study are as follows.

• EmCStream successfully clusters high dimensional, evolving data streams.

4

• EmCStream detects, notifies and adapts concept drift.

• EmCStream embeds the high dimensional input data continuously and makes

visualization possible.

• EmCStream generates consistent and coherent cluster labels that can be con-

catenated.

• NoCStream predicts k continuously even if it changes, without candidate k

values.

1.2 Related Work

There exist several data stream clustering algorithms in the literature [14, 15, 16,

17, 18, 19, 20]. Most of the data stream clustering algorithms use a two phase ap-

proach [15]. These phases are online phase, also called as data abstraction phase, and

offline phase, also called as clustering phase. In online phase, a synopsis of the data

stream is generated and stored in specialized data structures. Synopsis of the data

stream is updated when a new instance is received. Therefore the synopsis always

remains up-to-date. Offline phase, runs periodically or whenever the user requests. In

this phase, the final clustering is performed over the generated data synopsis. There

also exist several fully online data stream clustering algorithms, which re-cluster the

data for every new instance and keep an up-to-date clustering result.

Two most popular, baseline stream clustering algorithms are DenStream [12] and

CluStream [13]. In order to adapt concept drift, DenStream and CluStream use mech-

anisms by which old data instances are outdated and excluded from the process, how-

ever they do not detect and notify concept drift.

There exist several concept drift detection algorithms in the literature. Among the

most recent drift detection algorithms are label dependency drift detector (LD3) [21],

one class drift detector (OCDD) [22], discriminative drift detector (D3) [23], accurate

concept drift detection method (ACDDM) [24] and discriminative subgraph-based

drift detector (DSDD) [25]. Gama et al. [26] have a comprehensive survey on concept

drift detection. A more recent survey is presented by Gemaque et al. [27].

5

A number of data stream clustering algorithms that are not described in recent sur-

veys are adaptive streaming k-means [28], fast evolutionary algorithm for cluster-

ing data streams (FEAC-Stream) [29], multi density data stream clustering algorithm

(MuDi-Stream) [30], clustering of evolving data streams into arbitrarily shaped clus-

ters (CEDAS) [31], improved data stream clustering algorithm [32], davies-bouldin

index evolving clustering method for streaming data clustering (DBIECM) [33] and

improved hierarchical density-based clustering (I-HASTREAM) [34, 35]. These most

recent algorithms are reviewed comprehensively in Chapter 2 [36]. Adaptive stream-

ing k-means and FEAC-Stream are fully online, partitioning based algorithms. DBIECM

is also fully online and the only distance based algorithm. MuDi-Stream, I-HASTREAM

and improved data stream clustering are density based, online-offline algorithms and

CEDAS is the only fully online density based algorithm reviewed in Chapter 2.

Hozumi et al. [37] have employed very recently UMAP along with k-means algo-

rithm, as done in EmCStream. However, their data is not streaming.

Anomaly and outlier detection is also a challenging task for data streams [38, 39, 40].

In data streams, anomalies and outliers may be caused by abrupt concept drifts. Here,

we focus on incremental concept drift that is defined as step by step change in the

data characteristics which is regarded as an evolution, instead of an anomaly.

There also exist a classification algorithm for evolving data streams [41] that uses

UMAP for embedding, in a very similar manner with our method.

Despite several data stream clustering methods, none of them embeds the data before

clustering. To the extent of our knowledge, our method is the first data stream clus-

tering method based on embedding, in the literature. Also, there are several problems

with the existing methods. The cluster labels of the processed windows cannot be

unified. Concept drifts are not detected and even if they are detected, no notification

is communicated. Visualization is not provided as well by the existing data stream

clustering methods.

6

1.3 The Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we provide information

regarding the concepts and common characteristics of data streams, such as concept

drift, data structures for data streams, time window models and outlier detection. We

comprehensively review recent data stream clustering algorithms and analyze them

in terms of the base clustering technique, computational complexity and clustering

accuracy. A comparison of these algorithms is given along with still open problems.

We indicate popular data stream repositories and datasets, stream processing tools and

platforms. Open problems about data stream clustering are also discussed. Chapter 3

provides the data streams used in this study. In Chapter 4, we explain our proposed

methods EmCStream and NoCStream in detail. We provide empirical evaluation de-

tails and discuss their results in Chapter 5. Section 4.1 and Section 5.2 are devoted to

EmCStream while Section 4.2 and Section 5.3 are devoted to NoCStream. Chapter 6

concludes the thesis, provides a summary of key findings, and gives suggestions for

future research.

7

8

CHAPTER 2

BACKGROUND INFORMATION

2.1 Introduction

More devices including sensors are becoming interconnected and interconnected de-

vices continuously generate streams of data at high speed. Offline processing of such

huge amount of data requires growing storage capacity and may cause delayed anal-

yses. Hence, real-time processing of the data generated by the connected devices has

become an active research area.

Similar to traditional data, data streams may include outliers. To achieve better per-

formance, outliers in the data streams should be detected, interpreted and possibly

removed. In data streams, it is not easy to mark an instance as outlier, because a

dissimilar instance might be the first sample of a new, previously unseen cluster, i.e.

it might be a precursor of a concept drift. Moreover, a dissimilar instance might be

marker of an anomaly, which is very valuable for anomaly detection systems.

Data stream clustering algorithms use special data structures to keep synopsis of the

input data, since it is not possible to store the whole data. Storing agglomerative

sum or storing only representative samples of the data are two popular alternative

structures. Moreover, users are often interested in the most recent data instances

rather than the previous ones. This situation creates a requirement of obsolescence

for previous data instances. In data stream clustering, it is solved by time window

models.

Most of the data stream clustering algorithms use a two phase approach [15]. In

online phase which is also called as data abstraction phase, a synopsis of the data

9

stream is generated and stored in specialized data structures. Synopsis of the data

stream is updated when a new instance is received. Therefore the synopsis always

remains up-to-date. Offline phase, called also as clustering phase, runs periodically

or whenever the user requests. In this phase, the final clustering is performed over the

generated data synopsis. There also exist several fully online data stream clustering

algorithms, which re-cluster the data for every new instance and keep an up-to-date

clustering result. Among fully online stream clustering algorithms are DPClust [42],

CEDAS [31], DBIECM [33], FEAC-Stream [29] and Adaptive Stream k-means [28].

For the evaluation of data stream clustering, traditional techniques are still valid and

they are commonly used. A relatively new concept edge computing [43, 44, 45] is

the technique to process the produced data on several edge nodes that are close to the

connected devices, instead of a single central system. It is also an interest arousing

novel concept, however it is out of scope of this study. We examine central data

stream clustering concept that runs on a single center for the whole system.

In this chapter, Section 2.2 is devoted to issues in data stream clustering. We give

information about some mechanisms of stream clustering, which are data structures,

time window models, concept drift and outlier detection methods. In Section 2.3, we

give brief information about the categories of stream clustering algorithms. More-

over, we examine seven most recent data stream clustering algorithms that are not

mentioned in the previous surveys in more detail and explain them one by one. We

make a comparative review of the examined algorithms and highlight their advantages

and disadvantages against each other in Section 2.4. We summarize the open prob-

lems about data stream clustering in Section 2.5. We indicate popular stream data

repositories and datasets, stream processing tools and stream processing platforms in

Section 2.6, Section 2.7 and Section 2.8 respectively, before concluding the chapter

in Section 2.9.

2.2 Concepts in Data Stream Clustering

The information given here that are the basic concepts used in data stream clustering

facilitates explaining the recent data clustering algorithms analyzed in Section 2.3.

10

2.2.1 Concept Drift

Concept drift is the unforeseen change in statistical properties of data stream instances

over time. There are four types of concept drift: sudden, gradual, incremental and

recurring [46].

• Sudden concept drift: Between two consecutive instances, the change occurs

at once, and after this time only instances of the new class are received. An

instance that has properties of the previous class never arrives again. A data

stream containing sudden concept drift might look like as follows, where dif-

ferent colors indicate different classes.

S = {..., x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, ...}

• Gradual concept drift: The number of instances belonging to the previous class

decreases gradually while the number of instances belonging to the new class

increases over time. During a gradual concept drift, instances of both previous

and new classes are visible. A data stream containing gradual concept drift

might look like as follows, where different colors indicate different classes.

S = {..., x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, ...}

• Incremental concept drift: Data instances belonging to the previous class evolves

to a new class step by step. After the concept drift is completed, the previous

class disappears. The instances that arrive during the concept drift are of tran-

sitional forms and they do not have to belong to either of the classes. A data

stream containing incremental concept drift might look like as follows, where

different colors indicate different classes.

S = {..., x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, ...}

• Recurring concept drift: The data instances change between two or more sta-

tistical characteristics several times. Neither of the classes disappears perma-

nently but both of them arrive in turns. A data stream containing recurring

concept drift might look like as follows, where different colors indicate differ-

ent classes.

S = {..., x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, ...}

11

Creation of new clusters, disappearance or evolution of existing clusters are all ex-

amples of concept drift. Concept drift may also affect the cluster boundaries. If the

cluster boundaries are modified, it is called real concept drift while in the other case,

it is called virtual concept drift. There exist several studies in the literature for con-

cept drift detection. Gama et al. [26] have a comprehensive survey on concept drift

detection.

2.2.2 Data Structures for Data Streams

In data stream processing, it is not possible to store the whole input data because data

streams are infinite and all existing processing systems have main memory constraint.

Therefore, only a synopsis of the input stream is stored and this situation makes it es-

sential to develop special data structures that enables to incrementally summarize the

input stream. Four most commonly used data structures are feature vectors, proto-

type arrays, coreset trees and grids. Feature vectors keep the summary of the data

instances, prototype arrays keep only a number of representative instances that exem-

plify the data, coreset trees keep the summary in a tree structure and grids keep the

data density in the feature space [15, 17, 47].

2.2.3 Time Window Models

In data stream processing, it is more efficient to process recent data instead of the

whole data. Different window models are developed for this purpose. There are three

different window models, which are damped window, landmark window and sliding

window models. These window models are presented in Figure 2.1.

2.2.3.1 Damped Window

In damped window model, recent data have more weight than the older data. The most

recent instance has the most weight and the importance of the instances decreases

by time. This method is usually implemented using decay functions which scale

down the weight of the instances, depending on the time passed since the instance is

12

received. One of such functions is f(t) = 2-λt, where t is the time passed and λ is

the decay rate. Higher decay rate in the function means a more rapid decrease in the

value. Figure 2.1 (a) demonstrates the damped window model.

2.2.3.2 Landmark Window

In landmark window model, the whole data between two landmarks are included in

the processing and all of the instances have equal weight. Amount of data that belong

to a single window is called window length and usually indicated by w. Window

length can be defined as instance count or elapsed time. In landmark window method,

consecutive windows do not intersect and the new window just begins from the point

the previous window ends. According to this definition, data instances belong to a

window are calculated using Equation 2.1 and window number of a data instance is

calculated using Equation 2.2 where w is window length, xi is ith instance and Wm

is mth window. Indexes i and m start with zero. Figure 2.1 (b) shows the landmark

window model.

Wm = [xm∗w, ..., x(m+1)∗w−1] (2.1)

m =

⌊
i

w

⌋
(2.2)

2.2.3.3 Sliding Window

In sliding window model, the window swaps one instance at each step. The older

instance moves out of the window, and the most recent instance moves in to the win-

dow by FIFO style. All instances in the window have equal weight and consecutive

windows mostly overlap. Window length is a user defined parameter and should be

decided according to the input data. Incremental clustering algorithms [14] are suit-

able to employ sliding window model. Figure 2.1 (c) describes this window model

and data instances belong to a window are calculated using Equation 2.3 where w is

window length, xi is ith instance and Wm is mth window. Indexes i and m start with

13

weight

data stream objects

decay function

time

considered instances

discarded instances

(a) Damped window model.

time

data stream objects

considered instances

discarded instances

window size (w)

w

landmark

(time t)

landmark

(time t+w)

landmark

(time t+2w)

(b) Landmark window model.

time

data stream objects

w

w

at time t

at time t+1

considered instances

discarded instances

window size (w)

at time t+2

(c) Sliding window model.

Figure 2.1: Time window models.

zero. Figure 2.1 (c) presents the sliding window model.

Wm = [xm, ..., x(m+w−1)] (2.3)

2.2.4 Outlier Detection

Outlier is a data instance that seems to be different from the remaining of the data.

Either it does not belong to any of the clusters, or it belongs to a cluster whose cardi-

nality is far less than other clusters. Let Ci be ith cluster, |Ci| be cardinality of Ci and

k be cluster count, if |Cj| << 1
k

∑k
i=1 |Ci|, then Cj is treated as outlier. There exist

several definitions for the outliers in the literature [48]. An outlier can occur because

of malicious activities, instrumental errors, transmission problems, data collection

problems or similar [49]. In data mining, outliers negatively affect the processing

14

accuracy, because of that, outlier detection has a crucial importance in data mining.

It is possible to benefit from several existing surveys [48, 50, 51, 52, 53, 54] about

outlier detection in data streams. Thakkar et al. [52] have classified outlier detection

techniques in four main groups in their survey.

• Statistical outlier detection methods make an assumption about the data dis-

tribution. Taking the distribution into account, data instances that have a low

probability to be generated, are marked as outliers. Statistical outlier detec-

tion methods are divided into two categories: parametric methods and non-

parametric methods. In parametric methods, a distribution model of the data

is assumed before starting, according to the parameters. This method is not

suitable for data streams, since the entire dataset is not available in streams and

the distribution model may change over time. In non-parametric methods, no

distribution model is assumed a priori; instead, the distribution model is learned

from the original data instances. This property makes non-parametric statistical

outlier detection methods adoptable for data streams.

• Distance based outlier detection methods [50] use neighbor count of the in-

stance to decide whether it is an outlier or not. Two parameters R and k play

the main role. If the data instance has less than k neighbors in a distance of R,

then it is marked as an outlier. A distance measure (or a similarity measure)

must be defined. No domain knowledge is required and no distribution model

assumption is done. Therefore, distance based outlier detection methods are

suitable for data streams. However, they are not effective for high dimensional

data streams.

• Density based outlier detection methods compare the density around the data

instance to the density around its neighbors. If the instance has a density around

it similar to its neighbors, then it is not an outlier. Otherwise it is considered

as an outlier. This group of methods, are more effective than distance based

methods, however they have a higher computational complexity.

• In Clustering based outlier detection methods [53] data instances that do not

belong to any clusters, or far away from their cluster centroids, are potential

outliers. Moreover, outliers may belong to a sparse or small cluster that is not

15

close to other clusters. Ordinary data instances are expected to belong to large,

dense clusters and they are relatively close to cluster centroids.

Although real-time analysis of data streams is a more recent research subject, it has

many similarities with the analysis of time series data which has been studied for

longer time and more abundant in the literature. Especially outlier detection in data

streams is very similar to anomaly detection in time series data analysis [55, 56, 57].

2.3 Stream Clustering Algorithms

There exist several data stream clustering algorithms in the literature [15, 16, 17,

18, 19, 46, 58, 59, 60, 61, 62, 63, 64]. Data stream clustering algorithms can be

categorized following the classification that is used for traditional (batch) clustering

algorithms. This categorization is given in Figure 2.2 and it consists of five main

classes: hierarchical based, partitioning based, density based, grid based and model

based clustering. We first give brief information about these categories and related

algorithms and we then examine seven most recent data stream clustering algorithms

in more detail.

• Hierarchical algorithms use the dendrogram data structure. Dendrogram is

binary tree based, and it is useful to summarize and visualize the data. Hier-

archical algorithms are divided in two: agglomerative and divisive. Agglom-

erative algorithms start with the assumption every instance is a cluster itself,

and merge the instances to create clusters step by step. On the other hand, divi-

sive algorithms start assuming a single cluster contains whole data, and divide

the clusters into smaller clusters in each step. Hierarchical algorithms have an

informative output, which is the dendrogram. However, they have high com-

plexity and they are sensitive to the outliers. Among hierarchical algorithms

are BIRCH [65], CHAMELEON [66], ODAC [67], E-Stream [68] and HUE-

Stream [69] [58, 59].

• Partitioning based algorithms split the data instances into a predefined number

of clusters, based on similarity (or distance) to the cluster centroids. Number

16

Stream Clustering Algorithms

Hierarchical Density

Based

Grid

Based

Partitioning

Based

Model

Based

BIRCH

ODAC

E-Stream

HUE-Stream

CHAMELEON

incremental

k-means

CluStream

HPStream

SWClustering

StreamKM++

StrAP

CLARA

DGClust

GSCDS

GCHDS

CLIQUE

STING

DenStream

WaveCluster

DSCLU

I-DBSCAN

LDBSCAN

OPTICS-Stream

SOStream

OPCluStream

D-Stream

MR-Stream

COBWEB

CluDistream

SWEM

Figure 2.2: Classification of data stream clustering algorithms.

of clusters should be predefined in these algorithms, and only hyper-spherical

clusters can be determined. Partitioning based algorithms have an easy imple-

mentation in general. StreamLSearch [70], incremental k-means [71], CluS-

tream [13], HPStream [72], SWClustering [73], StreamKM++ [74], strAP [75]

and CLARA [76] are partitioning based algorithms [17, 58, 59].

• Grid based algorithms use grid data structure. The workspace is divided into

a number of cells, in a grid structure, and each instance is assigned to a cell.

Then, the grid cells are clustered, according to their density. In grid based al-

gorithms, the run time does not depend on input data count. Therefore, grid

based algorithms are fast algorithms. Moreover, they are robust to noise and

are able to find arbitrary shaped clusters. However, since their complexity de-

pends on the number of the dimensions of the data, grid based algorithms are

more suitable for low dimensional data. Furthermore, they need a predefined

grid size. GCHDS [77], GSCDS [78], DGClust [79], CLIQUE [80], WaveClus-

ter [81] and STING [82] are all grid based algorithms [58]. D-Stream [83] and

17

MR-Stream [84] are classified as grid based by Ghesmoune et al. [17], despite

being classified as density based by Mousavi et al. [58].

• Density based algorithms keep summary of input data in large number of micro-

clusters. Micro-cluster is a set of data instances that are very close to each

other. Synopsis of a micro-cluster is kept with a feature vector. Then these

micro-clusters are merged and formed final clusters according to density reach-

ability and density connectivity concepts. These terms are defined as follows.

If the distance between two micro-clusters is less than or equal to the sum of

their radii, then they are directly density reachable. If any adjacent two clusters

in a set of micro-clusters are directly density reachable, then the set of micro-

clusters is density reachable. All micro-clusters that are density reachable to

each other, are density connected [32]. Density based algorithms are able to

find arbitrary shaped clusters and detect number of clusters. They are robust

to noise as well. However, several parameters have to be selected and there

are problems in finding multi-density clusters. Incremental-DBSCAN [85],

LDBSCAN [86], DenStream [12], rDenStream [87], DSCLU [88], OPCluS-

tream [89], SOStream [90], OPTICS-Stream [91], D-Stream [83] and MR-

Stream [84] are classified as density based [17, 58].

• Model based algorithms find the data distribution model that fit best to the

input data. One of the important advantages of model based algorithms is their

property of noise robustness. However, their performance strongly depends on

the selected model. COBWEB [92], CluDistream [93] and SWEM [94] are

examples of model based algorithms [58].

Advantages and disadvantages of clustering algorithms are summarized in Table 2.1

[17, 47, 58].

The aforementioned data stream clustering algorithms have already been reviewed in

the previous surveys. On the other hand, the algorithms given below have not been

analyzed elsewhere, to the best of our knowledge. We give the main flow of the algo-

rithms, show their evaluation results and present the complexity analysis. During the

complexity analysis, we ignore the Euclidean distance calculation complexity, which

is O(d), because this is the common practice in the literature. Moreover, this cal-

18

Table 2.1: Advantages and disadvantages of clustering algorithms based on traditional

categorization.

Algorithm Advantages Disadvantages

Hierarchical Informative output

(dendrogram)

High Complexity

Outlier sensitivity

Partitioning Easy implementation Predefined number of clusters

Only hyper-spherical clusters

Grid-based Arbitrary shaped clusters

Fast execution time

Noise robustness

Predefined grid size

Only low dimensional data

Density-based Arbitrary shaped clusters

Noise robustness

Multidensity cluster difficulties

Many predefined parameters

Model-based Noise robustness Strong dependency on the model

culation is done in every data stream clustering algorithm, thus ignoring it does not

change the comparison. However, any other data dimension related complexity is in-

cluded in the analysis. Not surprisingly, complexity of partitioning based algorithms

is a function of k and complexity of density based algorithms is a function of micro

cluster count.

We start with Adaptive Streaming k-Means and FEAC-Stream both of which are par-

titioning based online algorithms. We then examine MuDi-Stream, which is a den-

sity based, online-offline algorithm. CEDAS is a density based online algorithm.

Improved Data Stream Clustering Algorithm is a density based, online-offline al-

gorithm. DBIECM, the only distance based algorithm is fully online. Note that the

previous, classical classification does not include the distance based algorithms, prob-

ably, because there are not many examples of distance based algorithms. Finally, we

examine I-HASTREAM, a density based hierarchical, online-offline algorithm. Fig-

ure 2.3 shows the main characteristics of the examined algorithms. Although, ant

colony optimization methods are also being used by a number of data stream cluster-

ing algorithms [62], they are not evaluated at this time. Moreover, being an active

19

Stream Clustering Algorithms

Partitioning

Based

Density

Based

Distance

Based

MuDi-Stream*

Improved Data

Stream Clustering

I-HASTREAMAdaptive

Stream

k-means

FEAC-Stream

CEDAS*

DBIECM*

* : Requires expert knowledge

Online-offline methods

Online methods

Hyper-spherical Clusters Arbitrary Shaped Clusters

Can find multi-density clusters

Cannot find multi-density clusters

Figure 2.3: Recent data stream clustering algorithms.

research area, there also exist several recent data stream clustering algorithms that are

not evaluated in this manuscript [95, 96, 97].

2.3.1 Adaptive Streaming k-Means (2017)

Adaptive streaming k-means [28] is an online, partitioning based data stream cluster-

ing algorithm.In general, partitioning based clustering algorithms need k as an input

parameter, and these algorithms have difficulties to adapt concept drift in the input

data. In this algorithm, Puschmann et al. [28] claim to overcome these two main

problems.

Algorithm 1 shows the main flow of adaptive streaming k-means algorithm. k-means

algorithm and silhouette coefficient calculation function are assumed to be already

implemented. The algorithm is composed of two main phases, which are initialization

phase and continuous clustering phase. In the initialization phase, l number of data

instances are accumulated. Then groups of candidate centroids are determined at

line 2. In function determineCentroids, in order to find k and determine candidate

centroids, probability density function (PDF) of the data is calculated using kernel

20

Algorithm 1 streamingKMeans (S, l)
Input: S : the input data stream

Input: l : length of data sequence used for initialization

1: % Initialization phase

2: for candidateCentroids in determineCentroids(l number of data instances)

do

3: run kmeans with candidateCentroids

4: calculate silhouette coefficient of the kmeans result

5: end for

6: keep centroids of the best clustering

7: % Continuous clustering phase

8: loop

9: if changeDetected on the input stream then

10: re-initialize the algorithm by running again the initialization phase

11: end if

12: run kmeans with last found, best centroids

13: end loop

21

density estimation (KDE) [98, 99]. All directional changes in the shape of PDF curve,

are accepted as signs of beginning of a new region. Here the region can be defined

as the area between two consecutive directional changes of the PDF curve. Number

of regions is considered as a candidate k and centers of these regions are considered

as candidate initial centroids. This process is pursued for each feature of the data

separately. Because different features generally show different distributions, more

than one k values, and different candidate centroids are found.

After finding candidate k values, clustering is performed for a set of k values where

k ∈ [kmin, kmin+kmax]. The for loop at lines 2-5 is executed for these values of k and

candidate centroids. Clustering results of different k values are compared according

to silhouette coefficient, and best k is selected with its corresponding centroids.

The loop at lines 8-13 runs for continuous clustering phase. Checking for a concept

drift (see Section 2.2.1) is performed at line 9. If no concept drift occurs, clustering

of the input data proceeds, at line 12. However if a concept drift exists, k and cen-

troids are recalculated (the algorithm is re-initialized) at line 10, and then clustering

continues at line 12 with new k and centroids.

For concept drift detection, standard deviation and mean of the input data are stored

during the execution. The algorithm tracks how these two values change over time

and predicts a concept drift according to the change. When a concept drift is pre-

dicted, current cluster centroids are no longer valid. In such a case the concept drift is

realized at line 9 and a reinitialization is triggered at line 10. Using this mechanism,

the algorithm captures the concept drift and adapts itself to the input stream.

A limitation of this algorithm, being k-means based, only hyper-spherical clusters

can be detected. Indeed, the authors indicate that k-means is used as the underlying

clustering technique to clarify the approach, and the concepts of the approach can be

applied to different clustering techniques.

Evaluation: Adaptive streaming k-means algorithm is evaluated against CluStream

and DenStream algorithms, according to silhouette coefficient. Synthetic datasets

with three to five dimensions, that include concept drift, are used as input data streams.

Clustering quality improvement of the adaptive streaming k-means algorithm is 13%

22

to 40% with respect to CluStream. DenStream gives a better clustering quality for

one of the datasets, for short time intervals during the execution. However, for the

other datasets, clustering quality improvement of the adaptive streaming k-means al-

gorithm is up to 280% with respect to DenStream. Furthermore, the algorithm is

evaluated with real traffic data, against the non-adaptive technique, in which, the

centroids are never recalculated. Adaptive streaming k-means algorithm achieves an

improvement up to 31% in clustering quality when they are compared over the course

of one day. When they are compared over the course of one week, clustering quality

improvement of the adaptive streaming k-means is 12% on average.

Complexity Analysis: Let l be the length of the initial data sequence, and d be the

data dimension. Complexity of estimating k for a single dimension is O(l), because

this part goes along the PDF and it has a length equal to the data length. Since this

estimation is performed for all dimensions, total k estimation complexity becomes

O(d · l). After determining initial centroids running k-means takes O(d · k · cs) since

no iterations of the algorithm are needed, where cs is the number of different centroid

sets. Assigning a newly received data instance to the nearest cluster during the online

phase is O(k). As a result, total worst case complexity of the algorithm is O(k) +

O(d · l) +O(d · k · cs), which equals to O(d · l) +O(d · k · cs)

2.3.2 FEAC-Stream (2017)

Fast evolutionary algorithm for clustering data streams (FEAC-Stream) [29] is an

evolutionary algorithm for clustering data streams with a variable number of clusters.

FEAC-Stream is a k-means based algorithm, which estimates k automatically using

an evolutionary algorithm. Being fully online, FEAC-Stream does not store synopsis

of the data, instead maintains the final clustering result. During the execution, clus-

tering quality is tracked using the Page-Hinkley (PH) [100] test and if the quality falls

down, the algorithm adjusts itself.

Algorithm 2 shows the main flow of FEAC-Stream algorithm. PH test function and

the evolutionary algorithm are assumed to be already implemented. The algorithm

is composed of two main phases, which are initialization phase and continuous clus-

tering phase. In the initialization phase, l number of data instances are accumulated.

23

Algorithm 2 FEAC-Stream (S, l, λ, α, iter)
Input: S : the input data stream

Input: l : length of data sequence used for initialization

Input: λ : decay rate

Input: α : weight threshold

Input: iter : k-means iteration count

1: % Initialization phase

2: Estimate k with l number of data instances, using evolutionary algorithm

3: state = normal

4: % Continuous clustering phase

5: loop

6: Read next data instance x from data stream S

7: Add x to the nearest cluster

8: Calculate weight of all clusters

9: Delete low weighted clusters

10: PHval = Calculate PH test.

11: if PHval > warning threshold then

12: state = warning

13: end if

14: if state is warning then

15: Add x to buffer B

16: end if

17: if PHval > alarm threshold then

18: Estimate k with data instances in buffer B, using evolutionary algorithm

19: state = normal

20: end if

21: end loop

24

Then k and initial clustering is calculated using an evolutionary algorithm, at line

2 and state is set to normal, at line 3. In this evolutionary algorithm, clustering is

performed using k-means with a maximum of iter iterations. Simplified silhouette

coefficient is used as the fitness function, k is selected randomly such that k ∈ [2,
√
l]

and initial centroids are also selected randomly from the input data instances.

After clustering the initial l data instances in the initialization phase, the loop at lines

5-21 is executed for continuous clustering phase. When a new data instance is re-

ceived, it is added to the nearest cluster at line 7. Weight of all clusters are calculated

and low weighted clusters are deleted at line 8 and line 9, respectively. After that, PH

test is calculated at line 10 and it is compared to warning and alarm threshold values.

When PH test value exceeds the warning threshold, the algorithm enters to warning

state. In warning state, clustering process continues and received data instances are

stored in a buffer, at line 15. If PH test value exceeds alarm threshold, this means a

concept drift (see Section 2.2.1) occurs and current clusters are not valid anymore.

When PH test signals an alarm state, it also automatically selects samples from the

input data instances that reflects a new partitioning. In such a case, FEAC-Stream

clusters the data instances stored in the buffer with the evolutionary algorithm, at line

18 and sets the state back to normal, at line 19. In the evolutionary algorithm, clus-

tering is performed using k-means with a maximum of iter iterations. Simplified

silhouette coefficient is used as the fitness function, k and initial centroids are spec-

ified by the PH test. FEAC-Stream uses damped window model, which is described

in Section 2.2.3.1.

Being k-means based, only hyper-spherical clusters can be detected by FEAC-Stream.

Moreover, clustering quality of FEAC-Stream strongly depends on the user defined

parameters. FEAC-Stream requires three parameters which are length of data se-

quence used for initialization (l), decay rate (λ) for damped window model and min-

imum weight threshold (α). These parameters strongly affect the clustering quality

and they are directly dependent to the input data. Because of that, FEAC-Stream re-

quires an expert knowledge about the input data. Iteration count of k-means (iter)

and generation count of evolutionary algorithm are used as hard coded. Moreover,

warning and alarm threshold values of PH test are calculated automatically by the PH

test.

25

Evaluation: FEAC-Stream is evaluated against CluStream-OMRk, CluStream-BkM,

StreamKM++-OMRk and StreamKM++-BkM, where CluStream and StreamKM++

are the stream clustering algorithms with fixed k, while BkM and OMRk are k esti-

mating algorithms. Both real world and synthetic datasets are used for the evaluation.

Real datasets are network intrusion detection dataset, forest cover type dataset and lo-

calization data for person activity dataset. Adjusted Rand Index (ARI) is used as clus-

tering quality metric in synthetic datasets. While all mean ARI results are very close

to each other (0.97 - 0.99), FEAC-Stream has the lowest execution time. Its execu-

tion time is less by; 25% than StreamKM++-BkM, 58% than StreamKM++-OMRk,

91% than CluStream-BkM and nearly 93% than CluStream++-OMRk. Furthermore,

FEAC-Stream successfully reacts to concept drifts and accordingly estimates k. For

network intrusion detection dataset, simplified silhouette (SS) coefficient is used to

compare the clustering quality. Again all algorithms give very good and very close

(0.90 - 0.92) SS values and still FEAC-Stream gives the best execution time. Its

execution time is less by; 65% than StreamKM++-BkM, 87% than StreamKM++-

OMRk, 97% than CluStream-BkM and 98% than CluStream++-OMRk. For the other

real datasets as well, algorithms have the same running time ordering. These results

also show that, StreamKM++ is faster than CluStream and BkM is faster than OMRk.

Complexity Analysis: Let l be the length of the initial data sequence, gen is gener-

ation count of evolutionary algorithm and iter is the iteration count of k-means. In

the initialization phase, k is randomly selected as k ∈ [2,
√
l]. Thus, complexity of

initialization phase is O(gen·iter ·
√
l). Online maintenance of the algorithm requires

a complexity of O(k). When a concept drift occurs, the algorithm is reinitialized by

running evolutionary algorithm again. However k and centroids are decided by PH

test. Therefore, reinitialization requires a complexity of O(gen · iter · k). As a result,

total worst case time complexity of FEAC-Stream is O(k) + O(gen · iter · k), which

equals to O(gen · iter · k).

2.3.3 MuDi-Stream (2016)

Multi density data stream clustering algorithm (MuDi-Stream) [30] is a two phase

data stream clustering algorithm. Main objective of MuDi-Stream is to improve the

26

clustering quality on data streams with multi density clusters. Note that density based

algorithms usually have problems with clusters of different densities because of the

static density threshold they use. MuDi-Stream customizes the density threshold for

each cluster and overcomes the problem of multi density clusters. MuDi-Stream is

a hybrid algorithm based on both density based and grid based approaches. Input

data instances are clustered in a density based approach and outliers are detected

using grids. For data synopsis core mini-clusters are used. Core mini-clusters are

specialized feature vectors (see Section 2.2.2), they keep weight, center, radius and

the maximum distance from an instance to the mean. In the online phase core mini-

clusters are created and kept up to date for each new data instance. In the offline phase

final clustering is executed over the core mini-clusters.

Algorithm 3 shows the main flow of online phase of MuDi-Stream. When a new data

instance is received, it is tried to be added to an existing core mini-cluster. For this

purpose, the nearest core mini-cluster is found at line 4 and it is checked whether

nearest core mini-cluster can involve this data instance or not, at line 5. If the nearest

core mini-cluster is large enough, the data instance is added to the nearest core mini-

cluster at line 6. Otherwise, the data instance is mapped into the gird in the outlier

buffer, at line 8. When a data instance is mapped to a grid, density of this grid is

checked and if it is dense enough (more than the density threshold), a new core mini-

cluster is created from this grid i.e. the grid is converted to a core mini-cluster, at line

10. MuDi-Stream prunes both the grids in the outlier buffer and the core mini-clusters

periodically. It is checked at line 13 whether it is pruning time or not. If it is pruning

time, weight of grids and core mini-clusters are calculated according to current time,

and then low weighted grids and core mini-clusters are pruned at line 14 and line

15 respectively. This pruning mechanism is an implementation of damped window

model, which is described in Section 2.2.3.1.

Algorithm 4 shows the main flow of offline phase of MuDi-Stream. Initially all core

mini-clusters are marked as unvisited, at line 1. After that, inside a loop, an unvisited

core mini-cluster is randomly chosen at line 3 and marked as visited at line 4. If this

core mini-cluster has no neighbors, it is marked as noise at line 16. If it has neighbors,

a new final cluster is created with this core mini-cluster and its neighbors, at lines 6-8.

After that, each unvisited core mini-cluster in the new created final cluster is marked

27

Algorithm 3 MuDi-Stream online phase (S, α, λ, gridGranularity, G)
Input: S : the input data stream

Input: α : density threshold

Input: λ : decay rate

Input: gridGranularity

Input: G : total density grids for all dimensions

1: Initialize the grid structure

2: loop

3: Read next data instance x from data stream S

4: cmcs = Find the nearest cmc to x

5: if cmcs involve x then

6: Add x to cmcs

7: else

8: Map x to the gird

9: if Updated grid is dense enough then

10: Create a cmc from updated grid

11: end if

12: end if

13: if It is pruning period then

14: Remove low weighted grids

15: Remove low weighted cmcs

16: end if

17: end loop

28

Algorithm 4 MuDi-Stream offline phase (core mini-clusters)
Input: core mini-clusters

1: Mark all cmcs as unvisited

2: repeat

3: Randomly choose an unvisited cmc, called cmcp

4: Mark cmcp as visited

5: if cmcp has neighbors then

6: Create new final cluster C

7: Add cmcp to C

8: Add neighbors of cmcp to C

9: for each cmc in C do

10: if cmc is unvisited then

11: Mark cmc as visited

12: Add neighbors of cmc to C

13: end if

14: end for

15: else

16: Mark cmcp as noise

17: end if

18: until All cmcs are visited

29

as visited and its neighbors are added to the same final cluster, at lines 9-14. This

loop continues until all core mini-clusters are marked as visited.

Damped window model is used, and arbitrary shaped, multi density clusters can be

detected by MuDi-Stream. Moreover, MuDi-Stream is able to handle concept drift

(see Section 2.2.1), noise and outliers. However it is not suitable for high dimen-

sional data, which makes the processing time longer, because of the grid structure.

Furthermore, clustering quality of MuDi-Stream strongly depends on input parame-

ters density threshold (α), decay rate (λ) for damped window model and grid granu-

larity. These parameters require an expert knowledge about the data.

Evaluation: MuDi-Stream is tested with two real world (network intrusion detection

and Landsat satellite) and six synthetic datasets. It is compared to DenStream on

a data stream with concept drifts, a multi density dataset and a multi density data

stream with concept drifts. MuDi-Stream outperforms DenStream on all three types

of input data, according to clustering quality (Purity, Normalized Mutual Information

(NMI), Rand Index (RI), Adjusted Rand Index (ARI), Folkes and Mallow index (FM),

Jaccard Index and F-Measure). Clustering quality improvement of MuDi-Stream is

10% to 100% with respect to DenStream, on different datasets.

Complexity Analysis: MuDi-Stream performs a linear search on core mini-clusters

for each new data instance. Complexity of this linear search is O(c) where c is the

number of core mini-clusters. If the new data instance cannot be merged into exist-

ing core mini-clusters, it is mapped to the grid. Let G be total density grids for all

dimensions, which is exponential to the number of dimensions. Space complexity

of the grid is O(log G) because the scattered grid are pruned during the execution.

Moreover, time complexity of mapping a data instance to the grid is O(log log G)

because the list of the grids is maintained as a tree. During the pruning, all core mini-

clusters and grids are examined. This makes time complexity of pruning O(c) for

core mini-clusters and O(log G) for grids. As a result, the overall time complexity

of MuDi-Stream is O(c) + O(log log G) + O(c) + O(log G), which equals to O(c) +

O(log G).

30

2.3.4 CEDAS (2016)

Clustering of evolving data streams into arbitrarily shaped clusters (CEDAS) [31] is

a fully online data stream clustering algorithm. CEDAS is a density based algorithm

designed for clustering data streams with concept drifts (see Section 2.2.1), into ar-

bitrary shaped clusters. Damped window model (see Section 2.2.3.1) is employed

with a linear decay function instead of an exponential one. CEDAS keeps synop-

sis of the data in micro-clusters and creates a graph structure with the micro-clusters

that surpass a user defined threshold. Graph structure, where nodes are the micro-

clusters and edges are the connectivity between micro-clusters, keeps the up to date

final clustering results.

Algorithm 5 shows the main flow of CEDAS. When a new data instance is received,

it is tried to be added to an existing micro-cluster. For that purpose, the distance from

new data instance to the nearest micro-cluster is found at line 4 and it is checked

whether this distance is less than the micro-cluster radius (r0) or not, at line 5. Micro-

cluster radius is a user defined, static parameter. If the distance is less than the radius,

the data instance is added to the nearest micro-cluster, at line 6, and energy of this

micro-cluster is set to 1 at line 7. Otherwise, a new micro cluster is created with

this data instance, at line 9, and energy of the new micro-cluster is set to 1, at line

10. Energy of micro-clusters linearly fades on every cycle, with an amount of decay

rate (λ), at line 12. The micro-clusters whose energy drop below zero are removed

at line 13. Lastly, the graph structure is updated with the micro-clusters that surpass

the density threshold (α), at line 15. Removed micro-clusters are removed from the

graph structure also, and micro-clusters reached the density threshold (α) added to

the graph structure. Therefore, CEDAS creates final clustering results as fully online.

CEDAS is suitable for high dimensional data under favor of maintaining a graph

structure where nodes are the micro-clusters and edges are the connectivity between

micro-clusters. However, clustering quality of CEDAS strongly depends on the user

defined parameters. CEDAS requires three parameters which are decay rate (λ),

micro-cluster radius (r0) and minimum density threshold (α). These parameters

strongly affect the clustering quality and they are directly dependent to the input data.

Because of that, CEDAS requires an expert knowledge about the input data.

31

Algorithm 5 CEDAS (S, α, λ, r0)
Input: S : the input data stream

Input: α : density threshold

Input: λ : decay rate

Input: r0 : micro-cluster radius

1: Initialize the microcluster structure

2: loop

3: Read next data instance x from data stream S

4: dismin = Find the distance from x to the nearest micro-cluster center

5: if dismin < r0 then

6: Add x to the nearest micro-cluster

7: Energy of the updated micro-cluster = 1

8: else

9: Create new micro-cluster with x

10: Energy of the new micro-cluster = 1

11: end if

12: Reduce energy of all micro-clusters by λ

13: Remove negative energy micro-clusters

14: if micro-clusters are changed then

15: Update graph structure with micro-clusters that surpass α

16: end if

17: end loop

32

Evaluation: CEDAS is tested with a data stream consisting of two Mackey-Glass time

series, to see how it deals with concept drift, cluster separation, cluster merging and

noise over time. Moreover, it is compared to CluStream and DenStream according to

complexity, processing speed, cluster quality and memory efficiency. CEDAS, CluS-

tream and DenStream are also compared with high dimensional data according to

speed and accuracy. CEDAS successfully deals with concept drift. Noise negatively

affects the clustering quality, however results are claimed to be still acceptable. Time

measurements show that CEDAS is quite suitable for high dimensional data. Firstly

CEDAS is compared against only online phases of DenStream and CluStream. For

data with less than 10 dimensions, CEDAS is the slowest one. However, processing

time of CEDAS stays nearly constant up to 10,000 dimensions. CluStream becomes

slower than CEDAS after 10 dimensions and it consumes nearly 300 times more than

CEDAS for 6,000 dimensions. DenStream is faster than CEDAS up to 200 dimen-

sions. For more than 200 dimension, DenStream becomes slower than CEDAS and

consumes nearly 2 times more than CEDAS for 6,000 dimensions. After that, CluS-

tream and DenStream are run with a frequent offline phase, to generate near real time

final clustering. In this situation CEDAS is the fastest algorithm for both low and high

dimensional data. For 5 dimensional data, DenStream consumes 40 times and CluS-

tream consumes 75 times more than CEDAS. For very high dimensional data, time

consumption of DenStream grows faster than the others. When the data dimension

is 3,000 CluStream consumes nearly 100 times and DenStream consumes nearly 650

times more than CEDAS. The other main advantage of CEDAS is memory efficiency.

During the execution, DenStream reaches up to 800 micro-clusters at certain times,

while CEDAS reaches up to 100 micro-clusters.

Complexity Analysis: For each new data instance, CEDAS performs a linear search

on the micro-clusters. Complexity of this linear search is O(c) where c is the number

of micro-clusters. After that, energy of each micro-cluster is reduced, which also

requires an O(c) complexity. The last step, which updates the graph structure, is

executed only when a new micro-cluster is created or removed. In worst case, all

micro-clusters are visited, so worst case time complexity of this step is again O(c).

Therefore, the overall time complexity of CEDAS is O(c).

33

2.3.5 Improved Data Stream Clustering Algorithm (2017)

Improved data stream clustering algorithm [32] is a two phase, density based algo-

rithm that is suitable for arbitrary shaped clusters. Main characteristic of this algo-

rithm is adjusting threshold values automatically, according to the input data. This

feature gets rid of the requirement of expert knowledge about the input data.

Algorithm 6 Improved data stream clustering online phase (S, l, λ)
Input: S : the input data stream

Input: l : length of data sequence used for initialization

Input: λ : decay rate

1: % Initialization phase

2: Run DBSCAN on l number of data instances

3: % Continuous clustering phase

4: loop

5: Read next data instance x from data stream S

6: Add x to the nearest major micro-cluster OR

7: Add x to the nearest critical micro-cluster OR

8: Create a new micro-cluster with x

9: if It is pruning period then

10: Remove low weighted major micro-clusters

11: Remove low weighted critical micro-clusters

12: end if

13: end loop

Algorithm 6 shows the main flow of online phase of improved data stream clustering

algorithm. DBSCAN algorithm is assumed to be already implemented. The algorithm

is composed of two main phases, which are initialization phase and continuous clus-

tering phase. In the initialization phase, l number of data instances are accumulated

and clustered using DBSCAN, at line 2. Major micro-clusters and critical micro-

clusters are created as output of DBSCAN algorithm. Major micro-clusters have high

densities and will be included in the final clustering process. Critical micro-clusters

have low densities and treated as potential outliers. In the continuous clustering phase,

when a new data instance is received, it is tried to be added to the nearest major micro-

34

cluster, at line 6. If nearest major micro-cluster is not suitable, this time the new data

instance is tried to be added to the nearest critical micro-cluster, at line 7. If neither

of them is suitable, a new micro-cluster is created with the new data instance, at line

8. Damped window model (see Section 2.2.3.1) is used and low weighted major and

critical micro-clusters are removed periodically, at line 10 and line 11 respectively.

Threshold values of major and critical micro-clusters are global parameters in the al-

gorithm, instead of being specific to each micro-cluster. However they are dynamic

parameters and continuously updated during the execution.

Algorithm 7 Improved data stream clustering offline phase (micro-clusters)
Input: micro-clusters

1: Mark all mcs as unvisited

2: repeat

3: Randomly choose an unvisited mc, called mcp

4: if mcp is major micro-cluster then

5: Find all micro-clusters density reachable to mcp

6: Create a final cluster by them.

7: else if mcp is critical micro-cluster then

8: Continue the next cycle

9: end if

10: until All mcs are visited

Algorithm 7 shows the main flow of offline phase of improved data stream clustering

algorithm. Initially all micro-clusters are marked as unvisited, at line 1. After that,

inside a loop, an unvisited micro-cluster is chosen randomly at line 3. If the selected

micro-cluster is a major micro-cluster, all micro-clusters that are density reachable

to this micro-cluster are found and a new final cluster is created by them, at line 5

and line 6. If the selected micro-cluster is a critical micro-cluster, then the execution

continues with the next cycle, at line 8. When all micro-clusters are visited, the offline

phase completes. The term density reachable is defined as follows. If the distance

between a micro-cluster and another major micro-cluster is less than or equal to the

sum of their radii, then they are directly density reachable. If any adjacent two clusters

in a set of micro-clusters are directly density reachable, then the set of micro-clusters

is density reachable [32].

35

Evaluation: Improved data stream clustering algorithm is evaluated against DenStream

algorithm, using the network intrusion detection dataset. Clustering quality improve-

ment of the improved data stream clustering algorithm is 2% to 7% with respect to

DenStream. Moreover, Yin et al. [32] claims that this algorithm has a better time

and spatial complexity, compared with traditional clustering algorithms, however no

measurement results are shared.

Complexity Analysis: Let l be the length of the initial data sequence. Complexity of

the initialization equals to complexity of DBSCAN, which is O(l·log l) in average and

O(l2) in worst case. In the continuous clustering phase, a linear search is performed

on micro-clusters for each new data instance. Complexity of this linear search is O(c)

where c is the number of micro-clusters. When it is pruning period, pruning task is

executed for each micro-cluster one by one and this also requires a complexity of

O(c). Therefore, the total worst case complexity is O(c) + O(c), which equals to

O(c).

2.3.6 DBIECM (2017)

DBIECM [33] is an online, distance based, evolving data stream clustering algorithm.

DBIECM is the only example of distance based clustering algorithms in this sur-

vey. DBIECM is an improved version of Evolving Clustering Method (ECM) [101].

Davies Bouldin Index (DBI) is used as the evaluation criteria, instead of shortest dis-

tance.

Algorithm 8 shows the main flow of DBIECM. When a new data instance x is re-

ceived, an attempt is made to add the new data instance to an existing cluster. For

this purpose, the distances between x and all clusters are calculated. If radius of any

cluster is greater than or equal to its distance to x, then x is added to this cluster, as

indicated at line 6. If the distance from x to any cluster is greater than maximum clus-

ter radius r0, which is a user defined, static parameter, then a new cluster is created

with x, at line 8. Otherwise, if there exist any clusters such that their radii are less

than their distance to x, then x is added to all of these clusters one by one and DBI of

the results are calculated separately. x is added to the cluster that gives the least DBI,

which means the best clustering.

36

Algorithm 8 DBIECM (S, r0)
Input: S : the input data stream

Input: r0 : max cluster radius

1: Initialize the cluster structure

2: loop

3: Read next data instance x from data stream S

4: disi = Find the distance from x to all cluster centers Ci, i ∈ [1, k]

5: if disi < radius of Ci then

6: Add x to Ci

7: else if disi > r0 for all i ∈ [1, k] then

8: Create new micro-cluster with x

9: else % There exist clusters such that radius of Ci < disi < r0

10: Find all clusters such that radius of Ci < disi

11: Add x to the best cluster, according to DBI

12: end if

13: end loop

DBIECM requires the maximum cluster radius as a parameter. This parameter di-

rectly affects the final cluster count and consequently the clustering quality. Maxi-

mum cluster radius strongly depends on the input data and requires an expert knowl-

edge about the data. Being distance based, DBIECM can detect only hyper-spherical

clusters. DBIECM does not employ any time window model, thus no input data

instance out dates, all input data exist in the final clustering. Moreover, no outlier

detection mechanism is implemented. However, it is possible to specify an outlier

threshold value and mark the clusters with low cardinality as outliers.

Evaluation: DBIECM is evaluated against ECM, with Iris, Wine, Seeds, Glass and

Breast Cancer datasets, from UCI machine learning database. Both of the algorithms

are run with the same maximum cluster radius parameter. Firstly, three different

radius values are tried, and their direct impact on the resultant cluster number is

observed. This shows the importance of the expert knowledge for radius selection.

Moreover, clustering quality is compared according to objective function value, DBI,

accuracy and purity. For these tests, radius value is selected according to the correct

cluster number. DBIECM achieve up to 43% better DBI, up to 33% better accuracy

37

and up to 11% better purity values than ECM.

Complexity Analysis: When a new data instance is received, a linear search is per-

formed on clusters. Complexity of this linear search is O(k). Pairwise distances

between all clusters are used for DBI calculation, thus DBI calculation requires a

complexity proportional to O(k2). When there exist more than one candidate clusters

for the new data instance, the instance is added to all of them one by one and DBI is

calculated accordingly. This requires a complexity proportional to O(k3). Therefore,

although the average complexity of DBIECM depends on the input data, the total

worst case complexity is O(k) + O(k3) which equals to O(k3).

2.3.7 I-HASTREAM (2015)

I-HASTREAM [34, 35] is a two phase, adaptive, density based hierarchical, data

stream clustering algorithm. I-HASTREAM is an improved version of HASTREAM

[102]. In the online phase, synopsis of the data is created as micro-clusters. In the

offline phase, micro-clusters are maintained in a graph structure as a minimum span-

ning tree and hierarchical clustering is employed for the final clustering. Main con-

tributions of I-HASTREAM are to perform the final clustering on a minimum span-

ning tree and to incrementally update the minimum spanning tree according to the

changes in the micro-clusters, instead of generating it from scratch. Both of these

contributions are related to the offline phase. For I-HASTREAM and its ancestor

HASTREAM no algorithmic details are specified about the online phase, instead, it is

stated that any micro-cluster model can be employed. For evaluation purpose, HAS-

TREAM employs online phases of DenStream and ClusTree algorithms and these

results are presented by Hassani et al. [102].

Algorithm 9 I-HASTREAM offline phase (micro-clusters, α)
Input: micro-clusters

Input: α : weight threshold

1: MST = Update minimum spanning tree(MST , micro-clusters)

2: HC = Employ hierarchical clustering(MST , α)

3: Extract final clustering(HC)

38

Algorithm 9 shows main flow of offline phase of I-HASTREAM. The minimum span-

ning tree is updated according to the changes in the micro-clusters at line 1, and a

hierarchical clustering on the minimum spanning tree is employed at line 2. As re-

sult of hierarchical clustering, a dendrogram is created. Final clustering is performed

according to this dendrogram, at line 3.

Evaluation: Four variants of I-HASTREAM (with different parameters) are evalu-

ated against HASTREAM, MR-Stream and DenStream, using network intrusion de-

tection dataset and the physiological dataset. Purity and Cluster Mapping Measure

(CMM) [103] are used as evaluation criteria. One of the I-HASTREAM variants

gives up to 25% better purity values than DenStream in network intrusion detection

dataset. Its result is also up to 10% better than other versions of I-HASTREAM and

HASTREAM. In the physiological dataset, the same variant of I-HASTREAM gives

the best CMM and purity values in general. HASTREAM and I-HASTREAM have

very close CMM values and both of them outperforms DenStream with up to 30% bet-

ter CMM values. For purity, again I-HASTREAM has the best values in general and

it outperforms both DenStream and MR-Stream with up to 15% better purity values.

When we look at the execution time comparison of the algorithms, I-HASTREAM is

more than five times faster than DenStream.

Complexity Analysis: Because no algorithmic details are specified about the online

phase, we could not analyze complexity of I-HASTREAM.

2.4 Comparison of the Algorithms

As common characteristics of seven data stream clustering algorithms given in Sec-

tion 2.3, all of them predict number of clusters themselves and they are all able to

adopt concept drift in the data streams. All but MuDi-Stream are suitable for high

dimensional data. The reason MuDi-Stream is not suitable for high dimensional data

is that, it uses a grid based approach for outlier detection. When the data are high

dimensional, the number of empty grids increases and the execution time gets higher.

Adaptive Streaming k-means and FEAC-Stream are both k-means based (partition-

ing based) algorithms. DBIECM is distance based and the others are density based

39

Table 2.2: Comparison of recent data stream clustering algorithms.

Base Window Cluster Cluster

Algorithm Year Algorithm Phases Model Count Shape

Adaptive Streaming

k-Means

2017 Partitioning

based

Online Sliding Auto Hyper-

spherical

FEAC-Stream 2017 Partitioning

based

Online Damped Auto Hyper-

spherical

MuDi-Stream 2016 Density

based

Online-

offline

Damped Auto Arbitrary

CEDAS 2016 Density

based

Online Damped Auto Arbitrary

Improved Data

Stream Clustering

2017 Density

based

Online-

offline

Damped Auto Arbitrary

DBIECM 2017 Distance

based

Online None Auto Hyper-

spherical

I-HASTREAM 2015 Density

based

Online-

offline

Damped Auto Arbitrary

40

Table 2.3: Comparison of recent data stream clustering algorithms (continued from

Table 2.2).

Multi Den- High Dimen- Outlier Drift Expert

Algorithm sity Clusters sional Data Detection Adaption Knowledge

Adaptive Streaming

k-Means

Yes Suitable No Yes No

FEAC-Stream Yes Suitable Yes Yes No

MuDi-Stream Yes Not suitable Yes Yes Required

CEDAS No Suitable Yes Yes Required

Improved Data

Stream Clustering

No Suitable Yes Yes No

DBIECM Yes (not

multi size)

Suitable No Yes Required

I-HASTREAM Yes Suitable Yes Yes No

algorithms. Distance based approaches are similar to density based approaches, how-

ever they do not have a density threshold, instead they have maximum cluster radius

threshold.

In general, density based algorithms have problem about finding clusters with dif-

ferent densities, because of the static density threshold. However, MuDi-Stream and

I-HASTREAM have improvements for this problem and they successfully adopt the

density threshold to each cluster separately. This makes them able to find multi-

density clusters. Adaptive Streaming k-means and FEAC-Stream, being partition

based algorithms, are also able to find clusters with different densities. DBIECM is

successful for multi density clusters, but not for multi size clusters. It has a static

maximum cluster radius threshold and this is a problem for clusters with different

sizes. As a result, CEDAS and Improved Data Stream Clustering algorithm are not

able to find multi density clusters, but the others are. Furthermore, all density based

algorithms are able to find arbitrary shaped clusters, while partitioning and distance

based algorithms are limited with hyper-spherical clusters.

41

For Adaptive Streaming k-means and DBIECM, no outlier detection mechanism is

mentioned. However, it is possible to define an outlier threshold and to mark the

clusters have less cardinality than the threshold as outliers, for both algorithms. The

other algorithms already have outlier detection mechanisms.

Up to the recent years, most of data stream clustering algorithms were online-offline

algorithms. A synopsis of the data is employed in the online phase and the final

clusters are generated in the offline phase. In this type of algorithms, offline phase

is executed periodically or upon user request. Therefore, final clustering results are

obtained with a latency and they are not up to date most of the times. However,

there exist several recent fully online algorithms in the literature. Fully online algo-

rithms maintain the final clustering results up to date. Therefore, users get the results

with no latency. CEDAS, Adaptive Streaming k-means, FEAC-Stream and DBIECM

are online algorithms, while MuDi-Stream, Improved Data Stream Clustering and

I-HASTREAM are online-offline algorithms.

Damped window model is the most popular time window model among data stream

clustering algorithms. On the other hand, DBIECM does not use any time window

model. Moreover, Adaptive Streaming k-means uses sliding window model. All

other mentioned algorithms use damped window model.

Finally, clustering quality of MuDi-Stream, CEDAS and DBIECM is strongly sensi-

tive to the input parameter threshold value. It directly affects the number of clusters

and accordingly the clustering quality. Selecting a proper threshold value requires an

expert knowledge about the input data. Therefore, for successful results of MuDi-

Stream, CEDAS and DBIECM, it is necessary to have prior information about char-

acteristics of the input data. Table 2.2 and Table 2.3 show the comparison summary

of examined data stream clustering algorithms and Figure 2.3 shows their main char-

acteristics.

In conclusion, Adaptive Streaming k-means, FEAC-Stream and DBIECM have lim-

itations about the cluster shape; they are able to find only hyper-spherical clusters.

MuDi-Stream is not suitable for high dimensional data because of its grid based out-

lier detection mechanism. CEDAS and Improved Data Stream Clustering algorithm

cannot be used for clusters with different densities and DBIECM cannot be used for

42

clusters with different radii. Finally, an expert knowledge about the input data and the

clusters is required for MuDi-Stream, CEDAS and DBIECM. I-HASTREAM claims

to have no limitations, however no algorithmic details are specified for online phase

of it. It is stated that online phases of DenStream and ClusTree are employed instead.

2.5 Open Problems

There exist several open problems about data stream clustering. Here, we indicate the

most notable open problems and describe them briefly.

• Finding k: Finding k is still an open problem, especially for partitioning based

algorithms. There exist some recent methods for this purpose, however none of

them is widely accepted and well matured yet. For density based algorithms,

determining k is easier, however parameters that depend on domain knowledge

are necessary. If cluster characteristics such as density and minimum allow-

able gap between clusters are known a priori, current algorithms are then able

to detect k; however, in most cases, knowledge about input data is not avail-

able before the execution and it may not be possible to specify parameters that

are valid for all clusters. For example, multi-density clusters require different

density thresholds and multi-size clusters require different distance thresholds.

Determining such parameters is another open problem by itself. Moreover,

concept drift, which may invalidate data specific parameters, is very common

in data streams. Therefore, finding a k estimation method that adopts to changes

in both k and cluster characteristics is a challenge. Such a method should react

to concept drift fast, adopt the new data distribution with minimum quality loss

and estimate k.

• Parameter Requirements: Current data stream clustering algorithms require

parameters such as k, density threshold, distance threshold, decay rate and win-

dow length. Such parameters are very sensitive to the input data and they di-

rectly affect the clustering quality. It is a challenge to automatically specify

these parameters without domain knowledge, manage them for each cluster

separately, and update them according to the data characteristics.

43

• Evaluation Criteria: There is no de facto evaluation criteria for data stream

clustering. Traditional evaluation methods are used for stream clustering re-

sults. Defining a new evaluation metric that is suitable for data streams might

contribute to this field and inspire interest.

• Benchmark Data: There is a lack of high quality benchmark data to use in

data stream clustering algorithms. One of the most popular datasets for stream

clustering is the forest cover type dataset and it is not even a stream data. Syn-

thetic and real world datasets that include concept drift, outliers and class la-

bels, are necessary for benchmarking purposes in data stream clustering field.

Generating and collecting such synthetic and real world stream datasets and

popularizing them is a challenge.

• Experimental Comparison Environment: There is not a system that runs

more than one data stream clustering algorithms at the same time, feeds them in

the same way, and compares their execution performance and clustering quality.

• Different Data Types: Handling different data types is another challenging

task in data stream clustering. Most of the stream clustering algorithms work

with quantitative features and define the similarity based on euclidean distance.

Current data structures that keep the data synopsis are also specialized for quan-

titative features. There exists a lack of clustering algorithms that work with

categorical data. It is common to convert categorical data to quantitative data

and use existing algorithms.

• Performance Improvements: Any performance improvements is always wel-

come, since the number of connected devices is increasing and the data gener-

ated by them are scaling up and accelerating every day. This situation requires

a continuous performance improvement in data stream clustering algorithms.

It is possible to improve the performance by using parallel programming and

edge computing. However in this study, we focus on processing where the

whole data is gathered and processed directly on a single processor.

Concept drift is a data stream specific and it generates several challenges. The number

of clusters, cluster densities, sizes and shapes may change over time due to concept

44

drift. The problems of traditional clustering become continuous problems for stream

clustering.

2.6 Popular Data Repositories and Datasets

2.6.1 Data Repositories

There exist several stream data resources on the internet. Moreover, it is common to

use traditional datasets as streams or to generate synthetic data streams. Traditional

datasets are generally read by order and treated as streams for testing and benchmark-

ing purposes. We mention the stream data sources in this section. Data streams in

Stream Data Mining Repository (see Section 2.6.1.4) and MOA (see Section 2.6.1.5)

already have true class labels. However, Citi Bike System Data (see Section 2.6.1.1)

does not possess explicitly a class label. One should decide how to employ the data

and then assign accordingly the class labels. Moreover, National Weather Service

Public Alerts (see Section 2.6.1.3) and Meetup RSVP Stream (see Section 2.6.1.2)

have several features that can be used as class labels.

2.6.1.1 Citi Bike System Data

Citi Bike NYC [104] is a public bicycle sharing system. It is composed of 750 sta-

tions and 12,000 bikes. Citi Bike publicly publishes real time system data in [105]

which includes system information, station information, free bike status etc. in a

json structure. Moreover, Citi Bike also publishes trip histories, daily ridership and

membership data, and monthly operating reports stored as data streams.

2.6.1.2 Meetup RSVP Stream

Meetup [106] is a website providing membership software, allowing its users to

schedule events using a common platform. Meetup has an invitation response mech-

anism in which the invitees click to RSVP button and enter their responses. Meetup

publicly publishes these RSVP responses as a stream [107], which is suitable for data

45

stream clustering.

2.6.1.3 National Weather Service Public Alerts

National Weather Service (NWS) [108] creates public alerts, watches, warnings, advi-

sories, and other similar products in the Common Alerting Protocol (CAP) and Atom

Syndication Format (ATOM) [109]. These are data streams and they can be used for

data stream clustering studies.

2.6.1.4 Stream Data Mining Repository

Stream Data Mining Repository [110] is a public repository holding four different

stream datasets, which are Sensor Stream (2,219,803 instances, 5 features, and 54

clusters), Power Supply Stream (29,928 instances, 2 features, and 24 clusters), Net-

work Intrusion Detection 10% Subset (494,021 instances, 41 features, and 23 clusters)

and Hyper Plane Stream (100,000 instances, 10 features, and 5 clusters).

2.6.1.5 MOA

Massive Online Analysis (MOA) [111] [112] is a popular open source framework

for data stream mining. MOA includes 4 different datasets which are suitable for

data stream processing. Moreover, it also includes a number of classes to generate

synthetic data streams. There exist several studies in the literature that use MOA as a

data source. More information about MOA is available in Section 2.7.1 and synthetic

data stream generation classes of MOA are listed in Section 2.6.2.1.

2.6.1.6 Other Repositories

Some other data repositories are listed here.

• Real World Data in Real Time API : https://www.hooksdata.io/

• New York City Open Data : https://opendata.cityofnewyork.us/

46

https://www.hooksdata.io/
https://opendata.cityofnewyork.us/

• Registry of Open Data on AWS : https://registry.opendata.aws/

• Twitter Data : https://developer.twitter.com/en/docs/tutorials/

consuming-streaming-data

• AirNow Air Quality Observations : https://docs.airnowapi.org/

• National Wind Technology Center (NWTC) : https://data.nrel.gov/

submissions/33

• Solar Radiation Research Laboratory (SRRL) : https://data.nrel.gov/

submissions/7

• Awesome Public Datasets : https://github.com/awesomedata/awesome-

public-datasets

2.6.2 Popular Datasets

It is very common to use synthetic datasets in data stream clustering for both test-

ing and benchmark purposes. Synthetic datasets give the user opportunity to specify

the stream properties such as noise ratio, concept drift, cluster shapes and densities.

Synthetic data stream generation by MOA and details of popular datasets are given.

All datasets mentioned in this section, except Charitable Donation Dataset, have true

class labels. Table 2.4 summarizes properties of popular datasets.

2.6.2.1 Synthetic Data Streams

Massive Online Analysis (MOA) [111] (described in Section 2.7.1) has a number

of classes [113] to generate synthetic data streams in different shapes and with or

without concept drift.

2.6.2.2 Forest Cover Type Dataset

Forest Cover Type Dataset is publicly available on Machine Learning Repository of

UCI. It has totally 581,012 instances and each of them belongs to one of 7 cover

47

https://registry.opendata.aws/
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://docs.airnowapi.org/
https://data.nrel.gov/submissions/33
https://data.nrel.gov/submissions/33
https://data.nrel.gov/submissions/7
https://data.nrel.gov/submissions/7
https://github.com/awesomedata/awesome-public-datasets
https://github.com/awesomedata/awesome-public-datasets

Table 2.4: Properties of popular datasets.

Number of Number of Number of

Dataset Name Instances Features Clusters

Forest Cover Type 581,012 54 7

Network Intrusion Detection 4,898,431 41 23

Network Intrusion Detection Subset 494,021 41 23

Charitable Donation 191,779 481 not specified

Sensor Stream 2,219,803 5 54

Power Supply Stream 29,928 2 24

Hyper Plane Stream 100,000 10 5

types. The instances are described by 54 features, 10 of which are quantitative and 44

of which are binary. Each instance is giving information of an area of 30x30 meters.

This dataset is not actually a data stream, but a stationary dataset. It does not have

a time stamp or an exclusive order information. However, it is converted into a data

stream by taking the data input order as the streaming order.

2.6.2.3 Network Intrusion Detection Dataset

Network Intrusion Detection Dataset is used for The Third International Knowledge

Discovery and Data Mining Tools Competition, which was a session of KDD-99,

The Fifth International Conference on Knowledge Discovery and Data Mining. It is

publicly available on KDD archive of UCI. This set has 4,898,431 records of network

traffic data and each of them belongs to one of 23 types of connection (22 attack types

and normal connection). The instances are described by 41 features, some of which

are discrete and the others are continuous. There exists also a 10% subset of this

dataset which is more concentrated than the original dataset. The subset itself is yet

another most used dataset.

48

2.6.2.4 Charitable Donation Dataset

Charitable Donation Dataset is used for The Second International Knowledge Discov-

ery and Data Mining Tools Competition, which was held in conjunction with KDD-

98, The Fourth International Conference on Knowledge Discovery and Data Min-

ing. This dataset has 191,779 instances and each instance has 481 features. These

instances, are information about people who have made charitable donations in re-

sponse to direct mailing requests. This dataset is publicly available on KDD archive

of UCI.

2.6.2.5 Various Spam Mail Datasets

There exist several spam mail datasets publicly available in different online data

repositories. Spam mail datasets are suitable for stream clustering because mails

inherently are data streams. They have a date-time information which makes them

easily interpreted as data streams.

2.6.2.6 Various Sensor Network Datasets

There exist several sensor network datasets publicly available on the Internet. One of

sensor network data repositories is [114]. It is very common to use sensor network

datasets in data stream clustering, since they inherently are data streams.

2.7 Data Stream Processing Tools

We provide brief information about popular tools that are used for data stream mining.

2.7.1 MOA

Massive Online Analysis (MOA) [111] [112] is a popular open source framework

for data stream mining. It is implemented in Java and released under the GNU Gen-

eral Public License. MOA is specialized for data streams. It includes algorithms for

49

regression, clustering, classification, outlier detection, concept drift detection and rec-

ommender systems, and it also includes tools for evaluation. Data stream generators

are provided. It can be used as both a stream processing tool and an environment to

develop stream processing algorithms. Furthermore, MOA has the ability to interact

with Waikato Environment for Knowledge Analysis [115], which is a data mining

software.

2.7.2 RapidMiner

Rapid Miner [116], formerly known as Yet Another Learning Environment (YALE),

is another data mining tool but it is developed by a private company. It has an inte-

grated development environment, which is called RapidMiner Studio. It supports all

data preparation, result visualization, model validation and optimization steps of the

machine learning process. It has a Streams plugin [117] which integrates the stream

oriented processing into the RapidMiner suite. This plugin allows developing data

stream processing tools using utilities of RapidMiner.

2.7.3 R

R [118] is a free software environment and programming language for statistical com-

puting. R is an open source project and it is released under the GNU General Public

License. R, a rich in packages software environment, has special packages for clus-

tering, data streams, stream mining etc. These packages are as follows.

• stream: A framework for data stream modeling and associated data mining

tasks such as clustering and classification.

• rstream: Unified object oriented interface for multiple independent streams of

random numbers from different sources.

• streamMOA: Interface for data stream clustering algorithms implemented in

the MOA framework.

• RMOA: Connects R with MOA framework to build classification and regres-

sion models on streaming data.

50

2.8 Data Stream Processing Platforms

Currently there exist several data stream mining platforms [119, 120] developed by

different organizations.

• Apache Storm [121] is a distributed, real time stream processing computation

framework. It is free and open source. Moreover, Apache Storm is scalable and

fault tolerant. It is designed to be used with any programming language.

• Apache Spark [122] is a well known, open source, fast and general engine

for large-scale data processing. Apache Spark has an extension, called Spark

Streaming [123], that enables scalable, high-throughput, fault tolerant stream

processing of live data streams. Spark Streaming can be seen as a layer between

data streams and Apache Spark. Spark Streaming gets a data stream, creates

data batches from the stream and feeds Apache Spark with these batches. In

this way, results of the data stream processing are produced by Apache Spark

batch by batch. Spark Stream accepts input from many different sources such

as Kafka, Flume, Twitter, ZeroMQ, Kinesis, or TCP sockets.

• Apache Samza [124] [125] is another open source, distributed stream process-

ing framework. It is near real time and asynchronous. It provides fault tol-

erance, processor isolation, security, and resource management using Apache

Hadoop Yarn. It uses Apache Kafka for messaging. Apache Samza, together

with Apache Kafka, is developed by LinkedIn engineers, and commonly known

as LinkedIn’s framework for stream processing.

• Apache Kafka [126] is an open source stream processing software platform.

The objective of the project is to provide a unified, high throughput, low latency

platform for real time data streams. It is scalable and fault tolerant. It has

a publish-subscribe messaging system. Apache Kafka is the other platform

developed by LinkedIn, similar to Apache Samza.

• Amazon Kinesis [127] is one of the Amazon web services. It is a cloud based,

real time data processing service that is developed for large and distributed data

streams. In functionality, Amazon Kinesis has similarities to Apache Kafka. It

51

is scalable and able to pull any amount of data, from any number of sources. It

is designed to make it easier to develop real time applications and it has a fully

managed infrastructure.

• IBM Infosphere [128] [129] is a commercial, enterprise-grade stream process-

ing platform, that is designed to retrieve meaningful information from data in

motion, working on time window models with windows of minutes to hours. It

provides low latency for time critical applications such as fraud detection and

network management. It also has the ability to fuse streams. IBM Inforsphere

adapts rapidly to changing data forms and types and it manages high availability

itself.

• Google Cloud Stream [130] is Google’s solution for data stream processing.

It has a fully managed infrastructure and it provides ingesting, processing and

analyzing event streams in real time. It is an integrated, scalable and open

stream analytics solution. Google Cloud Stream works with a full harmony

with other solutions of Google Cloud, like Cloud Pub/Sub, Cloud Dataflow,

BigQuery, Cloud Machine Learning etc.

• Microsoft Azure Stream Analytics [131] is Microsoft’s solution for data stream

processing. It is a serverless, scalable, on demand real time, complex event

processing engine. It is able to run on multiple streams from different sources.

Azure Stream Analytics has a declarative SQL like language. It can be used as

integrated with other Azure solutions such as Azure Machine Learning, Azure

IoT Hub, Power BI etc.

2.9 Conclusions

With the technological improvements, number of interconnected devices is increas-

ing. Connected devices continuously generate large scale data with high speed, which

are called data streams. Therefore, processing data streams in real time is arousing

more interest and clustering seems to be the most suitable data processing method for

data streams.

We present a survey of recent progress in data stream clustering algorithms. There are

52

essential differences between traditional data clustering algorithms and data stream

clustering algorithms. We emphasize the most important data stream clustering con-

cepts such as concept drift, window models, outlier detection methods and data struc-

tures. Seven most recent data stream clustering algorithms are analyzed in detail.

For each algorithm, a comprehensive analysis is presented including algorithmic de-

tail, evaluation of the results and complexity. Global comparison of these algorithms

highlighting their advantages and disadvantages is also presented. An overview of

the most popular stream processing tools and platforms is given along with stream

datasets.

Several open challenges exist regarding data stream clustering. Finding number of

clusters and adopting to changes in the number of clusters in data streams are the

most crucial challenges. Furthermore, existing algorithms need critical parameters

that directly affect clustering quality and require prior knowledge about input data.

Moreover, concept drift may change data characteristics and invalidate these parame-

ters. Developing generic and self-adapting algorithms is another popular data stream

clustering challenge. Additionally, there is a lack of algorithms that handle differ-

ent data types. Most of existing algorithms are able to deal with only quantitative

data. Last but not least, data stream clustering algorithms should execute with high

performance in despite of memory restrictions.

It may be ideal to compare the efficiency and the effectiveness of the data stream

clustering algorithms on a benchmarking framework under controlled conditions of

synthetic datasets that contain concept drift, outliers and class labels and of real world

datasets. Data stream clustering using deep neural network models and within edge

computing are the two emerging topics to be explored further.

53

54

CHAPTER 3

DATASETS

The proposed methods EmCStream and NoCStream are evaluated using both syn-

thetic and real world stream datasets having various characteristics. In total, sixteen

synthetic and nine real world datasets are used. This chapter is devoted to the datasets

considered in this study.

3.1 Synthetic Datasets

We have created high dimensional, evolving, synthetic data streams by DSD_Ran-

domRBFGeneratorEvents function of streamMOA [132] package of R [133]. This

function is able to create evolving data streams with the defined characteristics. It

is possible to decide on several parameters, some of which are k, dimensions, drift

speed, cluster radius, density, cluster split or merge, noise, etc. We have used the first

50,000 data instances generated by these data streams. We assume each data source

in a stream composes a cluster and generates one data instance per second. In this

way, in a stream that has ten clusters, ten data instances are generated per second.

Sixteen streams are created in total and each data stream has different characteristics.

One of the data streams (Stream-8) is stationary, which means it does not contain

concept drift. Other data streams evolve at different speeds. Eleven streams have

a constant number of clusters while in five streams the number of clusters changes.

In the latter five streams, clusters emerge and disappear as a result of concept drift.

Hence, the number of clusters is changing in these streams. Three streams (9 to 11)

are created with different levels of noise and the remaining thirteen streams are noise-

less. We have specified the properties of the streams in such a way that it is possible

55

to observe the effects of change in k, dimensions, speed of the concept drift, and noise

level. Detailed information on the synthetic data streams is given in Table 3.1, where

k indicates number of clusters and d indicates dimensions.

Table 3.1: Characteristics of synthetic data streams. Number of instances is 50,000.

Stream k d Noise (%) Drift speed

Stream-1 10 50 0 normal

Stream-2 10 100 0 normal

Stream-3 10 10 0 normal

Stream-4 20 50 0 normal

Stream-5 4 50 0 normal

Stream-6 10 50 0 high speed

Stream-7 10 50 0 low speed

Stream-8 10 50 0 no drift

Stream-9 10 50 5 normal

Stream-10 10 50 10 normal

Stream-11 10 50 20 normal

Stream-12 10± 2 10 0 normal

Stream-13 10± 2 20 0 normal

Stream-14 10± 2 5 0 normal

Stream-15 20± 4 10 0 normal

Stream-16 4± 1 10 0 normal

3.2 Real World Datasets

3.2.1 Meteorological Datasets

We have composed three real world meteorological stream datasets using weather

data from https://www.renewables.ninja/. There are three sets of data:

meteorological data of two cities from Turkey (Meteo-TR), two cities from Europe

(Meteo-EU) and two cities from the US (Meteo-US). For each dataset, we chose two

56

https://www.renewables.ninja/

cities that have different climate characteristics to create separable data. All datasets

consist of hourly measurements for five years, from Jan 1st, 2015, till Dec 31st, 2019.

There exist 43,824 measurements for each city. Every instance includes six features,

which are temperature, precipitation, snowfall, snow mass, air density, and cloud

cover. Temperature and air density are the two features that are always discrimina-

tive while other features are not. For example, precipitation is not a discriminative

property when it is not raining, and snowfall or snow mass is not effective when it is

not snowing. For this reason, we have defined an extra weight to temperature and air

density; that is, the values of these features are multiplied by two.

To create a dataset, we have merged the instances of two cities according to the date

and time of the measurement. In this way, the datasets become real-stream datasets.

Moreover, these are evolving data streams by nature, since weather data changes both

in a day of 24 hours, from daytime to night, and in a year, from season to season.

Using such data streams, it is possible to focus either on concept drift that occurs

every day or on concept drift that occurs from season to season.

3.2.2 Keystroke Dynamics

We have used four subsets of the larger CMU Keystroke Dynamics - Benchmark Data

Set [134] which is created by typing characteristics of 51 users. The participants type

the password “.tie5Roanl” and the Enter key 400 times, captured in eight different

sessions on different days, 50 times on each session. Each instance consists of 31

features. Keystroke datasets incrementally evolve due to the participants’ practice.

Moreover, an abrupt concept drift is also expected from one session to the next one,

because of the loss of practice.

We have created four subsets of the Keystroke dataset, getting all features of some

participants. We did not change, eliminate or convert any of the features. Three of the

subsets have constant k while k changes in the last one. We have specified k as two,

three and four for the first three of the datasets. The last dataset is the concatenation

of the first three datasets. Hence, in this last dataset k is two in the first part, three

around the middle, and four in the last part. Since each participant has 400 records, the

subsets that we have used have 800, 1,200, 1,600, and 3,600 instances respectively.

57

3.2.3 Sensor Data

We have also used two subsets of the Sensor stream dataset from http://db.

csail.mit.edu/labdata/labdata.html. Sensor data consists of sensor

readings from 54 sensors deployed in the Intel Berkeley Research laboratory. The

stream contains about 2.2 million instances, each of which consists of four features,

temperature, humidity, light, voltage in addition to the sensor ID and reading time.

There also exist invalid readings in the stream. Moreover, being in the same labora-

tory, all sensors produce similar readings. We have created two subsets of this larger

stream dataset, which we call Sensor-2 and Sensor-3. In order to create these subsets,

we have extracted the readings of two and three sensors accordingly. In Sensor-2, k

is two and constant throughout the whole stream. However, in Sensor-3, k is three in

the beginning but it changes to two and back to three a few times. We have eliminated

the invalid readings and have normalized the data while generating the subsets.

Table 3.2 presents a summary of the characteristics of the real world datasets, all of

which are evolving.

Table 3.2: Characteristics of real world data streams.

Stream k d Instances

Meteo-TR 2 6 87,648

Meteo-EU 2 6 87,648

Meteo-US 2 6 87,648

Keystroke-2 2 31 800

Keystroke-3 3 31 1,200

Keystroke-4 4 31 1,600

Keystroke-C 2-4 31 3,600

Sensor-2 2 4 64,200

Sensor-3 2-3 4 108,000

58

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html

3.3 Drifts in the Datasets

Concept drift is defined as the unforeseen change in the statistical characteristics of

the data instances and it is explained in Chapter 2. In order to visualize the concept

drift, it is possible to animate the input data in its streaming order. This makes appar-

ent the change on the data over time. To understand better the concept drift in the data

we have used, we made visualizations of various numbers of data instances from one

of the synthetic data streams and also one of the real data streams. Because the data

are high dimensional, we preferred to visualize two features of the synthetic data, and

one feature of the real data in time domain. Figure 3.1 shows visualization of parts

of Stream-5 in different lengths, and colored according to true labels. Figure 3.1 (a),

(b), (c) and (d) show visualizations of first 1,000, 5,000, 10,000 and 20,000 instances

of synthetic Stream-5, respectively. According to Figure 3.1, it is easy to observe

that properties of the data instances change and the cluster centroids move over time.

Because the data stream is synthetic and drift speed is constant, movement of the data

seems straight. Moreover, Figure 3.1 (c) and (d) show that, some clusters violate re-

gions of other clusters over time. In other words, data instances belong to different

clusters may be present in the same region in different time intervals. However, a data

stream clustering algorithm must successfully cluster crossing data instances.

Figure 3.2 shows the visualization of parts of meteorology data of Turkey, in different

lengths, and colored according to true labels. Figure 3.2 (a), (b), (c) and (d) show the

visualizations of first 1,000, 5,000, 10,000 and 20,000 instances of the stream, starting

from Jan 1st, 2015, respectively. Since the data are high dimensional, only tempera-

ture feature is visualized over time. As mentioned in Section 3.2, meteorology data

of Turkey consist of hourly measurements of two cities from Turkey. This means data

of one day includes 48 data instances. Hence, 1,000 data instances means nearly 21

days, 5,000 data instances means 105 days and so on. Figure 3.2 (a) shows the daily

night-day temperature difference very clearly, which is also a local concept drift. In

(b), a slight rise appears in the data. In (c) a significant temperature rise appears and

in (d) the rise is followed by a decrease because the visualization includes more than

a full year data. According to Figure 3.2 (c) and (d), instances of opposite clusters are

present in the same region at different time intervals, which is caused by the seasonal

59

(a) Visualization of 1,000 data instances. (b) Visualization of 5,000 data instances.

(c) Visualization of 10,000 data instances. (d) Visualization of 20,000 data instances.

Figure 3.1: Visualization of different number of data instances from the first part of

synthetic Stream-5. Only two features of the data are visualized. Properties of the

data instances change and the cluster centroids move over time. This change is called

concept drift. Samples of three clusters present in the same region in different time

intervals, as a result of the concept drift. Because the data stream is synthetic and

drift speed is constant, movement of the data seems straight.

60

(a) Visualization of data of 21 days. (b) Visualization of data of 105 days.

(c) Visualization of data of 208 days. (d) Visualization of data of 417 days.

Figure 3.2: Visualization of different number of data instances from the first part of

meteorology data of Turkey. Only temperature feature is visualized over time. (a)

shows the daily night-day temperature difference clearly, which is a local concept

drift. In (b) a slight rise appears in the data. In (c) a significant seasonal temperature

rise appears and in (d) the rise is followed by a decrease because the visualization

includes more than a full year data. Seasonal climate change is a concept drift.

climate change. This change is a concept drift.

61

62

CHAPTER 4

METHODS

4.1 Online Embedding and Clustering of Evolving Data Streams

Our method, online embedding and clustering of data streams (EmCStream) contin-

uously embeds high dimensional data streams into two dimensions, detects, reports

and adapts concept drift and clusters input data instances in real time. EmCStream

processes the input data in terms of a window determined by the horizon. Hori-

zon is in fact the number of instances inside a window and it is set as an input pa-

rameter. EmCStream does not outdate the data instances using a fading function

mechanism, instead, it slides the window in order to process each data instance only

once. During the embedding of the input data in 2D, EmCStream also checks for

a concept drift. When a concept drift is detected, it reports the drift and adapts it-

self to the current characteristics of the data. After the drift detection and adapta-

tion, EmCStream clusters the data. Implementation of EmCStream is available on-

line at https://gitlab.com/alaettinzubaroglu/emcstream with all

other supplementary resources.

Algorithm 10 shows the main flow of EmCStream algorithm. EmCStream begins

with the initialization phase. After the initialization, it continuously embeds the in-

put data window by window, and periodically checks for a concept drift. When the

drift check period is met, EmCStream clusters the data, that are embedded since the

previous drift check time, and checks for a concept drift. If no concept drift detected,

EmCStream indicates the embedded data and clustering results, then continues to

embed the input data until the drift check period is met again. When the algorithm

detects a concept drift, it rewinds the data instances to the previous drift check posi-

63

https://gitlab.com/alaettinzubaroglu/emcstream

tion and rerun the initialization phase. Main flow of EmCStream is also described as

a flowchart at Figure 4.1 where S is the input data stream, k is number of clusters and

h is horizon.

Algorithm 10 EmCStream (S, k, h)
Input: S : the input data stream

Input: k : number of clusters

Input: h : horizon

1: loop

2: % Initialization phase

3: Get input data from S

4: Initialize EmCStream

5: % Embedding and clustering phase

6: while not drift check period met do

7: Get next h data instances from S

8: Embed the data

9: end while

10: Cluster embedded data as k clusters

11: Check for a concept drift

12: if Concept drift detected then

13: Report the concept drift

14: Rewind S to the previous drift check position

15: Continue the loop (Go to Initialization phase)

16: else

17: Indicate clustered data

18: Go to line 6, Embedding and clustering phase

19: end if

20: end loop

EmCStream uses a few parameters during the execution. These parameters are de-

scribed as follows:

• k: number of clusters; hyperparameter, determined by the user.

• horizon (h): number of data instances processed together; hyperparameter,

64

Initialization phase Embedding and clustering phase

Start

Initialize
EmCStream

Is drift check
time?

Concept drift
detected?

YES

NO

NO
YES

Embed the data Cluster embedded
data as k clusters

Check for a
concept drift

Indicate
clustered data

Rewind S to the
previous drift
check position

Get input data
from S

Get next h
data instances

from S

Report the
concept drift

Figure 4.1: Main flow of EmCStream.

determined by the user.

• init size: number of data instances used for initialization; set to 2× horizon.

• drift check period (p): number of data instances processed between two con-

secutive concept drift detections; set to 5 × horizon at the beginning and ad-

justed in an adaptive manner during the execution.

• drift threshold: threshold value for adjusted Rand index; used for concept drift

decision and adjusted in an adaptive manner during the execution.

EmCStream embeds the input data in 2D by UMAP algorithm. Let

S = {x1, x2, x3, ..., xN}

be the d-dimensional input data stream, where N goes to infinity and xi is ith data

instance, which is a d-dimensional vector. Let

Y = {y1, y2, y3, ..., yN}

be a two-dimensional representation of S, where yi is a two-dimensional vector, as a

result of UMAP. Let

L = {l1, l2, l3, ..., lN}

be cluster labels of Y , assigned by k-means algorithm, where li is the cluster label

of yi. EmCStream is fed with S as the input data, and outputs Y and L during the

65

execution. However, EmCStream does extra processing for concept drift detection

and adaptation.

EmCStream embeds the input data twice, once using the knowledge acquired during

the initialization, and another time without any previous knowledge. In the initial-

ization phase of EmCStream, UMAP generates a mapping for init size data instances

and embeds them. After the initialization phase, new coming data are embedded as

groups of horizon data instances according to the mapping generated in the initial-

ization phase. This process continues until it is time to check for a concept drift.

EmCStream, checks for a concept drift periodically and this period is defined by drift

check period. Let Si be the set of data instances that are received between ith and

(i + 1)th drift check times. To check for a concept drift, EmCStream re-embeds

Si using a new UMAP model by generating a new mapping. Let Y 1
i be the two-

dimensional representation of Si, generated by UMAP, according to the initialization

phase, and Y 2
i be that is generated by UMAP, according to the input data itself, using

no prior knowledge.

In this situation EmCStream has two different embedding outputs (Y 1
i and Y 2

i) for the

same data. When these two embedding results are coherent to each other, this means

the data characteristics remain same and there is no concept drift. However, when two

embedding results are not consistent, this means the data characteristics have changed

and there exists a concept drift. Let L1
i be cluster labels of Y 1

i and L2
i be cluster

labels of Y 2
i . After generating L1

i and L2
i , EmCStream calculates the consistency (ς)

between L1
i and L2

i . ς = Consistency(L1
i , L

2
i). Let θ be the threshold value for

the consistency measure, used for drift decision. When the calculated consistency is

less than the threshold value, ς < θ, this situation is accepted as a concept drift and

EmCStream rerun the initialization phase. When the calculated consistency is greater

than or equal to the threshold value, ς ≥ θ, this means the input data characteristics

remain same and there is no concept drift. In such a case, EmCStream indicates the

clustering results and continues to embed the input data using UMAP by the already

generated mapping. When it is time to check for a concept drift again, EmCStream

follows the drift check process again. We have used adjusted Rand index as the

consistency metric (ς).

66

EmCStream adaptively adjusts drift check period during the execution. When EmC-

Stream detects a drift on the same instances more than once, it shortens the drift check

period and checks again. While working with a shortened period, if EmCStream de-

tects no drift twice consecutively, it extends the period until it reaches the initial drift

check period. This feature of EmCStream lets it detect concept drift precisely and

give more accurate clustering results.

There exist a few characteristics of EmCStream that make it differ from other state

of the art stream clustering algorithms. To the best of our knowledge, EmCStream, is

the only method that embeds the data before clustering. Moreover, though there exist

concept drift detection algorithms in the literature, most of data stream clustering

algorithms adapt concept drift without detecting it. Advantages of EmCStream can

be listed as follows:

• EmCStream makes visualization of high dimensional input data possible, by

embedding them.

• EmCStream reports concept drift.

• EmCStream generates consistent and coherent cluster labels on each window,

during the whole execution. Consequently cluster labels can be concatenated.

EmCStream, provides the clustering results periodically for a group of most recent

data instances, similar to the other stream clustering algorithms. However, the most

important characteristic of EmCStream is that, it gives the cluster labels consistent

and coherent during the whole execution and it pursues the clusters during a concept

drift, while other clustering algorithms do not give consistent cluster labels on every

update. In other algorithms, clustering results on each update are independent from

each other, and they cannot be concatenated. EmCStream does an extra operation

in order to convert the cluster labels given on each update and make them coherent,

while other algorithms do not.

EmCStream is set to use the euclidean distance. EmCStream first processes the data

using UMAP and UMAP supports several distance types. Therefore, EmCStream can

be easily converted to use a different distance type supported by UMAP or to get the

distance type as a hyperparameter.

67

EmCStream does not detect k (number of clusters) itself. It needs k as an input pa-

rameter. In order to remedy this shortcoming we present a novel method NoCStrem

for determining the optimal number of clusters, in Section 4.2.

4.1.1 Complexity Analysis

EmCStream processes the input data window by window. h (horizon) is the window

length; that is, the number of data instances processed together. EmCStream checks

for a concept drift and indicates the results periodically. This period is the drift check

period (p) and set to (5 × h). In a drift check period, EmCStream runs five times

UMAP on a data of size h and runs once k-means on a data of size p. For drift check

purposes, EmCStream runs once UMAP and k-means again, on the same data of size

p. Algorithms run by EmCStream and their repetitions in a drift check period are

listed as follows:

• UMAP on a data of size h, 5 times.

• UMAP on a data of size p, once.

• k-means on a data of size p, twice.

The complexities of UMAP and k-means are O(N1.14) and O(Nkdi), respectively.

Here d is two, because we run k-means algorithm on the embedded, two dimensional

data. N is equal to p, N being the number of data instances processed between

two consecutive concept drift detections. After removing the scalar multipliers, time

complexity of EmCStream is bounded by maximum of O(N1.14) and O(Nki). In the

worst case, drift check process may be repeated five times and this situation adds a

scalar multiplier to the complexity.

68

4.2 Determining the Optimal Number of Clusters on High Dimensional Evolv-

ing Data Streams

4.2.1 Introduction

Thanks to the technological improvements, the number of connected devices is con-

tinuously increasing. Connected devices constantly generate data streams and the

data streams may often be of high dimension and evolve over time, which is called

concept drift. Data generated by connected devices need to be processed in real-time

because offline processing of such a huge amount of data requires growing storage

capacity and causes delayed analysis. Hence, real-time processing of data streams

has become an active research area. Being unsupervised, clustering is one of the most

suitable real-time data stream processing methods.

Data clustering is the task of grouping similar data instances together and dissimilar

data instances in different groups, according to the properties of the instances. The

objective of clustering is to minimize intra-cluster distance and maximize inter-cluster

distance. While some of the data stream clustering algorithms predict the number of

clusters (k) during the execution, many need the number of clusters to be given by

the user as an input parameter. Moreover, the clustering algorithms that predict the

number of clusters, need their specific hyperparameter values to be input and the

clustering quality is very sensitive to these hyperparameter values.

In most cases, true class labels are not available for data stream instances and there

is no prior knowledge about the number of clusters (k). Moreover, the number of

clusters may change over time, because of the evolution of data, which is also called

concept drift. Hence, real-time and continuous prediction of k is a crucial problem.

Data generated by connected devices are often of high dimension. Moreover, data

may contain outliers and concept drift. Concept drift is the unforeseen change in the

properties of the input data instances, which is a data stream-specific challenge. A

concept drift may also be in the form of new cluster creation, cluster disappearance,

or split or merge of clusters. Such concept drifts give rise to changes in the value of

k. Hence, for stream data, k should be continuously predicted throughout the whole

69

data stream.

The described method that determines the optimal Number Of Clusters on high di-

mensional evolving data Streams, NoCStream continuously embeds high dimensional

data streams into two dimensions and predicts the number of clusters (k) in real-time.

In this study, we describe a novel method, NoCStream to determine the optimal Num-

ber k Of Clusters throughout a data stream. We especially focus on high-dimensional

evolving data streams. NoCStream analyzes the data as bunches of data instances,

which are also called windows or batches. It is suitable to be used as a pre-processing

tool in order to find k, integrated into data stream clustering algorithms that need

k as a hyperparameter. NoCStream embeds the high dimensional data into two-

dimensional space (projection) using Uniform Manifold Approximation and Projec-

tion (UMAP) [4], and then it finds k using mean shift clustering algorithm [135, 136].

4.2.2 Traditional Methods for Predicting the Number of Clusters

Despite several traditional methods to predict the number k of clusters, none is spe-

cialized for data streams. In data streams, if data evolve, k may change with time,

and changing k must be predicted continuously. Some of the data stream clustering

algorithms, such as DenStream [12] and BIRCH [65] predict k implicitly, and others

such as CluStream [13] and EmCStream [10] need k to be supplied by the user. In this

section, we describe general approaches of popular traditional k prediction methods.

4.2.2.1 Elbow Method

The elbow method [137] is a common heuristic in mathematical optimization to

choose the optimal value. In cluster analysis, the elbow method is used to deter-

mine the number of clusters, k. The explained variation [138] is plotted as a function

of k and the elbow of the curve is picked as the number of clusters to use. If k is

selected as the number of data instances, a 100% explained variation is calculated,

however, it is obvious that this is not an optimal solution for the prediction of k. The

elbow of the curve gives the point that more clusters do not yield a far better value

70

of explained variation. This method is used to choose the optimal value among the

considered candidates. Hence, it is important to determine the candidate values. If

the correct or best value of k is not among the initial candidates, it is not possible to

choose this best value. The curve of the intra-cluster variance, which is a sample of

this method, is calculated by Equation 4.1, where W (Cr) is the intra-cluster variance

within the rth cluster Cr [139].

E(k) =
k∑

r=1

W (Cr) (4.1)

4.2.2.2 Silhouette Method

Silhouette method [140] is another technique that is used to choose the best k among

the initial candidates, according to the best silhouette score [141]. The silhouette

value of an instance is the measurement of how similar that instance is to the cluster

assigned to, compared to other clusters. It is defined in the [-1.0, 1.0] interval and the

higher values indicate a better match of the instance to its own cluster. For a dataset

of size N , which may be shown as X = {x1, x2, x3, ..., xN}, silhouette value of an

instance, S(xi) is calculated according to the Equation 4.2, where a(xi) is the average

distance between xi and all the instances in the same cluster with xi; and b(xi) is the

average distance between xi and all the instances in the closest cluster. Silhouette

score, SS(X) is the mean of silhouette values of all instances in the dataset, as shown

in Equation 4.3. In the silhouette method, the silhouette score is calculated for all

candidate k values and the k yields the greatest silhouette score is selected.

S(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(4.2)

SS(X) =
1

N

N∑
i=1

S(xi) (4.3)

71

4.2.2.3 Density Based Methods

There exist several density-based data stream clustering algorithms in the literature [36,

58, 17] where DenStream [12] is the most popular algorithm. Density-based data

stream clustering algorithms predict k inherently based on the density reachability

and density connectivity concepts [32]. However, these algorithms are very sensitive

to hyperparameter values. They need several hyperparameter values to be selected

according to the characteristics of the input data and there may occur problems in

finding multi-density clusters.

4.2.2.4 Other Methods

The silhouette method is based on the idea of maximizing the silhouette score, which

is an internal validation technique for clustering. There exist other internal validation

indices that can be used to predict k in a similar manner. Thirty of such indices are

examined by Milligan and Cooper [142]. Another popular k prediction technique is

the gap statistic method [143]. This method is also based on selecting k that yields

the largest gap statistic. The gap statistic is the metric that measures the total within

intra-cluster variation with their expected values under the null reference distribution

of the data. More recent indices are analyzed by Charrad et al. [144]. Another method

of estimating k is introduced by Can and Ozkarahan [145].

4.2.3 Method

The described method that determines the optimal Number Of Clusters on high di-

mensional evolving data Streams, NoCStream continuously embeds high dimensional

data streams into two dimensions and predicts the number of clusters (k) in real-time.

NoCStream processes the input data in terms of a window determined by the horizon

(h). Horizon is in fact the number of instances processed together inside a window

and it is defined as a hyperparameter. NoCStream uses non-overlapping sliding win-

dows to process each data instance only once. The proposed method embeds the high

dimensional data into 2D using Uniform Manifold Approximation and Projection

(UMAP) [4] continuously, and then it finds k by the aid of mean shift clustering algo-

72

rithm. Several studies in the literature show that UMAP is the better choice among its

alternatives [5, 6]. In this section, we first give a sketch of the mean shift algorithm

as background information. We then describe the method in detail.

4.2.3.1 Mean Shift Algorithm

Mean shift [135, 136] is a centroid-based clustering algorithm commonly used in

image processing and computer vision. It is also known as the mode-seeking algo-

rithm. Mean shift works iteratively. At each iteration, mean shift calculates regional

means as cluster centroids, it moves each instance towards the nearest centroid and

recalculates the centroid, which is again the regional mean. With this procedure, the

centroids shift at each iteration. Each data instance is assigned to the nearest centroid

when the mean shift converges. Mean shift has a hyperparameter which is called

bandwidth. The bandwidth defines the radius of the region, whose mean is the cluster

centroid. Bandwidth is the only hyperparameter mean shift needs. Bandwidth af-

fects the number of clusters [146, 147]. Selecting small values of bandwidth makes

the algorithm focus on narrow regions and this causes more clusters to be predicted.

Selecting large values of bandwidth causes the opposite.

Mean shift is a simple algorithm that has several advantages.

• It has a single hyperparameter, bandwidth, and there exist a few automatic

bandwidth estimation methods in the literature.

• It does not make any model assumption on the data.

• It works well on clusters that have nonconvex shape.

• It has no issue of local minima.

• It is outlier tolerant.

• Its output does not depend on the initialization.

Affinity propagation [148] is an alternative algorithm that we could use instead of

mean shift algorithm. However, affinity propagation has two critical hyperparameters,

73

preference and damping and it is difficult to determine optimum values for these

hyperparameters. DBSCAN [149, 150] and OPTICS [151] are other two alternative

algorithms that are similar to each other and each needs a single hyperparameter.

Nevertheless, to the best of our knowledge there exist no automated hyperparameter

value selection tools for DBSCAN or OPTICS.

4.2.3.2 NoCStream

NoCStream is presented as an algorithm in Algorithm 11 and its flow is given in

Figure 4.2. NoCStream embeds the input data into 2D by UMAP algorithm. Let

S = {x1, x2, x3, ..., xN}

be the d-dimensional input data stream, where N goes to infinity and xi is ith data

instance, which is a d-dimensional vector. Let

Y = {y1, y2, y3, ..., yN}

be a two-dimensional representation of S, where yi is a two-dimensional vector, as a

result of UMAP. After generating Y using UMAP, NoCStream employs mean shift

algorithm in order to cluster Y , several times with a different bandwidth value. Let

Lj = {lj1, l
j
2, l

j
3, ..., l

j
N}

be cluster labels of Y , assigned by mean shift using jth bandwidth value (bwj), where

lji is the cluster label of yi. k
j is calculated as the cardinality of set of Lj , that is the

count of different labels in Lj .

NoCStream calculates the silhouette score of Lj (let it be SSj) and decides on the

most suitable k according to the best silhouette score. That is k = kj where SSj (sil-

houette score of Lj) is the maximum one. Implementation of NoCStream is available

online at https://gitlab.com/alaettinzubaroglu/nocstream with

all other supplementary resources.

74

https://gitlab.com/alaettinzubaroglu/nocstream

Algorithm 11 NoCStream (S)
Input: S : input data

Output: k : number of clusters

BW = Set of Bandwidth Values

Y = UMAP (S)

estimated_bw = ESTIMATE_BW (Y)

BW = BW ∪ estimated_bw

max_ss = 0

for j = 1 to length of BW do

bwj = BW [j]

Lj = MEAN_SHIFT (Y, bwj)

SSj = SILHOUETTE_SCORE(Lj)

% get the count of different labels in Lj

kj = |Set(Lj)|
if SSj > max_ss then

max_ss = SSj

k = kj

end if

end for

return k

75

Embed the data
(UMAP)

Input data (S)

Mean shift (bw_1)

Estimate meanshift bw

Silhouette score 7

Silhouette score 1

Mean shift (bw_2) Silhouette score 2

Mean shift (bw_3) Silhouette score 3

Mean shift (bw_4) Silhouette score 4

Mean shift (bw_5) Silhouette score 5

Mean shift (bw_6) Silhouette score 6

Find max

Indicate k of the
clustering result
that yields the

max silhouette
score

Mean shift (estimated bw)

Predefined
bw set
(BW)

Figure 4.2: Main flow of NoCStream.

76

CHAPTER 5

EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION

5.1 Experimental Setup

5.1.1 Environment

All experiments are performed on a Lenovo T440p personal computer with "Intel

Core i7-4700MQ CPU 2.40GHz x 4" processor and 16 GB memory. Installed oper-

ating system is Linux Mint 19.1 Cinnamon. Python version 3.8.10 is used for imple-

mentation of the proposed methods, EmCStream and NoCStream. DenStream and

CluStream algorithms are used from streamMOA [132] package of R [133]. R ver-

sion 3.4.4 is used.

5.1.2 Metrics

There exist several data clustering validation techniques in the literature [1]. Some

of these traditional techniques, including Silhouette Score and Davies-Bouldin, have

been recently adapted to data streams [152]. Cluster Mapping Measure (CMM) [153]

is another data stream clustering validation metric. However, all the aforementioned

metrics are for clustering algorithms that process streaming instances individually [20].

On the contrary, EmCStream processes the data stream window by window. Due to

the algorithm’s design, it is not possible to directly apply aforementioned metrics on

the output of EmCStream. Instead, we apply traditional validation techniques, ad-

justed Rand index and purity, on each window and on the whole output, at the end of

the processing.

77

5.1.2.1 Adjusted Rand Index

We have used adjusted Rand indexes (ARI) [154] as the clustering quality measure.

Adjusted Rand index is the corrected-for-chance version of Rand index [155]. Rand

index is calculated as a value between 0 and +1.0, while adjusted Rand index is cal-

culated as a value between -1.0 and +1.0. It can yield a negative value when the Rand

index is less than the expected index according to the distribution.

5.1.2.2 Purity

We have also compared average purity of clusters according to the clustering results

of the algorithms. Purity measures the ratio of the instances that are labeled as in

the same cluster and they are already in the same cluster according to the true la-

bels [156]. In order to calculate purity, for each of the clusters, data instances from

the most common cluster according to the true labels are counted and the sum, over

all clusters is divided by the total number of data instances. Purity is calculated as a

value between 0 and +1.0. Purity achieves the maximum value when each data in-

stance is clustered as its own and this is obviously not a good clustering. Shortcoming

of purity, it does not penalize having more clusters than actually exists.

5.2 Online Embedding and Clustering of Evolving Data Streams

We have evaluated EmCStream against two popular, baseline stream clustering algo-

rithms, DenStream [12] and CluStream [13] based on the adjusted Rand index and

purity, as the clustering quality metrics. EmCStream generates consistent and co-

herent cluster labels during the whole execution of a data stream. Thanks to this

property, labels generated by EmCStream can be concatenated correctly to each other

in subsequent windows. However, labels generated by DenStream and CluStream

may change from one window to the next one for an evolving data stream, and it is

not possible to concatenate these results. This situation makes it possible to calculate

adjusted Rand index and purity for the whole execution of EmCStream, but not of

DenStream or CluStream. Therefore, for a fair comparison, we calculate adjusted

78

Rand index and purity for each window of execution of three algorithms, and then

provide the average of these values over all of the executed windows. Nevertheless,

we also give a total adjusted Rand index and total purity on the concatenated labels.

5.2.1 Selection of Hyperparameter Values

Clustering quality of DenStream is highly dependent on the input parameter ϵ. ϵ de-

fines the maximal radius of micro clusters created by DenStream during the execution

and it is defined in the interval [0, 1]. We did grid search in the parameter search space

with intervals of 0.01 for each data stream separately. Table 5.1 gives the best ϵ val-

ues for DenStream, and the horizon used during the tests, for synthetic and real world

data streams. For the sake of fairness, we have used the same horizon for all three of

the algorithms. We also have provided k to the algorithms, for all data streams.

Table 5.1: Algorithm parameters used during evaluation.

Stream ϵ Horizon (h)

Synthetic Streams 0.05 100

Meteo-TR 0.26 50

Meteo-EU 0.33 50

Meteo-US 0.03 50

Keystroke-2 0.18 20

Keystroke-3 0.57 50

Keystroke-4 0.40 80

As shown in Table 5.1, DenStream gives its best clustering results with the same ϵ

for all synthetic data streams. This is expected, because all synthetic data streams

are created using the same method and similar parameters (See Section 3.1). Char-

acteristics of the clusters in these data streams are similar and this situation leads to

equivalent ϵ values. As shown in Table 5.1, DenStream surprisingly gives its best

clustering results on different ϵ values for each real world data stream. This is a little

strange, because three meteorological data streams have the same features and equal

number of clusters, which is two (See Section 3.2). The same result is also surprising

79

for keystroke data streams. Even they have different number of clusters, Keystroke-2

is a subset of Keystroke-3 and they both are subsets of Keystroke-4. Because of the

relationship between the data streams, we were expecting best ϵ values to be close to

each other for the meteorological data streams and for the keystroke data streams as

well. Current results show the sensitivity of DenStream to the ϵ parameter.

5.2.2 Evaluation on Synthetic Datasets

Synthetic and real world data streams used in this study are presented in Section 3.1

and Section 3.2, respectively. Table 5.2 gives adjusted Rand index values (average

and total) of the algorithms on synthetic data streams. Average adjusted Rand in-

dex is calculated as average of adjusted Rand index of every single window, during

the calculation. Total adjusted Rand index is calculated once, at the end of the pro-

cess, over concatenated cluster labels. All elements of Table 5.2 are the averages of

10 repetitions. EmCStream and DenStream works in a deterministic manner on the

synthetic data and therefore, they have 0 standard deviation. CluStream gives very

close results for the repetitions and it has standard deviation values between 0.001

and 0.004.

According to total adjusted Rand indexes, it is clear that EmCStream gives coher-

ent cluster labels on each window during the whole execution, while DenStream and

CluStream do not, even on Stream-8, which is a stationary, non-evolving data stream.

Moreover, EmCStream gives 1.0 adjusted Rand index and achieves perfect clustering

results on noiseless synthetic data streams, while the two other algorithms cannot.

Results of DenStream are also nearly perfect, however results of CluStream are obvi-

ously far from being a perfect clustering.

EmCStream successfully clusters evolving noisy data streams too. Stream-9, Stream-

10 and Stream-11 are evolving noisy data streams and results of EmCStream are still

better than DenStream and CluStream on these data streams. Clustering quality of

EmCStream seems to decrease as the noise level in the data increases. This situation

is already expected, because noise points do not belong to any cluster and even if

all clean data instances are clustered successfully, noise points lead to a decrease in

the adjusted Rand index value. Outputs of EmCStream are compatible with the noise

80

Table 5.2: Adjusted Rand index comparison on synthetic data streams.

EmCStream DenStream CluStream

Stream Average Total Average Total Average Total

Stream-1 1.000 1.000 0.998 0.032 0.880 0.002

Stream-2 1.000 1.000 0.998 0.050 0.878 0.002

Stream-3 1.000 1.000 0.987 0.033 0.862 0.002

Stream-4 1.000 1.000 0.996 0.018 0.892 0.002

Stream-5 1.000 1.000 0.998 0.091 0.955 0.002

Stream-6 1.000 1.000 0.996 0.021 0.821 0.002

Stream-7 1.000 1.000 0.998 0.075 0.900 0.002

Stream-8 1.000 1.000 0.998 0.246 0.868 0.002

Stream-9 0.934 0.933 0.931 0.026 0.836 0.002

Stream-10 0.851 0.846 0.848 0.042 0.803 0.002

Stream-11 0.649 0.631 0.646 0.031 0.670 0.001

levels of noisy data streams.

These results also show that, EmCStream and DenStream successfully adapt concept

drift. According to the adjusted Rand index values, CluStream also adapts concept

drift, but it is not as successful as EmCStream and DenStream. EmCStream has an

extra feature, which is detecting the concept drift. A notification is generated when

EmCStream detects a concept drift. On the other hand, DenStream and CluStream do

not detect concept drift and they only adapt concept drift by outdating the stale data

instances; that is why they do not create a notification about concept drift.

Table 5.3 gives purity values (average and total) of the algorithms on synthetic data

streams. All elements of Table 5.3 are the averages of 10 repetitions. Purity values

are very similar to adjusted Rand index values as expected and this supports our

inferences.

81

Table 5.3: Purity comparison on synthetic data streams.

EmCStream DenStream CluStream

Stream Average Total Average Total Average Total

Stream-1 1.000 1.000 0.998 0.214 0.896 0.118

Stream-2 1.000 1.000 0.998 0.227 0.898 0.119

Stream-3 1.000 1.000 0.989 0.203 0.881 0.118

Stream-4 1.000 1.000 0.997 0.143 0.905 0.068

Stream-5 1.000 1.000 0.998 0.396 0.962 0.267

Stream-6 1.000 1.000 0.997 0.208 0.850 0.120

Stream-7 1.000 1.000 0.998 0.254 0.912 0.118

Stream-8 1.000 1.000 0.998 0.404 0.876 0.119

Stream-9 0.965 0.958 0.949 0.189 0.864 0.114

Stream-10 0.931 0.918 0.900 0.225 0.845 0.109

Stream-11 0.854 0.828 0.806 0.185 0.770 0.108

5.2.3 Evaluation on Real World Datasets

Table 5.4 gives adjusted Rand index values (average and total) of the algorithms on

real world data streams. All elements of Table 5.4 are the averages of 10 repetitions.

All algorithms produce very close results on each repetition and the maximum value

of the standard deviation is 0.018, for CluStream, on Keystroke-4 data stream.

Again it is obvious that EmCStream generates cluster labels that can be concatenated,

during the whole execution while other algorithms do not. EmCStream achieves per-

fect clustering on meteorology data streams and the other algorithms also produce

nearly perfect results, according to average adjusted Rand index. On Keystroke data

streams, clustering quality of EmCStream decreases a little bit, while clustering qual-

ity of other algorithms drops off. Moreover, DenStream again gives better results than

CluStream.

Table 5.5 gives purity values (average and total) of the algorithms on synthetic data

streams. All elements of Table 5.5 are the averages of 10 repetitions. Purity values

82

Table 5.4: Adjusted Rand index comparison on real world data streams.

EmCStream DenStream CluStream

Stream Average Total Average Total Average Total

Meteo-TR 1.000 1.000 0.998 0.995 0.995 0.000

Meteo-EU 1.000 1.000 0.997 0.662 0.999 0.001

Meteo-US 1.000 1.000 0.998 0.997 0.999 0.000

Keystroke-2 1.000 1.000 0.775 0.600 0.410 0.005

Keystroke-3 0.946 0.956 0.537 0.438 0.328 0.012

Keystroke-4 0.894 0.894 0.540 0.485 0.355 0.025

Table 5.5: Purity comparison on real world data streams.

EmCStream DenStream CluStream

Stream Average Total Average Total Average Total

Meteo-TR 1.000 1.000 0.998 0.998 0.997 0.504

Meteo-EU 1.000 1.000 0.998 0.906 0.999 0.507

Meteo-US 1.000 1.000 0.999 0.998 0.999 0.514

Keystroke-2 1.000 1.000 0.887 0.825 0.745 0.496

Keystroke-3 0.982 0.985 0.730 0.682 0.565 0.355

Keystroke-4 0.959 0.959 0.761 0.741 0.517 0.289

83

are similar to adjusted Rand index values as expected and they support our inferences.

5.2.4 Embedded Dimensions

In the current version of EmCStream, the data are embedded into 2D and clustering is

then applied in 2D embedded space. When the data are embedded into a lower dimen-

sional space, there is a risk that some of the characteristics of data may have been lost

and therefore, clustering becomes a more challenging task in the lower dimensional

embedded space. Hence, we have evaluated and compared the clustering performance

of EmCStream when data stream is embedded in 3D and in 2D. Table 5.6 shows ad-

justed Rand index results of EmCStream using 2D and 3D embedding spaces, on

both synthetic and real world data streams. EmCStream using 2D and 3D embedding

spaces both have the same performance on the synthetic streams and on some of the

real world data streams. On Keystroke-3 and Keystroke-4 data streams, 3D embed-

ding space gives slightly better results than 2D embedding space. Since the difference

is very small, we have decided to use 2D embedding space, in order to make the vi-

sualization easier. Purity results are also analyzed and similar discussions are valid

for purity results as well. We did not include here the purity results for the sake of

simplicity. The embedded space dimension is a parameter in the source code, and its

value can be modified by the user.

5.2.5 Detected Drift Count

Since the main objective of EmCStream is to cluster evolving high dimensional data

streams successfully, a concept drift is detected only if it destroys the clustering qual-

ity. Table 5.7 shows detected drift count by EmCStream, on both synthetic and real

world data streams. EmCStream detects two drifts in the baseline Stream-1. In

Stream-3, which has lower dimensionality compared to Stream-1, eight drifts are

detected. A lower dimensional space is less discriminating and the reason why a

same-speed drift destroys the clustering quality in Stream-3 more than in Stream-1

can be explained by this. Stream-4 has two times more clusters than Stream-1 and

this causes clusters to violate other clusters’ spaces in a less drift in the data. Hence,

84

Table 5.6: Performance comparison (in terms of total adjusted Rand index) of EmC-

Stream when 2D embedding space and 3D embedding space are used.

Stream 2D 3D Stream 2D 3D

Stream-1 1.000 1.000 Meteo-TR 1.000 1.000

Stream-2 1.000 1.000 Meteo-EU 1.000 1.000

Stream-3 1.000 1.000 Meteo-US 1.000 1.000

Stream-4 1.000 1.000 Keystroke-2 1.000 1.000

Stream-5 1.000 1.000 Keystroke-3 0.956 0.961

Stream-6 1.000 1.000 Keystroke-4 0.894 0.903

Stream-7 1.000 1.000

Stream-8 1.000 1.000

Stream-9 0.933 0.933

Stream-10 0.846 0.846

Stream-11 0.631 0.631

EmCStream eleven times notifies a drift in Stream-4. Stream-5 has less clusters than

Stream-1, but their other characteristics are same and EmCStream notifies equal num-

ber of drifts on them. Stream-6 has a four times faster drift than Stream-1 and four

times more drifts are detected. Stream-7 has a low speed drift and this does not de-

stroys the clustering quality in 50,000 data instances. EmCStream successfully clus-

ters Stream-7 by notifying no concept drift. Last noiseless stream, Stream-8 is a sta-

tionary, non-evolving data stream and EmCStream notifies no concept drift. Stream-

9, Stream-10 and Stream-11 are noisy streams and they have a same speed drift with

Stream-1. However EmCStream notifies huge number of drifts on these streams. The

reason of this situation is most probably the noise points in these streams that might

have destroyed the clustering quality and this situation could have been interpreted

as concept drift by EmCStream. Since the noise points appear randomly and do not

follow a pattern, it is not incorrect to interpret them as concept drift. Moreover, Em-

CStream notifies more concept drifts when the noise level is higher and this supports

our claim. According to these results, EmCStream successfully detects concept drift

that destroys the clustering quality and detected drifts are coherent with the stream

85

characteristics.

Meteorology data that is used in this study are measurements of five years and de-

tected drifts are 12, 17 and 16. We believe these are reasonable drift counts for

seasonal changes in the climate. Lastly, Keystroke-3 data stream has more drifts

than Keystroke-2, which should be caused by the third cluster added to the stream.

Moreover, fourth added cluster seems to have no effects on concept drift because

Keystroke-3 and Keystroke-4 have the same number of drifts.

Table 5.7: Number of detected drifts by EmCStream algorithm.

Stream Drifts Stream Drifts

Stream-1 2 Meteo-TR 12

Stream-2 2 Meteo-EU 17

Stream-3 8 Meteo-US 16

Stream-4 11 Keystroke-2 2

Stream-5 2 Keystroke-3 6

Stream-6 8 Keystroke-4 6

Stream-7 0

Stream-8 0

Stream-9 91

Stream-10 107

Stream-11 132

5.2.6 Execution Time

One other characteristic of EmCStream is that, its execution time is not affected by

the dimension of the data. We are not comparing execution time of these algorithms,

because EmCStream is not implemented in the same environment with DenStream

and CluStream. Hence, it is not fair to compare execution time of EmCStream against

other algorithms. However, we are analyzing how execution time of each algorithm

is affected by the properties of input data. Table 5.8 shows execution times of the

algorithms on the synthetic data streams. First 3 streams have different dimensions

86

and execution time of EmCStream on these streams are close to each other. However

execution times of DenStream and CluStream on the same streams differ a lot. The

reason of this difference is their dependency on the data dimensionality.

Table 5.8: Execution times (in seconds) of the algorithms on synthetic data streams.

Noise Detected Drift

Stream k d (%) Drifts Speed EmCStream DenStream CluStream

Stream-1 10 50 0 2 normal 210 160 40

Stream-2 10 100 0 2 normal 206 244 57

Stream-3 10 10 0 8 normal 224 89 33

Stream-4 20 50 0 11 normal 292 120 47

Stream-5 4 50 0 2 normal 213 241 44

Stream-6 10 50 0 8 high 222 159 44

Stream-7 10 50 0 0 low 225 140 43

Stream-8 10 50 0 0 no 181 180 43

Stream-9 10 50 5 91 normal 257 149 42

Stream-10 10 50 10 107 normal 347 135 41

Stream-11 10 50 20 132 normal 539 115 41

Even though execution time of EmCStream is not affected by the data dimension,

it is directly affected by the detected drift count. Drift detection and adaptation is

a time consuming task for EmCStream and this increases the execution time on fast

evolving, or noisy data streams, as seen in Table 5.8 on Stream-9, Stream-10 and

Stream-11. Execution time of EmCStream gets longer when the data have more

noise points, while execution times of DenStream and CluStream are not affected

negatively. Moreover, it is obvious that CluStream is a faster algorithm than Den-

Stream, however clustering quality of DenStream is better than CluStream. We are

not commenting on execution times of Streams 4-8 at this time. They also can be

examined to see how other factors, such as k and drift speed, affect the execution

time.

87

(a) (b)

Figure 5.1: Visualization of how EmCStream checks for a concept drift, on

Keystroke-4 dataset. The same data instances are embedded twice. In (a) the data

are embedded according to previous knowledge, acquired in the initialization, in (b)

the data are embedded using no previous knowledge. Both figures are colored ac-

cording to clustering results of (a), in order to show the coherency between the two

embedding. This situation is accepted as no drift because clustering of (a) and (b) are

coherent, as shown by coloring.

5.2.7 Visualization and Drift Check

Figure 5.1 and Figure 5.2 show visualization of the embedded data during a concept

drift check. In (a), the data are embedded according to the knowledge acquired during

the initialization, in (b), the same data are embedded with no previous knowledge.

Both (a) and (b) are colored according to clustering results of (a), in order to show

the coherency between the two embedding. In Figure 5.1, coloring of (b) according

to clustering results of (a) seems to be compatible and this situation is accepted as no

drift. However, in Figure 5.2 (b), that is colored according to clustering results of (a),

there exist several blue and yellow instances in the green cluster and several yellow

instances in the blue cluster. This instances are labeled as in different clusters in (a)

and (b) and this situation is accepted as a concept drift.

88

(a) (b)

Figure 5.2: Visualization of how EmCStream checks for a concept drift, on

Keystroke-4 dataset. The same data instances are embedded twice. In (a) the data

are embedded according to previous knowledge, acquired in the initialization, in (b)

the data are embedded using no previous knowledge. Both figures are colored accord-

ing to clustering results of (a), to show the coherency between the two embedding.

This situation is accepted as a drift because clustering of (a) and (b) are not coherent

for a number of instances, as shown by coloring.

5.2.8 Discussion

We have presented a novel method EmCStream that embeds and clusters in real time

evolving data streams. EmCStream continuously embeds high dimensional input

data into two dimensions and clusters the embedded data using k-means algorithm.

UMAP is employed for the embedding process. EmCStream is capable of detecting

and adapting concept drift, while most of other stream clustering algorithms do not

detect and notify concept drift. EmCStream also makes possible the visualization of

high dimensional data, by means of embedding. Moreover, EmCStream generates

consistent and coherent cluster labels that can be concatenated, during the whole exe-

cution. We have compared EmCStream against two most popular state of the art data

stream clustering algorithms, DenStream and CluStream, on both synthetic and real

world data streams. Our method outperforms DenStream and CluStream in terms

of clustering quality, on both synthetic and real world data streams. We have used

adjusted Rand index and purity as clustering quality metrics.

89

As a shortcoming, clustering quality of EmCStream depends on embedding quality

of UMAP. Moreover, it is possible to further evaluate EmCStream using data streams

evolving with different characteristics.

5.3 Determining the Optimal Number of Clusters on High Dimensional Evolv-

ing Data Streams

5.3.1 Evaluation Methodology

We have evaluated the proposed method in three different ways as follows.

1. k prediction DenStream and NoCStream are employed as k prediction algo-

rithms. The prediction is performed on the whole data stream window by win-

dow. Two algorithms are compared with respect to the number of windows on

which k is predicted correctly.

2. clustering quality EmCStream with NoCStream and DenStream are evaluated

in terms of clustering quality when the number of clusters k is not specified.

We employ NoCStream as a k prediction method for EmCStream [10], which

is a data stream clustering algorithm that does not predict k, and we have eval-

uated them against DenStream, in terms of clustering quality. In Section 4.1,

the clustering quality of EmCStream is evaluated against DenStream and CluS-

tream [13] on evolving data streams with a constant number of clusters, and

when the true k is specified by the user. Here, k is not specified, and therefore

CluStream is not included in the evaluation since it cannot predict k.

3. genericity In order to test the genericity of NoCStream and the quality of its

accordance with different clustering algorithms as a k prediction method, we

have integrated NoCStream into the spectral clustering algorithm [157] and

we have evaluated the clustering quality of this incorporation against the case

where true k is given to the spectral clustering algorithm.

We have performed the evaluation on both synthetic and real world evolving data

streams with different characteristics. In addition to the data streams used in Sec-

90

tion 4.1, eight new evolving data streams with changing k are included in this study.

Five of these new data streams are synthetic and three of them are real, which are

the Keystroke-C, Sensor-2, and Sensor-3 data streams. Details of data streams are

presented in Chapter 3.

We have used adjusted Rand index (See Section 5.1.2.1) and purity (See Section 5.1.2.2)

as the clustering quality metrics. Both of the metrics have shown similar results and

we did not include here the purity results for the sake of simplicity. Python version

3.8.10 is used for the implementation of the proposed method, NoCStream. Den-

Stream algorithm is used from streamMOA [132] package of R [133]. R version 3.6.3

is used. The spectral clustering algorithm is used from Scikit-learn library [158, 159]

of Python.

5.3.2 Selection of Hyperparameter Values

1. ϵ for DenStream The clustering quality of DenStream is highly dependent on

the value of hyperparameter ϵ. ϵ defines the maximal radius of micro clusters

created by DenStream during the execution and its value is defined in the inter-

val [0, 1]. Table 5.9 shows the best ϵ values for DenStream, for synthetic and

real world data streams. The explanation of finding these best ϵ values is given

in Section 5.2.1 [10].

2. horizon (hclustering) for EmcStream Selecting the value for hclustering requires

domain knowledge. It is possible to specify the horizon as either number of

instances or a time duration. For instance, for a stream in which 100 data in-

stances are generated per second, it is possible to specify the horizon as, for

example “h = 1-minute data”, or “h = 60× 100 = 6000 data instances”. Ten

is an adequate number of instances in order to form a cluster. In synthetic data

streams, it is assumed that each data source generates one data instance per sec-

ond. This means in a data batch of ten seconds, there will exist about ten sam-

ples from each data source on average. For synthetic data streams, hclustering is

specified as a data batch of ten seconds. Each data source generates the sam-

ples of a single cluster. In the same way, hclustering for Keystroke datasets is

also specified as a data batch of ten unit times. Here unit time means the time

91

duration that is needed for each data source to generate a single instance. In

the Sensor datasets, the instances of different clusters are not well distributed,

hence we have set hclustering to a data batch of 20 unit times. The meteorologi-

cal datasets consist of hourly measurements of two cities with different climate

characteristics. For these data, we aimed to catch seasonal concept drifts, in-

stead of daily (day-night) concept drifts. Hence we have set hclustering to a data

batch of one day, which composes of 48 data instances.

3. horizon (hk−prediction) for NoCStream We have integrated NoCStream as a

k prediction method for the initialization phase of EmCStream. EmCStream

uses 2 × h data instances for initialization [10]. In this way, we have defined

hk−prediction = 2× hclustering.

Table 5.9 presents the values for hyperparameter horizon (h) for clustering and k

prediction.

NoCStream employs mean shift algorithm with seven different bandwidth values; six

of them are fixed and one is estimated for each run according to the input data win-

dow being processed. The empirically formed set of bandwidth values is as follows,

BW = {1.5, 1.75, 2, 3, 4, 8, estimated_bw}. Here estimated bandwidth is calculated

using estimate_bandwidth function of Scikit-learn library [158, 159]. This function

estimates a bandwidth value according to the mean of pairwise distances between

the instances. Aforementioned set of bandwidth values works well for all synthetic

and real world data streams used in this study. It is also possible to define a differ-

ent bandwidth set for different data and needs. Several different bandwidth selection

techniques are mentioned in [146]. Moreover, a study on the comparison of auto-

mated bandwidth selection methods is presented in [147].

5.3.3 Evaluation Results

5.3.3.1 k Prediction Evaluation

For evaluation purposes, NoCStream is applied to the whole data streams window by

window. A number of clusters is predicted on each window by NoCStream and by

92

Table 5.9: Evaluation Parameters.

Stream ϵ hclustering hk−prediction

Synthetic Streams 0.05 10 seconds batch 20 seconds batch

Meteo-TR 0.26 1 day batch 2 days batch

Meteo-EU 0.33 1 day batch 2 days batch

Meteo-US 0.03 1 day batch 2 days batch

Keystroke-2 0.18 10 unit time batch 20 unit time batch

Keystroke-3 0.57 10 unit time batch 20 unit time batch

Keystroke-4 0.40 10 unit time batch 20 unit time batch

Keystroke-C 0.18 10 unit time batch 20 unit time batch

Sensor-2 0.05 20 unit time batch 40 unit time batch

Sensor-3 0.05 20 unit time batch 40 unit time batch

DenStream separately. DenStream is run with the ϵ value that gives the best result

on each input stream, according to Table 5.9. The number of windows on which k

is predicted correctly are compared. Stream properties and comparison results are

presented in Table 5.10 for synthetic data streams and in Table 5.11 for real world

data streams. k indicates number of clusters, d indicates dimensions and h indicates

horizon.

NoCStream and DenStream give perfect or nearly perfect results on noiseless data

streams with constant k. However on noisy data streams, NoCStream significantly

outperforms DenStream in terms of the number of windows, and k is predicted suc-

cessfully. On data streams with changing k, which are also noiseless, NoCStream

slightly outperforms DenStream. Details of the evaluation are given below.

• Synthetic Streams 1 to 8 do not include any noise and NoCStream predicts

k correctly on all windows of these streams. DenStream is incorrect only on

two windows of Stream-4 and on a single window of Stream-5, which may be

neglected.

• Streams 9 to 11 have noise with different ratios. NoCStream again predicts k

correctly on nearly all windows of these streams, while DenStream cannot. The

93

noisier the data, the less successful result DenStream gives. On Stream-11, k is

predicted correctly only on 82 of 250 windows, by DenStream.

• Streams 12 to 16 are data streams with changing k, which means some clusters

disappear and emerge. NoCStream predicts k perfectly on four of them, and

nearly perfectly on Stream-15. DenStream predicts k perfectly on two of them,

nearly perfectly on another two streams, and with a 91% success on Stream-14.

Table 5.10: Number of windows in which k is predicted successfully, on synthetic

data streams.

Noise Drift Total

Stream k d (%) h Speed NoCStream DenStream Windows

Stream-1 10 50 0 200 normal 250 250 250

Stream-2 10 100 0 200 normal 250 250 250

Stream-3 10 10 0 200 normal 250 250 250

Stream-4 20 50 0 400 normal 125 123 125

Stream-5 4 50 0 80 normal 625 624 625

Stream-6 10 50 0 200 high 250 250 250

Stream-7 10 50 0 200 low 250 250 250

Stream-8 10 50 0 200 no 250 250 250

Stream-9 10 50 5 200 normal 247 134 250

Stream-10 10 50 10 200 normal 249 101 250

Stream-11 10 50 20 200 normal 247 82 250

Stream-12 10± 2 10 0 200 normal 250 250 250

Stream-13 10± 2 20 0 200 normal 250 250 250

Stream-14 10± 2 5 0 200 normal 250 228 250

Stream-15 20± 4 10 0 400 normal 121 118 125

Stream-16 4± 1 10 0 80 normal 625 623 625

NoCStream falls behind DenStream on meteorological real world data streams. How-

ever, NoCStream gives more balanced results on three of the meteorological data

streams while DenStream does not. NoCStream significantly outperforms DenStream

on Keystroke datasets. Neither of the algorithms show remarkable success on Sensor

datasets, however, predictions of EmCStream again are better than those of Den-

94

Stream. NoCStream outperforms DenStream on both Keystroke and Sensor datasets.

The details of the evaluation are indicated below.

• On meteorological data of Turkey, Europe and US, success ratio of NoCStream

is 66%, 69% and 72% respectively. These are 89%, 100% and 3% for Den-

Stream, on the same datasets. On both Turkey and Europe data, DenStream

outperforms NoCStream, while on US data, DenStream totally fails and NoC-

Stream outperforms it, in spite of the success ratio of NoCStream is about 72%.

• On the Keystroke-2 dataset, NoCStream predicts k perfectly while DenStream

can predict only nearly half of the whole windows. On Keystroke-3 and Keystroke-

4 datasets, NoCStream shows a success of 95% and 80%, while DenStream

cannot do even a single successful prediction. On the Keystroke-C dataset, the

success ratio of NoCStream is 91% while that of DenStream is 33%.

• Success ratio of NoCStream is 25% and 37% on Sensor-2 and Sensor-3 datasets,

respectively. These are 18% and 12% for DenStream. Neither of the algorithms

show remarkable success on Sensor datasets.

5.3.3.2 Clustering Evaluation

NoCStream can be integrated into clustering algorithms as a k prediction method. For

evaluation, we have integrated NoCStream into the initialization phase of EmCStream

and evaluated them against DenStream, in terms of clustering quality. Adjusted Rand

index (See Section 5.1.2.1) and purity (See Section 5.1.2.2) are used as the clustering

quality metrics. EmCStream generates consistent and coherent cluster labels during

the whole execution of a data stream, as long as k does not change. If k changes

during the execution, EmCStream resets the labels and creates a notification about

this situation. Thanks to this property, labels generated by EmCStream can be con-

catenated correctly to each other in subsequent windows, until k changes. However,

labels generated by DenStream may change from one window to the next one for an

evolving data stream, and it is not possible to concatenate these results. This situa-

tion makes it possible to calculate the adjusted Rand index and purity for the whole

95

Table 5.11: Number of windows in which k is predicted successfully, on real world

data streams.

Total

Stream k d h NoCStream DenStream Windows

Meteo-TR 2 6 96 602 809 913

Meteo-EU 2 6 96 633 912 913

Meteo-US 2 6 96 657 26 913

Keystroke-2 2 31 40 20 9 20

Keystroke-3 3 31 60 19 0 20

Keystroke-4 4 31 80 16 0 20

Keystroke-C 2-4 31 80 41 15 45

Sensor-2 2 4 80 198 152 802

Sensor-3 2-3 4 80 505 167 1350

execution of EmCStream, but not of DenStream. Therefore, for a fair comparison,

we calculate the adjusted Rand index and purity for each window of execution of

the algorithms and then provide the average of these values over all of the executed

windows. Nevertheless, we also give a total adjusted Rand index on the concatenated

labels. Both adjusted Rand index and purity have shown similar results and we did

not include here the purity results for the sake of simplicity.

Table 5.12 presents adjusted Rand index values of clustering results on the synthetic

data streams. Both EmCStream and DenStream show similar and successful clus-

tering performance on synthetic data streams, which shows that NoCStream predicts

the number of clusters successfully in different and changing stream characteristics.

Average adjusted Rand index values are very similar for both of the algorithms and

they are perfect or nearly perfect on all of the streams. However this is not the case

for total adjusted Rand index values. On the data streams with constant k, which

are Streams 1 to 11, total adjusted Rand index values are very similar to the average

values for EmCStream but not for DenStream. Because k changes on Streams 12 to

16, total adjusted Rand index values are low for both of the algorithms. Still, total ad-

96

justed Rand index values of EmCStream are greater than DenStream. This situation is

already expected because EmCStream resets the cluster labels only when k changes,

while DenStream may reset them on every new window. NoCStream achieves this

performance without any hyperparameter selection or optimization while DenStream

needs the optimum ϵ value as a hyperparameter.

Table 5.12: Adjusted Rand index comparison on synthetic data streams.

Noise Average ARI Total ARI

Stream k (%) h EmCStream DenStream EmCStream DenStream

Stream-1 10 0 100 1.000 0.998 1.000 0.015

Stream-2 10 0 100 1.000 0.998 1.000 0.018

Stream-3 10 0 100 1.000 0.998 1.000 0.016

Stream-4 20 0 200 1.000 0.998 1.000 0.012

Stream-5 4 0 40 1.000 0.998 1.000 0.020

Stream-6 10 0 100 1.000 0.998 1.000 0.008

Stream-7 10 0 100 1.000 0.998 1.000 0.047

Stream-8 10 0 100 1.000 0.998 1.000 0.246

Stream-9 10 5 100 0.934 0.938 0.932 0.013

Stream-10 10 10 100 0.848 0.857 0.846 0.012

Stream-11 10 20 100 0.647 0.659 0.631 0.009

Stream-12 10± 2 0 100 0.997 0.997 0.098 0.019

Stream-13 10± 2 0 100 0.998 0.996 0.107 0.016

Stream-14 10± 2 0 100 0.997 0.989 0.108 0.023

Stream-15 20± 4 0 200 0.999 0.998 0.099 0.013

Stream-16 4± 1 0 40 0.996 0.998 0.131 0.045

Clustering results of real world data streams are presented in Table 5.13. EmCStream

outperforms DenStream on all real world datasets. EmCStream successfully clusters

all datasets, while DenStream cannot cluster Keystroke and sensor datasets. Em-

CStream outperforms DenStream on real world data streams in terms of clustering

quality, with the aid of NoCStream as a k prediction method.

• EmCStream gives nearly perfect clustering results on three of the meteorologi-

cal data streams. DenStream also gives nearly perfect clustering results on both

97

the meteorological data of Turkey and Europe but not on the meteorological

data of US.

• EmCStream clusters successfully the Keystroke datasets as well. It gives 1.0

adjusted Rand index for Keystroke-2 and nearly 0.9 for Keystroke-3, Keystroke-

4, and Keystroke-C datasets. However, DenStream cannot give successful re-

sults on Keystroke datasets.

• Also on Sensor datasets, results of EmCStream are much more better than those

of DenStream.

Table 5.13: Adjusted Rand index comparison on real world data streams.

Average ARI Total ARI

Stream k h EmCStream DenStream EmCStream DenStream

Meteo-TR 2 48 1.000 0.992 1.000 0.955

Meteo-EU 2 48 0.997 0.998 0.992 0.657

Meteo-US 2 48 1.000 0.673 1.000 0.437

Keystroke-2 2 20 1.000 0.733 1.000 0.431

Keystroke-3 3 30 0.886 0.122 0.355 0.076

Keystroke-4 4 40 0.899 0.000 0.873 0.000

Keystroke-C 2-4 40 0.891 0.657 0.320 0.523

Sensor-2 2 40 0.761 0.143 -0.001 -0.001

Sensor-3 2-3 40 0.821 0.246 0.005 0.003

5.3.3.3 Genericity Evaluation

In order to test the genericity of NoCStream and the quality of its accordance with

different clustering algorithms as a k prediction method, we have integrated NoC-

Stream to the spectral clustering algorithm [157]. Spectral clustering is a traditional

clustering technique that first reduces the dimensionality of the data using eigenval-

ues of the similarity matrix, then clusters the data in reduced dimensions. In that

technique, k is not predicted by the algorithm and it should be stated by the user. It

98

is not specialized for data streams, however, we have applied NoCStream-aided spec-

tral clustering on the streams window by window. We have evaluated this cooperation

against spectral clustering which is given the true k, in terms of clustering quality. We

have compared the average adjusted Rand index values of all windows of execution,

for each data stream. For the tests with given true k, we have provided the initial

true k to the spectral clustering algorithm. For most of the data streams, k is already

constant. However, in Streams 12 to 16, k changes over time. Details of data streams

are explained in Chapter 3.

Table 5.14 presents evaluation results on the synthetic data streams. On the datasets

that have constant k (with or without noise), NoCStream-aided spectral clustering

shows similar successful results with the version that true k is provided. On the noisy

datasets, which are Streams 9 to 11, both of the implementations give nearly perfect

clustering results and these are in coherence with the noise ratio. On the datasets

that k changes, which are Streams 12 to 16, NoCStream-aided version gives more

successful clustering results as expected. NoCStream successfully predicts k on each

window, although data evolve and k changes.

Table 5.15 presents evaluation results on the real world data streams. On meteoro-

logical data streams, perfect clustering is performed when true k is provided. For

NoCStream-aided implementation, the results are only a little bit worse than perfect.

On the other hand, NoCStream-aided implementation gives slightly better results on

Keystroke data streams. Both meteorological and Keystroke data streams are evolv-

ing, real world data streams in which k remains constant, except Keystroke-C, in

which k changes from two to three and then to four. Unsurprisingly, NoCStream-

aided implementation gives much more better results than its competitor on the Key-

stroke-C data stream. However on Sensor datasets, the result of true k given imple-

mentation outperforms the NoCStream-aided version, even though both results are

not very different.

By the tests explained in this section, we show that NoCStream is a generic and

successful k prediction method that can be integrated to various clustering algorithms.

99

Table 5.14: Spectral clustering adjusted Rand index comparison on synthetic data

streams.

Average ARI

true k NoCStream

Stream k given k Noise (%) h given aided

Stream-1 10 10 0 100 0.999 0.996

Stream-2 10 10 0 100 1.000 0.996

Stream-3 10 10 0 100 1.000 0.997

Stream-4 20 20 0 200 1.000 0.996

Stream-5 4 4 0 40 1.000 0.997

Stream-6 10 10 0 100 1.000 0.996

Stream-7 10 10 0 100 1.000 0.997

Stream-8 10 10 0 100 1.000 0.996

Stream-9 10 10 5 100 0.934 0.930

Stream-10 10 10 10 100 0.851 0.851

Stream-11 10 10 20 100 0.662 0.685

Stream-12 10± 2 10 0 100 0.929 0.993

Stream-13 10± 2 10 0 100 0.941 0.994

Stream-14 10± 2 10 0 100 0.943 0.986

Stream-15 20± 4 20 0 200 0.932 0.992

Stream-16 4± 1 4 0 40 0.922 0.994

100

Table 5.15: Spectral clustering adjusted Rand index comparison on real world data

streams.

Average ARI

true k NoCStream

Stream k given k h given aided

Meteo-TR 2 2 48 1.000 0.935

Meteo-EU 2 2 48 1.000 0.950

Meteo-US 2 2 48 1.000 0.965

Keystroke-2 2 2 20 0.935 0.967

Keystroke-3 3 3 30 0.847 0.824

Keystroke-4 4 4 40 0.718 0.734

Keystroke-C 2-4 2 40 0.523 0.800

Sensor-2 2 2 40 0.976 0.892

Sensor-3 2-3 3 40 0.939 0.934

5.3.4 Discussion

Within data stream processing, online k prediction is a challenging task, especially

for evolving data streams with changing k. To this end, we have presented NoC-

Stream that continuously predicts k in real-time, on high dimensional, evolving data

streams. NoCStream is also capable of finding the changing k. It is specialized to be

used on high dimensional, evolving data streams that have some clusters emerge and

disappear.

• For evaluation, which is against DenStream, we have counted how many times

NoCStream predicts a number of clusters correctly on all instances of a data

stream.

• We have also employed NoCStream as the k prediction method of EmCStream

and evaluated the clustering performance of NoCStream-aided EmCStream.

• Furthermore, we have integrated NoCStream to the spectral clustering algo-

101

rithm and have evaluated it against the same algorithm with given true k.

With no hyperparameter selection and optimization, NoCStream successfully predicts

a number of clusters on both real world and synthetic data streams with different char-

acteristics. As an advantage, NoCStream does not need candidate k values as it is

required in the silhouette method, elbow method, or their variations. Moreover, NoC-

Stream is successfully integrated into EmCStream and spectral clustering algorithms

as a k prediction method and they work together in success. Adjusted Rand index and

purity are used as the clustering quality metrics.

102

CHAPTER 6

CONCLUSIONS

Online data stream processing is a popular research area that is arousing interest.

Within this research area, we have presented two novel methods, Online Embedding

and Clustering of Evolving Data Streams (EmCStream) and Determining the Optimal

Number of Clusters on High Dimensional Evolving Data Streams (NoCStream).

EmCStream continuously embeds high dimensional input data into two dimensions

and clusters the embedded data. EmCStream is capable of detecting and adapting

concept drift, while most of other stream clustering algorithms do not detect and no-

tify concept drift. In general, other algorithms only adapt concept drift by outdating

the stale data instances. EmCStream also makes possible the visualization of high

dimensional data, by means of embedding. Moreover, EmCStream generates con-

sistent and coherent cluster labels during the whole execution. In other algorithms,

clustering results on each update are independent from each other, and they cannot

be concatenated. Labels generated by EmCStream can be concatenated. EmCStream

remedies this shortcoming of other state of the art stream clustering algorithms and

offers an alternative method for online clustering of evolving data streams. We have

compared EmCStream against two most popular state of the art data stream clustering

algorithms, DenStream and CluStream, on both synthetic and real world data streams.

Our method outperforms DenStream and CluStream in terms of clustering quality, on

both synthetic and real world data streams.

NoCStream continuously predicts k in real-time, on high dimensional, evolving data

streams. NoCStream is also capable of finding the changing k. It is specialized to

be used on high dimensional, evolving data streams that have some clusters emerge

and disappear. Moreover, NoCStream does not need candidate k values as it is re-

103

quired in the silhouette method, elbow method, or their variations. For evaluation,

which is against DenStream, we have counted how many times NoCStream predicts

a number of clusters correctly on all instances of a data stream. With no hyperpa-

rameter selection and optimization, NoCStream successfully predicts a number of

clusters on both real and synthetic data streams with different characteristics. We

have also employed NoCStream as the k prediction method of EmCStream and eval-

uated the clustering performance of NoCStream-aided EmCStream. NoCStream is

successfully integrated into EmCStream and they outperform DenStream in terms of

clustering quality when k is not given to the algorithms. Furthermore, we have inte-

grated NoCStream to the spectral clustering algorithm and have evaluated it against

the same algorithm with given true k. NoCStream is successfully integrated into spec-

tral clustering algorithm as a k prediction method and they work together in success.

The methods proposed in this thesis are set to use the euclidean distance. Both of

the methods first process the data using UMAP and UMAP supports several distance

types. Therefore, EmCStream and NoCStream can be easily converted to use a differ-

ent distance type supported by UMAP or to get the distance type as a hyperparameter.

Thanks to this feature, the proposed methods can be applied on different types of data,

using different distance types. EmCStream adaptively adjusts drift check period dur-

ing the execution. This makes EmCStream successfully handle the change in the

speed of the concept drift throughout a data stream. Speed of the concept drift is con-

stant in the synthetic datasets used in this study. However, the real world datasets are

also evolving and the speed of the concept drift changes by nature. Thus, the change

in the speed of the concept drift is already tested by the real world datasets presented.

For the proposed methods the horizon is a hyperparameter and it is constant through-

out the processing. If there is a need, changing the horizon during the processing can

be studied. Moreover, it is possible to run multiple copies of EmCStream simulta-

neously on the same data, with different horizons. Determining the horizon requires

some domain knowledge and depends on what the user prefers to find. For example

if the user wants to catch the daily concept drift on a meteorological data, horizon

can be set to the data of one hour duration. However, when the user wants to catch

the seasonal or day to day concept drift, horizon can be set to the data of a couple of

days. Knowing the data generation period of the data sources also helps in determin-

104

ing the horizon. By way of illustration, in our tests on the synthetic datasets we set

the horizon to ten unit times, where unit time is the average data generation period

of each data source. We consider ten is an adequate number of instances in order to

form a cluster and when such a horizon is used, each cluster has ten data instances on

average.

There is a lack of high quality benchmark data to use in data stream clustering algo-

rithms. It is very common to use traditional datasets for testing and benchmark pur-

poses. However, traditional datasets do not include concept drift. Evaluation of data

stream clustering algorithms on traditional datasets does not produce reliable evalua-

tion results in terms of concept drift detection and adaptation. In order to remedy this

shortcoming, in this study we provide both synthetic and real world evolving stream

datasets with different characteristics, which are suitable for testing and benchmark

purposes. To the best of our knowledge, this is the only study to provide both syn-

thetic and real world high dimensional, evolving stream datasets in such a systematic

way. Moreover, most of the data stream clustering algorithms in the literature do not

detect and report concept drift. In general, other stream clustering algorithms only

adapt concept drift intuitively. We believe that it is possible to retrieve very valuable

information from concept drift detection in several fields like patient tracking, border

security using sensors and surveillance cameras etc. We also believe that data stream

analysis is in its infancy yet. In the near future, we will encounter many different

academic and professional studies, in the field of data stream analysis.

NoCStream employs mean shift for k prediction purpose. Mean shift is selected

among its alternatives. It is possible to further evaluate alternative methods instead

of mean shift. Moreover, both EmCStream and NoCStream do not detect outliers.

Outlier detection is a popular research topic and it is left as a future work in this

thesis.

105

106

REFERENCES

[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. USA: Prentice-

Hall, Inc., 1988.

[2] J. C. Bezdek and J. M. Keller, “Streaming data analysis: Clustering or clas-

sification?,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 51, no. 1, pp. 91–102, 2021.

[3] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of

Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[4] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approxi-

mation and Projection for Dimension Reduction,” ArXiv e-prints, feb 2018.

[5] A. Zubaroğlu and V. Atalay, “Online embedding and clustering of data

streams,” in Proceedings of the 2019 3rd International Conference on Big Data

Research, ICBDR 2019, (New York, NY, USA), p. 142–146, Association for

Computing Machinery, 2019.

[6] M. Bahri, A. Bifet, S. Maniu, and H. M. Gomes, “Survey on feature transfor-

mation techniques for data streams,” in Proceedings of the Twenty-Ninth In-

ternational Joint Conference on Artificial Intelligence, IJCAI-20 (C. Bessiere,

ed.), pp. 4796–4802, International Joint Conferences on Artificial Intelligence

Organization, 7 2020. Survey track.

[7] S. S. Vempala, The Random Projection Method, vol. 65. American Mathemat-

ical Society, 2004.

[8] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points

in space,” The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[9] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg, “Feature

hashing for large scale multitask learning,” in Proceedings of the 26th Annual

107

International Conference on Machine Learning, ICML ’09, (New York, NY,

USA), p. 1113–1120, Association for Computing Machinery, 2009.

[10] A. Zubaroğlu and V. Atalay, “Online embedding and clustering of evolving

data streams,” Statistical Analysis and Data Mining: The ASA Data Science

Journal, vol. 16, no. 1, pp. 29–44, 2023.

[11] J. MacQueen et al., “Some methods for classification and analysis of multi-

variate observations,” in Proceedings of the fifth Berkeley symposium on math-

ematical statistics and probability, vol. 1, pp. 281–297, Oakland, CA, USA,

1967.

[12] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over an

evolving data stream with noise,” in In 2006 SIAM Conference on Data Mining,

vol. 2006, pp. 328–339, 04 2006.

[13] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering

evolving data streams,” in Proceedings of the 29th International Conference

on Very Large Data Bases - Volume 29, VLDB ’03, pp. 81–92, 2003.

[14] F. Can, “Incremental clustering for dynamic information processing,” ACM

Trans. Inf. Syst., vol. 11, p. 143–164, apr 1993.

[15] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. d. Car-

valho, and J. a. Gama, “Data stream clustering: A survey,” ACM Comput. Surv.,

vol. 46, pp. 13:1–13:31, July 2013.

[16] F. Alam, R. Mehmood, I. Katib, and A. Albeshri, “Analysis of eight data min-

ing algorithms for smarter internet of things (iot),” Procedia Computer Science,

vol. 98, pp. 437 – 442, 2016.

[17] M. Ghesmoune, M. Lebbah, and H. Azzag, “State-of-the-art on clustering data

streams,” Big Data Analytics, vol. 1, p. 13, Dec 2016.

[18] M. Carnein, D. Assenmacher, and H. Trautmann, “An empirical comparison

of stream clustering algorithms,” in Proceedings of the Computing Frontiers

Conference, CF’17, pp. 361–366, 2017.

108

[19] K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of real-time processing

technologies of iot data streams,” Journal of Information Processing, vol. 24,

no. 2, pp. 195–202, 2016.

[20] C. Nordahl, V. Boeva, H. Grahn, and M. Persson, “Evolvecluster: an evolu-

tionary clustering algorithm for streaming data,” Evolving Systems, pp. 1–21,

11 2021.

[21] E. B. Gulcan and F. Can, “Unsupervised concept drift detection for multi-label

data streams,” Artificial Intelligence Review, Jul 2022.

[22] Ö. Gözüaçık and F. Can, “Concept learning using one-class classifiers for im-

plicit drift detection in evolving data streams,” Artificial Intelligence Review,

Nov 2020.

[23] Ö. Gözüaçık, A. Büyükçakır, H. Bonab, and F. Can, “Unsupervised concept

drift detection with a discriminative classifier,” in Proceedings of the 28th ACM

International Conference on Information and Knowledge Management, CIKM

’19, (New York, NY, USA), p. 2365–2368, Association for Computing Ma-

chinery, 2019.

[24] M. M. W. Yan, “Accurate detecting concept drift in evolving data streams,”

ICT Express, vol. 6, no. 4, pp. 332–338, 2020.

[25] R. Paudel and W. Eberle, “An approach for concept drift detection in a graph

stream using discriminative subgraphs,” ACM Trans. Knowl. Discov. Data,

vol. 14, Sept. 2020.

[26] J. a. Gama, I. Žliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A

survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, pp. 44:1–

44:37, Mar. 2014.

[27] R. N. Gemaque, A. F. J. Costa, R. Giusti, and E. M. dos Santos, “An overview

of unsupervised drift detection methods,” WIREs Data Mining and Knowledge

Discovery, vol. 10, no. 6, p. e1381, 2020.

[28] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive clustering for dynamic

iot data streams,” IEEE Internet of Things Journal, vol. 4, pp. 64–74, Feb 2017.

109

[29] J. d. Andrade Silva, E. R. Hruschka, and J. a. Gama, “An evolutionary algo-

rithm for clustering data streams with a variable number of clusters,” Expert

Syst. Appl., vol. 67, pp. 228–238, Jan. 2017.

[30] A. Amini, H. Saboohi, T. Herawan, and T. Y. Wah, “Mudi-stream: A multi

density clustering algorithm for evolving data stream,” J. Netw. Comput. Appl.,

vol. 59, pp. 370–385, Jan. 2016.

[31] R. Hyde, P. Angelov, and A. MacKenzie, “Fully online clustering of evolving

data streams into arbitrarily shaped clusters,” Information Sciences, vol. 382-

383, pp. 96 – 114, 2017.

[32] C. Yin, L. Xia, S. Zhang, R. Sun, and J. Wang, “Improved clustering algorithm

based on high-speed network data stream,” Soft Computing, Jul 2017.

[33] K.-S. Zhang, L. Zhong, L. Tian, X.-Y. Zhang, and L. Li, “DBIECM-an Evolv-

ing Clustering Method for Streaming Data Clustering,” Amse Journals-Amse

Iieta, vol. 60, no. 1, pp. 239–254, 2017.

[34] M. Hassani, P. Spaus, A. Cuzzocrea, and T. Seidl, “Adaptive stream clustering

using incremental graph maintenance,” in Proceedings of the 4th International

Conference on Big Data, Streams and Heterogeneous Source Mining: Algo-

rithms, Systems, Programming Models and Applications - Volume 41, BIG-

MINE’15, pp. 49–64, 2015.

[35] M. Hassani, P. Spaus, A. Cuzzocrea, and T. Seidl, “I-hastream: Density-based

hierarchical clustering of big data streams and its application to big graph an-

alytics tools,” in 2016 16th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid), pp. 656–665, May 2016.

[36] A. Zubaroğlu and V. Atalay, “Data stream clustering: a review,” Artificial In-

telligence Review, vol. 54, pp. 1201–1236, Jul 2020.

[37] Y. Hozumi, R. Wang, C. Yin, and G.-W. Wei, “Umap-assisted k-means clus-

tering of large-scale sars-cov-2 mutation datasets,” Computers in Biology and

Medicine, vol. 131, p. 104264, 2021.

110

[38] A. Duraj and P. S. Szczepaniak, “Outlier detection in data streams — a com-

parative study of selected methods,” Procedia Computer Science, vol. 192,

pp. 2769–2778, 2021.

[39] A. Forestiero, “Self-organizing anomaly detection in data streams,” Informa-

tion Sciences, vol. 373, pp. 321–336, 2016.

[40] S. Guggilam, V. Chandola, and A. Patra, “Tracking clusters and anomalies in

evolving data streams,” Statistical Analysis and Data Mining: The ASA Data

Science Journal, vol. n/a, no. n/a, 2021.

[41] M. Bahri, B. Pfahringer, A. Bifet, and S. Maniu, “Efficient Batch-Incremental

Classification Using UMAP for Evolving Data Streams,” in IDA 2020 -

18th International Symposium on Intelligent Data Analysis (M. R. Berthold,

A. Feelders, and G. Krempl, eds.), vol. 12080 of LNCS - Lecture Notes in

Computer Science, (Konstanz / Virtual, Germany), pp. 40–53, Springer, Apr.

2020.

[42] J. Xu, G. Wang, T. Li, W. Deng, and G. Gou, “Fat node leading tree for data

stream clustering with density peaks,” Knowledge-Based Systems, vol. 120,

pp. 99 – 117, 2017.

[43] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–646, Oct 2016.

[44] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,

pp. 78–81, May 2016.

[45] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,

pp. 30–39, Jan 2017.

[46] S. Ramirez-Gallego, B. Krawczyk, S. Garcia, M. Wozniak, and F. Herrera, “A

survey on data preprocessing for data stream mining: Current status and future

directions,” Neurocomputing, vol. 239, 02 2017.

[47] S. Mansalis, E. Ntoutsi, N. Pelekis, and Y. Theodoridis, “An evaluation of data

stream clustering algorithms,” Statistical Analysis and Data Mining: The ASA

Data Science Journal, vol. 11, no. 4, pp. 167–187, 2018.

111

[48] K. D. Modi and P. B. Oza, “Outlier analysis approaches in data mining,” Inter-

national Journal of Innovative Research in Technology (IJIRT), vol. 3, pp. 6–

12, 2017.

[49] J. A. Merino, Streaming Data Clustering in MOA using the Leader Algorithm.

PhD thesis, Universitat Politècnica de Catalunya, 2015.

[50] P. Chauhan and M. Shukla, “A review on outlier detection techniques on data

stream by using different approaches of K-Means algorithm,” in 2015 Inter-

national Conference on Advances in Computer Engineering and Applications,

2015.

[51] I. Souiden, Z. Brahmi, and H. Toumi, “A Survey On Outlier Detection In The

Context Of Stream Mining : review Of Existing Approaches And Recomma-

dations,” in Advances in Intelligent Systems and Computing, 2016.

[52] P. Thakkar, J. Vala, and V. Prajapati, “Survey on Outlier Detection in Data

Stream,” International Journal of Computer Applications, vol. 136, no. 2,

2016.

[53] S. V. Bhosale, “A Survey: Outlier Detection in Streaming Data Using Clus-

tering Approached,” (IJCSIT) International Journal of Computer Science and

Information Technologies, vol. 5, pp. 6050–6053, 2014.

[54] S. Sadik and L. Gruenwald, “Research issues in outlier detection for data

streams,” SIGKDD Explor. Newsl., vol. 15, pp. 33–40, Mar. 2014.

[55] X. Kong, Y. Bi, and D. H. Glass, “Detecting anomalies in sequential data aug-

mented with new features,” Artificial Intelligence Review, vol. 53, pp. 625–652,

2019.

[56] V. Christodoulou, Y. Bi, and G. Wilkie, “A fuzzy shape-based anomaly de-

tection and its application to electromagnetic data,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 11, pp. 3366–

3379, Sep. 2018.

[57] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the most unusual

time series subsequence,” in Proceedings of the Fifth IEEE International Con-

112

ference on Data Mining, ICDM ’05, (USA), p. 226–233, IEEE Computer So-

ciety, 2005.

[58] M. Mousavi, A. Bakar, and M. Vakilian, “Data stream clustering algorithms:

A review,” International Journal of Advances in Soft Computing and its Appli-

cations, vol. 7, pp. 1–15, 2015.

[59] P. Kumar, “Data Stream Clustering in Internet of Things,” SSRG International

Journal of Computer Science and Engineering, vol. 3, no. 8, 2016.

[60] S. Ding, F. Wu, J. Qian, H. Jia, and F. Jin, “Research on data stream clustering

algorithms,” Artif. Intell. Rev., vol. 43, pp. 593–600, Apr. 2015.

[61] H.-L. Nguyen, Y.-K. Woon, and W.-K. Ng, “A survey on data stream clustering

and classification,” Knowledge and Information Systems, vol. 45, pp. 535–569,

Dec 2015.

[62] C. Fahy, S. Yang, and M. Gongora, “Ant colony stream clustering: A fast

density clustering algorithm for dynamic data streams,” IEEE Transactions on

Cybernetics, vol. 49, no. 6, pp. 2215–2228, 2019.

[63] A. R. Mahdiraji, “Clustering data stream: A survey of algorithms,” Int. J.

Know.-Based Intell. Eng. Syst., vol. 13, p. 39–44, Apr. 2009.

[64] C. C. Aggarwal, “A survey of stream clustering algorithms,” in Data Cluster-

ing: Algorithms and Applications (C. C. Aggarwal and C. K. Reddy, eds.),

pp. 231–258, CRC Press, 2013.

[65] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data clustering

method for very large databases,” SIGMOD Rec., vol. 25, pp. 103–114, June

1996.

[66] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon a hierarchical clustering

algorithm using dynamic modeling,” Computer, vol. 32, pp. 68 – 75, 09 1999.

[67] P. Rodrigues, J. Gama, and J. Pedroso, “ODAC: Hierarchical Clustering of

Time Series Data Streams,” in Proceedings of the Sixth SIAM International

113

Conference on Data Mining (J. Ghosh, D. Lambert, D. Skillicorn, and J. Sri-

vastava, eds.), vol. 2006 of SIAM Proceedings Series, pp. 499–503, 2006. Ci-

tations: crossref, dblp, scopus, wos.

[68] K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai, “E-stream:

Evolution-based technique for stream clustering,” in Advanced Data Mining

and Applications, vol. 4632, pp. 605–615, Springer Berlin Heidelberg, 08

2007.

[69] W. Meesuksabai, T. Kangkachit, and K. Waiyamai, “Hue-stream: Evolution-

based clustering technique for heterogeneous data streams with uncertainty,”

in Advanced Data Mining and Applications, pp. 27–40, Springer Berlin Hei-

delberg, 12 2011.

[70] L. O’Callaghan, A. Meyerson, R. Motwani, N. Mishra, and S. Guha,

“Streaming-data algorithms for high-quality clustering,” in Proceedings of the

18th International Conference on Data Engineering, ICDE ’02, pp. 685–,

2002.

[71] C. Ordonez, “Clustering binary data streams with k-means,” in Proceedings

of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and

Knowledge Discovery, DMKD ’03, (New York, NY, USA), p. 12–19, Associ-

ation for Computing Machinery, 2003.

[72] C. Aggarwal, J. Han, J. Wang, and P. Yu, “A framework for projected cluster-

ing of high dimensional data streams,” in Proceedings of the Thirtieth Interna-

tional Conference on Very Large Data Bases - Volume 30, pp. 852–863, VLDB

Endowment, 12 2004.

[73] A. Zhou, F. Cao, W. Qian, and C. Jin, “Tracking clusters in evolving data

streams over sliding windows,” Knowl. Inf. Syst., vol. 15, pp. 181–214, May

2008.

[74] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and

C. Sohler, “Streamkm++: A clustering algorithm for data streams,” J. Exp.

Algorithmics, vol. 17, pp. 2.4:2.1–2.4:2.30, May 2012.

114

[75] X. Zhang, C. Furtlehner, C. Germain-Renaud, and M. Sebag, “Data stream

clustering with affinity propagation,” IEEE Transactions on Knowledge and

Data Engineering, vol. 26, no. 7, pp. 1644–1656, 2014.

[76] L. Kaufman and P. J. Rousseeuw, Clustering Large Applications (Program

CLARA), ch. 3, pp. 126–163. John Wiley & Sons, Ltd, 1990.

[77] Y. Lu, Y. Sun, G. Xu, and G. Liu, “A grid-based clustering algorithm for high-

dimensional data streams,” in Advanced Data Mining and Applications (X. Li,

S. Wang, and Z. Y. Dong, eds.), (Berlin, Heidelberg), pp. 824–831, Springer

Berlin Heidelberg, 2005.

[78] Y. Sun and Y. Lu, “A grid-based subspace clustering algorithm for high-

dimensional data streams,” in Web Information Systems – WISE 2006 Work-

shops (L. Feng, G. Wang, C. Zeng, and R. Huang, eds.), (Berlin, Heidelberg),

pp. 37–48, Springer Berlin Heidelberg, 2006.

[79] J. a. Gama, P. P. Rodrigues, and L. Lopes, “Clustering distributed sensor

data streams using local processing and reduced communication,” Intell. Data

Anal., vol. 15, pp. 3–28, Jan. 2011.

[80] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace

clustering of high dimensional data for data mining applications,” in Proceed-

ings of the 1998 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’98, (New York, NY, USA), p. 94–105, Association for Com-

puting Machinery, 1998.

[81] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “Wavecluster: A wavelet-

based clustering approach for spatial data in very large databases,” The VLDB

Journal, vol. 8, p. 289–304, Feb. 2000.

[82] W. Wang, J. Yang, and R. R. Muntz, “Sting: A statistical information grid ap-

proach to spatial data mining,” in Proceedings of the 23rd International Con-

ference on Very Large Data Bases, VLDB ’97, (San Francisco, CA, USA),

p. 186–195, Morgan Kaufmann Publishers Inc., 1997.

[83] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,” in

115

Proceedings of the 13th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’07, pp. 133–142, 2007.

[84] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-based cluster-

ing of data streams at multiple resolutions,” ACM Trans. Knowl. Discov. Data,

vol. 3, July 2009.

[85] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu, “Incremental clus-

tering for mining in a data warehousing environment,” in Proceedings of the

24rd International Conference on Very Large Data Bases, VLDB ’98, (San

Francisco, CA, USA), p. 323–333, Morgan Kaufmann Publishers Inc., 1998.

[86] L. Duan, D. Xiong, J. Lee, and F. Guo, “A local density based spatial clustering

algorithm with noise,” in 2006 IEEE International Conference on Systems,

Man and Cybernetics, vol. 5, pp. 4061–4066, 2006.

[87] L. Liu, H. Huang, Y. Guo, and F. Chen, “rdenstream, a clustering algorithm

over an evolving data stream,” in 2009 International Conference on Informa-

tion Engineering and Computer Science, pp. 1–4, 2009.

[88] A. Namadchian and G. Esfandani, “Dsclu: A new data stream clustring algo-

rithm for multi density environments,” 2012 13th ACIS International Confer-

ence on Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing, pp. 83–88, 2012.

[89] H. Wang, Y. Yu, Q. Wang, and Y. Wan, “A density-based clustering structure

mining algorithm for data streams,” in Proceedings of the 1st International

Workshop on Big Data, Streams and Heterogeneous Source Mining: Algo-

rithms, Systems, Programming Models and Applications, BigMine ’12, (New

York, NY, USA), p. 69–76, Association for Computing Machinery, 2012.

[90] C. Isaksson, M. Dunham, and M. Hahsler, “Sostream: Self organizing density-

based clustering over data stream,” in Machine Learning and Data Mining in

Pattern Recognition, vol. 7376, Springer Berlin Heidelberg, 07 2012.

[91] D. Tasoulis, G. Ross, and N. Adams, “Visualising the cluster structure of data

streams,” in Advances in Intelligent Data Analysis VII, vol. 4723, pp. 81–92,

Springer Berlin Heidelberg, 09 2007.

116

[92] D. Fisher, “Iterative optimization and simplification of hierarchical clustering,”

J Artif Intell Res, vol. 4, 05 1996.

[93] A. Zhou, F. Cao, Y. Yan, C. Sha, and X. He, “Distributed data stream cluster-

ing: A fast em-based approach,” in 2007 IEEE 23rd International Conference

on Data Engineering, pp. 736–745, 2007.

[94] X. H. Dang, V. C. S. Lee, W. K. Ng, and K. L. Ong, “Incremental and adaptive

clustering stream data over sliding window,” in Database and Expert Systems

Applications (S. S. Bhowmick, J. Küng, and R. Wagner, eds.), (Berlin, Heidel-

berg), pp. 660–674, Springer Berlin Heidelberg, 2009.

[95] S. U. Din, J. Shao, J. Kumar, W. Ali, J. Liu, and Y. Ye, “Online reliable semi-

supervised learning on evolving data streams,” Information Sciences, vol. 525,

pp. 153 – 171, 2020.

[96] C. G. Bezerra, B. S. J. Costa, L. A. Guedes, and P. P. Angelov, “An evolving

approach to data streams clustering based on typicality and eccentricity data

analytics,” Information Sciences, vol. 518, pp. 13 – 28, 2020.

[97] T. Kim and C. H. Park, “Anomaly pattern detection for streaming data,” Expert

Systems with Applications, vol. 149, p. 113252, 2020.

[98] E. Parzen, “On estimation of a probability density function and mode,” Ann.

Math. Statist., vol. 33, pp. 1065–1076, 09 1962.

[99] M. Rosenblatt, “Remarks on some nonparametric estimates of a density func-

tion,” Ann. Math. Statist., vol. 27, pp. 832–837, 09 1956.

[100] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi, “Test of page-hinckley, an

approach for fault detection in an agro-alimentary production system,” in 2004

5th Asian Control Conference (IEEE Cat. No.04EX904), vol. 2, pp. 815–818

Vol.2, July 2004.

[101] Q. Song and N. Kasabov, “Ecm - a novel on-line, evolving clustering method

and its applications,” in In M. I. Posner (Ed.), Foundations of cognitive science,

pp. 631–682, The MIT Press, 2001.

117

[102] M. Hassani, P. Spaus, and T. Seidl, “Adaptive multiple-resolution stream

clustering,” in Machine Learning and Data Mining in Pattern Recognition,

pp. 134–148, 2014.

[103] H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and

B. Pfahringer, “An effecive evaluation measure for clustering on evolving data

streams,” in Proceedings of the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’11, pp. 868–876, 2011.

[104] Citi Bike NYC, “Citi Bike: NYC’s Official Bike Sharing System.” https:

//www.citibikenyc.com/, 2013. Accessed: 2018-03-25.

[105] Citi Bike System Data. https://www.citibikenyc.com/system-

data, 2013. Accessed: 2018-03-25.

[106] Meetup, “We are what we do | Meetup.” https://www.meetup.com/,

2002. Accessed: 2018-03-25.

[107] Meetup Stream, “Extend your community | Meetup.” https://www.

meetup.com/meetup_api/docs/stream/2/rsvps/, 2002. Ac-

cessed: 2018-03-25.

[108] National Weather Service (NWS), “National Weather Service.” https://

www.weather.gov/, 1870. Accessed: 2018-03-25.

[109] NWS Public Alerts, “NWS Public Alerts.” https://alerts.weather.

gov/, n.d. Accessed: 2018-03-25.

[110] X. H. Zhu, “Stream Data Mining Repository.” http://www.cse.fau.

edu/~xqzhu/stream.html, 2010. Accessed: 2018-03-25.

[111] Massive Online Analysis (MOA), “Moa - Machine Learning for Data Streams.”

https://moa.cms.waikato.ac.nz/, 2014. Accessed: 2018-03-25.

[112] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online

analysis,” J. Mach. Learn. Res., vol. 11, pp. 1601–1604, Aug. 2010.

[113] Moa Stream Generators, “Moa: Package moa.stream.generators.”

https://www.cs.waikato.ac.nz/~abifet/MOA/API/

118

https://www.citibikenyc.com/
https://www.citibikenyc.com/
https://www.citibikenyc.com/system-data
https://www.citibikenyc.com/system-data
https://www.meetup.com/
https://www.meetup.com/meetup_api/docs/stream/2/rsvps/
https://www.meetup.com/meetup_api/docs/stream/2/rsvps/
https://www.weather.gov/
https://www.weather.gov/
https://alerts.weather.gov/
https://alerts.weather.gov/
http://www.cse.fau.edu/~xqzhu/stream.html
http://www.cse.fau.edu/~xqzhu/stream.html
https://moa.cms.waikato.ac.nz/
https://www.cs.waikato.ac.nz/~abifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/namespacemoa_1_1streams_1_1generators.html

namespacemoa_1_1streams_1_1generators.html, 2014. Ac-

cessed: 2018-03-25.

[114] A Community Resource for Archiving Wireless Data At Dartmouth

(CRAWDAD). https://crawdad.org/keyword-sensor-

network.html, n.d. Accessed: 2018-03-25.

[115] Waikato Environment for Knowledge Analysis, “Weka 3 - Data Mining With

Open Source Machine Learning Software in Java.” https://www.cs.

waikato.ac.nz/ml/weka/, 1993. Accessed: 2018-03-25.

[116] RapidMiner, “Data Sicence Platform - RapidMiner.” https:

//rapidminer.com/, 2001. Accessed: 2018-03-25.

[117] C. Bockermann, “RapidMiner Streams Plugin.” https://sfb876.de/

streams/doc/rapidminer.html, 2018. Accessed: 2018-03-25.

[118] R, “R - The R Project for Statistical Computing.” https://www.r-

project.org/, 1993. Accessed: 2018-03-25.

[119] Janardan and S. Mehta, “Concept drift in streaming data classification: Algo-

rithms, platforms and issues,” Procedia Computer Science, vol. 122, pp. 804

– 811, 2017. 5th International Conference on Information Technology and

Quantitative Management, ITQM 2017.

[120] B. R. Prasad and S. Agarwal, “Stream data mining: platforms, algorithms,

performance evaluators and research trends,” International journal of database

theory and application, vol. 9, no. 9, pp. 201–218, 2016.

[121] Apache Storm. http://storm.apache.org/, 2011. Accessed: 2018-

03-25.

[122] Apache Spark, “Apache Spark lightning-fast cluster computing.” https://

spark.apache.org/, 2012. Accessed: 2018-03-25.

[123] Spark Streaming, “Apache Spark Streaming.” https://spark.apache.

org/streaming/, 2012. Accessed: 2018-03-25.

[124] Apache Samza, “Samza.” https://samza.apache.org/, 2013. Ac-

cessed: 2018-03-25.

119

https://www.cs.waikato.ac.nz/~abifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://www.cs.waikato.ac.nz/~abifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://crawdad.org/keyword-sensor-network.html
https://crawdad.org/keyword-sensor-network.html
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://rapidminer.com/
https://rapidminer.com/
https://sfb876.de/streams/doc/rapidminer.html
https://sfb876.de/streams/doc/rapidminer.html
https://www.r-project.org/
https://www.r-project.org/
http://storm.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://samza.apache.org/

[125] N. Ramesh, “Apache Samza, LinkedIn’s Framework for Stream Process-

ing - The New Stack.” https://thenewstack.io/apache-samza-

linkedins-framework-for-stream-processing/, 2013. Ac-

cessed: 2018-03-25.

[126] Apache Kafka. https://kafka.apache.org/, 2011. Accessed: 2018-

03-25.

[127] AmazonKinesis, “Amazon Kinesis.” https://aws.amazon.com/

kinesis/, 2013. Accessed: 2018-03-25.

[128] IBM Infosphere, “Streaming Analytics - Overview - IBM Cloud.” https:

//www.ibm.com/cloud/streaming-analytics, 1996. Accessed:

2018-03-25.

[129] B. Gedik and H. Andrade, “A model-based framework for building extensible,

high performance stream processing middleware and programming language

for ibm infosphere streams,” Softw. Pract. Exper., vol. 42, pp. 1363–1391, Nov.

2012.

[130] Google Cloud Stream, “Streaming Analytics for Real Time Insights

- Google Cloud.” https://cloud.google.com/solutions/big-

data/stream-analytics/, 2012. Accessed: 2018-03-25.

[131] Microsoft Azure Stream Analytics, “Stream Analytics - Real Time Data Ana-

lytics - Microsoft Azure.” https://azure.microsoft.com/en-us/

services/stream-analytics/, 2012. Accessed: 2018-03-25.

[132] M. Hahsler, M. Bolanos, and J. Forrest, streamMOA: Interface for MOA Stream

Clustering Algorithms, 2015. R package version 1.1-2.

[133] R Core Team, R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2013.

[134] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection algorithms

for keystroke dynamics,” in 2009 IEEE/IFIP International Conference on De-

pendable Systems & Networks, pp. 125–134, 2009.

120

https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing/
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing/
https://kafka.apache.org/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://cloud.google.com/solutions/big-data/stream-analytics/
https://cloud.google.com/solutions/big-data/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/

[135] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density

function, with applications in pattern recognition,” IEEE Transactions on In-

formation Theory, vol. 21, no. 1, pp. 32–40, 1975.

[136] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790–799, 1995.

[137] R. L. Thorndike, “Who belongs in the family?,” Psychometrika, vol. 18,

pp. 267–276, Dec 1953.

[138] K. E. O’grady, “Measures of explained variance: Cautions and limitations.,”

Psychological Bulletin, vol. 92, pp. 766–777, 1982.

[139] S. K. Kingrani, M. Levene, and D. Zhang, “Estimating the number of clusters

using diversity,” Artif. Intell. Res., vol. 7, no. 1, p. 15, 2018.

[140] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction To

Cluster Analysis. Wiley, New York, 01 1990.

[141] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and valida-

tion of cluster analysis,” Journal of Computational and Applied Mathematics,

vol. 20, pp. 53 – 65, 1987.

[142] G. W. Milligan and M. C. Cooper, “An examination of procedures for determin-

ing the number of clusters in a data set,” Psychometrika, vol. 50, pp. 159–179,

Jun 1985.

[143] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in

a data set via the gap statistic,” Journal of the Royal Statistical Society Series

B, vol. 63, pp. 411–423, 02 2001.

[144] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “Nbclust: An r pack-

age for determining the relevant number of clusters in a data set,” Journal of

Statistical Software, vol. 61, no. 6, p. 1–36, 2014.

[145] F. Can and E. A. Ozkarahan, “Concepts and effectiveness of the cover-

coefficient-based clustering methodology for text databases,” ACM Trans.

Database Syst., vol. 15, p. 483–517, dec 1990.

121

[146] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature

space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 24, no. 5, pp. 603–619, 2002.

[147] J. E. Chacón and P. Monfort, “A comparison of bandwidth selectors for mean

shift clustering,” 10 2013.

[148] B. Frey and D. Dueck, “Clustering by passing messages between data points,”

Science (New York, N.Y.), vol. 315, pp. 972–6, 03 2007.

[149] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise,” in Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining,

KDD’96, p. 226–231, AAAI Press, 1996.

[150] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited,

revisited: Why and how you should (still) use dbscan,” ACM Trans. Database

Syst., vol. 42, jul 2017.

[151] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering

points to identify the clustering structure,” SIGMOD Rec., vol. 28, p. 49–60,

jun 1999.

[152] L. E. Brito Da Silva, N. M. Melton, and D. C. Wunsch, “Incremental cluster

validity indices for online learning of hard partitions: Extensions and compar-

ative study,” IEEE Access, vol. 8, pp. 22025–22047, 2020.

[153] H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and

B. Pfahringer, “An effective evaluation measure for clustering on evolving data

streams,” in Proceedings of the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’11, (New York, NY, USA),

p. 868–876, Association for Computing Machinery, 2011.

[154] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification,

vol. 2, no. 1, pp. 193–218, 1985.

[155] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”

Journal of the American Statistical Association, vol. 66, no. 336, pp. 846–850,

1971.

122

[156] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information Re-

trieval. Cambridge University Press, 2008.

[157] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices with

eigenvectors of graphs,” SIAM Journal on Matrix Analysis and Applications,

vol. 11, no. 3, pp. 430–452, 1990.

[158] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[159] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,

V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,

A. Joly, B. Holt, and G. Varoquaux, “API design for machine learning soft-

ware: experiences from the scikit-learn project,” in ECML PKDD Workshop:

Languages for Data Mining and Machine Learning, pp. 108–122, 2013.

123

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Related Work
	The Outline of the Thesis

	Background Information
	Introduction
	Concepts in Data Stream Clustering
	Concept Drift
	Data Structures for Data Streams
	Time Window Models
	Damped Window
	Landmark Window
	Sliding Window

	Outlier Detection

	Stream Clustering Algorithms
	Adaptive Streaming k-Means (2017)
	FEAC-Stream (2017)
	MuDi-Stream (2016)
	CEDAS (2016)
	Improved Data Stream Clustering Algorithm (2017)
	DBIECM (2017)
	I-HASTREAM (2015)

	Comparison of the Algorithms
	Open Problems
	Popular Data Repositories and Datasets
	Data Repositories
	Citi Bike System Data
	Meetup RSVP Stream
	National Weather Service Public Alerts
	Stream Data Mining Repository
	MOA
	Other Repositories

	Popular Datasets
	Synthetic Data Streams
	Forest Cover Type Dataset
	Network Intrusion Detection Dataset
	Charitable Donation Dataset
	Various Spam Mail Datasets
	Various Sensor Network Datasets

	Data Stream Processing Tools
	MOA
	RapidMiner
	R

	Data Stream Processing Platforms
	Conclusions

	Datasets
	Synthetic Datasets
	Real World Datasets
	Meteorological Datasets
	Keystroke Dynamics
	Sensor Data

	Drifts in the Datasets

	Methods
	Online Embedding and Clustering of Evolving Data Streams
	Complexity Analysis

	Determining the Optimal Number of Clusters on High Dimensional Evolving Data Streams
	Introduction
	Traditional Methods for Predicting the Number of Clusters
	Elbow Method
	Silhouette Method
	Density Based Methods
	Other Methods

	Method
	Mean Shift Algorithm
	NoCStream

	Experimental Results and Performance Evaluation
	Experimental Setup
	Environment
	Metrics
	Adjusted Rand Index
	Purity

	Online Embedding and Clustering of Evolving Data Streams
	Selection of Hyperparameter Values
	Evaluation on Synthetic Datasets
	Evaluation on Real World Datasets
	Embedded Dimensions
	Detected Drift Count
	Execution Time
	Visualization and Drift Check
	Discussion

	Determining the Optimal Number of Clusters on High Dimensional Evolving Data Streams
	Evaluation Methodology
	Selection of Hyperparameter Values
	Evaluation Results
	k Prediction Evaluation
	Clustering Evaluation
	Genericity Evaluation

	Discussion

	Conclusions
	REFERENCES

