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ABSTRACT 

 

FLOW INVESTIGATION IN A CHANNEL REACTOR USING 

CHEMICALLY REACTING BOUNDARY LAYER EQUATIONS 

 

Kenar, Doğu Hazar 

Master of Science, Aerospace Engineering 

Supervisor: Prof. Dr. Yusuf Özyörük 

 

 

 

January 2023, 114 pages 

 

 

In this study, an algorithm for the solution of chemically reacting flows in a channel 

reactor is developed by using boundary layer equations. The governing flow 

equations are simplified under certain assumptions with the application of similarity 

transformation. As a consequence of simplification, the characteristics of flow 

equations are changed to parabolic partial differential equations (PDE). Parabolic 

PDEs can be solved by numerical techniques initially designed for ordinary 

differential equations (ODE), such as a method of lines. The spatial terms of the 

equation set are discretized by the finite difference method. The resulting set of 

boundary layer equations is written in differential algebraic form. The set of 

equations is solved as a marching problem in the 2D domain with given initial and 

boundary conditions using MATLAB ode15i solver. The developed algorithm is 

used to investigate the formation of a flame in a reacting channel flow and the 

parameters affecting flame development. 
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ÖZ 

 

KANAL YAPISINDA KİMYASAL REAKSİYONLU AKIŞIN SINIR 

TABAKASI DENKLEMLERİYLE İNCELENMESİ 

 

 

 

Kenar, Doğu Hazar 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Prof. Dr. Yusuf Özyörük 

 

 

Ocak 2023, 114 sayfa 

 

Bu çalışmada, bir kanal reaktörde reaksiyona giren akışların çözümü için sınır 

tabakası denklemleri kullanılarak bir algoritma geliştirilmiştir. Ana akış denklemleri, 

benzerlik dönüşümünün uygulanmasıyla belirli varsayımlar altında 

basitleştirilmiştir. Sadeleştirmenin bir sonucu olarak, akış denklemlerinin özellikleri 

parabolik kısmi diferansiyel denklemlere dönüştürülmüştür. Parabolik kısmi 

diferansiyel denklemlere, başlangıçta çizgi yöntemi gibi adi diferansiyel denklemler 

için tasarlanmış sayısal tekniklerle çözülebilir. Denklem setindeki uzamsal terimler 

sonlu farklar yöntemiyle ayrıklaştırmaktadır. Ortaya çıkan sınır tabakası denklemleri 

seti, diferansiyel cebirsel denklemler şeklinde yazılır ve MATLAB ode15i çözücü 

kullanılarak verilen başlangıç ve sınır koşulları ile 2 boyutlu alanda ilerleyen bir 

problem olarak çözülür. Geliştirilen algoritma kullanılarak, tepkimeye giren bir 

kanal akışında alev oluşumu ve alev gelişimine etki eden parametreler incelenmiştir. 

Anahtar Kelimeler: Sınır Katmanı Denklemleri, Alev Oluşumu, Kanal Yanması 
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CHAPTER 1  

1 INTRODUCTION 

1.1 Background and Early Studies 

Chemically reacting flows in a duct or channel are highly encountered problems in 

industrial cases. Thus, investigating this engineering problem and its solution is still 

an exciting topic in the industry and academia. It is necessary to understand the 

related reacting flow problem to analyze catalytic channel problem physics [1] [2]. 

The catalytic channels are used in the solid-oxide fuel cells as monoliths. In addition, 

in automobiles, the catalytic converters take part [3]. Moreover, catalytic monoliths 

can be used as tubular reactors, in which chemical processes are involved. The 

chemical vapor deposition process is a common example of a chemical process in a 

channel, where film deposition or growth on the channel wall occurs in addition to 

reactions in the flow [4]. The gas-phase reactions in a channel are also widely 

observed in chemically reacting flows. The catalytic tubes are commonly used in 

household type of boilers. In addition, gas-phase chemistry is still being investigated 

in laboratory-scale reactors.  

Boundary layer equations can be used in the simulation of reacting flows developing 

in a channel or duct. With the help of the boundary layer approximation, diffusive 

transport in flow direction can be neglected with respect to convective diffusion [5]. 

This simplification provides a way for the solution of the flow equations coupled 

with species and energy equations.  

There are numerous examples of the numerical modeling of reacting channel flows 

in literature. The most common method of application is the decomposition process. 

Coltrin et al. have studied chemical vapor deposition and provided a mathematical 

model by using boundary layer equations coupled with species equations [4] [6]. 

They described a general boundary layer method for axisymmetric and planar 
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coordinates. They examined the deposition of silicon in a reactor due to the thermal 

decomposition of silane. They modeled boundary layer equations with chemical rate 

equations to produce a coupled system of PDEs in parabolic characteristics and 

solved those equations using numerical methods. The methodology of deriving 

boundary layer equations, making necessary transformations and introducing correct 

boundary conditions for reacting surface is explained in detail. The fields of 

temperature, velocity and species concentration were predicted for the given problem 

using the developed model [4]. Moreover, this study shows the effects of thermal 

diffusion and the multicomponent transport properties on resulting fields of 

temperature, velocity and species concentration [6]. The calculated results of 

decomposition rates were compared with the experimental results. The results show 

to well agree with the experimental results. In addition, they reported the effects of 

gas phase chemical kinetics and the temperature level on silane decomposition, 

indicating that thermal diffusion significantly affects the distribution of chemical 

species concentrations.   

Moreover, the characteristics of the surface reactions in reacting channel flows have 

been an interesting topic for researchers through the years. Andrae et al. have 

conducted a series of studies to investigate the effects of different fuels on wall 

quenching and to observe extinction characteristics of flames [5], [7], [8]. The 

authors started by investigating near-wall chemistry for hydrogen-air combustion in 

a planar duct at lean conditions where the equivalence ratios are 0.5 and 0.1. 

Numerical computation of flow in a 1 cm long 1 cm high planar channel is performed 

to observe the effect of wall temperature and the equivalence ratio on surface 

chemistry for the catalytic and inert walls. The gas-phase hydrogen-air combustion 

and the surface reactions of hydrogen oxidation on platinum were considered and the 

mechanisms were introduced in their study. After the ignition, they investigated the 

interactions of flame and wall in the wall boundary layer. The interactions of flame 

and wall after ignition showed that the development of velocity and thermal 

boundary layers was significantly affected by different wall temperatures. Finally, a 

propane air unburnt mixture is introduced on regions close to the wall. A burnt 
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mixture is introduced at other regions, taking a lower wall temperature to see its 

effect on flame quenching for ranging inlet conditions. The consumption of unburnt 

fuels was considerably affected by the change in fuel-air stoichiometry and wall 

temperature.  

Another typical example of reacting channel flows is the catalytic monoliths. 

Researchers have used these devices in many numerical studies of channel flow 

applications to investigate the characteristics of reacting flows under various 

conditions. Raja et al. have evaluated the solutions of Navier Stokes equations, 

boundary layer equations and plug flow models to analyze reacting flow in catalytic 

monoliths [1]. They modeled a steady state and reacting flow in a honeycomb 

channel to simulate the catalytic combustion of natural gas. The Navier-Stokes 

equations were solved using common and commercially available software, which 

implements a finite-volume discretization method. The boundary layer equations and 

plug-flow models were solved in Chemkin using DASSL software [9]. They used a 

single cylindrical channel geometry with a 2 mm dimeter and 100 mm length in the 

axial direction, with a methane-air mixture for their studies. The walls were held at 

constant temperature and covered with platinum. The flow conditions were selected 

to simulate the combustor conditions of a gas turbine. The validity and comparison 

studies for each model were conducted. They concluded that the results of Navier 

Stokes and boundary layer equations were in good agreement. In addition, Dogwiller 

et al. have numerically investigated the catalytically stabilized combustion of 

methane-air mixtures in lean conditions [10]. The primary target of the study was to 

study the coupling between homogenous and heterogeneous reactions under 

technically applicable operating conditions. The geometry was planar and parallel 

plates with a 2 mm distance between them and 50 mm length in the axial direction. 

The model consisted of 2D elliptic flow equations with gaseous and surface reactions 

and a molecular transport model including thermal diffusion. The radiative heat 

transfer from the catalytic walls and the conduction in solid plates of the wall were 

included in the model. The analyses were conducted for including both surface and 

gaseous reactions and for only surface reactions. They concluded that the effects of 
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adsorption and desorption of species were limited on ignition. In addition, they 

observed that homogenous combustion was dominant and directly affected radial 

production. Finally, they reported that the surface coverage was significantly 

changed in the flow direction; however, platinum and oxygen stayed as major surface 

species.  

Elliptic equations can be used for modeling reacting channel flow problems. 

Deutschmann et al. have numerically studied the partial oxidation of methane in the 

monoliths, of which walls were coated with a noble metal, to investigate short 

contact time reactor modeling [11]. The reactor was modeled using 2D elliptic flow 

equations. The flow was kept in a laminar regime and the temperature and 

composition-dependent transport properties were used in the model. The elementary 

surface reactions were included in the model to calculate the mass fluxes of species 

on the surface. In addition to surface reactions, the gas-phase reactions were also 

considered in the analyses. The simulations of the model were conducted by using 

commonly used commercial software. The dependence of species conversion on the 

surface on flow velocity, diameter, pressure, catalyst material and the fuel-air ratio 

was investigated. A single tube was selected to model the monolith structure. The 

tube diameter varied between 0.25 mm and 1.0 mm and the length was 1 cm. The 

flow in the channel was kept in a laminar regime by considering the Reynolds 

number. They observed that rapid variations of temperature, velocity and transport 

coefficients have occurred in the catalyst entrance of the channel. They concluded 

that the larger diameter of the channel caused a decrease in methane conversion. In 

addition, methane conversion was decreased with the flow velocity. They observed 

that gas-phase reactions could be neglected at atmospheric pressures.  

The parametric analyses of detailed chemistry mechanisms of fuels have been 

investigated with the simulations of reacting channel flows in the monolith 

structures. Hwang et al. have studied the characteristics of a hybrid catalytic 

combustor using boundary layer equations with detailed chemistry [12]. The hybrid 

catalytic combustor consisted of a thermal combustor section and catalytic bed. The 

numerical analyses were validated with the experimental data given in the literature 
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for the platinum-coated monolith. A parametric study for different flow properties, 

such as temperature, equivalence ratio, inlet pressure, velocity and channel entrance 

diameter, was conducted to study the effects of those parameters on catalytic 

combustion. A cylindrical and symmetric single-channel structure with a 0.15 cm 

diameter and 8.0 cm length was modeled for the analyses. A premixed methane-air 

mixture was introduced into the channel at atmospheric pressure. A Chemkin solver 

was used for the numerical calculations. They concluded that homogeneous and 

heterogeneous chemistry must be used for chemical reactions in the catalyst bed.  

In addition to numerical studies, experiments on reacting channel flows have been 

conducted by researchers. Di Stazio et al. have experimentally studied the 

combustion of methane-air mixtures in a microchannel over a range of equivalence 

ratios and flow velocities to obtain detailed insight into flame behavior [13]. They 

developed new experimental devices to examine premixed air and methane 

combustion in narrow channels. The experiments were conducted at atmospheric 

pressure. Hydrogen-oxygen flames heated the channel downstream of the tube to 

satisfy uniform heating inside the channel. The inlet flow rate was varied between 

0.03 m/s and 1.3 m/s in a channel with a 2.15 mm diameter to compare the results 

with previous studies. The experiments were conducted using a tube with a 1.85 mm 

diameter. In addition, the equivalence ratio varied between 0.5 and 1.5 in the 

experiments. The resulting stabilization position of flame for different conditions 

was presented as a function of inlet velocity, equivalence ratio and wall temperature. 

In addition, instability analyses for the flame for varying conditions were conducted 

and the results were reported. Moreover, the effect of flow velocity, heat source and 

equivalence ratio on flame shape were analyzed and the results were reported with 

their comparison by previous studies. They validated their new test setup using 

previous studies and provided a detailed frequency analysis for flames. 

Another study of reacting channel flows with the wall temperature variation has been 

conducted using numerical and experimental methods. Maruta et al. have 

experimentally, numerically and analytically investigated premixed combustion in a 

heated channel [14]. The diameter of the channels was selected to be smaller than 
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the quenching distance of the fuel-oxidizer mixture. A cylindrical tube with a 2 mm 

inner diameter was used in the analyses to model the channel. In addition, the tube 

was heated on the downstream part by an external heat source to create a temperature 

gradient in the middle of the tube in the axial direction. In this channel, premixed 

flames were stabilized depending on the temperature gradient. The methane-air and 

propane-air mixtures with varying flow rates and fuel-air ratios were introduced into 

the channel using a controller in the experiments. The stationary flat premixed 

flames, pulsating flames and oscillating flames with high frequency were observed 

in the tube. In addition to the experiments, a stability analysis was conducted with 

detailed mechanisms using a 1D laminar model. They concluded that different flame 

modes were observed for intermediate mixture velocities in the experiments. In 

addition, they reported that experimental results and numerical results for stability 

analysis were in good agreement.  

The transient process of catalytic combustion is another field of research for reacting 

channel flows. Schwiedernoch et al. have experimentally and numerically studied 

the catalytic ignition of methane in a cylindrical monolith, of which walls were 

coated with platinum, to investigate transient processes of catalytic combustion in 

monoliths [15]. In the experimental part of the study, the mixture of methane-

oxygen-argon was introduced into a honeycomb monolith with platinum walls 

placed in a furnace. At the exit of the monolith, the temperature and species 

concentration were measured and analyzed. The study's numerical part investigated 

the temperature distribution around the solid structure and the flow field inside a 

single channel. The boundary layer equations were used for the modeling of the 

numerical problem. In addition, multistep surface reactions were included in the 

model. The heat transfer for the solid structure was coupled with the flow equations. 

The ignition temperatures, the exit temperature and species concentrations were 

numerically calculated and experimentally measured. For numerical calculations of 

the boundary layer equations, the DETCHEM code was used [16]. Data obtained by 

the two methods were compared for varying ratios of methane and oxygen in the 

mixture. The analyses were conducted under atmospheric pressure conditions. They 
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concluded that the simulation and experiment data were in excellent agreement. An 

increasing percentage of methane in the mixture increased the formation of 

hydroxide. For those cases, gas-phase reactions had to be included in the model. 

Moreover, they reported that the ignition was first started at the rear end of the 

outmost channels. At that time, the inner channels were cooled down by incoming 

flow. After the entire structure was heated, inner channels were ignited, beginning at 

the rear end.  

Finally, the simulations of reacting channel flows can be used as a validation tool for 

the chemistry mechanisms of various fuels. Weedle et al. have developed a boundary 

layer model to investigate chemically reacting flow in a Chen nozzle, an 

experimental device to create a high-speed choked flow. The channel had a diameter 

of 1 mm and a reactor length of 32 mm. The walls of the reactor were held at a 

constant high temperature. For numerical evaluation, a boundary layer model for 

steady, axisymmetric channel flow was used. MATLAB ode15i function was used 

to assess a coupled parabolic set of equations. The slip boundary conditions were 

applied to the model. The premixed mixture of acetaldehyde and air was introduced 

into the channel for the analyses. The developed model was used to evaluate 

measured data. As a result, a model was proposed to be used to develop reaction 

mechanisms. They concluded that measured species concentrations by experiment 

could be predicted and evaluated by the model.  

Most studies conducted for numerical model development for reacting flow in a 

channel include catalytic or decomposition surface reactions. However, sensitivity 

analyses and the effects of flow parameters on flame development for inert walls are 

limited in the literature. Also, developing an in-house code for reacting channel flow 

can be used to validate internally developed experiment setups. In this study, a code 

for chemically reacting flows in a channel reactor is formed by using boundary layer 

equations. Similarity transformation rules are applied to the governing flow 

equations under certain assumptions. Due to the simplification, the characteristics of 

governing flow equations are changed to parabolic PDEs. Parabolic PDEs are solved 

numerical techniques initially designed for ODEs using a method of lines. The 
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spatial terms are discretized by the finite difference method. The resulting set of 

boundary layer equations is written in differential algebraic equations. It is solved as 

a marching problem in the 2D domain with given initial and boundary conditions by 

using MATLAB ode15i solver. The flame position in a reacting channel flow and 

the parameters affecting flame development are investigated using the developed 

algorithm. 

In this study, the channel flow reactors are first introduced as practical devices. 

Previous studies on numerical and experimental studies for modeling reacting 

channel flow are reviewed. Secondly, the theory of flow equations and boundary 

layer equations are discussed in detail. In addition, the theory of reacting boundary 

layer equations and their derivation for the numerical model is explained in detail. 

Furthermore, the numerical approach to model reacting channel flow is described. 

The solver and chemical library used by the developed code are presented. Finally, 

case problems for validation of generated code are introduced. In addition, 

parametric analyses of flow parameters to investigate their effect on flame 

development are conducted. Discussions of the results are presented.   
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CHAPTER 2  

2 THEORY 

In this section, the fundamental equations for boundary layer equations are 

discussed. Similarity arguments as a simplification method and their well-known 

examples are presented. Later, boundary layer equations for chemically reacting 

flows are derived and discretized to be integrated numerically.  

2.1 Definitions of Fundamental Equations  

Many problems in fluid dynamics can be explained by the action of the particles in 

a finite space. The analyses of fluid particles depend on fundamental principles of 

physics, which are the conservation of mass, conservation of momentum and the 

laws of thermodynamics [17]. 

2.1.1 Conservation of Mass 

The conservation of mass states that the amount of mass coming in and out of a 

closed system should be equal [17].  

{
Rate of Change 

of Mass 

of System 

} = {
Rate of Change 

of Mass in 

Control Volume 

} + {
Rate of Mass Flow

Through 

Control Surface

}  

 

Therefore, the continuity equation can be defined in differential form as follows 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�⃗� ) = 0 (2.1) 
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2.1.2 Conservation of Momentum 

Conservation of momentum is based on Newton’s second law of motion, which 

states that the rate of change of momentum of a body equals the total forces applied 

to it [17].  

{

Rate of Change 

of Linear 
Momentum
of System 

} = {

Rate of Change 

of Linear 

Momentum in 

Control Volume 

} + {
Rate of Momentum 

Flow Through 

Control Surface

}  

 

𝑑

𝑑𝑡
 (𝑚�⃗� ) =  

𝑑

𝑑𝑡
(∫ �⃗� 𝜌𝑑𝑉

 

𝐶𝑉

) + ∫ �⃗� 𝜌(�⃗� ∙ �̂�)𝑑𝐴
 

𝐶𝑆

 (2.2) 

 

The conservation of momentum can be defined for an infinitesimally small fluid 

element by using differential-form expression as follows [19].  

𝑑

𝑑𝑡
 (𝜌�⃗� ) + �⃗�  ∙ (∇𝜌�⃗� ) = (𝜌𝑓 − ∇𝑝 + ∇𝜎𝑖𝑗)  (2.3) 

 

The stresses are modeled as a linear variation of deformation rates for each direction 

for viscous flows[18]: 

𝜎𝑖𝑗 = 2𝜇
𝜕𝑣𝑖

𝜕𝑥𝑖
 

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑣𝑖

𝜕𝑥𝑗
+ 

𝜕𝑣𝑗

𝜕𝑥𝑖
) 

(2.4) 

 

The Navier-Stokes equations are obtained by combining viscous flow representation 

of stress terms into an equation of motion. The Navier-Stokes equations are basic 

motion equations used to describe the flow of Newtonian fluid and are named in 

honor of Claude-Louis Navier and George Stokes [17].  
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𝜕𝜌𝑢

𝜕𝑡
+  𝑢

𝜕

𝜕𝑥
(𝜌𝑢)  +  𝑣 

𝜕

𝜕𝑦
(𝜌𝑢 )  +  𝑤

𝜕

𝜕𝑧
(𝜌𝑢)  

=  −
𝜕𝑝

𝜕𝑥
 +  𝜇 (

𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑢

𝜕𝑦2
+ 

𝜕2𝑢

𝜕𝑧2
) +  𝜌𝑔𝑥 

𝜕𝜌𝑣

𝜕𝑡
+  𝑢

𝜕

𝜕𝑥
(𝜌𝑣)  +  𝑣 

𝜕

𝜕𝑦
(𝜌𝑣 )  +  𝑤

𝜕

𝜕𝑧
(𝜌𝑣)  

=  −
𝜕𝑝

𝜕𝑦
 +  𝜇 (

𝜕2𝑣

𝜕𝑥2
+ 

𝜕2𝑣

𝜕𝑦2
+ 

𝜕2𝑣

𝜕𝑧2
) +  𝜌𝑔𝑦 

𝜕𝜌𝑤

𝜕𝑡
+  𝑢

𝜕

𝜕𝑥
(𝜌𝑤)  +  𝑣 

𝜕

𝜕𝑦
(𝜌𝑤 )  +  𝑤

𝜕

𝜕𝑧
(𝜌𝑤)  

=  −
𝜕𝑝

𝜕𝑧
 +  𝜇 (

𝜕2𝑤

𝜕𝑥2
+ 

𝜕2𝑤

𝜕𝑦2
+ 

𝜕2𝑤

𝜕𝑧2
) +  𝜌𝑔𝑧 

(2.5) 

 

2.1.3 Energy Equation 

The energy equation is based on the first law of thermodynamics. It is stated that 

energy cannot be created or destroyed [20]. The first law of thermodynamics is 

written for a system as [17]: 

{

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 
𝑜𝑓 𝑆𝑡𝑜𝑟𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 

𝑜𝑓 𝑆𝑦𝑠𝑡𝑒𝑚
} = {

Rate of Energy 

Addition by Heat 

Transfer to System 

} + {

Rate of Energy 

Addition by Work 

to System

}  

 

𝐷

𝐷𝑡
∫ 𝑒𝜌𝑑𝑉 =  �̇�𝑛𝑒𝑡 + �̇�𝑛𝑒𝑡

 

𝑠𝑦𝑠

 (2.6) 

 

The stored energy is the sum of internal energy, kinetic energy and potential energy 

per unit mass: 

𝑒 = 𝑢 +
𝑉2

2
+ 𝑔𝑧 (2.7) 
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The net heat flux is the sum of heat conduction and heat transfer due to species mass 

flux across the control surface [21]. Fourier’s law defines heat flux in a system:  

𝑞 =  −𝜆∇𝑇 (2.8) 

 

The work done on the system can also be written for a differential element after 

detailed tensor calculations as follows [21]:  

𝑑𝑊

𝑑𝑡
= ∇ ∙ (�⃗� ∙ 𝑇)𝛿𝑉    (2.9) 

 

The energy equation can be expressed in terms of temperature by combining these 

equations for an ideal gas as follows [21]: 

𝜌𝑐𝑝

𝐷𝑇

𝐷𝑡
=

𝐷𝑝

𝐷𝑡
 +  𝛻 ∙ 𝜆𝛻𝑇  − ∑ 𝑐𝑝𝑘(𝑗 𝑘 ∙ 𝛻𝑇)

𝐾

𝑘=1

− ∑ ℎ𝑘�̇�𝑘𝑊𝑘 + 𝛷

𝐾

𝑘=1

 (2.10) 

 

A chemical reaction term is found in the temperature form of the energy equation 

since a change in potential energy on the chemical bonds of species to thermal energy 

affects the temperature changes[21]. 

2.1.4 Conservation of Species  

Conservation of species should be taken into account when computing chemically 

reacting flows. The fluid is generally a mixture of fuel, oxidizer and inert species for 

reacting flows. For that reason, it is necessary to define the relation between mass 

flux and species concentration [21].  

Mass fraction is the most elementary quantity for species conservation and can be 

expressed with the given conditions: 
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𝑌𝑘 = 
𝜌𝑘

𝜌
 

∑𝜌𝑘 = 𝜌𝑡𝑜𝑡𝑎𝑙

𝐾

𝑘

   ∑𝑌𝑘 = 1

𝐾

𝑘

 

(2.11) 

 

When the flow is non-homogenous for species concentrations, species transportation 

inside the flow is occurred by molecular diffusion due to concentration differences 

in flow regions. This tendency is modeled by Fick’s law, which states that the species 

concentration gradient is proportional negatively to a diffusive mass flux of that 

species [21][22]. Diffusive mass flux can be expressed as follows using Fick’s Law: 

𝑗 = 𝜌𝑌𝑘𝑉𝑘
⃗⃗⃗⃗  (2.12) 

 

Vk
⃗⃗ ⃗⃗   is diffusion velocity vector for species k and it can be defined as follows  

𝑉𝑘
⃗⃗⃗⃗ =  −

1

𝑋𝑘
𝐷𝑘𝑚

′ 𝛻𝑋𝑘 (2.13) 

 

where Dkm
'  is mixture averaged diffusion coefficient term for species k with respect 

to the mixture and Xk is the molar fraction for species k. 

The species mass flux is written by combining these relations: 

𝑗 = −𝜌
𝑌𝑘

𝑋𝑘
𝐷𝑘𝑚

′ 𝛻𝑋𝑘 (2.14) 

 

With these expressions, the species conservation equation can be written in integral 

form as follows [21]: 

(
𝑑𝑚𝑘

𝑑𝑡
)

𝑠𝑦𝑠
= −∫ 𝑗 

 

𝐶𝑆

∙ �̂�𝑑𝐴 + ∫ �̇�𝑘𝑊𝑘𝑑𝑉
 

𝐶𝑉

 (2.15) 

 



 

 

14 

The species conservation equation can be written for a differential element Using 

divergence theory [22]: 

𝜌
𝐷𝑌𝑘

𝐷𝑡
=  − ∇ ∙ 𝑗 + �̇�𝑘𝑊𝑘  (2.16) 

 

2.2 Classifications of Differential Equations 

The conservation equations defining the fluid flow are a coupled nonlinear partial 

differential equations system. The Navier-Stokes equations contain second 

derivatives of velocity and temperature with respect to an independent spatial 

variable. Therefore, they can be labeled as second-order partial differential 

equations. The solution of second-order partial differential equations is highly 

dependent on their types, which are namely elliptic, parabolic and hyperbolic.  

In order to start the classification of second-order partial differential equations, the 

following general form for partial equations can be considered [23], where 

independent variables are x and y, the dependent variables are "ϕ",  and the 

coefficient of the terms are respectively A, B, C, D, E, F and G. 

𝐴
𝜕2𝜙

𝜕𝑥2
 +  𝐵

𝜕2𝜙

𝜕𝑥𝜕𝑦
 +  𝐶

𝜕2𝜙

𝜕𝑦2
 +  𝐷

𝜕𝜙

𝜕𝑥
 +  𝐸

𝜕𝜙

𝜕𝑦
 +  𝐹𝜙 +  𝐺 =  0 (2.17) 

 

The terms not containing second-order derivatives can be summed on the right-hand 

side and the general form can be written as follows [2].  

𝐻 =  − (𝐷
𝜕𝜙

𝜕𝑥
 +  𝐸

𝜕𝜙

𝜕𝑦
 +  𝐹𝜙 +  𝐺) 

𝐴
𝜕2𝜙

𝜕𝑥2
 +  𝐵

𝜕2𝜙

𝜕𝑥𝜕𝑦
 +  𝐶

𝜕2𝜙

𝜕𝑦2
 =  𝐻 

(2.18) 
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For the second-order derivatives to exist and to be calculated, the first-order 

derivatives must be existing and continuous functions of independent variables of x 

and y [2]. As such, the first-order derivatives of "ϕ" can be written to represent the 

change of the characteristics between two locations of (x,y) and (x+dx,y+dy)  

𝑑 (
𝜕𝜙

𝜕𝑥
)  =  

𝜕

𝜕𝑥
 (

𝜕𝜙

𝜕𝑥
) 𝑑𝑥 + 

𝜕

𝜕𝑦
(
𝜕𝜙

𝜕𝑥
)  𝑑𝑦 

𝑑 (
𝜕𝜙

𝜕𝑦
)  =  

𝜕

𝜕𝑥
(
𝜕𝜙

𝜕𝑦
)𝑑𝑥 +

𝜕

𝜕𝑦
 (

𝜕𝜙

𝜕𝑦
)  𝑑𝑦 

(2.19) 

 

The resulting equations can be written in matrix form [2]. In this form of the 

equation, Cramer’s rule can be applied to solve the second-order derivatives of the 

dependent variable ϕ.  

[

𝐴 𝐵 𝐶
𝑑𝑥 𝑑𝑦 0
0 𝑑𝑥 𝑑𝑦

] [

𝜕2𝜙 𝜕𝑥2⁄

𝜕2𝜙 𝜕𝑥𝜕𝑦⁄

𝜕2𝜙 𝜕𝑦2⁄

] =  [

𝐻
𝑑(𝜕𝜙 𝜕𝑥⁄ )

𝑑(𝑦)
] (2.20) 

The unique solutions of "ϕ" can be obtained by the result of this method unless 

discontinuities arise in the determinant of the coefficient matrix. The characteristic 

equation of the general form of a second-order partial differential equation can be 

obtained by setting the determinant of the coefficient matrix to zero. 

𝐴(𝑑𝑦)2 − 𝐵(𝑑𝑥)(𝑑𝑦) + 𝐶 (𝑑𝑥)2 = 0 (2.21) 

 

The solution of the characteristic equation represents the characteristic curves of the 

second-order partial differential equation [2].  

𝑑𝑦

𝑑𝑥
=  

𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
 (2.22) 

 

The characteristic values are determined according to the sign of the discriminant of 

the characteristic curve representation formula. The value of the discriminant can be 

positive, zero, or negative so that the characteristic curves can be real and distinct, 
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real and repeated and complex, respectively. The classification of partial differential 

equations depends on this value, as represented in Table 2.1[2]. 

 

Table 2.1 Classification of Partial Differential Equations [23] 

B2-4AC Characteristic Curves Classification 

Positive Real and Distinct Hyperbolic 

Zero Real and Repeated Parabolic 

Negative Complex Elliptic 

 

When the value of the discriminant of characteristic lines representation is zero, there 

exists one real and repeated characteristic line and the partial differential equation is 

classified as parabolic. The viscosity diffusion equation and one-dimensional 

unsteady heat transfer equations are examples of parabolic PDEs. In order to define 

the problem and obtain a solution for parabolic PDEs, the initial condition for 

dependent variables and boundary conditions for two boundaries are required. The 

solution of parabolic PDEs is obtained by marching the initial conditions through the 

domain by satisfying boundary conditions [2][3].  

The following figure shows the solution domains for the different classifications of 

partial differential equations [3]. 
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Figure 2.1 2D Domains For Different Partial Differential Equations [21] 

 

The problem can be either unsteady or steady. The dependent variables are presented 

in the (t,x) domain in unsteady problems. The initial conditions are prescribed at 

initial time t0 and are marched forward in the time domain to get the complete 

solution in the domain of (t,x). In steady problems, the dependent variables are 

defined in the (x,y) domain, where both independent variables are spatial. The initial 

conditions are described at the initial location y0 and are marched forward in the 

space of y-direction. The characteristic of time in unsteady problems and spatial 

direction in steady problems are identical, so the direction of marching in steady 

problems is called time-like direction. 

2.3 Similarity Theory 

The Navier Stoke equations are non-linear and second-order partial differential 

equations defining the motion of the fluids. Due to the complexity of Navier Stokes 

equations, the exact mathematical solution is not commonly introduced except for a 
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few examples. Therefore, approximations are required to make the problems less 

complex and solvable by fluid equations under certain situations. One of the most 

important steps before the solution of flow equations is to analyze the relative effects 

of terms in the solution. The terms in the flow equations can be related with suitable 

chosen reference values to obtain dimensionless independent and dependent 

variables in flow equations [19]. With the help of the similarity method, the relative 

effects of the dimensionless terms on each other can be achieved by comparing their 

coefficients to simplify the equations. As a result of these simplifications, the 

characteristics of equations are changed to parabolic, which can be efficiently solved. 

The dimensionless quantities can be considered as follows with respect to reference 

length, reference velocity, reference density, and reference time [19]: 

�̂� =  
𝑥

𝑙
 

�̂� =  
𝑣

𝑈
 

�̂�  =  
𝜌

𝜌𝑅
 

�̂�  =  
𝑡 𝑈

𝑙
 

(2.23) 

The continuity equation and momentum equation are written as follows using 

reference arguments:  

𝐷�̂�

𝐷�̂�
=  −�̂� 𝑑𝑖𝑣 ̂ 𝑣   

�̂�  
𝐷 𝑣 

𝐷�̂�
=  − 𝑔𝑟𝑎𝑑 ̂ �̂� + 

1

𝑅𝑒
 𝐷𝑖�̂� [�̂� (2𝜀̂ − 

2

3
 𝛿 𝑑𝑖𝑣 ̂ 𝑣 )] 

(2.24) 

Where Reynolds number is written using reference quantities, 

𝑅𝑒 =  
𝜌𝑅𝑈𝑙

𝜇𝑅
 (2.25) 

 

The exact solution of the parabolic Navier Stoke equation can only be obtained under 

certain assumptions and using similarity parameters. One example of exact solutions 



 

 

19 

is based on the two-dimensional, steady state, incompressible and parallel flow 

between one stationary and one moving plate. The flow can be called parallel when 

one of the velocity components is zero and the other is non-zero. Thus, the particles 

of fluid can move in the same direction [19]. In addition, velocity cannot be 

dependent on the independent variable of the flow direction, which can be called x. 

Thus,  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

𝜕𝑢

𝜕𝑥
= 0 

𝑢 = 𝑢(𝑦); 𝑣 = 0 

(2.26) 

 

For Navier Stokes equations, radial velocity vanishes in the radial direction and the 

resulting equation becomes as follows, which means the pressure is only dependent 

on axial direction. In the axial direction, the convective derivatives vanish since the 

velocity only depends on the radial direction. 

𝜕𝑝

𝜕𝑦
= 0 

𝜕𝑝

𝜕𝑥
= μ

∂
2
u

∂y
2
 

(2.27) 

 

The remaining set of equations, which are linear differential equations having two 

unknowns, u(y) and p(x), become analytically solvable after defining the 

corresponding boundary conditions. The terms on both sides can be set to constant 

value C to obtain the solution. 

Boundary conditions are: y = 0 u = 0 , y = H, u = U 

𝜕𝑝

𝜕𝑥
= μ

∂
2
u

∂y
2
= 𝐶 (2.28) 
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Figure 2.2. Dimensionless Velocity Profiles [19] 

The solution of the flow field can be found as follows after applying boundary 

conditions. 

𝑢 =
𝐶1

𝜇
𝑦2 +

𝐶2

𝜇
𝑦 + 𝐶3 

𝑢 =
𝑦

𝐻
𝑈 −

𝐻2

2𝜇

𝑑𝑝

𝑑𝑥

𝑦

𝐻
(1 −

𝑦

𝐻
) 

(2.29) 

 

The resulting flow field is called Coutte-Poiseuille flow [19] and the value of the 

velocity field is determined according to the value of the pressure gradient in the 

axial direction.  

Another example of exact solutions is based on the assumptions of the two-

dimensional, incompressible and plane flow with very low viscosity passing a 

slender geometry [19].  
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Figure 2.3. Velocity profile on slender geometry [19] 

It can be easily assumed that the thickness of boundary layer δ, which is proportional 

to the square-root of kinematic viscosity [19], is very small compared to the length 

of the geometry l, which is δ ≪ l. Thus, the relation becomes as 

𝛿

𝑙
 ~ 

1

√𝑅𝑒
 (2.30) 

 

The order of the terms in the dimensionless form of the Navier-Stokes equation takes 

the following magnitudes 

1

𝑅𝑒

𝜕2�̂�

𝜕�̂�2
 ~ 𝛿2 

𝑣 ~ 𝛿       , �̂� ~ 𝛿 

(2.31) 

 

Since the value of dimensionless velocity in the radial direction term and spatial term 

of radial direction becomes too small, while the thickness of the boundary layer goes 

to zero, it is more appropriate to define new variables v̅ and y̅ as 

v̅  ~ 𝑣 𝛿⁄        , y̅ ~ �̂� 𝛿⁄  (2.32) 
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Finally, Prandtl boundary layer equations can be obtained by simplifying negligibly 

small terms when the value of the Reynolds number goes to infinity. 

𝜕�̂� 

𝜕�̂�
+

𝜕�̅�

𝜕�̅�
= 0 

𝜕�̂�

𝜕�̂�
+ �̂�

𝜕�̂�

𝜕�̂�
+ �̅�

𝜕�̂�

𝜕�̂�
= −

𝜕�̂�

𝜕�̂�
+

𝜕2�̂�

𝜕�̅�2
 

0 = −
𝜕�̂�

𝜕�̅�
 

(2.33) 

 

Moreover, the pressure gradient term can be eliminated from equations by equating 

velocity distribution inside the boundary layer to outer velocity distribution at the 

outer edge limit of the boundary layer. For given outer flow velocity distribution 

U(x,t), the boundary layer equations for incompressible plane flows can be solved 

with appropriate boundary conditions and the velocity distribution inside the 

boundary layer can be calculated.  

The final example of the exact solution is called the Hagen Poiseulle flow. The 

solution of the fully developed axisymmetric flow through a pipe in circular 

coordinates can be written using the similarity solutions of Navier-Stokes equations. 

The previously introduced boundary layer equations can be used to solve steady pipe 

flow in a circular coordinate system[24]. Thus, the resulting momentum equation in 

the axial direction can be written as follows.   

𝑑𝑝

𝑑𝑥
= 𝜇 (

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝑑𝑢

𝑑𝑟
) (2.34) 

 

With the no-slip boundary conditions on the wall, the solution of the velocity field 

in the pipe becomes as follows [19].  

𝑢(𝑟) =  𝑢𝑚𝑎𝑥 (1 −
𝑟2

𝑅2
) (2.35) 
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𝑢𝑚𝑎𝑥 = 2𝑢𝑚𝑒𝑎𝑛 =
𝑅2

4𝜇
(−

𝑑𝑝

𝑑𝑥
) (2.36) 

 

These relations can be used as the analytical solution for the flow in a pipe and shows 

excellent agreement with the experimental measurements, while the Reynolds 

number for the corresponding flow is below 2300, which is the critical Reynolds 

number [19].  

The usage of similarity arguments in the solution of flow problems is summarized 

with examples of the exact solution of the Navier-Stokes equations. In this study, 

similarity variables are also used in simplifying flow equations. In addition, the 

boundary layer equations are non-dimensionalized by using similarity arguments. 

After the simulations are completed, the similarity analyses of the parameters of 

reacting channel flow are conducted and the similitude parameters are defined.  

2.4 Simplification of Flow Equations using Scaling Arguments 

The fundamental flow equations and similarity theory with its examples are 

discussed in the previous chapter in detail. The generation of boundary layer 

equations using scaling arguments is one of the solutions to Navier Stoke’s 

equations. The boundary layer equations can also be used to solve reacting flows in 

channels.  

The derivation of boundary layer equations can be started by defining the 

conversation of mass, momentum and species and energy equations, respectively, 

for cylindrical coordinates of an ideal-gas mixture [21]: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑧
+

1

𝑟

𝜕(𝑟𝜌𝜈)

𝜕𝑟
= 0 (2.37) 
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𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+ 𝜈

𝜕𝑢

𝜕𝑟
)

=  − 
𝜕𝑝

𝜕𝑧
+

𝜕

𝜕𝑧
 [2𝜇

𝜕𝑢

𝜕𝑧
+ 𝜅𝛻 ∙ 𝑽] +

1

𝑟

𝜕

𝜕𝑟
[𝜇𝑟 (

𝜕𝜈

𝜕𝑧
+

𝜕𝑢

𝜕𝑟
)]

+ 𝑓𝑧 

(2.38) 

 

𝜌 (
𝜕𝜈

𝜕𝑡
+ 𝑢

𝜕𝜈

𝜕𝑧
+ 𝜈

𝜕𝜈

𝜕𝑟
)

=  − 
𝜕𝑝

𝜕𝑟
+

𝜕

𝜕𝑧
 [𝜇 (

𝜕𝜈

𝜕𝑧
+

𝜕𝑢

𝜕𝑟
)] +

𝜕

𝜕𝑟
[2𝜇

𝜕𝜈

𝜕𝑟
+ 𝜅𝛻 ∙ 𝑽]

+
2𝜇

𝑟
[
𝜕𝜈

𝜕𝑟
−

𝜈

𝑟
] + 𝑓𝑟 

(2.39) 

 

𝜌
𝐷𝑌𝑘

𝐷𝑡
=  𝜌 (

𝜕𝑌𝑘

𝜕𝑡
+ 𝑢

𝜕𝑌𝑘

𝜕𝑧
+ 𝜈

𝜕𝑌𝑘

𝜕𝑟
) =  − (

𝜕𝑗𝑘,𝑧

𝜕𝑧
+

1

𝑟

𝜕𝑟𝑗𝑘,𝑟

𝜕𝑟
) + �̇�𝑘𝑊𝑘 (2.40) 

 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑧
+ 𝜈

𝜕𝑇

𝜕𝑟
)

= (
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑧
+ 𝜈

𝜕𝑝

𝜕𝑟
)  + 

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
) + 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜆

𝜕𝑇

𝜕𝑟
) 

− ∑ 𝑐𝑝𝑘 (𝑗𝑘,𝑧

𝜕𝑇

𝜕𝑧
+ 𝑗𝑘,𝑟

𝜕𝑇

𝜕𝑟
)

𝐾

𝑘=1

− ∑ ℎ𝑘�̇�𝑘𝑊𝑘 + 𝛷

𝐾

𝑘=1

 

 

(2.41) 

 

The reacting boundary layer equations are derived assuming steady, axisymmetric 

flow at low-speed with no body force satisfying Stokes hypothesis. [25]. 

For axisymmetric cylindrical coordinates, the divergence of the flow field is written 

as follows: 

𝛻 ∙ �⃗� =  
𝜕𝑢

𝜕𝑧
+

𝜕𝜈

𝜕𝑟
+

𝜈

𝑟
 (2.42) 
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Moreover, Stokes theorem is used to relate two terms of viscosities given as follows:  

𝜅 =  − 
2

3
𝜇 (2.43) 

 

Using these relations, the conservation of mass and momentum equations are 

simplified for cylindrical coordinates. The scaling arguments can be applied to 

simplified equations to observe the scale relations between terms to obtain boundary 

layer equations.  

𝜕(𝜌𝑢)

𝜕𝑧
+

1

𝑟

𝜕(𝑟𝜌𝜈)

𝜕𝑟
= 0 (2.44) 

 

𝜌𝑢
𝜕𝑢

𝜕𝑧
+ 𝜌𝜈

𝜕𝑢

𝜕𝑟

= − 
𝜕𝑝

𝜕𝑧
+

𝜕

𝜕𝑧
 [
4

3
𝜇

𝜕𝑢

𝜕𝑧
−

2

3

1

𝑟

𝜕(𝑟𝜈)

𝜕𝑟
]

+
1

𝑟

𝜕

𝜕𝑟
[𝜇𝑟 (

𝜕𝜈

𝜕𝑧
+

𝜕𝑢

𝜕𝑟
)] 

(2.45) 

 

𝜌𝑢
𝜕𝜈

𝜕𝑧
+ 𝜌𝜈

𝜕𝜈

𝜕𝑟
= − 

𝜕𝑝

𝜕𝑟
+

𝜕

𝜕𝑧
 [𝜇 (

𝜕𝜈

𝜕𝑧
+

𝜕𝑢

𝜕𝑟
)]

+
𝜕

𝜕𝑟
[
4

3
𝜇

𝜕𝜈

𝜕𝑟
−

2

3
𝜇 (

𝜕𝑢

𝜕𝑧
+

𝜈

𝑟
)] +

2𝜇

𝑟
[
𝜕𝜈

𝜕𝑟
−

𝜈

𝑟
] 

 

(2.46) 

The boundary layer approach scales the arguments in Navier Stokes equations to 

reduce negligible terms under certain conditions. The derivation starts with non-

dimensionalizing the equations by using reference scaling arguments to make all 

dependent and independent variables order one. Then, the magnitudes of terms are 

relatively compared and the negligible terms are sought.  
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�̂� =
𝑧

𝑧𝑠
  , �̂� =

𝑟

𝑟𝑠
  , �̂� =

𝑢

𝑢0
  , �̂� =

𝜈

𝜈𝑠
  , �̂� =

𝜌

𝜌0
   

�̂� =
𝜇

𝜇0
  , �̂� =

𝑝

𝜌0𝑢0
2 

(2.47) 

 

The reference scales are, respectively zs is for axial coordinate, rs is for radial 

coordinate, u0 is for axial velocity, ρ
0
 and μ

0
 are for density and viscosity and νs is 

for radial velocity. The reference scales for coordinates are arbitrary at the beginning 

of the derivation. The axial velocity reference scale is a uniform inlet velocity, and 

density and viscosity scales are their values in the inlet, respectively. Finally, the 

radial velocity reference scale is unknown. 

Conservation of mass equation is expressed in terms of reference scales and flow 

properties as follows:  

(
𝜌0𝑢0

𝑧𝑠
)
𝜕(�̂��̂�)

𝜕�̂�
+ (

𝜌0𝜈𝑠

𝑟𝑠
)
1

�̂�

𝜕(�̂��̂��̂�)

𝜕�̂�
= 0 (2.48) 

 

The two terms of the continuity equation must be retained for the two-dimensional 

boundary layer equation as order one-terms. Thus, the axial and radial velocity scales 

must be related to each other. 

ρ
0
u0

zs

= 
ρ

0
νs

rs

  

νs= 
u0rs

zs

 

(2.49) 

 

The mass conservation equation is simplified to the following form using the 

introduced relations. 

𝜕(�̂��̂�)

𝜕�̂�
+

1

�̂�

𝜕(�̂��̂��̂�)

𝜕�̂�
= 0 (2.50) 
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Conservation of the momentum equation in the axial direction is presented below, 

considering the previous scale relation in the non-dimensional form: 

(
𝜌0𝑢0

2

𝑧𝑠
) �̂��̂�

𝜕�̂�

𝜕�̂�
 +  (

𝜌0𝑢0

𝑟𝑠
 (

𝑢0𝑟𝑠
𝑧𝑠

)) �̂��̂�
𝜕�̂�

𝜕�̂�
 

=  −(
𝜌0𝑢0

2

𝑧𝑠
) 

𝜕�̂�

𝜕�̂�
 +  (

𝜌0𝑢0

𝑧𝑠
2

)
𝜕

𝜕�̂�
 [
4

3
�̂�

𝜕�̂�

𝜕�̂�
−

2

3
�̂�

1

�̂�

𝜕(�̂��̂�)

𝜕�̂�
]

+ (
𝜇0

𝑟𝑠𝑧𝑠
 (

𝑢0𝑟𝑠
𝑧𝑠

))
1

�̂�

𝜕

𝜕�̂�
(�̂��̂�

𝜕�̂�

𝜕�̂�
)  + (

𝜇0𝑢0

𝑟𝑠2
 )

1

�̂�

𝜕

𝜕�̂�
(�̂��̂�

𝜕�̂�

𝜕�̂�
) 

(2.51) 

 

Reynolds number can be defined with respect to the channel radius as Rer=
ρ0u0rs

μ0

 and 

all terms can be multiplied with 
zs

ρ0u0
2  to simplify and get the axial momentum 

equation in the following form. 

 

�̂��̂�
𝜕�̂�

𝜕�̂�
 +  �̂��̂�

𝜕�̂�

𝜕�̂�
 

=  − 
𝜕�̂�

𝜕�̂�
  

+  (
𝑟𝑠
𝑧𝑠

 
1

𝑅𝑒𝑟
) {

𝜕

𝜕�̂�
 [
4

3
�̂�

𝜕�̂�

𝜕�̂�
−

2

3
�̂�

1

�̂�

𝜕(�̂��̂�)

𝜕�̂�
]  

+  
1

�̂�

𝜕

𝜕�̂�
(�̂��̂�

𝜕�̂�

𝜕�̂�
)}  +  (

𝑧𝑠

𝑟𝑠
 

1

𝑅𝑒𝑟
) 

1

�̂�

𝜕

𝜕�̂�
(�̂��̂�

𝜕�̂�

𝜕�̂�
) 

(2.52) 

 

After expressing the momentum equation in the axial direction, the application of 

reference scales in the radial direction can be given below using the same scaling 

relations. 
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(
𝜌0𝑢0

𝑧𝑠
 (

𝑢0𝑟𝑠
𝑧𝑠

)) �̂��̂�
𝜕�̂�

𝜕�̂�
 +  (

𝜌0𝑢0

𝑟𝑠
 (

𝑢0𝑟𝑠
𝑧𝑠

)
2

) �̂��̂�
𝜕�̂�

𝜕�̂�
 

=  −(
𝜌0𝑢0

2

𝑟𝑠
) 

𝜕�̂�

𝜕�̂�
 +  (

𝜇0

𝑟𝑠2
 (

𝑢0𝑟𝑠
𝑧𝑠

))
𝜕

𝜕�̂�
 (

4

3
�̂�

𝜕�̂�

𝜕�̂�
−

2

3
�̂�

�̂�

�̂�
)  

−  (
𝜇0𝑢0

𝑟𝑠𝑧𝑠
 )

𝜕

𝜕�̂�
 (

2

3
�̂�

𝜕�̂�

𝜕�̂�
) + (

𝜇0

𝑟𝑠2
 (

𝑢0𝑟𝑠
𝑧𝑠

))
2�̂�

�̂�
[
𝜕�̂�

𝜕�̂�
− 

�̂�

�̂�
]   

+  (
𝜇0

𝑧𝑠
2
 (

𝑢0𝑟𝑠
𝑧𝑠

))
𝜕

𝜕�̂�
(�̂�

𝜕�̂�

𝜕�̂�
)  + (

𝜇0𝑢0

𝑟𝑠𝑧𝑠
 )

𝜕

𝜕�̂�
(�̂�

𝜕�̂�

𝜕�̂�
) 

(2.53) 

 

Hence, it takes the following form after the coefficients of terms are simplified.  

(
𝑟𝑠

2

𝑧𝑠
2
) �̂��̂�

𝜕�̂�

𝜕�̂�
 +  (

𝑟𝑠
2

𝑧𝑠
2
) �̂��̂�

𝜕�̂�

𝜕�̂�
 

=  − 
𝜕�̂�

𝜕�̂�
 +  (

1

𝑅𝑒𝑟

𝑟𝑠
3

𝑧𝑠
3
)

𝜕

𝜕�̂�
(�̂�

𝜕�̂�

𝜕�̂�
)  

+  (
1

𝑅𝑒𝑟

𝑟𝑠
𝑧𝑠

) {
𝜕

𝜕�̂�
(�̂�

𝜕�̂�

𝜕�̂�
) +  

𝜕

𝜕�̂�
 (

4

3
�̂�

𝜕�̂�

𝜕�̂�
−

2

3
�̂� (

𝜕�̂�

𝜕�̂�
+

�̂�

�̂�
))

+  
2�̂�

�̂�
[
𝜕�̂�

𝜕�̂�
−  

�̂�

�̂�
]} 

(2.54) 

 

In channel flows, the height of the channel is narrow compared to its length, the 

reason that it can be considered as zs≫rs . In addition, after considering the Reynolds 

number as Rer>1, it is observed that the only term order one is the pressure gradient 

term. Therefore, the momentum equation in the radial direction is reduced to the 

following form for boundary layer approximation. 

∂p

∂r
=0 (2.55) 

 



 

 

29 

For the momentum equation in the axial direction, considering zs≫rs and Rer>1, 

comparison of the coefficients of two terms shows that the radial diffusion term is 

always much more dominant than other diffusion terms. 

(
zs

rs

 
1

Rer

)≫(
rs

zs

 
1

Rer

) (2.56) 

 

In addition, the coefficient of radial diffusion can be considered to order one as the 

most relevant assumption for diffusion term notation [21].   

(
zs

rs

 
1

Rer

) ~1 (2.57) 

 

The axial length scale is defined as a characteristic radial length scale by taking the 

channel radius as r0.  

zs ~ r0Rer (2.58) 

 

Once a flow with any inlet velocity profile is introduced at the inlet, the fully 

developed flow is reached after a distance in the channel. In that developing range, 

the vortices and instabilities in the flow can be generated close to the wall so that the 

boundary layer equation cannot resolve the flow [19]. However, after a distance in 

the channel, the flow development is completed and a profile of the Hagen-Poiseuille 

flow is reached. In that case, pressure gradient and radial diffusion terms become 

dominant concerning convective terms.  

Furthermore, the energy equation and conservation of species equation are simplified 

using reference scales. For a steady and 2D flow, where circumferential variations 

are neglected, the equations are written for axisymmetric cylindrical coordinates 

[21]. 
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𝜌𝑢
𝜕𝑌𝑘

𝜕𝑧
+ 𝜌𝜈

𝜕𝑌𝑘

𝜕𝑟
=  (

𝜕𝑗𝑘,𝑧

𝜕𝑧
+

1

𝑟

𝜕(𝑟𝑗𝑘,𝑟)

𝜕𝑟
) + �̇�𝑘𝑊𝑘 (2.59) 

𝜌𝑐𝑝𝑢
𝜕𝑇

𝜕𝑧
+ 𝜌𝑐𝑝𝜈

𝜕𝑇

𝜕𝑟

= 𝑢
𝜕𝑝

𝜕𝑧
+ 

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
) + 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜆

𝜕𝑇

𝜕𝑟
) 

− ∑ 𝑐𝑝𝑘 (𝑗𝑘,𝑧

𝜕𝑇

𝜕𝑧
+ 𝑗𝑘,𝑟

𝜕𝑇

𝜕𝑟
)

𝐾

𝑘=1

− ∑ ℎ𝑘�̇�𝑘𝑊𝑘

𝐾

𝑘=1

 

(2.60) 

 

Using mixture-averaged diffusion coefficient for species k as expressed in section 

2.1.4, the diffusive mass flux term can be written in a non-dimensional form as 

follows: 

𝑗𝑘⃗⃗⃗  = 𝜌𝑌𝑘𝑉𝑘
⃗⃗⃗⃗ =  −𝜌

𝑊𝑘

�̅�
𝐷𝑘𝑚𝛻𝑋𝑘 (2.61) 

 

Dk,0 is defined as a reference diffusion coefficient term. Therefore, diffusive mass 

flux is written using reference scales in both radial and axial directions. 

𝑗𝑘,𝑧 = −
𝜌0𝐷𝑘,0

𝑧𝑠
�̂�

𝑊𝑘

�̅�
�̂�𝑘𝑚

𝜕𝑋𝑘

𝜕�̂�
 (2.62) 

𝑗𝑘,𝑧 = −
𝜌0𝐷𝑘,0

𝑧𝑠
�̂�

𝑊𝑘

�̅�
�̂�𝑘𝑚

𝜕𝑋𝑘

𝜕�̂�
 (2.63) 

 

Secondly, a non-dimensional temperature can be defined using reference 

temperature scales, which T0 is the inlet flow temperature and Tw is the wall 

temperature. 

�̂� =  
𝑇 − 𝑇0

𝑇𝑤 − 𝑇0
=

𝑇 − 𝑇0

∆𝑇
 (2.64) 
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With these reference arguments, a non-dimensional form of the conservation of 

species and energy equations is written as follows: 

�̂��̂�
𝜕𝑌𝑘

𝜕�̂�
 + �̂��̂�

𝜕𝑌𝑘

𝜕𝑟
 

=  − (
𝑟𝑠
𝑧𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜇

𝜌𝐷𝑘
)
𝜕𝑗�̂�,𝑧

𝜕�̂�

−  (
𝑧𝑠

𝑟𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜇

𝜌𝐷𝑘
)
1

�̂�

𝜕(�̂�𝑗�̂�,𝑟)

𝜕�̂�
 +  

𝑧𝑠

𝜌0𝑢0
�̇�𝑘𝑊𝑘 

(2.65) 

�̂��̂�𝑐�̂�

𝜕�̂�

𝜕�̂�
+ �̂��̂�𝑐�̂�

𝜕�̂�

𝜕�̂�
 

=  
𝑢0

2

𝑐𝑝,0
�̂�

𝜕�̂�

𝜕�̂�
 +  (

𝑟𝑠
𝑧𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜆

𝜇𝑐𝑝
)

𝜕

𝜕�̂�
(�̂�

𝜕�̂�

𝜕�̂�
)  

+  (
𝑧𝑠

𝑟𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜆

𝜇𝑐𝑝
)

1

�̂�

𝜕

𝜕�̂�
(�̂��̂�

𝜕�̂�

𝜕�̂�
)  

− ∑ [(
𝑟𝑠
𝑧𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜇

𝜌𝐷𝑘
) �̂�𝑝𝑘𝑗�̂�,𝑧

𝜕�̂�

𝜕�̂�
 

𝐾

𝑘=1

+ (
𝑧𝑠

𝑟𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜇

𝜌𝐷𝑘
) �̂�𝑝𝑘𝑗�̂�,𝑟

𝜕�̂�

𝜕�̂�
] − 

∆𝑇𝑧𝑠

𝑐𝑝,0𝜌0𝑢0
∑ ℎ𝑘�̇�𝑘𝑊𝑘

𝐾

𝑘=1

 

(2.66) 

 

In order to assess the weights of equation terms, the order of magnitude of the 

coefficients of radial and axial diffusion terms are compared: 

𝑧𝑠

𝑟𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜇

𝜌𝐷𝑘
~1 

𝑧𝑠

𝑟𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜆

𝜇𝑐𝑝
~1 

(2.67) 

 

These terms are multiplied by 
rs

2

zs
2
 to make them comparable.  

𝑟𝑠
𝑧𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜇

𝜌𝐷𝑘
 ~ 

𝑟𝑠
2

𝑧𝑠
2
 (2.68) 
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𝑟𝑠
𝑧𝑠

𝜇0

𝜌0𝑢0𝑟𝑠

𝜆

𝜇𝑐𝑝
 ~ 

𝑟𝑠
2

𝑧𝑠
2
 (2.69) 

 

The similarity analysis shows the radial terms in species and energy equations are 

relatively small compared to axial terms as 
rs

zs
 →0. The term u

∂p

∂z
 can be neglected in 

the energy equation since this term becomes relatively small concerning other terms 

for low-speed flows, where Ma < 0.3, in boundary layer approximations. 

The flow equations using boundary layer approximation for axisymmetric channel 

flow can be written as [21]: 

𝜕(𝜌𝑢)

𝜕𝑧
 +  

1

𝑟

𝜕(𝑟𝜌𝜈)

𝜕𝑟
 =  0 

𝜌𝑢
𝜕𝑢

𝜕𝑧
+ 𝜌𝜈

𝜕𝑢

𝜕𝑟
=  − 

𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝜇𝑟

𝜕𝑢

𝜕𝑟
) 

𝜕𝑝

𝜕𝑟
= 0 

𝜌𝑢
𝜕𝑌𝑘

𝜕𝑧
+ 𝜌𝜈

𝜕𝑌𝑘

𝜕𝑟
=  −

1

𝑟

𝜕(𝑟𝑗𝑘,𝑟)

𝜕𝑟
 +  �̇�𝑘𝑊𝑘 

𝜌𝑐𝑝𝑢
𝜕𝑇

𝜕𝑧
 +  𝜌𝑐𝑝𝜈

𝜕𝑇

𝜕𝑟
 

=  
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜆

𝜕𝑇

𝜕𝑟
) − ∑ 𝑐𝑝𝑘𝑗𝑘,𝑟

𝜕𝑇

𝜕𝑟
 

𝐾

𝑘=1

−  ∑ ℎ𝑘�̇�𝑘𝑊𝑘

𝐾

𝑘=1

 

𝜌 =  
𝑝

𝑅𝑇 ∑𝑌𝑘 𝑊𝑘⁄
 

(2.70) 

 

The simplification of flow equations using scaling arguments is given in detail and 

the boundary layer equations for reaching channel flows are obtained in this section. 

One of the most significant contributions of scaling arguments is the change of the 

characteristics of differential equations to parabolic form. Partial differential 

equations can be solved using numerical methods as ordinary differential equations. 

One way of solving PDEs is by using the method of lines.  
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2.5 Method of Lines 

The method of lines is a numerical technique especially suited for solving coupled 

systems of parabolic partially differential equations (PDE) [21]. A wide range of 

PDEs for the problems of chemical reactions and systems of equations can be 

successfully solved by using the method of lines [26]. The main idea behind this 

computational method is to reduce the partial differential equation problem to a less 

complex differential equation problem by discretizing one of the independent 

variables [27]. The semi-discrete problem is written in the form of differential-

algebraic equations (DAEs) or ordinary differential equations (ODEs) form to be 

solved numerically. With the usage of the method of lines, the partial differential 

equations can be converted to DAEs or ODEs, for which many solvers exist to 

integrate [27].  

The boundary layer equations can also be modeled and solved using the line method. 

The radial terms with the spatial independent variable of the equations system are 

discretized using the finite-difference method. The axial terms having timelike 

independent variables are kept in the equations. For the momentum equation, the 

spatial terms are the diffusive and convective terms. The diffusion terms are 

discretized using conservative difference approximation at the control-volume faces, 

where fluxes and transport properties are calculated [21]. The convective terms are 

evaluated by using the upwind formula. In addition to the momentum equation, the 

diffusion and the convective terms are considered similarly in the momentum 

equation.  

Although the pressure term is the only function of the timelike independent variable, 

the gradient of the pressure term is still defined at each spatial mesh point to preserve 

the banded structure of Jacobian [21]. The pressure is solved by a trivial differential 

equation. The term pressure gradient is directly used in the momentum equation. 

The resulting set of equations is written in DAEs form. In addition, boundary 

conditions are also adjusted as algebraic constraints, which contain no time 
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derivatives [21]. The equations in the form of DEAs can be solved with existing and 

well-established numerical techniques and software packages, such as DASSL [9] 

and MATLAB ode15i [28]. Since the discretization of spatial terms is only done by 

forming DAEs, the time discretization, the error control and the solution are managed 

by solver software.  

2.6 Von Mises Transformation 

The boundary layer formulations are written in physical coordinates. Alternatively, 

these equations can be transformed into stream-function coordinates to gain 

computational advantages. This independent variable changing procedure is called 

Von Misses Transformation.  

The transformation begins with the introduction of stream function ψ as, 

𝜌𝑢𝑟 =  
𝜕𝜓

𝜕𝑟
   

𝜌𝜈𝑟 =  − 
𝜕𝜓

𝜕𝑧
 

(2.71) 

 

𝜕(𝜌𝑢)

𝜕𝑧
 +  

1

𝑟

𝜕(𝑟𝜌𝜈)

𝜕𝑟
 =  0 

1

𝑟

𝜕

𝜕𝑧
(
𝜕𝜓

𝜕𝑟
)  −  

1

𝑟

𝜕

𝜕𝑟
(
𝜕𝜓

𝜕𝑧
)  =  0 

(2.72) 

 

As a consequence of the nature of the stream function, these relations satisfy the 

mass-continuity equation. The independent variable in cross-stream coordinate r is 

replaced with the streamlines, which are introduced as lines of constant ψ. The 

transformation of the independent variable can be done by introducing chain rule 

differentiation. 
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(
𝜕

𝜕𝑥
)

𝑦
=  (

𝜕𝜂

𝜕𝑥
)
𝑦
(

𝜕

𝜕𝜂
)
𝜙

+   (
𝜕𝜙

𝜕𝑥
)

𝑦
(

𝜕

𝜕𝜙
)
𝜂

 

(
𝜕

𝜕𝑦
)
𝑥

=  (
𝜕𝜂

𝜕𝑦
)
𝑥

(
𝜕

𝜕𝜂
)
𝜙

+   (
𝜕𝜙

𝜕𝑦
)
𝑥

(
𝜕

𝜕𝜙
)
𝜂

 

(2.73) 

 

The transformation matrix is formed by four coefficient derivatives and can be 

written as follows: 

[
 
 
 
 (

𝜕𝜂

𝜕𝑥
)

𝑦
(
𝜕𝜙

𝜕𝑥
)
𝑦

(
𝜕𝜂

𝜕𝑦
)
𝑥

(
𝜕𝜙

𝜕𝑦
)

𝑥]
 
 
 
 

 (2.74) 

 

After the introduction of Von Mises Transformation in general form, the boundary 

layer form of the transformation can be written for the independent variables (z,ψ). 

The relation between independent variables is stated below: 

(
𝜕𝑧

𝜕𝑧
)
𝑟
 =  1,     (

𝜕𝜓

𝜕𝑧
)

𝑟
 =  − 𝜌𝜈𝑟 

(
𝜕𝑧

𝜕𝑟
)
𝑧

=  0,     (
𝜕𝜓

𝜕𝑟
)

𝑧
= − 𝜌𝑢𝑟 

(
𝜕

𝜕𝑧
)
𝑟

=  (
𝜕

𝜕𝑧
)
𝜓

−  𝜌𝜈𝑟 (
𝜕

𝜕𝜓
)
𝑧

  

(
𝜕

𝜕𝑟
)
𝑧

=  𝜌𝑢𝑟 (
𝜕

𝜕𝜓
)
𝑧

 

(2.75) 

 

The boundary layer equations can be re-written using Von Misses transformation 

arguments for the independent variables (z,ψ). As a result of a transformation, the 

continuity equation and the momentum equation in the radial direction, thus the 

radial velocity term, vanish from the equation set since they are automatically 

satisfied. The boundary layer equations in stream function form are expressed below 

[21]:  
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𝜌𝑢
𝜕𝑢

𝜕𝑧
 =  − 

𝜕𝑝

𝜕𝑧
 +  𝜇𝜌𝑢

𝜕

𝜕𝜓
(𝜌𝑢𝑟2

𝜕𝑢

𝜕𝜓
) 

0 =  
𝜕𝑟2

𝜕𝜓
−  

2

𝜌𝑢
 

0 =  
𝜕𝑝

𝜕𝜓
 

𝜌𝑢
𝜕𝑌𝑘

𝜕𝑧
 +  𝜌𝜈 (𝜌𝑢𝑟

𝜕𝑌𝑘

𝜕𝜓
) =  − 𝜌𝑢 

𝜕(𝑟𝑗𝑘,𝑟)

𝜕𝜓
 +  �̇�𝑘𝑊𝑘 

𝜌𝑐𝑝𝑢
𝜕𝑇

𝜕𝑧
  =  𝜆𝜌𝑢

𝜕

𝜕𝜓
(𝜌𝑢𝑟2

𝜕𝑇

𝜕𝜓
) − ∑ 𝑐𝑝𝑘𝑗𝑘,𝑟𝜌𝑢𝑟

𝜕𝑇

𝜕𝜓
 

𝐾

𝑘=1

−  ∑ ℎ𝑘�̇�𝑘𝑊𝑘

𝐾

𝑘=1

 

(2.76) 

 

The definition of stream function can be specified in terms of radial mesh coordinate, 

the axial velocity profile, the temperature, and the composition of the flow field, 

which appears as density in the equation. 

𝜓𝑗  =  ∫ (𝜌𝑢𝑟)𝑑𝑟
𝑟𝑗

0

 (2.77) 

 

Since ψ is the independent variable of the equation set, the relation between physical 

coordinates and stream function coordinates should be modified using the 

transformed radial momentum equation. 

𝑟2  =  2 ∫ (
1

𝜌𝑢
)𝑑𝜓

𝜓

0

 (2.78) 

 

After Von Misses transformation is completed, the radial coordinate is no longer an 

independent variable of the equation set. Moreover, the radial coordinate is explicitly 

involved in the momentum and energy equation as r2. Another consequence of the 

transformation, the radial velocity term vanishes, and a simplification of radial 

convective terms is obtained. However, the diffusion term arises a computational 
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complication since it is formed by the group of dependent variables ρur2, which is 

called the diffusion coefficient [21]. 

The range of the independent variable of ψ is from the centerline, which equals zero, 

to the tube wall, which is defined as a function of inlet flow conditions, u0 and ρ
0
 

and R0, tube wall radius. In addition, the net mass flow rate, which enters the channel, 

can be calculated as follows for axisymmetric channel flow [25]. 

𝜓0  =  ∫ (𝜌0𝑢0𝑟)𝑑𝑟
𝑅0

0

 

𝑚 ̇ =  2𝜋𝜓0 

(2.79) 

 

The order of the equation system in stream function coordinate is sixth order. The 

two transport equations, which are the axial momentum and the energy equation and 

have second derivatives of ψ, are second order. Finally, the radial coordinate and 

pressure equations are first-order equations [21]. In order to solve the sixth order of 

equations set, six independent boundary conditions must be introduced.  

Boundary conditions are defined as, 

at the centerline, 𝜓 =  0 ∶   𝑟 =  0 ,
𝑑𝑢 

𝑑𝜓
=  0,   

𝑑𝑇

𝑑𝜓
 =  0   

at the wall, 𝜓 =  𝜓0 ∶   𝑟 =  𝑟0 , 𝑢 =  0 ,   𝑇 =  𝑇𝑤 

(2.80) 

 

An implicit boundary condition is defined for pressure since no explicit condition is 

given for the pressure. As a result, one of the boundary conditions of radial 

coordinates should be associated with the pressure term [21].  

Before completing and finalizing the derivation of boundary layer equations for 

axisymmetric channel flow, an additional transformation is introduced by converting 

the stream function coordinate to a normalized stream function [25]. Since the 

streamline is the constant mass-flux lines, there is no mass transfer across two lines 

of the value of the constant stream function. In other words, the flow can be modeled 
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by the constant stream function values through the channel without mass transfer 

from the boundaries. For this reason, the boundaries of the channel become 

streamlined. In this case, the value of the stream function varies between boundaries 

from zero to total mass flux. The values on the boundaries are kept constant 

throughout the channel. However, there can be net mass transfer at the boundaries 

changing the mass flux of the flow along the flow direction. This follows a change 

in the value of the stream function in some cases, such as the reacting surface of the 

wall or the liquid injection from the wall, causing a movement in a coordinate system 

and complicating the problem. By the normalization of the stream function with the 

mass flux rate, the independent variable can be fixed for the problem [21]. The 

normalized stream function is ξ, and M(x) is the local value of the total mass flux. 

ψ
u
 represents the upper boundary while ψ

l
 is the lower boundary of the channel. Both 

terms are the functions of axial direction only. The net mass transfer at the 

boundaries is represented by these terms in the equations set along the axial flow 

direction. The normalized stream function ranges from zero to one by definition. 

𝑀(𝑥)  =  𝜓𝑢(𝑥)  − 𝜓𝑙(𝑥) 

𝜉 =  
𝜓 −  𝜓𝑙

𝜓𝑢(𝑥)  − 𝜓𝑙(𝑥)
 =  

𝜓 − 𝜓𝑙

𝑀(𝑥)
 

(2.81) 

 

The necessary transformation metrics by chain-rule differentiation to convert 

physical coordinates to the normalized stream function can be summarized as, 

 

(
𝜕

𝜕𝑥
)

𝑦
= (

𝜕𝑥

𝜕𝑥
)
𝑦
(

𝜕

𝜕𝑥
)

𝜓
+  (

𝜕𝜓

𝜕𝑥
)
𝑦
(

𝜕

𝜕𝜓
)
𝑥

 

(
𝜕

𝜕𝑦
)
𝑥

=  (
𝜕𝑥

𝜕𝑦
)
𝑥

(
𝜕

𝜕𝑥
)
𝜓

+   (
𝜕𝜓

𝜕𝑦
)

𝑥

(
𝜕

𝜕𝜓
)

𝑥

 

(2.82) 
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(
𝜕

𝜕𝑥
)

𝑦
=  (

𝜕

𝜕𝑥
)
𝜓

 −  (𝜌𝜈𝑟 + 𝜉
𝑑𝑀

𝑑𝑥
−

𝑑𝑀𝑙

𝑑𝑥
) (

𝜕

𝜕𝜓
)
𝑥

 

(
𝜕

𝜕𝑦
)
𝑥

=    𝜌𝑢𝑟 (
𝜕

𝜕𝜓
)

𝑥

 

(2.83) 

 

(
𝜕

𝜕𝜓
)
𝑥

=  
1

𝑀
(

𝜕

𝜕𝜉
)
𝑥

 

(
𝜕

𝜕𝑥
)

𝑦
=  (

𝜕

𝜕𝑥
)
𝜉
 +   

1

𝑀
(−𝜌𝜈𝑟 +  𝜉

𝑑𝑀

𝑑𝑥
 −  

𝑑𝑀𝑙

𝑑𝑥
) (

𝜕

𝜕𝜉
)
𝑥

 

(2.84) 

 

The mass flux function M, which shows the effect of net mass transfer along the 

axial flow direction, is the only function of flow direction and is defined as follows, 

𝑑𝑀

𝑑𝑥
=  

𝑑𝑀𝑙

𝑑𝑥
+  

𝑑𝑀𝑢

𝑑𝑥
 (2.85) 

 

Mass flux at boundaries is calculated using the following relations. 

𝑑𝑀𝑙

𝑑𝑥
 =  𝜌𝜈|𝑟 = 0 

𝑑𝑀𝑙

𝑑𝑥
 =  −𝜌𝜈𝑟|𝑟 = 𝑟𝑚𝑎𝑥

 

(2.86) 

 

After necessary transformations are applied to the equations set, a new set of 

boundary layer equations in terms of (x,ξ) coordinates are obtained. The momentum, 

species and energy equations are expressed respectively as follows: 
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𝜌𝑢
𝜕𝑢

𝜕𝑥
 − 

𝜌𝑢

𝑀
(𝜉

𝑑𝑀

𝑑𝑥
−

𝑑𝑀𝑙

𝑑𝑥
)
𝜕𝑢

𝜕𝜉
 =  − 

𝜕𝑝

𝜕𝑧
 + 

𝜌𝑢

𝑀2

𝜕

𝜕𝜉
(𝜌𝑢𝜇𝑟2

𝜕𝑢

𝜕𝜉
) 

𝜌𝑢
𝜕𝑌𝑘

𝜕𝑥
 − 

𝜌𝑢

𝑀
(𝜉

𝑑𝑀

𝑑𝑥
−

𝑑𝑀𝑙

𝑑𝑥
)
𝜕𝑌𝑘

𝜕𝜉
 =  �̇�𝑘𝑊𝑘  −  𝜌𝑢 

𝜕

𝜕𝜓
(𝜌𝑟𝑌𝑘𝑉𝑘,𝑦) 

𝜌𝑐𝑝𝑢
𝜕𝑇

𝜕𝑥
 − 

𝜌𝑢𝑐𝑝

𝑀
 (𝜉

𝑑𝑀

𝑑𝑥
−

𝑑𝑀𝑙

𝑑𝑥
)
𝜕𝑇

𝜕𝜉
 

=  
𝜌𝑢

𝑀2

𝜕

𝜕𝜉
(𝜆𝜌𝑢𝑟2

𝜕𝑇

𝜕𝜉
) − ∑ ℎ𝑘�̇�𝑘𝑊𝑘

𝐾

𝑘=1

 

−  
𝜌2𝑢𝑟

𝑀
∑ 𝑐𝑝𝑘𝑌𝑘𝑉𝑘,𝑦

𝜕𝑇

𝜕𝜉
 

𝐾

𝑘=1

 

(2.87) 

 

The diffusion velocity term can be defined using mixture-average and 

multicomponent diffusion terms [25]. The equations for diffusion velocity Vk,y for 

multicomponent transport and mixture-averaged transport are given below, 

respectively. 

𝑉𝑘,𝑦  =  
𝜌𝑢𝑟

𝑋𝑘�̅�𝑀
 ∑𝑊𝑗𝐷𝑘𝑗

𝜕𝑋𝑘

𝜕𝜉

𝐾𝑔

𝑗≠𝑘

 −  
𝐷𝑘

𝑇

𝜌𝑌𝑘

𝜌𝑢𝑟

𝑇𝑀

𝜕𝑇

𝜕𝜉
 (2.88) 

 

𝑉𝑘,𝑦  =  − 
𝐷𝑘𝑚𝜌𝑢𝑟

𝑋𝑘𝑀

𝜕𝑋𝑘

𝜕𝜉
 −  

𝐷𝑘
𝑇

𝜌𝑌𝑘

𝜌𝑢𝑟

𝑇𝑀

𝜕𝑇

𝜕𝜉
 (2.89) 

 

The normalized stream function relation is expressed using a non-dimensional 

stream function form as follows:  

𝑟2  =  2𝑀 ∫ (
1

𝜌𝑢
)𝑑𝜉

𝜉

0

 (2.90) 
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The boundary conditions should be identified at the channel wall and symmetry axis 

and the inlet of the channel since the parabolic set of equations can easily be solved 

with the introduction of consistent initial conditions [21][23]. For coupled, nonlinear 

system of boundary layer equations, the boundary conditions at the channel inlet acts 

as initial condition as the axial flow direction is a time-like independent variable. On 

the channel wall, a temperature field or zero gradients of temperature is specified, 

and zero gradients of temperature are settled on the symmetry axis of the channel. In 

addition, zero axial flow velocity condition is stated on the channel wall due to the 

no-slip conditions, while zero velocity gradient is assigned on the symmetry axis. 

Physical coordinates correspond to zero on the symmetry axis and channel radius at 

the wall boundary [25].  

Zero gradient of species mass fraction is identified on both channel symmetry axis 

and wall, while there is no mass transfer due to surface reaction on the channel wall. 

On the other hand, the net production of the surface species should be balanced with 

the mass fluxes of species in the gas. 

𝜌𝑌𝑘(𝑉𝑘,𝑦  + 𝜈) = 𝑠�̇�𝑊𝑘 (2.91) 

 

When the surface reaction occurs on the channel wall, the tangential fluid velocity, 

which is called Stefan flow velocity, also becomes non-zero and is calculated as 

follows. However, the values of Stefan velocity and surface chemistry production 

rates are equal to zero when no surface reaction occurs during channel flow. 

𝜈 =  
1

𝜌
 ∑ 𝑠�̇�𝑊𝑘

𝐾𝑔

𝑘=1

 (2.92) 

 

Finally, the summation of all mass fractions on any grid point should be equal to one 

to satisfy the most fundamental condition of the conservation of species equation. 
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1 =  ∑ 𝑌𝑘

𝐾𝑔

𝑘=1

 (2.93) 

 

The derivation of boundary layer equations is completed for reacting channel flow 

problems. The resulting set of equations can be discretized to be solved by numerical 

techniques, as expressed in section 2.5.  

2.7 Discretization of Boundary Layer Equations Set 

The discretization of boundary layer equations is required for numerical solutions. 

The equations are discretization using finite difference approximations [25]. Since 

the characteristics of the equation set are parabolic, one of the coordinates becomes 

a time-like independent variable [23]. The axial flow direction acts like time as an 

independent variable for the coupled boundary layer equations of axisymmetric 

channel flow. At the same time, the discretization takes place for spatial derivatives 

on a uniform or non-uniform fixed grid in the normalized stream function. 

The second-order derivatives in the momentum, energy, and species equations are 

approximated using central scheme differentiation, as stated below [25]. In addition, 

the first-order derivatives are also differentiated using a central scheme, as given in 

the below equation. 

𝜕

𝜕𝜉
(𝛼

𝜕𝑓

𝜕𝜉
)  ≈  (

2

𝜉𝑗+1 − 𝜉𝑗−1
) [𝛼𝑗+1 2⁄ (

𝑓𝑗+1 − 𝑓𝑗
𝜉𝑗+1 − 𝜉𝑗

) − 𝛼𝑗−1 2⁄ (
𝑓𝑗 − 𝑓𝑗−1

𝜉𝑗 − 𝜉𝑗−1
)] (2.94) 

𝜕𝑓

𝜕𝜉
 ≈  

𝑓𝑗+1 − 𝑓𝑗−1

𝜉𝑗+1 − 𝜉𝑗−1
 (2.95) 

 

Some terms in the set of equations appear with no derivatives. These terms are 

written directly in the equations as their existing value on the associated grid point. 

Moreover, the integral equations are represented as first-order differential equations 

to ease discretization. The first-order ODEs are approximated by using the 



 

 

43 

trapezoidal rule, as stated below. The selection of differentiation using the 

trapezoidal rule is related to the Jacobian matrix structure, which remains banded.  

1

𝑀
(
𝑟𝑗

2 − 𝑟𝑗−1
2

𝜉𝑗 − 𝜉𝑗−1
)  =  

2

𝜌𝑗𝑢𝑗 + 𝜌𝑗−1𝑢𝑗−1
  (2.96) 

 

The diffusion term consists of the species flux term as a part of the diffusion velocity 

component. The equations of diffusion velocities of species k for the multi-

component and mixture-averaged diffusion are presented in the previous section. 

The diffusion coefficient for multi-component and mixture-averaged transport can 

be written using the mixture-averaged formulation. The most significant advantage 

of using this form, the numerator and denominator errors are accumulated in the 

same way in the equation [29]. 

𝐷𝑘𝑚  =  
∑ 𝑋𝑗𝑊𝑗

𝐾
𝑗 ≠𝑘

�̿� ∑  𝑋𝑗/𝐷𝑗𝑘
𝐾
𝑗 ≠𝑘

 (2.97) 

 

However, the formulation is undefined when the pure species arise in the mixture 

and create singularities for a computational solution. The small quantity, which is 

numerically insignificant, is introduced for each species to overcome the 

computational difficulties as given below. 

𝛼 =  10−30 

𝑋𝑘 =  𝑋�̂�  + 𝛼 

𝐷𝑘𝑚  =  
∑ 𝑋𝑗𝐷𝑘𝑗(𝑑𝑗 + 𝛼) 𝐾

𝑗 ≠𝑘

�̿�(𝑑𝑗 + 𝛼)
 

(2.98) 
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CHAPTER 3  

3 NUMERICAL APPROACH 

The presentation of the code called as reactFlow, which is generated for the 

calculations of the reacting boundary layer flow in an axisymmetric channel or planar 

duct, is explained in this chapter. The algorithm of the code and the functions 

forming the code reactFlow are investigated in detail in section 3.1. The solver 

software is reported in section 3.2 and the chemical solver software is expressed in 

section 0.  

3.1 Algorithm of Developed Code 

The general algorithm of the code reactFlow is presented in Figure 3.1. The input is 

introduced into reactFlow in the command prompt of MATLAB and stored in a text 

file. The input is evaluated to find the solution in reactFlow, which communicates 

with Cantera and MATLAB ode15i during the process. After the iterations are 

converged to the solution, the flow field properties, namely temperature, velocity 

and pressure, and the fractions of specified species throughout the domain are written 

in a text file. In addition, the graphs of flow field properties are plotted and saved in 

a file, which is created after starting the code to record the input and output 

parameters of the current run. 

The code reactFlow consists of functions and sub-functions. These functions can be 

categorized into three groups, namely main functions, auxiliary functions and output 

functions, as presented in Figure 3.2. The functions and sub-function are generated 

in .m file format, which can be read and processed by MATLAB. The main functions 

of reactFlow are reactFlow.m and bodyRF.m. The input text file, which is called 

inputreactFlow.dat and shown in Figure 3.3, is read by the code when the code is 

started to run using the MATLAB interface.  
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Figure 3.1 Algorithm of code reactFlow 

 

The first command line executed by the run is the Name of the Run. The function of 

this line is to give a name to run and to create a folder with this name to record the 

inputs and outputs of the code. Secondly, general case settings are introduced 

respectively in the input file. The name of the reaction mechanism is submitted by 

the Working Gas line. After this, the transport property for gas is selected as Mix or 

Multi. The coordinate system domain is chosen as radial or Cartesian. Finally, the 

calculation of the thermal diffusion effects and the inlet velocity profile is shown in 

input lines. After the introduction of general case settings, the settings for calculation 

dome are presented to reactFlow. The diameter of the channel or height of the planar 

duct is first written in the unit of meter, then the number of radial nodes and the 

distribution factor for them are given to the code. Finally, the selection of the axial 

domain is presented by deciding the minimum and maximum points on the axial 

domain in units of centimeters and the total number of mesh points in the axial 

direction. 

After the specification of the properties of the calculation domain, the properties of 

reacting gas and the boundary conditions are introduced to reactFlow. The 

coefficients of species should be written by considering the stoichiometric condition 

of fuel and oxidizer. The oxidizer can be either air or oxygen. If any species are not 

present, it should be given as zero in the input file. Finally, absolute and relative 

tolerances are given as input to reactFlow to decide the level of convergence of the 

solver.    
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Figure 3.2 The schematic of functions forming reactFlow 
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Figure 3.3 The input file for reactFlow 

 

The initiation of the run according to the inputs and the mesh generation for the 

computation is taken care of at the beginning of reactFlow.m. After this step, the 

physical mesh coordinates are transformed to stream-function coordinates using the 

sub-function RFmeshConvert.m. The initial and boundary conditions are combined 

to form the dependent variable matrix. The values of dependent variables in the radial 

direction are stored in this matrix since the boundary layer equations are only 

discretized in the radial direction as a consequence of the method of line solution. 

The evaluation of ODEs using the MATLAB ode15i function is required an initial 

condition for both the dependent variables and the derivatives of dependent 

variables. In order to satisfy this requirement and generate consistent initial 

conditions, the generated dependent variable matrix is evaluated at the beginning of 

the axial domain, which corresponds to the value of zero, using the second main 
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function of reactFlow bodyRF.m. All discretized equations are found in bodyRF.m 

function. With the given dependent variable matrix, the residual vector of DAEs is 

composed using the sub-functions RFcoefTransport.m, RFdiffVelocity.m and 

RFthermprop.m, which are formed for the calculation of transport properties such as 

diffusion coefficients or viscosity value, for calculating diffusion velocities of 

species in gas and the calculation of thermodynamic properties of gas, respectively. 

In these calculations, the information on gas properties is exchanged with Cantera 

for any necessary data. The dependent variable matrix with initial conditions is 

inputted into BodyRF.m and the vector of residuals of DAEs is outputted from the 

bodyRF.m. This residual vector is equated to zero, so the derivatives of dependent 

variables in matrix form for initial conditions at zero axial position are obtained. In 

addition, the consistent initial condition requirement for ode15i is also satisfied after 

the generation of the matrix of derivatives using this method. As a result, the set of 

equations for DAEs and their derivatives are obtained, which are required for 

MATLAB ode15i solver, as discussed in section 3.2.  

The iterations for the solution to the problem can be started by calling ode15i 

function and supplying the initial conditions for DAEs and their derivatives, the axial 

domain and the solver settings. When the iterations are converged to a solution, an 

output is created by ode15i in the form of a vector for each point in the axial domain. 

The solution vector is evaluated using the output functions of reactFlow to generate 

figures and output text for discussing the solutions.    

3.2 MATLAB Solver 

The partial differential equations can be solved with the codes and software that are 

developed for ordinary differential equations by using the method of lines if their 

characteristics are parabolic. The boundary layer equations with energy equations 

used in the simulations of reacting flow in a channel are parabolic PDEs. They can 

be solved using MATLAB ode15i [21] function after being written as differential-

algebraic equations (DAE). MATLAB ode15i is a function that is an implicit, 
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variable-step and variable-order method implemented using a backward 

differentiation formula (BDF) to solve ODEs [28][30].  

An implicit set of ODEs can be numerically solved with MATLAB ode15i function 

when they are written in (3.1) on a specified interval with appropriate and consistent 

initial conditions. 

  𝐹(𝑡𝑖𝑚𝑒, 𝑦(𝑡𝑖𝑚𝑒), 𝑦′(𝑡𝑖𝑚𝑒)) = 0 (3.1) 

 

BDF can be applied to general DAE as given in (3.2), where α and β are coefficients 

of the method [30].  

𝐹 (𝑡𝑛, 𝑦𝑛,
1

𝛽ℎ
∑𝛼𝑗𝑦𝑛−𝑗

𝑘

𝑗

) = 0 (3.2) 

 

The details of BDF can also be shown for the backward Euler formula, which is more 

straightforward and reflects all the properties of the application of BDFs [28]. 

𝐹 (𝑡𝑛+1, 𝑦𝑛+1,
𝑦𝑛+1 − 𝑦𝑛

ℎ
) = 0 (3.3) 

𝑦𝑛+1  ≈ 𝑦(𝑡𝑛 + ℎ) (3.4) 

 

The set of algebraic equations given in (3.3) is iteratively solved. The relation 

between the iterations step can be shown in (3.5) so that equation (3.3) can be 

approximated as a linear system of equations as given in (3.6) [28]. 

𝑦𝑠+1
𝑛+1

= 𝑦𝑠
𝑛+1

+ 𝛿 (3.5) 

  

𝐹 (𝑡𝑛+1, 𝑦
𝑠
𝑛+1

,
𝑦𝑠

𝑛+1
− 𝑦𝑛

ℎ
) + (

1

ℎ
𝐹𝑦′ + 𝐹𝑦) 𝛿 = 0 (3.6) 
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The equation (3.6) is solved for δ, which serves as a correction term. As a result, the 

iteration matrix is presented in the form given in (3.7), where α is called a constant 

characteristic of the iteration matrix [28].  

𝛼

ℎ
𝐹𝑦′ + 𝐹𝑦 (3.7) 

 

The values of the terms of Fy'  and Fy are given into the ode15i function as input by 

the users since the consistent initial conditions are calculated before obtaining the 

solution of PDE. The PDEs are numerically approximated by ode15i. The PDEs are 

saved by function ode15i while evaluating backward differentiation functions. When 

a new iteration matrix is structured due to the change of coefficient given in (3.7), 

the saved PDEs are used. The storage is increased significantly due to the solution 

procedure of ode15i; however, consistent initial conditions and integration efficiency 

are ensured [28].  

The derivation of backward differentiation formulations with order k and constant 

step size h can be approximated with the interpolation representatively given in (3.3) 

for a polynomial P(t) as follows [28]. 

𝑃′(𝑡𝑛+1) = 𝑓(𝑡𝑛+1, 𝑃(𝑡𝑛+1)) (3.8) 

 

The polynomial in (3.8) can be written in Lagrangian form by interpolating values 

of Y at nodes t for varying order values as follows. 

𝑅(𝑡) =  ∑𝑌𝑛+1−𝑗

𝑘

𝑗=0

∏
𝑡 − 𝑡𝑛+1−𝑖

𝑡𝑛+1−𝑗 − 𝑡𝑛+1−𝑖

𝑘

𝑖≠𝑗

 (3.9) 

 

The equations (3.8) and (3.9) can be combined to get backward differentiation 

formula with step size h and order k as an implicit linear formula presented in (3.10).  
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∑𝛼𝑗𝑦
𝑠
𝑛+1

 

𝑘

𝑗=0

− ℎ𝑓(𝑡𝑛+1, 𝑦
𝑠
𝑛+1

) = 0 (3.10) 

  

The absolute and relative error tolerances are specified for ode15i as a positive scalar 

or vector to decide the convergence of the solution. The value of absolute error 

tolerance is used as a threshold value for the convergence, while the relative error 

tolerance is used to control the correct digit number in the solution. If the value of 

the solution is found to be smaller than the specified absolute error tolerance, the 

digit number of the solution is not checked by the solver. The success criteria of each 

iteration step are to successfully satisfy of local error in (3.11) for each solution 

component [31]. 

|𝑒𝑟𝑟𝑜𝑟𝑖| <= max(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑖

∗ 𝑎𝑏𝑠(𝑦𝑖), 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑖) 
(3.11) 

 

3.3 Calculation of Reactions 

Cantera is open-source software used for the calculations of processes with 

thermodynamics, transport and chemical kinetics [32]. It is widely used in 

combustion, detonations, batteries and film deposition applications. Cantera can be 

interfaced with Python, MATLAB, or applications that are written in Fortran 90 and 

C/C++. The calculations of problems with thermodynamics, transport and chemical 

kinetics can be efficiently automated by Cantera. The documentation details for the 

theory and the functions made up of Cantera are presented on their webpage. Any 

reaction mechanism in the format of CHEMKIN [33] can be converted into Cantera 

format with the help of the built-in functions of Cantera when the thermodynamic 

data of species in the reaction mechanism is given in a separate file in NASA format. 

In addition, the transport properties of these species can also be involved in the 

conversion depending on the need of the problem.  
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3.4 Flow Diagrams 

The flow diagrams of code reactFlow are presented in this section. The general 

algorithm of reactFlow from start to end is explained in Figure 3.4. The initial 

calculations, radial mesh generation, determination of initial derivatives and input of 

calculations for the whole axial domain are presented in Figure 3.5 using flow 

diagrams. Finally, the algorithm of main calculations, consisting of boundary layer 

equations, and convergence check, done by MATLAB in bodyRF.m function, is 

presented in Figure 3.6.  
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Figure 3.4 Flow Diagram of General Algorithm of reactFlow 
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Figure 3.5 Flow Diagram of Initial Calculations of reactFlow 
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Figure 3.6 Flow Diagram of Main Calculations of reactFlow and Convergence Check 
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CHAPTER 4  

4 RESULTS & DISCUSSION OF REACTING CHANNEL FLOW 

SIMULATIONS 

In this chapter, case problems are analyzed by using reactFlow and their results are 

presented. In section 4.1, the validation of code is discussed by comparing its non-

reacting and reacting case results with data from literature and results from Chemkin 

software. In section 4.2, a study of the sensitivity of flow parameters on flame 

position is examined and the results are presented. 

4.1 Validation Studies 

In this chapter, the analyses for the validation of reactFlow are presented for non-

reacting and reacting cases.   

4.1.1 Non-Reacting Case Validation 

A non-reacting channel flow problem with its solutions from literature is applied to 

code reactFlow to compare its results with the given results from the literature. The 

validation case is selected from the book of Kee and Coltrin, in which the results are 

presented as figures for developing flow in a channel [21]. In the problem, a constant 

temperature of 800K is applied on the channel walls, while the entrance temperature 

of the flow into the channel is 300K. The viscosity, thermal conductivity and specific 

heat ratio of the flowing gas are assumed to be constant and equal to their values at 

the inlet section of the tube. The gas is considered air and modeled using the ideal 

gas assumption. Thus, the density of the gas through the channel is calculated by 

using this assumption. No other properties of the domain or the gas are given in the 

problem. However, it is stated that the Reynolds number at the inlet is taken as 1000, 
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while the Prandtl number at the same section is 0.7. The remaining properties are 

calculated by using Reynolds and Prandtl numbers in the inlet section. In addition, it 

is given in the problem that a non-uniform radial mesh with 51 mesh points is used 

for the radial domain; however, a value of the non-uniformity parameter, called a 

stretch factor, is not clarified in the problem. The value of boundary conditions and 

the mesh properties are specified to code reactFlow as presented in Table 4.1.  

 

Table 4.1 The Boundary Conditions and Mesh Setup for Validation Case 

Name of Parameter Unit Value 

Reynolds Number - 1000 

Prandtl Number - 0.7 

Channel Diameter m 0.016 

Inlet Velocity m/s 1.0 

 Inlet Temperature K 300 

 Wall Temperature K 800 

 Inlet Pressure Pa 100000 

 Number of Nodes - 51 

 Stretch Factor - 1.1 

 Absolute Error Tolerance - 10-6 

 

The comparison of the results of reactFlow and the literature for dimensionless 

velocity and temperature profiles are presented in Figure 4.1 and Figure 4.2. The 

resulting profiles are compared at four different axial points, as shown in the figures. 

The axial points are z=1D, z=5D, z=10D, z=50D and z=100D, which are the 

distances from the inlet regarding channel diameter. The continuous lines are the 

results of reactFlow at different axial points, while the dashed lines are from the 

literature [21].  
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According to Figure 4.1, the distribution of dimensionless velocity profiles of 

reactFlow is in good agreement with the literature profiles for every axial point. At 

the regions close to the wall, some divergence of the velocity profiles is observed. 

This divergence disappeared through the regions close to the centerline. Since the 

non-uniformity factor of the radial distribution of the mesh points is not explicitly 

specified in the literature, the most fitting stretch factor is used in the analysis, as 

shown in Table 4.1. The results of reactFlow show great accordance with the results 

of the literature.  

 

 

Figure 4.1 The Comparison of Results with Literature for Velocity Profiles 
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The dimensionless temperature profiles for literature and reactFlow are presented in 

Figure 4.2. As in the case of dimensionless velocity profiles, the results are in good 

agreement for every compared axial point. The divergence of temperature profiles 

on the regions close to the wall can be observed. The source of this difference could 

be the settings of the mesh domain, which is not given in the literature. 

 

 

Figure 4.2 The Comparison of Results with Literature for Temperature Profiles 
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Figure 4.3 The Comparison of Results with Analytical Solution 

 

In addition to literature data, the results of reactFlow are compared with the 

analytical solution, which is stated in section 2.3 for the channel flow problems. In 

this case, the inlet and boundary conditions are used, as given in Table 4.1. 

Moreover, the temperature difference between the inlet and the wall is dissipated and 

both values are taken as inlet gas temperature, shown in Table 4.1. The results are 

presented in Figure 4.3. In the figure, solid lines are the results of reactFlow for 

different axial points. It can be observed from Figure 4.3 that the flow calculated by 

reactFlow is reached a fully developed condition at axial position x=50D. The value 

of maximum dimensionless velocity is close to 2, which is also calculated by the 

analytical solution. The pressure gradient in the axial direction is calculated at inlet 

flow conditions and assumed to be constant through the pipe for the analytical 

solution. However, it is calculated for every axial point by reactFlow. The difference 

between calculation methods can be the reason for the difference between the values 

of maximum dimensionless velocities of both solutions.    
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4.1.2 Reacting Case Validation   

After completing the validation of the non-reacting model of the code reactFlow, a 

reacting version of it should also be validated using data from the literature. 

However, the analyses and the experiments found in the literature are generally out 

of the scope reactFlow. In literature, the cases in which surface chemistry is also 

considered or flame extinction analyses are studied have widely been investigated. 

In order to stay within the limits of reactFlow and make the validation case as less 

complex as possible to see the behavior of reactFlow, two benchmark problems for 

the validation of the reacting version of the code reactFlow are created. Inputs for 

benchmark problems are presented in Table 4.2 and Table 4.4. In addition, the same 

issues are also investigated using CHEMKIN software [33], a verified and well-

known program commonly used in literature, to create a benchmark for the studies. 

   

Table 4.2 The Boundary Conditions and Mesh Setup of Benchmark Case-1 for 

Validation 

Name of Parameter Unit Value 

Channel Diameter m 0.01 

Inlet Velocity m/s 1.00 

 Inlet Temperature K 400 

 Wall Temperature K 1600 

 Inlet Pressure Pa 101325 

 Inlet Equivalence Ratio - 1.0 

 Inlet Fuel Species - CH4  

 Inlet Oxidizer - Air 

 Number of Nodes - 21 

 Stretch Factor - 1.1 

 Absolute Error Tolerance - 10-5 
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The thermodynamic, transport and chemical kinetic properties of reacting gases are 

calculated using Cantera and Chemkin for the same mechanism. The mixture-

averaged diffusion properties are used in the analyses. The mechanism is selected as 

global methane-air combustion developed at CERFACS. This mechanism contains 

2 reactions with 6 species and is valid for a wide range of equivalence ratios, pressure 

and temperature [34], as given below. The axisymmetric channel diameter is selected 

as 0.01 m. The inlet temperature is 400K, while the wall temperature is 1600K, which 

is necessary for the ignition of the fuel. The equivalence ratio of methane-air 

combustion is selected as 1.0 with the inlet conditions for pressure and velocity, as 

given in Table 4.2.  

𝐶𝐻4 + 1.5𝑂2  => 𝐶𝑂 + 2𝐻2𝑂 

𝐶𝑂 + 0.5𝑂2  <=> 𝐶𝑂2 
(4.1) 

 

The distribution of temperature fields along the axial domain for the results of 

reactFlow and Chemkin are presented in Figure 4.4 and Figure 4.5, respectively. The 

upper boundary in the figures is the wall, the left boundary is the inlet of the channel 

and the lower boundary is the symmetry axis. The dimensional quantities are 

normalized using the diameter of the channel to make the results of the analyses 

comparable with each other. According to the figures, the temperature distribution 

in the channel domain is slightly varied for analyses. However, the position of flame 

is calculated at the same axial location by both reactFlow and Chemkin, which is the 

most important outcome of this benchmark study.  
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Figure 4.4 reactFlow: Temperature Distribution for Benchmark-1  

 

Figure 4.5 Chemkin: Temperature Distribution for Benchmark-1 

 

 

Figure 4.6 The Centerline Temperature Distribution for reactFlow and Chemkin 
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The temperature distribution lines on the centerline of the channel for both analyses 

are compared around the position of the anchored flame in Figure 4.6. A jump in the 

value of temperature on the centerline can be observed between the axial position of 

1.25D and 1.30D from Figure 4.6. The analyses show that the flame starts to develop 

at 1.249D in the axial direction for reactFlow analysis. In addition, the flame initially 

develops at 1.28D in the axial direction for Chemkin analysis. At that axial location, 

the estimated flame front by both studies is significantly close to each other, with a 

difference of 2.42%, which is tabulated in Table 4.3.  

 

 

Figure 4.7 reactFlow: Velocity Distribution for Benchmark-1 

 

Figure 4.8 Chemkin: Velocity Distribution for Benchmark-1 
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Table 4.3 Comparison of Axial Flame Position for reactFlow and Chemkin 

Case Axial Flame Position 

reactFlow 1.249 D  

Chemkin 1.280 D 

 Difference 2.42% 

 

 

The velocity distributions of reactFlow and Chemkin for the flow domain are 

presented in Figure 4.7 and Figure 4.8. The velocity distributions are slightly 

different, especially in the region where combustion is completed. The velocity lines 

around the anchored flame position are presented in Figure 4.9 for both analyses. It 

can be observed that the velocity of the flow fields is estimated significantly close to 

each other in the regions before and around the flame by both analyses. However, 

the values of velocities of both studies are separated from each other through the 

domain after combustion is completed.  

 

 

Figure 4.9 Comparison of Velocity Distributions for Benchmark-1 
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A study of mesh dependency is conducted for benchmark case-1 using reactFlow for 

different numbers of radial mesh points with the same value of stretch factor and 

inlet conditions given in Table 4.2. The number of radial mesh in the benchmark case 

is 21. The number of mesh points in the radial direction is increased to 31 and 41 to 

observe the effects of mesh on the solution fields. The temperature field for analyses 

is presented in figures between Figure 4.10 and Figure 4.12. The wiggles of the 

temperature field are observable around the flame front, while they are diffused with 

the increase in the number of radial mesh, as presented in Figure 4.11 and Figure 

4.12. The wiggles on the flame front are dependent on the mesh number in the radial 

direction. The wiggles become subtle by increasing the mesh number. In addition, 

the flame position in the radial channel is observed to be affected by the number of 

radial mesh. The difference between flame positions is calculated as less than 15%. 

The molecular diffusion due to the resolution of the numerical problem is decreased 

with the increase in mesh number. Therefore, the flame in the channel is anchored 

closer to the channel inlet with the increase in the resolution of the mesh.  

 

 

 

 

. 
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Figure 4.10 Temperature Field for the Case with 21 Radial Mesh Points 

 

Figure 4.11 Temperature Field for the Case with 31 Radial Mesh Points  

 

Figure 4.12 Temperature Field for the Case with 41 Radial Mesh Points 
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In the second benchmark case, the inlet velocity is decreased to 0.5 m/s, as given in 

Table 4.4 and the analyses are conducted to compare reactFlow and Chemkin 

solutions. The remaining inlet conditions are kept the same as benchmark case-1. In 

Figure 4.13 and Figure 4.14, the comparison of temperature fields of solutions of 

reactFlow and Chemkin are presented. The flame is stabilized at an axial position of 

0.6 cm for both reactFlow and Chemkin. However, as in the case of benchmark-1, 

the temperature field is underestimated by reactFlow after the flame front for the 

region between the centerline and the channel wall. The temperature for the Chemkin 

case started to increase earlier and more smoothly than reactFlow, as presented in 

Figure 4.15. The temperature is determined higher for reactFlow than Chemkin at 

the flame position. However, temperature distributions on the centerline axis are 

calculated with similar trends by solvers after the flame region.  

 

Table 4.4 The Boundary Conditions and Mesh Setup of Benchmark Case - 2 for 

Validation 

Name of Parameter Unit Value 

Channel Diameter m 0.01 

Inlet Velocity m/s 0.50 

 Inlet Temperature K 400 

 Wall Temperature K 1600 

 Inlet Pressure Pa 101325 

 Inlet Equivalence Ratio - 1.0 

 Inlet Fuel Species - CH4  

 Inlet Oxidizer - Air 

 Number of Nodes - 21 

 Stretch Factor - 1.1 

 Absolute Error Tolerance - 10-5 
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Figure 4.13 reactFlow: Temperature Distribution for Benchmark-2 

 

Figure 4.14 Chemkin: Temperature Distribution for Benchmark-2 

 

 

Figure 4.15 Comparison of Flame Positions at Centerline for reactFlow and Chemkin 
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Table 4.5 Comparison of Axial Flame Positions for reactFlow and Chemkin 

Case Axial Flame Position 

reactFlow 0.629 D  

Chemkin 0.650 D 

 Difference 3.23% 

 

The velocity fields for reactFlow and Chemkin are given in Figure 4.16 and Figure 

4.17. According to the figures, the velocity after the flame region is overestimated 

by reactFlow with respect to Chemkin. At the same time, similar velocity fields are 

observed for the area between the inlet of the channel and flame position, identical 

to benchmark case-1. The differences between velocity fields and temperature fields 

for reactFlow and Chemkin for benchmark cases 1 & 2 can be physically related to 

each other. In solutions of reactFlow, the temperature level is not significantly 

increased in a region between the centerline and channel wall. However, the velocity 

is dramatically raised to higher levels on the same area after the flame front, which 

is not the case in Chemkin solutions. In the solutions of Chemkin, high-temperature 

levels are observed between the centerline and wall after the flame front. Moreover, 

the velocity level is lower than reactFlow solutions in the same region.  

This behavior can be caused for several reasons. One of them is due to differences 

in the algorithms of the codes. No relaxation factor or correction term for any 

coefficient is applied in reactFlow since reactFlow is an immature code with respect 

to Chemkin. In addition, the reacting flow in a channel is a highly stiff problem and 

the code reactFlow is very sensible to unphysical behavior of varying properties in a 

flow field. The unphysical results cannot be filtered during the iterations, affecting 

the convergence terms in reactFlow.  
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Figure 4.16 reactFlow: Velocity Distribution for Benchmark-2 

 

Figure 4.17 Chemkin: Velocity Distribution for Benchmark-2 

 

The conservation of species is also compared for solutions of reactFlow and 

Chemkin in benchmark case-2 and the results are given in figures between Figure 

4.18 and Figure 4.24. In Figure 4.18, the variation of mass fractions of CH4, O2 and 

CO2 on the centerline of the channel are presented for reactFlow and Chemkin 

solutions. Since the flame is predicated on the same axial positions for both solvers, 

the decay and increase of the mass fractions of species have occurred between 0.6 

cm and 0.65, which is the flame position on the centerline. The destruction of CH4 

and O2 on the centerline started around 0.5 cm, following a smooth curve through 

the flame position for Chemkin, while it sharply started around 0.62 cm for 

reactFlow. The contours of CH4, O2 and CO2 mass fractions for reactFlow and 

Chemkin are presented between Figure 4.19 and Figure 4.24. The smoother 

destruction and construction of species are occurred in Chemkin from wall to 

centerline than reactFlow.   
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Figure 4.18 Comparison of Mass Fractions of Species on Centerline for reactFlow 

and Chemkin 

 

Figure 4.19 reactFlow: Mass Fraction of CH4 

 

Figure 4.20 Chemkin: Mass Fraction of CH4 
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Figure 4.21 reactFlow: Mass Fraction of O2 

 

Figure 4.22 Chemkin: Mass Fraction of O2 

 

Figure 4.23 reactFlow: Mass Fraction of CO2 

 

Figure 4.24 Chemkin: Mass Fraction of CO2 
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Although there are slight differences in velocity and temperature fields, the location 

of flame is calculated well enough by reactFlow with respect to benchmark cases 

analyzed using Chemkin. The accurate calculation of flame position is essential for 

reactFlow since its primary goal is to correctly estimate flame position in a channel 

domain. According to the results presented in section 4.1.2, the developed code 

reactFlow can be used to analyze flame generation and observe flame location. 

4.2 Parametric Study of Sensitivity  

A parametric study is conducted using reactFlow to investigate the effect of flow 

parameters on flame formation and position in a channel. Parameters and their range 

to be analyzed are tabulated in Table 4.6. The reference analysis for this study is 

specified as benchmark case-1, of which inlet conditions and mesh setup are 

presented in Table 4.2. The reacting gas is the mixture of CH4 – Air, as in benchmark 

cases. Throughout the analyses, only one of the parameters is changed to see its effect 

on flame position, while other parameters are kept with the values of benchmark 

case-1.  In the analyses, the dimensional quantities are normalized with the inlet 

diameter of the channel to make them comparable. 

 

Table 4.6 Parameters for Sensitivity Study 

Name of Parameter Unit Range 

Inlet Velocity m/s 0.5 – 1.0 – 1.5  

Equivalence Ratio - 0.9 – 1.0 – 1.1  

 Inlet Pressure atm 0.75 – 1.0 – 1.5  

 Wall Temperature  K 1200 – 1600 – 1800 

 Channel Diameter M 0.005 – 0.010 – 0.0125 
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4.2.1 Varying Inlet Velocity 

The inlet velocity of the channel is changed in a range of 0.5 m/s to 1.5 m/s to observe 

inlet velocity effects on flame position. The centerline temperature, velocity and 

species mass fraction distributions for varying inlet velocities are presented in Figure 

4.25, Figure 4.26 and Figure 4.27, respectively. The calculated flame positions for 

different inlet velocities are tabulated in Table 4.7. The temperature and velocity 

fields for varying inlet velocities are presented between Figure 4.28 and Figure 4.33.  

 

 

Figure 4.25 Comparison of Centerline Temperatures for Varying Inlet Velocities 
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Figure 4.26 Comparison of Centerline Velocities for Varying Inlet Velocities 

 

Figure 4.27 Comparison of Centerline Species Mass Fractions for Varying Inlet 

Velocities 
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Figure 4.28 Temperature Field for U = 0.5 m/s 

 

Figure 4.29 Temperature Field for U = 1.0 m/s 

 

Figure 4.30 Temperature Field for U = 1.5 m/s 
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Figure 4.31 Velocity Field for U = 0.5 m/s 

 

Figure 4.32 Velocity Field for U = 1.0 m/s 

 

Figure 4.33 Velocity Field for U = 1.5 m/s 
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The speed of a flame in the channel can be considered as the speed of an unburned 

mixture of gases for flat flames in one-dimensional cases. When the shape of the 

flame is flat, the direction of unburned gases corresponds with the normal direction 

of the channel’s cross-section [35]. In this case, the flow velocity becomes equal to 

the flame speed. However, the flame is not always produced as flat-shaped, as in the 

case of the Bunsen burner flame [35]. The shape of the flame is formed as a function 

of flow speed and heat loss. In this condition, the flame speed is proportional to the 

normal component of the flow velocity. When the flow velocity gets higher, the area 

of the flame front gets higher and the shape of the flame becomes more conical. This 

behavior can also be observed by examining the results of temperature fields 

calculated by reactFlow and presented between Figure 4.28 and Figure 4.30. The 

anchored flame position gets away from the channel inlet with the increase in inlet 

velocity. The values of flame position in the axial direction are tabulated in Table 

4.7. Moreover, the density of burnt gas gets lower than the density of fresh gases due 

to the increased temperature of the burnt gas due to combustion. The velocity of 

burnt gases becomes higher than fresh gases for the same mass flow rate due to mass 

conservation [35]. The increase in the velocity field through the channel can be 

observed between Figure 4.31 and Figure 4.33. When the velocity of inlet flow gets 

higher, the velocity of flow downstream in the channel becomes higher.  

 

Table 4.7 Flame Position in Axial Direction for Varying Inlet Velocities 

Inlet Velocity Axial Flame Position x/U 

U = 0.5 m/s 0.62 D 1.24 

U = 1.0 m/s 1.25 D 1.25 

 U = 1.5 m/s 1.90 D 1.26 
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The ratio of axial flame position to inlet velocity is presented in Table 4.7. The 

relation between flame position and inlet velocity is investigated using this ratio. The 

constant ratio of axial flame position to inlet velocities is calculated and tabulated in 

Table 4.7. In addition, the temperature fields of each case are plotted as a line plot in 

Figure 4.34. The temperature lines are overlapped with each other since the ratio of 

axial flame position to inlet velocity is constant for each case. As a result, inlet 

velocity can be used as a similarity parameter for problems of reacting channel flows. 

 

 

Figure 4.34 Comparison of Flame Shapes for Varying Inlet Velocities 

 

4.2.2 Varying Equivalence Ratio 

The equivalence ratio of inlet premixed flow is changed between 0.9 and 1.1 to 

examine equivalence ratio effects on flame position. The centerline temperature, 

velocity and species mass fraction distributions for varying equivalence ratios are 

presented between Figure 4.35 and Figure 4.37. The calculated flame positions are 

tabulated in Table 4.8.  
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Figure 4.35 Comparison of Centerline Temperatures for Varying Inlet Equivalence 

Ratios 

 

 

Figure 4.36 Comparison of Centerline Velocities for Varying Inlet Equivalence 

Ratios 
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Figure 4.37 Comparison of Centerline Species Mass Fractions for Varying Inlet 

Equivalence Ratios 

 

The above-presented figures show that the change of equivalence ratio in the given 

range slightly affects the flame position, as provided in Table 4.8. In addition, minor 

changes in flame shape can be observed from the contours of temperature and 

velocity fields presented between Figure 4.39 and Figure 4.44. Since inlet conditions 

are the same for the three cases except for the equivalence ratio, the properties of the 

burnt gases are only related to the equivalence ratio and the adiabatic flame 

temperature of burnt gases [35]. The relation between the burning velocities of the 

methane-air mixture and varying equivalence ratios can be summarized such that the 

flame speed becomes the highest for the value of the equivalence ratio, where the 

adiabatic flame temperature of the mixture is highest [36]. The adiabatic flame 

temperatures for the range of equivalence ratios for inlet conditions of channel flow 

given in Table 4.2 are presented in Figure 4.38. The highest temperature value is 

obtained at the stoichiometric condition, where Φ = 1.0; due to this, the highest flame 

velocity is expected for Φ = 1.0. As the flame velocity increases, the ratio between 

inlet flow velocity and flame velocity decreases and this leads flame to be flatter due 
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to mass continuity. Since the flame is flatter, it stabilized earlier in a channel. As a 

result, the flame is positioned closer to the channel inlet than in other conditions with 

different equivalence ratios. For values of equivalence ratios 0.9 and 1.1, the 

adiabatic flame temperatures are calculated with very little difference from each 

other, which can be observed in Figure 4.38. Therefore, the flame positions for both 

cases are estimated at the same point, tabulated in Table 4.8. However, the variations 

of flow properties are slight for a given range of equivalence ratios, as can be 

observed from the temperature and velocity fields shown between Figure 4.39 and 

Figure 4.44.   

  

 

Figure 4.38 Adiabatic Flame Temperature 
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Figure 4.39 Temperature Field for Φ = 0.9  

 

Figure 4.40 Temperature Field for Φ = 1.0 

 

Figure 4.41 Temperature Field for Φ = 1.1 
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Figure 4.42 Velocity Field for Φ = 0.9 

 

Figure 4.43 Velocity Field for Φ = 1.0 

 

Figure 4.44 Velocity Field for Φ = 1.1 
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Table 4.8 Flame Position in Axial Direction for Varying Equivalence Ratios 

Equivalence Ratio Axial Flame Position 

Φ = 0.9 1.327 D 

Φ = 1.0 1.250 D 

 Φ = 1.1 1.315 D 

 

4.2.3 Varying Inlet Pressure 

The flow's inlet pressure is changed from 0.75 atm to 1.5 atm to investigate its effects 

on flame position. The centerline temperature, velocity and species mass fraction 

distributions for varying inlet pressures are presented in Figure 4.45, Figure 4.46 and 

Figure 4.47.  

 

 

Figure 4.45 Comparison of Centerline Temperatures for Varying Inlet Pressures 
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Figure 4.46 Comparison of Centerline Velocities for Varying Inlet Pressures 

 

 

Figure 4.47 Comparison of Centerline Species Mass Fractions for Varying Inlet 

Pressures 
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The experimental results for calculating the burning velocity of the methane-air 

mixture for varying pressure are summarized in [36] and show that the burning 

velocity, which corresponds to flame velocity, of the methane-air mixture is 

inversely proportional to the inlet pressure [36]. Thus, flame velocity decreases with 

increasing inlet pressure. As flame velocity decreases, the velocity ratio between 

inlet flow and burnt gases increases, which increases the area ratio of fresh and burnt 

gases to satisfy mass continuity. The shape of the flame gets more conical when the 

area ratio is increased. The change of flame shape can be observed from the 

temperature and velocity fields given between Figure 4.48 and Figure 4.53. 

Therefore, the anchored position of the flame in a channel is delayed proportionally 

with inlet pressure. The location of temperature shifts, which shows the position of 

the flame, can be observed in Figure 4.45. The flame speeds for varying inlet 

pressures are calculated for a two-step methane-air combustion mechanism [34] 

using Cantera software and tabulated in Table 4.9. According to tabulated results, 

numerical calculations are in accordance with the experimental results given in [36]. 

In addition, flame speed is inversely proportional to the root of pressure, and the 

proportionality constants for each case are presented in Table 4.9. Because of this 

relation between inlet pressure and flame speed, it can be concluded that pressure 

can be used as a similarity parameter for the problems of reacting channel flow. 

Moreover, the velocity change on the centerline is shown in Figure 4.46, where the 

maximum flow velocity after the flame is examined. Although the flame position is 

delayed with increasing inlet pressure, the maximum temperature of burnt gases is 

not changing.  
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Figure 4.48 Temperature Field for P = 0.75 atm 

 

Figure 4.49 Temperature Field for P = 1.0 atm 

 

Figure 4.50 Temperature Field for P = 1.5 atm 
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Figure 4.51 Velocity Field for P = 0.75 atm 

 

Figure 4.52 Velocity Field for P = 1.0 atm 

 

Figure 4.53 Velocity Field for P = 1.5 atm 
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Table 4.9 Calculated Flame Speeds for Varying Inlet Pressures 

Inlet Pressure Flame Speed 𝑆𝐿 𝑃−0.5⁄  

0.75 atm 74.18 cm/s 64.1 

1.00 atm 66.06 cm/s 66.0 

 1.50 atm 55.74 cm/s 68.3 

 

Table 4.10 Flame Position in Axial Direction for Varying Inlet Pressures 

Inlet Pressure Axial Flame Position 

0.75 atm 1.00 D 

1.00 atm 1.25 D 

 1.50 atm 1.80 D 

 

4.2.4 Varying Wall Temperature 

The wall temperature of the channel is changed between 1200 K and 1800K in order 

to investigate its effects on flame position. The centerline temperature, velocity and 

species mass fraction distributions for varying inlet pressures are presented in Figure 

4.54, Figure 4.55 and Figure 4.56.  
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Figure 4.54 Comparison of Centerline Temperatures for Varying Wall 

Temperatures 

 

 

Figure 4.55 Comparison of Centerline Velocities for Varying Wall Temperatures 
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Figure 4.56 Comparison of Centerline Species Mass Fractions for Varying Wall 

Temperatures 

 

The flame positions can be obtained from Figure 4.54, which shows the centerline 

temperature distribution for each case. According to the figure, the flame is stabilized 

closer to the channel's inlet when the wall temperature is higher. In reacting channel 

flow problems, the wall of the channel is used as an ignition source for the reaction 

to be started [21]. The ignition is obtained by ensuring a constant or varying 

temperature profile for the wall or supplying a heat flux. Therefore, heat transfer in 

a channel is occurred from wall to centerline because of the temperature gradient. 

The temperature gradient is increased with higher wall temperatures, which enhances 

heat transfer between the wall and the centerline of the channel. The flow becomes 

more energetic with improved heat transfer from the wall; consequently, the flow's 

velocity and temperature tend to be higher. This behavior can be observed for 

centerline property distributions from Figure 4.54 and Figure 4.55 and the entire 

channel fields of temperature and velocity between Figure 4.57 and Figure 4.62. The 

calculated positions of flame are tabulated in Table 4.11. 
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Figure 4.57 Temperature Field for Twall = 1200 K 

 

Figure 4.58 Temperature Field for Twall = 1600 K 

 

Figure 4.59 Temperature Field for Twall = 1800 K 
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Figure 4.60 Velocity Field for Twall = 1200 K 

 

Figure 4.61 Velocity Field for Twall = 1600 K 

 

Figure 4.62 Velocity Field for Twall = 1800 K 
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Table 4.11 Flame Position in Axial Direction for Varying Wall Temperatures 

Wall Temperature Axial Flame Position 

1200 K 1.50 D 

1600 K 1.25 D 

 1800 K 1.20 D 

 

4.2.5 Varying Channel Diameter 

The diameter of the channel is changed between 0.005 m to 0.0125 m in order to 

investigate its effects on flame position. The centerline temperature, velocity and 

species mass fraction distributions for varying inlet pressures are presented in Figure 

4.63, Figure 4.64 and Figure 4.65. 

 

 

Figure 4.63 Comparison of Centerline Temperatures for Varying Channel Diameter 
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Figure 4.64 Comparison of Centerline Velocities for Varying Channel Diameter 

 

The flame positions can be obtained from Figure 4.63, which shows the centerline 

temperature distribution for each case. According to the figure, the flame is stabilized 

closer to the channel's inlet when the channel diameter is decreased. As stated in 

section 4.2.4, the wall of the channel is used as an ignition source for reacting channel 

flow cases. When the channel diameter is decreased, the heat transfer between the 

wall and centerline of the channel becomes more rapid. Due to this, the level of 

activation energy for reactions to occur is reached earlier in a channel. Therefore, the 

flame is stabilized closer to the channel inlet for the channels with narrower 

diameters. However, the flow properties are kept the same for the burnt gases region. 

The centerline velocity distributions for each case are compared in Figure 4.64. The 

level of the maximum velocity of the flow is similar for each case since the maximum 

released chemical energy and the energy difference between the wall and centerline 

of the channel are the same for each case. The flame shapes for varying channel 

diameters can be observed from temperature and velocity fields between Figure 4.66 

and Figure 4.71. The flame positions for each diameter are tabulated in Table 4.12. 

Moreover, the relation between channel diameter and axial flame position is 

investigated. It is concluded that the axial flame position is directly proportional to 

the cross-sectional area of the channel inlet. The proportionality constants for each 

case are presented in Table 4.12.  
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Figure 4.65 Comparison of Centerline Species Mass Fractions for Varying Channel 

Diameter 

 

Table 4.12 Flame Position in Axial Direction for Varying Channel Diameters 

Channel Diameter Axial Flame Position 
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐴𝑟𝑒𝑎

𝐹𝑙𝑎𝑚𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
 

0.0050 m 0.70 D 2.24 ∙ 10−4 

0.0100 m 1.25 D 2.51 ∙ 10−4 

 0.0125 m 1.52 D 2.58 ∙ 10−4 
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Figure 4.66 Temperature Field for D = 0.005 m 

 

Figure 4.67 Temperature Field for D = 0.010 m 

 

Figure 4.68 Temperature Field for D = 0.0125 m 
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Figure 4.69 Velocity Field for D = 0.005 m 

 

Figure 4.70 Velocity Field for D = 0.010 m 

 

Figure 4.71 Velocity Field for D = 0.0125 m 
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4.2.6 Comparison of Results 

The results of the parametric sensitivity study are summarized in this section. In 

Figure 4.72, the flame positions are shown for variation of each flow parameter. As 

stated in the previous section, each flow parameter is varied for three values. It can 

be observed from the figure that variation of equivalence ratio has a minor effect on 

the position of flame in a channel. In contrast, the variation of channel diameters is 

the most influential parameter for the flame position in a channel. The relation 

between flow parameters and flame position is presented between Figure 4.72 and 

Figure 4.76. It can be observed from these figures that flame position is linearly 

proportional to inlet velocity, inlet pressure and channel cross-sectional area. 

Secondly, the flame is anchored earlier for equivalence ratio with the highest 

adiabatic flame temperature. In addition, the flame position is inversely proportional 

to wall temperature. 

 

 

Figure 4.72 Variation of Flame Position with Inlet Velocity 
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Figure 4.73 Variation of Flame Position with Inlet Pressure 

 

Figure 4.74 Variation of Flame Position with Channel Diameter 
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Figure 4.75 Variation of Flame Position with Equivalence Ratio 

 

Figure 4.76 Variation of Flame Position with Wall Temperature 
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In Table 4.13, a summary of flow parameters is tabulated with the specification of 

the case number, case variable and value of the variable. In Figure 4.77, a graph of 

flame positions for each case is presented. The flame is stabilized between 1.00D 

and 1.40D from the channel inlet for 66% of cases. As stated previously, the slightest 

change of flame position occurs for variation of equivalence ratio, for which the 

difference between cases is between 5.2% and 6.2%. For the analysis of wall 

temperatures, 200 K and 400 K are used for temperature differences from the 

reference temperature value. For case – 10, of which the wall temperature is 1200 K, 

the flame position is slightly changed with a difference of 4%. However, for case – 

12, of which the wall temperature is 1800 K, the flame position is dramatically 

altered with a value of 20%. For inlet pressure analyses, the increase of inlet pressure 

of 0.5 atm is stabilized flame 44 % later than the reference flame position value. In 

addition, when the inlet pressure is decreased to 0.75 atm, the flame is positioned 

20% closer to the channel inlet than in the reference case.  Inlet velocity is reduced 

and increased with 0.5 m/s, and the resulting flame positions are differed from the 

reference flame position for variation of inlet velocity analyses 50.4% and 52% for 

0.5 m/s and 1.5 m/s, respectively. The most dramatic changes in flame positions are 

occurred due to variations in inlet velocity. Finally, when the channel diameter is 

decreased to 0.005m, the flame is anchored in a channel 44% closer to the inlet with 

respect to the reference value. In addition, when the channel diameter is increased to 

0.0125 m, the flame position is delayed in channel 21.5% to the reference position 

of flame for channel diameter analyses. 
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Table 4.13 Summary of Flow Parameters  

Case Number Case Variable 
Value of 

Variable 

Flame 

Position 

Deviation from 

Reference Value 

Case – 1 

Inlet Velocity 

0.5 m/s 0.62 D 50.4 % 

Case – 2 1.0 m/s 1.25 D - 

Case - 3 1.5 m/s 1.90 D 52 % 

Case - 4 

Equivalence 

Ratio 

0.9 1.327 D 6.2 % 

Case - 5 1.0 1.250 D -  

Case - 6 1.1 1.315 D 5.2 % 

Case - 7 

Inlet Pressure 

0.75 atm 1.00 D 20 % 

Case - 8 1.00 atm 1.25 D - 

Case - 9 1.50 atm 1.80 D 44 % 

Case - 10 

Wall Temperature 

1200 K 1.20 D 4 % 

Case - 11 1600 K 1.25 D - 

Case - 12 1800 K 1.50 D 20 % 

Case - 13 

Channel Diameter 

0.0050 m 0.70 D 44 % 

Case - 14 0.0100 m 1.25 D - 

Case - 15 0.0125 m 1.52 D 21.5 % 
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Figure 4.77 Summary of Flame Position for Cases 
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CHAPTER 5  

5 CONCLUSION 

5.1 Results 

In this thesis, an algorithm for the solution of chemically reacting flows in a channel 

reactor is developed by using boundary layer equations. Parabolic PDEs are solved 

by numerical techniques initially designed for ODE utilizing the method of lines. 

The finite difference method is used to discretize spatial terms in the set of equations. 

The resulting set of equations is written in differential algebraic equations and is 

solved using MATLAB ode15i solver. Using the developed algorithm, the flame 

position in a channel and the parameters affecting flame development are 

investigated. As a result, the following results have been obtained: 

a) Algorithm Development 

1. An algorithm for chemically reacting channel flows is developed using 

boundary layer equations via numerical methods and the results are 

compared with data from the literature. It is found that numerical solutions 

for the non-reacting case are close to the literature data. In addition, the 

solutions for the reacting case can be predict the flame position closer to the 

literature. 

2. A numerically insignificant number is defined as an initial condition for non-

existing species to avoid singularities. Singularities can arise in numerical 

solutions due to representing non-existing species as zero.  

b) Sensitivity Analyses for Flow Parameters 

3. Parametric flow analyses show that flow parameters affect determining flame 

position differently.  

4. Reynolds number, flame speed and channel cross-sectional diameter can be 

used as similarity parameters for reacting channel flow calculations. 
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5. The most negligible effect on flame position is occurred by variation of 

equivalence ratio, which is around 5%, for the given range of equivalence 

ratio.  

6. The most influential parameter on the flame positions is determined as inlet 

velocity. Increasing or decreasing the flame position can be changed by 

around 50% to the reference position. 

7. The position of the flame can be altered by changing inlet pressure. The root 

of inlet pressure is inversely proportional to the flame position.  

8. Channel diameter is one of the most influential parameters on flame position 

and flows field. 

9. Wall temperature has a significant effect on both flame position and flow 

fields.  

Experimental studies can be examined in future studies to increase the precision of 

developed code. In addition, the solver and its environment can be changed to speed 

up the analyses of the code. Moreover, surface reactions can be added to widen the 

usage area of code. Finally, a variable temperature profile can be introduced as an 

input condition on the wall. 
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