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Supervisor, Computer Engineering, METU

Assoc. Prof. Dr. Nazlı İkizler Cinbiş
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Computer Engineering, Bilkent University

Assist. Prof. Dr. Emre Akbaş
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ABSTRACT

OBJECT DETECTION WITH MINIMAL SUPERVISION

Demirel, Berkan
Ph.D., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

Co-Supervisor: Assoc. Prof. Dr. Nazlı İkizler Cinbiş

January 2023, 152 pages

Object detection is considered one of the most challenging problems in computer

vision since it requires correctly predicting both the object classes and their locations.

In the literature, object detection approaches are usually trained in a fully-supervised

manner, with a large amount of annotated data for all classes. Since data annotation

is costly in terms of both time and labor, there are also alternative object detection

methods, such as weakly supervised or mixed supervised learning to reduce these

costs in the literature. In this thesis, our focus is handling object detection problem

with minimum supervision. In this context, we first define a difficult scenario namely

zero-shot object detection (ZSD), where no visual training data is available for some of

the target object classes. Secondly, we focus on the few-shot object detection (FSOD)

problem and propose the novel meta-tuning principle. In the ZSD problem, we propose

an approach that uses visual class embeddings and convex combinations of semantic

embeddings in the classification part of single-stage object detectors. Following the

proposed method, we focus on using more informative word embeddings, background

modeling, and potential applications for ZSD methods. We first analyze the use of

embedding vectors in deep models since these vectors are an essential knowledge
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source for zero-shot learning (ZSL), and we propose a novel approach that transforms

semantically meaningful word vectors into visually meaningful ones. We show that

using the proposed visually meaningful word embedding vectors obtain state-of-the-

art results in the zero-shot classification (ZSC) problem. Then, we propose the first

attempt to handle the background modeling in ZSD using a novel textual attention

mechanism. Finally, we introduce a new problem within the scope of ZSD applications,

which we call zero-shot image captioning (ZSIC), where the input images may consist

of unseen object instances. The proposed ZSIC method use template-based sentence

generators and fills the empty visual template slots with object proposals obtained

from ZSD methods. In this context, we also propose a new evaluation metric called

V-METEOR to evaluate the caption qualities more accurately for the ZSIC problem. In

this thesis, we also focus on the FSOD problem and propose the meta-tuning principle,

which allows us to model interpretable loss functions/data augmentation magnitudes in

few-shot settings. Meta-tuning allows learning inductive biases that boost FSOD as an

intermediate learning step using episodic learning. With the proposed RL-based meta-

tuning approach, we model the loss function parameters and augmentation magnitudes,

and obtain state-of-the-art results in the FSOD problem.

Keywords: Zero-shot, Few-shot, Object Detection, Image Captioning, Meta-tuning
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ÖZ

ASGARİ DENETİM İLE NESNE TESPİTİ

Demirel, Berkan
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Ortak Tez Yöneticisi: Doç. Dr. Nazlı İkizler Cinbiş

Ocak 2023 , 152 sayfa

Nesne tespiti, hem nesne sınıflarının hem de konumlarının doğru bir şekilde tespit edil-

mesini gerektirdiğinden, bilgisayarlı görü alanındaki en zorlu problemlerden biri olarak

kabul edilir. Literatürde önerilen nesne tespit yaklaşımları, genellikle tüm sınıflar için

büyük miktarda etiketli verinin olduğu tam denetimli yöntemlerle eğitilmektedir. Veri

etiketleme hem zaman hem de işçilik açısından maliyetli olduğundan literatürde bu

maliyetleri azaltmak için zayıf denetimli veya karma-denetimli gibi alternatif nesne

tespit yöntemleri de bulunmaktadır. Bu tezde odak noktamız, nesne tespit problemini

asgari denetim ile ele almaktır. Bu bağlamda, önce bazı hedef nesne sınıfları için hiçbir

görsel eğitim verisinin bulunmadığı sıfır-atım nesne tespiti (SAT) adlı zor bir senaryo

tanımlıyoruz. Ardından, az-atım nesne tespit (AANT) problemine odaklanıyoruz ve

meta-uyarlama ilkesini öneriyoruz. SAT probleminde, tek aşamalı nesne tespit yön-

temlerinin sınıflandırma bölümünde görsel sınıf katışımlarını ve semantik katışımların

dışbükey kombinasyonlarını kullanan bir yaklaşım öneriyoruz. Önerdiğimiz yöntemin

ardından, daha bilgilendirici kelime katışımları, arka plan modelleme ve ZSD yön-

temleri için potansiyel uygulamalara odaklanıyoruz. Bu vektörler, sıfır-atım öğrenme
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(SAÖ) için temel bir bilgi kaynağı olduğundan, önce derin modellerde katışım vek-

törlerinin kullanımını analiz ediyoruz ve semantik olarak anlamlı kelime vektörlerini

görsel olarak anlamlı hale dönüştüren yeni bir yaklaşım öneriyoruz. Önerilen görsel

olarak anlamlı kelime katışım vektörlerini kullanmanın, sıfır-atım sınıflandırma (SAS)

probleminde en iyi sonuçlar elde ettiğini gösteriyoruz. Ardından, hazırladığımız özgün

metinsel ilgi mekanizmasını kullanarak SAT problemindeki arka plan modellemesini

ele almak için literatürdeki ilk yöntemi öneriyoruz. Son olarak, SAT uygulamaları kap-

samında, girdi görüntülerinin görünmeyen nesne örneklerinden oluşabileceği sıfır-atım

görüntü altyazılama (SAGA) adını verdiğimiz yeni bir problem sunuyoruz. Önerilen

SAGA yöntemi, şablon tabanlı cümle oluşturucuları kullanır ve boş görsel şablon

alanlarını SAT yöntemlerinden elde edilen nesne önerileriyle doldurur. Bu kapsamda,

SAGA problemi için üretilen altyazı kalitesini daha doğru bir şekilde değerlendirebil-

mek amacıyla V-METEOR adlı yeni bir değerlendirme metriği de öneriyoruz. Bu tezde,

ayrıca AANT problemine odaklanıyoruz ve az-atım ayarlarında yorumlanabilir kayıp

fonksiyonlarını/veri artırma büyüklükleri modellememizi sağlayan meta-uyarlama

ilkesini öneriyoruz. Meta-uyarlama, epizodik öğrenmeyi kullanarak bir ara öğrenme

adımı olarak AANT sonuçlarını iyileştirecek tümevarımsal önyargıların öğrenilmesine

olanak sağlar. Önerilen RL tabanlı meta-uyarlama yaklaşımıyla, kayıp fonksiyon pa-

rametrelerini ve büyütme büyüklüklerini modelliyoruz ve AANT probleminde en iyi

sonuçları elde ediyoruz.

Anahtar Kelimeler: Sıfır-atım, Az-atım, Nesne Tespiti, Görüntü Altyazılama, Meta-

uyarlama
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CHAPTER 1

INTRODUCTION

dog
Object Detector

Figure 1.1: An example of the object detection problem.

Object detection, which aims to predict the classes and locations of the object instances

in the images, has gained tremendous momentum with the high performance of deep

learning models [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Object detection

problem offers a wide range of usage scenarios in the real world, from home robotics

to self-driving cars. Due to the potential impact and the difficulty of the problem, object

detection has been studied for a long time as a trending field in computer vision. Object

detection, which gained great momentum with deep learning methods, is previously

handled with methods that use handcrafted designs such as Viola-Jones [26], HOG

Detector [27], or Deformable Part Models [28] approaches. Deep learning-based

approaches have been at the forefront in recent years, as in other computer vision

research fields.

Most deep learning-based object detection methods can be classified as follows:

• Single-stage approaches: Single-stage approaches [14, 15, 21] include methods

that perform classification and regression tasks simultaneously at the end of

architecture using dense sampling without generating candidate object regions
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Figure 1.2: An illustration of single-stage object detection frameworks. This frame-

work is representative and shows that no RPN or ROI pooling layers are used in the

middle stages. This figure does not fit all single-stage models.

in intermediate steps. These methods are architecturally simpler than two-stage

approaches as they do not include layers such as RPN (region proposal network),

ROI (region of interest) Pooling. Thanks to their simple architecture, they are

generally faster than equivalent two-stage models, but until recently, they achieve

typically lower accuracy than two-stage approaches. However, thanks to recent

methods, competitive single-stage models are being proposed in terms of both

efficiency and accuracy [29]. Figure 1.2 shows an illustration of a single-stage

object detection process.

• Two-stage approaches: Two-stage object detection approaches [16, 17, 23]

consist of the generation of candidate object regions with RPN, then classification

and box refinement steps on these candidate regions after ROI pooling. Since two-

stage detectors include two different stages, they are slower and computationally

more expensive than single-stage methods. We show an illustration of two-stage

object detection in Figure 1.3.

To sum up, both single-stage and two-stage object detection approaches have their own

advantages and disadvantages. Which method will be used will also vary according to

the desired accuracy and speed requirements.

Recently, transformer models have gained dominance in the field of natural language

processing [30, 31, 32, 33, 34], and have also achieved successful results in the

computer vision [35, 36, 25, 37, 38]. In the object detection problem, visual backbone

features are extracted using CNN-based pre-trained models in single-stage and two-
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Figure 1.3: An illustration of two-stage object detection frameworks. This framework

is representative and does not fit all two-stage models.

stage models until recently. Alternatively, after the adaptation of transformers to

computer vision, successful results are also obtained by using transformers in backbone

models [37].

1.1 Motivation and Problem Definition

Object detection approaches are usually trained in a fully-supervised manner, where

there is a large amount of annotated data for all classes. In the 2014 release of the

MS COCO dataset [39], one of the prominent datasets on the subject, the number of

images for 80 classes in the training, validation, and test sets are 82783, 40504, and

40775, respectively. These images contain an average of 3.5 categories, and there

are an average of 7.7 instances per image. Despite the fact that the state-of-the-art in

object detection is impressive [37, 40, 29], these statistics show that object detectors

still have problems with semantic scalability. As the object detection methods use

fully-supervised training schemes, there is a need to collect a large amount of data, and

this is very costly in terms of time and labor due to its nature. Due to this bottleneck,

there has been growing interest in techniques that can lower the cost of data labeling,

such as weakly supervised [41, 42] or mixed supervised learning [43].

In this thesis, we focus on approaches that can minimize data collection costs as

an alternative to supervised methods. In this context, we first define the zero-shot

object detection (ZSD) problem. The ZSD problem (see Section 1.2.1 for more

details) can be defined as the adaptation of the ZSL paradigm to the object detection

models. The rationale for describing the ZSD problem is that the ZSL motivation

(see Section 1.2.2 for more details) is more suited to the object detection problem:
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Figure 1.4: Diagram for research within the scope of this thesis.

object detection requires more detailed and dense data annotation than the image

classification task. In this thesis, inspired by our ZSD approach, we also define the

true zero-shot image captioning (ZSIC) problem for which the ZSL paradigm is also

appropriate. The purpose of this problem is to adapt the ZSL paradigm to the image

captioning problem and to minimize the data collection costs for the image captioning

problem. Finally, within the scope of this thesis, we also focus on the few-shot object

detection (FSOD) problem (see Section 1.2.3 for more details), which is an alternative

minimal supervision approach. In this problem, unlike the ZSL paradigm, there are a

small but non-zero number of instances for each novel class category.

1.2 Scope of the Thesis

Within the scope of this thesis, we focus on object detection with minimal supervision

to handle semantic scalability problem from different perspectives. In this context,

we define the ZSD problem, which is a more challenging scenario than the existing

alternatives. We also focus on various topics (e.g. model proposal, label embedding,

background modeling, evaluation, and applications) related to ZSD. In this thesis,

we also propose the true ZSIC problem as a continuation of the ZSD. Finally, we

define the RL-based meta-tuning concept for FSOD, which is another alternative

approach, and model the loss function parameters and augmentation magnitudes

statically or dynamically. Research within the scope of the thesis can be examined

through Figure 1.4.
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1.2.1 Zero-shot Object Detection

Zero-shot learning (ZSL) aims to enable the recognition of unseen classes which have

no visual data during the training stage. Typically, this is accomplished by transferring

knowledge (e.g. word embeddings [44], class hierarchies [45], and attributes [46])

from seen to unseen classes. The approaches used in the ZSL problem generally

include using textual class similarities [44] and mapping textual and visual information

in a common embedding space [1, 47, 48]. The main objective of these methods is to

lower the data annotation burden for the classification task and to make an attempt to

handle the scalability problem.

In this thesis, the extension of the ZSL to the object detection problem is one of the

key objectives. The main reasons for this are respectively: i) the cost of data collection

and hence the scalability problem is more intense for object detection, ii) ZSD is a

more realistic scenario than ZSL in the context of the real-world application. Class

information of objects is labeled in the image classification problem; however, in the

object detection problem, the object locations are also annotated in addition to the

classes, making data annotation activities more intense and costly. There are also

potential real-world uses for ZSD in robotics and autonomous vehicle technologies. In

this thesis, we propose the ZSD problem to detect unseen classes due to the reasons

and motivation mentioned above. Our research within the scope of ZSD covers the

following topics and related analyzes:

1. Model for the ZSD Problem. We propose our first ZSD approach based on the

fusion of two widely used zero-shot image classification methods on a single-

stage object detection framework (i.e. YOLO [15]): i) label embedding-based

classification [49] and (ii) convex combination of class embeddings [44]. To

be more precise, we suggest a hybrid model with two components. The first

component uses the detection scores of the object detector to embed object

candidates into the class embedding space. Moreover, the second component

discovers a direct mapping from image regions to the class embedding space. The

cosine similarities between both combinations of these region embeddings and

correct class embeddings are calculated to obtain detection scores of candidate

regions.
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2. Label Embedding. In our ZSD approach, we directly employ class embeddings

to detect object classes. Hence, we need to conduct ZSL research on label

embedding in order to determine the relationship between word embedding

vectors and visual features. Since prior knowledge is the main resource of

knowledge transfer, the performance of a ZSL method is highly dependent on

the quality of word embeddings. In the ZSL domain, label embedding methods

typically use word vectors [50, 51] of class names that are obtained from textual

data [52, 53, 54], and primarily reflect semantic relations, so we believe that

word vectors should also reflect the visual aspects since ZSL is a computer vision

problem.

3. Background Modeling. ZSD training methods employ the same training

schemes as recent fully supervised object detection methods, collecting low

ground-truth overlap regions as negative samples. In this scenario, if the training

images contain instances of unlabeled classes, it is difficult to generate candidate

boxes for these unlabeled classes during the inference stage since these class

instances might be learned as background regions. To avoid this problem, cur-

rent ZSD methods, to the best of our knowledge, eliminate images containing

instances of unseen classes from training sets [55, 56]. However, this situation

is against the nature of the ZSD problem in two aspects and creates a dilemma:

(i) images consisting of selected unseen classes should be known and discarded

during the training time, (ii) the image level annotations of the selected unseen

classes are already known during training. Thus, if instances of unlabeled unseen

classes are available in the training set, it is possible for these classes to be

modeled as background regions by object detection models.

1.2.2 Zero-shot Image Captioning

ZSL has emerged as a promising alternative for overcoming practical limitations in

collecting labeled image datasets and building image classifiers with extremely large

object vocabulary. Similarly, zero-shot image captioning (ZSIC) aims to develop

strategies for circumventing the data annotation bottleneck in the image captioning

problem. However, we find no earlier work that is specifically designed to handle

image captioning problem in a truly zero-shot setting.
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1. Model for the ZSIC Problem. Recent works on ZSIC [57, 58] focus solely on

the language domain, assuming the availability of a pre-trained fully-supervised

object detector that covers all object classes of interest. We refer to these methods

as partial zero-shot image captioning. In light of these observations, we propose

the problem of true zero-shot captioning, in which test images contain instances

of unseen object categories with no supervised visual or textual examples, in

addition to the seen categories. We believe that this change constitutes a more

direct problem definition towards (i) developing semantically scalable captioning

methods, and, (ii) evaluating captioning approaches in a realistic setting where

not all object classes have training examples.

2. New Evaluation Metric. In this thesis, we observe that using existing metrics

for the evaluation of ZSIC models causes some deficiencies. Existing evaluation

metrics are designed to measure the quality of the sentence by giving the same

amount of penalty to all words without distinguishing between visual and non-

visual words. In this case, even if there are unsuccessful ZSD models for the

ZSIC problem, high evaluation metric scores can be obtained if other non-visual

words are in the groundtruth sentence structure. In order to handle this situation,

we propose V-METEOR as a new metric that distinguishes between visual and

non-visual words based on the existing METEOR [59] metric within the scope

of this thesis.

1.2.3 Few-shot Object Detection

The aim of the few-shot object detection (FSOD) is to build object detection models

for novel classes that have few labeled training images by transferring knowledge

from the base classes that have a large number of labeled images. The purpose

of the closely related Generalized-FSOD (G-FSOD) problem is to build few-shot

detection models that work well on both base and novel classes. Meta-learning and

fine-tuning procedures are two types of FSOD methods. Although meta-learning-

based methods [60, 61, 62, 63, 64, 10, 65, 66, 67, 68] are widely employed in FSOD

research, numerous fine-tuning based approaches have lately reported competitive

results [11, 69, 70, 71, 72, 73, 74, 75].
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The core concept of meta-learning approaches is to design and train dedicated meta-

models that map given few train samples to novel class detection, or to learn easily

adaptable models [76] in a MAML [77] fashion. In contrast, however, fine-tuning

based methods tackle the problem as a typical transfer learning problem and apply

the general purpose supervised training techniques, i.e. regularized loss minimization

via gradient-based optimization, to adapt a pre-trained model to few-shot classes. In

the scope of this thesis, we focus on using meta-learning concepts to tune the loss

functions and augmentations used in the fine-tuning based FSOD models, which we

call meta-tuning:

1. Loss Function Augmentation. According to an analysis on the FSOD problem,

there is a problem in correctly classifying the obtained candidate regions rather

than finding possible candidate regions for novel classes [69]. Hence, we think

it would be more appropriate to focus on the loss terms related to classification

and decide to model the temperature parameter. In this context, we propose an

RL-based model to learn the optimal temperature parameter of the loss functions

both statically and dynamically.

2. Data Augmentation Magnitudes. Data augmentation is an important factor

affecting success in object detection. Using the appropriate augmentation list

in optimal magnitudes can contribute positively to success. In this context, we

observe that photometric augmentations are important for FSOD. We then use

our proposed meta-tuning approach to model their magnitudes.

1.3 Contributions and Novelties

Our contributions are as follows:

• We define a novel zero-shot setting for detecting objects of unseen classes, and

propose a novel hybrid method to handle this newly defined task. This hybrid

method uses a convex combination of class embeddings, and label embedding

based classification together.

• We introduce two new benchmarks for evaluating ZSD approaches based on

Fashion-MNIST [78] and Pascal VOC [79] datasets. The first of these benchmark
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datasets, Fashion-ZSD, is a newly created dataset using Fashion-MNIST images.

The other dataset created within the scope of Pascal VOC is obtained as new

splits by determining the new seen and unseen classes.

• We obtain visually meaningful class name embeddings by learning to associate

corresponding attribute combinations and class names, and use them within a

label embedding framework.

• We propose another novel ZSD approach that incorporates a probability scaling

scheme for the generalized zero-shot object detection (GZSD) problem.

• We examine the background modeling problem for ZSD and propose a first

attempt to handle it, to the best of our knowledge. In this context, we propose a

semantic attention mechanism and use customizable feature maps according to

the input side information.

• We analyze the GZSD failure patterns, which are all directly relevant to object

detection and image captioning qualities. In this context, we used four failure

patterns: localization errors, confusion with background, class confusion within

superclass members, and class confusion across superclasses.

• We define a paradigm for generating captions of unseen classes, which is called

true zero-shot image captioning. We evaluate several caption evaluation metrics

and discuss their suitability for the zero-shot image captioning scenario.

• We propose the V-METEOR metric and use this new metric for more detailed

analyses of the ZSIC models. This metric explicitly measures the joint visual or

non-visual accuracy of a sentence.

• We define the meta-tuning paradigm to tune the loss functions and augmentations

to be used in the fine-tuning stage for FSOD. We reduce the computational

costs compared to other methods that aim to discover loss terms from scratch by

defining meta-tuning over well-designed loss terms and an augmentation list.

1.4 Publications

Problem definitions and contributions within the scope of the thesis mentioned above

are discussed extensively in our publications/submissions below. Moreover, the mate-
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rials used in this writing are obtained from our following published/submitted papers

in the scope of the thesis:

1. Berkan Demirel, Ramazan Gokberk Cinbis, Nazli Ikizler-Cinbis, "Zero-Shot

Object Detection by Hybrid Region Embedding", British Machine Vision Con-

ference (BMVC), August 2018.

2. Berkan Demirel, Ramazan Gokberk Cinbis, Nazli Ikizler-Cinbis, "Learning Vi-

sually Consistent Label Embeddings for Zero-Shot Learning", IEEE International

Conference on Image Processing (ICIP), September 2019. (Oral Presentation).

3. Berkan Demirel, Ramazan Gokberk Cinbis, Nazli Ikizler-Cinbis, "Image Cap-

tioning with Unseen Objects", British Machine Vision Conference (BMVC),

September 2019. (Spotlight Presentation).

4. Berkan Demirel, Ramazan Gokberk Cinbis, "Caption Generation on Scenes with

Seen and Unseen Object Categories", Image and Vision Computing (IMAVIS),

2022.

5. Berkan Demirel, Orkun Öztürk, Mehmet Can Baytekin, Ramazan Gokberk

Cinbis, "Zero-shot Object Detection in the Wild". (Submitted).

6. Berkan Demirel, Orhun Buğra Baran, Ramazan Gokberk Cinbis, "Meta-tuning

Loss Functions and Data Augmentation for Few-shot Object Detection". (Sub-

mitted).

1.5 The Outline of the Thesis

The organization of this thesis is as follows. We describe related works related to the

thesis topic in detail in Chapter 2. We explain our initial work on ZSD with details in

Chapter 3. Then, we share the details of the background modeling problem that we

analyzed within the scope of the ZSD problem in Chapter 4. We present our study on

word embeddings that we use in our ZSD models in Chapter 5. Then, we describe

the ZSIC problem, which we introduced by derivation from the ZSD problem, in

Chapter 6. This section also contains the details of the V-METEOR metric that we

have presented to the literature. Moreover, we describe our proposed meta-tuning

mechanism for the FSOD problem with detail in Chapter 7. Finally, we summarize
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our findings on zero/few-shot object detection problems and other related topics in

Chapter 8.
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CHAPTER 2

RELATED WORK

In this section, we will share the related works mentioned in section 1. These related

works are obtained by elaborating the relevant studies mentioned in our papers (see

Section 1.4) and adding recent papers in the literature.

2.1 Zero-shot Learning

This section provides an overview of recent developments on zero-shot image classifi-

cation, zero-shot object detection, and zero-shot image captioning.

2.1.1 Zero-shot Classification

Early work on ZSC focused on directly using attribute-based probabilistic models

for transferring knowledge from seen to unseen classes [80]. Further works explore

other knowledge transfer mediums and predictive models, e.g. [1, 53, 46, 81, 82, 83,

84, 85, 86, 2, 48, 87, 88, 89, 90]. Akata et al. [1] propose a discriminatively learned

compatibility model over image features and attribute-based class embeddings (see

Figure 2.1). Akata et al. [53] suggest the use of class hierarchies and distributed

word representations of class names as alternatives to handcrafted attributes. Frome et

al. [84] use convolutional neural network architectures for mapping visual features

into a rich semantic embedding space. Song et al. [85] propose a transductive learning

(QFSL) method to learn unbiased embedding space since embedding spaces often

have strong bias problem. Besides, visual-semantic discrepancy problem is observed

when using textual side information. In this context, Demirel et al. [46] use attribute
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Figure 2.1: An example of label embedding approaches. The figure is taken from [1].

information as an intermediate layer to learn more generalizable distributed word

representations.

Norouzi et al. [86] use convex combination of the semantic embedding vectors directly

without learning any semantic space. Elhoseiny et al. [2] handle zero-shot learning

problem with purely textual descriptions. They define a constrained optimization

formula that combine regression and knowledge transfer functions with additional

constraints (see Figure 2.2). Ba et al. [48] use MLP in their text pipeline to learn

classifier weights of CNN in the image pipeline to handle zero-shot fine-grained object

classification. The defined MLP network generates a list of pseudo-attributes for

each visual category by utilizing raw texts acquired from Wikipedia articles. Other

notable approaches include synthesized classifiers [81], semantic autoencoders [82],

hierarchy graphs [83], diffusion regularization [87], attribute regression [88] and latent

space encoding [89]. Feng et al. [90] propose an adversarial training mechanism

for domain adaptation and disentangling visual features. A comparative survey of

discriminative ZSL models can be found in Xian et al. [91], which introduces the

problem of generalized zero-shot learning (GZSL) problem in an image classification

context. [92] can also be followed for surveys for side information in the ZSL topic.

Alternatively, the development of generative models that can synthesize training

examples of unseen classes has received significant interest in recent years, e.g. [3,
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Figure 2.2: An approach that uses purely textual descriptions for ZSL. The figure is

taken from [2].

93, 94, 95, 96, 97, 98, 99, 100, 101]. These methods aim to build class embedding

conditional models that can be used to generate synthetic training samples for unseen

classes, therefore, they can be considered learned augmentation techniques. Data

generating GZSL approaches are attractive for naturally addressing the seen class

bias problem, at the cost of typically being computationally more demanding and

formulationally more complex than purely discriminative approaches. In this context,

Bucher et al. [3] propose to build feature-space generative models as one of the

first works in this direction (see Figure 2.3). Felix et al. [93] propose to use data

reconstruction for model regularization, based on multi-modal cycle consistency loss

term. Mishra et al. [94] propose a conditional Variational Autoencoder (VAE) [102,

103] based model, and Xian et al. [95] improves conditional VAEs via adversarial

training. Zhu et al. [96] propose to learn textual description conditional generative

models. Li et al. [97] utilize conditional Wasserstein GANs. Sariyildiz and Cinbis [98]

propose gradient matching loss to improve the quality of the generated samples. Chen

et al. [99] propose a unified feature refinement network to improve the visual-semantic

mapping of classes. Elhoseiny and Elfeki [104] work on the incorporation of losses that

directly aim to increase sample variations. Chen et al. [100] suggest a disentangling

model to distinguish semantically consistent and unrelated feature vectors. Su et

al. [101] use two different autoencoders to obtain separate modalities for visual and

semantic features in a common latent space. Li et al. [105] decompose seen attributes

to their main attribute components and synthesizes new attributes.
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Figure 2.3: An example of feature-space generative models. The figure is taken

from [3].

One of the challenges in GZSL is keeping the seen and unseen class scores comparable.

In particular, discriminatively learned classification models, trained over seen class

samples, tend to yield higher confidence scores for seen classes even on the test

samples of unseen classes. A prominent idea in addressing this problem is reducing

the prediction bias towards seen classes. For this purpose, Liu et al. [4] propose to

increase unseen class prediction confidence by minimizing the entropy of unseen class

scores during training (see Figure 2.4). Jian et al. [106] promote higher confidence

scores for the familiar unseen classes during training based on unseen-to-seen class

similarity estimates. Chao et al. [107] use an empirically chosen seen class score

scaling coefficient.

Our label embedding approach for the ZSL problem is similar to [46]. Unlike [46],

however, we construct our final ZSL model using the image-to-class associations

measured by a label embedding classifier instead of relying directly on the attribute-to-

class associations in the transformed word embedding space.

2.1.2 Zero-shot Object Detection

The most recent object detection methods can be categorized into the following two

groups: (i) regression-based approaches, and, (ii) region proposal-based approaches.

Regression-based approaches generate all candidate detection scores and positions

jointly in a single step, using a single convolutional network [24, 15, 14, 21, 108, 109].
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Figure 2.4: A framework for balancing prediction confidences between seen and

unseen classes. The figure is taken from [4].

Region proposal-based approaches instead first generate region proposals, then classify

(and update) each region proposal [110, 111, 23, 20, 17, 18, 16].

ZSD is a relatively new problem, pioneered by our first work and [5, 112, 113]. These

studies were published on similar dates in the same year, and subsequently, other ZSD

studies [114, 115, 116, 55, 117, 118, 119, 120, 121, 56, 122, 123] follow these papers.

These approaches typically extend supervised detection models to ZSD. Among these

studies, Bansal et al. [112] proposes a two-step approach that first locates object

proposals from low-level features [124] and then classifies the resulting candidate

regions using a ZSL model. Huang et al. [122] propose an architecture that provides

both semantic divergences for intra-classes and structure-preserving for inter-classes

together. Yang et al. [123] provide a feature-based ZSD model that generates deep

features of detectors as visual features of seen and unseen objects. Other studies

suggest an end-to-end framework by modifying the existing regression-based or region

proposal-based detection approaches. In this context, Rahman et al. [5] proposes a

region proposal-based approach and uses a semantic clustering-based loss term to

bring similar classes closer to each other (see Figure 2.5).

ZSD methods also aim to generate results for both seen and unseen classes at the

same time. However, it is also known from the zero-shot classification problem that

there is a bias towards seen classes in zero-shot learning concept. Regarding this

issue, Rahman et al. [113] proposes a polarity loss term that is based on the focal loss

approach, to tackle better alignment between visual and semantic domains. Hence,
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Figure 2.5: Semantic clustering-based loss term to bring similar classes closer to each

other. The figure is taken from [5].

the semantic representations of visually similar classes get closer to each other. Li

et al. [115] uses natural language descriptions of classes for ZSD. Shao et al. [116]

focuses on the candidate proposal generation problem of unseen classes in the ZSD.

Gupta et al. [117] learns a joint embedding space to obtain more discriminative visual

and textual embeddings. Li et al. [118] uses a dual-path method to fuse side analogy

information and knowledge transfer between the visual and textual sides. Yan et

al. [56] uses semantics-guided network to improve conventional embeddings.

In our first approach, we propose a regression-based ZSD model that jointly incorpo-

rates convex combinations of semantic embeddings [44] and bi-linear compatibility

models [1]. We also propose another ZSD component for the object detection model

within the scope of the ZSIC problem. The closest detection model to the ZSD com-

ponent of our ZSIC approach is our first ZSD model. Our ZSIC component differs

by (i) leveraging class-to-class similarities measured in the word embedding space as

class embeddings, as opposed to directly using the word embeddings, (ii) learning a

class score scaling coefficient that reduces the seen class bias and improves GZSD

accuracy, and (iii) exploring the use of uncertainty calibration [125] in GZSD. Finally,
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Figure 2.6: A method for transforming image classifiers into object detectors. The

figure is taken from [6].

we propose a third ZSD model within the scope of this thesis. This model is an

approach that works on background modeling for unseen classes and it uses the novel

textual attention mechanism that is proposed as a new approach by us.

2.1.3 Alternative Paradigms for Reducing the Dependency on Fully-supervised

Learning

There exist alternative learning paradigms that also aim to reduce the dependency

on fully-supervised training examples for object detection. To this end, methods for

transforming image classifiers into object detectors (see Figure 2.6), e.g. [126, 6, 15],

and image-level label based weakly supervised learning approaches, e.g. [127, 128,

129], stand out as closely related directions. However, such approaches still require

labeled training images for all classes of interest, which can be a major obstacle in

building models with the semantic richness needed for captioning.

2.1.4 Zero-shot Image Captioning

State-of-the-art captioning approaches are based on deep neural networks [130, 131,

132, 133, 134, 135, 57, 136, 137, 138, 139, 140]. Mainstream methods can be cat-

egorized as (i) template-based techniques [135, 141, 57] and (ii) retrieval-based

ones [142, 143, 144, 133]. Template-based approaches generate templates with empty

slots, and fill those slots using attributes or detected objects. Kulkarni et al. [135]
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Figure 2.7: A framework for dense image captioning tasks. The figure is taken from [7].

builds conditional random field models to push tight connections between the image

content and sentence generation process before filling the empty slots. Farhadi et

al. [141] uses triplets of scene elements for filling the empty slots in generated tem-

plates. Lu et al. [57] uses a recurrent neural network to generate sentence templates for

slot filling. Retrieval-based image captioning methods, in contrast, rely on retrieving

captions from the set of training examples. More specifically, a set of training images

similar to the test example are retrieved and the captioning is performed over their

captions.

In this thesis, we aim to generate captions that can include classes that are not seen in

the supervised training set, where retrieval-based approaches are not directly suitable.

For this reason, we adopt a template-based approach that generates sentence templates

and fills the visual word slots with the GZSD model predictions.

Dense captioning [7, 145, 146] appears to be similar to ZSIC, but the focus is sig-

nificantly different: while dense captioning aims to generate rich descriptions, our

goal in ZSIC is to achieve captioning over the novel object classes (see Figure 2.7).

Some captioning methods go beyond training with fully supervised captioning data

and allow learning with a captioning dataset that covers only some of the object classes

plus additional supervised examples for training object detectors and/or classifiers for

all classes of interest [147, 148, 58, 149, 150]. Since these methods presume that all

necessary visual information can be obtained from some pre-trained object recognition
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Figure 2.8: Image captioning approach that uses the user intent to obtain controllable

image captions. The figure is taken from [8].

models, we believe they cannot be seen as true ZSIC approaches.

2.1.5 Fine-grained Image Captioning

Recently, fine-grained image captioning methods are also proposed to generate richer

image captions [8, 151, 152, 153]. The purpose of these methods is not to generate

captions for novel objects, but to generate more descriptive captions for the classes

available in the training set. Chen et al. [8] uses Abstract Scene Graphs (ASG) to obtain

controllable image captions according to the user intent at the desired dense level. ASG

is a graph-based scene layout to represent user intentions in the generated captions

(see Figure 2.8). Khan et al. [151] uses Bahdanau attention [154] on visual features to

obtain isolated image content for rich visual embeddings. Yuan et al. [152] proposes a

gated mechanism to adjust the weights of global and local visual features. Thus, the

level of detail for the caption is adjusted with respect to the visual information. Cheng

et al. [153] adjusts attention weights of visual feature vectors and semantic feature

embeddings in a decoder cell sequence to obtain rich fine-grained image captions.

Unlike ZSIC, these methods do not target generating captions with objects unavailable

in the training set.
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Figure 2.9: An example of adaptation-based FSL approaches. The figure is taken

from [9].

2.1.6 Evaluation Metrics for Image Captioning

In our thesis, we additionally look into the problem of evaluating ZSIC results. The

evaluation of captioning methods is not a solved problem. There are well-known

metrics, such as METEOR [59], SPICE [155], BLEU [156], and CIDEr [157] which

are widely used in image captioning. There are also recent works to improve existing

captioning metrics, such as the work of Wang et al. [158], which incorporates unique-

ness and descriptiveness aspects into SPICE. In this thesis, we aim to build a metric

that allows per-class evaluation of visual and lingual caption quality so that we can

explicitly evaluate the unseen and seen class captioning success, and in this context,

we propose the V-METEOR metric.

2.2 Few-shot Learning

This section provides an overview of recent developments on few-shot image classi-

fication, few-shot object detection, automated loss function and data augmentation

discovery.

2.2.1 Few-shot Classification

Most of the meta-learning approaches for few-shot learning (FSL) of classification mod-

els can be grouped as adaptation-based and mapping-based approaches. Adaptation-
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Figure 2.10: An example of meta-learning based FSOD approaches. The figure is

taken from [10].

based (also called gradient-based) approaches aim to learn model parameters that

can easily be adapted to new unseen few-shot tasks within a few model update steps

(see Figure 2.9), e.g. [159, 9, 160, 161, 162, 163, 164]. Mapping-based approaches

(also called metric-based) aim to bypass a gradient-descent based adaptation step, and

instead learn a data-to-classifier mapping, e.g. [165, 166, 167, 168, 169, 170, 171,

172, 173, 174].

Some of the other notable approaches include learning to generate synthetic data

for novel classes [175, 176, 177], using better feature representations [178, 179, 180,

181, 182, 183, 184] or utilizing differentiable convex solvers [185, 186]. Importantly,

several works highlight that a carefully trained representation combined with simple

fine-tuning or even just shallow classifiers can yield competitive or better performance

than meta-learning based approaches, e.g. [178, 187, 188].

2.2.2 Few-shot Object Detection

The FSOD approaches can be summarized as meta-learning and fine-tuning (also called

transfer-learning) based ones. Most meta-learning based FSOD approaches embrace

formulations similar to those used in mapping-based meta-learning approaches for

FSL (see Figure 2.10), e.g. [60, 61, 62, 63, 64, 10, 65, 66, 67, 68]. Support feature

aggregation is one of the main aspects where meta-learning-based methods differ

from each other. Xiao and Marlet [60] use both the differences and the channel-wise
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Figure 2.11: An example of fine-tuning based FSOD approaches. The figure is taken

from [11].

multiplication of the features in addition to the combination of the features directly

for support-query aggregation. Fan et al. [189] use attention blocks to make support

and query features more distinguishable for base and novel object classes. Zhang

et al. [61] use inter-class correlations to highlight important support features. Li et

al. [62] propose to use specialized support and query features for classification and

localization.

Recent efforts towards improving meta-learning based FSOD include complimentary

techniques, mainly to improve loss functions, feature matching, and novel class sample

usage efficiency. [62] uses class margin loss, [190] uses margin-based ranking loss,

[191] uses hybrid loss which consist of focal loss, adaptive margin loss and contrastive

loss. Hu et al. [192] perform feature matching between query and support images

to use the information from the support images more effectively. Similarly, Han et

al. [193] construct a matching network between query and support instances using

heterogeneous graph convolutional networks. Li and Li [194] augment novel class

samples via adding Gaussian noise. Yin et al. [66] decouple classification task from

localization by using the proposed class-conditional architecture.

Fine-tuning-based methods typically freeze parts of a pre-trained detection network,

add auxiliary detection heads, increase the novel class variances and then apply

gradient descent based model update steps, unlike meta-learning-based methods that

use complex episodic learning [11, 69, 70, 71, 74, 75, 195].

Wang et al. [11] propose a Faster-RCNN [17] based approach, where the class-agnostic

region proposal network (RPN) component is kept frozen during fine-tuning (see
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Figure 2.11). Sun et al. [69] use a similar approach and differently include FPN and

RPN layers to the learnable parameter set in the same architecture. These learnable

layers allow using contrastive proposal encodings that facilitate the more accurate

classification of novel objects. Wu et al. [70] show that the scale distribution of support

set tends to be imbalanced, and proposes a multi-scale positive sample refinement

(MPSR) branch as an addition to the main model. Fan et al. [71] propose Retentive

R-CNN architecture to prevent forgetting during fine-tuning for base classes. The

obtained object proposals are fed into two ROI detectors responsible for base class

and novel class instances. Qiao et al. [75] focus on decoupling network modules,

and introduce a gradient decoupling layer and prototypical calibration block. Kaul

et al. [74] extend the novel class annotations in the training set. In this context, the

proposed method obtains object candidates from the base detector, and applies the box

refinement step.

In the scope of this thesis, while our approach is based on fine-tuning based FSOD,

we embrace meta-learn principles to optimize the loss function and augmentations

to improve the fine-tuning process for FSOD, without learning a complex and over-

fitting-prone meta-model. The resulting loss function and data augmentations are then

utilized within the fine-tuning steps.

2.2.3 Automated Loss Function Discovery

Loss function discovery is an emerging AutoML topic towards improving the learning

systems in a data-driven manner. Existing methods are mainly based on either (i)

constructing the loss function directly from the basic operators [12, 196, 197] or

(ii) optimizing parameterized loss functions [198, 199]. For loss construction, [12]

proposes a genetic algorithm that consists of loss function verification and quality

filtering modules. In this approach, the predefined proxy task eliminates divergent and

poor candidate loss functions and survives the promising loss functions for other steps

(see Figure 2.12). [197] uses a genetic algorithm to select candidate loss functions

from a tree of simple mathematical operations, and the successful loss functions pass

to other stages to mutate. [196] suggests a method to learn not only the loss function

but also the whole machine learning algorithm from scratch. For loss optimization,
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Figure 2.12: An example of label embedding approaches. The figure is taken from [12].

[198] re-analyzes the existing loss functions and presents them in a combined formula.

[199] observes that the search space used in [198] can be too complex, and propose to

simplify the search space via heuristics. In contrast to these works targeting supervised

training scenarios, we aim to adapt loss function learning principles to the FSOD

problem.

2.2.4 AutoML for Data Augmentation

A variety of automated data augmentation techniques have recently been proposed [200,

201, 13, 202]. Cubuk et al. [201] generate augmentation policies using reinforcement

learning and a controller RNN. Ho et al. [200] propose a method that reduces the com-

putational costs compared to [201] by using a population-based framework. Similarly,

Lim et al. [13] propose a direct Bayesian method to reduce costs (see Figure 2.13).

Cubuk et al. [202] show that the optimal augmentation magnitudes tend to be similar

across transformations, and the search process can greatly be simplified by using

a shared value. We follow this suggestion and use a shared magnitude across the

transforms in our formulation. In contrast to these works on supervised learning,

however, we focus on learning detectors with few-samples.

In summary, while loss function and augmentation discovery topics increasingly attract

attention towards improving supervised training pipelines, our FSOD approach which

is proposed in the scope of this thesis is the first work on learning few-sample specific
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Figure 2.13: An example of automatic data augmentation methods. The figure is taken

from [13].

inductive biases for fine-tuning based few-shot object detection based on meta-learning

and AutoML principles, to the best of our knowledge.
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CHAPTER 3

ZERO-SHOT OBJECT DETECTION BY HYBRID REGION EMBEDDING

3.1 Overview

Object detection is one of the most studied tasks in computer vision research. Pre-

viously, mainstream approaches provided only limited success despite the efforts in

carefully crafting representations for object detection, e.g. [22]. More recently, how-

ever, CNN (convolutional neural network) based models have lead to great advances

in detection speed and accuracy, e.g. [17, 15, 21].

While the state-of-the-art in object detection is undoubtedly impressive, object detec-

tors still lack semantic scalability. As these approaches rely heavily on fully supervised

training schemes, one needs to collect large amounts of images with bounding box

annotations for each target class of interest. Due to its laborious nature, data annotation

remains as a major bottleneck in semantically enriching and universalizing object

detectors.

Zero-shot learning (ZSL) aims to minimize the annotation requirements by enabling

recognition of unseen classes, i.e. those with no training examples. This is achieved

by transferring knowledge from seen to unseen classes by means of auxiliary data,

typically obtained easily from textual sources. Mainstream examples for such ZSL

approaches include methods for mapping visual and textual information into a joint

space [1, 53, 48], and, those that explicitly leverage text-driven similarities across

classes [86].

The existing ZSL approaches, however, predominantly focus on classification problems.

In this work, we extend this ZSL paradigm to object detection and focus on the zero-
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shot detection (ZSD) task. Here, the goal is to recognize and localize instances

of object classes with no training examples, purely based on auxiliary information

that describes the class characteristics. The main motivation for studying ZSD is

the observation that in most applications of ZSL, such as robotics, accurate object

localization is equally important as recognition.

Our ZSD approach builds on the adaptation and combination of two mainstream

approaches in zero-shot image classification: (i) convex combination of class em-

beddings [86], and, label embedding based classification [49]. More specifically, we

propose a hybrid model that consists of two components: the first component leverages

the detection scores of a supervised object detector to embed image regions into a class

embedding space. The second component, on the other hand, learns a direct mapping

from region pixels to the space of class embeddings. Both of these region embeddings

are then converted into region detection scores by comparing their similarities with

true class embeddings. Finally, we construct our zero-shot detector by integrating

these two components into the the fast object detection framework YOLO [15].

We note that both components of our approach essentially provide an embedding of

a given test image. Our main motivation in using them together is to employ two

complementary sources of information. In particular, while the former component can

be interpreted as a semantic composition method guided by class detection scores, the

latter one focuses on transformation of image content into the class embedding space.

Therefore, these two components are expected to better utilize semantic relations and

visual cues, respectively.

In order to evaluate the effectiveness of the proposed ZSD approach, we define new

benchmarks based on existing datasets. First, we create a simple ZSD dataset by

composing images with multiple Fashion-MNIST [78] objects. Moreover, the Pascal

VOC [203] dataset is similarly adapted to the ZSD task by defining new splits and

settings. The experimental results show that our hybrid embedding approach yields

promising results in both datasets.

To sum up, our main contributions in this work are as follows: (i) we define a novel

zero-shot setting for detecting objects of unseen classes, (ii) we propose a novel hybrid

method to handle newly defined ZSD task, (iii) we introduce two new benchmarks for

30



x,y,w,h   t p(yseen|x) Region Embedding (ᶰ)

◙ Dog

◙ Cat

◙ Horse ◙ Bus

◙ Car

◙ Train

◙ Bottle

Class Embeddings
 ᶙ(class-name)

fCCfLE

x,y,w,h   t p(y|x)

 Convex Combination Label Embedding Softmax( fCC + fLE )

+

fCC fLE +

Figure 3.1: The framework of our ZSD model.

evaluating ZSD approaches based on Fashion-MNIST and VOC datasets.

3.2 Method

Our method consists of two components that (i) utilize a convex combination of class

embeddings, an adaptation of the ideas from [86], and, (ii) directly learn to map regions

to the space of class embeddings, by extending the label embedding approaches from

zero-shot image classification [53]. Details of the model can be followed in Figure 3.1.

In this model, (x, y, h, w) represents bounding box regression coordinates, t represents

bounding box confidence score, p(yseen|c) represents initial class scores, ϕ represents

embedding vector of the related region, and p(y|x) represents the final zero-shot

detection class probabilities.

The rest of this section explains the model details: in the first two sub-sections, we

describe the convex combination and label embedding components. Then, we describe

how we construct our zero-shot object detector within the YOLO detection framework.

3.2.1 Region Scoring by Convex Combination of Class Embeddings

The first component of our ZSD approach aims to semantically represent an image in

the space of word vectors. More specifically, we represent a given image region (i.e. a

bounding box) as the convex combination of training class embeddings, weighted by
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the class scores given by a supervised object detector of seen classes. The resulting

semantic representation of the region is then utilized to estimate confidence scores for

unseen classes.

This approach can be specified as follows: let Ys be the set of seen classes, for which

we have training images with bounding box annotations, and and let Yu be the set of

unseen classes, for which we have no visual training examples. Our goal is to learn a

scoring function fCC(x, b, y) : X × B × Y → R that measures the relevance of label

y ∈ Ys, which can be a seen or unseen class, for a given candidate bounding box b ∈ B
and the image x ∈ X .

We assume that a de dimensional embedding vector η(y), such as word embeddings of

class names or class-wise attribute indicator vectors, is available for each class. The

scoring function fCC(x, b, y) is then defined as the cosine similarity between the class

embedding η(y) and the image region embedding ϕCC(x, b):

fCC(x, b, y) =
ϕCC(x, b)

Tη(y)

∥ϕCC(x, b)∥∥η(y)∥
(3.1)

where ϕCC(x, b) is defined as follows:

ϕCC(x, b) =
1∑

y∈Ys
p(y|x, b)

∑
y∈Ys

p(y|x, b)η(y) (3.2)

Here, p(y|x, b) is the class posterior probability given by the supervised object de-

tection model. Therefore, ϕCC can simply be interpreted as a weighted sum of class

embeddings, over the seen classes.

3.2.2 Region Scoring by Label Embedding

The convex combination driven scoring function fcc utilizes detection scores and

embeddings of the training classes to estimate scores of zero-shot classes. In the label

embedding approach, however, our goal is to directly model the compatibility between

the visual features of image regions and class embeddings. For this purpose, we define

the label embedding driven scoring function fLE(x, b, y) : X × B × Y → R that

measures the relevance of label y ∈ Y for a given candidate bounding box b ∈ B in an

image x ∈ X as follows:

fLE(x, b, y) =
ϕLE(x, b)

Tη(y)

∥ϕLE(x, b)∥∥η(y)∥
(3.3)
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where ϕLE(x, b) is basically a deep convolutional neural network that maps the image

region b of image x to the space of class embeddings.

We note that fLE(x, b, y) can equivalently be interpreted as a dot product between

ℓ2-normalized image region descriptors and class embeddings. While it is common

to ℓ2-normalize class embeddings in zero-shot image classification studies [53], we

also ℓ2-normalize the image embedding vectors. In our preliminary experiments, we

have observed that this additional normalization step is beneficial for the zero-shot

detection task.

We learn the ϕLE(x, b) network in an end-to-end fashion within our YOLO-based

zero-shot detection framework, which we explain in the next section.

3.2.3 Zero-Shot Object Detection

We use the YOLO-v2 [15] architecture to construct our zero-shot object detector.

The original YOLO architecture that we utilize contains a convolutional network that

reduces the spatial dimensions of the input by a factor of 32 and results in a tensor of

depth k(5 + |Ys|), e.g. an input image of size 416× 416× 3 results in a tensor of size

13× 13× k(5+ |Ys|). Each cell within this output tensor encodes the k detections per

cell (k = 5 by default), and, each block of size 5 + |Ys| encodes one such detection.

Here, for a single detection, the first 4 dimensions encode the relative bounding box

coordinates, the following dimension encodes the estimated window objectness score,

and the final |Ys| dimensions encode class confidence scores.

To adapt YOLO architecture for the zero-shot detection task, we modify it in the

following manner: we increase the final output depth from k(5+|Ys|) to k(5+|Ys|+de),

where the newly added de dimensions per detection correspond to the ϕLE(x, b) output

of the label embedding component of the model. In this way, the same convolutional

network is shared for candidate box prediction, class prediction and class-embedding

prediction purposes.

During training, the original YOLO formulation uses three separate mean-squared error

based loss functions, defined over the differences between predictions and ground truth

values for (i) bounding boxes, (ii) intersection-over-union values, and, (iii) classes.
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For training fCC defined in Eq. (3.1), the original YOLO loss function over class

predictions is used as is. For training fLE defined in Eq. (3.3), however, we extend the

loss function by incorporating an additional loss function LLE. LLE basically measures

correctness of the label embedding driven class predictions in a max-margin sense:

LLE(x, b, y) =
1

|Ys| − 1

∑
y′∈Ys\{y}

max (0, 1− fLE(x, b, y) + fLE(x, b, y
′)) (3.4)

where y is the ground-truth class corresponding to the bounding box b in input image

x. Here, the goal is to ensure that at each window prediction, the label embedding

based confidence score fLE for the target class is larger than that of each other class.

Other than this extension, we use the original YOLO training procedure, over the seen

classes.

Once the network is trained, we jointly utilize the scoring functions fCC and fLE by

computing softmax of their summations, over the classes of interest:

p(y|x, b) = exp (fCC(x, b, y) + fLE(x, b, y))∑
y′∈Y exp (fCC(x, b, y′) + fLE(x, b, y′))

(3.5)

where p(y|x, b) is the predicted posterior probability of (seen or unseen) class y given

region b of image x. The final set of detections are obtained by using the non-maxima

suppression procedure of YOLO over all candidate detection windows, objectness

scores, and the final probabilities p(y|x, b).

3.3 Experiments

In this section, we present our experimental evaluation of the proposed approach. In

Section 3.3.1, we describe the ZSD datasets that we prepare and utilize. In Section

3.3.2, we explain class embeddings used in our experiments. Finally, in Section 3.3.3

and Section 3.3.4, we give the implementation details and our experimental results.

3.3.1 Datasets

We use two different datasets: Fashion-ZSD and Pascal-ZSD. We propose two new

testbeds for evaluation of ZSD approaches. First, we create a synthetic dataset based on
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(a) (b) (c) (d)

Figure 3.2: Sample images for generated toy Fashion-ZSD dataset.

combinations of objects from the Fashion-MNIST [78] dataset. Second, we compose

a new split based on existing Pascal VOC [203] benchmarks. The details of these

testbeds are described below.

Fashion-ZSD. This is a toy dataset that we generate for evaluation of ZSD methods,

based on the Fashion-MNIST [78] dataset. Fashion-MNIST originally consists of

Zalando’s article images with associated labels. This dataset contains 70,000 grayscale

images of size 28x28, and 10 classes. For ZSD task, we split the dataset into two

disjoint sets; seven classes are used in training and three classes are used as the unseen

test classes (Table 3.1). We generate multi-object images such that there are three

different objects in each image. Randomly cropped objects are utilized to create clutter

regions. As shown in Figure 3.2, we consider four scenarios: from left-to-right, (a)

full objects only, (b) partial occlusions, (c) clutter regions included, and (d) a scene

with both partial occlusions and clutter regions. Here, ground truth object regions

are shown with green and noise regions are shown in red boxes. In this dataset, 8000

images of the resulting 16333 training images are held out for validation purposes. As

a result, we obtain the Fashion-ZSD dataset with 8333 training, 8000 validation and

6999 test images.

Pascal-ZSD. This is an adapted version of the Pascal VOC datasets [203]. We select

16 of the 20 classes for training and the remaining 4 classes (i.e. car, dog, sofa and

train) for test. The train+val subsets of Pascal VOC 2007 and 2012 datasets are used

for training classes, and the test subset of Pascal 2007 is used for evaluation on the

unseen classes. Images containing a mixture of train and test classes are ignored.
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3.3.2 Class Embeddings

For the Fashion-ZSD dataset, we generate 300-dimensional GloVe word embedding

vectors [51] for each class name, using Common Crawl Data1. For the class names that

contain multiple words, we take the average of the word vectors. For Pascal-ZSD, we

use attribute annotations of aPaY dataset [204], since aPascal (aP) part of this dataset

is obtained from Pascal VOC images. We average 64-dimensional indicator vectors of

per-object attributes over the dataset to obtain class embeddings.

3.3.3 Zero-Shot Detection on Fashion-ZSD Dataset

In this part, we explain our ZSD experiments on Fashion-ZSD dataset. We ini-

tialize the convolutional layers of our model using the weights pre-trained on the

ILSRVC12 [205] classification images. Training of our approach is completed in 10

epochs, where batch size is 32 and learning rate is 0.001. In our experiments, we first

evaluate the performance of the trained network on seen training classes. According to

the results presented in Table 3.1, the proposed approach obtains 91.9% mAP on the

validation images with seen classes, which shows the proper training of the detection

model. On the test set with unseen classes only, our proposed approach yields an

mAP of 64.9%, highlighting the difficulty of zero-shot detection task even in simple

settings. Here, we report class-based average precision and mean average precision

(mAP) scores.

On the combinated validation and test evaluation, our method achieves 81.7% mAP.

This setting is particularly interesting, as it requires recognition over both seen and

unseen objects at detection time. Our result suggests that the model is able to detect

objects of unseen test classes even in the presence of seen classes, without being

dominated by them.

1 commoncrawl.org/the-data/
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Table 3.1: ZSD performances of proposed hybrid method on Fashion-ZSD dataset.

Training Classes Test Classes

Test split t-shirt trouser coat sandal shirt sneaker bag pullover dress ankle-boot mAP (%)

val 0.89 0.91 0.90 0.97 0.86 0.99 0.90 - - - 91.9

test - - - - - - - 0.49 0.49 .95 64.9

val+test 0.89 0.90 0.90 0.97 0.86 0.99 0.91 0.45 0.40 0.90 81.7

3.3.4 Zero-Shot Detection on Pascal-ZSD Dataset

In this part, we explain our ZSD experiments on Pascal-ZSD dataset. Training settings

of the proposed method on Pascal-ZSD dataset are same with the previous experiment,

except that the number of epochs is set to 30. We present the results our approach,

as well as individual performances of convex combination and label embedding

components, in Table 3.2. The proposed hybrid approach yields 65.6% mAP on seen

classes, 54.6% mAP on unseen classes and 52.3% mAP on the combination of seen

and unseen classes. By comparing individual components of the model, we observe

that convex combination (CC) outperforms label embedding (LE), and the hybrid

scheme further improves the results.

The reason why the performance of the individual label embedding component is much

lower can potentially be explained by the fact that the ZSD-Pascal dataset is relatively

small: there are 16 classes in the training set, and this number is most probably

insufficient to learn a direct mapping from visual features to class embeddings.

Qualitative results for our approach are provided in Figure 3.3. In this figure, example

results of succesful detections of objects of unseen classes with various poses and sizes

are shown. Additionally, example failure cases are shown on Figure 3.4. Problems

in detection include missed detections, false positives, as well as misclassification of

objects despite correct localization. For instance, in the second image within Figure 3.4,

we see that ”picnic bench” object is misrecognized as ”sofa”, most probably due to

relative similarity of the ’’chair” and ”dining table” seen classes in the embedding

space.
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Figure 3.3: Successful detection results of unseen objects on Pascal-ZSD dataset using

proposed hybrid region embedding.

Figure 3.4: Unsuccessful detection results of unseen objects on Pascal-ZSD dataset

using hybrid region embedding.
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3.4 Chapter Summary

Localization of instances of unseen classes is as important as their recognition in vari-

ous applications, such as robotics. Moreover, to overcome the annotation bottleneck,

alternative methods for training object detectors are needed. To this end, in this work,

we handle the problem of zero-shot detection and propose a novel hybrid method that

aggregates both label embeddings and convex combinations of semantic embeddings

together in a region embedding framework. By integrating these two components

within an object detector backbone, detection of classes with no visual examples

becomes possible. We introduce two new testbeds for evaluating ZSD approaches, and

our experimental results indicate that the proposed hybrid framework is a promising

step towards achieving ZSD goals.

3.5 Fashion-ZSD Dataset

In this section, we share some images (see Figure 3.5) of the toy Fashion-ZSD dataset

that we generated using the Fashion-MNIST dataset [78] for the ZSD problem. As we

shared in Figure 3.2, there are 4 different scenarios in our Fashion-ZSD dataset: full

objects only, partial occlusions, clutter regions included, and a scene with both partial

occlusions and clutter regions.
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Figure 3.5: Randomly selected images from Fashion-ZSD dataset.
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CHAPTER 4

ZERO-SHOT OBJECT DETECTION IN THE WILD

4.1 Overview

Zero-shot learning represents approaches for handling image classification [206, 207,

208], object detection [55, 56] 1, instance segmentation [209], image captioning 2 and

other problems [210, 211] with objects belonging to classes that are not seen in the

training set. Over the past decade, studies on zero-shot learning have mainly focused

on the image classification task [206, 207, 208, 99, 100, 85, 88], but there has been

an increasing attraction to the ZSD in recent years [55, 56, 115, 120, 118, 117]. The

main reason for the interest in ZSD is that the object detection problem needs more

labor-intense data labeling compared to the classification problem. In such a case, ZSD

is an alternative way to reduce data annotation costs for object detection by adapting

models to detect classes not included in the training set.

Supervised object detection, which aims to both localize and classify objects, has

gained great momentum with high detection performance of deep learning models [15,

16, 18, 17, 20, 21, 23, 24, 212, 40]. The recent ZSD approaches are also based on

these supervised single-stage [15, 21] or two-stage [17, 212] object detection models.

In these ZSD approaches, the aim is to handle the class similarities using semantic

side-information, which is usually obtained from class embeddings.

Among the ZSD studies, Rahman et al. [55] defines polarity loss to better align the

compatibility between visual and semantic domains. In this way, visual relations

between semantic class embeddings are encoded more accurately. Yan et al. [56]

1 In addition, our works mentioned in Chapter 3 and Chapter 6 are among these approaches.
2 Our work mentioned in Chapter 6.
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proposes a semantic-guided contrastive learning method to transform word embeddings

into visually meaningful form. Our work mentioned in Chapter 3 proposes a single-

stage ZSD model to generate visual embedding vectors from the object detector in

addition to bounding box coordinates and classification scores. Their model performs

object detection using both these visual embeddings and convex combinations over

classification scores. Gupta et al. [117] proposes a transformed semantic space that

uses both visual and semantic spaces as complementary to each other, and combines

multi-space scores to obtain predictions. Our work mentioned in Chapter 6 balances

the prediction bias for the seen and unseen classes by learning the scaling parameters

and uncertainty from training data. Li et al. [115] uses natural language explanations

instead of class embeddings of classes as semantic information. In this context,

word-word and word-visual attentions are used jointly to generate object candidates.

Contemporary object detection training schemes sample image regions with low

ground-truth annotation overlap to collect negative samples, and ZSD training schemes

adopt the same training strategies. In such a ZSD model training, if there are instances

of unlabeled classes in the training images, these class instances might be selected and

learned as background regions, and thus it is difficult to generate candidate boxes at

the inference stage for these unlabeled class instances. In order to avoid this problem,

to the best of our knowledge, ZSD approaches remove images consisting of instances

of unseen classes from the training sets [55, 56]. However, this situation is against the

nature of the ZSD problem in two aspects and creates a dilemma: (i) images consisting

of selected unseen classes should be known and discarded during the training time, (ii)

the image level annotations of the selected unseen classes are already known during

training.

To overcome this issue, we propose an approach for object detection in unseen classes

without the above-mentioned curated training set in the ZSD problem, and our key

idea is to customize the feature maps of input images for each target class. In this

way, customized feature maps do not model unseen instances as background regions

in training and generate candidate proposals for unseen classes in inference even if

instances of these classes appear in the training set. At this point, we use semantic

side-information (e.g. class embeddings) to do semantic attention on the visual feature

maps and obtain class-specific features for the region proposal network (RPN) [17]
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and subsequent layers in our two-stage object detection model.

Figure 4.1 shows an overview of the previously proposed one-stage (Fig. 4.1a and

4.1b) [55] and two-stage (Fig. 4.1c) [56] ZSD models. In this figure, gray boxes

represent model-specific components. I and W represent the input image and class em-

beddings, respectively. According to this figure, previously proposed ZSD approaches

use feature maps regardless of the class, without any filtering or attention. Thus, if

instances of unlabeled unseen classes are available in the training set, it is possible for

these classes to be modeled as background regions by object detection models. To this

end, we propose a two-stage ZSD model (Fig. 4.1d) that performs semantic attention

on backbone features, unlike other approaches. Therefore, our model can more effec-

tively be trained even on images containing (unknown) samples of unseen classes. In

our model, attention is performed on the pre-RPN feature maps by using positive and

randomly selected negative class embeddings. While the proposed ZSD method also

needs to use negative object proposals for training, these proposals are generated over

the feature maps which use these class embeddings. In the detection head, visual and

semantic features are concatenated, and these joint features are fed into the separate

classification and regression heads. Extensive experiments on MS-COCO [39] and

Pascal VOC [79] datasets show that the performances of ZSD methods are greatly

decreased when instances of unlabelled unseen classes are present during training.

Again, the same experiments show that our proposed method obtains successful results

even if the instances of unseen classes exist in the training set.

In summary, our work provides the following contributions to the ZSD problem:

• We examine the background modeling problem for ZSD and propose a first

attempt to handle it, to the best of our knowledge.

• We show experimentally that the performance scores of several state-of-the-art

models greatly drop when trained in a more realistic setting where training images

contain unseen classes.

• We propose a semantic attention mechanism and use customizable feature maps

according to the input side information.

• According to the experiments, our approach greatly diminishes the effect of

unseen class samples in the background and obtains state-of-the-art results on

46



Word 
Embeddings

…

Interpolation

Feature Maps
Region 

Proposal 
Network

ROI Pooling

…
cls head

reg 
head

Joint Features

Interpolation

Semantic Attention

Backbone

Figure 4.2: An overview of the proposed network architecture.

benchmark datasets when images containing unseen classes are not discarded

from the training set.

4.2 Method

Our ZSD network (Figure 6.2) is based on the ubiquitous two-stage Faster R-CNN

model [17]. In our architecture, input images x ∈ Rh,w,3 are fed into a backbone

network and feature maps f ∈ R
h
s
xw

s
xC are obtained. Here, h and w depict the height

and the width of the input image, C is the number of channels, and s denotes how

much the spatial size of the image is reduced. These visual feature maps are attended

with semantic embeddings ϕ (e.g. word2vec [50], Glove [51]) via depth-wise cross

correlation [213]. After that, a set of anchor boxes on each feature map point are

placed. Objectness scores and regression offsets of all anchor boxes are learned during

the training with binary cross-entropy and smooth-L1 losses, respectively.

As in a typical zero-shot learning setting, we have semantic embeddings of seen class

names and a large amount of annotated visual data for seen classes, but have no visual

or semantic information for unseen classes during training. Meanwhile, we have

semantic word embedding vectors for all classes at inference time.

In the following subsections, we first describe the semantic attention module enabling

us to generate category-specific region proposals as a key component of our approach

(Section 4.2.1). Then, a general view of our two-stage detection network is presented

47



(Section 4.2.2). Finally, how inference works on instances never seen either visually

or semantically during the training stage is explained (Section 4.2.3).

4.2.1 Semantic Attention

We use a similar paradigm with the Attention-RPN module [189], which is proposed

for the few-shot object detection problem, to modify the input image feature maps.

In this context, we convolve the input image feature maps with fixed kernels rather

than learning the kernel weights through training. Different from the Attention-RPN

approach which uses support images as kernels to generate class-specific proposals

for few-shot classes, we use class embeddings to modify feature maps for background

modelling:

f
′
(i, j) = f(i, j)⊙ ϕ(ck) (4.1)

where, ϕ(ck) and f(i, j) denote the semantic word embedding vector of the k-th object

class that appears in the input image, and feature map points in f , respectively. ⊙
represents the Hadamard product, and f

′
(i, j) is used to generate category-specific

region proposals. The proposed semantic attention mechanism needs to use negative

object proposals for training. Hence, we perform semantic attention on the pre-RPN

feature maps by using positive and randomly selected negative class embeddings. In

order to apply semantic attention, we need to align the dimensions of visual feature

map channels and class embeddings, so we apply nearest-neighbor interpolation on

the class embeddings to align vector dimensions.

The proposed network establishes relations between semantic and visual information

of classes and learns to generate region proposals specific to the object categories by

guiding RPN losses with the content of the modified feature map and ground truth

bounding box of the related object.
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4.2.2 Zero-shot Detector

RPN generates a fixed number of proposals P for each object category. Proposals

are denoted as axis-aligned rectangles with top-left and bottom-right coordinates. As

rectangles have varying sizes, ROI Pooling operation [16] is used to produce same-

sized ROIs Rp ∈ RNxKxKxC from modified feature maps. Here, N , K, and C denote

the number of proposals, the spatial dimension of each ROI, and the number of feature

channels, respectively. After obtaining ROI features RPi
for each proposal, we use a

residual block to further enrich instance features and apply Global Average Pooling

(GAP) [214] operation to transform feature tensors to vectors. As residual block

double instance feature channels, we double the word vector dimensionalities with

a second nn-interpolation. Finally, visual feature vectors and corresponding word

vectors are concatenated:

J = RPi
∥ ϕ(ck) (4.2)

Here, i and k denotes the i-th candidate proposal and k-th positive or random negative

training class. Moreover, J represents the joint features to use in classification and

regression heads as used in [189]. We use separate fully connected networks with two

layers and ReLU activation function to make fine adjustment on proposed rectangles

and classify them as either foreground or background. Again, smooth-l1 loss and cross

entropy loss are used for regression and classification in this stage like in [17]. Finally,

the total loss function can be represented as follows:

Ltotal = Lrpn
BCE + Lrpn

L1
+ Lroi

BCE + Lroi
L1

(4.3)

Here, Lrpn
BCE and Lroi

BCE represent the binary cross entropy classification losses of region

proposal network and detection head, respectively. Lrpn
L1

and Lroi
L1

denote least absolute

deviation (L1) losses of region proposal network and detection head, respectively.
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4.2.3 Inference for Unseen Classes

Class embeddings of visually similar classes are also closer to each other [55]. This

semantic similarity property of class embeddings enables to generate proposals for

classes that have not seen visually during training time. In the literature, ZSD methods

use benchmark MS-COCO and Pascal VOC dataset splits which manually remove

images in the training set that consisting of unseen class instances. Otherwise, these

models tend to learn unseen class object candidates as background regions.

In our proposed method, the RPN uses features that are convolved with the different

semantic word vectors during training and inference time. Thanks to the this property

of our method, we do not have to remove images consist of novel object instances

from the training set and create a more realistic zero-shot setting. At inference time,

we generate separate object proposals for each novel class by using word vectors one

at a time. These proposal rectangles are either kept or eliminated according to the

classification scores and kept ones are thoroughly regressed. The proposed method

generates separate proposals for each unseen class, so there is no need to make a

multi-class classification.

4.3 Experiments

In this section, we present the details of the proposed method and comparisons with

existing ZSD methods. In this context, we share the details of the semantic attention,

class embeddings, and ZSD model details in Section 5.3.2. Then, we compare and

discuss the proposed method with existing ZSD models in Section 4.3.2.

4.3.1 Implementation Details

We train our model with a batch size of 4 and learning rate of 0.001. We use ImageNet

pre-trained ResNet-101 network (s = 16, C = 1024) as the backbone network and

pretrained 300-dimensional GloVe embedding vectors[51] as side information for all

of the our experiments. The maximum number of object proposals for RPN is selected

as N = 2000 for training and N = 40 for inference. As emphasized earlier, we do not
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Table 4.1: Experimental results on MS-COCO (65/15), Pascal VOC (16/4) and Pascal

VOC (17/3) datasets.

Method MS-COCO (65/15) VOC (16/4) VOC (17/3)

HRE 3 4.12 (↓12.8) 15.89 (↓54.20) -

PL [55] 4.59 (↓12.40) - 21.21 (↓42.50)

SimEmb 6 5.45 (↓15.78) 17.23 (↓57.47) -

SA 12.92 27.62 37.14

remove images containing unseen class objects from the training sets.

4.3.2 Main Results

We compare the proposed Sematic Attention (SA) method on MS-COCO and Pascal

VOC benchmark datasets using ZSD splits that are proposed in HRE and PL methods.

We use HRE, PL, and SimEmb studies as baselines for comparisons. Since the PL

does not share the trained class embeddings for the Pascal VOC split (16/4), in which

there are 4 selected unseen classes, we identify 3 Pascal VOC classes in common

with the MS-COCO unseen classes (i.e. train, cat, airplane) as unseen test classes and

prepare Pascal VOC experiments with 17/3 settings. We chose all of the state-of-the-art

models for which we could find the source code as baselines. We are unable to make

comparisons with the remaining ones as they report in the unrealistic setting presuming

the availability of unseen class annotations. We use 0.5 IoU threshold value as in other

methods.

We share the obtained results in Table 4.1. Accordingly, the ZSD methods experience

major mAP drops in our more realistic evaluation scenario. While the SimEmb method

achieves a score of 15.78 mAP for the unseen classes in the MS-COCO dataset, this

score becomes 5.45 with a great loss of 10.33 mAP when instances of unseen classes

are not removed from the training set. Similarly, on the Pascal VOC dataset, the HRE

method looses 38.31 mAP, while the PL method lost 21.29 mAP in newly proposed

splits. In contrast, our proposed method achieves state-of-the-art results with a large

margin on both MS-COCO and Pascal VOC datasets. We share some visual results in
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Figure 4.3: Some visual ZSD results on MS-COCO dataset. (Best viewed in color.)

Figure 4.3. Accordingly, the proposed method obtains results for unseen classes even

though they are background in the training set.

We also show the effect of the maximum number of candidate proposals for each class

on the mAP in Figure 7.3.2. It is observed that mAP values increase in a non-monotonic

way as the number of proposals increases until N = 120. Our ZSD model reaches its

highest mAP value with 13.04 when N = 100. This ablation is not applicable to the

other methods since they do not generate class-specific object candidates.

Finally, we repeat the MS-COCO experiments by discarding images containing in-
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Figure 4.4: mAP values for different maximum number of object proposals for RPN.

stances of unseen classes from the training set as in other approaches. In these

experiments, our method obtains 13.76 mAP for the unseen classes. This shows that

the proposed method does not model unseen classes as backgorund even though they

exist in the training set.

4.4 Chapter Summary

One of the most important shortcomings of the current ZSD methods is that they

know that there are instances of unseen classes in the training set and the images

containing these instances are eliminated in order to produce successful ZSD models.

With our proposed method, pre-RPN features become class-specific, so that even

if the images containing these instances are in the training set, it can also generate

and classify candidate proposals for unseen classes at inference time. To the best

of our knowledge, this paper is the first attempt in the ZSD literature that draws

attention to the background modeling problem. Experimental results show that the

proposed method obtains promising results on benchmark MS-COCO and Pascal VOC

datasets.
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CHAPTER 5

LEARNING VISUALLY CONSISTENT LABEL EMBEDDINGS FOR

ZERO-SHOT LEARNING

5.1 Overview

With the surge of deep learning models, there is a high demand of large-scale datasets

for training classification models over a large number of classes. However, annotating

such large-scale data is both highly costly and labor-intensive. Zero-shot learning

(ZSL) emerges as a promising alternative in this regard. ZSL is a form of learning

to handle classification when the labelled training data is available for only some

of the classes (called seen classes, i.e. training classes), and, not for the others

(called unseen classes, i.e. test classes). The basic philosophy of this technique is

transferring knowledge from seen to unseen classes by utilizing prior information

from various sources such as textual descriptions of classes (e.g. [215, 216, 2]),

embeddings of class names (e.g. [52, 53, 54]) or attribute-based class specifications

(e.g. [215, 217, 88, 218, 52, 54, 219]). Overall, the performance of a ZSL method

heavily depends on the prior information as it is the primary factor determining the

limits of cross-class knowledge sharing and transfer.

In this study, we aim to increase the success of label-embedding based ZSL models by

incorporating visually meaningful word vectors for class embeddings. More specifi-

cally, the word embeddings of class names used in label embedding techniques are

typically derived from textual information in previous work [52, 53, 54]. These word

vectors tend to capture only semantic relations, ignoring the visual resemblances be-

tween the corresponding visual concepts. We argue that this may cause a considerable

loss of information for ZSL for object recognition. Instead, we propose to ground
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Figure 5.1: We propose a zero-shot learning approach based on visually meaningful

word vectors and label embedding.

label embeddings on visually meaningful word vectors proposed by [219], which aims

to transform word embeddings such that each class name and the corresponding com-

bination of attribute names attain a high degree of similarity. Unlike [219], however,

instead of relying directly on the attribute-to-class associations in the transformed

word embedding space, we construct our final ZSL model using the image-to-class

associations measured by a label-embedding classifier.

In this work, we explore this idea and leverage visually meaningful word vectors as

auxiliary data in label embedding to cover the bottlenecks of the both techniques.

For this purpose, we learn visually more consistent word vectors and embedding

space in an end-to-end manner by defining a joint loss function. This approach is

illustrated in Figure 5.1. While using label embeddings, our approach utilizes the

word representations transformed to a visually more consistent space. At test time, our

zero-shot learning approach allows assigning novel images to unseen classes, purely

based on class names.

To sum up, our main contribution in this work is utilizing the visually meaningful

class name embeddings obtained by learning to associate corresponding attribute

combinations and class names, and use them within a label embedding framework,

without requiring human-annotated attribute-class relations for the unseen classes.

In our experiments, we evaluate the proposed idea on two ZSL benchmark datasets,

namely Animals with Attributes (AwA) [220] and aPascal-aYahoo (aPaY) [217]

datasets. We use word vectors which are obtained from GloVe method [51] to represent

textual data. We also use CNN-M2K features [218] to represent visual features and

learn attribute based classifiers. Our experimental results show that our method yields
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encouraging improvements in recognition accuracy on these benchmark datasets.

5.2 Method

In this paper, we build an end-to-end framework based on visually consistent word

vectors and label embeddings. Basically, our method learns a transformation network

that maps word vectors to an embedding space more suitable for zero-shot learn-

ing. For this purpose, we propose a framework to jointly learn the word embedding

transformation and the label embedding models in an end-to-end manner.

In the rest of the section, we present the details of our approach. We first give a brief

summary of the approach of [219], which we utilize for learning visually meaningful

word vectors, and then describe how we use these vectors as the side information in

the label embedding model.

5.2.1 Visually Meaningful Vector Space Word Vectors

The introduction of distributed word vector representations, such as Word2Vec [50]

or GloVe [51], has been a step forward in semantic word representations, since these

representations tend to capture the semantic nuances and relations between words more

accurately. Based on their success, these vector space representations have witnessed a

great attention in ZSL techniques and a large variety of other applications ranging from

document retrieval to question answering. Nevertheless, in computer vision problems,

semantic similarities at the word level may not be enough to model all the variances of

the visual categories. For example, semantically similar words, such "wolf" and "bear"

are not particularly close in visual domain, whereas visually consistent words such as

"mole" and "mouse" can be far apart in semantic word domain. In order to account

for such differences, [219] propose to learn a transformation on the word vectors that

allows ZSL by comparing the pooled embeddings of attribute names and class names.

Below we provide only a brief summary of the image-based training formulation of

this approach, a more through explanation can be found in [219].

In this formulation, the similarity between the class yi of an image xi and the set of
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associated attributes recognized in it should be higher than its similarity when another

class embedding is used (yj):

s(xi, yi) ≥ s(xi, yj) + ∆(yi, yj), ∀yj ̸= yi (5.1)

where ∆ is a margin function, indicates pairwise discrepancy value for each given

training classes. In this inequality, s(x, y) represents a compatibility function that

measures the relevance between a pair of class and a set of posterior-probability

weighted attributes, formulated through a multilayer perceptron network. It also

corresponds to a mapping that allows the transformation of word vectors from semantic

to visually meaningful space. This approach is formalized as a constrained optimization

problem:

min
Φ,ξ

λ||Φ||22 +
N∑
i=1

∑
yj ̸=yi

ξij

s(xi, yi) ≥ s(xi, yj) + ∆(yi, yj)− ξij ∀yj ̸= yi,∀i

where λ is the regularization weight. Here, we learn a transformation matrix, which

then we will call as Φ. We refer to this transformation network as A2CN.

5.2.2 Label Embedding

In order to use the visually consistent word vectors with visual data for ZSL, we

prepare an embedding method:

f(x, y;W ) = Θ(x)TWΦ(y) (5.2)

where visual descriptors are denoted by Θ(x) and textual side information is denoted

by Φ(y). Moreover, W matrix encodes textual and visual data to assign unseen

test classes to correct class labels. This matrix is designed as a dense layer in the

multilayer perceptron network. In the Eq. 5.2, Φ(y) side information are feeded from

A2CN model outputs. Cross-entropy loss is used to learn a proper embedding space.

Softmax classifier is also applied to normalise network predictions so that results can

be interpreted as probabilities. Finally, we use the following joint loss function to learn
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transformation and embedding networks in an end-to-end manner. The final learning

formulation, therefore, takes the following form:

min
Φ,ξ,W

N∑
i=1

∑
yj ̸=yi

ξij −
N∑
i=1

log
expΘ(xi)

TWΦ(yi)∑
y′ ̸=yi

expΘ(xi)TWΦ(y′)

s(xi, yi) ≥ s(xi, yj) + ∆(yi, yj)− ξij ∀yj ̸= yi,∀i

where ℓ2 regularization is additionally applied to the parameters W and Φ, but omitted

from the equation for brevity.

5.3 Experiments

In this section, we present the details of our experiments. First, we give a brief

information about the datasets, and then explain initial word embeddings and visual

features. Then, we give the details of our experiments, where we compare the proposed

approach with its unsupervised and supervised counterparts.

5.3.1 Datasets

To evaluate the proposed approach, we use two benchmark ZSL datasets, namely

Animals with Attributes (AwA)[220] and aPascal-aYahoo (aPaY)[217]. The AwA

dataset consists of images with 50 animal classes, 40 of which are training and 10

of which are test. 85 per-class attributes are defined on these classes. aPaY dataset

consists of images from two different sources. Training part is obtained from Pascal

VOC 2008 [221] dataset, containing 20 classes. The test part is collected using Yahoo

search engine and it contains 12 classes; totaling up to 32 completely different classes

overall. Images in aPaY dataset are annotated with 64 binary per-image attributes. We

follow the same experimental setup as in [219] for AwA and aPaY experiments.

5.3.2 Implementation Details

Initially, we use 300-dimensional word embedding vectors which are obtained from

GloVe method as described in A2CN method [219] for fair comparison. Following the
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Figure 5.2: Top-3 highest scoring images using PBT method in the AwA dataset.

A2CN method, we obtain word vectors for each class and attribute names. If attribute

or class names consist of multiple words, word vectors are obtained for each word,

then the average of these vectors is used.

For AwA and aPaY datasets, we utilize the CNN-M2K features [218], where images

are resized to 256x256 and mean image subtraction is applied. Outputs of the last

hidden layer are extracted for image representation, as also described in [219].

We define our method as a three layer feed-forward network. We use 2-fold cross-

validation to determine optimal number of hidden units. Adam optimizer [222] is used

for stochastic optimization and the learning rate value is set to 1e-4. The proposed joint

loss function is used to learn transformation and embedding networks in an end-to-end

manner.

5.3.3 Experimental Results

In our experiments, we first evaluate our method using two different training methods,

PBT and IBT, that are proposed by [219] to handle ZSL problem. PBT stands for

(Predicate-based Training) and IBT stands for (Image-based Training). We measure

the performance using the normalized per-class accuracy and the results are shown

Table 5.1. According to the obtained results, it seems that our method provides a no-

ticeable progress using PBT training method, where there is a 2.9% accuracy increase

in AwA and 4.9% increase in aPaY datasets. For the IBT method, some improvements

are also observed in the aPaY dataset, whereas the recognition performance slightly
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Table 5.1: Zero-shot classification performance of proposed method on AwA and aPaY

datasets.

Test Method AwA aPaY

PBT
A2CN[219] 60.7 29.4

Our Method 63.6 34.3

IBT
A2CN[219] 69.9 38.2

Our Method 68.6 40.8

degrades on AwA dataset. This may be due to the fact that the parameters learned dur-

ing the cross-validation may not produce the best results for the test classes. We also

believe that PBT method is more important than IBT, because it only uses predicate

matrix to learn meaningful word vectors, so it is a more generalizable method with

less training data.

We also compare our approach with various unsupervised and supervised counterparts

presented in the literature. The results are shown on Table 5.2. Here, supervised meth-

ods require additional information about test classes such as class-attribute relations.

Unsupervised ZSL methods do not require any human supervision about the unseen

test classes. When we review the results on Table 5.2, we observe that our method ob-

tains higher classification performance on aPaY dataset, compared to its unsupervised

counterparts. On AwA dataset, it outperforms its unsupervised counterparts, except

for A2CN[219] method.

Our ZSL method also produces comparable results to some of the supervised counter-

parts. Another interesting direction to note is that, while high accuracies can potentially

be obtained using the recently proposed data generation models [93, 223, 87, 224],

these works are orthogonal to proposed method, and, in principle, these techniques

can be used in combination with the ZSL model proposed in this work. We plan to

investigate this line of research in future work.

Finally, Figure 5.2 illustrates qualitative examples of the results of the our approach.

In this figure, we show the top-3 scoring images produced by our proposed method

on AwA dataset. The misclassified images are marked with red. According to this
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Table 5.2: Comparison of the related ZSL literature.

Test Supervision Method AwA aPaY

unsupervised

DeViSE [84] 44.5 25.5

ConSE [86] 46.1 22.0

Text2Visual [2, 225] 55.3 30.2

SynC [81] 57.5 -

ALE [53] 58.8 33.3

LatEm [52] 62.9 -

CAAP [54] 67.5 37.0

A2CN [219] 69.9 38.2

Our Method 68.6 40.8

supervised

DAP [220] 54.0 28.5

ENS [45] 57.4 31.7

HAT [218] 63.1 38.3

ALE-attr [53] 66.7 -

SSE-INT [226] 71.5 44.2

SynC-attr [81] 76.3 -
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illustration, misclassifications tend to occur across visually similar classes, as expected.

5.4 Chapter Summary

The performance of the zero-shot learning approaches depend on the shared prior

information between training and unseen test classes; therefore, it is very critical

that the prior information is accurate, consistent and comprehensive. In this work,

we have aimed to improve zero-shot recognition by using visually meaningful word

vectors within the label embedding framework. The experimental results show the

effectiveness of the proposed approach.
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CHAPTER 6

CAPTION GENERATION ON SCENES WITH SEEN AND UNSEEN OBJECT

CATEGORIES

6.1 Overview

The problem of generating a concise textual summary of a given image, known as

image captioning, is one of the most challenging problems that require joint vision and

lingual modeling. With ever-increasing recognition rates in object detection models,

pioneered by [15, 14, 16, 18, 19, 17, 20, 21, 22, 23, 24], there has been a recent

interest in generating visually grounded captions via constructing detection-driven

captioning models, e.g. [135, 147, 227, 57]. However, the success of such approaches

is inherently limited by the set of classes spanned by the detector training set, which

is typically too small to construct a visually comprehensive model. Therefore, such

models are prone to synthesizing irrelevant captions in realistic, uncontrolled settings

where input images may contain instances of classes unseen during training.

In the context of image classification, zero-shot learning (ZSL) has emerged as a

promising alternative towards overcoming the practical limits in collecting labeled

image datasets and constructing image classifiers with very large object vocabularies.

In a similar manner, zero-shot image captioning (ZSIC), aims to develop methods

towards overcoming the data collection bottleneck in image captioning. However,

we observe that there is no prior work irectly tailored to study captioning in a truly

zero-shot setting, except the preliminary conference version of this paper to the best of

our knowledge: recent works on ZSIC [57, 58] study the ZSIC problem only in the

language domain, presuming the availability of a pre-trained fully-supervised object

detector covering all object classes of interest. We refer to these methods as partial
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Figure 6.1: (a) Partial zero-shot image captioning problem, (b) True zero-shot image

captioning problem.

zero-shot image captioning.

Following these observations, we propose the problem of true zero-shot captioning,

where test images contain instances of unseen object categories with no supervised

visual or textual examples, in addition to the seen categories. We believe that this

change constitutes a more direct problem definition towards (i) developing semantically

scalable captioning methods, and, (ii) evaluating captioning approaches in a realistic

setting where not all object classes have training examples. The difference between

the partial versus true ZSIC problems is illustrated in Figure 6.1.

To tackle the true ZSIC problem, we propose an approach that consists of a novel

generalized zero-shot detection (GZSD) model, which aims to generate detections in

scenes with both seen and unseen class instances, and a template-based [57] caption

generator. A high-level summary of our ZSIC approach can be found in Figure 6.2.

In order to address the GZSD problem, we propose a scaling scheme and incorporate

uncertainty calibration [125] to make seen and unseen class scores comparable. We

also show out that using class-to-class similarities obtained over word embeddings [50]

as class embeddings improves the GZSD results, compared to using class name

embeddings directly. On the MS-COCO dataset [39], we present a detailed evaluation
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of both GZSD and ZSIC models. For a more accurate evaluation of the ZSIC results,

we propose a new evaluation metric called V(isual)-METEOR, which adapts and

improves the widely used METEOR metric for ZSIC evaluation purposes.

A preliminary version of this work aims to make a number conceptual, technical and

experimental contributions in image captioning, which can be summarized as follows:

• We define a new paradigm for generating captions of unseen classes.

• We propose a novel ZSD approach that incorporates a probability scaling scheme

for the generalized zero-shot object detection (GZSD) problem.

• We evaluate several caption evaluation metrics and discuss their suitability for

the zero-shot image captioning scenario.

In addition to provide more detailed related work discussions and method explanations,

this paper extends the conference version by:

• introducing uncertainty calibration loss for class confidence calibration,

• evaluating the impact of various model decisions and score calibration,

• introducing a comparison to the recent GZSD methods on the benchmark MS-

COCO dataset,

• quantitatively demonstrating the advantage of using class-to-class similarities as

the class embeddings,

• and analyzing the GZSD failure patterns, which are all directly relevant for the

captioning quality.

The journal version also proposes the V-METEOR metric, and uses the new metric for
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a more detailed analysis of the ZSIC model.

6.2 Method

In this section, we first explain our main ZSD model component, and its GZSD

extensions. We then explain how we build the ZSIC model. Finally, we discuss the

evaluation difficulties and define the V-METEOR metric.

6.2.1 Main zero-shot detection model

In ZSD, the goal is to learn a detection model over the examples given for the seen

classes (Ys) such that the detector can recognize and localize the bounding boxes of

the unseen classes Yu. For this purpose, we adapt the YOLO [14] architecture to the

ZSD problem.

In the original YOLO approach, the loss function consists of three components: (i)

the localization loss, which measures the error between ground truth locations and

predicted bounding boxes, (ii) the objectness loss, and (iii) the recognition loss, over a

prediction grid of size S×S. Following our prior conference work, we adapt the YOLO

model to the ZSD problem by replacing per-cell class probability predictions with

cell embeddings and re-defining the prediction function as a compatibility estimator

between the cell and class embeddings:

f(x, c, i) =
Ω(x, i)TΨ(c)

∥ Ω(x, i) ∥∥ Ψ(c) ∥
. (6.1)

Here, f(x, c, i) is the prediction score corresponding to the class c and cell i, for image

x, Ψ(c) represents the c-th class embedding, and Ω(x, i) denotes the predicted cell

embedding as shown in Figure 6.3. According to this figure, at each cell, the network

is trained to produce box coordinate predictions (denoted by bx, by, bh, bw in the figure),

objectness scores (denoted by s in the figure) and a cell embedding to be used for zero-

shot recognition. The resulting model, therefore, allows making detection predictions

for samples of novel classes purely based on their class embeddings.

Class embeddings. In principle, one can use attributes or word embeddings of class
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Figure 6.3: Summary of the proposed GZSD method.

names directly as class embeddings, e.g. Chapter 3. Attributes can provide powerful

visual descriptions of classes, however, they tend to be domain-specific and typically

difficult to define for a large variety of object classes, as needed in ZSIC. Word

embeddings of class names are much easier to collect, however, they typically contain

indirect information about the visual characteristics of classes, and therefore, known

to provide significantly weaker prior knowledge for visual recognition [53].

To use the word embeddings more effectively, we propose to define class embeddings

in terms of class-to-class similarities computed over word embeddings: we define the

class c embedding in terms of the similarity with each seen class c̄:

Ψ(c) =
[
φ(c)Tφ(c̄) + 1

]
c̄∈Ys

(6.2)

where φ(c) denotes the c-th class name’s word embedding. Since semantic relations

across classes tend to correlate with their visual characteristics, this embedding can

provide a valuable implicit visual description defined through a series of inter-class

similarities. The ZSL method, therefore, can make predictions based collectively on

these similarity values. We empirically demonstrate the advantage of this scheme in

Section 6.3.

6.2.2 Generalized zero-shot detection extensions

There can be a significant bias towards the seen classes as the GZSD model is trained

to predict seen class instances. We use the following two extensions to reduce this

bias.

Alpha scaling. In this technique, we aim to reduce the bias towards the training classes
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by making the unseen and seen class scores more comparable through a score scaling

scheme. For this purpose, we introduce the α coefficient for the unseen test classes,

and redefine f(x, c, i) as follows:

f(x, c, i) =


α Ω(x,i)TΨ(c)

∥Ω(x,i)∥∥Ψ(c)∥ , if c ∈ Yu

Ω(x,i)TΨ(c)
∥Ω(x,i)∥∥Ψ(c)∥ , otherwise

(6.3)

To make the α estimation practical, we want to avoid requiring additional training

examples. For this reason, we first train the ZSD model over all training classes

without α. We then designate a subset of seen classes as unseen-imitation classes.

To obtain unseen-like confidence scores for these classes, we temporarily set all

entries corresponding to unseen-imitation classes in Eq. 6.2 to zeros and treat unseen-

imitation classes as unseen classes in Eq. 6.3. These modifications allow us to obtain

classification scores as if the model was trained without using the samples of unseen-

imitation classes. We then train α only, keeping the rest of the network frozen, as

shown in Figure 6.4.

Overall, the proposed α coefficient estimation scheme leverages the special structure

of our class embeddings to efficiently approximate the unseen class scores. While the

approximation can possibly be coarse, we experimentally show in Section 6.3 that

the proposed scheme is effective for learning the α coefficient, at a negligible extra

training cost.

Uncertainty calibration. The second unbiasing technique that we explore is uncer-
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tainty calibration, adapted from the zero-shot classification approach of Liu et al. [125].

The idea is to minimize the uncertainty over unseen class predictions during training,

based on the observation that a prediction model learned over seen class samples tends

to yield lower confidence scores for unseen classes, resulting in misdetections.

The uncertainty in confidence scores is quantified via entropy over unseen class

probabilities. We adapt the uncertainty calibration loss ℓh to our ZSD model as a loss

over per-cell predictions:

ℓh(x) = −
S2∑
i=0

1i
obj

∑
c∈Yu

pu(c|x, i) log pu(c|x, i) (6.4)

Here, pu(·) corresponds to f(x, c, i)-driven unseen class likelihoods:

pu(c|x, i) =
exp(f(x, c, i)/τ)∑

c′∈Yu
exp(f(x, c′ , i)/τ)

(6.5)

where τ denotes the softmax temperature coefficient. τ is empirically determined as

in Liu et al. [125]. The loss encourages more confident unseen class score estimates,

as less ambiguous prediction results in smaller entropy values. In order to adapt the

uncertainty calibration to the detection model, we first train the ZSD model over all

training classes as in the alpha scaling optimization process. We also use the same

designated unseen-imitation subset as unseen classes. In the second training stage, we

temporarily set all entries corresponding to unseen-imitation classes to zeros and then

fine-tune the whole model without freezing any layers, unlike alpha scaling coefficient

learning.

6.2.3 Zero-shot captioning model

Our goal is the construction of an image captioning model that can accurately sum-

marize scenes potentially with seen and unseen class instances. For this purpose, we

opt to use a template-based captioning method which provides the sentence templates

with visual word slots to be filled based on the outputs of an object detection model.

We adapt the slotted sentence template generation model of Neural Baby Talk (NBT) [57].

The NBT method generates sentence templates which consist of the empty word slots

by using a recurrent neural network. To obtain a content-based attention mechanism
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over the grounding regions, NBT embraces pointer networks [228]. The NBT model

is trained by optimizing the model parameters ω such that the log-likelihood of each

ground-truth caption q conditioned on the corresponding image x is maximized:

ω∗ = arg max
ω

∑
(x,q)

log p(q|x;ω). (6.6)

Here, the conditional caption likelihood p(q|x;ω) of |q| words is measured auto-

regressively, using a recurrent network:

p(q|x;ω) =
|q|∏
t=1

p(qt|q1:t−1, x;ω). (6.7)

The NBT method additionally incorporates a latent variable rt to represent the specific

image region, so the probability of a word qt is modeled as follows:

p(qt|q1:t−1, x;ω) = p(qt|rt, q1:t−1, x;ω)p(rt|q1:t−1, x;ω). (6.8)

The NBT defines two word types for qt, corresponding to textual and visual words.

Textual words are not directly related to any image region or specific visual object

instance, therefore the model provides only dummy grounding for them. The template

generation network uses the object detection outputs to fill empty visual word slots,

where we utilize the outputs of our GZSD model.

We train both the GZSD model and the sentence template generation component of

NBT over examples containing only the seen class instance annotations, as required

by the true ZSIC protocol. At test time, we use the GZSD outputs over all classes as

inputs to the NBT sentence generator.

6.2.4 Measuring zero-shot captioning quality

Partial zero-shot image captioning approaches use existing captioning metrics, such

as METEOR [59], SPICE [155] and F1 score, for evaluation purposes. While these

generic textual similarity based metrics provide useful information about the quality

of captioning results, they do not explicitly handle the problem of capturing visual

content within the generated sentence. Therefore, such metrics can possibly be heavily

influenced by structural and syntactic similarities across generated and ground-truth

sentences. Exceptionally, F1 score differs in this regard by completely ignoring the
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sentence structure and measuring only the coverage of (unseen) class names within

captions. However, F1 score fails to measure the overall quality or accuracy of the

generated sentences, which is also clearly important.

We observe that, based on our experiments in Section 6.3, the explicit handling of visual

and non-visual content in the evaluation of sentences is particularly necessary for true

zero-shot image captioning. In this setting, the problem of generating sentences that

summarize the visual content accurately, including visual entities that are completely

unseen during training, is fundamentally challenging, especially in comparison to

partial ZSIC with fully-supervised visual recognition models. Therefore, we propose a

new captioning evaluation metric as a step towards formalizing better metrics for true

ZSIC.

We develop our metric based on METEOR, which is known to be a simple yet effective

metric that yields a strong correlation with human judgment [229]. The original

METEOR metric is defined by the following formula:

METEOR = Fmean(1− p) (6.9)

where Fmean aims to capture correctness in terms of unigram precision and recall

values and p is a penalty term for evaluating the overall sentence compatibility. More

specifically, Fmean is given by:

Fmean =
10PR

R + 9P
(6.10)

where P and R are the unigram precision and unigram recall values, respectively.

These are calculated as:

P =
m

wt

(6.11)

R =
m

wr

(6.12)

where m is the number of unigrams in both reference and generated captions, wt is the

number of unigrams in the candidate caption and wr is the number of unigrams in the

reference caption. The p penalty term checks how well textual chunks match between

a pair of reference and generated captions, using the following definition:

p = 0.5

(
sc
um

)3

(6.13)
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where sc is number of maximally long matching subsequences, and um is number of

mapped unigrams.

We extend the METEOR metric by defining two separate Fmean metrics for the visual

and non-visual entities. For this purpose, we compute F v
mean and F n

mean, similar to

Eq. 6.10, separately over only visual words and only non-visual words, respectively.

We, then, define the proposed metric V-METEOR based on their harmonic mean, as

follows:

V-METEOR =
2F v

meanF
n
mean

F v
mean + F n

mean
(1− p) (6.14)

In this manner, the proposed V-METEOR metric explicitly measures the joint visual or

non-visual accuracy of a sentence, through the harmonic mean of the F v
mean and F n

mean

terms. It also incorporates the overall sentence similarity by keeping the penalty term

(p) as in METEOR.

To be able to measure per-class captioning quality, which is particularly valuable in the

ZSIC context, we separately compute V-METEOR for each class. In the calculation of

the V-METEOR score of a sentence for a class, the words corresponding to the class

name are considered as the visual words, and the words that are not corresponding

to any one of the class names are considered as non-visual words. The overall V-

METEOR score is obtained by averaging per-class scores.

Finally, we additionally define the following two variations for separately measuring

the visual and non-visual quality of the generated sentences, respectively:

V-METEORvis = F v
mean(1− p) (6.15)

V-METEORnvis = F n
mean(1− p) (6.16)

We use V-METEORvis and V-METEORnvis to gain additional insights.

6.3 Experiments

In this section, we explain our experimental setup, present the GZSD and ZSIC results,

discuss the V-METEOR evaluations, and provide additional analyses.
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6.3.1 Experimental setup

ZSD and (partial) ZSIC works use different splits of the MS-COCO dataset for

historical reasons. To make our results comparable to related works, we use the same

splits as in the related works, separately for GZSD and ZSIC as explained below.

GZSD evaluation. We use MS-COCO [39] dataset in our experiments. In our

main GZSD experiments, we use the same dataset splits and settings as in the recent

works [117, 118, 119, 120, 121, 56, 55, 114] and our ZSD method in Chapter 3, where

15 of 80 MS-COCO classes are used as unseen classes. There also exist different

ZSD methods (e.g. SB [112] and DSES [112]), but they use only 48/17 seen-unseen

class distribution or do not share GZSD results with 65/15, so we do not report any

comparisons with these methods.

ZSIC evaluation. For the ZSIC approach, we compare the proposed approach with

selected upper-bound methods from [147, 148, 58, 149, 57]. We again use the same

dataset splits and settings as in these works, where 8 of 80 MS-COCO classes are used

as the unseen classes.

Word embeddings. For the GZSD model, we use 300-dimensional word2vec [230]

class name embeddings. For the names containing more than one word, e.g. tennis

racket, we take the average of the per-word embeddings. We use 300-dimensional

GloVe vector embeddings [51] in the template generation component of the ZSIC,

following the NBT approach [57].

6.3.2 Generalized zero-shot object detection

In this section, we report and discuss experimental results for the GZSD model. We

train the model for 160 epochs with a learning rate of 0.001, and a batch size of 32.

Once the model is trained, we select 8 out of 65 seen classes as unseen-imitation classes

for alpha scaling optimization and uncertainty calibration purposes, and continue

training for 10 more epochs.

Main results. We present the experimental results in Table 6.1. The upper part of
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the table presents results of the two-stage object detection techniques, and the lower

part presents the single-stage techniques and our approach, which we call SimEmb. In

the lower part, SimEmb-base, which represents the model without score calibration,

obtains 28.54% mAP on seen classes, 12.45% mAP on unseen classes and 17.34

harmonic mean (HM). SimEmb, which represents the version with learned α scaling

coefficient, obtains 28.91% mAP on seen classes, 15.78% mAP on unseen classes and

20.41% HM. Finally, SimEmb* represents an upper-bound reference model, where

alpha scaling coefficient is empirically tuned on the test set to maximize the HM score

by evaluating for a range of α values. This upper-bound model obtains 28.87% mAP

on seen classes, 16.00% mAP on unseen classes, and 20.59 HM value.

From the results, we first observe that our single-stage approach improves the state-of-

the-art among single-stage GZSD models. We also observe that SimEmb performs

similar to or better than many two-stage GZSD models, with the only exception

being the very recently published two-stage approach ContrastZSD [56]. Second,

the improvements obtained by SimEmb show that alpha scaling coefficient is crucial

for obtaining higher accuracy on unseen class detections and alpha scaling does not

disrupt the seen class performance. Finally, the comparison between SimEmb and

the SimEmb* upper-bound shows that the proposed alpha scaling learning scheme is

effective as it yields results comparable to directly tuning α on the test set.

We also observe that the proposed model achieves results comparable to those of

two-stage approaches. While single-stage and two-stage detectors are built on very

different design principles and trade-offs, the overall competitiveness is noteworthy

since the work on other low-shot detection problems show that two-stage models

typically yield higher AP scores [62].

Qualitative detection results using the proposed SimEmb model can be found in

Figure 6.5.

Correctness of α estimation. We present the evaluation results as a function of α in

Figure 6.6. We observe that the best empirical α coefficient value (in HM) among

the tested ones is 1.4. The proposed α estimator, which in contrast uses only training

examples, results in α = 1.28, which is both value-wise and performance score-wise

close to the optimal choice.
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Table 6.1: mAP results on MS-COCO dataset with GZSD (65/15) settings.

Category Method seen unseen HM

two-stage

MS-Zero [117] 42.40 12.90 19.79

MS-Zero++ [117] 35.00 14.50 19.78

DPIF-S [118] 32.72 13.95 19.56

DPIF-M [118] 29.33 16.36 21.00

BLC [119] 36.00 13.10 19.20

VL-SZSD [120] 39.45 13.18 19.76

FNG [121] 38.10 13.90 20.40

ContrastZSD [56] 40.20 16.50 24.20

single-stage

TL [114] 28.79 14.05 18.89

PL [55] 34.07 12.40 18.18

Chapter 3 28.40 12.80 17.65

SimEmb-base 28.54 12.45 17.34

SimEmb 28.91 15.78 20.41

SimEmb* 28.87 16.00 20.59
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Figure 6.5: GZSD results on scenes containing various seen and unseen class in-

stances.
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Figure 6.6: The accuracy values of the proposed method in the GZSD test splits of

MS-COCO according to different alpha scaling factors.

Alpha scaling versus uncertainty calibration. As an alternative to alpha scaling for

GZSD, we evaluate the uncertainty calibration technique, as explained in Section 6.2.2.

We present the results in Table 6.2, with the following combinations from top to the

bottom: base model, uncertainty calibration (uc-calib) only, alpha scaling only, and

their combination. We observe that uncertainty calibration alone performs poorly

probably due to the difficulty of correcting class bias purely based on fine-tuning. Our

alpha scaling technique yields a much better result in terms of HM score, with an

improvement from 17.34 to 20.41. The combination of the two techniques slightly

improves the HM score to 20.46. This proves that the alpha scaling scheme is effective

in comparison to a state-of-the-art calibration technique. For the sake of simplicity, we

keep using only alpha scaling in our following experiments.

GZSD results on ZSIC splits. In our experiments presented so far, we have used the

65/15 COCO split. In our ZSIC experiments, however, we need to use the alternative

72/8 split of [147] to make comparisons to the related work. Therefore, here we report

the results of our GZSD model on the 72/8 split. We train the model using the same

hyper-parameters as before. We select 8 out of 72 seen classes as unseen-imitation
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Table 6.2: mAP results on MS-COCO dataset in the 65/15 GZSD setting.

α-scaling uc-calib seen unseen HM

28.54 12.45 17.34

✓ 28.60 11.15 16.04

✓ 28.91 15.78 20.41

✓ ✓ 28.85 15.85 20.46

classes for alpha scaling optimization.

We evaluate the detection model under the ZSD and GZSD scenarios. For the ZSD

experiments, we use the MS-COCO validation images consisting of unseen class

instances. For the GZSD experiments, we use the whole MS-COCO val5k split.

We present the results on Table 6.3. Here, the first row represents the experimental

results where we only use images belonging to the unseen classes and unseen class

embeddings, the remaining rows represent the GZSD results where we use all class

embeddings on the MS-COCO val5k split. In the ZSD case, we observe an unseen

class mAP of 31.4%. In the GZSD case, we observe a much lower 0.3% mAP without

alpha scaling, and 0.7 HM. Alpha scaling improves the unseen class mAP to 7.3% and

the HM score to 10.6. We note that prior works on GZSD do not use this ZSIC (72/8)

split, therefore, we do not report any comparisons to the state-of-the-art in this split.

We also note that our primary interest in GZSD is to build a strong method to serve

as a crucial component of ZSIC, therefore, these results highlight one of the major

difficulties in building accurate captioning models in the realistic ZSIC setting.

6.3.3 Zero-Shot image captioning

For the ZSIC experiments, we use the same experimental setup described in [57], and

exclude the image-sentence pairs containing unseen class instances during training.

We consider the partial ZSIC approaches proposed in [147, 148, 58, 149, 57] as upper-

bound baselines for our true ZSIC setting. We also define and evaluate a baseline

method based on NBT, where we train the NBT captioning model based solely on
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the training classes without integrating our GZSD model. We refer to this model as

NBT-baseline.

To establish a fair comparison, we follow the practices of the NBT [57] approach.

We evaluate the ZSIC model on the selected validation subset of the MS-COCO

caption dataset. To obtain per-class evaluation scores, we use the F1 metric [147],

where a visual class is considered as relevant in an image if that class name appears

in any one of the human generated reference captions for that image, and irrelevant

otherwise. Similarly, on a test image, a model-generated caption is considered as

correct for a visual class if the generated caption includes (excludes) the corresponding

word for that relevant (irrelevant) class. The per-class F1 score is then defined as

the ratio of correctly captioned test images. We additionally use the well-established

METEOR [59] and SPICE [155] metrics, in addition to averaging the per-class F1

scores (referred to as Avg. F1). We separately discuss the evaluation results in terms

of the proposed V-METEOR metric in the next section.

We present the results in Table 6.4. First, we observe that the proposed approach greatly

outperforms the NBT-baseline with clear improvements in terms of Avg. F1 (0 to

29.8), METEOR (18.2 to 21.9) and SPICE (12.7 to 14.2) scores. This shows the value

of explicitly handling the GZSD task as part of the captioning process. In comparison

to the upper-bound partial-ZSIC captioning approaches, which involve supervised

visual training in both seen and unseen classes, our approach yields comparable results

in terms of METEOR and SPICE metrics. In particular, we observe that the ZSIC

model yields better results compared to the DCC [147] and NOC [148] methods.

This is most probably due to the fact that our sentence template generation method

provides accurate locations for visual words, enabling the generation of more natural

and visually grounded captions. We observe relatively lower scores for the ZSIC

model, compared to the remaining supervised models.

Noticeably, the performance gap between true ZSIC and (visually) supervised partial

ZSIC is larger in terms of the Avg. F1 metric. This is mostly an expected result as the

F1 metric directly measures the ability to incorporate visual classes during captioning,

akin to a visual recognition metric. Here, supervised methods are known to perform

much better than the state-of-the-art ZSL models in most cases, which turns out to
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A small white dog sitting

on a couch.

A red bus is driving down

the street.

A couple of zebra standing

in a field.

A tennis player is about

to hit a tennis racket.

A white plate topped with

a piece of pizza.

A kitchen with a m.wave

and a counter.

A bus is parked on the side

of the street.

A bird sitting on top of a

metal pole.

A bunch of banana that are

on a table.

A man riding a wave on top

of a surfboard.

A large elephant standing

next to a tree.

A man in a suit and tie

standing in a room.

Figure 6.7: Image captioning results on images with seen and unseen class instances.
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Table 6.5: V-METEOR comparison results.

Method V-METEORvis V-METEORnvis V-METEOR

NBT-Baseline 0.0 20.50 0.0

Our Method 12.63 22.26 13.19

also be the case in captioning.

For qualitative examination, we present visual output examples in Figure 6.7, along

with the corresponding GZSD detection results. It can be observed that the ZSIC

model is able to generate semantically sound captions in a variety of challenging

scenes involving both seen and unseen class instances.

6.3.4 V-METEOR experiments

We now evaluate the baseline and proposed models using the V-METEOR metric.

We present the overall average V-METEOR scores in Table 6.5. In this table, V-

METEORvis represents a sub-metric that only includes results for visual words, and

V-METEORnvis represents an another sub-metric that only includes non-visual words.

These summary results show that the proposed approach greatly improves the visual

captioning score from 0.0 to 12.63 and also increases the non-visual V-METEOR

scores from 20.50 to 22.26. The final V-METEOR score improves from 0.0 to 13.19.

These results show that the integration of an (accurate) GZSD can not only help with

visual coverage of the captioning results but also improve the non-visual parts of the

generated captions thanks to the better visual information from the detector to the

language model. In these results, we also observe the main advantage of the proposed

V-METEOR metric by being able to separately discuss the visual and non-visual

quality of the generated captions.

To better understand the captioning results, we present per-class V-METEOR scores

for the unseen classes in Figure 6.8, where visual-bs represents the visual meteor

scores of the NBT-Baseline, non-visual-bs represents the non-visual meteor scores of

the NBT-Baseline and hm-bs represents the V-METEOR scores of the NBT-Baseline
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♦: A couple of people that

are in a room.

⋆: A person sitting in a

couch in a room.

♦: A yellow and black train

traveling down the road.

⋆: A yellow and black bus

driving down a road.

♦: A couple of elephants

standing next to each other.

⋆: A couple of zebra

standing next to each other.

Figure 6.9: Image captioning results of NBT-baseline and our methods.

method. Similarly, visual, non-visual and hm bars correspond to our method. In these

results, we again observe both the most significant improvements are in V-METEORvis

scores with still noticeable improvements in non-visual scores. The complementary

qualitative captioning comparisons presented in Figure 6.9, where ♦ represents the

NBT-baseline results, ⋆ represents the results of the proposed method, and bold type

words represent visual words from detectors, supports these quantitative observations:

in the person and bus examples, the whole sentence changes and improves with the

correction in visual details. In the bus and zebra examples, we observe that the NBT-

baseline method produces coarsely plausible sentences, however, with incorrect visual

coverage due to confusions across visually similar classes.

6.3.5 Additional analyses

In this section, we present a quantitative analysis on the error patterns and an ablative

study on the importance of proposed similarity embeddings in GZSD.

6.3.5.1 Diagnosing errors

The experimental results show that GZSD plays a central role in achieving accurate

captioning results. Therefore, it is potentially valuable to understand the typical detec-

tion errors of our GZSD model, towards building better GZSD and ZSIC approaches.
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For this purpose, we embrace the detector analysis approach by Hoiem et al. [231],

which is originally proposed for analyzing false positives in supervised detectors. The

original analysis approach defines semantic categories for the PASCAL VOC dataset.

To utilize this technique in the GZSD setting, we use the MS-COCO superclasses,

namely vehicle, outdoor, animal, accessory, sports, kitchen, food, furniture, electronic,

appliance and indoor, as defined in [39]. Following [231], we additionally define a

separate singleton superclass for the person class, as it contains a greatly larger number

of instances and its overall distinct visual characteristics.

The following four misdetection categories are examined for each superclass: (i)

localization errors, corresponding to detections considered as false positive due to

poor localization, (ii) confusion with background, counting false positive detections

located in the background, (iii) class confusion within superclass members, and (iv)

class confusion across superclasses. The corresponding error distributions are shown

in Figure 6.10.

The obtained error distribution results show that the false positives are mainly occurred

due to the within superclass confusions for the vehicle, animal, accessory, sports,

kitchen and food superclasses. The dominant misdetection type for the furniture,

appliance and indoor superclasses is confusion with other classes. In contrast, most

person misdetections correspond to localization errors. Finally, we observe that

most problematic detections for outdoor and electronic superclasses correspond to

background detections. Overall, these results show that there is no single error pattern

dominating the GZSD outputs, and errors vary greatly across the classes.

6.3.5.2 Impact of using similarity embeddings

One of the advantages of using the proposed class-to-class similarity vectors is that

each dimension of the embedding explicitly corresponds to a class relevance value. We

additionally utilize its structure in the design of our alpha scaling training scheme. To

better understand the value of the proposed class embeddings for GZSD, we present a

direct comparison between using the proposed class embeddings versus the original

class name word embeddings.
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Table 6.6: mAP results on MS-COCO dataset with GZSD (65/15) settings.

Method seen/unseen seen unseen HM

Word embeddings 65/15 28.41 14.26 19.08

SimEmb 65/15 28.91 15.78 20.41

We present the results based on both the word embeddings directly and class-to-class

similarities as class embeddings in Table 6.6. The results show that the standard word

embedding scheme obtains 28.41% mAP on seen classes, 14.26% mAP on unseen

classes and a harmonic mean score of 19.08. In contrast, the proposed embedding

yields 28.91% 15.78% and 20.41 unseen mAP, seen mAP and harmonic mean scores,

respectively. These results show that using class-to-class similarity vectors also

provides a relative performance advantage in terms of model performance, while also

enabling our effective alpha coefficient learning procedure.

6.4 Chapter Summary

An important shortcoming of current image captioning methods that aim training

through non-paired datasets is that they do not work in a fully ZSL setting. These

methods generate captions for images which consist of classes not seen in captioning

datasets, but they assume that there is a ready-to-use fully supervised visual recognition

model. To this end, we define the ZSIC problem, propose a novel GZSD model and

a ZSIC approach based on it. We additionally introduce a practical class embedding

scheme, a technique to improve GZSD performance via score scaling, and a novel

evaluation method that provides insights into the ZSIC results. Our qualitative and

quantitative experimental results show that our method yields promising results towards

achieving our ZSIC goals. We believe that ZSIC is an important research direction

towards building captioning models that are more suitable to use in realistic, in-the-wild

settings.
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CHAPTER 7

META-TUNING LOSS FUNCTIONS AND DATA AUGMENTATION FOR

FEW-SHOT OBJECT DETECTION

7.1 Introduction

Object detection is one of the computer vision problems that has greatly benefited from

the advances in supervised deep learning approaches. However, similar to the case

in many other problems, state-of-the-art in object detection relies on the availability

of large-scale fully-annotated datasets, which is particularly problematic due to the

difficulty of collecting accurate bounding box annotations [?, 232]. This practical

burden has lead to a great interest in the approaches that can potentially reduce the

annotation cost, such as weakly-supervised learning [42, 41], learning from point

annotations [233], and mixed supervised learning [43]. A more recently emerging

paradigm in this direction is few-shot object detection (FSOD). In the FSOD problem,

the goal is to build detection models for the novel classes with few labeled training
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Figure 7.1: The overall architecture of the meta-tuning approach.
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images by transferring knowledge from the base classes with a large set of training

images. In the closely related Generalized-FSOD (G-FSOD) problem, the goal is to

build few-shot detection models that perform well on both base and novel classes.

FSOD methods can be categorized into meta-learning and fine-tuning approaches.

Although meta-learning based methods are predominantly used in the literature in

FSOD research [60, 61, 62, 63, 64, 10, 65, 66, 67, 68], several fine-tuning based works

have recently reported competitive results [11, 69, 70, 71, 72, 73, 74, 75]. The main

premise of meta-learning approaches is to design and train dedicated meta-models

that map given few train samples to novel class detection models, e.g. [234] or learn

easy-to-adapt models [76] in a MAML [77] fashion. In contrast, however, fine-tuning

based methods tackle the problem as a typical transfer learning problem and apply the

general purpose supervised training techniques, i.e. regularized loss minimization via

gradient-based optimization, to adapt a pre-trained model to few-shot classes. It is also

worth noting that the recent results on fine-tuning based FSOD are aligned with related

observations on few-shot classification [178, 187, 188] and segmentation [235].

While some of the FSOD meta-learning approaches are attractive for being able to

learn dedicated parametric training mechanisms, they also come with two important

shortcomings: (i) the risk of overfitting to the base classes used for training the

meta-model due to model complexity, and (ii) the difficulty of interpreting what is

actually learned; both of which can be crucially important for real-world, in-the-wild

utilization of a meta-learned model. From this point of view, the simplicity and

generality of a fine-tuning based FSOD approach can be seen as major advantages. In

fact, one can find a large machine learning literature on the components (optimization

techniques, loss functions, data augmentation, and architectures) of an FT approach,

as opposed to the unique and typically unknown nature of a meta-learned inference

model, especially when the model aims to replace standard training procedures for

modeling the novel few-shot classes. While MAML [77] like meta-learning for quick

adaptation is closer in nature to fine-tuning based approaches, the vanishing gradient

problems and the overall complexity of the meta-learning task practically limits the

approach to target only one or few model update steps, whereas an FT approach has

no such computational difficulty.
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Perhaps the biggest advantage of a fine-tuning based FSOD approach, however, can

also be its biggest disadvantage: its generality may lack the inductive biases needed

for effective learning with few novel class samples while preserving the knowledge of

base classes. To this end, such approaches focus on the design of fine-tuning details,

e.g. whether to freeze the representation parameters [11], use contrastive fine-tuning

losses [69], increase the novel class variances [72], introduce the using additional

detection heads and branches [70, 71]. However, optimizing such details specifically

for few-shot classes in a hand-crafted manner is clearly difficult, and likely to be

sub-optimal.

To address this problem, we focus on applying meta-learning principles to tune the

loss functions and augmentations to be used in the fine-tuning stage for FSOD, which

we call meta-tuning (Figure 7.1). More specifically, much like the meta-learning of

a meta-model, we define an episodic training procedure that aims to progressively

discover the optimal loss function and augmentation details for FSOD purposes in a

data-driven manner. Using reinforcement learning (RL) techniques, we aim to tune

the loss function and augmentation details such that they maximize the expected

detection quality of an FSOD model obtained by fine-tuning to a set of novel classes.

By defining meta-tuning over well-designed loss terms and an augmentation list, we

restrict the search process to effective function families, reducing the computational

costs compared to AutoML methods that aim to discover loss terms from scratch

for fully-supervised learning [12, 197]. The resulting meta-tuned loss functions and

augmentations, therefore, inject the learned FSOD-specific inductive biases into a

fine-tuning based approach.

To explore the potential of the meta-tuning scheme for FSOD, we focus on the details of

classification loss functions, based on the observations that FSOD prediction mistakes

tend to be in classification rather than localization details [69]. In particular, we

first focus on the softmax temperature parameter, for which we define two versions:

(i) a simple constant temperature, and (ii) time (fine-tuning iteration index) varying

dynamic temperature, parameterized as an exponentiated polynomial. In all cases,

the parameters learned via meta-tuning yield an interpretable loss function that has a

negligible risk of over-fitting to the base classes, in contrast to a complex meta-model.

We also model augmentation magnitudes during meta-tuning for improving the data
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loading pipeline for few-shot learning purposes. Additionally, we incorporate a score

scaling coefficient for learning to balance base versus novel class scores.

We provide an experimental analysis on the Pascal VOC [79] and MS-COCO [39]

benchmarks for FSOD, using the state-of-the-art fine-tuning based baselines MPSR [70]

and DeFRCN [75]. Our experimental results show that the proposed meta-tuning ap-

proach provides significant performance gains in both FSOD and Generalized FSOD

settings, suggesting that meta-tuning loss functions and data augmentation can be a

promising direction in FSOD research.

7.2 Method

This section provides a brief summary of the FSOD problem definition and the baseline

model we utilize. We then present our definition and instantiation of meta-tuning.

Problem definition. We follow the FSOD setup of [10], where a relatively large set of

training images for the set Cb of base classes is made available. Each training image

corresponds to a tuple (x, y) consisting of image x and annotations y = {y0, ..., yM}.
Each object annotation yi = {ci, bi} contains a category label (ci) and a bounding box

(bi = {xi, yi, wi, hi}). Once the FSOD model training is complete, the evaluation is

carried out based on a limited number (k) of training images made available for the set

Cn of distinct novel (i.e. few-shot) classes.

Base model. We use the MPSR FSOD method [70] as the infrastructure for our loss

function and data augmentation search methods. MPSR adapts the Faster-RCNN to

be suitable for fine-tuning-based FSOD and uses an auxiliary multi-scale positive

sample refinement (MPSR) branch to handle the scale scarcity problems. This branch

expands the scale space of positive samples without increasing improper negative

instances, unlike feature pyramid networks and image pyramids that do not change

data distribution, hence the scale sparsity problem. In this context, objects in the

images are cropped and resized in multiple sizes to create scale pyramids. The MPSR

uses two groups of loss functions for the region proposal network (RPN) and detection

heads, and feeds differently scaled positive samples to these loss functions together
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with the main detection branch. Finally, we note that the proposed approach can in

principle be applied to virtually any fine-tuning based FSOD model.

7.2.1 Meta-tuning loss functions

Our main goal is to improve few-shot detector fine-tuning based on meta-learning

principles. For meta-tuning the FSOD loss, we specifically focus on the classification

loss term, as the FSOD errors tend to be primarily caused by misclassifications [69].

The MPSR classification loss term can be expressed as follows:

ℓcls(x, y) = −
1

NROI

NROI∑
i

log

(
ef(xi,yi)∑
y e

f(xi,y)

)
(7.1)

where NROI is the number of ROIs (i.e. candidate regions) in an image, yi is the

groundtruth class label for the i-th ROI, and f(xi, y) is the corresponding class y

prediction score. To add more flexibility into the loss function, we re-define it as a

parametric function ℓcls(x, y; ρ), where ρ represents the loss function parameters. First,

we introduce a temperature scalar ρτ , i.e. ρ = (ρτ ):

ℓcls(x, y; ρ) = −
1

NROI

NROI∑
i

log

(
ef(xi,yi)/ρτ∑
y′ e

f(xi,y′)/ρτ

)
(7.2)

Our motivation comes from the observations on the importance of temperature scaling

in log loss on various other problems, such as knowledge distillation [236], few-shot

classification [172, 171], and zero-shot learning [4]. While temperature is typically

tuned in a manual manner, here we aim to meta-learn it specifically for fine-tuning

based FSOD purposes, giving a chance to observe the behavior of meta-tuning in

a simple case. We also define a more sophisticated variant of the loss function by

defining the dynamic temperature function fρ and novel class scaling α:

ℓcls(x, y; ρ) =
−1

NROI

NROI∑
i

log

(
eα(yi)f(xi,yi)/fρ(t)∑
y′ e

α(y′)f(xi,y′)/fρ(t)

)
(7.3)

where fρ(n) = exp(ρan
2+ρbn+ρc). Here, ρ = (ρa, ρb, ρc) is a 3-tuple of polynomial

coefficients, and n ∈ [0, 1] is the normalized fine-tuning iteration index. The tem-

perature can increase or decrease over time, making the predicted class distributions

smoother or sharper. α(y) is set to 1 for y ∈ Cb, and otherwise the novel class score

scaling coefficient ρα, as a way to learn base and novel score balancing.
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7.2.2 Meta-tuning augmentations

For meta-tuning augmentations, we focus on the photometric augmentations that are

likely to be transferable from base to novel classes. In this context, we model the

brightness, saturation, contrast, and hue transforms, with a shared magnitude parameter

(ρaug), which is known to be effective for supervised training [202].

7.2.3 Meta-tuning procedure

In our work, we utilize a REINFORCE [237] based reinforcement learning (RL)

approach to search for the optimal loss function and augmentations, where we use the

AutoML approach of Wang et al. [199] on loss function search for fully-supervised

face recognition as our starting point.

In order to meta-tune the loss function and augmentations to maximize FSOD gen-

eralization abilities, we generate proxy tasks over base class training data to imitate

real FSOD tasks over the novel classes. For this purpose, we divide base classes

into two subsets, proxy-base Cp-base and proxy-novel Cp-novel. We then construct three

non-overlapping data set splits using the base class training set: (i) Dp-pretrain contain-

ing Cp-base-only samples, used for training a temporary object detection model for

meta-tuning purposes; (ii) Dp-support containing samples of Cp-base ∪ Cp-novel classes to

be used as fine-tuning images during meta-tuning; (iii) Dp-query containing samples of

Cp-base ∪ Cp-novel classes to be used for evaluating the generalized FSOD performance

of a fine-tuned model during meta-tuning.

We generate a series of FSOD proxy tasks for meta-tuning, similar to episodic meta-

learning: at each proxy task T , we sample a few-shot training set from Dp-support. We

also sample a loss function/augmentation magnitude parameter combination ρ, where

each ρj ∈ ρ is modeled in terms of a Gaussian distribution: ρj ∼ N (µj, σ
2). Using

the loss function or augmentations corresponding to the sampled ρ, we fine-tune the

initial model on the support images using gradient-based optimization, and compute

the mean average precision (mAP) scores on Dp-query. We get multiple mAP scores

by repeating this process multiple times over multiple proxy support samples. Meta-

tuning is then carried over by updating µ values via the REINFORCE rule after each
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episode, towards finding µ values centered around well-performing ρ combinations.

µ′
j ← µj + ηR(ρ)∇µ log (p(ρj;µj, σ)) (7.4)

where p(ρ;µ, σ) is the Gaussian probability density function, η is the RL learning rate.

We apply the REINFORCE update rule using the ρ with the highest reward per episode.

R(ρ) is the normalized reward function obtained by whitening the mAP scores. We

empirically observe that normalization improves the results (Section 7.3) since without

reward normalization, the RL updates are scaled with respect to the inherent difficulty

of the proxy task, which greatly varies depending on the sampled support examples.

Reward normalization approximately removes the average reward, enabling better

performing ρ samples to influence based on their relative success.

Finally, similar to [238], starting with σ = 0.1, we diminish σ over the RL iterations to

progressively reduce explorations by sampling more conservatively, which improves

converge. The final scheme is illustrated in Figure 7.2.

7.3 Experiments

Metrics. We use mAP to evaluate the base and novel class detection results separately.

To evaluate the generalized FSOD performance, we use the Harmonic Mean (HM)

metric to compute a balanced aggregation of base and novel class performance scores.

Adapted from generalized zero-shot learning [239], HM is defined as the harmonic

mean of mAPbase and mAPnovel scores.

Datasets. We use Pascal VOC [79] and MS COCO [39] with the same splits defined

in FSOD benchmarks [11, 70]. On Pascal VOC, three separate base/novel class splits

exist, where each one consists of 15 base and 5 novel classes. In each split, we select 5

base classes to mimic novel classes during meta-tuning. On MS-COCO, we select 15

base classes to mimic novel classes in each proxy task, and evaluate the models for the

10-shot and 30-shot settings.

Baselines. We primarily use the MPSR [70] and DeFRCN [75] as our baselines, which

are among the best performing fine-tuning based FSOD methods on Pascal VOC. For
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the DeFRCN experiments, we transfer the meta-tuned loss functions and augmentation

magnitudes from MPSR to the DeFRCN method, which are both based on Faster-

RCNN. We take the results for FRCN [64], Ret. R-CNN [71], Meta-RCNN [64],

FSRW [10], MetaDet [240], FsDetView [60] and ONCE [65] from [71] for a fair

comparison. For the MPSR, DeFRCN (seed is set to 0) and FSCE [69], we report the

results we obtain experimentally. We take the results for TFA+Hal [72], CME [62],

TIP [194], DCNet [192], QA-FewDet [193] FADI [73], LVC [74], KFSOD [67] and

FCT [68] from the original papers. Finally, while it is difficult to fairly compare

fine-tuning versus meta-learning based approaches, we provide a discussion in the

supplementary material.

Implementation details. We use 200 RL episodes for loss function meta-tuning, with

REINFORCE learning rate set to 0.0005. The meta-tuning for augmentation parameter

is carried out using the trained and frozen the loss function parameters. We keep the

fine-tuning implementation details of MPSR unchanged, which uses 4000 and 8000

gradient descent iterations for 10-shot and 30-shot experiments on MS-COCO, and

2000 iterations on Pascal VOC. We will publish the full source code upon publication;

a preliminary version is provided as supplementary material.

7.3.1 Main results

We first compare the meta-tuning results against the corresponding MPSR baseline

in Table 7.1. In the table, Meta-Static, Meta-Dynamic, Meta-ScaledDynamic refer

to meta-tuning a single temperature, dynamic temperature, and novel class scaled

dynamic temperature functions, respectively. Similarly, Aug, Meta-Static+Aug, Meta-

Dynamic+Aug, and Meta-ScaledDynamic+Aug refer to meta-tuning only augmenta-

tion, single temperature and augmentation, dynamic temperature and augmentation,

and novel class scaled dynamic temperature and augmentation functions, respectively.

We observe that meta-tuning consistently improves the FSOD and G-FSOD results of

the MPSR model. We also observe steady improvements gradually from the baseline

to Meta-Static, to Meta-Dynamic, and finally to Meta- ScaledDynamic. In addition,

the meta-tuned augmentation magnitude parameter also contributes positively to the

few-shot object detection performance. The overall consistency of the improvements
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provides positive evidence for the value of loss and augmentation meta-tuning.

Pascal VOC results. In Table 7.2, we report the Pascal VOC results for our MPSR

and DeFRCN based Meta-ScaledDynamic+Aug approach and compare them against

the state-of-the-art fine-tuning based FSOD methods. In this table, the best and the

second-best results are marked with red and blue colors, respectively. While we present

the scores averaged over the three splits in this table, additional per-split FSOD and

G-FSOD results can be found in the supplementary material. The left side of Table 7.2

presents the FSOD results for the varying number of support images. We observe that

DeFRCN combined with Meta-ScaledDynamic+Aug, i.e. meta-tuning of the score

coefficient, dynamic temperature and the augmentation parameter, yields the best mAP

scores in all k-shot settings among all methods.

The right side of Table 7.2 presents the G-FSOD results on Pascal VOC. We observe

that the best-performing Meta-ScaledDynamic+Aug method improves the HM scores

further above the state-of-the-art in all k-shot settings. Overall, these results suggest

that the proposed framework is an effective way for meta-learning inductive biases to

be used in fine-tuning-based FSOD.

Figure 7.3 presents visual detection examples without and with meta-tuned scaled

dynamic temperature and augmentations in the first and second rows, respectively. In

this figure, base and novel class detections are shown with green and red boxes. We

observe various improvements, such as reductions in false positives, improved recall,

and more precise boxes, most likely due to the improved model fitting in the low-data

regime.

MS-COCO results. In Table 7.3, we compare the MPSR and DeFRCN based Meta-

ScaleDynamic+Aug results against other fine-tuning based FSOD methods that report

10-shot and 30-shot results on the MS-COCO dataset. We observe that with meta-

tuning, the FSOD scores of MPSR improve from 9.1 to 12.5 (10-shot mAP), and from

13.7 to 15.4 (30-shot mAP). We also observe that the scores of DeFRCN improve

from 18.5 to 18.8 (10-shot mAP), and from 21.9 to 23.4 (30-shot mAP), obtaining

the best and second best results against all other models. Similarly, in the case of

G-FSOD, with meta-tuning, the 10-shot HM score of DeFRCN improves from 24.0 to
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Table 7.3: Comparison of Meta-ScaledDynamic results to the fine-tuning based GF-

SOD methods on the MS-COCO dataset.

Method/Shots
Novel Classes All Classes (HM)

10-shot 30-shot 10-shot 30-shot

FRCN [64] (ICCV’19) 9.2 12.5 12.8 15.6

FRCN-BCE [11] (ICML’20) 6.4 10.3 10.9 16.1

TFA-fc [11] (ICML’20) 10.0 13.4 15.4 19.4

TFA-cos [11] (ICML’20) 10.0 13.7 15.6 19.8

MPSR [70] (ECCV’20) 9.1 13.7 11.5 15.0

FSCE [69] (CVPR’21) 10.5 14.4 16.0 20.2

Ret. R-CNN [71] (CVPR’21) 10.5 13.8 16.6 20.4

FADI [73] (NeurIPS’21) 12.2 16.1 - -

DeFRCN [75] (ICCV’21) 18.5 21.9 24.0 26.8

LVC [74] (CVPR’22) 12.1 17.8 17.8 22.8

LVC-PL [74] (CVPR’22) 17.8 24.5 22.8 28.1

MPSR+Meta-ScaledDynamic+Aug 12.5 15.4 14.7 16.9

DeFRCN+Meta-ScaledDynamic+Aug 18.8 23.4 24.4 28.0

24.4, outperforming all other models. In addition, the 30-shot HM score of DeFRCN

improves from 26.8 to 28.0, which is slightly below the 28.1 score of LVC-PL [74].

7.3.2 Ablation studies

Meta-tuning details. The proposed meta-tuning approach involves three important

technical details: Proxy-novel imitation, model re-initialization, and reward normal-

ization. Proxy-novel imitation refers to reinforcement learning over the sampled

proxy-novel tasks, instead of the whole training set, to mimic the test-time FSOD

challenges. Model re-initialization is the re-initialization of the base model for each

task. Without re-initialization, not only the sampled loss/augmentation parameters and

tasks but also the accumulated model updates undesirably affect the rewards. Reward
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Table 7.4: Evaluation of meta-tuning details.

Proxy-novel imit. Model re-init. Reward norm. HM

✗ ✗ ✗ 61.5

✓ ✗ ✗ 61.8

✓ ✓ ✗ 62.1

✓ ✓ ✓ 63.3

normalization further reduces the effect of task difficulty variance by normalizing the

rewards obtained within a single episode, allowing a more isolated assessment of the

sampled loss functions and augmentations.

We evaluate the contributions of these three important details in terms of G-FSOD

HM scores using the 5-shot setting of Pascal VOC Split-1 with MPSR+Meta-Dynamic.

The results averaged over 5 runs are given in Table 7.4, where proxy-novel imitation is

the imitation of novel classes using a subset of base classes, model re-initialization

is the re-initialization of the base model at each task, and reward normalization is

within-episode normalization of the mAP scores during meta-tuning. We observe

that each component progressively improves the HM scores, and the most significant

contribution is made by reward normalization, which improves from 62.1 to 63.3. We

also observe that reward normalization considerably improves the overall experimental

stability. To quantify this observation, we estimate the 95% confidence interval

over the runs using CI = 1.96 s√
n

, where s, n, and 1.96 are the standard deviation,

number of runs, and Z-value, respectively [11]. According to this estimator, the

normalization step narrows the confidence interval from ±0.75 to ±0.13, providing a

clear improvement in reliability.

Learned loss functions. In Figure 7.4, we plot the learned loss functions according to

the µ values obtained at the end of the RL process. The upper plot shows the dynamic

temperature functions learned over three different splits. We observe that temporally

attenuated temperature values are preferred consistently, sharpening the predictions

towards the end of the fine-tuning process. The lower plot shows the learned dynamic

temperature functions with novel class score scaling. The learned scaling coefficients,
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Figure 7.4: The dynamic temperature functions and score scaling coefficients learned

by the meta-tuning process.

i.e. µα of the learned ρα distribution, are shown as horizontal lines. We observe

that similar dynamic temperature functions are learned, and µα values vary between

1.09 to 1.2, suggesting that the meta-tuning process learns to boost the novel class

scores. The interpretability of these outcomes, we believe, highlights a significant

advantage of loss meta-tuning. In the context of interpretability, we observe that as
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Table 7.5: Low-shot (1-shot, 2-shot and 3-shot) experiments on MS-COCO dataset

with novel classes.

S/M TFA [11] TFA+Hal [72] TFA+Meta-ScaledDynamic+Aug

1 3.4 3.8 4.7

2 4.6 5.0 5.8

3 6.6 6.9 7.1

the fine-tuning process continues on the few-shot training set, the predictions are

progressively made sharper, i.e. the loss becomes more sensitive to classification errors

and enforces towards making more confident correct predictions. This is in alignment

with one of our original motivations for reducing the dominating classification errors

in G-FSOD, as the meta-tuning process automatically learns to enforce more accurate

classifications, where the curve steepness and the numerical ranges are learned via RL.

Learned augmentations. The learned photometric augmentation magnitude values

learned are 0.29, 0.24, 0.13, and 0.36 for Pascal VOC split-1, split-2, split-3, and

MS-COCO datasets, respectively. We observe that the learned augmentation magni-

tudes positively contribute to the performance. According to the results in Table 7.1,

the average Pascal VOC split-1/1-shot score increases from 33.1 to 34.6 with only

augmentation steps.

Very low-shot experiments. Finally, we evaluate the meta-tuning approach in low-

shot many-class settings. [72] proposes TFA+Hal method that uses the TFA baseline

and conducts 1-shot, 2-shot, and 3-shot FSOD on the MS-COCO dataset. As we

already observe the positive effects of the loss terms and augmentation magnitudes

obtained from the MPSR on the DeFRCN, we similarly apply the learned parameters

to the TFA baseline. The results are presented in Table 7.5. We observe that results are

consistently improved using the meta-tuned functions on the TFA baseline.
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7.4 Chapter Summary

Fine-tuning based frameworks offer simple and reliable approaches to building de-

tection models from few samples. However, a major limitation of the existing fine-

tuning-based FSOD models is their focus on the hand-crafting the design of fine-tuning

details for few-shot training, which is inherently difficult and likely to be sub-optimal.

Towards addressing this limitation, we propose to meta-learn the fine-tuning based

learning dynamics as a way of introducing learned inductive biases for few-shot learn-

ing. The proposed tuning scheme uses meta-learning principles with reinforcement

learning, and obtains interpretable loss functions and augmentation magnitudes for

few-shot training. Our comprehensive experimental results on Pascal VOC and MS

COCO datasets show that the proposed meta-tuning approach consistently provides

significant performance improvements over the strong fine-tuning based few-shot

detection baselines in both FSOD and G-FSOD settings.

7.5 More on Meta-tuning

In this section, we give some details of our work. In this context, we share the class

splits used in proxy tasks in Section 7.5.1, the meta-tuning algorithm in Section 7.5.2,

additional experimental results which belong to various fine-tuning and meta-tuning

based FSOD and G-FSOD methods in Section 7.5.3, and implementation runtime infor-

mation in Section 7.5.4, respectively. Moreover, we also share some randomly sampled

visual results of MPSR+Meta-ScaledDynamic, MPSR+Meta-ScaledDynamic+Aug

and DeFRCN+Meta-ScaledDynamic+Aug methods.

7.5.1 Proxy task class splits

We use proxy tasks to apply the meta-tuning ideas, so we generate sub-splits in the

base classes. In this context, we select some base classes to mimic novel classes

to conduct the proxy task. We summarize the list of proxy Pascal VOC classes on

Table 7.6. The list of selected proxy novel classes for the MS-COCO dataset is as

follows:
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{"skis", "tennis racket", "scissors", "truck", "baseball bat", "handbag", "carrot",

"mouse", "parking meter", "apple", "knife", "microwave", "refrigerator", "cake",

"zebra"}.

Table 7.6: Proxy task class splits for Pascal VOC.

Proxy-base classes (Cp-base) Proxy-novel classes (Cp-novel)

Split-1 Split-2 Split-3 Split-1 Split-2 Split-3

aeroplane bicycle aeroplane person motorbike horse

bicycle bird bicycle pottedplant person person

boat boat bird sheep sheep pottedplant

bottle bus bottle train train train

car car bus tvmonitor tvmonitor tvmonitor

cat cat car

chair chair chair

diningtable diningtable cow

dog dog diningtable

horse pottedplant dog

7.5.2 Algorithm

We summarize the main meta-tuning procedure in Algorithm 1. We can divide this

algorithm into three parts: (i) model initialization and parameter sampling, (ii) instance

sampling and mAP calculation, (iii) mAP normalization and RL steps.

1) Model initialization and parameter sampling. This algorithm firstly initializes

the base proxy detection model weights for the proxy task and sample ρ value from

normal distributions. The base proxy detection model represents the object detection

model trained using the Dp-pretrain dataset.

2) Instance sampling and mAP calculation. The proposed algorithm samples new

instances from the proxy fine-tuning dataset Dp-support, and calculates the mean average
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precision scores on proxy validation dataset Dp-query after a certain number of iterations.

The algorithm repeats this process for N times.

3) mAP normalization and RL steps. The proposed algorithm normalizes the mAP

scores, selects the maximum score as the reward value among the normalized APs,

and applies a single REINFORCE step.

Algorithm 1 Meta-tuning Loss Function Learning
1: Input: Pre-trained model minit, proxy fine-tuning dataset Dp-support, proxy valida-

tion dataset Dp-query, number of rho trials N , maximum iteration number M

2:

3: iteration_index = 1

4: repeat

5: Initialize minit and sample new ρ

6:

7: for rho_index = 1 to N do

8: Sample new fine-tuning images from Dp-support

9: Take minit, run all iter. using current samples

10: Calculate mAP[rho_index] on Dp-query

11: end for

12:

13: Normalize mAP scores

14: Get max normalized AP as a reward

15: Make a single REINFORCE step

16: iteration_index += 1

17: until iteration_index = M

7.5.3 Additional Experimental Results

In this section, we share detailed experimental comparison results for Pascal VOC and

MS COCO datasets.

Comparison to fine-tuning based FSOD and G-FSOD methods on Pascal VOC.

We first present the detailed Pascal VOC comparisons for each split and shot with
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only novel classes in Table 7.7, and the detailed comparisons with all classes in

Table 7.8. The experimental results show that the meta-tuning approach significantly

improves the strong fine-tuning based few-shot detection baselines on the Pascal VOC

benchmark. We provide complementary visual results of MPSR+Meta-ScaledDynamic

and MPSR+Meta-ScaledDynamic+Aug methods using the Pascal VOC split-3/10-

shot setting in Figure 7.5 and Figure 7.6, respectively. We also present examples

from the visual results of the DeFRCN+Meta-ScaledDynamic+Aug method using the

Pascal VOC split-2/10-shot setting in Figure 7.7. In these figures, base class instance

candidates are marked with green, and novel class instance candidates are marked with

red color.

Comparisons to meta-learning based FSOD and G-FSOD on Pascal VOC. We

present the detailed Pascal VOC comparisons with meta-learning based methods in

Table 7.9 and Table 7.10 for novel-only and all-classes settings, respectively. Since

the most of the meta-learning methods do not share G-FSOD results, we are able to

compare against a more limited number of meta-learning methods than FSOD. The

experimental results (Table 7.9) show that our DeFRCN+Meta-ScaledDynamic+Aug

method obtains the best results in all of the FSOD cases, except for the Split-2/1-shot

setting. In the G-FSOD experiments (Table 7.10), it is observed that the proposed

meta-tuning approach obtains the state-of-the-art results with a clear margin against

existing meta-learning based methods.

Comparisons to meta-learning based FSOD and G-FSOD on MS-COCO. We

compare our results with meta-learning based methods on the MS-COCO dataset and

share the obtained results in Table 7.11. In this table, we are able to report a rather

limited number of meta-learning methods to compare the G-FSOD results since most

meta-learning based methods do not share G-FSOD results on the MS-COCO dataset.

In FSOD experiments, we also observe that our DeFRCN+Meta-ScaledDynamic+Aug

method obtains higher results than several recently published meta-learning based

methods. We additionally observe major improvements in terms of HM scores in the

G-FSOD setting, similar to the improvements obtained on the Pascal VOC dataset.
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7.5.4 Implementation and runtime

We run our MPSR and DeFRCN experiments on a server with 4 Nvidia Tesla V100

32GB GPUs. The base MPSR model training to be used during fine-tuning takes 0.25

days for Pascal VOC and 0.45 days for MS COCO datasets. Since the base models

used for the proxy tasks contain fewer classes and demand fewer iterations, the training

of the MPSR model takes 0.1 days in Pascal VOC and 0.6 days in MS COCO datasets

for the proxy-base classes. RL training for meta-tuning using the final setting takes

0.05 days for Pascal VOC splits and 0.5 days for the MS COCO dataset. Finally, we

note that meta-tuning operations do not incur any overhead during the fine-tuning for

novel classes.
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Figure 7.5: Randomly sampled MPSR+Meta-ScaledDynamic object detection results

for the Pascal VOC dataset Split-3/10-shot experiment.
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Figure 7.6: Randomly sampled MPSR+Meta-ScaledDynamic+Aug object detection

results for the Pascal VOC dataset Split-3/10-shot experiment.

118



Figure 7.7: Randomly sampled DeFRCN+Meta-ScaledDynamic+Aug object detection

results for the Pascal VOC dataset Split-2/10-shot experiment.
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Table 7.11: FSOD and G-FSOD results on the MS COCO dataset with novel classes.

Novel Classes All Classes (HM)
Method/Shot

10-shot 30-shot 10-shot 30-shot

ONCE [65] 1.2 - 2.2 -

Meta R-CNN [64] 6.1 9.9 5.6 8.3

FSRW [10] 5.6 9.1 - -

FsDetView [239] 7.6 12.0 6.9 10.5

TIP [194] 16.3 18.3 - -

DCNET [241] 12.8 18.6 - -

CME [62] 15.1 16.9 - -

QA-FewDet [193] 10.2 11.5 - -

ML

FCT [68] 17.1 21.4 - -

Ours DeFRCN+Meta-ScaledDynamic+Aug 18.8 23.4 24.4 28.0
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CHAPTER 8

CONCLUSIONS

In this thesis, we studied approaches to handle the object detection problem with

minimal supervision. These approaches include the ZSD problem that we propose in

the thesis and the FSOD problem being studied in the literature. Our aim in defining

the ZSD problem is to adapt the ZSL concepts to different scenarios, because localizing

the unseen class instances is as important as recognition in various applications, such

as robotics. Besides, when we consider the long-tail distribution problem within the

scope of object detection, many labeled classes are necessary, and making annotations

for them is laborious.

Our proposed first ZSD approach aggregates both label embeddings and convex

combinations of semantic embeddings together in a region embedding framework.

We also prepared two different datasets to analyze the proposed ZSD approach: the

first of these is the Fashion-ZSD, which is the toy dataset we generated from the

Fashion-MNIST dataset, and the other one is Pascal VOC dataset, whose ZSD splits

we set in the literature. Experimental results showed that our proposed problem and

novel approach obtained promising results. After defining the first ZSD approach, our

studies for the ZSD problem are on background modeling for unseen classes, label

embedding techniques that are frequently used in ZSD models, and the definition of

the ZSIC problem as an extension of ZSD.

One of the most important shortcomings of the current ZSD methods is the presence of

unlabeled instances of unseen classes in the images during the training time. In such

a scenario, due to the nature of the working mechanism of existing object detection

models, negative region samples might be collected from unseen class regions and

samples belonging to these classes might be modeled as background. In this case,
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although the proposed approaches are plausible, object detection models may not

generate candidate regions for these classes during inference. As a first attempt at this

problem, we provide a textual attention mechanism to ZSD models so that pre-RPN

features become to be class-specific, and candidate regions belonging to unseen classes

can be generated even if instances of these classes exist in the training set. The ZSD

approaches use knowledge transfer from seen classes to unseen classes, as in other

ZSL models. For this reason, we also analyzed label embedding concepts within the

scope of the thesis. We have built embedding models to make the information transfer

more accurate and visually more meaningful.

In this thesis, we also defined the true zero-shot image captioning problem as a contin-

uation of our proposed approach for the ZSD problem. An important shortcoming of

current image captioning methods (i.e. partial zero-shot image captioning) that aim

training through non-paired datasets is that they do not work in a fully ZSL setting.

These methods generate captions for images that consist of classes not seen in cap-

tioning datasets, but they assume that there is a ready-to-use fully supervised visual

recognition model, so they are not complete zero-shot learning approaches. Alterna-

tively, we proposed a GZSD model that uses a novel practical class embedding scheme

and class scaling instead of the aforementioned ready-to-use fully supervised object

detection models. Also, we defined a metric we named V-METEOR by considering

current evaluation metrics are not sufficient for the ZSIC problem.

Another concept that we are interested in in this thesis is the FSOD problem, in

which fine-tuning and meta-learning-based approaches are proposed. Fine-tuning

based methods provide simple and reliable approaches by focusing on the hand-

crafted design of fine-tuning details for few-shot training. For this reason, we provide

automatic learning of the parameters of loss functions or augmentation magnitudes in

fine-tuning based methods with an intermediate learning step we call meta-tuning. The

proposed tuning scheme uses meta-learning principles with reinforcement learning, and

obtains interpretable loss functions and augmentation magnitudes for few-shot training.

Experimental results with our meta-tuning method, which we built on various baseline

models, show that the proposed idea obtains state-of-the-art results in benchmark

Pascal VOC and MS COCO datasets.
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As a future research direction, the approaches to be proposed within the scope of ZSD

should be in more realistic scenarios. One of the important steps to be taken in this

regard is background modeling, which we mentioned in the thesis and proposed as the

first approach. Otherwise, a dilemma occurs as we mentioned in the previous chapters.

This situation has recently been expressed for the FSOD problem [74]. Moreover, in

order to increase the performance, the use of generative models [3, 93, 94, 95, 96, 97,

98, 99, 100, 101], in which ZSL methods have recently evolved, will be important for

ZSD problem.

In this thesis, we also propose the novel meta-tuning approach for the FSOD problem.

This approach allows learning inductive biases that can boost FSOD by applying

meta-learning principles to fine-tuning based methods. We use the proposed meta-

tuning approach for classification loss terms and augmentation magnitudes, but this

idea is applicable to many different parameters. As another future research direction,

meta-tuning or derived ideas can be used from a broader perspective. For example,

some layers of models can also be learned through this RL-based approach. As another

future research direction, a meta-tuning approach can also be proposed that will use

the mAP scores learned during model training more efficiently. In the current model,

mAP results are used and discarded as instant rewards, these mAP values can also be

stored for following learning steps.
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