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ABSTRACT 

 

THERMAL BUCKLING OF LAMINATED PLATES WITH VARIABLE 

FIBER VOLUME FRACTION 

 

 

 

Mercan, Emrullah 

Master of Science, Mechanical Engineering 

Supervisor : Prof. Dr. Serkan Dağ 

 

January 2023, 87 pages 

 

 

This study investigates the stability of the graded fiber reinforcement composite plate 

under temperature-induced loads. The materials that make up the graded fiber 

reinforcement composite plate are fiber and matrix with different mechanical 

properties. Graduation is achieved by varying the volume fractions of the 

components across the thickness. The symmetric and unsymmetric ply sequences in 

the modeled composite plate are examined separately. Governing equations of 

motion and boundary conditions are obtained using Hamilton's principle. The 

displacement equations are obtained using Kirchhoff deformation theory. The 

system of equations written for the modeled case is solved numerically using the 

differential quadrature method. In order to validate the examined model, the studies 

in the literature and the models prepared in Abaqus are compared. Then, critical 

buckling temperature values for graded fiber reinforcement composite plate exposed 

to uniform temperature increase are found using MATLAB. According to the results 

obtained, the graduation in the thickness direction affects the thermal strength of the 

structure. The expected critical buckling temperature value increases as the plate is 

graded throughout the thickness. 
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ÖZ 

 

DEĞİŞKEN ELYAF HACMİNE SAHİP LAMİNE LEVHALARIN TERMAL 

BURKULMASI 

 

 

 

Mercan, Emrullah 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Serkan Dağ 

 

 

Ocak 2023, 87 sayfa 

 

Bu çalışma, kademeli fiber takviyeli kompozit levhanın sıcaklığa bağlı yükler 

altındaki stabilitesini araştırmaktadır. Kademeli elyaf takviyeli kompozit levhayı 

oluşturan malzemeler, farklı mekanik özelliklere sahip elyaf ve matristir. 

Derecelendirme, kalınlık boyunca bileşenlerin hacim fraksiyonlarını değiştirerek 

elde edilir. Modellenen kompozit plakadaki simetrik ve simetrik olmayan kat dizileri 

ayrı ayrı incelenmiştir. Hareket denklemleri ve sınır koşulları Hamilton prensibi 

kullanılarak elde edilir. Yer değiştirme denklemleri, Kirchhoff deformasyon teorisi 

kullanılarak elde edilir. Modellenen durum için yazılan denklem sistemi, diferansiyel 

kareleme yöntemi kullanılarak sayısal olarak çözülür. İncelenen modeli doğrulamak 

için literatürdeki çalışmalar ile Abaqus'te hazırlanan modeller karşılaştırılmıştır. 

Daha sonra MATLAB kullanılarak üniform sıcaklık artışına maruz kalan kademeli 

fiber takviyeli kompozit levha için kritik burkulma sıcaklık değerleri bulunmuştur. 

Elde edilen sonuçlara göre kalınlık yönündeki derecelenme yapının ısıl dayanımını 

etkilemektedir. Beklenen kritik burkulma sıcaklığı değeri, levha kalınlık boyunca 

derecelendirildikçe artar. 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Introduction 

Composite materials have recently entered our lives, and their use is becoming more 

common. These materials are superior in many ways and are highly preferred. 

Composite materials are primarily used in structural elements design, as they provide 

features such as a high stiffness-to-weight ratio. There are many types of composite 

materials, one of which is fiber-reinforced composite materials. Fiber reinforcement 

composite materials are used to obtain more suitable designs for structures with high 

stress and free vibration. The multitude of advantageous aspects of fiber-structured 

materials has led to their evaluation in another way. These materials can be graded 

in different directions by adding a new concept to fiber-reinforced composite 

materials. This gradation is achieved by changing the fiber volume fraction in the 

thickness direction. As a result, composite materials with mechanical properties from 

strong to weak can be derived. Thanks to this grading, more optimum designs can be 

obtained. 

Similar situations are observed in the industry in this regard. Electronic equipment 

in aircraft is exposed to high thermal loads. While some surfaces of these electronic 

packages are exposed to higher temperature, some surfaces are exposed to lower 

temperature. Due to the surface temperature difference, a force occurs on the 

structure. This force causes buckling in the structure. For this reason, the thermal 

resistance of the surface exposed to high temperatures should be higher, while the 

thermal resistance of the surface exposed to lower temperatures should be less. Based 

on this, graded fiber-reinforced composite materials are produced. 
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Fiber-reinforced composite materials consist of fibers and matrices. These materials 

are obtained by combining fibers and matrices in certain proportions. In order to get 

the desired properties, fiber and matrix amounts and types are selected accordingly, 

and appropriate material is obtained. Graded fiber-reinforced composite materials, 

on the other hand, consist of fibers and matrices with different volume fractions in 

each layer, and this grading is applied throughout the thickness. In this way, the 

material shows different mechanical properties throughout the thickness. In addition, 

the laying angle of each layer can be different, and accordingly, symmetrical and 

unsymmetric graded composite materials are obtained. The mechanical behavior of 

these two different composite materials also differs. Within the scope of the thesis, 

there will be studies on the behavior of symmetrical and unsymmetric graded fiber-

reinforced composite materials. Thermal buckling of laminated plates with variable 

fiber volume fraction for the symmetric and unsymmetric laminated plates will be 

investigated. Buckling is an important subject and affects the structure’s load-

carrying capacity. A configuration of the buckled plate is shown in Figure 1.1. When 

a plate is exposed to buckling, the plate's buckled point becomes concave shaped, 

named bending mode. After buckling, the applied load is redistributed with respect 

to changes in stiffness values of the remaining surface and bended surface. The 

stiffness of the remaining part of the structure is quite higher than the bended surface. 

Therefore, most of the applied forces are carried by the remaining part, and a little 

part of the applied forces are carried by the bended surface. Deforming of buckled 

shape is easier than a flat shape because of the height of concavity, which causes 

extra bending forces. 
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Figure 1.1. Buckle state of plate 

1.2 Literature Survey 

Many researchers have studied fiber-reinforced composite materials. Shen and Yang 

[1] investigated the linear and nonlinear free flexural vibration behavior of 

cylindrical shell made of the fiber-reinforced composite under hygrothermal 

conditions. In this study, equations of motion were obtained using higher-order shear 

deformation shell theory and von Karman type of kinematic nonlinearity. According 

to the results obtained, temperature/moisture variation has a moderate effect on the 

natural frequencies of the FRC cylindrical shell. In a paper, large amplitude 

vibration, nonlinear bending, and thermal post-buckling of fiber-reinforced 

composite beams resting on an elastic foundation in hygrothermal environments are 

studied [2]. In another research, Shen, and Zhang [3] performed a nonlinear analysis 

for the fiber-reinforced composite laminated plate. Uniformly distributed and 

functionally graded reinforcement laminated plates were examined separately. In a 

study by Yas and Aragh [4], free vibration characteristics of continuous grading 

fiber-reinforced plates resting on an elastic foundation are studied. The results of the 

research were obtained by using three-dimensional, linear, and small strain elasticity 

theory. Nejati et al. [5] developed a model based on the three-dimensional theory of 

elasticity to study the free vibration of reinforced functionally graded composite 
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plates with steady-state thermal conditions. Yas and Aragh [6] studied the 

thermoelastic behavior of functionally graded fiber-reinforced cylindrical panel in a 

steady state using the differential quadrature method. They concluded that 

functionally graded fiber-reinforced composite structures are better than discretely 

laminated composite panels. In research conducted by Fu et al. [7], the effect of non-

uniform fiber distribution on the stress distribution of the structure was studied. It 

was observed that while in-plane stress was affected by fiber distribution, transverse 

stress was not affected much. Based on Reddy's higher-order shear deformation 

theory, Tang et al. [8] investigated the hygrothermal effect on geometrically 

nonlinear analysis of CFRP laminates. Using Von Karman large deflection 

assumptions and quasi-steady state supersonic aerodynamic theory, Kuo [9] 

examined the effect of variable fiber spacing on thermal post-buckling, vibration, 

and flutter. The structure exposed to aerodynamic and thermal stress shows different 

behaviors according to the fiber distribution. It has been observed that the 

redistribution of fiber increases the natural frequencies and flutter boundary. 

 The study mentioned above examined the benefits and usage areas of fiber-

reinforced composite material. As understood from the researchers' studies, these 

materials provide many advantages in design. The most common application of 

composite materials is the areas where buckling occurs. The deterioration of the 

stability of the structure is called buckling, and it is considered a failure in 

engineering. Depending on the material of the examined structure, the buckling 

status may change. From this point of view, composite materials are suitable for use 

in places where buckling is expected since they show the desired resistance. There 

are many studies on the behavior of composite materials in the buckling state. 

Some of these studies are described as follows. Leissa [10] has done a study on the 

buckling behavior of symmetrically laminated composite plates using orthotropic 

and anisotropic plate buckling theory. In articles by Altunsaray et al. [11] the 

buckling behavior of symmetrically laminated rectangular thin plates under biaxial 

compression was investigated. Using the Rayleigh-Ritz method, the researchers 

calculated the critical buckling load of simply supported cross-ply and angle ply 
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plates according to classical lamination theory. Based on classical lamination plate 

theory, Raju et al. [12] studied the buckling resistance of variable angle tow plate 

under different boundary conditions. In this study, Airy's stress function was used as 

an innovation, and prebuckling analysis was performed in a shorter time. In another 

research, Fares and Zenkour [13] used various theories of the homogeneous 

laminated plate to examine the buckling and free vibration behavior of non-

homogeneous rectangular composite plates. The study concludes that the classical 

lamination plate theory is insufficient to predict the structural behavior of non-

homogeneous laminates. Sheehari et al. [14] also conducted a study on the analysis 

of buckling and post-buckling of laminated composite plates under hygrothermal 

load, using inverse hyperbolic shear deformation theory. In theory used, the non-

linear stress distribution is obtained by providing zero transverse stress condition on 

the top and bottom surface. Kazemi [15] did a similar study. In the study, buckling 

and post-buckling analyses were performed for composite laminate using modified 

shear deformation theory. Another study was done by Han et al [16]. In the article 

published by the researchers, buckling analyses were performed for the variable 

angle laminated plate exposed to compression load, and the behavior of the plate was 

investigated. The analysis results show that the maximum in-plane stress of variable 

angle laminates decreases, and the buckling load increases considerably. In research 

conducted by Kumar [17] using higher-order shear deformation plate theory, the 

effect of moisture and temperature on the buckling behavior of the laminated 

composite plate was investigated. Buckling analysis was performed at different 

boundary conditions for restrained laminated rectangular plates resting on an elastic 

Pasternak foundation. Using the genetic algorithm method, the ideal stacking 

sequence to increase the buckling strength of the structure was determined [18]. In 

the study, Grah and Weaver [19] studied the buckling behavior of laminate with one-

dimensional fiber variation and laminate with symmetric stacking sequences, taking 

the transverse shear effect into account in their calculations. According to the result 

of the research, the buckling behavior of variable angle tow and variable thickness 

laminates can be better expressed by shell-like behavior rather than plate-like. In a 
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study by Qunis et al. [20], the issue of buckling was also discussed. The thermal 

buckling situation for a composite laminated plate with uniform temperature 

distribution has been examined. It is a study using the finite element method, and 

validation has been done with similar studies in the literature. Shiau [21] has also 

done buckling and vibration studies for composite laminated plates with variable 

fiber spacing using the finite element method. In another research conducted by 

Duran et al. [22], thermal buckling analyses were performed for composite plates 

with spatial varying fiber orientations. Critical buckling temperature was calculated 

numerically using classical lamination theory and finite element method. As a result, 

for symmetrically balanced laminates subjected to constant thermal load, the 

optimum fiber path with the highest thermal buckling resistance was found for 

different material models. 

In the research reviewed so far, studies on fiber-reinforced composite material and 

buckling of the composite material were examined. The researchers went a step 

further and examined the buckling behavior of fiber reinforced composite materials. 

One of these studies was done by Malekzadeh and Shojaee [23]. Researchers have 

derived the stability equations according to the first-order shear deformation theory 

of plates. Investigations were carried out according to the distribution of four 

different single-walled carbon nanotubes. Stability equations were discretized for 

arbitrary boundary conditions with the mapping differential quadrature technique. 

Waily [24] studied the effect of different types of reinforcement fiber and different 

types of resin on the critical buckling temperature. 

Both numerical and theoretical calculations were made for the unidirectional and 

woven reinforcement composite plate, and the results were compared. In addition, 

the effect of fiber amount on critical buckling temperature was observed by changing 

the fiber volume fraction. In another study conducted by Waily et al. [25], the 

thermal buckling behavior of the composite plate reinforced with carbon 

nanoparticles was analytically investigated. Based on Eringen's nonlocal elasticity 

theory, Sari et al. [26] examined the buckling characteristic of functionally graded 

nano-plates under thermal and biaxial linearly varying forces. They compared the 
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accuracy of their work with the studies in the literature. A parametric study was 

performed by changing some constants. Based on the results obtained, they 

discovered that these parameters significantly influence the stability behavior of FG 

nano-plates. Aghazadeh et al. [27] investigated the statics, dynamics, and stability of 

functionally graded micro-plates subjected to mechanical and thermal loads. The 

effect of size effect, length scale parameter variations, and initial thermal 

displacements are shown in the numerical results. In articles by Alashti et al. [28], 

buckling analysis was performed for the functionally graded thick cylindrical shell 

with variable thickness. In this study, the loading type is combined external pressure 

and axial compression. In addition, the axisymmetric imperfection status is 

discussed, and its effect on buckling load is investigated. Satouri et al. [29] conducted 

a buckling analysis study for two dimensional functionally graded cylindrical shell 

reinforced with axial stiffeners. The shell studied is graded in the thickness and 

length direction. Equilibrium and stability equations obtained using third-order shear 

deformation theory are solved by the differential quadrature method. In another 

research, Hajlaoui et al. [30] examined the buckling behavior of functionally graded 

nanotube-reinforced composite shell using modified first-order enhanced solid shell 

element formulation. In this research, five different single-walled carbon nanotube 

distributions were studied. The numeric results obtained were compared with the 

results of other investigators, and the performance of the developed solid-shell 

element was observed. Shen et al. [31] developed a model to examine graphene-

reinforced composite laminated plate thermal buckling behavior exposed to in-plane 

temperature variation. The plate foundation interaction and temperature variation 

effects are also reflected in the model. Governing equations are derived using higher-

order shear deformation plate theory. Based on first-order shear deformation theory, 

Lei et al. [32] studied the buckling behavior of carbon-nanotube reinforced 

functionally graded composite laminated plate. The effects of rotary inertia and 

transverse shear deformation were understood with the theory used. In the study, 

Ebrahimi et al. [33] investigated the thermal buckling behavior of functionally 

graded nanocomposite plates reinforced with graphene oxide powder. Researchers 
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evaluated four different GOP's distributions and  which model was the most suitable 

for the stability of the structure. Apart from this, the effects of different types of 

thermal loading, the weight fraction of GOP, and elastic foundation constants on the 

buckling load of the structure were studied by conducting a parametric study. In 

research conducted by Shen [34], the thermal buckling and post-buckling behavior 

of two types of fiber-reinforced laminated plates were investigated. Numerical 

results have been obtained for the fiber-reinforced composite plate with polymer 

matrix and metal matrix. According to the results, the effect of functionally graded 

fiber reinforcements on thermal buckling strength is more pronounced in polymer 

matrix plate than metal matrix plate. In all the articles reviewed, composite materials' 

behavior in vibration, buckling, and post-buckling has been investigated. By using 

different theories and material models, the theory and model that best reflects the 

behavior of composite structures have been obtained. Despite a lot of work on 

composite materials, there are still incomplete studies on some issues. As can be seen 

from the above studies, no studies have been conducted on the buckling behavior of 

graded fiber reinforcement symmetric and unsymmetric composite plate under 

thermal loading. Therefore, in this study, classical lamination plate theory will be 

used to investigate the buckling behavior of graded fiber reinforcement symmetric 

and unsymmetric composite plate under thermal loading, and solutions will be 

obtained by the differential quadrature method. By using DQM, fast, accurate 

analysis with shorter processing time can be made. It is used efficiently in buckling 

analyses involving high-order differential equations with a variable coefficient. 

Moreover, it is difficult to write a series solution because there are bending-twisting 

terms in the governing equation in the problem examined in this thesis. For this 

reason, DQM is preferred. The results for two boundary conditions, simply supported 

and clamped will be examined. 

 



 

 

9 

1.3 Motivation and Scope of Study 

The study's main objective is to predict the buckling behavior of graded fiber- 

reinforced composite plates under thermal loading. In the study, it is desired to 

observe the effect of different parameters on the critical buckling temperature. For 

this reason, the results are obtained by changing the parameters. The effect of the 

symmetrical or unsymmetrical state of the plate on the critical buckling temperature 

is investigated. Also, the effect of different boundary conditions on the critical 

buckling temperature is investigated. Classical lamination plate theory and the 

differential quadrature method are used in all cases examined. In the research carried 

out so far, there is no study related to the buckling behavior of unsymmetric 

laminated composite structures under loads caused by thermal effect. This study 

investigates the thermal buckling behavior of unsymmetric laminated composite 

structures with variable fiber volume fractions for different boundary conditions. 

Therefore, this study is a new contribution to the literature. The organizational chart 

of the study is as follows. 

In CHAPTER 2, the governing equations expressing the buckling behavior of graded 

fiber-reinforced composite materials at some boundary conditions are derived using 

classical laminated plate theory. Hamilton's principle is used in the derivation stage. 

The material properties change according to the fiber volume, and this change is seen 

in the thickness direction. Grading of the material has been considered in the 

derivation of the formulas. 

In CHAPTER 3, a solution procedure is developed using DQM to solve the derived 

governing equations and boundary conditions together. A commercial tool, 

MATLAB, is used to reach the numerical solution. The solution procedure to be 

followed with DQM is adapted to MATLAB. 

In CHAPTER 4, numerical results and parametric studies are shown. The results 

obtained using DQM is compared with similar studies in the literature, and the error 

rates is observed by plotting the results on top of each other. Also, the same problem 
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is modeled using Abaqus. The results obtained using DQM in MATLAB are 

compared with those obtained using Abaqus. Based on all the results obtained, it has 

been shown that the study is verified. 

In CHAPTER 5, the output of the thesis is expressed, comments is made regarding 

the results, and information is given for future studies. 
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CHAPTER 2  

2 FORMULATION 

2.1 Kirchhoff Plate Theory 

The geometry of the composite plate with its length, width, and thickness presented 

with 𝑎, 𝑏, and ℎ, respectively, is schematically shown in Figure 2.1. The initial 

position and the displacement of an arbitrary point A located at a distance 𝑧 from the 

mid-surface of the plate is also depicted in Figure 2.2. As it can be observed, the 

transverse displacement results in a corresponding in-plane displacements. Denoting 

the displacements of point A at any instant along 𝑥, 𝑦, and 𝑧 directions by 𝑢, 𝑣, and 

𝑤, respectively, the displacement field can be expressed as follows. 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑥
 

(2.1) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑦
 (2.2) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (2.3) 

where 𝑢0, 𝑣0, 𝑤0 are the displacement in the middle surface of the plate 
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Figure 2.1. Graded fiber-reinforced composite plate 

𝑥1, 𝑥2, and  𝑥3 are the material coordinates whereas 𝑥,𝑦, and 𝑧 are the general 

coordinates. 

 

Figure 2.2. Deformed configuration of a graded fiber-reinforced plate  
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Note that the Kirchhoff plate theory ignores the effects of transverse shear strains 

 [35]. The assumptions made in Kirchhoff plate theory are listed below. 

• Line elements perpendicular to the middle surface of the plate before 

deformation remain normal and unstretched after deformation. 

• The deflections of the graded fiber reinforcement composite plate are small 

compared to its thickness ℎ, so the linear strain-displacement relations are 

valid. 

• The thickness of the plate is in the range of 1/20~1/100 of its span, hence it 

is sufficiently low for the normal stress in the thickness direction to be 

neglected. 

Strain equations for graded fiber-reinforced composite plate are expressed as 

follows.  

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
 (2.4) 

𝜀𝑥𝑥 = 𝜀𝑥0 − 𝑧
𝜕2𝑤

𝜕𝑥2
 

(2.5) 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
 (2.6) 

𝜀𝑦𝑦 = 𝜀𝑦0 − 𝑧
𝜕2𝑤

𝜕𝑦2
 (2.7) 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 (2.8) 

𝛾𝑥𝑦 = 𝛾𝑥𝑦0 − 2𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
 (2.9) 

𝜀𝑧𝑧 = 𝛾𝑥𝑧 =  𝛾𝑦𝑧 = 0 (2.10) 
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𝜀𝑥0 =
𝜕𝑢0

𝜕𝑥
   ,  𝜀𝑦0 =

𝜕𝑣0

𝜕𝑥
  ,   𝛾𝑥𝑦0 =

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
 (2.11) 

2.2 Plane Stress Constitutive Relations 

Plane stress is a condition which states that the normal stress and shear stresses 

perpendicular to the 𝑥-𝑦 plane are zero. The normal and shear stress components are 

𝜎𝑧𝑧, 𝜎𝑥𝑧 and 𝜎𝑦𝑧. This assumption can be utilized in analysing thin plates which 

possess small size in thickness direction compared to its dimensions in other 

directions. According to plane stress state, for a graded fiber-reinforced material the 

stresses are expressed in terms of strains through the following relations [40]. 

[

𝜎1

𝜎2

𝜏12

]= [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1 − 𝛼1∆𝑇
𝜀2 − 𝛼2∆𝑇

𝛾12

] (2.12) 

𝑄11(𝑧) =
𝐸11(𝑧)

1 − 𝜐12(𝑧)𝜐21(𝑧)
 (2.13) 

𝑄12(𝑧) =
𝜐21(𝑧)𝐸11(𝑧)

1 − 𝜐12(𝑧)𝜐21(𝑧)
 (2.14) 

𝑄22(𝑧) =
𝐸22(𝑧)

1 − 𝜐12(𝑧)𝜐21(𝑧)
 (2.15) 

𝑄66(𝑧) = 𝐺12(𝑧) (2.16) 

𝜎1, 𝜎1, and 𝜏12 correspond to stress components in material coordinate system. 

𝜀1, 𝜀1, and 𝛾12  indicate strain components in material coordinate system. 

𝛼1 and 𝛼2 represent the thermal expansion coefficients in the𝑥1 and 𝑥2 directions, 

respectively. 

where 𝑄𝑖𝑗   are  the plane stress-reduced stiffnesses.  
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𝐸11 and 𝐸22 are longitudinal and transverse Young’s moduli, respectively; 𝐺12 

denotes the in-plane shear modulus, and 𝜐12, and 𝜐21 are the poisson ratios. 

Since the composite plate considered in the current study is graded through the 

thickness, the values of 𝑄𝑖𝑗 , 𝐸11, 𝐸22, 𝐺12, 𝜐12, and 𝜐21 depend on the 𝑧 coordinate. 

 

Figure 2.3. Plies orientation of composite laminate  

 

Figure 2.4. Principal direction of composite laminate 
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Lamina or ply is the smallest fundamental unit that makes up the laminate. The 

structure formed by the combination of more than one lamina to obtain the desired 

material properties is called laminate. Figure 2.3 shows a typical laminate and the 

plies forming it. The plies consist of fibers with different orientations. The fiber 

orientation angle is indicated by 𝜃. The plies and fiber orientations are also shown in 

Figure 2.3. This sequence of angle plies is called the stacking sequence or lamination 

scheme. An angle ply laminate can be either symmetric or unsymmetric. If a laminate 

has the same material and identical lamination orientation with respect to the 

midsurface, it is symmetric; otherwise, it is unsymmetric. Figure 2.4 shows the 

longitudinal and transverse directions of the fiber-reinforced composite plate. 

The ply orientations of each lamina forming the composite plate are different. 

Therefore, it is necessary to transform the orientations of the laminae in a single 

direction. The transformed stress-strain relationship of the orthotropic plate under 

thermal loading, according to the plane stress condition, is given below. 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

]= [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥𝑥 − 𝛼𝑥𝑥∆𝑇
𝜀𝑦𝑦 − 𝛼𝑦𝑦∆𝑇

𝜀𝑥𝑦 − 𝛼𝑥𝑦∆𝑇
] (2.17) 

𝜎𝑥𝑥 , 𝜎𝑦𝑦 and 𝜎𝑥𝑦 indicate stress components. 

where 𝛼𝑥𝑥 , 𝛼𝑦𝑦 , and 𝛼𝑥𝑦  are the transformed thermal expansion coefficients [39]. 

𝛼𝑥𝑥 = 𝛼1𝑐𝑜𝑠2(𝜃) + 𝛼2𝑠𝑖𝑛
2(𝜃) (2.18) 

𝛼𝑦𝑦 = 𝛼1𝑠𝑖𝑛
2(𝜃) + 𝛼2𝑐𝑜𝑠2(𝜃) (2.19) 

𝛼𝑥𝑦 = (𝛼1 − 𝛼2)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) (2.20) 

The stress-strain equation for the 𝑘𝑡ℎ layer of a graded fiber reinforcement composite 

plate with 𝑁 layers is as follows. 
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[𝜎]𝑘 = [𝑄̅𝑖𝑗  ]𝑘
[𝜀]𝑘 (2.21) 

where 𝑄̅𝑖𝑗   is called the transformed plane stress-reduced stiffnesses. 

𝑄̅11(𝑧) = 𝑄11(𝑧)𝑐𝑜𝑠4(𝜃) + 2[𝑄12(𝑧) + 2𝑄66(𝑧)] 𝑠𝑖𝑛
2(𝜃)𝑐𝑜𝑠2(𝜃)+𝑄22(𝑧)𝑠𝑖𝑛

4(𝜃) (2.22) 

𝑄̅12(𝑧) = [𝑄11(𝑧) + 𝑄22(𝑧) −

4𝑄66(𝑧)] 𝑠𝑖𝑛
2(𝜃)𝑐𝑜𝑠2(𝜃)+𝑄12(𝑧)[𝑠𝑖𝑛

4(𝜃) + 𝑐𝑜𝑠4(𝜃)] 
 

(2.23) 

𝑄̅22(𝑧) = 𝑄11(𝑧)𝑠𝑖𝑛
4(𝜃) + 2[𝑄12(𝑧) + 2𝑄66(𝑧)] 𝑠𝑖𝑛

2(𝜃)𝑐𝑜𝑠2(𝜃)+𝑄22(𝑧)𝑐𝑜𝑠4(𝜃)  (2.24) 

𝑄̅16(𝑧) = [𝑄11(𝑧) − 𝑄12(𝑧) − 2𝑄66(𝑧)] 𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠3(𝜃)+[𝑄12(𝑧) − 𝑄22(𝑧) +

2𝑄66(𝑧)] 𝑠𝑖𝑛
3(𝜃)𝑐𝑜𝑠(𝜃) 

(2.25) 

𝑄̅26(𝑧) = [𝑄11(𝑧) − 𝑄12(𝑧) − 2𝑄66(𝑧)] 𝑠𝑖𝑛
3(𝜃)𝑐𝑜𝑠(𝜃)+[𝑄12(𝑧) − 𝑄22(𝑧) +

2𝑄66(𝑧)] 𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠3(𝜃) 
(2.26) 

𝑄̅66(𝑧) = [𝑄11(𝑧) + 𝑄22(𝑧) − 2𝑄12(𝑧) −

2𝑄66(𝑧)] 𝑠𝑖𝑛
2(𝜃)𝑐𝑜𝑠2(𝜃)+𝑄66(𝑧)[𝑠𝑖𝑛

4(𝜃) + 𝑐𝑜𝑠4(𝜃)  
(2.27) 

2.3 Derivation of Governing Equations of Boundary Conditions Using 

Hamilton’s Principle 

In the case of buckling, kinetic energy is not considered and hence it is only needed 

that the strain energy variation 𝛿𝑈 to be equal to zero [39]. 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑦𝑦𝛿𝜀𝑦𝑦 + 2𝜎𝑥𝑦𝛿𝜀𝑥𝑦)𝑑𝑧𝑑𝑥𝑑𝑦

ℎ
2

−
ℎ
2𝑅0

= 0 (2.28) 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥(𝛿𝜀𝑥𝑥
0 + 𝑧𝛿𝜀𝑥𝑥

1) + 𝜎𝑦𝑦(𝛿𝜀𝑦𝑦
0 + 𝑧𝛿𝜀𝑦𝑦

1)

ℎ
2

−
ℎ
2𝑅0

+ 𝜎𝑥𝑦(𝛿𝛾𝑥𝑦
0 + 𝑧𝛿𝛾𝑥𝑦

1))𝑑𝑧𝑑𝑥𝑑𝑦 = 0 

(2.29) 
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𝛿𝑈 = ∫ (𝑁𝑥𝑥𝑟𝛿𝜀𝑥𝑥
0 + 𝑀𝑥𝑥𝑟𝛿𝜀𝑥𝑥

1 + 𝑁𝑦𝑦𝑟𝛿𝜀𝑦𝑦
0 + 𝑀𝑦𝑦𝑟𝛿𝜀𝑦𝑦

1 +
𝑅0

𝑁𝑥𝑦𝑟𝛿𝛾𝑥𝑦
0 + 𝑀𝑥𝑦𝑟𝛿𝛾𝑥𝑦

1)𝑑𝑥𝑑𝑦 =0 

(2.30) 

𝑁𝑥𝑥𝑟 , 𝑁𝑦𝑦𝑟  and 𝑁𝑥𝑦𝑟 are in-plane force resultants and 𝑀𝑥𝑥𝑟, 𝑀𝑦𝑦𝑟  and  are the 

moment resultants [39]. 

The symbol 𝛿 is a variational operator which is used to express the variation or 

virtual change in a quantity 𝛿𝜀𝑥𝑥
0
, 𝛿𝜀𝑦𝑦

0, 𝛿𝜀𝑥𝑦
0 are the variations of membrane 

strains and 𝛿𝜀𝑥𝑥
1, 𝛿𝜀𝑦𝑦

1, 𝛿𝜀𝑥𝑦
1are the variations of  bending strains.  𝛿𝑈 is  strain 

energy variation. 

𝑅0 represents the area. 

The strain variations can be written in the following form [39]. 

𝛿𝜀𝑥𝑥
0 =

𝜕𝛿𝑢0

𝜕𝑥
+

𝜕𝑤0

𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑥
 (2.31) 

𝛿𝜀𝑥𝑥
1 = −

𝜕2𝛿𝑤0

𝜕𝑥2
 

(2.32) 

𝛿𝜀𝑦𝑦
0 =

𝜕𝛿𝑣0

𝜕𝑦
+

𝜕𝑤0

𝜕𝑦

𝜕𝛿𝑤0

𝜕𝑦
 (2.33) 

𝛿𝜀𝑦𝑦
1 = −

𝜕2𝛿𝑤0

𝜕𝑦2
 (2.34) 

𝛿𝛾𝑥𝑦
0 =

𝜕𝛿𝑢0

𝜕𝑦
+

𝜕𝛿𝑣0

𝜕𝑥
 +

𝜕𝛿𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦
+

𝜕𝑤0

𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑦
 (2.35) 

𝛿𝛾𝑥𝑦
1 = −2

𝜕2𝛿𝑤0

𝜕𝑥𝜕𝑦
 (2.36) 

Plugging the equations (2.31) to (2.36) into  equation (2.30) yields: 
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𝛿𝑈 = ∫ (𝑁𝑥𝑥𝑟,𝑥𝛿𝑢0 + (𝑁𝑥𝑥𝑟

𝜕𝑤0

𝜕𝑥
),𝑥𝛿𝑤0 + 𝑀𝑥𝑥𝑟,𝑥𝑥𝛿𝑤0 + 𝑁𝑦𝑦𝑟,𝑦𝛿𝑣0

𝑅0

+ (𝑁𝑦𝑦𝑟

𝜕𝑤0

𝜕𝑦
),𝑦𝛿𝑤0 + 𝑀𝑦𝑦𝑟,𝑦𝑦𝛿𝑤0 + 𝑁𝑥𝑦𝑟,𝑦𝛿𝑢0

+ 𝑁𝑥𝑦𝑟,𝑥𝛿𝑣0 + (𝑁𝑥𝑦𝑟

𝜕𝑤0

𝜕𝑦
),𝑥𝛿𝑤0 + (𝑁𝑥𝑦𝑟

𝜕𝑤0

𝜕𝑥
),𝑦𝛿𝑤0

+ 2𝑀𝑥𝑦𝑟,𝑥𝑦𝛿𝑤0)𝑑𝑥𝑑𝑦 = 0 

(2.37) 

Equation (2.34) can be rearranged in terms of virtual displacements (𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0) 

as given below. 

𝛿𝑈 = ∫(

(𝑁𝑥𝑥𝑟,𝑥 + 𝑁𝑥𝑦𝑟,𝑦)𝛿𝑢0 +

(𝑁𝑦𝑦𝑟,𝑦 + 𝑁𝑥𝑦𝑟,𝑥)𝛿𝑣0 +

(𝑀𝑥𝑥𝑟,𝑥𝑥 + 2𝑀𝑥𝑦𝑟,𝑥𝑦 + 𝑀𝑦𝑦𝑟,𝑦𝑦 + 𝑁(𝑤0))𝛿𝑤0

)𝑑𝑥𝑑𝑦

𝑅0

= 0 

(2.38) 

N(𝑤0) =
𝜕

𝜕𝑥
(𝑁𝑥𝑥𝑟

𝜕𝑤0

𝜕𝑥
+ 𝑁𝑥𝑦𝑟

𝜕𝑤0

𝜕𝑦
) +

𝜕

𝜕𝑦
(𝑁𝑥𝑦𝑟

𝜕𝑤0

𝜕𝑥
+ 𝑁𝑦𝑦𝑟

𝜕𝑤0

𝜕𝑦
) (2.39) 

Resultant force consists of mechanic and thermal parts. Mechanic part exists for state 

of stability and thermal part exists for state of equilibrium condition. 𝑁(𝑤0)  consists 

of prebuckling thermal force resultants [42]. Therefore, 𝑁(𝑤0)  is expressed as. 

𝑁(𝑤0) =
𝜕𝑤0

𝜕𝑥
(
𝜕𝑁𝑥𝑥

𝑇

𝜕𝑥
+

𝜕𝑁𝑥𝑦
𝑇

𝜕𝑦
) +

𝜕𝑤0

𝜕𝑦
(
𝜕𝑁𝑥𝑦

𝑇

𝜕𝑥
+

𝜕𝑁𝑦𝑦
𝑇

𝜕𝑦
)

+ 𝑁𝑥𝑥
𝑇 𝜕2𝑤0

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝑇 𝜕2𝑤0

𝜕𝑥𝜕𝑦
+ 𝑁𝑦𝑦

𝑇 𝜕2𝑤0

𝜕𝑦2
 

(2.40) 

Since the force resulting from the thermal effect is constant, the derivative of these 

force with respect to 𝑥 and 𝑦 is zero. Therefore, the equation in (2.40)  becomes as 

follows. 

𝑁(𝑤0) = 𝑁𝑥𝑥
𝑇 𝜕2𝑤0

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝑇 𝜕2𝑤0

𝜕𝑥𝜕𝑦
+ 𝑁𝑦𝑦

𝑇 𝜕2𝑤0

𝜕𝑦2
 (2.41) 
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Since   𝑁𝑥𝑦
𝑇
= 0 

𝑁(𝑤0) = 𝑁𝑥𝑥
𝑇 𝜕2𝑤0

𝜕𝑥2
+ 𝑁𝑦𝑦

𝑇 𝜕2𝑤0

𝜕𝑦2
 (2.42) 

The Euler-Lagrange equations of the theory are obtained when the coefficients of 

each virtual displacements  (𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0)  are individually set to zero [39]. 

𝑁𝑥𝑥𝑟,𝑥 + 𝑁𝑥𝑦𝑟,𝑦 = 0 (2.43) 

𝑁𝑦𝑦𝑟,𝑦 + 𝑁𝑥𝑦𝑟,𝑥 = 0 (2.44) 

𝑀𝑥𝑥𝑟,𝑥𝑥 + 2𝑀𝑥𝑦𝑟,𝑥𝑦 + 𝑀𝑦𝑦𝑟,𝑦𝑦 + 𝑁(𝑤0) = 0  (2.45) 

Equations (2.43)-(2.45) contain force and moment terms which are given by the 

following expressions. 

[

𝑁𝑥𝑥𝑟

𝑁𝑦𝑦𝑟

𝑁𝑥𝑦𝑟

] = ∑ ∫ [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

]
𝑧𝑘+1

𝑧𝑘

𝑁
𝑘=1 𝑑𝑧 = [

𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦

] − [

𝑁𝑥𝑥
𝑇

𝑁𝑦𝑦
𝑇

𝑁𝑥𝑦
𝑇

] (2.46) 

where subscript r stands for resultants, and 𝑁𝑥𝑥𝑟 , 𝑁𝑦𝑦𝑟 , and 𝑁𝑥𝑦𝑟  are the resultant 

forces. superscript T indicates thermal effects. As it can be seen from equation (2.46), 

the resultant forces are comprised of mechanical forces 𝑁𝑥𝑥 , 𝑁𝑦𝑦 , and 𝑁𝑥𝑦, and 

thermal forces 𝑁𝑥𝑥
𝑇
, 𝑁𝑦𝑦

𝑇
, and  𝑁𝑥𝑦

𝑇
. These forces are defined as follows.  

[

𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦

] = ∑ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘
𝑧𝑘+1

𝑧𝑘

𝑁

𝑘=1

[
 
 
 
 
 
 𝜀𝑥0 − 𝑧

𝜕2𝑤0

𝜕𝑥2

𝜀𝑦0 − 𝑧
𝜕2𝑤0

𝜕𝑦2

𝜀𝑥𝑦0 − 2𝑧
𝜕2𝑤0

𝜕𝑥𝜕𝑦]
 
 
 
 
 
 

𝑑𝑧 (2.47) 
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[

𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦

]=[

𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

] [

𝜀𝑥0

𝜀𝑦0

𝜀𝑥𝑦0

]+[

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

]

[
 
 
 
 −

𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑦2

−2
𝜕2𝑤

𝜕𝑥𝜕𝑦]
 
 
 
 

 (2.48) 

 

[

𝑁𝑥𝑥
𝑇

𝑁𝑦𝑦
𝑇

𝑁𝑥𝑦
𝑇

]  = ∑∫ [

𝐴𝑥

𝐴𝑦

𝐴𝑥𝑦

]

𝑘

∆𝑇𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑁

𝑘=1

 = ∑ [

𝐴𝑥

𝐴𝑦

𝐴𝑥𝑦

]

𝑘

(𝑧𝑘+1 − 𝑧𝑘)∆𝑇

𝑁

𝑘=1

 (2.49) 

The resultant moments can also be written as. 

[

𝑀𝑥𝑥𝑟

𝑀𝑦𝑦𝑟

𝑀𝑥𝑦𝑟

] = ∑ ∫ [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

]
𝑧𝑘+1

𝑧𝑘

𝑁
𝑘=1  𝑧 𝑑𝑧=[

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

] − [

𝑀̅𝑥𝑥
𝑇

𝑀̅𝑦𝑦
𝑇

𝑀̅𝑥𝑦
𝑇

] (2.50) 

where 𝑀𝑥𝑥 , 𝑀𝑦𝑦 , and 𝑀𝑥𝑦 are the mechanical and 𝑀̅𝑥
𝑇
, 𝑀̅𝑥

𝑇
, and 𝑀̅𝑥𝑦

𝑇
 are the 

thermal parts of resultant moments, which can be given by the following relations. 

[

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

] = ∑ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘
𝑧𝑘+1

𝑧𝑘

𝑁

𝑘=1

[
 
 
 
 
 
 𝜀𝑥0 − 𝑧

𝜕2𝑤

𝜕𝑥2

𝜀𝑦0 − 𝑧
𝜕2𝑤

𝜕𝑦2

𝜀𝑥𝑦0 − 2𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦]
 
 
 
 
 
 

𝑧 𝑑𝑧 (2.51) 

[

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

]=[

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

] [

𝜀𝑥0

𝜀𝑦0

𝜀𝑥𝑦0

]+[

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

]

[
 
 
 
 −

𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑦2

−2
𝜕2𝑤

𝜕𝑥𝜕𝑦]
 
 
 
 

 (2.52) 

[

𝑀̅𝑥𝑥
𝑇

𝑀̅𝑦𝑦
𝑇

𝑀̅𝑥𝑦
𝑇

] =∑ ∫ [

𝐴𝑥

𝐴𝑦

𝐴𝑥𝑦

]

𝑘

𝑧∆𝑇𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑁
𝑘=1 = 

1

2
∑ [

𝐴𝑥

𝐴𝑦

𝐴𝑥𝑦

]

𝑘

(𝑧𝑘+1
2 − 𝑧𝑘

2)∆𝑇𝑁
𝑘=1  (2.53) 

where 𝐴𝑖𝑗 are called   extensional stiffnesses ,𝐷𝑖𝑗 bending stiffnesses , 𝐵𝑖𝑗  bending 

extensional coupling stiffnesses [1]. 
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𝐴𝑥, 𝐴𝑦 , and 𝐴𝑥𝑦 are known as thermal stiffnesses [1]. 

𝐴𝑖𝑗 = ∫ 𝑄̅𝑖𝑗

ℎ
2

−
ℎ
2

𝑑𝑧 = ∑ 𝑄̅𝑖𝑗
(𝑘)

(𝑧𝑘+1 − 𝑧𝑘)

𝑁

𝑘=1

 (2.54) 

𝐵𝑖𝑗 = ∫ 𝑄̅𝑖𝑗

ℎ
2

−
ℎ
2

𝑧 𝑑𝑧 =
1

2
∑ 𝑄̅𝑖𝑗

(𝑘)
(𝑧𝑘+1

2 − 𝑧𝑘
2)

𝑁

𝑘=1

 (2.55) 

𝐷𝑖𝑗 = ∫ 𝑄̅𝑖𝑗

ℎ
2

−
ℎ
2

𝑧2 𝑑𝑧 =
1

3
∑𝑄̅𝑖𝑗

(𝑘)
(𝑧𝑘+1

3 − 𝑧𝑘
3)

𝑁

𝑘=1

 (2.56) 

[

Ax

Ay

Axy

]

k

= [

Q̅11 Q̅12 Q̅16

Q̅12 Q̅22 Q̅26

Q̅16 Q̅26 Q̅66

]

k

[

cos2(θ)

sin2(θ)

2sin(θ)cos(θ)

          

sin2(θ)

cos2(θ)

−2sin(θ)cos(θ)

 ]

k

[
α1

α2
]
k
 (2.57) 

According to the equations in (2.43) and (2.44), the following equations are obtained. 

𝑁𝑥𝑥𝑟,𝑥 + 𝑁𝑥𝑦𝑟,𝑦 = 𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 + 𝑁𝑥𝑥,𝑥
𝑇

+ 𝑁𝑥𝑦,𝑦
𝑇

= 0 (2.58) 

𝑁𝑦𝑦𝑟,𝑦 + 𝑁𝑥𝑦𝑟,𝑥 = 𝑁𝑦𝑦,𝑦 + 𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦
𝑇

+ 𝑁𝑥𝑦,𝑥
𝑇

= 0 (2.59) 

Since the force resulting from the thermal effect is constant, the derivative of this 

force with respect to 𝑥 and 𝑦 is zero. Consequently, the equations (2.58) and (2.59) 

recast into the following form. 

𝑁𝑥𝑥𝑟,𝑥 + 𝑁𝑥𝑦𝑟,𝑦 = 𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 0 (2.60) 

𝑁𝑦𝑦𝑟,𝑦 + 𝑁𝑥𝑦𝑟,𝑥 = 𝑁𝑦𝑦,𝑦 + 𝑁𝑥𝑦,𝑥 = 0 (2.61) 

Similarly, by the aid of equation (2.50),equation (2.45) is expanded as follows. 

𝑀𝑥𝑥𝑟,𝑥𝑥 + 2𝑀𝑥𝑦𝑟,𝑥𝑦 + 𝑀𝑦𝑦𝑟,𝑦𝑦 + 𝑁(𝑤0)

= 𝑀𝑥𝑥,𝑥𝑥 + 2𝑀𝑥𝑦,𝑥𝑦 + 𝑀𝑦𝑦,𝑦𝑦 + 𝑀̅𝑥𝑥,𝑥𝑥
𝑇

+ 2𝑀̅𝑥𝑦,𝑥𝑦
𝑇

+ 𝑀̅𝑦𝑦,𝑦𝑦
𝑇

+ 𝑁(𝑤0) = 0 

(2.62) 
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Since the moment resulting from the thermal effect is constant, the derivative of this 

moment with respect to 𝑥 and 𝑦 is zero. Therefore, the equation in (2.62)  turns into  

equation (2.63). 

Mxxr,xx + 2Mxyr,xy + Myyr,yy + N(w0)

= Mxx,xx + 2Mxy,xy + Myy,yy + N(w0) = 0 

(2.63) 

Equations (2.60), (2.61) , and (2.63) are the three equations governing the buckling 

problem of fiber-reinforced laminated composite plates. 

Using equation (2.48), the forcing terms appeared in equations (2.60) and (2.61) are 

related to displacements through the relations given below. 

𝑁𝑥𝑥 = 𝐴11

𝜕𝑢0

𝜕𝑥
+ 𝐴12

𝜕𝑣0

𝜕𝑦
+ 𝐴16 (

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
)

− (𝐵11

𝜕2𝑤0

𝜕𝑥2
+ 𝐵12

𝜕2𝑤0

𝜕𝑦2
+ 2𝐵16

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) 

(2.64) 

𝑁𝑦𝑦 = 𝐴12

𝜕𝑢0

𝜕𝑥
+ 𝐴22

𝜕𝑣0

𝜕𝑦
+ 𝐴26 (

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
)

− (𝐵12

𝜕2𝑤0

𝜕𝑥2
+ 𝐵22

𝜕2𝑤0

𝜕𝑦2
+ 2𝐵26

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) 

(2.65) 

𝑁𝑥𝑦 = 𝐴16

𝜕𝑢0

𝜕𝑥
+ 𝐴26

𝜕𝑣0

𝜕𝑦
+ 𝐴66 (

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
)

− (𝐵16

𝜕2𝑤0

𝜕𝑥2
+ 𝐵26

𝜕2𝑤0

𝜕𝑦2
+ 2𝐵66

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) 

(2.66) 

𝑁𝑥𝑥,𝑥 = 𝐴11

𝜕2𝑢0

𝜕𝑥2
+ 𝐴12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
)

− (𝐵11

𝜕3𝑤0

𝜕𝑥3
+ 𝐵12

𝜕3𝑤0

𝜕𝑦2𝜕𝑥
+ 2𝐵16

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
) 

(2.67) 
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𝑁𝑥𝑦,𝑦 = 𝐴16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑣0

𝜕𝑦2
+ 𝐴66 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

− (𝐵16

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
+ 𝐵26

𝜕3𝑤0

𝜕𝑦3
+ 2𝐵66

𝜕3𝑤0

𝜕𝑥𝜕𝑦2
) 

(2.68) 

𝑁𝑦𝑦,𝑦 = 𝐴12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴22

𝜕2𝑣0

𝜕𝑦2
+ 𝐴26 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

− (𝐵12

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
+ 𝐵22

𝜕3𝑤0

𝜕𝑦3
+ 2𝐵26

𝜕3𝑤0

𝜕𝑥𝜕𝑦2
) 

(2.69) 

𝑁𝑥𝑦,𝑥 = 𝐴16

𝜕2𝑢0

𝜕𝑥2
+ 𝐴26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴66 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
)

− (𝐵16

𝜕3𝑤0

𝜕𝑥3
+ 𝐵26

𝜕3𝑤0

𝜕𝑦2𝜕𝑥
+ 2𝐵66

𝜕3𝑤0

𝜕𝑦𝜕𝑥2
) 

(2.70) 

When the equations (2.67) and (2.68) are plugged into the equation (2.60), the 

following equation is obtained. 

𝐴11

𝜕2𝑢0

𝜕𝑥2
+ 2𝐴16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴66

𝜕2𝑢0

𝜕𝑦2
+ 𝐴16

𝜕2𝑣0

𝜕𝑥2
+ (𝐴12 + 𝐴66)

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑣0

𝜕𝑦2

− (𝐵11

𝜕3𝑤0

𝜕𝑥3
+ 3𝐵16

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
+ (𝐵12 + 2𝐵66)

𝜕3𝑤0

𝜕𝑦2𝜕𝑥

+ 𝐵26

𝜕3𝑤0

𝜕𝑦3
) = 0 

(2.71) 

By plugging the equations (2.69) to (2.70) into the equation (2.61) , the equation in 

(2.72) can be reached. 

𝐴16

𝜕2𝑢0

𝜕𝑥2 + (𝐴12 + 𝐴66)
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑢0

𝜕𝑦2 + 𝐴22

𝜕2𝑣0

𝜕𝑦2 + 2𝐴26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴66

𝜕2𝑣0

𝜕𝑥2

− (𝐵16

𝜕3𝑤0

𝜕𝑥3
+ (𝐵12 + 2𝐵66)

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
+ 3𝐵26

𝜕3𝑤0

𝜕𝑥𝜕𝑦2

+ 𝐵22

𝜕3𝑤0

𝜕𝑦3
) = 0 

(2.72) 

Using the equation in (2.52), the moment equations for a composite plate can be 

written as follows. 
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𝑀𝑥𝑥 = 𝐵11

𝜕𝑢0

𝜕𝑥
+ 𝐵12

𝜕𝑣0

𝜕𝑦
+ 𝐵16 (

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
)

− (𝐷11

𝜕2𝑤0

𝜕𝑥2 + 𝐷12

𝜕2𝑤0

𝜕𝑦2 + 2𝐷16

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) 

(2.73) 

𝑀𝑦𝑦 = 𝐵12

𝜕𝑢0

𝜕𝑥
+ 𝐵22

𝜕𝑣0

𝜕𝑦
+ 𝐵26 (

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
)

− (𝐷12

𝜕2𝑤0

𝜕𝑥2 + 𝐷22

𝜕2𝑤0

𝜕𝑦2 + 2𝐷26

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) 

(2.74) 

𝑀𝑥𝑦 = 𝐵16

𝜕𝑢0

𝜕𝑥
+ 𝐵26

𝜕𝑣0

𝜕𝑦
+ 𝐵66 (

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
)

− (𝐷16

𝜕2𝑤0

𝜕𝑥2 + 𝐷26

𝜕2𝑤0

𝜕𝑦2 + 2𝐷66

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) 

(2.75) 

Mxx,xx = B11

∂3u0

∂x3 + B12

∂3v0

∂y ∂x2 + B16 (
∂3u0

∂y ∂x2 +
∂3v0

∂x3 )

− (D11

∂4𝑤0

∂x4 + D12

∂4𝑤0

∂y2 ∂x2 + 2D16

∂4𝑤0

∂y ∂x3) 

(2.76) 

𝑀𝑦𝑦,𝑦𝑦 = 𝐵12

𝜕3𝑢0

𝜕𝑥𝜕𝑦2 + 𝐵22

𝜕3𝑣0

𝜕𝑦3 + 𝐵26 (
𝜕3𝑢0

𝜕𝑦3 +
𝜕3𝑣0

𝜕𝑥𝜕𝑦2)

− (𝐷12

𝜕4𝑤0

𝜕𝑥2𝜕𝑦2 + 𝐷22

𝜕4𝑤0

𝜕𝑦4 + 2𝐷26

𝜕4𝑤0

𝜕𝑥𝜕𝑦3) 

(2.77) 

𝑀𝑥𝑦,𝑥𝑦 = 𝐵16

𝜕3𝑢0

𝜕𝑦𝜕𝑥2 + 𝐵26

𝜕3𝑣0

𝜕𝑥𝜕𝑦2 + 𝐵66 (
𝜕3𝑢0

𝜕𝑥𝜕𝑦2 +
𝜕3𝑣0

𝜕𝑦𝜕𝑥2)

− (𝐷16

𝜕4𝑤0

𝜕𝑥3𝜕𝑦
+ 𝐷26

𝜕4𝑤0

𝜕𝑦3𝜕𝑥
+ 2𝐷66

𝜕4𝑤0

𝜕𝑥2𝜕𝑦2) 

(2.78) 

By plugging the equations (2.76) to (2.78) , and (2.42) into the equation (2.63), 

equation (2.79) can be obtained. 
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𝐵11

𝜕3𝑢0

𝜕𝑥3
+ 3𝐵16

𝜕3𝑢0

𝜕𝑦𝜕𝑥2
+ (𝐵12 + 2𝐵66)

𝜕3𝑢0

𝜕𝑥𝜕𝑦2
+ 𝐵26

𝜕3𝑢0

𝜕𝑦3
+ 𝐵16

𝜕3𝑣0

𝜕𝑥3

+ (𝐵12 + 2𝐵66)
𝜕3𝑣0

𝜕𝑦𝜕𝑥2
+ 3𝐵26

𝜕3𝑣0

𝜕𝑥𝜕𝑦2
+ 𝐵22

𝜕3𝑣0

𝜕𝑦3

− [𝐷11

𝜕4𝑤0

𝜕𝑥4
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤0

𝜕𝑥2𝜕𝑦2
+ 4𝐷16

𝜕4𝑤0

𝜕𝑥3𝜕𝑦

+ 4𝐷26

𝜕4𝑤0

𝜕𝑥𝜕𝑦3
+ 𝐷22

𝜕4𝑤0

𝜕𝑦4
] + 𝑁̅𝑥𝑥

𝑇
 
𝜕2𝑤0

𝜕𝑥2
+ 𝑁̅𝑦𝑦

𝑇 𝜕2𝑤0

𝜕𝑦2
= 0 

(2.79) 

 

The three equations given below are coupled equations [43]. These equations form 

the governing equation [10]. To reach the solution, these three equations must be 

solved together. 

𝐴11

𝜕2𝑢0

𝜕𝑥2 + 2𝐴16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴66

𝜕2𝑢0

𝜕𝑦2 + 𝐴16

𝜕2𝑣0

𝜕𝑥2 + (𝐴12 + 𝐴66)
𝜕2𝑣0

𝜕𝑥𝜕𝑦

+ 𝐴26

𝜕2𝑣0

𝜕𝑦2

− (𝐵11

𝜕3𝑤0

𝜕𝑥3 + 3𝐵16

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
+ (𝐵12 + 2𝐵66)

𝜕3𝑤0

𝜕𝑦2𝜕𝑥

+ 𝐵26

𝜕3𝑤0

𝜕𝑦3 ) = 0 

(2.80) 

𝐴16

𝜕2𝑢0

𝜕𝑥2 + (𝐴12 + 𝐴66)
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑢0

𝜕𝑦2 + 𝐴22

𝜕2𝑣0

𝜕𝑦2 + 2𝐴26

𝜕2𝑣0

𝜕𝑥𝜕𝑦

+ 𝐴66

𝜕2𝑣0

𝜕𝑥2

− (𝐵16

𝜕3𝑤0

𝜕𝑥3 + (𝐵12 + 2𝐵66)
𝜕3𝑤0

𝜕𝑥2𝜕𝑦
+ 3𝐵26

𝜕3𝑤0

𝜕𝑥𝜕𝑦2

+ 𝐵22

𝜕3𝑤0

𝜕𝑦3 ) = 0 

(2.81) 
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𝐵11

𝜕3𝑢0

𝜕𝑥3 + 3𝐵16

𝜕3𝑢0

𝜕𝑦𝜕𝑥2 + (𝐵12 + 2𝐵66)
𝜕3𝑢0

𝜕𝑥𝜕𝑦2 + 𝐵26

𝜕3𝑢0

𝜕𝑦3 + 𝐵16

𝜕3𝑣0

𝜕𝑥3

+ (𝐵12 + 2𝐵66)
𝜕3𝑣0

𝜕𝑦𝜕𝑥2 + 3𝐵26

𝜕3𝑣0

𝜕𝑥𝜕𝑦2 + 𝐵22

𝜕3𝑣0

𝜕𝑦3

− [𝐷11

𝜕4𝑤0

𝜕𝑥4 + 2(𝐷12 + 2𝐷66)
𝜕4𝑤0

𝜕𝑥2𝜕𝑦2 + 4𝐷16

𝜕4𝑤0

𝜕𝑥3𝜕𝑦

+ 4𝐷26

𝜕4𝑤0

𝜕𝑥𝜕𝑦3 + 𝐷22

𝜕4𝑤0

𝜕𝑦4 ] + 𝑁̅𝑥𝑥
𝑇
 
𝜕2𝑤0

𝜕𝑥2 + 𝑁̅𝑦𝑦
𝑇 𝜕2𝑤0

𝜕𝑦2

= 0 

(2.82) 

In-plane compressive loads occurred due to thermal effects, which cause buckling, 

is shown in Figure 2.5. Effect of this loading is examined on stability. These loads 

are presented in governing equation as 𝑁̅𝑥𝑥
𝑇
  and 𝑁̅𝑦𝑦

𝑇
. They are expressed in equation 

(2.49). 

 

Figure 2.5. In-plane compressive forces due to thermal effects  
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The boundary conditions associated with all edges being simply supported [10] are 

expressed in (2.83) and (2.84). 

𝑥 = 0, 𝑎;       𝑢 = 𝑣 = 𝑤 = 0;     𝑀𝑥𝑥 = 0 (2.83) 

𝑦 = 0, 𝑏;       𝑢 = 𝑣 = 𝑤 = 0;     𝑀𝑦𝑦 = 0 (2.84) 

The boundary conditions associated with all edges being clamped [17] are written 

below. 

𝑥 = 0, 𝑎;       𝑢 = 𝑣 = 𝑤 = 0;    
𝜕𝑤

𝜕𝑥
   = 0 (2.85) 

𝑦 = 0, 𝑏;       𝑢 = 𝑣 = 𝑤 = 0;     
𝜕𝑤

𝜕𝑦
= 0 (2.86) 
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CHAPTER 3  

3 NUMERICAL SOLUTION 

In this study, the governing equation and boundary conditions will be solved together 

by a numerical method. Differential Quadrature Method will be used. This method 

was proposed by Bellman [36] and his co-workers in the 1970s. Generally, 

Differential Quadrature Method is used in boundary value problems and to solve 

partial differential equations. The advantage of this method is that accurate solutions  

can be obtained within a short period of time. 

3.1 Differential Quadrature Method 

Differential Quadrature Method is a discretization method that allows  to find the 

partial derivative of the function at a point with respect to a variable. Using this 

method, the derivative of the function at a point can be approximated by summing 

the linearly weighted effect of other points on the points in that domain. Derivative 

of a function at a point is calculated by the differential quadrature method as in 

equation (3.1). 

𝜕𝑛𝑓(𝑥𝑖)

𝜕𝑥𝑛 = 𝐴𝑖𝑗
(𝑛)

𝑓(𝑥𝑗)    and   
𝜕𝑛𝑓(𝑦𝑖)

𝜕𝑦𝑛 = 𝐵𝑖𝑗
(𝑛)

𝑓(𝑦𝑗) (3.1) 

where 𝐴𝑖𝑗
(𝑛)

  are called the weighting coefficients of the 𝑛𝑡ℎ derivative.  

𝐵𝑖𝑗
(𝑛)

  are called the weighting coefficients of the 𝑛𝑡ℎ derivative and they can be found 

like 𝐴𝑖𝑗
(𝑛)

 . 

𝑥𝑖, 𝑦𝑖  are a set of discrete points in the 𝑥 ,and 𝑦 direction respectively. 

The weighting coefficients and the distribution of the grid points are of great 

importance for the accuracy of the results obtained from the differential quadrature 
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method. To calculate the weighting coefficients, the test function should be used to 

approximate the examined function. Lagrange interpolation polynomial is used as 

the test function. The weighting coefficients are obtained like written below [41]. 

𝐴𝑖𝑗
(1)

=
𝑀(1)(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀
(1)(𝑥𝑗)

    𝑖 ≠ 𝑗   𝑖, 𝑗 = 1,2 … .𝑁      𝐴𝑖𝑖
(1)

= −∑ 𝐴𝑖𝑗

(1)
𝑁

𝑗=1,𝑖≠𝑗

 (3.2) 

𝐴𝑖𝑗
(2)

= ∑ 𝐴𝑖𝑘
(1)

𝐴𝑘𝑗
(1)𝑁

𝑘=1    for  𝑖, 𝑗 = 1,2, … . ,𝑁 (3.3) 

𝐴𝑖𝑗
(3)

= ∑ 𝐴𝑖𝑘
(1)

𝐴𝑘𝑗
(2)𝑁

𝑘=1    for  𝑖, 𝑗 = 1,2, … . ,𝑁 (3.4) 

𝐴𝑖𝑗
(4)

= ∑ 𝐴𝑖𝑘
(1)

𝐴𝑘𝑗
(3)𝑁

𝑘=1    for  𝑖, 𝑗 = 1,2, … . ,𝑁 (3.5) 

M(𝑥) = ∏ (𝑥 − 𝑥𝑗)
𝑁
𝑗=1    ,   𝑀(1)(𝑥𝑖) =

𝜕𝑀(𝑥𝑖)

𝜕𝑥
= ∏ (𝑥𝑖 − 𝑥𝑗)

𝑁
𝑗=1,𝑖≠𝑗  (3.6) 

𝑁 is called the number of  sampling  points ,and 𝑀(1) is Lagrangian interpolation 

shape function. 

There are four different grid point sets for DQM which are Legendre grid points, 

Chebyshev grid points, Chebyshev -Gauss -Lobatto grid points , and Uniform grid 

points. Unequally spaced sampling points are used to obtain more accurate results in 

DQM. The most used sampling points in the DQM are Gauss-Lobatto-Chebyshev 

points. These points can be calculated by using  equation (3.7). 

𝑥𝑖 =
1 − cos (((𝑖 − 1)𝜋)/(𝑁 − 1))

2
 (3.7) 

𝑦𝑖  can be calculated like 𝑥𝑖 as in equation (3.7). 

3.2 Buckling 

The effect that causes buckling on the structure is the thermal forces that occur due 

to the temperature difference in the structure. The resulting thermal in-plane loads 

initiate the deterioration of the stability of the structure after a certain value. The 

minimum load that causes buckling is called critical buckling load, and the 
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temperature is called critical buckling temperature. When the governing equation 

and boundary conditions are combined, a set of linear equations are formed. 

Eigenvalue  can be found by solving the linear equations set. The eigenvalue is equal 

to critical buckling temperature. 

 

Figure 3.1. Discretization of mid-plane of a plate 

Figure 3.1 shows the discretization of the mid-plane of the graded fiber-reinforced 

composite plate. The plate is divided by 𝑁𝑥 grid points in 𝑥 , and by 𝑁𝑦 grid points 

in  𝑦 directions, respectively. There is a total of  𝑁𝑥𝑁𝑦 nodes in the plate. The 

unknown displacements for the plate subjected to thermal load are 𝑢, 𝑣, and 𝑤. A 

linear set of equations need to be solved to find the minimum temperature that will 

buckle this plate. Therefore, it is necessary to know the derivatives of 𝑢, 𝑣, and 𝑤. 

Derivatives of 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦),and 𝑤(𝑥, 𝑦) at points (𝑖, 𝑗)  with respect to 𝑥 and 𝑦 

are found using DQM. 

Derivatives of 𝑢(𝑥, 𝑦) with respect to 𝑥,𝑦 can be calculated below. 

𝜕𝑢

𝜕𝑥
= ∑ 𝐴𝑖𝑘

(1)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 
(3.8) 
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𝜕𝑢

𝜕𝑦
= ∑ 𝐵𝑗𝑚

(1)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚 

 

(3.9) 

𝜕2𝑢

𝜕𝑥2
= ∑ 𝐴𝑖𝑘

(2)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 

 

(3.10) 

𝜕2𝑢

𝜕𝑦2
= ∑ 𝐵𝑗𝑚

(2)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚 

 

(3.11) 

𝜕3𝑢

𝜕𝑥2𝜕𝑦
= ∑ ∑ 𝐴𝑖𝑘

(2)
𝐵𝑗𝑚

(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 

 

(3.12) 

𝜕3𝑢

𝜕𝑥𝜕𝑦2
= ∑ ∑ 𝐴𝑖𝑘

(1)
𝐵𝑗𝑚

(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 

 

(3.13) 

𝜕3𝑢

𝜕𝑥3
= ∑ 𝐴𝑖𝑘

(3)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 

 

(3.14) 

𝜕3𝑢

𝜕𝑦3
= ∑ 𝐵𝑗𝑚

(3)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚 

 

(3.15) 

𝜕4𝑢

𝜕𝑥𝜕𝑦3
= ∑ ∑ 𝐴𝑖𝑘

(1)
𝐵𝑗𝑚

(3)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 

 

(3.16) 

𝜕4𝑢

𝜕𝑥2𝜕𝑦2 = ∑ ∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚  

 

(3.17) 

𝜕4𝑢

𝜕𝑥3𝜕𝑦
= ∑ ∑ 𝐴𝑖𝑘

(3)
𝐵𝑗𝑚

(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 

 

(3.18) 

𝜕4𝑢

𝜕𝑥4
= ∑ 𝐴𝑖𝑗

(4)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 

 

(3.19) 

𝜕4𝑢

𝜕𝑦4
= ∑ 𝐵𝑗𝑚

(4)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚 
(3.20) 
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Derivatives of 𝑣(𝑥, 𝑦) and 𝑤(𝑥, 𝑦) with respect to 𝑥 and 𝑦 are calculated like 

derivatives of 𝑢(𝑥, 𝑦). Derivatives calculated by DQM are substituted for derivatives 

in equations (2.80), (2.81), and (2.82). These equations are made more convenient. 

By applying DQM to the equations (2.80) – (2.82) the following equations can be 

reached. 

𝐴11 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 2𝐴16 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 + 𝐴66 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐴16 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗 + (𝐴12 + 𝐴66)∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚

+ 𝐴26 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚

− (𝐵11 ∑𝐴𝑖𝑗
(3)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 3𝐵16 ∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ (𝐵12 + 2𝐵66)∑ ∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚 + 𝐵26 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚)

= 0 

 

(3.21) 

𝐴16 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + (𝐴12 + 𝐴66) ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 + 𝐴26 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐴66 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗 + 2𝐴26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚

+ 𝐴22 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚

− (𝐵16 ∑ 𝐴𝑖𝑘
(3)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + (𝐵12 + 2𝐵66)∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ 3𝐵26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚 + 𝐵22 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚) = 0 

 

(3.22) 
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𝐵11 ∑𝐴𝑖𝑘
(3)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 3𝐵16 ∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚

+ (𝐵12 + 2𝐵66)∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 + 𝐵26 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐵16 ∑𝐴𝑖𝑘
(3)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗 + (𝐵12 + 2𝐵66)∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚

+ 3𝐵26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚 + 𝐵22 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚

− [𝐷11 ∑𝐴𝑖𝑘
(4)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 2(𝐷12 + 2𝐷66)∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ 4𝐷16 ∑∑ 𝐴𝑖𝑘
(3)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚 + 4𝐷26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ 𝐷22 ∑ 𝐵𝑗𝑚
(4)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚 + 𝑁̅𝑥𝑥
𝑇
∑𝐴𝑖𝑘

(2)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 𝑁̅𝑦𝑦
𝑇
∑ 𝐵𝑗𝑚

(2)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚]

= 0 

 

(3.23) 

Simply supported boundary conditions can be written in DQM form as below. 

𝑥 = 0, 𝑎 ; 𝑢𝑖𝑗 = 𝑣𝑖𝑗 = 𝑤𝑖𝑗 = 0 ; 
(3.24) 

𝑀𝑥𝑥 = 𝐵11 ∑ 𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 𝐵12 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚 + 𝐵16 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐵16 ∑𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗

− (𝐷11 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 𝐷12 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚

+ 2𝐷16 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚) = 0 

 

(3.25) 

𝑦 = 0, 𝑏 ; 𝑢𝑖𝑗 = 𝑣𝑖𝑗 = 𝑤𝑖𝑗 = 0 ; 
(3.26) 
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𝑀𝑦𝑦 = 𝐵12 ∑ 𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 𝐵22 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚 + 𝐵26 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐵26 ∑𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗

− (𝐷12 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 𝐷22 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚

+ 2𝐷26 ∑ ∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚) = 0 

(3.27) 

Clamped boundary conditions can be represent in DQM form by the following 

algebraic expressions. 

𝑥 = 0, 𝑎 ; 𝑢𝑖𝑗 = 𝑣𝑖𝑗 = 𝑤𝑖𝑗 = 0 ; 
(3.28) 

𝜕𝑤

𝜕𝑥
= ∑ 𝐴𝑖𝑘

(1)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 = 0 

 

(3.29) 

𝑦 = 0, 𝑏 ; 𝑢𝑖𝑗 = 𝑣𝑖𝑗 = 𝑤𝑖𝑗 = 0 ;  

 
(3.30) 

𝜕𝑤

𝜕𝑦
= ∑ 𝐵𝑗𝑚

(1)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚 = 0 

 

(3.31) 

The critical buckling temperature is obtained when the simply supported boundary 

condition and governing equations are solved together using the following steps. 

At 𝑥 = 0, 𝑎 ;  𝑢𝑖𝑗 = 0  ; 𝑖 = 1, 𝑁𝑥     &  𝑗 = 1,2, … . . , 𝑁𝑦 
(3.32) 

At 𝑦 = 0, 𝑏 ; 𝑢𝑖𝑗 = 0  ; 𝑖 = 2… . , 𝑁𝑥 − 1    &  𝑗 = 1,𝑁𝑦 
(3.33) 

By implementing boundary conditions for  𝑢  at the boundary points lead to the linear 

equations as. 

𝐴𝑏𝑑𝑏 + 𝐴𝑑𝑑𝑑 = 0 

 
(3.34) 

This algebraic expression consists of boundary equations written for 𝑢 at each node 

in the boundary. 
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The displacements at the boundary nodes are expressed with 𝑑𝑏, and the 

displacements at the inner nodes are expressed with 𝑑𝑑. 𝑏 represents boundary and 

𝑑 represents domain. 

{𝑑𝑏} = {𝑢𝑏 , 𝑣𝑏, 𝑤𝑏} 

 
(3.35) 

{𝑑𝑑} = {𝑢𝑑 , 𝑣𝑑, 𝑤𝑑} 

 
(3.36) 

The matrices 𝐴𝑏 and 𝐴𝑑 are stiffness matrices associated with the boundary. 

In boundary condition expressions written for each node at the boundary, the matrix 

formed by the displacement coefficients at the boundary is 𝐴𝑏, and the matrix formed 

by the displacement coefficients at the inner nodes is 𝐴𝑑. 

Equation (3.21)  for inner points is expressed below. 

For 𝑖 = 2,3, … . . , 𝑁𝑥 − 1     &  𝑗 = 2,3, … . ,𝑁𝑦 − 1 

𝐴11 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 2𝐴16 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 + 𝐴66 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐴16 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗 + (𝐴12 + 𝐴66)∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚

+ 𝐴26 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚

− (𝐵11 ∑𝐴𝑖𝑘
(3)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 3𝐵16 ∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ (𝐵12 + 2𝐵66)∑ ∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚 + 𝐵26 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚)

= 0 

Equation (3.37) can be written in a compact form like below. 

 

(3.37) 

𝐴′
𝑏𝑑𝑏 + 𝐴′

𝑑𝑑𝑑 = 0 
 

(3.38) 

In the governing equation written for each inner node, shown in (3.37), the stiffness 

matrix formed by the displacement coefficients in the boundary is shown with 𝐴′
𝑏 

and the stiffness matrix formed by the displacement coefficients in the inner node is 

shown with 𝐴′
𝑑 . 
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When equation (3.34) and equation (3.38) are combined and written in matrix form, 

the following equations is obtained. 

[
𝐴𝑏 𝐴𝑑

𝐴′
𝑏 𝐴′

𝑑
] [

𝑑𝑏

𝑑𝑑
] = [𝐴][𝑑] = 0 

 

(3.39) 

[𝐴] = [
𝐴𝑏 𝐴𝑑

𝐴′
𝑏 𝐴′

𝑑
]   ;  [𝑑] = [

𝑑𝑏

𝑑𝑑
] 

 

(3.40) 

The boundary conditions for 𝑣 are expressed as. 

At 𝑥 = 0, 𝑎 ;  𝑣𝑖𝑗 = 0  ; 𝑖 = 1, 𝑁𝑥     &  𝑗 = 1,2, … . . , 𝑁𝑦 
(3.41) 

At 𝑦 = 0, 𝑏 ; 𝑣𝑖𝑗 = 0  ; 𝑖 = 2… . , 𝑁𝑥 − 1    &  𝑗 = 1,𝑁𝑦 
(3.42) 

Boundary condition for 𝑣 written in linear equation form is shown. 

𝐵𝑏𝑑𝑏 + 𝐵𝑑𝑑𝑑 = 0 

 
(3.43) 

𝐵𝑏 is the stiffness matrix consisting of the coefficients of the displacement at the 

boundary and 𝐵𝑑 is the stiffness matrix formed by the coefficients of the 

displacement at the inner node. 

Equation (3.22)  can be written in DQM form for inner nodes. 

For 𝑖 = 2,3, … . . , 𝑁𝑥 − 1     &  𝑗 = 2,3, … . ,𝑁𝑦 − 1 

𝐴16 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + (𝐴12 + 𝐴66) ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 + 𝐴26 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐴66 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗 + 2𝐴26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚

+ 𝐴22 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚

− (𝐵16 ∑ 𝐴𝑖𝑘
(3)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + (𝐵12 + 2𝐵66)∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ 3𝐵26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚 + 𝐵22 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚) = 0 

 

(3.44) 
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This equation is written in linear equation form as follows. 

𝐵′
𝑏𝑑𝑏 + 𝐵′

𝑑𝑑𝑑 = 0 
 

(3.45) 

𝐵′
𝑏and 𝐵′

𝑑  stiffness matrices seen in the equation written in linear form. They are 

the matrices formed by the displacement coefficients in the boundary and inner 

nodes, respectively. They can be obtained from the expressions coming from the 

equation (3.44) written in the DQM form. 

When the two linear equations (3.43) and (3.45) are combined and made in matrix 

form, it looks like following. 

[
𝐵𝑏 𝐵𝑑

𝐵′
𝑏 𝐵′

𝑑
] [

𝑑𝑏

𝑑𝑑
] = [𝐵][𝑑] = 0 

 

(3.46) 

[𝐵] = [
𝐵𝑏 𝐵𝑑

𝐵′
𝑏 𝐵′

𝑑
] (3.47) 

The boundary condition expression for 𝑤, 𝑀𝑥𝑥 and 𝑀𝑦𝑦 is made in DQM form. 

At 𝑥 = 0, 𝑎 ;  𝑤𝑖𝑗 = 0;𝑀𝑥𝑥 = 0  ; 𝑖 = 1, 𝑁𝑥     &  𝑗 = 1,2, … . . , 𝑁𝑦 
(3.48) 

At 𝑦 = 0, 𝑏 ;  𝑤𝑖𝑗 = 0 ;𝑀𝑦𝑦 = 0  ; 𝑖 = 2,3… . , 𝑁𝑥 − 1    &  𝑗 = 1,𝑁𝑦 
(3.49) 

𝑀𝑥𝑥 = 𝐵11 ∑ 𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 𝐵12 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚 + 𝐵16 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐵16 ∑𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗

− (𝐷11 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 𝐷12 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚

+ 2𝐷16 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚) = 0 

 

(3.50) 
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𝑀𝑦𝑦 = 𝐵12 ∑ 𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 𝐵22 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚 + 𝐵26 ∑ 𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐵26 ∑𝐴𝑖𝑘
(1)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗

− (𝐷12 ∑𝐴𝑖𝑘
(2)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 𝐷22 ∑ 𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚

+ 2𝐷26 ∑ ∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚) = 0 

 

(3.51) 

The boundary conditions written for the nodes in the boundary are expressed in the 

form of the linear equation as. 

𝐶𝑏𝑑𝑏 + 𝐶𝑑𝑑𝑑 = 0 

 
(3.52) 

𝐶𝑏  and 𝐶𝑑  are stiffness matrices related to the boundary conditions. 𝐶𝑏  comes from 

coefficients of the displacements at the boundary points, and 𝐶𝑑  comes from 

coefficients of displacements at inner points. 

By implementing equation (3.23) for remaining inner nodes following equation is 

obtained in DQM form. 

For  𝑖 = 3,4, … . . , 𝑁𝑥 − 2     &  𝑗 = 3,4, … . ,𝑁𝑦 − 2 
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𝐵11 ∑𝐴𝑖𝑘
(3)

𝑁𝑥

𝑘=1

𝑢𝑘𝑗 + 3𝐵16 ∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚

+ (𝐵12 + 2𝐵66)∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑢𝑘𝑚 + 𝐵26 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑢𝑖𝑚

+ 𝐵16 ∑𝐴𝑖𝑘
(3)

𝑁𝑥

𝑘=1

𝑣𝑘𝑗 + (𝐵12 + 2𝐵66)∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚

+ 3𝐵26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑣𝑘𝑚 + 𝐵22 ∑ 𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑣𝑖𝑚

− [𝐷11 ∑𝐴𝑖𝑘
(4)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 2(𝐷12 + 2𝐷66)∑∑ 𝐴𝑖𝑘
(2)

𝐵𝑗𝑚
(2)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ 4𝐷16 ∑∑ 𝐴𝑖𝑘
(3)

𝐵𝑗𝑚
(1)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚 + 4𝐷26 ∑∑ 𝐴𝑖𝑘
(1)

𝐵𝑗𝑚
(3)

𝑁𝑦

𝑚=1

𝑁𝑥

𝑘=1

𝑤𝑘𝑚

+ 𝐷22 ∑ 𝐵𝑗𝑚
(4)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚 + 𝑁̅𝑥𝑥
𝑇
∑𝐴𝑖𝑘

(2)

𝑁𝑥

𝑘=1

𝑤𝑘𝑗 + 𝑁̅𝑦𝑦
𝑇
∑ 𝐵𝑗𝑚

(2)

𝑁𝑦

𝑚=1

𝑤𝑖𝑚]

= 0 

 

(3.53) 

The above equation is expressed in compact form like below. 

𝐶′
𝑏𝑑𝑏 + 𝐶′

𝑑𝑑𝑑 = ∆𝑇(𝐹𝑏𝑑𝑏 + 𝐹𝑑𝑑𝑑) 
 

(3.54) 

𝐶′
𝑏  is the stiffness matrix created by the displacement coefficients at the boundary 

points, and 𝐶′
𝑑  is the stiffness matrix formed by the displacement coefficients at the 

inner points. 

𝐹𝑏 and 𝐹𝑑 are the matrices consisting of the numerical values of the terms containing 

the temperature difference which are coming from the coefficients of the 

displacements at the boundary and the inner nodes, respectively. 

When the equation (3.52) and equation (3.54) are assembled, the expression written 

below as matrix is reached. 

[
𝐶𝑏 𝐶𝑑

𝐶′
𝑏 𝐶′

𝑑
] [

𝑑𝑏

𝑑𝑑
] = [𝐶][𝑑] = ∆𝑇 [

0 0
𝐹𝑏 𝐹𝑑

] [
𝑑𝑏

𝑑𝑑
] 

 

(3.55) 

[𝐶] = [
𝐶𝑏 𝐶𝑑

𝐶′
𝑏 𝐶′

𝑑
] (3.56) 
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By combining equation (3.39), equation (3.46), and equation (3.55) the following 

system of equation is obtained. 

[

[𝐴]

[𝐵]

[𝐶]
] [

𝑑𝑏

𝑑𝑑
] = ∆𝑇 [

[0] 
[0] 

[𝐹𝑏]  

[0]

[0]

[𝐹𝑑]
] [

𝑑𝑏

𝑑𝑑
] 

 

(3.57) 

{[

[𝐴]

[𝐵]

[𝐶]
] − ∆𝑇 [

[0] 
[0] 

[𝐹𝑏]  

[0]

[0]

[𝐹𝑑]
]} [

𝑑𝑏

𝑑𝑑
] = 0 

 

(3.58) 

By using the eig command in MATLAB the eigenvalue solution is made for the 

equation in (3.58) and its critical buckling temperature can be found. 

The solution procedure for the clamped boundary condition is the same as simply- 

supported. Only the equation  
𝜕𝑤

𝜕𝑥
= 0 instead of  𝑀𝑥𝑥 = 0 , and 

𝜕𝑤

𝜕𝑦
= 0 should be 

written instead of  𝑀𝑦𝑦 = 0  at the required boundary points. 

3.3 Finite Element Method 

Finite element modeling was done using Abaqus. A two-dimensional plate was 

drawn using the sketch under the part tab. Then, the mechanical properties of the 

material constituting the ply were defined for each ply in the material part. In the 

next step, the section was created. Continuum shell composite was selected as the 

section type. In the section, the plies that make up the laminate is defined, and the 

material properties, thickness, and ply angles for the plies are entered. This section 

was assigned to the plate created in part. Finite element mesh was applied over the 

existing geometry. The element type used is S4R, and the mesh density is 𝑁𝑥𝑁. 

There are  total of  𝑁𝑥𝑁 nodes in the model. The S4R element used is shown in 

Figure 3.2. The S4R element consists of four nodes and one integration point. The 

meshed state of the plate is shown in Figure 3.3. Under the assembly tab, the 

assembly was created in the instances section. To find the desired failure mode, the 

procedure type linear perturbation was selected in the step section, and then the 

buckle option was selected. The boundary condition was given to the examined plate. 
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Under the BC tab, the pinned option for the simply supported boundary condition, 

and the encastre option for the clamped boundary condition was selected. Then, unit 

temperature difference was given to the examined plate in the predefined field part. 

The temperature difference given is constant through the region. All the parameters 

necessary to examine the problem are defined, and the model is prepared. The job 

was created to find the critical buckling temperature. Full analysis was selected as 

the job type, and it was ready to run. The created job was submitted for analysis. 

After the calculations were completed, the results were obtained in the result section. 

The eigenvalue value obtained is the critical buckling temperature value. 

 

Figure 3.2. Figure of S4R element 

S stands for shell, 4 shows number of  nodes, and R stands for reduced integration. 
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Figure 3.3. Finite element model 
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CHAPTER 4  

4 NUMERICAL RESULT 

The critical buckling temperature was calculated using the method mentioned in 

Chapter 3 for the graded fiber reinforcement composite plate. The minimum 

temperature difference that causes buckling is calculated for all edges of the plate 

simply supported (SSSS) or all edges clamped (CCCC). 

4.1 Graded Fiber – Reinforced Material 

Graded fiber-reinforced composite plate is composed of plies. Figure 2.3 shows a 

typical laminated composite plate. There are fiber and matrix in different volume 

fractions in each ply. The amount of fiber volume changes in the direction of 

thickness; thus, the material properties change. In Figure 4.1, the variation of fiber 

volume fraction along the thickness is seen. The material properties vary depending 

on the fiber volume fraction, and the effective material properties are obtained  

according to the micromechanical model [1]. 

 

Figure 4.1. Laminated composite plate with variable fiber volume fraction 
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𝑉𝑓(𝑧) + 𝑉𝑚(𝑧) = 1 (4.1) 

𝐸11(𝑧) = 𝐸𝑓𝑉𝑓(𝑧) + 𝐸𝑚𝑉𝑚(𝑧) (4.2) 

1

𝐸22(𝑧)
=

𝑉𝑓(𝑧)

𝐸𝑓
+

𝑉𝑚(𝑧)

𝐸𝑚
− 𝑉𝑓(𝑧)𝑉𝑚(𝑧)

𝜐2
𝑓𝐸

𝑚

𝐸𝑓 +
𝜐2

𝑚𝐸𝑓

𝐸𝑚    − 2𝜐𝑓𝜐𝑚

𝑉𝑓(𝑧)𝐸𝑓 + 𝑉𝑚(𝑧)𝐸𝑚
 

(4.3) 

𝐺12(𝑧) =
𝐺𝑓𝐺𝑚

𝐺𝑓𝑉𝑚(𝑧) + 𝐺𝑚𝑉𝑓(𝑧)
 (4.4) 

𝜐12(𝑧) = 𝑉𝑓(𝑧)𝜐𝑓 + 𝑉𝑚(𝑧)𝜐𝑚 (4.5) 

𝛼1(𝑧) =
𝑉𝑓(𝑧)𝐸𝑓𝛼𝑓 + 𝑉𝑚(𝑧)𝐸𝑚𝛼𝑚

𝑉𝑓(𝑧)𝐸𝑓 + 𝑉𝑚(𝑧)𝐸𝑚
 (4.6) 

𝛼2(𝑧) = (1 + 𝜐𝑓)𝑉𝑓(𝑧)𝛼𝑓 + (1 + 𝜐𝑚)𝑉𝑚(𝑧)𝛼𝑚 − 𝜐12(𝑧)𝛼1(𝑧) 

 

(4.7) 

𝑉𝑓  , 𝐸𝑓  , 𝐺𝑓 , and  𝜐𝑓 are the volume fraction, young’s modulus, shear modulus and 

poisson’s ratio of the fiber. 𝑉𝑚, 𝐸𝑚 , 𝐺𝑚 and  𝜐𝑚 are the corresponding properties for 

the matrix. 

where 𝛼𝑓, and 𝛼𝑚 are called the thermal expansion coefficients of the fiber and 

matrix. 

The terms 𝐸11, 𝐸22, and 𝐺12 are  longitudinal , transverse and in plane shear modulus, 

respectively.Longitudinal and transverse directions of the fiber-reinforced composite 

plate  are shown in Figure 2.4. 

𝜐12,  𝛼1, and 𝛼2 are poisson ratio , longitudinal thermal expansion coefficient 

and transverse thermal expansion coefficient. 
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4.2 Verification 

To check the accuracy of the study, it is necessary to make comparisons to the results 

given in previously published articles. With close results, it can be inferred that the 

method developed leads to accurate results. Waily [24] carried out thermal buckling 

analysis for simply - supported  rectangular plates. The plate's temperature, which 

initially had a constant uniform temperature, was increased uniformly. Due to the 

temperature difference, reaction forces formed in the boundary. Figure 4.2 shows the 

compressive axial forces formed at the boundary. The plate began to buckle with the 

effect of these compressive reaction forces. Waily [24] calculated the critical 

temperature, which creates the force that will buckle the plate in this study. The 

dimensions of the rectangular plate examined in the study are 𝑎, 𝑏, and ℎ. 𝑎 length, 

𝑏 width, and ℎ represent thickness. The length and width of the plate are 200 mm, 

and its thickness is 5 mm. The plate is a unidirectional composite plate consisting of 

fiber and matrix. Glass-E-fibers were used as the fiber, and polyester resin was used 

as the matrix. To observe the effect of the matrix type on the critical buckling 

temperature, the critical buckling temperatures of the plate consisting of Glass-E-

fibers and polyester resin and the plate consisting of Glass-E-fibers and epoxy resin 

were calculated. The mechanical properties of the material used in these calculations 

are given below. 

Glass -E-Fibers 

𝐸𝑓 = 74 (𝐺𝑃𝑎)  ,    𝐺𝑓 = 30 (𝐺𝑃𝑎) ,    𝜐𝑓 = 0.25 ,   𝛼𝑓 = 0.5 ∗ 10−5 (℃−1) 

Polyester Resin 

𝐸𝑚 = 4 (𝐺𝑃𝑎) ,    𝐺𝑚 = 1.4 (𝐺𝑃𝑎) ,    𝜐𝑚 = 0.4 ,   𝛼𝑚 = 8 ∗ 10−5 (℃−1) 

Epoxy Resin 

𝐸𝑚 = 4.5 (𝐺𝑃𝑎),   𝐺𝑚 = 1.6 (𝐺𝑃𝑎) ,    𝜐𝑚 = 0.4 ,   𝛼𝑚 = 11 ∗ 10−5 (℃−1) 
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In Table 4.1, the critical buckling temperature was calculated for the composite plate 

consisting of unidirectional Glass-E-fibers and polyester resin. Convergence study 

was carried out for 0.1 fiber volume fraction. 

Table 4.1 Convergence study on critical buckling temperature of SSSS unidirectional 

fiber-reinforced composite plate 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1 , ℎ = 5 𝑚𝑚 , 𝑉𝑓 = 0.1 

𝑵𝒙𝑵 DQM (℃) [24] (℃)harf 

9x9 
11x11 
13x13 
15x15 
17x17 

13.6739 
13.6748 
13.6752 
13.6752 
13.6752 

13.6752 
13.6752 
13.6752 
13.6752 
13.6752 

 

Table 4.1 shows the critical buckling temperature value according to the number of 

grid points in the x and y directions used in DQM. Considering the convergence of 

the results, 𝑁 = 13 should be used to obtain more accurate results. 

 

Figure 4.2. In-plane axial compressive force due to thermal effects 
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Thermal buckling result of the unidirectional fiber-reinforced composite plate are 

shown in Figure 4.3. In Figure 4.3, the minimum buckling temperature that will 

buckle the composite plates are found for each fiber volume fraction. In Figure 4.4, 

the effect of the resins on the structure's critical buckling temperature is observed 

using different resins. In Figure 4.5, the critical buckling temperature of the 

composite plate is obtained for three different fiber volume fractions according to 

the aspect ratio. The buckling results for the fiber-reinforced composite plate are 

provided in Figures 4.3 - 4.5. According to the results, if the amount of fiber volume 

fraction in the composite plate increases, the critical temperature value that will 

buckle the structure increases. It is seen that the resins affect the thermal strength of 

the structure. Finally, if the dimensions of the plate increase, the minimum 

temperature value that will buckle the structure decreases. As seen in Figure 4.4 ,the 

effect of fiber volume fraction on critical buckling temperature is linear, while in 

Figure 4.5, aspect ratio effect on critical buckling temperature is exponential. 

Therefore, the change in aspect ratio affects the critical buckling temperature more 

than the change in fiber volume fraction. The results obtained are in excellent 

agreement with the studies of Waily [24]. 

 

Figure 4.3. Critical buckling temperature of SSSS unidirectional composite plate 

with glass fiber and polyester resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1 ,ℎ = 5 𝑚𝑚 
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Figure 4.4. Critical buckling temperature of SSSS unidirectional composite plate 

with glass fiber and different resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1 ,ℎ = 5 𝑚𝑚 

 

Figure 4.5. Critical buckling temperature of SSSS unidirectional composite plate 

with different aspect ratio for different fiber volume fraction of glass fiber and 

polyester resin, 𝑏 = 200 𝑚𝑚 ,ℎ = 5 𝑚𝑚 
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4.3 Finite Element Analysis 

In this part, the critical buckling temperature value of the composite plate was 

calculated by finite element analysis. To test the accuracy of the finite element 

model, the problem in [24] was modeled with Abaqus, and the critical buckling 

temperature value was calculated. The mesh density in the model is 13x13, and the 

element type used is S4R. In DQM, the plate is divided into 13 grid points in the 𝑥 

direction and 13 in the 𝑦 direction. The critical buckling temperature value calculated 

with Abaqus, and the critical buckling temperature value calculated using DQM are 

compared. The dimensions of the examined plate are 200𝑥200 mm, and its thickness 

is 5 𝑚𝑚. The plate is a unidirectional composite plate consisting of Glass-E-fiber 

and polyester resin. The temperature of the simply- supported plate, which has a 

uniform initial temperature, was increased uniformly. After a certain temperature 

difference, the plate started to buckle. The minimum temperature that creates this 

condition is called the critical buckling temperature. The critical buckling 

temperature value for five different fiber volume fractions was calculated using FEA 

and DQM. 

 

Figure 4.6. Critical buckling temperature of SSSS unidirectional composite plate 

with glass fiber and polyester resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1 ,ℎ = 5 𝑚𝑚 
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In Figure 4.6, the critical buckling temperature of the unidirectional non-graded fiber 

reinforcement composite plate was calculated with the help of Abaqus. The results 

of the Abaqus model were compared with the study examined in the literature, and 

the same results were obtained with the results in the literature. In this way, the 

Abaqus model is correlated. As the Abaqus model has been validated, the results in 

these studies will be compared with the Abaqus model. 

One more validation was done for FEA and DQM. This time, calculations were made 

for the plate with dimensions of 200𝑥200 mm and a thickness of 4 mm. This plate 

also consists of Glass-E-fiber and polyester resin. Unlike the previous one, this plate 

is not unidirectional. It is a symmetrical plate composed of 8 plies. The thickness of 

each ply is 0.5 mm, and the laying angles are [60/45/−45/30]𝑠. The mesh density 

used in FEA is 13𝑥13, and the element type is S4R. In DQM, the plate is divided 

into 13 grid points in the 𝑥 direction and 13 in the 𝑦 direction. The plate is simply- 

supported and has an initial uniform temperature. The plate's temperature was 

increased uniformly, and the critical buckling temperature value that would buckle 

the plate was calculated by both FEA and DQM. 

 

Figure 4.7. Critical buckling temperature of SSSS [60/45/−45 /30]𝑠 angle plies 

composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1 ,ℎ = 4 𝑚𝑚 
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In Figure 4.7, the critical buckling temperature of the symmetrical composite plate 

formed by the plies with different laying angles was calculated. As the fiber volume 

fraction in the plate increases, the critical temperature value that will buckle the 

structure increases. There is excellent agreement between the results obtained in this 

study and those in Abaqus. 

4.4 Numerical Results for Symmetric Laminates 

Critical buckling temperature was calculated for a 200𝑥200 mm symmetrically 

laminated composite plate with varying fiber volume fractions. The plate contains 

eight plies with [60/−30/90/45]𝑠 laying angles and is simply supported from the 

edges. The plies are composed of Glass-E-fiber and polyester resin. The composite 

plate is graded in the thickness direction. Gradation is provided by the fiber volume 

fraction changing in the 𝑧-direction. The fiber volume function is 𝑉𝑓(𝑧) = 0.4(
|𝑧|

ℎ
). 

Table 4.2 shows the laying angles and fiber volume fraction of the plies. The plate 

has an initial uniform temperature, which is then uniformly increased. After a while, 

it started to buckle under the axial compressive force caused by the boundary 

conditions at a certain temperature difference. The critical buckling temperature 

value that caused this load was calculated using FEA and DQM for five different 

plate thicknesses. The mesh density used is 13𝑥13, and the element type is S4R.In 

DQM, the plate is divided into 13 grid points, each in the 𝑥 and 𝑦 directions. 

Table 4.2 Plate’s lamination scheme and fiber volume fraction of each ply 

Plies 𝑽𝒇 Orientation Angle (°)Küçük  

Ply 1 
Ply 2 
Ply 3 
Ply 4 
Ply 5 
Ply 6 
Ply 7 
Ply 8 

0.4 
0.3 
0.2 
0.1 
0.1 
0.2 
0.3 
0.4 

 60 
-30 
 90 
 45 
 45 
 90 
-30 
 60 
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Figure 4.8. Critical buckling temperature of SSSS [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1 ,𝑉𝑓(𝑧) = 0.4(

|𝑧|

ℎ
) 

 

Figure 4.9. Critical buckling temperature of SSSS [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 2 ,𝑉𝑓(𝑧) = 0.4(

|𝑧|

ℎ
) 
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In Figure 4.8, the critical buckling temperature was calculated for the graded fiber 

reinforcement composite plate. The examined composite plate is symmetrical 

according to the laying angle. As the thickness of the plate increases, the critical 

buckling temperature increases. There is a good agreement between the results 

obtained in this study and the results in Abaqus. However, after a certain thickness 

value, there is some variation between the results. Since the theory used in this study 

is valid for thin plates, the plate becomes thicker as the thickness increases, and 

therefore, the results deviate a little when the thickness increases. In Figure 4.9, the 

critical buckling temperature of the structure was calculated for one dimension of the 

graded fiber reinforcement composite plate halved. As in the previous graph, after a 

certain thickness, there was some deviation between the results obtained in the study 

and those in Abaqus. When the critical temperatures in the two figures are compared, 

the critical temperature value that will buckle the plate increases significantly when 

the plate dimensions are reduced. As the panel dimension from the loading direction 

increases, the resistance of the panel against deformation decreases. Therefore, the 

increasing aspect ratio with the increase in the size of panel  causes a decrease in the 

stiffness value of the panel. Critical buckling temperature value decreases depending 

on the increase in the aspect ratio. 

The effect of some parameters on the buckling behavior of the laminated composite 

plate was investigated. The change in the critical buckling temperature of the plate 

was investigated by changing the 𝑎/𝑏 ratio for the plate shown in Figure 4.1. The 

plate is simply- supported from the edges. The 𝑏 value for the examined plate is 100 

mm, the ℎ is 1 mm, and 𝑎 value change. This composite plate contains eight plies 

consisting of Glass-E-fiber and polyester resin. The fiber volume fraction and ply 

orientation of the plies are as in Table 4.2. 
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Figure 4.10. Critical buckling temperature of SSSS [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin, 𝑏 = 100 𝑚𝑚 ,ℎ = 1.0 𝑚𝑚 

𝑉𝑓(𝑧) = 0.4(
|𝑧|

ℎ
) 

In Figure 4.11, the critical buckling temperature value was calculated by changing 

the 𝑏/𝑎 ratio for the plate expressed in Figure 4.1. In this case, 𝑎 value is 100 mm, 

and the 𝑏 value changes. All parameters except these are the same as in the previous 

example. 
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Figure 4.11. Critical buckling temperature of SSSS [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin, 𝑎 = 100 𝑚𝑚 ,ℎ = 1.0 𝑚𝑚 

𝑉𝑓(𝑧) = 0.4(
|𝑧|

ℎ
) 

In Figure 4.10, the critical buckling temperature value was calculated for the graded 

fiber reinforcement composite plate according to different aspect ratios. As can be 

seen from the results in the graph, as the dimensions of the plate increase, the critical 

temperature value required for the structure to undergo buckling decreases. In Figure 

4.11, as in the previous graph, the effect of aspect ratio on critical buckling 

temperature is examined. Similar behavior is also seen here. When the dimensions 

of the panel increase, its resistance to the applied load decreases and it becomes 

easier for the panel to switch to the bending mode. When Figure 4.10 and Figure 

4.11 are examined, the critical buckling temperature value of the panel decreases due 

to the increase in aspect ratio. 

The effect of ply laying angles on critical buckling temperature was investigated. 

The 𝑎 and 𝑏 values for the plate shown in Figure 4.1 are 200 mm, and the plate is 

simply-supported from all edges. The composite plate consists of eight plies with 

same thickness value, and there are three different combinations according to the ply 
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laying angles. The stacking sequences are shown in Table 4.3. The material of the 

plies is as in the previous example. Critical buckling temperature was calculated at 

five different plate thickness values for three different stacking sequences. There is 

a good agreement between DQM-[24] and DQM-ABAQUS in the comparisons 

made so far. It is enough to calculate critical buckling temperature with DQM. 

Therefore, the effect of lamination scheme change on the critical buckling 

temperature has been investigated only with DQM. The plates is divided in 13 grid 

points in each 𝑥 and 𝑦 directions. The results from DQM is shown in Figure 4.12.       

Table 4.3 Stacking sequences 

Lamination Scheme Name Stacking Sequence 

Orientation 1 [60/−30/90/45]𝑠 

Orientation 2 [45/75/60/30]𝑠 

Orientation 3 [90/75/60/0]𝑠 

 

 

Figure 4.12. Critical buckling temperature of SSSS  angle plies composite plate 

with glass fiber and epoxy resin from DQM, 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1.0 , 𝑉𝑓(𝑧) = 0.4(

|𝑧|

ℎ
) 
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The effect of fiber orientation angle on the buckling behavior of the structure was 

investigated. The critical buckling temperature of the composite plate with 

symmetric ply sequence was found for three  fiber  angle configurations at different 

thicknesses. The temperature values are different for each orientation. It is 

understood from the results obtained that the fiber orientation angle affects the 

mechanical properties of the structure. When the  composite structure  is subjected 

to a load in the longitudinal direction 0°,30°,45°,60°,and 90° angled plies carry the 

highest load respectively. For example, if the number of plies with 0° orientation 

increases, the amount of longitudinal load on plies decreases. Less load on the plies 

means more difficult buckling of structure. In the same manner, in the transverse 

direction increasing the number of 90° plies causes the structure to buckle more 

difficult. The number of certain angled plies changes the buckling characteristic of 

the structure according to the load direction. Depending on the applied load 

orientation, the distance between the orientation of the ply that carries the highest 

load and the plane where the plies first start to line up creates an extra bending 

moment. Due to the extra bending moment ,structure can buckle easily. Therefore, 

stacking sequence changes the buckle state of the structure. 

The first four dominant mode shapes were found by using DQM and ABAQUS for 

the composite plate in Figure 4.1. For the plate in Figure 4.1, 𝑎 = 200 mm, 𝑏 = 200 

mm, and ℎ = 1 mm, the plate is simply-supported from all edges. The plate contains 

plies made of Glass-E-fiber and polyester resin. The plate consists of eight plies with 

equal thickness, and the fiber volume fraction and laying angles of each ply are 

shown in Table 4.2. Mode shapes obtained from DQM are shown in Figure 4.13, and 

mode shapes obtained from ABAQUS are shown in Figure 4.14.It is seen that the 

buckling mode shapes obtained for the same configurations in DQM, and ABAQUS 

are the same. 
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Figure 4.13. Dominant mode shapes of SSSS [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin from DQM, 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1.0 , 

ℎ = 1 𝑚𝑚 , 𝑉𝑓(𝑧) = 0.4(
|𝑧|

ℎ
) 

 

Figure 4.14. Dominant mode shapes of SSSS [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin from ABAQUS , 𝑎 = 200 𝑚𝑚 , 

𝑎

𝑏
= 1.0 , ℎ = 1 𝑚𝑚 , 𝑉𝑓(𝑧) = 0.4(

|𝑧|

ℎ
) 
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In Figure 4.8, the boundary condition for the calculated state of the critical buckling 

temperature has been changed to clamped. Everything except the boundary condition 

has remained the same for the state, whose results are shown in Figure 4.8. The 

critical buckling temperature value calculated for five different thicknesses in the 

clamped boundary condition is shown in Figure 4.15. 

 

Figure 4.15. Critical buckling temperature of CCCC [60/−30/90 /45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1 ,𝑉𝑓(𝑧) = 0.4(

|𝑧|

ℎ
) 

In Figure 4.15, the critical buckling temperature was calculated for the graded fiber 

reinforcement composite plate with symmetrical laying angles. The change in critical 

buckling temperature for the composite plate clamped at all edges is seen according 

to the increase in thickness. The increase in thickness increases the stiffness value of 

the plate and the resistance of the plate against deformation becomes higher. As seen 

in the Figure 4.15, the critical buckling temperature increases as the thickness 

increases. There is  also an agreement between the results of the study and the results 

obtained from Abaqus. When Figure 4.15 and Figure 4.8 are compared, the critical 

buckling temperatures of composite plates with the same configuration are different 
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at different boundary conditions. The critical buckling temperature value seen in 

clamped boundary conditions is higher than that of simply supported. This can be 

explained by the fact that the clamped boundary condition is a more rigid boundary.  

The thickness and boundary condition of the plate whose critical buckling 

temperature value was calculated in Figure 4.10 was changed. The thickness value 

of the plate was made to 3 mm, and the critical buckling temperature value was 

calculated for the clamped boundary condition. The results are as in Figure 4.16. 

 

Figure 4.16. Critical buckling temperature of CCCC [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin, 𝑏 = 100 𝑚𝑚 ,ℎ = 3.0 𝑚𝑚 

𝑉𝑓(𝑧) = 0.4(
|𝑧|

ℎ
) 

In Figure 4.16, the change of critical buckling temperature according to aspect ratio 

is seen. As expected, when the dimensions of the plate increase, the critical buckling 

temperature decreases. 

The boundary condition of the plate, whose critical buckling temperature was 

calculated for three different lamination schemes shown in Figure 4.12, was changed 
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to clamp. The critical buckling temperature was calculated for three different 

lamination schemes in the clamped boundary condition. The results obtained from 

DQM are shown in Figure 4.17. 

 

Figure 4.17. Critical buckling temperature of CCCC  angle plies composite plate 

with glass fiber and epoxy resin from DQM, 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1.0 , 𝑉𝑓(𝑧) = 0.4(

|𝑧|

ℎ
) 

Critical buckling temperature of the composite plate with symmetric ply sequence 

was found for three  fiber  angle configurations at different thicknesses. The 

temperature values can differ with respect to orientation. It is understood from the 

results obtained that the fiber orientation angle affects the mechanical properties of 

the structure. The reason is same as in mentioned for Figure 4.12. In addition, plates 

with different fiber orientation angles may behave very similarly. The results in 

Figure 4.17 show that the critical buckling temperature values of the plate with two 

different fiber orientation angles can be very close. 

The boundary condition of the plate, whose first four dominant buckling mode 

shapes are shown in Figure 4.13 and Figure 4.14, has been changed to clamp. The 
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first four dominant mode shapes were obtained using DQM and ABAQUS for the 

clamped boundary condition. The result in Figure 4.18 was obtained from DQM, and 

the result in Figure 4.19 was obtained from ABAQUS. When the buckling mode 

shapes obtained from DQM and ABAQUS are compared, it is understood that both 

methods give the same results. 

 

Figure 4.18. Dominant mode shapes of CCCC [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin from DQM, 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1.0 , 

ℎ = 1 𝑚𝑚 , 𝑉𝑓(𝑧) = 0.4(
|𝑧|

ℎ
) 
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Figure 4.19. Dominant mode shapes of CCCC [60/−30/90/45]𝑠 angle plies 

composite plate with glass fiber and epoxy resin from ABAQUS , 𝑎 = 200 𝑚𝑚 , 

𝑎

𝑏
= 1.0 , ℎ = 1 𝑚𝑚 , 𝑉𝑓(𝑧) = 0.4(

|𝑧|

ℎ
) 

4.5 Numerical Results for Unsymmetric Laminates 

The plate with dimensions 𝑎, 𝑏, and ℎ is shown in Figure 4.20. This plate has 

dimensions of 200𝑥200 mm and consists of eight plies with a laying angle of 

[60/0/45/90/30/−60/45/90]. The plate is simply- supported from all sides. The 

plies are composed of Glass-E-fiber and polyester resin. The composite plate is 

graded in the thickness direction. Gradation is provided by the fiber volume fraction 

changing in the 𝑧-direction. The fiber volume function is 𝑉𝑓(𝑖) = 0.4(1 −
𝑖

𝑁
). Table 

4.4 shows the laying angles and fiber volume fraction of the plies. The plate has an 

initial uniform temperature, which is then uniformly increased. After a while, it 

started to buckle under the axial compressive force caused by the boundary 

conditions at a certain temperature difference. The critical buckling temperature 

value that caused this load was calculated using ABAQUS and DQM for five 
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different plate thicknesses. The mesh density used is 13𝑥13, and the element type is 

S4R.In DQM, the plate is divided into 13 grid points, each in the 𝑥 and 𝑦 directions. 

Plies are numbered from 1 to 𝑁 when they are numbered starting from the top. 

𝑖 denotes one minus the examined ply number. Therefore, 𝑖 takes  a value from 0 to 

(𝑁 − 1).  𝑁 represents total ply number. 

 

Figure 4.20. Laminated composite plate with variable fiber volume fraction 

Table 4.4 Plate’s lamination scheme and fiber volume fraction of each ply 

Plies 𝑽𝒇 Orientation Angle (°)Küçük  

Ply 1 
Ply 2 
Ply 3 
Ply 4 
Ply 5 
Ply 6 
Ply 7 
Ply 8 

0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 

 60 
 0 
 45 
 90 
 30 
-60 
 45 
 90 

 



 

 

67 

 

Figure 4.21. Critical buckling temperature of SSSS  [60/0/45/ 90/30/−60/45/90]     

angle plies composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1, 

𝑉𝑓(𝑖) = 0.4(1 −
𝑖

𝑁
) 

Figure 4.21 shows the critical buckling temperature values of graded fiber 

reinforcement composite plate with unsymmetric ply sequence. The variation of the 

critical buckling temperature value with the increase in thickness was investigated. 

The critical buckling temperature increasing according to the increase in thickness is 

associated with the increase in the stiffness value of the plate depending on the 

thickness. It is more difficult for the thicker plate to deform and switch to the bending 

mode. The critical buckling temperature values calculated in this study are in perfect 

agreement with the results in Abaqus. 
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Table 4.5 Critical buckling temperature of SSSS  [60/0/45/ 90/30/−60/45/90]     

angle plies composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 ,
𝑎

𝑏
= 1, 

𝑉𝑓(𝑖) = 0.4(1 −
𝑖

𝑁
) 

Thickness (mm) DQM (℃) ABAQUS (℃) Error (%) adı 

1 
2 
3 
4 
5 

0.624 
2.497 
5.618 
9.987 
15.605 

0.645 
2.562 
5.713 
10.050 
15.525 

3.2 
2.6 
1.7 
0.6 
0.5 

 

The effect of some parameters on the buckling behavior of the laminated composite 

plate was investigated. The change in the critical buckling temperature value of the 

plate was investigated by changing the 𝑎/𝑏 ratio for the plate being examined. The 

plate is simply supported from the edges. The 𝑏 value for the examined plate is 100 

mm, the ℎ value is 5 mm, and 𝑎 value change. This composite plate contains eight 

plies consisting of Glass-E-fiber and polyester resin. The fiber volume fraction and  

orientation of the plies are as in Table 4.4. 
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Figure 4.22. Critical buckling temperature of SSSS  [60/0/45/ 90/30/−60/45/90]     

angle plies composite plate with glass fiber and epoxy resin, 𝑏 = 100 𝑚𝑚 ,       

ℎ = 5.0 𝑚𝑚, 𝑉𝑓(𝑖) = 0.4(1 −
𝑖

𝑁
) 

Figure 4.22 shows the change in the critical buckling temperature value of graded 

fiber reinforcement composite plate with unsymmetric ply sequence according to 

aspect ratio. When a dimension of the plate in the direction of loading is increased, 

the plate's resistance to this load will decrease, so the plate's transition from in-plane 

compression mode to bending mode occurs at lower temperatures. Although there is 

a slight deviation between the calculated value and the value obtained in Abaqus, 

there is an agreement between the values. 

Figure 4.20 shows the composite plate with dimensions 𝑎, 𝑏 and ℎ. The value of 𝑎 

and 𝑏 is 200 mm and plate is simply- supported from all sides. The plate consists of 

eight plies, and there are three different combinations according to the ply laying 

angles. The lamination schemes of this plate are shown in Table 4.6. The material 

and fiber volume fraction change of the plies is the same as in the previous example. 

Critical buckling temperature values were calculated at five different thickness 
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values for three different stacking sequences. Since DQM is correlated, the critical 

buckling temperature value for different orientations is calculated with DQM only 

and the results are shown in Figure 4.23. 

Table 4.6 Stacking sequences 

Lamination Scheme Name Stacking Sequence 

Orientation 4 [60/0/45/90/30/−60/45/90] 

Orientation 5 [75/60/0/90/60/45/45/30] 

Orientation 6 [90/0/45/60/75/30/60/30] 

 

 

Figure 4.23. Critical buckling temperature of SSSS angle plies composite plate 

with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1 , 𝑉𝑓(𝑖) = 0.4(1 −

𝑖

𝑁
) 

The effect of fiber orientation angle on the buckling behavior of the structure was 

investigated. It has been observed that the critical buckling temperatures of the 

composite plate with unsymmetric ply sequence are different at different fiber 
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orientation angles. Most of  the load in longitudinal direction is carried by the 0° 

angled plies ,and high percent of transverse load is carried by the 90° angled plies. 

Composite plates with high number of 0° and 90° angled plies carry less load; 

therefore, it is more difficult to buckle this plate than composite plate with less 

number of 0° and 90° angled plies. Laminated composite plates with the same 

number of 0° and 90° angled plies create more  bending moment with 0° and 90° 

angled plies  being more distant from the mid-surface. For this reason , the plate 

buckles easily. 

The composite plate in Figure 4.20 is 200𝑥200 mm in size and 1 mm in thickness 

and is simply-supported from the edges. This composite plate consists of eight plies. 

Plies are composed of Glass-E-fiber and polyester resin. Ply laying angles and fiber 

volume fractions are shown in Table 4.4. The first four dominant mode shapes for 

the analysed composite plate were calculated using ABAQUS and DQM. Mode 

shapes obtained from DQM in Figure 4.24 and from ABAQUS in Figure 4.25 are 

shown. When the results from ABAQUS and DQM are examined, it is seen that the 

buckling mode shapes are the same. 
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Figure 4.24. Dominant mode shapes of SSSS  [60/0/45/ 90/30/−60/45/90]     

angle plies composite plate with glass fiber and epoxy resin from DQM,              

𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1  ,ℎ = 1.0 𝑚𝑚,  𝑉𝑓(𝑖) = 0.4(1 −

𝑖

𝑁
) 

 

Figure 4.25. Dominant mode shapes of SSSS  [60/0/45/ 90/30/−60/45/90]     

angle plies composite plate with glass fiber and epoxy resin from ABAQUS,              

𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1  ,ℎ = 1.0 𝑚𝑚,  𝑉𝑓(𝑖) = 0.4(1 −

𝑖

𝑁
) 
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The critical buckling temperature was calculated for the clamped boundary condition 

so that only the boundary condition was changed ,and all other parameters remained 

the same, as in the example in Figure 4.21. 

 

Figure 4.26. Critical buckling temperature of CCCC  [60/0/45/ 90/30/−60/45/

90] angle plies composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 , 

𝑎

𝑏
= 1, 𝑉𝑓(𝑖) = 0.4(1 −

𝑖

𝑁
) 

In Figure 4.26, the critical buckling temperature value was calculated for a graded 

fiber reinforcement composite plate with an unsymmetric laying angle. There is a 

nice agreement between the results obtained in the study and the results in Abaqus. 

Comparing Figure 4.26 and Figure 4.21, the critical buckling temperature of the 

composite plate in the clamped boundary condition is higher than that of simply 

supported. Because clamped edge condition increases resistance to buckling mode 

as it reduces the half-length involved in buckling. 
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Table 4.7 Critical buckling temperature of CCCC  [60/0/45/ 90/30/−60/45/90] 

angle plies composite plate with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1, 

𝑉𝑓(𝑖) = 0.4(1 −
𝑖

𝑁
) 

Thickness (mm) DQM (℃) ABAQUS (℃)f Error (%) 

1 
2 
3 
4 
5 

1.565 
6.259 
14.083 
25.037 
39.119 

1.629 
6.489 
14.507 
25.558 
39.482 

3.9 
3.6 
2.9 
2.0 
1.1 

 

The change in the critical buckling temperature value according to aspect ratio is 

shown in Figure 4.22. The results shown in this figure were recalculated for the 

boundary condition clamped and thickness 3 mm. The results shown in Figure 4.27 

were obtained. 

 

Figure 4.27. Critical buckling temperature of CCCC  [60/0/45/ 90/30/−60/45/

90]     angle plies composite plate with glass fiber and epoxy resin, 𝑏 = 100 𝑚𝑚 ,       

ℎ = 3.0 𝑚𝑚, 𝑉𝑓(𝑖) = 0.4(1 −
𝑖

𝑁
) 
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In Figure 4.27, the change of critical buckling temperature according to aspect ratio 

is examined. According to the results, it was seen that the increase in plate size 

decreased the critical buckling temperature. 

The critical buckling temperature value calculated for three different lamination 

schemes in Figure 4.23 was calculated by changing only the boundary condition. The 

values calculated for the clamped boundary condition by using DQM  are given in 

the figure below. 

 

Figure 4.28. Critical buckling temperature of CCCC angle plies composite plate 

with glass fiber and epoxy resin, 𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1 , 𝑉𝑓(𝑖) = 0.4(1 −

𝑖

𝑁
) 

When the results in Figure 4.28 are examined, it is seen that the fiber orientation 

angle affects the mechanical properties. Even though the critical buckling 

temperature values are very close to each other, the values differ as the lamination 

scheme changes. The reason is same as in mentioned for Figure 4.23.  

Mode shapes calculated in simply supported boundary condition for the 

unsymmetric laminated composite plate were recalculated for boundary condition 
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clamped. All parameters except the boundary condition remained as in the example. 

The results are shown in Figure 4.29 and Figure 4.30. Figure 4.29 was obtained from 

DQM, and Figure 4.30 was obtained from ABAQUS. When the results from 

ABAQUS and DQM are examined, it is seen that the buckling mode shapes are the 

same. 

 

Figure 4.29. Dominant mode shapes of CCCC  [60/0/45/ 90/30/−60/45/90]     

angle plies composite plate with glass fiber and epoxy resin from DQM,              

𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1  ,ℎ = 1.0 𝑚𝑚,  𝑉𝑓(𝑖) = 0.4(1 −

𝑖

𝑁
) 
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Figure 4.30. Dominant mode shapes of CCCC  [60/0/45/ 90/30/−60/45/90]     

angle plies composite plate with glass fiber and epoxy resin from ABAQUS,              

𝑎 = 200 𝑚𝑚 , 
𝑎

𝑏
= 1  ,ℎ = 1.0 𝑚𝑚,  𝑉𝑓(𝑖) = 0.4(1 −

𝑖

𝑁
) 
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CHAPTER 5  

5 CONCLUDING REMARK AND FUTURE WORKS 

This study shows the buckling behavior of graded fiber-reinforced composite plates 

under thermal loading. The fiber volume fraction of the investigated composite plate 

is different for each ply; therefore, the mechanical properties of the plate change 

along the thickness. Governing equations and boundary conditions were obtained 

with Hamilton's principle. Displacement equations were written using Kirchhoff 

plate theory. Since shear effects were neglected in the used theory, the behavior of 

thin structures was investigated. The equations obtained were solved as numeric 

using the differential quadrature method. When the results are compared with the 

studies in the literature, the accuracy of the calculations has been verified. In the 

numeric results shown, the critical buckling temperature, and buckling mode shapes 

of graded fiber-reinforced composite plates with symmetric and unsymmetric laying 

angles are calculated for simply supported, and all edges clamped boundary 

conditions. The critical buckling temperature values calculated in this thesis were 

compared with an article, and results were found to exactly match the paper. Since 

there are not enough studies on this subject, the comparison with the literature was 

limited. Therefore, the results obtained in the thesis were compared with the model 

prepared in Abaqus. For the accuracy of the prepared Abaqus model, the compared 

literature study was modeled with Abaqus, and the same result was found with the 

literature. In this way, the accuracy of the Abaqus model was tested, and comparisons 

were made with Abaqus. Thermal buckling analyses of graded fiber-reinforced 

composite plates with symmetrical laying angles were performed for simply 

supported and clamped boundary conditions. There is a good agreement between the 

critical buckling temperature value obtained in the analysis and the result obtained 

in Abaqus up to a certain thickness value. The shear effects arising from the increase 

in thickness affect the results obtained. Due to this effect, there is some deviation 
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between the result obtained in the study performed according to the thin plate theory 

and the Abaqus. When the results obtained in two different boundary conditions are 

examined, it is seen that the critical buckling temperature value in the clamped 

boundary condition is higher. These results are as expected since the clamped 

boundary condition is a more rigid boundary than simply supported. Thermal 

buckling analyses were also performed for clamped and simply supported boundary 

conditions for graded fiber-reinforced composite plates with unsymmetric laying 

angles. There is an excellent agreement between the study's results and Abaqus's 

results. The critical buckling temperature value in the clamped boundary condition 

is also higher in this plate. Finally, the buckling mode shapes of the plates were 

obtained. The mode shapes seen are as expected and support the study's accuracy. 

Unsymmetric composite plates are expected to buckle easier than symmetric 

composite plate because of extra moment originating from unbalance condition of 

unsymmetric laminated plies. In this study, it is observed that unsymmetric plate 

buckled at lower temperature in line with this expectation. Regardless of being 

symmetric and unsymmetric , the number of plies that make less angles in the 

direction of the load ensures that the actual structure is buckled at higher critical 

temperature. Therefore, the buckling behavior of plates with different lamination 

schemes is different since the lamination scheme affects the material properties of 

the structure. When plate reaches critical temperature value, buckling occurs. A 

sudden shape change is observed. Plate switches from in-plane compression mode 

to bending deformation mode. Stiffness of buckled point decreases and load carrying 

capacity of plate decrease. Therefore, deformation of plate becomes easy. The scope 

of studies for graded fiber-reinforced composite materials can be expanded. As a 

future work , it can be investigated how the optimum ply number and fiber volume 

fraction should be for the composite plate with variable fiber volume fraction, which 

provides the same load or temperature increase with a lower weight in order to buckle 

the composite plate in constant fiber volume fraction. In additive manufacturing or 

3D printing, the materials used in obtaining 3D structures are added layer by layer 

to produce the structure. This situation is similar to laminated composite structures. 
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DQM can be applied to both composite structures and structures produced with 

additive manufacturing. For example, when calculating the material properties for 

homogeneous metals coming out of the nozzle layer by layer, the matrix volume 

fraction in the model used can be taken as zero and the material properties can be 

calculated layer by layer by entering 𝐸𝑓  and 𝑉𝑓  into the formulation. Therefore, 

structures produced by additive manufacturing can be analysed with the methods and 

models applied in this thesis. If two or more materials come out of the nozzle, 

analysis can be made for such materials via DQM using the material properties 

calculated for each layer  by taking account the volume fractions and elasticity 

modulus  of each material. A future study can be conducted on this subject. 

Moreover, post-buckling behavior of laminated composite plate with variable fiber 

volume fraction under thermal loading can be investigated for different boundary 

conditions as a new study. 
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