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ABSTRACT

TRIGONOMETRIC SERIES SOLUTION FOR ANALYSIS OF
COMPOSITE LAMINATED PLATES

Kog, Samet
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. Serkan Dag

January 2023, 142 pages

In this study, static bending and free vibrations of symmetric rectangular laminated
composite plates are examined by using a new trigonometric series expansion
technique and finite element analysis. Kirchhoff (Classical Laminated Plate) plate
theory is applied in the analytical formulation of both bending and free vibration
problems. Mid-plane displacement is expanded into a series of trigonometric shape
functions, which allow exact satisfaction of the boundary conditions. In the case of
static bending, application of the Rayleigh-Ritz method leads to a linear system for
the coefficients of the trigonometric series. For free vibrations, minimization of the
energy functional in conjunction with the Rayleigh-Ritz approach results in an
eigenvalue problem. Finite element models for both bending and free vibrations are
constructed by means of plate elements that incorporate first-order shear deformation
theory. Numerical results are generated for simply-supported and fully-clamped
composite plates as well as for a composite plate with a single free and three clamped
edges. The trigonometric series technique developed is verified by comparisons to
the outcomes of the finite element analyses. Presented numerical results illustrate the

effects of geometrical parameters, boundary conditions, and composite plate



stacking sequence on deflection, transverse stresses, natural frequencies, and mode
shapes. The proposed method leads to rapid convergence, possesses computational
efficiency, and could be useful in design and optimization studies involving

laminated composite structures.

Keywords: Rayleigh-Ritz Method, Symmetrically Laminated Composite, Bending,

Free Vibration
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0z

KOMPOZIT LAMINE LEVHALARIN ANALIZI iCIN TRIGONOMETRIK
SERIiSi COZUMU

Kog, Samet
Yiiksek Lisans, Makina Miihendisligi
Tez Yoneticisi: Prof. Dr. Serkan Dag

Ocak 2023, 142 sayfa

Bu calismada, simetrik dikdortgen lamine kompozit plakalarin statik egilme ve
serbest titresimleri yeni bir trigonometrik seri genisletme teknigi ve sonlu elemanlar
analizi kullanilarak incelenmistir. Kirchhoff (Klasik Lamine Plaka) plaka teorisi,
hem egilme hem de serbest titresim problemlerinin analitik formiilasyonunda
uygulanmaktadir. Orta diizlem yer degistirmesi, sinir kosullarmmin tam olarak
karsilanmasina izin veren bir dizi trigonometrik sekil fonksiyonuna genisletilir.
Statik biilkme durumunda, Rayleigh-Ritz yonteminin uygulanmasi, trigonometrik
serilerin katsayilar1 i¢in dogrusal bir sisteme yol acar. Serbest titresimler igin,
Rayleigh-Ritz yaklasimiyla baglantili olarak enerji fonksiyonelinin minimizasyonu,
bir 6zdeger problemiyle sonuglanir. Hem egilme hem de serbest titresimler i¢in sonlu
eleman modelleri, birinci dereceden kesme deformasyon teorisini igeren plaka
elemanlar vasitasiyla olusturulur. Basit destekli ve tam kenetlenmis kompozit
plakalarin yan1 sira tek serbest ve {i¢ kenetlenmis kenarli bir kompozit plaka i¢in
sayisal sonuclar iretilir. Gelistirilen trigonometrik seri teknigi, sonlu eleman
analizlerinin sonuclariyla karsilastirmalar yapilarak dogrulanir. Sunulan sayisal
sonuclar, geometrik parametrelerin, sinir kosullarinin ve kompozit plaka istifleme
sirasinin sapma, diizlem i¢i gerilmeler, dogal frekanslar ve mod sekilleri {izerindeki

etkilerini gostermektedir. Onerilen ydntem, hizli yakinsama saglar, hesaplama

Vil



verimliligine sahiptir ve katmanli kompozit yapilari igeren tasarim ve optimizasyon

caligsmalarinda faydali olabilir.

Anahtar Kelimeler: Rayleigh Ritz Metodu, Simetrik Lamine Kompozit, Egilme,

Serbest Titresim
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CHAPTER 1

INTRODUCTION

In recent years, strength and cost requirements have pushed engineers and
researchers to design lighter and more durable structures. Such design requirements
led to investigations involving stronger and lighter components. Composites are
alternative advanced materials that possess low weight and high strength.
Composites have been used with increasing interest in material science,
manufacturing technology, and theoretical analysis since they were considered
structural materials. The term "composite” is used for structures formed by
combining different materials, but in modern materials engineering, this term usually
refers to a matrix material reinforced with fibers. These materials are called fiber-
reinforced composites. Structures made of fiber-reinforced composites are used in
many engineering projects, like aircrafts, machines, ships, and buildings due to their
higher strength-weight ratios and more lightweight properties. Fiber-reinforced
composite structures provide designers with the convenience of adjusting the fiber
orientation and stacking sequence so that designers can make structures with the
desired strength. A composite structure consists of many layers bonded to one
another to form a high-strength fiber-reinforced laminated plate. Each lamina has a
fiber-reinforced along a single direction. Adjacent layers usually have different fiber
orientations. In order to accurately predict the static and dynamic behavior of fiber-
reinforced plates, mathematical models should be established, and these models
should be solved by analytical and computational techniques to evaluate the main
variables. It is essential to choose the appropriate theories for the analysis and design
studies. Different types of plate theories have been developed to predict these

structures' static and dynamic behavior accurately.



Free or forced vibrations of composite plates are important under certain
circumstances. A fiber-reinfoced plate's geometrical dimensions, material, and
boundary conditions affect its natural frequency. The plate will vibrate with large
deflections if the excitation frequency is equal to one of its natural frequencies.
Knowledge of the natural frequencies of a fiber-reinforced plate under different
boundary conditions might help engineers avoid such problems while designing
structures. In addition, the fiber-reinforced plate must be able to withstand the
intended structural load without cracking, so computation of deflection and stresses
is also important. Mathematical techniques are needed to be developed to accurately
describe their static and dynamic characteristics. These concepts are based on plate
theories. Since most of the time, plates have a small thickness compared to other
dimensions; they can be modeled as 2D (thin) objects instead of 3D objects. There
are a number of plate theories proposed, each of which has its own computational

efficiency.

In this study, a trigonometric series based approach is proposed to analyze the static
and dynamic characteristics of laminated composite plates. The methods put forward
are computationally efficient and shown to lead to results of high accuracy. Finite
element analysis techniques are also used in modeling. The proposed approach in
compared with different approximation method given in the literature. The methods
presented in this thesis could be useful in design and analysis studies involving fiber-

reinforced composite plates.

1.1 Review of Composite Materials

A material that is formed by combining at least two materials with different
properties is called a composite material. The different materials that are brought
together to form a composite structure may not possess the desired properties on their
own. However, a structure that meets the desired performance criteria can be
fabricated when they are brought together. The ability to be designed according to

engineering requirements has made composites useful in different engineering fields.



Secondary structures in the aviation sector have long been made using composite
materials. However, as techniques for producing and maintaining composites have
advanced, composites have been employed as primary structures in the aviation
sector. They are also used in the automotive industry because they can be recycled,
could be more effective in crashes, and are low-weight. Composites are employed in
structural parts of marine vehicles due to their corrosion resistance, in electrical
panels due to their dielectric property, and in construction areas due to their

lightweight and durability.

Composite materials can be classified and characterized by distinguishing between
fibrous and particulate composite materials. Materials that are made of fibers and a
matrix are called fibrous composites. The matrix holds the fibers together and
prevents them from getting damaged. It also transfers the load from one fiber to
another. Particulate composite materials are made of small particles of material that
are placed together by a tough matrix, such as powders or small pieces of material in
a ceramic matrix. Different fiber-reinforced laminas are bonded together to create a
fiber-reinforced laminated composite plate. Composite plies have orthotropic
material properties due to the existence of fibers. Composite materials have
improved mechanical properties compared to isotropic materials due to

reinforcement.

In this study, fiber-reinforced composite materials will be examined since they are
the main part of a rectangular laminated plate structure. These structures consist of
layers or plies made from fiber-reinforced material. Most of the time, the layers will
be oriented in different directions to give the laminate specific strengths and
stiffnesses. So, the strength and stiffness of the laminated fiber-reinforced composite
plate can be changed to meet the structural element's design requirements. When
designing a composite material, it is necessary to determine static and dynamic
responses under different loadings. These responses depend on the fiber orientation,
thickness, dimensions, and boundary conditions. It could be possible to
experimentally evaluate the response of laminated composite plates under external

loadings. Still, they may not always be practical due to the high cost of conducting



experiments. As described in this paper, numerical methods based on plate theories

could be useful in this respect.

1.2 Literature Survey

Due to the increasing strength properties of fiber-reinforced composite plates, they
have been frequently used in engineering fields in recent years. The orthotropic
properties of fiber-reinforced composite plates have allowed them to be used in more
specific areas than isotropic materials. It has become challenging to understand the
static and dynamic responses of laminated fiber-reinforced composite plates due to
the different material properties of each layer. Applying advanced mathematical
models to understand these responses has become imperative. For this reason, many
researchers develop other mathematical models and apply these models to different

problems to analyze fiber-reinforced plates.

To understand the static and dynamic behavior of laminated fiber-reinforced plates,
two different approaches are evaluated based on the three-dimensional or two-
dimensional properties of the plates. These approaches can be called Equivalent
Single Layer (ESL) and Layerwise theory (LW). ESL is displacement-based, and
LW is a mixed formulation-based theory. Carrera [1], Reddy [2], Liew et al. [3], and
Kreja [4] has explained these theories. In three-dimensional approaches,
displacement and stresses at each layer are treated as unknowns. There are different
studies on three-dimensional methods, Srinivas and Rao [5] have explained the
bending, vibration, and buckling behavior of simply supported rectangular plates.
Exact solutions of laminated bi-directional composite plates and shells have been
investigated by Pagano [6]. Ye and Soldatos [7] have studied on the free vibration of
the symmetrical and unsymmetrical laminated cylindrical plates and cylinders in a
three-dimensional approach. Static and dynamic response of the thick laminated
plates analyzed by Fan and Ye [8]. Vel and Batra [9,10,11] have researched thick
laminated piezoelectric composite plates with different boundary conditions. But

these three-dimensional analytical solutions can only work for simple geometries



and boundary conditions. They are also more complicated to calculate than 2D

theories.

Researchers improved two-dimensional theories since 3D theories are
computationally expensive. In ESL theories, all variables are the same, so the
number of variables does not depend on how many layers there are. In two-
dimensional theories, there are different plate theories which are classical laminated
plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order
shear deformation theory (HSDT). There is plenty of research on laminated
composite plates with CLPT. Equivalent single layer (ESL) theory can be used with
CLPT for thin laminated composite plates and shells [12, 13]. For a non-linear
geometric analysis of laminated composite plates, Sun and Chin [14] introduced the
von Karman-type CLPT model. Bending analysis of symmetrically laminated two
orthotropic plies with CLPT has been researched by Reissner and Stavsky [15].
Because it does not consider transverse-shear deformation, the CLPT formulation is
not very good at predicting how composites will behave elastically. An improved
lamination theory that accounts for transverse shear deformation is required to
eliminate this constraint. Whitney & Pagano [16] offered an extension of the First-
Order Shear Deformation (FSDT) model for anisotropic composite plates, while
Dong & Tso [17] introduced the FSDT model for composite shells. Also, static
analysis of cylindrical shells was conducted by Chandrashekhara and Pavan Ku [18]
with both CLPT and FSDT. In the higher-order shear deformation theory (HSDT),
classic displacement equations of FSDT are put into the higher-order terms of the
equation. This can significantly improve the results of thick laminated composite
plates. A typical method is expanding the displacement and strains with power series
concerning thickness coordinates. This formula can get a shear deformation model
of any order. Assuming a cubic description of the displacements for the thickness
coordinate, Reddy [19] proposed a Third Order Transverse Shear Deformation
(TOSD) theory for laminated plates in 1984. Also, Khdeir et al. [20] TOSD theory
has been revised for laminated rectangular composite plates using a Lévy type

solution and state-space approach. From all these theories, it can be understood that



due to the high processing cost of three-dimensional studies, plate theories based on
simplified kinematic assumptions have been developed even though plate geometry
is three-dimensional. Transverse shear deformations, normal deformations, and
rotating inertia are neglected by the classical (Kirchhoff) laminated plate theory
(CLPT). The CLPT vyields appropriate solutions for plates with a thickness/side
length (h/b) less than 0.01 and for plates with h/b between 0.01 and 0.05.

The finite element method (FEM) and Ritz method can solve initial boundary value
problems. Ritz method uses shape (approximating) functions that satisfy the essential
boundary conditions to solve the problem. The Ritz method's degree of freedom is
fewer than the FEM [21, 22]. Linear combination of shape functions is put into the
displacement equation in the Ritz method. Choosing shape functions is the most
critical part of the Ritz method because the precision and speed of convergence of
the problem vary according to these functions. Until now, many shape functions have
been used in problems solved by the Ritz method. The most widely used of these are
polynomial shape functions because these functions are simple to use and have fast
convergence properties. However, due to numerical instability and poor conditioning
problems in high-order polynomials [23, 24], researchers have also turned to other
shape functions. These problems are avoided by using orthogonal polynomials. Bhat
[25] developed a new technique by using the orthogonal polynomial shape functions
that meet the boundary conditions with Gram-Schmidt orthogonalization technique.
In this approach, the initial term of the orthogonal polynomial shape function fulfills
the boundary conditions. After finding these orthogonal polynomial shape functions,
Bhat [26, 27, 28] solved different plate problems. Free vibration problems in
laminated composite plates with the Ritz method have been solved by many
researchers using different shape functions. Leissa [29] solved the free vibration
problem of rectangular composite plates with two opposite sides is simply supported
by using hyperbolic functions. Later, Narita and Leissa [30] used a double sine
trigonometric shape function to solve symmetrically laminated composite plates in
1989. Liew and Lam [31] also used the Graham-Schmidt operation to calculate

isotropic and anisotropic laminated composite trapezium plates with orthogonal



approximation functions. Chow et al. [32] showed free vibration and mode shapes
with orthogonal approximating functions for rectangular laminated plates.
Composite plates with different forms of free vibration results have been investigated
by Geannakakes [33]. Different boundary conditions of symmetric and unsymmetric
plates have been studied by Chai [34] with sine shape functions. Wang [35] analyzed
the free vibration of an obliquely laminated composite plate with small thickness,
including coupling terms into the governing equations. This study shows that it is
essential to strengthen composite plates. Also, Cheung and Zhou [36, 37] researched
the reinforcement of composite plates with using point support and line support. Free
vibration results have been examined with beam shape functions for different edge
conditions. Another study of strengthening the laminated composite plates with plies
layered obliquely (skew) is reviewed by Anlas and Goker [38]. Clamped and simply
supported conditions were analyzed with orthogonal polynomials in this research.
Some composite plates have elastic edge conditions. Amirahmadi and Ansari [39]
have shown buckling and vibration responses of symmetrically laminated plates with
two distinct types of shape functions: polynomial and beam. Functionally graded
composite plates can be analyzed by using the Rayleigh-Ritz method. Chakraverty
and Pradhan [40] studied this type of composite plate for examining free vibration
results under different boundary conditions. Free vibration of plates with too small
in-plane dimensions, which are nanoplates, has also been solved using the Ritz
method. Chakraverty and Behera [41] studied this problem using polynomial
approximating functions. Deghboudj et al. [42] reviewed a cross-ply thin laminated
composite plate utilizing the polynomial and trigonometric sine functions as shape
functions and compared them with FEM results. Nguyen et al. [43] developed
approximating functions as a trigonometric series to solve buckling and free
vibration characteristic of laminated beams with utilizing Ritz method. Static
bending comparison with FEM results of symmetrically laminated composite plate
has been studied by Carrol and Gutierrez-Miravete [44]. This study has been done
when all boundary conditions of plate simply supported and under uniformly

distributed loading. Larita and Leissa [45] researched on buckling of symmetric



laminate composite plate with edges are all simply supported. Five different loading
has been applied on a composite plate and approximating double sine series has been
used in Ritz method.

1.3 Motivation and Scope

This study aims to accurately obtain static bending and free vibration responses of
symmetrically laminated fiber-reinforced composite plates by a trigonometric series
approach. Kirchhoff plate theory is used in the formulation of the problems. Mid-
plane transverse deformation of laminated composite plate is developed using
trigonometric shape functions that satisfy the essential boundary conditions. The
Rayleigh-Ritz method was applied to solve the static bending and the free vibration
problems. The deformation of the mid-plane is expressed in terms of the new
trigonometric shape functions. Solution of a linear system is required to find the
unknown coefficients [2]. The Rayleigh-Ritz method was applied to the energy
function in the solution of the free vibration problem [30], [32], [42]. An eigenvalue
problem is obtained, and natural frequencies and mode shapes are calculated by
solving the eigenvalue problem. A finite element model is used in the verification of
the developed techniques. Numerical results are obtained for simply-supported and
clamped composite plates as well as those with one free edge and three clamped
edges. Parametric analyses are carried out to observe how the results are affected by
different parameters like thickness-to-length ratio, lamination scheme, and aspect

ratio.

This study presents a new method for bending and free vibrations of fiber-reinforced
symmetrically laminated composite plates. The method is computationally efficient

and provided insight into the behavior of composite structures.



CHAPTER 2

GOVERNING EQUATIONS

2.1  The Classical Laminated Plate Theory

The classical laminated plate theory is a type of classical plate theory that uses
laminated composites. So, this theory applies to the fiber-reinforced laminated plates
seen in Figure 2-1. It is assumed that the Kirchhoff hypothesis holds in classical
laminated plate theory [2]:

e Straight lines perpendicular to the mid surface remained straight after the
deformation.

e There is no elongation experienced by the transverse normals.

e After deformation, the transverse normals rotate to stay perpendicular to the

mid surface.

The transverse displacement is independent of the transverse coordinate, and the
normal transverse strain ¢, is assumed to be zero by the first two assumptions. There

are no transverse shear strains ¢,,, €, as a result of the third assumption.

e Classical plate theory utilizes the plane stress assumption; that is, the out of
plane stress o, is zero since the plate is thin.
e This is a reasonable assumption for thin plates as these stresses do not

develop significantly over small thicknesses.



2.2
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Figure 2-1. Configuration of fiber-reinforced laminated plate

Displacements and Strains

Assume that a plate with n orthotropic layers and a total thickness of h has the

principal material coordinates of the kth lamina aligned at an angle 6 to the laminate

coordinate, x as seen in Figure 2-1. It is advantageous, but not necessary, to locate

the undeformed mid-plane of the laminate in the problem's xy plane. The z-axis is

taken positively downward from the mid-plane. The kth layer lies between the

positions and in the thickness direction (see Figure 2-2).

:5}4'"'”-—

hi = zk-1 — 2k

Figure 2-2.Stacking sequence numbering of a fiber-reinforced laminated plate [2]
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It is possible to develop specific assumptions or set limitations when developing the

theory [2], as given here:

e There is a perfect bond between the layers (assumption).

e The material of each layer is linearly elastic and symmetric in three planes.
(limitation)

e There is uniform thickness for each layer (limitation)

e There are small displacement and strains (limitation)

e There is no shear stresses on the top and bottom surfaces of the laminate

(limitation)

A material point at coordinates (x,y,z) in the undeformed laminate shifts to
coordinates (x + u,y + v,z + w) in the deformed laminate, where (u,v,w) are
components of the total displacement vector r along the (x, y, z) axes, as predicted
by the Kirchhoff hypotheses.

T =uéy +vé, + we, (2-1)

Where (&, é,, &,) are unit vectors along the (x, y, z) directions. No differentiation is

made between the material coordinates and the spatial coordinates, between the finite
Green strain tensor and infinitesimal strain tensor, and between the second Piola-
Kirchhoff stress tensor and Cauchy stress tensor due to the small strain and small

displacement assumptions.

The displacements (u, v, w ), according to the Kirchhoff hypothesis, must be such
that:

B ow, (2-2)
ulx,y,2) = up(x,y) — z 9%

ow 2-3

v(x,y,2) = vo(x,y) —z a_yo (2-3)
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W(x'y,Z) = Wo(x»Y) (2-4)

Under some assumptions of Kirchhoff’s hypothesis, the linear strain-displacement
relations are used to calculate the strains associated with displacement. The linear

strain-displacement relation can be written as:

_Ou  Ov  Ow _ 5 _6u+av

B = x5 _ay'gz_ 9z Vv = g"y_ay 0x

_5 _Ou  Ow _ 5 _0v  Ow
Voo = 280 = 5ot G e S 28, =t 50 (2-5)

Kirchhoft’s hypothesis assumptions for strain-displacement relations imply that the
transverse shear strains &,,, €, and transverse normal strain &, are zero in the
equation (2-5). Substitute equation (2-2) -(2-4) into the equation (2-5), it can be
obtained strain-displacement relations of classical laminated plate theory:

£, £,

gx
{} =180 t+zye® (2:6)
Vxy Yy (0) Yy (€8]
(ou [ Oup (9%wp )
c 0x 0x d0x2
o v v, 9%w,
)/xyy =3 y (=) 9y [(T9) ayz |
ou N dv du, N dv, 9%w,
\dy  9dx) \dy  Ox) \ " oxdy) (2-7)

&0, £, £,(0 are the membrane strains and &, (V, &,®), £,(1) are flexural
strains [2].
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2.3 Lamina Constitutive Law

The transverse strain components &,, &5, &, are zero with classical laminated plate

theory assumptions. A thin plate with plane stress assumption is used in formulations

since the thickness is small per in-plane dimensions.

Strain-stress relationship for plane stress (reduced) is given by:

1 _le 0 ]

gl T e
_ 12
&2 = — 0 |02
Y12 Eiy Ez 1 T12
0 0 —
i Gy, (2-8)
i Va1 0 ]
E1y Ey;
—1712 1
[S] = — 0
Ei1  Eyp
0 0 1
Gy, (2-9)

Stress-strain relationship can be determined from inversion of equation (2-8):

01 Q11 Q12 0 €
{02 } = [Q21 Q22 0 ] { €2 } (2-10)
T12 0 0  2Q¢l\¥12/2
[Q] = [S]™* (2-11)
S E 2-12
0y = 22 _ 11 ( )

S11 E;, (2-13)
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S12 _ V2B, (2-14)

(2-15)

E,, and E,, are the Young modulus in x; and x, directions. G, , is the shear modulus
and vy, and v,, are the Poisson ratios. @;; are the reduced stiffnesses of kth lamina
with plane stress assumptions and o;,&; are stresses and strains components,
respectively. These stresses and strains are in material coordinates (x;,x,,x3).

Figure 2-3 shows the material and global coordinates of the fiber-reinforced plate.

~
A
A
\J

x3 =Z x2

Figure 2-3. Representation of material and global coordinate system of fiber-
reinforced laminated plate

The constitutive equations must be translated to the global coordinates since
orthotropic layers are used in laminates with the material axis orientated with those
coordinates. To find transformed constitutive equation, equation (2-10) is multiplied
by transformation matrix [T]. In transformation matrix
m = cosf and n = sinf. Fibers are aligned at an angle of 6 to the global coordinate

as shown in Figure 2-3.
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Transformation of constitutive equations to the global coordinate system can be

expressed as follows:

01 m?2  n? 2mn Ox x
{02}=[ n? m? —Zmn]{ay}:[ﬂ{ay} (2-16)

T12 —mn mn m?—n?

& &y
if-rif)
Y12 Vxy (2-17)
Ox Q11 Q12 0 €x
T]{% = 21 22 0 T]yé&
[ ]{Txyy} [Qo Qo 2Q6J[ ]{nyy} (2-18)

Txy Exy (2-19)
Ox m?  n? 2mn 1 [Qu Q12 O
Oy e=| n?> m? -2mn Q1 Q22 O
Txy -mn mn m?—n? 0 0 20Q
m?  n? 2mn (&«
n?2 m? —2mn |i%
—mn mn m?—n?l{&y (2-20)
Finally, transformed constitutive equations can be written as:
Ox Q11 Q12 Qie|(&x
oy, =10 0 0 &
{T 3’} 912 ?22 st {SY } (2-21)
y Q6 Q26 Qel ™
In equation (2-21), reduced stiffnesses are given by:
Q11 = Q1,c05*0 + 2(Q15 + 2Qs)sin%6c0s%6 + Q,,sin*0 (2-22)
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Q12 = (Q11 + Qup — 4Q4)sin%0c0s%6 + Q,,(sin*6 + cos*8) (2-23)
622 = Qllsin49 + Z(le + 2Q66)Sin29C0529 + 022COS49 (2'24)

616 = (Q11 — Q12 — 2Q66)Sin9C0539 + (Q12 — Q22 (2-25)
+ 2Q46)sin30cos6

Q26 = (Q11 — Q12 — 2Q46)sin>6cos6 + (Q12 — @, (2-26)
+ 2Q4g)sinbcos30

626 = (Q11 — Q12 — 2Q66)Sin39C059 + (Q12 — Q22 (2-27)
+ 2Q¢)sinfcos30

0Q; ; are the plane-stress transformed reduced stiffnesses.

2.4 Force and Moment Resultants

The equilibrium of the differential element can be considered shown in the Figure 2-
4. Since the stresses are functions of spatial coordinates, a first order Taylor series

expansion is used to consider variations in term.
ay +%Ay

ot
VX
I Tyx + ay Ay

»
>

3
o, — —> o + 7 Ax

0T,
Yy
b Tyy + ax Ax

Figure 2-4. Small element of linear elastic body
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Equilibrium requires that

Z F =0 (2-28)

do.
—0o,(AyAz) + (ax + a—xxAx) AyAz — 0y, (AxAz)

do
+ (axy + ﬂAy) AxAz = 0

dy (2-29)
Equation (2-29) reduces to the following equation:
doy 00y, 0 (2-30)
0x dy
Equilibrium equations in 3D are written as:
00, 00y, 00y, (2-31)
ax "oy t7az 0
00y N day, N doy, _o (2-32)
dx dy 0z
00y, N doy, N do, o (2-33)

dx dy 0z
Integrating the equilibrium equations (2-31), (2-32), and (2-33) through the

thickness, the force (N) resultants can be found as follows:

(0o, Jdo do. 3\
2 X ap,

njz | 0x oy 0z
doy, do, 00y,

ax T dy t 2 + by
do,, doy,, OJo,

\ JOx dy 0z +bZJ (2-34)

rdz =20

—h/2

G fh/z G fh/z h/2 (2-35)
— 0,dz + — Oxydz + [0,,] 55, =0
Ox —h/2 * dy —h/2 i Helmh/2
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9 (M2 9 (M2 2-36
—f Oxydz + —f 0,dz + [ayz]ﬁ/z =0 ( )

0 fh/z 0 J-h/z hy2 (2-37)

— dz + — dz + =0
ax _h/zo-XZ Z ay h/zayz Z [O-ZZ]—h/Z

Force resultants can be written from equations (2-35) and (2-36):

h/2
dz
h/z crxy (2-38)
Since the plate is multi-layered with n-plies, the integral can be re-written as follows:
NX n Zk Ux
N, | = 2 f o ] dz
y y

Ney| k=121 Oxy (2-39)

Considering the moments about the x and y axis respectively, it can be written as:

9 2 h/2 h/2
— zadz+—] Zo dz+—f z0,,dz =0
ox f_h,z Ty )y 2 T 0z) (2-40)

P fh/Z n/2 9 (2
-— Z0yydzZ + — f z0ydz + — f Z0,,dz =0
0x —h/2 a h/2 0z h/2 ( 2_41)

Moment resultants can be written from these integral equations (2-40) and (2-41).

h/2
zdz
-[7]] oty

Since the plate is multi-layered with n-plies, the integral can be re-written as follows:

M, nooz [Ox
My = [O-y ] zdz

Mxy k=1"%k-1

Ony (2-43)

Equations (2-39) and (2-43) shows the force and moment resultants of fiber-

reinforced plate as seen in the Figure 2-5.
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Figure 2-5. Force and moment resultants of fiber-reinforced laminated plate [13]
2.5  Equations of Motion

There are many possible configurations in a mechanical system. These
configurations satisfy the geometric constraints of the system. Only one of these
possible configurations matches the actual configuration, and from this
configuration, the equilibrium equations or motion of the system can be found. These
configurations are derived from infinitesimal variations of the actual configuration.
Virtual displacement occurs when a mechanical system changes its configuration.
While using the virtual displacement and forces, § operator is used. It is called a
variational operator [2]. § operator shows a change in the given displacement. This
operator is beneficial in obtaining governing equations from the virtual work

principle. Equation (2-44) shows the first variation of F with using 6 operator [2].

oF JoF .
OF = —68u+—48u’ (2-44)
u u
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Functionals are integral expressions of dependent variables. Thus, a functional

transforms dependent variable u to real number I(u).

For example, consider functional I(u) expressed in interval (a, b) and obtaining the

maximum or minimum of this functional [2]:

b (2-45)
1) = f FOou@u@))dx  u(@) =ug  u(b) = u,
a
In order to have minimum or maximum of the functional, the first variation of

functional, equation (2-45) should be zero:
8 =0 (2-46)

To calculate governing equations of equilibrium configuration, mechanical system
is subjected to virtual displacements du, v, and éw from its actual configuration.
These virtual displacements are continuous functions and satisfy the geometric

boundary conditions of the mechanical system.

In this study, the principle of virtual displacements are used to obtain equations of
motion of the fiber-reinforced plate with using equations (2-44) — (2-46). If the
mechanical system is in equilibrium, work of external and internal forces done over
virtual displacements is zero. The principle of virtual displacements can be expressed

as follows [2]:
0U + 8V = 6T (2-47)

In equation (2-47), §U and 8T represents variation strain energy and variation kinetic
energy of fiber-reinforced plate. Externally applied forces on the fiber-reinforced

plate cause virtual work &V.

Virtual strain energy of the system, virtual work done by the applied forces, and

virtual work done by the inertia force ma can be expressed as [2]:

6U=ijaij5gijdv (2-48)
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—J-.[pdwds (2-49)

ow aaw (2-50)
o [ [ fgrmar= [ [ [

Where dv is volume, ds is surface, and p, is the mass density of the fiber-reinforced

plate. p is the applied force on the fiber-reinforced plate.

Equation (2-47) is known as principle of virtual displacement. Equations of motion
of laminated fiber-reinforced plate can be found using the virtual work principle or

known as Hamilton’s principle [2].

Integrate the equation (2-47) with respect to time leads to the Hamilton’s principle

[2]:
0= J(SU + 6V — 6T)dt
(2-51)
Virtual strain energy 6U can be written for fiber-reinforced laminated plate as [2]:

h/2 (2-52)
oU = f f f (0x0ex + 0y 6¢€), + 204,66y, )dzdydx
h/2

Virtual work done by externally applied force §V for fiber-reinforced laminated plate

can be written as [2]:

a rb 2-53
5V = f f 0 (x,y) Swo(x,y))dydx (259)
0 0

Virtual kinetic energy 8T for fiber-reinforced laminated plate can be written as [2]:

h/2 (2-54)
0T = J j j 0[Sty + V6V + WySWy)]dzdydx
h/2

p(x,y) is the pressure distribution on top of the fiber-reinforced plate.

Substituting equations (2-52) -(2-54) into the equation (2-51) and integrating through

thickness, it can be obtained [2]:
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T
a rb
0= f { f f [NSer @ + M, 56, Y + N, 5, + M, 8¢,V
0 Y0
0

+ ny6yxy(°) + Mxy8yxy(1) — péw,

I, is the mass per unit area of the fiber-reinforced laminated plate [2].
"z (2-56)
Iy = f podz
—h/2

Virtual strains can be represented in terms of virtual displacement as equation (2-7)

real strain in terms of real displacement [2].

ddu, 0wy déw, (2-57)
0 _ 0 0 0

O = 0x * ox 0x
d6vy 0w, déw, 2-58
6ey(0) = 04 2 0 ( )

dy dy Ody
57, @ = douy N dov, N aéwy dw, N dw, déw, (2-59)

Xy dy 0x ox dy 0x Ody

028w, 2-60
5£x(1) = — axzo ( )
68 6} _ 626W0 (2'61)

y ayZ
926w (2-62)
5ny(1) = -2 axayo

5, 8¢, ¢, are the virtual membrane strains and e, ", &, D, 5, ™
are the virtual flexural strains.
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Substituting equation (2-57) -(2-62) into the equation (2-55), it is found [2]:

T
a rb
0= f {f f [_(Nx,x+ny,y - Ioilo)8u0—(ny‘x+Ny,y
0 0 Y0
- IOﬁO)gvo_(Mx,xx + ZMxy,xy-l-My'yy +p
- IoWO)tSWO]dydx} dt (2-63)

Setting the du,, 6v,, and Sw, coefficients of equation (2-63) zero separately, gives

the equation of motion of fiber-reinforced laminated plate [2].

ON, ON,, 928u, ( 2-64)
duy: o + 3y =1, 32

dN,, N, 926w, ( 2-65)
dvy: I + 3y =1, 32

0°M, 20°M,, 0*M 92w ( 2-66)
owy: Y Y Ly) =1
Wo' gxz Y oxay T oy TP =g

2.6 Laminate Stress Resultant-Strain Relationship

Substitute force resultant equation (2-39) into the constitutive law equation (2-21),
force resultant relation with strains are obtained.

N, Nz [Qu Q2 Que £x(® &'

M < e 1
Ny | = Zf 912 922 926 83’(0) tz gy( : z (2-67)
Nyy k=1"%1{0Q16 Q6 Qes ny(o) yxy(l)
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Ny Ay A Ase gx(O) Bi1 Bi; Bis gx(l)
Ny (=141 Az Ag|{ & p+|Biz Bay Bagl{ &Y 2-68
Ny Ae Az Aes yxy(O) Bi¢ Bys Bgg )’xy(l) (2-68)
N
— A ()
Atj—zQu (2 = 2g-1) (2-69)
k=1

1 N W (2-70)
B;j = EZ Qi (zi* — zx—1?)
=1

A;; are extensional stiffnesses and B;; are bending extensional coupling stiffnesses.
These stiffnesses are in terms of the plane-stress transformed reduced stiffnesses Q; i

Substitute moment resultant equation (2-43) into the constitutive law equation (2-
21), it is obtained moment resultant relation with strains.

M, (\211 @2 (216 £

N

Zk
AR A
Mey| =17%11Q16 Qa6 Qoo ny(o)

£,
+22{ &M Ydz (2:71)
)/xy(l)
- - —
Ml N[0 Q2 Qi |4 &
My | = 912 ?22 926 E(Zkz — zx_12)4 &
Mey|  ¥=1[{016 Q26 Qo6 Viey®
) £, ™
+2 (28 — 2 ®){ &Y
3 0 (2-72)
Vxy
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Finally, moment resultants are written as:

Mx Bll B12 Bl6 gx(O) D11 D12 D16 gx(l)
My |=|Bi2 By Bas|{ & p+|Diz Dz Dygl4 &™) 2-73
Mxy B16 BZ6 B66 ]/xy(o) D16 D26 D66 -yxy(l) ( - )
1 N
A~ (k)
D;j = 52 Qij  (@° = zk—1*) (2-74)
k=1

D;; are bending stiffnesses. These stiffnesses are in terms of the plane-stress
transformed reduced stiffnesses Q;;.

2.7  Governing Equations for a Fiber-Reinforced Symmetrically Laminated
Plate

Substitution of strain equation (2-7) into the force resultant equation (2-68) and
moment resultant equation (2-73) leads to force and moment resultants in terms of

displacements.

[ 0uy %w,
dx?
Ny A11 Arp Age ggo Bi1 Biz By %w,
Ny | =141, Az Azl v ¢+ B2 B2z Bae|? Ve r
Ney| lis Ass Al |, 7o | Bie B Besl| °)
_0+_0 _ aWO
dy  0x \ " 0xdy) (2-75)
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( Ouy

Ox
M, Bi1 Biz Bis v,
My | =|By; Bj; BaslX E T
M, Bis Bas Beg duy v,
_+_
\dy  Ox)
( _azwo\
D, Dy, D 0x*
11 12 16 aZWO
+ D12 Dzz Dae|s — 57 >
Di¢ Dz6 Des -
. (2-76)
\  Jdxdy/

Substituting equation (2-75) and (2-76) into the equation of motion of fiber-
reinforced laminated plate (2-64) -(2-66), leads to the governing equations.

0%u® o%u’ 0%u® 0%v° 0%v°
Ay F 2A16% + Ase 7 + A16W + (A12 + Age) 9xdy

52,0 93w0 33w0 3,0
— By EEEE 3B16m — (B12 + 2Bes) 9x9y?

3w’ 9%8u, (2-77)

aZuO azvo aZuO 62 0 aZuO
A 5x2 +2A26a ay+A26 37 + Age 522 + (A2 +A66)axay
9210 93wO 93wO 30
+4z2 92 BwW 26552 (Blz+2366)a 29y
3w? d%8v, (2-78)
By, 3 — 1o 2
dy dat
a4W0 a4W0 4.,,0 64W0

w
Dy4 E + D5, 3y* +2(Dy; + Dee)m + 4D16m

2*w?o
+4Daeg oo
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d23u® 23u® 23u® 03u®

—Bi1 55— 3B 9x20y (B12 + 2Bse) axdyZ By e
0300
— D16 0x3
631]0 aBUO aSUO

—(B12 + 2Bee) ax20y 3B oxdy? B2 7
92w (2-79)
0
=p(x,y) — o 52

Simplifications for governing equations of a symmetric fiber-reinforced laminate:

e For symmetrically laminated plates, the coupling stiffnesses B;; are equal to
zero. The governing equation is simplified by removing the bending
extension coupling.

e The governing equations for in-plane deformation (2-77), (2-78) and
governing equation for bending of symmetric laminates can be decoupled
when the strain-displacement equations are linear.

e If there are no in-plane forces or displacements, the in-plane strain is zero,
and the only equation to solve is the bending one (2-79).

Under these simplifications the governing equations are simplified as follows [2]:

0*w, 0*w, 0*wy, 0*w,
—Dy, axt 2(D1z + 2Dg) W_DZZ Tyt 4D 9x30y
0*w, 92w,
—4D,, ——— V) = 1g——— -
% gxay? TPV =h G0 (2-80)

Presence of the bending-twisting coupling stiffnesses (D;¢, D2¢) prevent to obtain
exact Navier solutions, so the solution of the governing equation is required to apply
the Ritz or finite element approach. In the following sections, Ritz method will be

applied to bending and free vibration problems.
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CHAPTER 3

TRIGONOMETRIC SERIES SOLUTION OF FIBER-REINFORCED
LAMINATED PLATES

3.1.1 Rayleigh Ritz Approach

The virtual displacements concept provides the equilibrium equations as Euler-
Lagrange equations. These governing equations are differential equations, which can
sometimes be challenging to solve analytically. These differential equations can be
resolved using approximation techniques. Ritz [47] proposed a method for
approximating the results. The Ritz method uses weak form of governing equation
and minimum total potential energy principle, as well as variable expressions that
are identical to the fundamental differential equations, as natural boundary

conditions.

The basic ideas of the Ritz approach are described here using virtual displacements
or minimum total potential energy principles. In the Ritz approach, the dependent

unknown of a given problem is estimated using a finite linear combination of the u

2]

Al (3-1)

uzUN=ch<pj

j=1
c; will be determined that the principal of virtual displacement provide for the
approximate solution which minimize the minimum total potential energy with

respect to Cj.

In the above equation c; is the undetermined parameters, and ¢; is approximating

(shape) function which was selected to satisfy the geometric boundary conditions.
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3.2  Static Bending and Stress of Fiber-Reinforced Laminated Plates with
Rayleigh-Ritz Method

In static equilibrium, the total forces acting on the fiber-reinforced laminated plate is
zero according to Newton’s second law. Thus, total virtual work i.e. sum of internal
and external works is zero for conservative system. In other words, the total virtual
work done due to virtual displacement for a fiber-reinforced plate in equilibrium is
zero. The idea behind this argument is called the theory of virtual displacement.

The concept of minimum total potential energy is a specific case of the principle of
virtual displacements that applies to both linear and nonlinear elastic bodies [2]. The
first variation of strain energy 6U and variational work is done by externally applied
force 8V of fiber reinforced laminated plate expressed in equations (2-52) and (2-
53).

The principle of minimum total potential energy of the fiber-reinforced plate can be

expressed as [2]:
SM=8U+6V=0 (3-2)

Substitute equations (2-52) and (2-53) into equation (3-2), it is found [2]:

a rb
0= f f [N, 8ex @ + M, 56, D + N, 6, + M, 5e,
0 Y0 ( 3_3)
+ ny5yxy(0) + Mxy6yxy(1) —p(x,y)6wy] dxdy

Substitute equation (2-57) -(2-62) into the equation (3-3), it is obtained minimum

potential energy principle with virtual displacements expressions [2]:

a rb
0 :f j- [_(Nx,x+ny,y)6u0_(ny,x+Ny,y)6U0_(Mx,xx
0 0 ( 3_4)

+2M

xyxyTM

vyy T 0(x,y))éw]dydx
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Under assumptions of governing equation of the symmetrically laminated fiber-

reinforced plate, equation (3-4) can be simplified as:

(3-5)
0= f J. (Mxxx xyxy My,yy + p(x,¥))éwldydx
Substitute equation (2-77) into the equation (3-5), it can be obtained [2]:

0*w, 0w,
[ [ -1pa St = 200y, + 2000 St -y, T

0*w, wo
~ D16 505~ 4z s

Recall that weak form or virtual displacement form of partial differential equation

+p(x, y))0weldxdy  (3-6)

can be expressed as:

92y ! e = oudsu (3-7)
922 MY T ) ax o ¥

The weak or principle of virtual displacement forms of the equation (3-6) of the
symmetrically laminated fiber-reinforced plate can be written with using principle

of equation (3-7) as follows [2]:

b
[ 0%wg0%8w, 92w, 026w, 92w, 925w,
=f_[ 153 5.2 T Diz 2 2 Tt o2 2
dx*% Ox dy? Ox dx% Jdy
00
02w, 026w, 4 02w, 026w,
22 9y2  9y? %6 0xdy dxdy
20, 02w, 026w, N 92w, 028w,
0xdy 0x? dx? 0xdy
02wy 028w,  0%w, 0%6
+ 2D, 0 0 Wo Wo
dxdy 0dy? dy? 0xdy

—p(x, y)SWO} dxdy (3-8)

Static bending problems for different boundary conditions can be solved by using

the Ritz method. The Ritz approach is based on variational statements, often called
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the weak form, that is equivalent to the governing differential equations and the
natural boundary conditions, such as those provided by the principle of virtual

displacements or the minimum total potential energy.

Linear combination of displacement variable of symmetrically laminated fiber-
reinforced plate can be expressed as:

(3-9)
wo(%,y) = Wyn(%,y) = ZZ ERY

i=1j=1
®;j(x,y) denotes the approximating or shape function of the fiber-reinforced plate

and can be represented as:

= X,(Y () (3-10)

X;(x) and Y;(y) are the approximating (shape) functions which satisfy the geometric

@i (x,¥)

boundary conditions in x and y direction. Substituting equation (3-9) and (3-10) into

the weak form of the static bending governing equation (3-8), it can be found [2]:

b
o | [ dzx . dzx,
0=> 1] | |pug i g
J 00

Y, X

dzdx2

L X, +d2Xi a2y,
dx? pdy

D XdZYJX d?y, 4, 4p, 4K 4Y dXp dYg
2200 4y2 OP gy2 6 dx dy dx dy
dX; dY; d*X, +dzxde day,
dx dy dx2 dx? 7 dx dy
+op,, (Yt y
26\ dx dy pdy
d%Y; dX,, dY, e
Cdy? dx dy )| (U

(3-11)

b a
—ffp(x,y)Xqudxdy
00
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forp =1,2,..,Mand g = 1,2, ..., N. Mand N are the order of Ritz series expansion

of the admissible functions in x and y directions

Equation (3-11) can be used to solve bending problems when using appropriate shape
functions which simulate the essential (geometric) boundary conditions. Equation

(3-11) can be expressed as matrix form:

[H];jpglclij = [Plyq (3-12)
In order to solve the undetermined parameters c;;, inverse of [H];;,, matrix is

multiplied with [P],,, matrix as:

[C]ij = [H]iqu_l[P]pq (3-13)
In this study, three different boundary conditions have been used to obtain static
bending and stress results of the fiber-reinforced laminated plate. These boundary
conditions are simply-supported, clamped, and one free and three clamped edges.
While obtaining these results, shape functions are used with the Ritz method. In order
to use shape functions for boundary conditions, it is necessary to know the behavior
of boundary conditions. Table 3-1 shows the behavior of different types of boundary
conditions of the fiber-reinforced plate. In this table, M,, M,,, and M,,, denotes the
bending moment in x and y direction and twisting moment, respectively. Q,. and Q,,
represents the shear forces. In-plane dimensions of fiber-reinforced plate are a and

b in x and y direction.
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Table 3-1. Conditions of edges of the laminated fiber-reinforced plate [31] [37]

BCs Edges Boundary Equations
x=0 WO(O,y)=O, Mx(O,y)z()
. xX=a wo(a,y) =0, M, (a,y) =0
Simply-Supported
y = 0 WO(X,O) =0, My(x’()) =0
y:b Wo(x,b):O, My(x’b) =0
x=0 _ dwy(0,y)
wo(0,¥) =0, B 0
= dwy(a,y)
e e wo(a,y) =0, "d—x =0
ampe
= d ,0
y=0 wo(x,0) = 0, —W(’d(; )
y=b woeby =0, &b
dy
f— dey(O! J’)
x=0 M (0)=0, —2==+Q,=0
dM.,.(a,
x=a M,(ay) =0, M+Q ~0
dx x
Free TG 0)
= — xy _
y=0 M,(x,0) =0, —+0Q,=0
— dM, (x, b) _
y=>b My(x,b) =0, —7=—+Q,=0

New trigonometric shape functions have been developed in accordance with the
behavior of the boundary conditions given in Table 3-1. These functions are used in
trigonometric series expansion Ritz solution for different boundary conditions to
solve the bending problems. The shape functions to be used are provided in Table 3-
2. In this table, S-S-S-S, C-C-C-C, and C-F-C-C represents simply-supported,
clamped, and single free- three clamped plate.
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Table 3-2. New Trigonometric shape functions used in bending problems

Shape Boundary Conditions
Function S-S-S-S Cc-C-c-C C-F-C-C
L imx  jmy mx | imx  my .y i—-Dn my | jmy
(pl-]-(x,y) SIHTSIHT Sln?SlnTSIHFSIHT (1 — COS( x) SID?SII’IT

These trigonometric shape functions are substituted into the Ritz series expansion
equation (3-9). Then, this series expansion equation is used in conjunction with weak
form of the bending governing equation to solve c;;. After finding these parameters,
transverse deflection w,(x,y) can be calculated. This procedure is integrated into
the math package MATLAB.

Equation (2-21) is used when calculating the transverse stresses of the kth layer of
fiber-reinforced plates. Substitute strain-displacement relation equation (2-7) into the
equation (2-21) and neglect the in-plane deformations because of symmetrically
laminated fiber-reinforced assumptions, it is obtained:

( 02wy
~ - ~ k| 0x?
Oxx\¥ 911 (_?12 916 OZWO
{O-yy} =—Z Q12 QZZ Q26 ] ayZ (3 14)
Oxy A A ~ -
Q6 Q26 Qo6 92w,
\ Jdx0dyJ

In order to calculate transverse stresses of fiber-reinforced plate with Ritz method,
substitute equation (3-9) into the equation (3-14), transverse stresses with shape
functions are given by:

(0%

2

Oxx\ N Q11 Q1 ka 0629;
Oxy i=1 Q6 Q26 Qoo 920,
2 ]

\ 0x0y)
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Finally, normal and shear stresses of plies can be calculated since c;; are determined

for different boundary conditions at previous part. o,.,.*, o,,,* , and o,.,,* of kth layer

Oyy
can be expressed as:

‘PU

a ®; 62<pi- ( 3-16)
+ Q12 X = _]l Cij

O = ) —2z [Qn o7 + Q16 ¥

Substituting the undetermined parameters c;; and shape functions ¢;; which is taken

from Table 3-2, transverse stresses are calculated. This procedure is integrated into
the math package MATLAB.

3.3 Free Vibration of Fiber-Reinforced Plates with Rayleigh-Ritz

Eigenvalue Formulation

A thin, symmetrically laminated rectangular fiber-reinforced plate made of fiber
composite that is in the x-y plane and is limited 0 < x < aand 0 < x < b is shown
in Fig.3-1. Plies are orthotropic that are bonded to one another by a matrix material
to give it thickness h in the z direction. The number of plies is n, according to Fig. 3-
1, the baseline plane z = 0 is the mid-plane. The angle 6 denotes the fiber direction
within a layer. E;; and E,, are the Young modulus for layers that are parallel and

perpendicular to the fibers.
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Figure 3-1. Representation of laminated fiber-reinforced plate

In this problem, the layers are set up in a way that creates a mid-plane symmetry.
This technique eliminates transverse bending and in-plane stretching, as mentioned
before. The natural frequencies and mode shapes of these problems can be solved by
using the Rayleigh-Ritz method and approximate trigonometric series shape
functions. Minimization of energy function (R) which is defined as total vibration
energy is used to calculate natural frequencies and mode shapes of fiber-reinforced
plate [30] [32] [42].

Energy function of fiber-reinforced plate can be expressed as follows [42]:
R = Unax — Trmax (3-19)

Where U, 1S the maximum strain energy of fiber-reinforced plate due to the
bending and T4, is the maximum Kinetic energy as a result of the mass of fiber-

reinforced plate.

Strain energy of the fiber-reinforced plate can be written by simplifying the virtual
potential energy equation (3-6) by removing the external work and virtual
displacement term [36] [37]:
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16 | 0x2 Ox0y 26 9y2 gxdy
+4D 07wy’ dxd
66 | 0x0y xey (3-20)

Kinetic energy of the fiber-reinforced plate can be written by simplifying the virtual

Kinetic energy equation (2-50) by removing virtual displacement term as follows [2]:

1 92w ow 0dw (3-21)
Tmaxzszfpo atZ fffpo at at

Here, p, is the mass per unit volume of the fiber-reinforced plate and w denotes the
displacement term in the free vibration problems. Displacement function can be

expressed as:

w(x,y,2) = wy(x,y)ewt (3-22)

Substitute the equation (3-22) into the equation (3-21) and integrate through the

thickness of the fiber-reinforced plate, we obtain [36]:

1 3-23
Thax = Epohwz Jj wo? (x, y)dxdy ( )

Where w denotes the natural frequency of fiber-reinforced plate.

In order to solve the free vibration problem of the fiber-reinforced plate, an
eigenvalue equation will be developed using equation (3-19). To write the eigenvalue
equation, in-plane dimensions of the plate can be normalized. For normalization of
in plane dimensions, letting ¢ = x/a and n = y/b. So, the linear combination of
displacement variable of symmetrically laminated fiber-reinforced plate can be

expressed with using equation (3-9) as [36]:

Wo (5 77) Z 12 =1 CijPij (E 77) (3'24)
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Where c;; is the undetermined coefficient, M and N are the order of Ritz series
expansion of the admissible functions in x and y directions. ¢;;(x,y) denotes the

approximating or shape function that represent boundary condition of the fiber-

reinforced plate and can be represented as:

®i;(€,m) = X (E)Y;(m) (3-25)
In trigonometric series solution, Ritz series deformation expansion equation (3-22)
IS substituted into the maximum strain energy equation (3-20) and maximum Kinetic

energy equation (3-23), we find U,y 4, and T, as follows:

Um ax

ljlf D, [02 Y e (6.m) :
20 0 afz

Dy, [ 12 =16ijPi; €, 77) 0? 12 =160 (§,m)

a’b? &2 on?
" D,, Iaz Z{VL1 Z?’=1 cijbij (§,m) ’
b* on?
+ 4D 0° 12 1Clj¢)l] (8; 77) 0° 12 1Cl]¢)l] (5'77)
&3b 92 g 0&an
+4D26 62 12 1Cl]¢L] (f 77) 02 12 1clj¢l] (5»77)
ab3 on? 0éon
D66 12 1Cl]¢)l] (8('77) ’
azbzl agan l }d‘zd" (3-26)
2
abf M N
Thax = zphwz ff ZZ CijPij (&m) | dédn (3-27)
00 i=1j=1
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To minimize the energy function (R = Upax — Tmax) €quation (3-19) with respect

to undetermined coefficient c;;, we write [36]:

i(Umax —Tnax) =0 (3-28)
6Cij

which leads to the eigenvalue equation:

([Kijmn] = 22[Mijmn] M{cij} = {0} (3-29)
The matrix [K; ., | denotes the symmetric stiffness matrix, while the matrix [M; ., ]
indicates the diagonal mass matrix. The unknown coefficients c;; are used to define

aset of i X j homogeneous linear equations that can be solved simultaneously. These
equations are called eigenvalue equations. The determinant of the coefficient matrix
of equation (3-29) is set to zero in order to solve the eigenvalue problem. There are

i X j values of A that satisfy the eigenvalue equation.

[Kijmn] stiffness and [M;,,,] mass matrices in equation (3-29) can be written as
follows [36]:

D11P22imQOOjn i " ( 3-30)
[Kijmn] = o2 + 4Dg P~ 1 Q in

+ Dzzazpooiszzjn
+ Diz (P2 Q% + P21 Q%2 )

2D16 (Plzileojn + PZliQO]‘n)

a

+

+ 2D26a(P10imQ12jn + POlimQ21jn) /DO

[Mijmn] = POOimQOOjn (3-31)
im=1273...M

jn=123,..,N

A is the nondimensional eigenfrequency parameter and it can be written as:
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1 = wab,/pyh/D, (3-32)
D, and «a are parameters used to develop the eigenvalue equation. D, is called
bending stiffness parameter and represents with Young’s modulus E;; and Poisson’s
ratios vy, and v,;. a is a ratio of in-plane dimensions of fiber-reinforced plate. D,

and «a are expressed as follows:

_ E11h3 (3'33)
12(1 — v1,044)

Dy

a=a/b (3-34)
The form of unknown coefficients used in the eigenvalue solution of the equation (3-

29) is written as:

{Cij} = [€11, C12/ s C1N» €21 €225 - » Cans Cia1s Cazs oo s CuN ] (3-35)
When the eigenvalues A are substituted back into the equation (3-29), the eigenvector
components c;; corresponding to eigenvalues are calculated. Then, substituting these

eigenvectors into the equation (3-24) gives mode shapes of the fiber-reinforced

laminated plate.

[Kijmn] and [M;jmn] in equations (3-30) and (3-31) have integral expressions with

shape functions [36]. These integrals can be expressed as follows [36]:

o [tdTX d5 Xy, (3-36)
P™im = , dér déEs

[Ty, (3-37)
Q jn = o dnr dns

rs=20,1,2

X; and Y; are the components of ¢;;(&,n) in x and y direction. ¢;;(¢, n) is the shape

function that satisfies the boundary conditions. These functions are used in Ritz

solution for different boundary conditions. In this study, new trigonometric shape
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functions are developed for solving the free vibration problems of the fiber-

reinforced plate. These trigonometric shape functions are provided in Table 3-3.

Table 3-3. New Trigonometric shape functions used in free vibration problems

Shape Boundary Conditions
Function S-S-S-S C-C-c-C C-F-C-C

2i—Dm
@;;(&,m)  sininé sinjany sinné sininé sinnmn sinjnn (1 — cos (% f)) sin 77 sin jmn

Trigonometric shape functions are substituted into the Ritz series expansion
equation. Then, this series expansion equation is used in conjunction with the
minimization of the energy function, which leads to the eigenvalue equation. After
finding the eigenvalues and eigenvectors of this equation, the natural frequencies and
mode shapes of the fiber-reinforced plate can be calculated. This procedure is
integrated into the math package MATLAB.
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CHAPTER 4

NUMERICAL RESULTS

4.1 Finite Element Model with ANSYS

The finite element method is used to validate numerical results obtained from the
analytical solution using the new trigonometric series shape functions. ANSYS is

utilized to perform finite element analysis.

The ANSYS program's ACP (Pre) module is used to set up the analysis model, as
seen in Figure 4-1. This module is a component system used for composites. In this
module, the properties of the composite material used in the problem are first defined
in the engineering data tab. Then, the problem’s geometry is drawn to perform a two-
dimensional analysis. The dimensions of the problem geometry are defined. The

ACP setup is used to construct the lamination scheme and problem coordinates.

Project Schematic

- A - B hd C
-— e

. | .
2 & engineeringData v/ 4 -2 @ Model v g2 @ Model v 4
3 E Geometry v 4 3 @ setw v 4 3 @ Setup v o4
4 @ Model v 4 4 N’j Solution v 4 4 ij Solution v
5 [ setuwp v 5 @ Results v 4 5 @ Resus v

ACP (Pre) Static Structural Modal

Figure 4-1. ANSYS project schema of static bending and free vibration problem of
fiber-reinforced plate

The mesh structure required for a numerical solution is defined in ANSYS. While
defining this mesh structure, the element order and size are chosen to be linear and
5 mm by 5 mm. The SHELL181 element is used for the mesh element type as seen
in Figure 4-2. This element type is suitable for analyzing thin composite plates. An

element has four nodes, and these nodes have six degrees of freedom: translation and
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rotation around the x, y, and z axes. The SHELL181 element is suitable for linear and
large rotation applications. Used in the analysis of composite shells or sandwich
structures, the accuracy of this element is governed by the first-order shear
deformation theory. Figure 4-3 shows the mesh model of the analysis model. There
are 1600 elements and 1681 nodes in the FEM model.

™~

Figure 4-2. SHELL 181 element geometry

X
0,00 100,00 200,00 {rrn) L]
]
50,00 150,00

ki

Figure 4-3. Mesh model of fiber-reinforced plate in ANSYS

Later, static structural and modal software is added to the ACP (Pre) to solve the
static bending and free vibration problems. To solve these problems, the boundary
conditions of the composite plate are defined. These boundary conditions seen in
Figure 4-4 are defined as simply supported, clamped, and three edges clamped with

one edge free, respectively, by the problem definition.
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B: Static Structural
Fixed Support
Time: 0, 5
19.01.2023 12:01

[ Fixed Support

b
0,00 100,00 200,00 (rrn) ®
_—20
50,00 150,00

hs

Figure 4-4. Example of clamped boundary conditions in ANSYS

The Figure 4-5 shows the distributed pressure given in the problem description is

applied to the composite plate.

B: Static Structural
Pressure 2

Time: 0, 5
19.01.2023 12:02

I Pressure 2 -1,6-002 MPa

K

000 100,00 200,00 (rrn) £
50,00 150,00

Figure 4-5. Distributed pressure of composite plate in ANSYS

After all the necessary definitions for the numerical solution were made, the static

bending and free vibration solutions were solved using the ANSYS.

4.2  Static Bending Analysis

In this section, the static analysis of fiber-reinforced laminated plate has been
determined using trigonometric series solution (TSS) for three different boundary
conditions. For these boundary conditions, newly developed trigonometric shape
functions are used. Firstly, the deformation values of fiber-reinforced laminated
plates with three different boundary conditions are found under uniformly distributed

load. Then, the transverse stress values of each layer of these plates are obtained
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under this load. The results calculated by the trigonometric series solution method

are verified by the finite element method described in the previous section.

Material and geometric properties of fiber-reinforced laminated plate are given in

Table 4-1 and Table 4-2 while validating the static bending analytical solutions.

Table 4-1.Material properties of T300-934 carbon/epoxy for static bending analysis

[49]
Name Material Property Value Unit
Longitudinal Young Modulus Ei1 148 x 10° N/m?
Transverse Young Modulus E,, 9.65%x10° N/m?
In-plane Shear Modulus Gy 455%x10° N/m?
In-plane Poisson Ratio Vig 0.30 -
Thickness of Lamina t 0.2x 1073 m

Table 4-2. Geometric properties [49]
Name Geometric Parameter Value Unit
X axis Dimension a 0.2 m
Y axis Dimension b 0.2 m
Uniform Load q 10000 N/m?
Number of Plies n 16 -

Using the material and geometric properties of the fiber-reinforced plate given in

Table 4-1 and Table 4-2, a stacking sequence is built to compare it with the finite

element method. This stacking sequence is [0,/—45,/45,/90,]s. The number of

plies are 16 in this lamination scheme, and plies are laminated symmetrically in the
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mid-plane of the fiber-reinforced plate. The problem geometry used in validation is

given in Figure 4-6.

v

Q
~

i :
y } \

X3

N

Figure 4-6. Bending problem geometry of fiber-reinforced [0,/—45,/45,/90,];
laminated plate

4.2.1 Analysis for a Simply-Supported Plate

Deformations of the fiber-reinforced laminated plate, whose material and geometric
properties are taken from Table 4-1 and Table 4-2, under uniformly distributed
lateral load, have been determined by trigonometric series shape functions. In the
trigonometric series solution (TSS), a convergence study is performed for a simply-
supported plate by increasing the M and N orders of the Ritz solution. The results of
the convergence study using the trigonometric series solution are shown in Table 4-

3, along with the maximum static bending of the simply supported plate. When all
edges are simply supported, the trigonometric shape function, sin (%T x)sin (%” ¥),is

used in the Rayleigh-Ritz method solution. Validation has been done using the finite
element analysis program ANSYS and the trigonometric series approach with M=12
and N=12 given in Table 4-4.
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Table 4-3. Convergence study of maximum deflection for a simply-supported fiber-
reinforced [0,/—45,/45,/90,] laminated plate with ¢ = 0.01 MPa, a/b =1,

h/a =0.016 atx = a/2 and y = b/2 using trigonometric series solution

Number of Series Maximum Deflection (mm)
(M x N) wo(a/2,b/2)
2X%X2 0.41473
4%x4 0.41596
6 X6 0.41607
8x8 0.41609
10 x 10 0.41610
12 x 12 0.41611

Table 4-4.Maximum deflection of fiber-reinforced simply supported plate with g =
0.01 MPa, a/b =1, h/a =0.016 at x = a/2 and y = b/2 using trigonometric
series solution with M=12 and N=12 and ANSYS

Solution Type Maximum Deflection (mm) Difference %
wo(a/2,b/2)
TSS 0.41611
0.24
ANSYS 0.41783

Figure 4-7 shows the distribution of deformation results of the simply supported plate
using trigonometric series solution. While obtaining the distribution of deformation,

order of trigonometric series M and N are taken 12 in Figure 4-7.
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Deformation Distribution of the Simply-Supported Plate x 107

%104

Figure 4-7. Distribution of deformation of the simply supported fiber-reinforced
[0,/—45,/45,/90,]¢ laminated plate with ¢ = 0.01 MPa, a/b = 1, h/a = 0.016

using the trigonometric series solution with M=12 and N=12

The deformation distribution of the simply supported plate modeled with the finite
element program is given in Figure 4-8. In this figure, the ACP module of ANSYS
is used. The edges of the fiber-reinforced plate are modeled as simply supported. The
number of elements is 1600. The SHELL181 element is used in the model.
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B: Static Structural
Total Deformation
Type: Total Deforrnation
Unit: mm

Time: 1

711202210026

0,41783 Max
037146

032508

02787

023233

018595

013957

0,023197

0,04652
0,00044387 Min

Figure 4-8. Distribution of deformation of the simply supported fiber-reinforced
[0,/—45,/45,/90,], laminated plate with g = 0.01 MPa, a/b = 1, h/a = 0.016
using ANSYS

Validation of a simply supported fiber-reinforced plate has also been done at y =
b/2 and along the x axis with using the trigonometric series solution and ANSYS.
Using the results seen in Figures 4-7 and 4-8, the deformation comparison plot along

with the x axis is given in Figure 4-9. The results are very close to each other.
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Deformation Comparison Plot
%107 Simply Supported Fiber-Reinforced Plate
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Figure 4-9. Deformation comparison plot of the fiber-reinforced [0,/—45,/45,/
90,], laminated simply-supported plate with g = 0.01 MPa,a/b = 1, h/a = 0.016
between results of trigonometric series solution and ANSY'S at along with x axis and
y=b/2

4.2.2 Analysis for a Clamped Plate

The same loading condition, material and geometric properties are used for a fiber-
reinforced laminated plate given in the previous section. Still the analysis is done by
changing the boundary conditions. Trigonometric series solution and finite element
analysis are used to obtain deformation results. In the trigonometric series solution
(TSS), a convergence study is performed for a clamped plate by increasing the M
and N orders of the Ritz solution. The results of the convergence study using the
trigonometric series solution are shown in Table 4-5, along with the maximum static

bending of the clamped plate. When all edges are clamped, the trigonometric shape
function, sin (%Tx)sin (g x)sin (%ty)sin (% y) , is used in the Rayleigh-Ritz method
solution. Validation has been done using the finite element analysis program ANSYS

and the trigonometric series solution with M=12 and N=12 given in Table 4-6.
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Table 4-5. Convergence study of maximum deflection for a fiber-reinforced
[0,/—45,/45,/90,]s laminated clamped plate with g = 0.01 MPa, a/b =1,

h/a = 0.016 atx = a/2 and y = b/2 using trigonometric series solution

Number of Series Maximum Deflection (mm)
(M x N) wo(a/2,b/2)
2 X2 0.12377
4 X4 0.11535
6 X6 0.11741
8x8 0.11884
10 x 10 0.11939
12 x 12 0.11942

Table 4-6. Maximum deflection of fiber-reinforced [0, /—45,/45,/90,] laminated
clamped plate with ¢ = 0.01 MPa, a/b =1, h/a =0.016 at x =a/2 and y =
b /2 using trigonometric series solution with M=12 and N=12 and ANSYS

Solution Type Maximum Deflection (mm) Difference %
wo(a/2,b/2)
TSS 0.11942
1.28
ANSYS 0.12097

The distribution of deformation results of the clamped plate using trigonometric
series solution is given in Figure 4-10. Order of trigonometric series M and N are

taken 12 in obtaining the distribution of deformation.
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Deformation Distribution of the Clamped Plate x 107
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Figure 4-10. Distribution of deformation of the fiber-reinforced [0,/—45,/45,/
90,]s laminated clamped plate with g = 0.01 MPa, a/b = 1, h/a = 0.016 using
the trigonometric series solution with M=12 and N=12

The deformation distribution of the clamped plate modeled with the finite element
program is given in Figure 4-11. In this figure, the ACP module of ANSYS is used.
The edges of the fiber-reinforced plate are modeled as clamped.
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B: Static Structural
Total Deformation
Type: Tatal Deformation
Unit: mrn

Time: 1

6.11.2022 1256

0,12097 Max
010753
0,094025
0,080644
0067203
0053763
0040322
0026831
0,013441

0 Min

Figure 4-11. Distribution of deformation of the fiber-reinforced [0,/—45,/45,/
90,] laminated clamped plate with ¢ = 0.01 MPa, a/b =1, h/a = 0.016 using
ANSYS

Deformations of the clamped fiber-reinforced plate at y = b/2 and along the x axis
are compared with using the trigonometric series approach and ANSY'S, as seen in

Figure 4-12. The trigonometric series solution gave close results as FEM.
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Deformation Comparison Plot
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TSS

1.2

0.8 -

wo(x,b/2) (m)

1 1 1 L 1 1 1 1 1
0 0.02 0.04 006 008 01 012 0.14 0.16 0.18 0.2
x (m)

Figure 4-12. Deformation comparison plot of the fiber-reinforced [0,/—45,/45,/
90,]; laminated clamped plate with g = 0.01 MPa, a/b =1, h/a =0.016
between results of trigonometric series solution and ANSY'S at along with x axis and

y=>b/2
4.2.3 Analysis for a Single Free Edge and Three Clamped Edges

Deformations of the fiber-reinforced plate under the same load condition, material
and geometric properties as in the previous two parts have been calculated for a
single free and three clamped boundary conditions with the trigonometric series
solution and finite element analysis. In the trigonometric series solution (TSS), a
convergence study is performed for a single free and three-clamped plate by
increasing the M and N orders of the Ritz solution. The results of the convergence
study using the trigonometric series solution are shown in Table 4-7. When a fiber-

reinforced plate has these boundary conditions, the trigonometric shape function,

1- cos(

solution. Validation has been done using the finite element analysis program ANSY'S

Qi-1)m
2a

x)sin (Zy)sin (Cy), is used in the Rayleigh-Ritz method

and the trigonometric series solution with M=12 and N=12 given in Table 4-8.
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Table 4-7. Convergence study of maximum deflection for a fiber-reinforced
[0,/—45,/45,/90,] laminated single free and three clamped plate with g =
0.01 MPa,a/b =1,h/a = 0.016 atx = a and y = b/2 using trigonometric series

solution
Number of Series Maximum Deflection (mm)

(M X N) wo(a,b/2)
2 X2 0.58733
4 x4 0.60105
6 X6 0.61220
8x8 0.61334

10 x 10 0.61527

12 x 12 0.61579

Table 4-8. Maximum deflection of fiber-reinforced [0, /—45,/45,/90,], laminated
single free and three clamped plate with g = 0.01 MPa, a/b = 1, h/a = 0.016 at
x = a and y = b/2 using trigonometric series solution with M=12 and N=12 and
ANSYS

Solution Type Maximum Deflection (mm) Difference %
wo(a,b/2)

Trigonometric Series Solution 0.61579

ANSYS 0.62736 +o

Figure 4-13 expresses the distribution of deformation results of the single free and
three clamped plate using trigonometric series solution. While obtaining the
distribution of deformation, order of trigonometric series M and N are taken 12 in
Figure 4-13.

56



Deformation Distribution of
the Single Free and Three Clamped Plate <107

0.1

0.05
y (m) 0 o x (m)

Figure 4-13. Distribution of deformation of the fiber-reinforced [0,/—45,/45,/
90,]s laminated single free and three clamped plate with ¢ = 0.01 MPa, a/b = 1,
h/a = 0.016 using the trigonometric series solution with M=12 and N=12

The deformation distribution of the single free and three clamped plate determined
with ANSYS is given in Figure 4-14. In this figure, the ACP module of ANSYS is
used. The edges of the fiber-reinforced plate are modeled as single free and three

clamped.
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B: Static Structural
Total Deformation
Type: Total Deformation
Unit: rarm

Tirrne: 1

6.11.2022 20:12

0,62736 Max
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0,34953
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Figure 4-14. Distribution of deformation of the fiber-reinforced [0,/—45,/45,/
90,], laminated single free and three clamped plate with ¢ = 0.01 MPa, a/b = 1,
h/a = 0.016 using ANSYS

ANSYS and a trigonometric series solution are used to validate a single free and
three clamped fiber-reinforced plate. This comparison is made at y = b/2 and along
the x axis. Figure 4-15 shows the deformation comparison plot along with the x-axis

based on the results shown in Figures 4-13 and 4-14.
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Deformation Comparison Plot
; «108ingle Free and Three Clamped Fiber-Reinforced Plate
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Figure 4-15. Deformation comparison plot of the fiber-reinforced [0,/—45,/45,/
90,], laminated single free and three clamped plate with g = 0.01 MPa, a/b = 1,

h/a = 0.016 between results of trigonometric series solution and ANSYS at along

with x axisand y = b/2

4.2.4 Transverse Stresses for a Simply Supported Plate

Transverse stresses of each ply of the fiber-reinforced laminated plate under
uniformly distributed lateral load are calculated with the trigonometric series
solution (TSS). Material and geometric properties of fiber-reinforced plate are taken
in Table 4-1 and Table 4-2. The lamination scheme of the simply-supported plate is
[0,/—45,/45,/90,];. To calculate oy, 0y,, and oy, of the kth layer a of the
simply-supported plate, equations (3-16), (3-17), and (3-18) are used with

sin (% x)sin (% y) trigonometric shape function. Transverse stresses are validated

with the finite element analysis program ANSYS. Normal stresses and shear stresses

are validated at the mid-point of the fiber-reinforced simply-supported plate.
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Figure 4-16 shows the validation of g, of the kth layer of fiber-reinforced simply-
supported plate. Mid-point stresses are determined using ANSYS, and trigonometric
series solution (TSS) with M and N are taken 12. There are 16 plies in the laminated
plate. The vertical axis represents the thickness coordinates of each layer while the

horizontal axis indicates o, values of these plies.

Normal Stress Distribution in x Direction
Through Thickness of Simply Supported Plate

0.5

04k —O—TsS

= %= :ANSYS

z/h
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o, (@/2,b/2,2)(Mpa)

Figure 4-16. Comparison of og,, distribution with TSS and ANSYS through
thickness of fiber-reinforced [0,/—45,/45,/90,]s laminated simply supported
plate with g = 0.01 MPa, a/b =1, h/a = 0.016

When Figure 4-16 is examined, it is understood that in the mid-point o, distribution
through the thickness, the 0° oriented fibers are exposed to the higher stress, and the
90° oriented fibers are exposed to the lower stress. It is understood that the 45° and

—45° oriented fibers have moderate stress values.

Figure 4-17 indicates the validation of o,,,, of the kth layer of fiber-reinforced simply-
supported plate. Mid-point stress of each layer is determined using ANSYS, and

trigonometric series solution (TSS) with M and N are taken 12.
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Normal Stress Distribution in y Direction
Through Thickness of Simply Supported Plate
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Figure 4-17. Comparison of o, distribution with TSS and ANSYS through
thickness of fiber-reinforced [0,/—45,/45,/90,]s laminated simply supported
plate with g = 0.01 MPa, a/b =1, h/a = 0.016

In Figure 4-17, a,,, distributions through the thickness at the mid-point are shown.
90° oriented fibers are expected to undergo more significant stress since the y-
direction is in the direction of the plies that are layered at 90°. Still, the 90° oriented
fibers are subjected to less deformation as they are laminated in the mid-plane of the
fiber-reinforced plate. This causes the 45° and —45° oriented fibers to be more
stressed than the 90° oriented fibers. It is seen that the 0° oriented fibers are exposed

to less stress in the y direction.

Figure 4-18 represents the validation of o, of the kth layer of fiber-reinforced
simply-supported plate. The mid-point stress of each layer is determined using
ANSYS, and trigonometric series solution (TSS) with M and N are taken 12.
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Shear Stresses Distribution
Through Thickness of Simply Supported Plate
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Figure 4-18. Comparison of o,, distribution with TSS and ANSYS through
thickness of fiber-reinforced [0,/—45,/45,/90,]s laminated simply supported
plate with g = 0.01 MPa, a/b = 1, h/a = 0.016

When the shear stress graph, Figure 4-18 is examined, it is seen that the 45° and
—45° layers are exposed to the highest stress, as expected. 0° and 90° oriented fibers

are exposed to low shear stress.
Distribution of o, in Layers:

There are four different fiber angles in the fiber-reinforced lamination scheme. The
lamination scheme is [0,/—45,/45,/90,]¢ in the calculation of normal stress
distribution of simply-supported plate. In the following parts, o,, distribution of

different fiber angle plies will be examined.

Figure 4-19 shows the g, distribution that is determined by a using trigonometric
series solution (TSS) of 0° ply at z = 1.6 mm. Due to lateral load and edges are

simply-supported, maximum stress occurred at the mid-point of the ply.
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Figure 4-19. o,, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated simply supported plate

0y distribution that is determined by using trigonometric series solution (TSS) of -
45° ply at z= 1.2 mm is indicated in Figure 4-20. Maximum stress occurred
longitudinal direction of the ply.
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Figure 4-20. o,, distribution determined by trigonometric series solution with M,

N=12 at z = 1.2 mm of —45°ply in fiber-reinforced laminated simply supported
plate

Figure 4-21 indicates the g, distribution which is obtained by using trigonometric

series solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-21. o,, distribution determined by trigonometric series solution with M,

N=12 at z = 0.8 mm of 45°ply in fiber-reinforced laminated simply supported plate

0y distribution that is determined by using trigonometric series solution (TSS) of
90° ply at z = 0.4 mm is given in Figure 4-22. 90° oriented fiber’s strength is weak
in the x direction, as expected.
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Figure 4-22. g, distribution determined by trigonometric series solution with M,

N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated simply supported plate
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Distribution of g, in Layers:

While obtaining the o,,,, distribution of the kth layer of the fiber-reinforced simply-

supported plate, [0,/—45,/45,/90,], lamination scheme is used. In this lamination
scheme, four different fiber orientations are used. To understand the normal stress
distribution of layers in the y direction at different thickness coordinates, the

trigonometric series solution (TSS) method is used. g, distribution of these plies

will be determined in the following parts.

Figure 4-23 shows the a,,,, distribution that is determined by using a trigonometric
series solution (TSS) of 0° ply at z = 1.6 mm. When the fiber orientation is 0° in

the ply, o, is small compared to 90° fiber orientation.
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Figure 4-23. o, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated simply supported plate

gy, distribution that is obtained by using trigonometric series solution (TSS) of
—45° ply at z = 1.2 mm is indicated in Figure 4-24. Maximum stress occurred

longitudinal direction of the ply.
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Figure 4-24. o, distribution determined by trigonometric series solution with M,
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N=12 at z = 1.2 mm of —45ply in fiber-reinforced laminated simply supported
plate

Figure 4-25 expresses the a,,, distribution which is obtained by using trigonometric

series solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-25. o, distribution determined by trigonometric series solution with M,
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N=12 at z = 0.8 mm of 45°ply in fiber-reinforced laminated simply supported plate
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g,y distribution which is calculated by using trigonometric series solution (TSS) of

90° ply at z = 0.4 mm is given in Figure 4-26. Strength of 90° oriented fiber is

strong in the y direction compared to 0° oriented fiber, as expected.
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Figure 4-26. o, distribution determined by trigonometric series solution with M,

o
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N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated simply supported plate

Distribution of g, in Layers:

While determining the shear stress distribution in the xy direction at different
thickness coordinates, the trigonometric series solution method is used, as in the
previous two sections. a,, distribution of these plies will be determined in the

following parts.

Figure 4-27 shows the a,,, distribution that is determined by a using trigonometric

series solution (TSS) of 0° ply at z = 1.6 mm. Maximum stresses occur at the

intersection of the boundaries of the ply.
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Figure 4-27. o, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated simply supported plate

0,y distribution that is determined by using trigonometric series solution (TSS) of -

45° ply at z = 1.2 mm is expressed in Figure 4-28. Maximum shear stress occurred

in 45° or —45° fiber oriented plies.
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N=12 at z = 1.2 mm of —45°ply in fiber-reinforced laminated simply supported
plate
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Figure 4-29 gives the a,,, distribution that is obtained by using trigonometric series

solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-29. o, distribution determined by trigonometric series solution with M,

N

IS

N=12 at z = 0.8 mm of 45°ply in fiber-reinforced laminated simply supported plate

0,y distribution which is calculated by using trigonometric series solution (TSS) of

90° ply at z = 0.4 mm is given in Figure 4-30.
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Figure 4-30. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated simply supported plate
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4.2.5 Transverse Stresses for a Clamped Plate

As in the previous part, the transverse stresses of each ply of the fiber-reinforced
laminated plate under the same load are calculated with the trigonometric series
solution (TSS). Material and geometric properties of fiber-reinforced plate are also
taken in Table 4-1 and Table 4-2. The lamination scheme of the clamped plate is

[0,/—45,/45,/90,], as mentioned before. oy, 0, and oy, of the kth layer a of
the clamped plate are obtained with using equations (3-16), (3-17), and (3-18). Shape
function is sin (%Tx)sin (Zx)sin (%Ty)sin (%y) for clamped plate in trigonometric
series solution. Validations of transverse stresses are also done with the finite

element analysis program ANSYS. Normal stresses and shear stresses are validated
at the mid-point of the fiber-reinforced clamped plate.

Figure 4-31 shows the validation of o, of the kth layer of fiber-reinforced clamped
plate. Mid-point stress of each layer is determined using ANSY'S, and trigonometric
series solution (TSS) with M and N are taken 12.
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Figure 4-31. Comparison of a,, distribution with TSS and ANSYS through
thickness of fiber-reinforced [0,/—45,/45,/90,], laminated clamped plate with
q =0.01MPa,a/b=1,h/a=0.016
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Figure 4-31 shows that the 0° fiber oriented layers are subjected to the most stress in
clamped fiber-reinforced plates. In contrast, the 90° fiber oriented layers are

subjected to the least stress.

Figure 4-32 indicates the validation of a,, of the kth layer of fiber-reinforced

clamped plate. Mid-point stress of each layer is determined using ANSYS, and
trigonometric series solution (TSS) with M and N are taken 12.
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Figure 4-32. Comparison of o, distribution with TSS and ANSYS through

thickness of fiber-reinforced [0,/—45,/45,/90,], laminated clamped plate with

q = 0.01 MPa,a/b =1,h/a =0.016

At the mid-point of the g,,, through the thickness, the 90° fiber oriented layers are

less deformed as they are placed in the mid-plane of the composite plate. This causes
the 45° and —45° fiber oriented layers to be more stressed than the 90° layers. It is

seen that the 0° fiber oriented layers are exposed to less stress in the y direction.

Figure 4-33 represents the validation of o, of the kth layer of fiber-reinforced

clamped plate. The mid-point stress of each layer is determined using ANSYS, and
trigonometric series solution (TSS) with M and N are taken 12.
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Shear Stresses Distribution
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Figure 4-33. Comparison of o,, distribution with TSS and ANSYS through

thickness of fiber-reinforced [0,/—45,/45,/90,], laminated clamped plate with
q = 0.01 MPa,a/b =1,h/a =0.016

When Figure 4-33 is examined, it is seen that the 45° and —45° fiber oriented layers

are exposed to the highest stress as expected.

The stress distributions in the middle of clamped composite plates are less than those
of composite plates simply supported. This is because all degrees of freedom are
limited at the boundary conditions of the clamped plates. Therefore, the boundary
conditions are more stressed than the midpoints. This situation can be understood

from the general stress distribution figures of the plates.
Distribution of a,, in Layers:

The lamination scheme is [0,/—45,/45,/90,], in the calculation of normal stress
distribution of clamped plate. As seen in the lamination scheme, four different fiber
angles are present in this plate. In the following parts, o, distribution of different

fibre oriented plies will be examined.

Figure 4-34 shows the a,, distribution that is determined by using a trigonometric

series solution (TSS) of 0° ply at z = 1.6 mm. Due to all degrees of freedom is
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limited at the boundaries, maximum stress occurred at the edges. These edges are at

the longitudinal direction of 0° fiber.
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Figure 4-34. g, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated clamped plate

0Oy distribution that is obtained by using trigonometric series solution (TSS) of -45°
ply at z = 1.2 mm is indicated in Figure 4-35. Maximum stress occurred boundaries
of the ply.
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Figure 4-35. g,, distribution determined by trigonometric series solution with M,

N=12 at z = 1.2 mm of —45"ply in fiber-reinforced laminated clamped plate
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Figure 4-36 indicates the o, distribution which is determined by using trigonometric

series solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-36. g, distribution determined by trigonometric series solution with M,

N=12 at z = 0.8 mm of 45’ply in fiber-reinforced laminated clamped plate

0y distribution that is determined by using trigonometric series solution of 90° ply
at z = 0.4 mm is given in Figure 4-37. Strength of fibers that is oriented 90° is weak

in the x direction, as expected.
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Figure 4-37. g, distribution determined by trigonometric series solution with M,

N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated clamped plate
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Distribution of g, in Layers:

gy, distribution of kth layer of the fiber-reinforced clamped plate is obtained for
[0,/—45,/45,/90,], lamination scheme. In this lamination scheme, four different
fiber orientations are used. To understand the normal stress distribution of layers in
the y direction at different thickness coordinates, the trigonometric series solution

(TSS) method is used. g, distribution of these plies will be determined in the

following parts.

Figure 4-38 shows the a,,,, distribution that is determined by using a trigonometric
series solution (TSS) of 0° ply at z = 1.6 mm. When the fiber orientation is 0° in

the ply, o, is small compared to 90° fiber orientation.
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Figure 4-38. o, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated clamped plate

gy, distribution that is obtained by using trigonometric series solution (TSS) of
—45°ply at z = 1.2 mm is indicated in Figure 4-39. Maximum stress occurred edges

of the ply.
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Figure 4-39. o), distribution determined by trigonometric series solution with M,

N=12 at z = 1.2 mm of —45" ply in fiber-reinforced laminated clamped plate

Figure 4-40 expresses the a,,,, distribution which is obtained by using trigonometric

series solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-40. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.8 mm of 45°ply in fiber-reinforced laminated clamped plate

ay, distribution that is obtained by using trigonometric series solution (TSS) of 90°

ply at z = 0.4 mm is given in Figure 4-41. Strength of 90° oriented fiber is strong

in the y direction compared to 0° oriented fiber, as expected.
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Figure 4-41. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated clamped plate

Distribution of g, in Layers:

Shear stress distribution in the xy direction at different thickness coordinates is found
by the trigonometric series solution (TSS) method, as in the previous sections. ay,,

distribution of these plies will be determined in the following parts.

Figure 4-42 shows the ay,, distribution which is determined by using trigonometric

series solution (TSS) of 0° ply at z = 1.6 mm. Maximum stresses take place at the

corners of the ply.
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Figure 4-42. o, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated clamped plate

0.y distribution that is obtained by using trigonometric series solution (TSS) of -45°

ply at z= 1.2 mm is shown in Figure 4-43. Maximum shear stress is at the
longitudinal direction of fibers.
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Figure 4-43. o, distribution determined by trigonometric series solution with M,

N=12 at z = 1.2 mm of —45ply in fiber-reinforced laminated clamped plate

Figure 4-44 gives the g, distribution that is determined by using trigonometric

series solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-44. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.8 mm of 45’ply in fiber-reinforced laminated clamped plate

0.y distribution which is calculated by using trigonometric series solution (TSS) of

90° ply at z = 0.4 mm is given in Figure 4-45. Maximum stresses are also in the
corner of the ply.
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Figure 4-45. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated clamped plate
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4.2.6 Transverse Stresses for a Single Free and Three Clamped Plate

Transverse stresses of each ply of the fiber-reinforced laminated plate under
uniformly distributed lateral load are calculated with the trigonometric series
solution (TSS). The material and geometric properties of fiber-reinforced plate are
taken in the Table 4-1 and Table 4-2 as in previous two sections. Lamination scheme
of single free and three clamped plate is [0,/—45,/45,/90,],. In order to calculate

Oxx» Oyy, and oy, Of the kth layer a of the fiber-reinforced plate, equations (3-16),

(3-17), and (3-18) are wused with (1—cos((2iz_—1)nx))sin (%Ty)sin (%y),

a

trigonometric shape function. Transverse stresses are validated with the finite
element analysis program ANSY'S for fiber-reinforced single free and three clamped
plate. Normal stresses and shear stresses are validated at the mid-point of the fiber-

reinforced plate.

Figure 4-46 shows the validation of o, of the kth layer of fiber-reinforced single
free and three clamped plate. Mid-point stress of each ply is determined using
ANSYS, and trigonometric series solution (TSS) with M and N are taken 12.
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Normal Stress Distribution in x Direction
5 Through Thickness of Single Free and Three Clamped Plate
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Figure 4-46. Comparison of a,, distribution with TSS and ANSYS through
thickness of fiber-reinforced [0,/—45,/45,/90,], laminated single free and three
clamped plate with g = 0.01 MPa, a/b = 1, h/a = 0.016

It is known that in the midpoint normal stress distribution through the thickness in
the x-direction, as in simply supported and clamped composite plates, the 0° fiber
oriented layers are the most stressed. On the other hand, the layers at 90° fiber

oriented are the least stressed, as shown in Figure 4-46.

Figure 4-47 indicates the validation of o,,,, of the kth layer of fiber-reinforced single

free and three clamped plate. Mid-point stress of each layer is determined using
ANSYS, and trigonometric series solution (TSS) with M and N are taken 12.
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Normal Stress Distribution in y Direction
Through Thickness of Single Free and Three Clamped Plate
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Figure 4-47. Comparison of o, distribution with TSS and ANSYS through
thickness of fiber-reinforced [0,/—45,/45,/90,], laminated single free and three
clamped plate with g = 0.01 MPa, a/b = 1, h/a = 0.016

When Figure 4-47 is examined, the 90° fiber oriented layers are in the middle of the
composite plate, so they are less deformed compared to 45° and —45° fiber oriented
layers. This makes the layers at 45° and —45° more stressed than the 90° fiber

oriented layers in the y direction.

Figure 4-48 represents the validation of o, of the kth layer of fiber-reinforced

clamped plate. The mid-point stress of each layer is determined using ANSY'S, and

trigonometric series solution (TSS) with M and N are taken 12.
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Shear Stresses Distribution
5 Through Thickness of Single Free and Three Clamped Plate
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Figure 4-48. Comparison of o,, distribution with TSS and ANSYS through
thickness of fiber-reinforced [0,/—45,/45,/90,], laminated single free and three
clamped plate with g = 0.01 MPa, a/b = 1, h/a = 0.016

When the Figure 4-48 of the maximum shear stress is looked at, it is clear that the

45° and —45° fiber oriented layers have the most stress as expected.

The mid-point o, distributions of single free and three clamped fiber-reinforced
plate are greater than those of simply-supported and clamped fiber-reinforced plates
because of free boundary condition that unlimited the degrees of freedom in all
directions and rotations. Therefore, the mid-point of the fiber-reinforced single free
and three clamped plate are more stressed. In other words, this stress spreads to
different places on the plate since not much stress accumulates at the boundary
condition. Since the free corner is in the x direction, the mid-point g,,, on the simply-
supported composite plate creates slightly more than a single free and three clamped

fiber-reinforced plate.
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Distribution of o, in Layers:

o, distributions of the fiber-reinforced single free and three clamped [0,/—45,/
45,/90,], plate are determined. As seen in the lamination scheme, four different
fiber angles are present in this plate. In the following parts, o,, distribution of
different fibre oriented plies will be examined.

Figure 4-49 shows the o, distribution which is determined by using trigonometric
series solution (TSS) of 0° ply at z = 1.6 mm. Due to clamped boundaries in x
directions, maximum stress occurred at these edges. These edges are at the
longitudinal direction of 0° fiber. The single free edge is at y = 20 mm, so this edge

is under compressive g, because of the lateral load.
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Figure 4-49. g, distribution determined by trigonometric series solution with M,
N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated single free and three

clamped plate

0, distribution that is obtained by using trigonometric series solution (TSS) of -45°
ply at z = 1.2 mm is indicated in Figure 4-50. Maximum stress occurred clamped

boundaries of the ply.
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Figure 4-50. g, distribution determined by trigonometric series solution with M,

0 5 10
x(mm)

N=12 at z = 1.2 mm of —45ply in fiber-reinforced laminated single free and three
clamped plate

Figure 4-51 indicates the o, distribution which is determined by using trigonometric
series solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-51. g,, distribution determined by trigonometric series solution with M,

N=12 at z = 0.8 mm of 45 ply in fiber-reinforced laminated single free and three
clamped plate
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0, distribution that is determined by using trigonometric series solution of 90° ply
at z = 0.4 mm is given in Figure 4-52. Strength of fibers that is oriented 90° is weak

in the x direction, as expected.

Normal Stress T x (MPa)

y(mm)

Figure 4-52. g, distribution determined by trigonometric series solution with M,
N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated single free and three

clamped plate

Distribution of g, in Layers:

a,y distribution of kth layer of fiber-reinforced single free and three clamped plate

is obtained for [0,/—45,/45,/90,] lamination scheme. In this lamination scheme
4 different fiber orientations are used. To understand normal stress distribution of
layers in y direction at different thickness coordinates, trigonometric series solution

(TSS) method is used. g, distribution of these plies will be determined in the

following parts.

Figure 4-53 shows the o, distribution that is determined by using trigonometric

series solution (TSS) of 0° ply at z = 1.6 mm. When the fiber orientation is 0° in

the ply, a,, is small compared to 90° fiber orientation. Maximum stresses occur at

clamped boundaries.
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Figure 4-53. o, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated single free and three
clamped plate

g,y distribution that is obtained by using trigonometric series solution (TSS) of

—45° ply at z = 1.2 mm is indicated in Figure 4-54. Maximum stress occurred on
clamped edges except for free one of the ply.
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Figure 4-54. o, distribution determined by trigonometric series solution with M,

y(mm)
]

=]

o

0 5 10
x(mm)

N=12 at z = 1.2 mm of —45ply in fiber-reinforced laminated single free and three
clamped plate
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Figure 4-55 expresses the a,,, distribution which is obtained by using trigonometric

series solution (TSS) of 45° ply at z = 0.8 mm.
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Figure 4-55. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.8 mm of 45°ply in fiber-reinforced laminated single free and three

clamped plate

g,y distribution that is obtained by using trigonometric series solution (TSS) of 90°

ply at z = 0.4 mm is given in Figure 4-56. Maximum stress is at one clamped edge

in y direction of the fiber-reinforced plate since the other one is free.
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Figure 4-56. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated single free and three
clamped plate
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Distribution of g, in Layers:

o,y distribution at different thickness coordinates is found by trigonometric series
solution (TSS) method, as in the previous sections. a,,, distribution of these plies

will be determined in the following parts.

Figure 4-57 shows the o, distribution that is determined by using trigonometric

series solution (TSS) of 0° ply at z = 1.6 mm. Maximum tension and compression

stress is symmetric about mid-point of the free edge.

Shear Stress %y (MPa)
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Figure 4-57. o, distribution determined by trigonometric series solution with M,

N=12 at z = 1.6 mm of 0°ply in fiber-reinforced laminated single free and three

clamped plate

0,y distribution that is obtained by using trigonometric series solution (TSS) of -45°

ply at z = 1.2 mm is shown in Figure 4-58. Maximum shear stress is at free

boundary of the plate since the longitudinal direction of fibers cross this boundary.
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Figure 4-58. oy, distribution determined by trigonometric series solution with M,

N=12 at z = 1.2 mm of —45ply in fiber-reinforced laminated single free and three
clamped plate

Figure 4-59 gives the oy, distribution that is determined by using trigonometric

series solution (TSS) of 45° ply at z = 0.8 mm.

Shear Stress %y (MPa)

0 5 10 15 20
x(mm)

Figure 4-59. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.8 mm of 45’ply in fiber-reinforced laminated single free and three
clamped plate
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0,y distribution which is calculated by using trigonometric series solution (TSS) of

90° ply at z = 0.4 mm is given in Figure 4-60. Maximum stresses are also about

free edge of the ply.

Shear Stress %y (MPa)

20 0.25
18 0.2
16 0.15
14 01
e 0.05
€
§, 10 0
>
B -0.05
5 0.1
4
-0.15
2
0.2
5 10 15 20

0

x(mm)

Figure 4-60. o, distribution determined by trigonometric series solution with M,

N=12 at z = 0.4 mm of 90°ply in fiber-reinforced laminated single free and three

clamped plate

4.3  Free Vibration Analysis

Free vibration analysis of fiber-reinforced laminated plate has been obtained by
using the trigonometric series solution (TSS) for three different boundary conditions.
For these boundary conditions, new trigonometric shape functions are used. Firstly,
the first four natural frequency values of fiber-reinforced laminated plates are found.
Then, the four mode shapes of these plates are determined for their natural
frequencies. The results calculated by the trigonometric series solution method are

verified by the finite element method described in the first section.

Material and geometric properties of fiber-reinforced laminated plate are given in

Table 4-9 and Table 4-10 while validating the free vibration solutions.
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Table 4-9. Material properties of T300-934 carbon/epoxy for free vibration analysis
[49]

Name Material Property Value Unit
Longitudinal Young Modulus Eiq 148 x 10°  N/m?
Transverse Young Modulus E,, 9.65%x10° N/m?
Longitudinal Shear Modulus G1z 455x%x10° N/m?
Longitudinal Poisson Ratio Vi 0.30 -

Density Po 1.5 x 103 kg/m3
Thickness of Lamina t 0.2x 1073 m

Table 4-10. Geometric properties [49]

Name Geometric Parameter Value Unit
X axis Dimension a 0.2 m
Y axis Dimension b 0.2 m
Number of Plies n 16 -

A stacking sequence is constructed as [0,/—45,/45,/90,]¢ using material and
geometric properties of the fiber-reinforced plate from Tables 4-9 and 4-10. The
number of plies are 16 in this lamination sequence and plies are laminated
symmetrically in the mid-plane of the fiber-reinforced plate. The problem geometry

used in validation is given in Figure 4-61.
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Figure 4-61. Free vibration problem geometry of fiber-reinforced [0,/—45,/45,/

90,], laminated plate

4.3.1 Analysis for a Simply-Supported Plate

The natural frequencies of the fiber-reinforced laminated plate, whose material and
geometric properties are taken from Table 4-9 and Table 4-10, have been obtained
with an analytical solution using trigonometric series shape functions. Lamination
sequence of simply-supported plate is [0,/—45,/45,/90,],. In the trigonometric
series solution (TSS), a convergence study is performed for a simply-supported plate
by increasing the M and N orders of the Ritz solution. The results of the convergence
study using the trigonometric series solution are shown in Table 4-11, with the
frequency parameter A of the simply supported plate. When all edges are simply
supported, the trigonometric shape function, sin (im)sin (jmn), is used in the
Rayleigh-Ritz method solution. Validation has been done for the first four modes of
natural frequency using the finite element analysis program ANSYS and the
trigonometric series approach with M=12 and N=12 given in Table 4-12.
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Table 4-11. Convergence study of frequency parameter 1 = wab.+/ph/D, for first
four mode of the fiber-reinforced [0, /—45,/45,/90,] laminated simply-supported
plate with a/b =1, h/a = 0.016

Number of Model Mode2 Mode3 Mode4
Series (Mx N) A Ay Az Ay

2X2 12.39 24.90 37.37 49.87

4 x4 12.38 24.70 37.27 44.59

6X6 12.37 24.67 37.25 44.54

8x8 12.36 24.65 37.24 44.52

10 x 10 12.36 24.65 37.24 4451

12 x 12 13.36 24.64 37.24 44.50

Table 4-12. First four mode natural frequencies of fiber-reinforced [0,/—45,/45,/
90,]s; laminated simply-supported plate with a/b =1, h/a = 0.016 using
trigonometric series solution (TSS) with M=12 and N=12 and ANSYS

Model Mode?2 Mode3 Mode4

Solution Type Frequency Frequency Frequency Frequency
(Hz) (Hz) (Hz) (Hz)
TSS 452.7 902.4 1363.6 1629.8
ANSYS 445.3 885.8 1341.3 1601.4
Difference % 1.66 1.87 1.66 1.77

Figure 4-62 shows the first mode shape of the simply-supported plate using
trigonometric series solution (TSS). While obtaining the first mode, order of the

trigonometric series M and N are taken 12 in Figure 4-62.
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Nat. freq. mode: 1 fn=452.7239Hz

0.5
0.2

0.15

Figure 4-62. First mode shape of the fiber-reinforced [0,/—45,/45,/90,];
laminated simply supported plate with a/b =1, h/a =0.016 using the

trigonometric series solution with M=12 and N=12

Second mode shape of the fiber-reinforced [0,/—45,/45,/90,], laminated simply-
supported plate is given in Figure 4-63. Trigonometric series solution (TSS) is used

to obtain this mode shape with orders M=12 and N=12.

Nat. freq. mode: 2 f =902.4234Hz

0.4
0.2

Figure 4-63. Second mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated simply supported plate with a/b =1, h/a =0.016 using the
trigonometric series solution with M=12 and N=12
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Figure 4-64 and Figure 4-65 indicates the third and fourth mode shape of fiber-

reinforced [0,/—45,/45,/90,]; laminated simply-supported plate using
trigonometric series solution (TSS) with orders M=12 and N=12.

Nat. freq. mode: 3 fn=1363.5959Hz
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Figure 4-64. Third mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated simply supported plate with a/b =1, h/a =0.016 using the
trigonometric series solution with M=12 and N=12

Nat. freq. mode: 4 fn=1629.6837Hz
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Figure 4-65. Fourth mode shape of the fiber-reinforced [0,/—45,/45,/90,]

laminated simply supported plate with a/b =1, h/a =0.016 using the
trigonometric series solution with M=12 and N=12

=]
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Figure 4-66 shows the first mode shape of fiber-reinforced [0,/—45,/45,/90,];
laminated simply-supported plate using ANSYSS.

C: Modal

Total Deformation 5
Type: Total Deformation
Frequency: 445,53 Hz
Unit: mm

TA1.2022 1442

144,18 Max
12817
112,17
96,161
30,154
64,148
43,142
32,138
16,129
0,12319 Min

Figure 4-66. First mode shape of the fiber-reinforced [0,/—45,/45,/90,],
laminated simply supported plate with a/b = 1, h/a = 0.016 using ANSYS

Second mode shape of fiber-reinforced [0,/—45,/45,/90,]¢ laminated simply-
supported plate is given in Figure 4-67. ANSYS is used to obtain second mode shape

corresponding to second natural frequency.

C: Modal

Total Deforrmation &
Type: Total Deformation
Frequency: 885,79 Hz
Unit: rmrm

71,2022 1602

144,44 Max
128,42

12,4

06,382
80,362
64,342
48322

32,301

16,281
0,26099 Min

Figure 4-67. Second mode shape of the fiber-reinforced [0,/—45,/45,/90,];
laminated simply supported plate with a/b = 1, h/a = 0.016 using ANSYS
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Figure 4-68 and Figure 4-69 shows the third and fourth mode shape of fiber-
reinforced [0,/—45,/45,/90,], laminated simply-supported plate using ANSYS.

C: Modal

Total Deformation 7
Type: Total Deformation
Frequency: 1341,3 Hz
Unit: mrn

TA1.2022 1602

144,57 Max
128,54

1125

95,468

80,433

64,397
48,362
32,326
16,291
0,25499 Min

Min 2

Figure 4-68. Third mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated simply supported plate with a/b = 1, h/a = 0.016 using ANSYS

C: Modal

Total Deformation 8
Type: Tatal Defarmation
Frequency: 1601,4 Hz
Unit: rmm

TA1.2002 16803

156,58 Max
139,23
121,88
104,53
87,176
60,624
52,472
35,121
17,760
0,41749 Min

Figure 4-69. Fourth mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated simply supported plate with a/b = 1, h/a = 0.016 using ANSYS

As seen in Table 4-12 and Figure 4-62-4-69, first four natural frequencies and mode
shapes determined by TSS of simply-supported plate are verified with ANSYS.
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4.3.2 Analysis for a Clamped Plate

The same material and geometric properties are used for a fiber-reinforced laminated
plate described in the previous section. Boundary conditions are modified to clamp.
Lamination sequence of clamped plate is [0,/—45,/45,/90,];. Trigonometric
series solution and finite element analysis are used to obtain the natural frequencies
and mode shapes of the fiber-reinforced clamped plate. In the trigonometric series
solution (TSS), a convergence study of the frequency parameter A is performed for
the clamped plate by increasing the M and N orders of the Ritz solution. The results
of the convergence study are shown in Table 4-13. When edges are clamped, the
trigonometric shape function, sin (imé)sin (7é)sin (jmn) sin (7n), is used in the
Rayleigh-Ritz method solution. Validation has been done for the first four modes’
natural frequencies and mode shapes, using the finite element analysis program
ANSYSS and the trigonometric series solution with M=12 and N=12 in Table 4-14.

Table 4-13. Convergence study of frequency parameter A = wab./ph/D, for first
four mode of fiber-reinforced [0,/—45,/45,/90,] laminated clamped plate with
a/b=1,h/a=0.016

Number of Model Mode?2 Mode3 Mode4
Series (Mx N) A Ay Az Ay

2 X2 23.99 39.09 58.15 62.56

4 x4 23.45 37.82 56.61 62.07

6X6 23.34 37.54 56.26 61.01

8x8 23.30 37.44 56.14 60.67

10 x 10 23.29 37.39 56.08 60.54

12 x 12 23.28 37.37 56.05 60.47
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Table 4-14. First four mode natural frequencies of fiber-reinforced [0,/—45,/45,/
90,], laminated clamped plate with a/b =1, h/a = 0.016 using trigonometric
series solution (TSS) with M=12 and N=12 and ANSYS

Model Mode2 Mode3 Mode4

Solution Type Frequency Frequency Frequency Frequency
(Hz) (Hz) (Hz) (Hz)
TSS 852.2 1367.5 2051.1 2211.0
ANSYS 838.5 1341.3 1987.8 2161.9
Difference % 1.63 1.95 3.1 2.27

Figure 4-70 presents the first mode shape of the clamped plate using the

trigonometric series solution with the order of the series M and N are selected 12.

Nat. freq. mode: 1 fn=852.8457Hz

Figure 4-70. First mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated clamped plate with a/b = 1, h/a = 0.016 using the trigonometric series
solution with M=12 and N=12

Second mode shape of the fiber-reinforced [0,/—45,/45,/90,]; laminated
clamped plate is expressed in Figure 4-71. Trigonometric series solution (TSS) is

used to obtain this mode shape with orders M=12 and N=12.
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Nat. freq. mode: 2 fn=1369.3648Hz
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Figure 4-71. Second mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated clamped plate with a/b = 1, h/a = 0.016 using the trigonometric series
solution with M=12 and N=12

The third and fourth mode shape of fiber-reinforced [0,/—45,/45,/90,]
laminated clamped plate using trigonometric series solution (TSS) with orders M=12
and N=12 is given in Figure 4-72 and 4-73.
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Nat. freq. mode: 3 f =2053.5659Hz
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Figure 4-72. Third mode shape of the fiber-reinforced [0,/—45,/45,/90,];

laminated clamped plate with a/b = 1, h/a = 0.016 using the trigonometric series
solution with M=12 and N=12

Nat. freq. mode: 4 fn=2216.7808Hz

Figure 4-73. Fourth mode shape of the fiber-reinforced [0,/—45,/45,/90,]

laminated clamped plate with a/b = 1, h/a = 0.016 using the trigonometric series
solution with M=12 and N=12

Figure 4-74 shows the first mode shape that found by ANSYS of fiber-reinforced
[0,/—45,/45,/90,], laminated clamped plate.
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C: Modal
Total Deformation 2
Type: Total Deformation
Frequency: 838,53 Hz
Unit: mm
F11.2022 1703

176,91 Max
157,25
1376
117,94 / e
R

08,282
78,626
58,969
38,313
18,656
0 Min

Figure 4-74. First mode shape of the fiber-reinforced [0,/—45,/45,/90,],
laminated clamped plate with a/b = 1, h/a = 0.016 using ANSYS

Second mode shape of fiber-reinforced [0,/—45,/45,/90,], laminated clamped
plate is given in Figure 4-75. ANSYS is used to determine second mode shape

corresponding to second natural frequency.

C: Modal
Total Deformation 3
Type: Total Deformation
Frequency: 1341,3 Hz
Unit: mim
712022 1708

167,77 Max
149,13
13048
111,34
93,208
74,563
55,002
37,281
18,641
0 Min

Figure 4-75. Second mode shape of the fiber-reinforced [0,/—45,/45,/90,];
laminated clamped plate with a/b = 1, h/a = 0.016 using ANSYS

The third and fourth mode shape of fiber-reinforced [0,/—45,/45,/90,]
laminated clamped plate using ANSYS is shown in Figure 4-76 and Figure 4-77.
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C: Modal
Total Deformation 4
Type: Total Deformation
Frequency: 19878 Hz
Unit: mim
7.11.2022 1700

163,77 Max
145,58
12738
109,18
90,986
72,780
54,501
36,3
18,197
0 Min

Figure 4-76. Third mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated clamped plate with a/b = 1, h/a = 0.016 using ANSYS

C: Modal
Total Deformation 3
Type: Total Deformation
Frequency: 2161,9Hz
Unit: rrrn
112022 1R00

171,41 Max
152,36
133,32
114,27
95,226
76,181
57,136
38,091
19,045
0 Min

Figure 4-77. Fourth mode shape of the fiber-reinforced [0,/—45,/45,/90,];
laminated clamped plate with a/b = 1, h/a = 0.016 using ANSYS

Verification of natural frequencies and mode shapes of fiber-reinforced clamped

plate has been done as seen in Table 4-13 and Figure 4-70-4-77.
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4.3.3 Analysis for a Single Free and Three Clamped Plate

Natural frequencies and mode shapes of fiber-reinforced single free and three
clamped plate are determined by the trigonometric series solution (TSS) and finite
element analysis. The material and geometric properties of fiber-reinforced plate are
taken in Table 4-9 and Table 4-10 as in the previous two sections. Lamination
sequence of single free and three clamped plate is [0,/—45,/45,/90,],. In the
trigonometric series solution (TSS), a convergence study of frequency parameter A
is done for a single free and three-clamped plate by increasing the M and N orders of
the Ritz solution. The results of the convergence study using the trigonometric series

solution are shown in Table 4-15. The trigonometric shape function, (1 —

oS ((Zi—zl)ﬂ'

f))sin (jmm) sin (mn) , is used in the Rayleigh-Ritz method solution for

this boundary conditions. Validation has been performed for the first four natural
frequencies using the finite element analysis program ANSYS and the trigonometric
series solution with M=12 and N=12 given in Table 4-16.

Table 4-15. Convergence study of frequency parameter 1 = wab./ph/D, for first
four mode of fiber-reinforced [0,/—45,/45,/90,] laminated single free and three
clamped plate with a/b =1, h/a = 0.016

Number of Model Mode2 Mode3 Mode4
Series (Mx N) A Ay Az Ay

2 X2 11.16 26.88 30.00 47.65

4 x4 10.94 25.16 28.12 42.47

6X6 10.90 24.99 27.87 41.98

8x8 10.88 24.94 27.78 41.82

10 X 10 10.87 24.92 27.74 41.75

12 x 12 10.86 2491 27.72 41.72
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Table 4-16. First four mode natural frequencies of fiber-reinforced [0,/—45,/45,/
90,], laminated single free and three clamped plate with a/b =1, h/a = 0.016
using trigonometric series solution (TSS) with M=12 and N=12 and ANSYS

Model Mode2 Mode3 Mode4

Solution Type Frequency Frequency Frequency Frequency
(Hz) (Hz) (Hz) (Hz)
TSS 397.4 911.6 1013.6 1525.7
ANSYS 392.8 897.6 998.1 1493.0
Difference % 1.17 1.55 1.55 2.19

Figure 4-78 shows the first mode shape of the single free and three clamped plate
using trigonometric series solution (TSS). While obtaining the first mode, order of

the trigonometric series M and N are taken 12.

Nat. freq. mode: 1 fn=397.4111Hz

Figure 4-78. First mode shape of the fiber-reinforced [0,/—45,/45,/90,];
laminated single free and three clamped plate with a/b = 1, h/a = 0.016 using the

trigonometric series solution with M=12 and N=12
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Second mode shape of the fiber-reinforced [0,/—45,/45,/90,], laminated single
free and three clamped plate is given in Figure 4-79. Trigonometric series solution

(TSS) is used to determine second mode shape with orders M=12 and N=12.

Nat. freq. mode: 2 fn=911.6196Hz
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Figure 4-79. Second mode shape of the fiber-reinforced [0,/—45,/45,/90,]

o

laminated single free and three clamped plate with a/b = 1, h/a = 0.016 using the
trigonometric series solution with M=12 and N=12

Figure 4-80 and Figure 4-81 indicates the third and fourth mode shape of fiber-

reinforced [0,/—45,/45,/90,] laminated single free and three clamped plate
using trigonometric series solution (TSS) with orders M=12 and N=12.
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Nat. freq. mode: 3 fn=1013.6165Hz

0.5

Figure 4-80. Third mode shape of the fiber-reinforced [0,/—45,/45,/90,];
laminated single free and three clamped plate with a/b = 1, h/a = 0.016 using the

trigonometric series solution with M=12 and N=12

Nat. freq. mode: 4 fn=1 525.7336Hz

Figure 4-81. Fourth mode shape of the fiber-reinforced [0,/—45,/45,/90,]
laminated single free and three clamped plate with a/b = 1, h/a = 0.016 using the
trigonometric series solution with M=12 and N=12

Figure 4-82 shows the first mode shape of fiber-reinforced [0,/—45,/45,/90,];
laminated single free and three clamped plate using ANSYSS.
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C: Modal

Total Deformation
Type: Total Deformation
Frequency: 392,87 Hz
Unit: rrm

T.2022 1820

219,08 Max
194,74
170,39
146,05
121,71
97,368
73,026
49,654
24,342

0 Min

Figure 4-82. First mode shape of the fiber-reinforced [0,/—45,/45,/90,],

laminated single free and three clamped plate with a/b = 1, h/a = 0.016 using
ANSYS

Second mode shape of fiber-reinforced [0,/—45,/45,/90,] laminated single free

and three clamped plate is given in Figure 4-83. ANSYS is used to obtain second
mode shape of this plate.

C: Modal

Total Deformation 3
Type: Total Deformation
Frequency: 897,61 Hz
Unit: mm

711.2022 17:58

239,98 Max
213,31
196,65
153,98
133,32
106,66
79,907
53,328
26,664
0 Min

Figure 4-83. Second mode shape of the fiber-reinforced [0,/—45,/45,/90,];
laminated single free and three clamped plate with a/b =1, h/a = 0.016 using
ANSYS
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Figure 4-84 and Figure 4-85 shows the third and fourth mode shape of fiber-

reinforced [0,/—45,/45,/90,]; laminated single free and three clamped plate
using ANSYS.

C: Modal

Total Defarmation 4
Type: Total Deforrmation
Frequency: 998,05 Hz
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7112022 17:58

255,89 Max

Figure 4-84. Third mode shape of the fiber-reinforced [0,/—45,/45,/90,]

laminated single free and three clamped plate with a/b = 1, h/a = 0.016 using
ANSYS
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Figure 4-85. Fourth mode shape of the fiber-reinforced [0,/—45,/45,/90,];

laminated single free and three clamped plate with a/b =1, h/a = 0.016 using
ANSYS
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4.4  Parametric Study

Changing the parameters of a fiber-reinforced laminated plate affects the static
bending and free vibration results. Classical lamination plate theory assumes that a
fiber-reinforced plate is thin. If thickness is increased too much then results will
deviate from reality. Also, the orientation of the fiber angle in the lamina affects the
static bending and free vibration results of the problem. Different fiber angles have
been laminated so that the strength and natural frequency of different laminated fiber
angles can be understood. Finally, the aspect ratio of the fiber-reinforced laminated
plate has been analyzed to understand its effects on the static bending and free

vibration results.

44.1 Effects of Thickness to Length Ratio (h/a) on Static Bending

Results

The theory used in analytical solutions assumes the plate is thin. The thickness-to-
length ratio is investigated for the fiber-reinforced plate to understand its effects on
the maximum deflection. The trigonometric series solution (TSS) and the finite
element method are utilized to determine the effects of thickness to length ratio on
bending results. The material and geometric properties of the fiber-reinforced
laminated plate used in the analysis are taken from Table 4-1 and Table 4-2 [49]. The
boundary conditions of the fiber-reinforced plate are simply-supported, clamped,
single free and three clamped. Firstly, the plate’s layer thickness, t, is taken as
0.2 mm, and then increased by 0.05 mm at each step, up to 0.5 mm and analyzed.
Thus, the total thickness of the plate, h, is increased from 3.2 mm to 8 mm, as given
in Table 4-17. The lamination sequence of the fiber-reinforced laminated plate is
[0,/—45,/45,/90,],. Table 4-18 shows the validation for the maximum deflection
of fiber-reinforced plate with different thicknesses using the finite element analysis
program ANSYS and the trigonometric series solution with M=12 and N=12.
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Table 4-17. Thickness to length ratio (h/a) of the fiber-reinforced [0,/—45,/45,/

90,], laminated plate

h/a h (mm) t (mm) a (mm)
0.016 3.2 0.20 200
0.020 4.0 0.25 200
0.024 4.8 0.30 200
0.028 5.6 0.35 200
0.032 6.4 0.40 200
0.036 7.2 0.45 200
0.040 8.0 0.50 200

Table 4-18. Effects of h/a ratio on the maximum deflection of the fiber-reinforced
[0,/—45,/45,/90,]s laminated simply-supported (SSSS), clamped (CCCC),
single free and three clamped (CFCC) plate with ¢ = 0.01 MPa, a/b = 1, using
trigonometric series solution (TSS) with M=12 and N=12 and ANSYS

Maximum Deflection (mm)

h/a SSSS Plate CCCC Plate CFCC Plate
wo(a/2,b/2) wo(a/2,b/2) wo(a,b/2)
TSS FEM TSS FEM TSS FEM

0.016 0.4161  0.4089 0.1169 0.1204 0.6096 0.6267

0.020 0.2130  0.2101 0.0598 0.0626 0.3121 0.3234

0.024 0.1233  0.1222 0.0346 0.0368 0.1806 0.1887

0.028 0.0776  0.0773 0.0218 0.0237 0.1137 0.1201

0.032 0.0520  0.0521 0.0146 0.0163 0.0762 0.0813

0.036 0.0365  0.0368 0.0103 0.0117 0.0535 0.0577

0.040 0.0266  0.0271 0.0075 0.0087 0.0390 0.0426
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The numerical results from Table 4-18 are plotted. Effects of thickness-to-length
ratio on the bending results of the fiber-reinforced laminated plate with different
boundary conditions are given in Figure 4-86 using ANSY'S and trigonometric series
solution (TSS).

. «107 Static Bending Comparison of h/a Ratio
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Figure 4-86. Effects of h/a ratio on the maximum deflection of the fiber-reinforced
[0,/—45,/45,/90,], laminated simply supported, clamped, and single free three
clamped plate with ¢ = 0.01 MPa, a/b = 1 using trigonometric series solution
(TSS) with M=12 and N=12 and ANSY'S

Figure 4-86 shows that if the ply thickness increases, maximum deformation
decreases as the stiffness of plate increases. Also, there is a region where maximum
deflection decreases sharply. There is an optimum range of h/a between 0.016 and
0.02 for achieving bending results correctly simulated thin laminated composite

plates.
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4.4.2 Effects of Thickness to Length Ratio (h/a) on Free Vibration

Results

The thickness-to-length ratio is studied for fiber-reinforced plates to learn more
about how it affects the fundamental natural frequency. The trigonometric series
solution (TSS) and the finite element method are used in the different thickness-to-
length ratio analyses. The material and geometric properties of the fiber-reinforced
laminated plate are taken from Table 4-1 and Table 4-2 [49]. The boundary
conditions of the fiber-reinforced plate are simply supported (SSSS), clamped
(CCCCQ), and single free three clamped (CFCC). The thickness variation of plies is
shown in Table 4-17, given in the previous section. The lamination sequence of the
fiber-reinforced laminated plate is [0,/—45,/45,/90,]. Table 4-19 expresses the
verification for the fundamental natural frequency of fiber-reinforced plate with
different thickness to length ratio using the finite element analysis program, ANSY'S
and the trigonometric series solution with order M=12 and N=12.

Table 4-19. Effects of h/a ratio on the natural frequency of the fiber-reinforced
[0,/—45,/45,/90,]s laminated simply-supported (SSSS), clamped (CCCC),
single free and three clamped (CFCC) plate with, a/b = 1, using trigonometric
series solution (TSS) with M=12 and N=12 and ANSYS

Natural Frequency, f,, (Hz)

h/a SSSS Plate CCCC Plate CFCC Plate

TSS FEM TSS FEM TSS FEM

0.016 452.73  450.60 825.76 840.40 398.08 393.09

0.020 565.92  562.05 1032.21 1042.12  497.60 489.42

0.024 679.01 67273  1238.65 1238.40  597.12 584.62

0.028 792.28 78248  1445.08 1429.16  696.64 678.54

0.032 905.46  891.17 165153 1612.00  796.17 771.03

0.036 1018.65 998.67  1857.97 1789.01  895.69 861.97

0.040 1131.83 1104.90 2064.41 1960.02  995.21 951.26
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The theory used in analytical solutions assumes the plate is thin. The thickness-to-
length ratio is investigated for three boundary conditions to understand its effects on
fundamental natural frequency. Thus, its effect on the natural frequency can be
examined as the plate thickness increases. Figure 4-87 shows the effects of thickness-

to-length ratio on free vibration results.

Free Vibration Comparison of h/a Ratio
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Figure 4-87. Effects of h/a ratio on the fundamental frequency of the fiber-
reinforced [0,/—45,/45,/90,] laminated simply supported, clamped, and single
free three clamped plate with, a/b = 1 using trigonometric series solution (TSS)
with M=12 and N=12 and ANSY'S

The trigonometric series approach used Kirchhoff’s hypothesis that utilized the thin
plate assumption. Figure 4-87 shows that the fundamental frequency increases when
the thickness-to-length ratio rises. This situation occurs because of the increase in

the plate’s stiffness when the thickness of the plate increases.
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4.4.3 Effects of Lamination Angles on Static Bending Results

The different fiber orientation angles of the fiber-reinforced plate are studied to
understand their effects on the maximum deflection. The trigonometric series
solution (TSS) and the finite element method are used to determine how the
lamination angle affects the static bending results. The material properties of the
fiber-reinforced laminated plate are taken from Table 4-1 [49], except for the
thickness of the ply. The ply thickness, t, is selected as 0.5 mm, so the total thickness
of the fiber-reinforced plate, h, is 4 mm. The geometric properties of the fiber-
reinforced plate in the different lamination angle problem are shown in Table 4-20.
Eight plies are symmetrically laminated in the fiber-reinforced plate. To understand
the effects of fiber orientation, plies with different fiber orientation angles are
laminated symmetrically with their minus angles, as seen in Table 4-21. The
boundary conditions of the fiber-reinforced plate are simply supported (SSSS),
clamped (CCCC), and single-free three-clamped (CFCC). Table 4-22 presents the
validation for the maximum deflection of the fiber-reinforced plate with different
lamination angles using the finite element analysis program ANSYS and the

trigonometric series solution with M=12 and N=12.

Table 4-20. Geometric properties of fiber-reinforced plate for different lamination

angle problem

Name Geometric Parameter Value Unit
X axis Dimension a 0.2 m
Y axis Dimension b 0.2 m
Uniform Load q 10000 N/m?
Number of Plies n 8 -
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Table 4-21. Lamination type of the fiber-reinforced plate in different lamination

angle problem for maximum deflection

Lamination Type  Lamination Sequence

Ply Thickness

Plate Thickness

No. [6/—0/6/—06] t (mm) h (mm)
1 [0/—0/0/—0], 0.5 4.0
2 [15/—15/15/—15], 0.5 4.0
3 [30/—30/30/—30], 0.5 4.0
4 [45/—45/45/—45], 0.5 4.0
5 [60/—60/60/—60], 0.5 4.0
6 [75/—75/75/—75] 0.5 4.0
7 [90/—90/90/—90], 0.5 4.0

Table 4-22. Effects of lamination angle on the maximum deflection of the fiber-

reinforced simply-supported (SSSS), clamped (CCCC), single free and three

clamped (CFCC) plate with, g = 0.01 MPa, h/a = 0.02,
trigonometric series solution (TSS) with M=12 and N=12 and ANSYS

a/b =1, using

Lamination Maximum Deflection (mm)
Type No. SSSS Plate CCCC Plate CFCC Plate
wo(a/2,b/2) wo(a/2,b/2) wo(a,b/2)
TSS FEM TSS FEM TSS FEM
1 0.2738 0.2623 0.0548 0.0583 0.7542  0.75909
2 0.2352 0.2279 0.0573 0.0611 0.6352 0.6215
3 0.1818 0.1789 0.0622 0.0632 0.3806 0.3829
4 0.1619 0.1613 0.0637 0.0641 0.1913 0.2011
5 0.1778 0.1789 0.0598 0.0632  0.1012  0.1085
6 0.2241 0.2279 0.0537 0.0612 0.06224 0.07219
7 0.2569 0.2623 0.0508 0.0509 0.05011 0.05749
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Figure 4-88 shows the effects of fiber orientation angles in lamina on the maximum
deflection of fiber-reinforced simply supported (SSSS), clamped (CCCC), and single
free three clamped (CFCC) plate. Numerical results are taken from Table 4-22.
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Figure 4-88. Effects of lamination angle on the maximum deflection of the fiber-
reinforced laminated simply supported, clamped, and single free three clamped plate
with g = 0.01 MPa, h/a = 0.02, a/b = 1, using trigonometric series solution
(TSS) with M=12 and N=12 and ANSY'S

Figure 4-88 shows that the fiber orientation angles of layers react differently. The
strongest fiber orientation layer is 45°, and the weakest is 90° and 0° for simply
supported boundaries. When edges are clamped, all lamination angles give almost
the same result because all degrees of freedom are fixed when boundaries are
clamped. The strongest fiber orientation angle in the single free and three-clamped
edges is 90°, and the weakest fiber orientation angle is 0° because one edge is free

in the x direction.
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4.4.4 Effects of Lamination Angles on Free Vibration Results

The effects of the different fiber orientation angles on the fundamental natural
frequency are employed for the fiber-reinforced plate. The trigonometric series
solution (TSS) and the finite element method are used in the different lamination
angle analyses. The material and geometric properties of the fiber-reinforced
laminated plate used in this problem are taken from Table 4-1 [49] and Table 4-20.
The ply thickness, ¢, is selected as 0.4 mm , so the total thickness of the fiber-
reinforced plate, h, is 3.2 mm. The boundary conditions of the fiber-reinforced plate
are simply supported (SSSS), clamped (CCCC), and single free three clamped
(CFCC). In order to understand the effects of lamination angles on the fundamental
natural frequency, seven different lamination sequences given in Table 4-23 are
used. In this table, the thicknesses of the ply and plate are also provided. As seen in
Table 4-23, eight plies are laminated symmetrically. Table 4-24 indicates the
verifying natural frequency of the fiber-reinforced plate with different lamination
angles using the finite element analysis program ANSYS and the trigonometric

series solution with M=12 and N=12.

Table 4-23. Lamination type of the fiber-reinforced plate in different lamination

angle problem for fundamental natural frequency

Lamination Type Lamination Sequence Ply Thickness  Plate Thickness

No. [6/—6/6/—06]; t (mm) h (mm)
1 [0/—0/0/—0], 0.4 3.2
2 [15/-15/15/—15]; 0.4 3.2
3 [30/—30/30/—30], 0.4 3.2
4 [45/—45/45/—45]; 0.4 3.2
5 [60/—60/60/—60], 0.4 3.2
6 [75/-75/75/—75]; 0.4 3.2
7 [90/—90/90/—90], 0.4 3.2
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Table 4-24. Effects of lamination angle on the fundamental natural frequency of the
fiber-reinforced simply-supported (SSSS), clamped (CCCC), single free and three
clamped (CFCC) plate with, g =0.01 MPa, h/a = 0.02, a/b =1, using
trigonometric series solution (TSS) with M=12 and N=12 and ANSYS

Lamination Natural Frequency, f,, (Hz)

Type No. SSSS Plate CCCC Plate CFCC Plate

TSS FEM TSS FEM TSS FEM

400.24  398.86 864.60 848.94 262.49 261.97

430.85  429.76  852.79  849.87 284.14 287.90

488.60 487.13 830.80 827.98 363.01 365.13

517.25  513.71 826.40 823.76 503.93 499.30

49420 487.13 847.56 841.98 669.72 666.44

44151  439.76  880.16  879.87 804.49 791.15

~N| O O A WO N -

413.20  410.87 895.38 888.99 856.78 848.97

Natural frequencies of the fiber-reinforced plate with different fiber orientation
layers are determined by the trigonometric series solution (TSS) and the finite
element analysis program, ANSYS, as seen in Table 4-24. The results are close to
each other. The effects of lamination angles on the fundamental natural frequencies

are shown in Figure 4-89.
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900 Free Vibration Fundamental Frequency Results
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Figure 4-89. Effects of lamination angle on the fundamental natural frequency of the
fiber-reinforced laminated simply supported, clamped, and single free three clamped
plate with h/a = 0.02, a/b = 1, using trigonometric series solution (TSS) with
M=12 and N=12 and ANSYS

The results of three different boundary conditions are shown in Figure 4-89. These
boundary conditions have different critical fundamental frequencies depending on
the lamination angle. The critical fiber-orientation angles are 90° and 0° when
boundaries are simply supported. However, 45° of fiber orientation is more crucial
to the free vibration problem if the edges are clamped. Lastly, a 0° lamination angle
is important when boundaries are single-free and three-clamped since the free edge

is in the x direction.

121



445 Effects of Aspect Ratio (a/b) on Static Bending Results

In the analysis made in previous sections, the in-plane dimensions of the fiber-
reinforced plate were equal. In order to understand the effects of the aspect (a/b)
ratio on the maximum deflection of the fiber-reinforced plate, the analysis of various
aspect ratios of the plate is made by the trigonometric series solution (TSS) and finite
element method. The material and geometric properties of the fiber-reinforced plate
are taken from Table 4-1 [49] and Table 4-25. The boundary conditions of the fiber-
reinforced plate are simply-supported, clamped, single free and three clamped.
Firstly, the plate’s aspect ratio, a/b , is taken as 1 , then increased by 0.5 at each
step, up to 3. Thus, the transverse dimension of plate b is decreased from 200 mm
to 66.67 mm , as given in Table 4-25. The lamination sequence of the fiber-
reinforced laminated plate is [0,/—45,/45,/90,],. Ply thickness, t is selected as
0.2 mm so the total thickness of fiber-reinforced plate, A is 3.2 mm. Table 4-26
shows the validation for the maximum deflection of fiber-reinforced plate with
different aspect ratios using the finite element analysis program ANSYS and the

trigonometric series solution with M=12 and N=12.

Table 4-25. Geometric properties of fiber-reinforced plate for different aspect ratio

problem
Aspect Ratio Longitudinal Transverse Uniform Load
Dimension Dimension
a/b a (mm) b (mm) q (MPa)
1 200 200 0.01
15 200 133.34 0.01
2 200 100 0.01
2.5 200 80 0.01
3 200 66.67 0.01
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Table 4-26. Effects of aspect ratio on the maximum deflection of the fiber-reinforced
[0,/—45,/45,/90,]s laminated simply-supported (SSSS), clamped (CCCC),
single free and three clamped (CFCC) plate with, ¢ = 0.01 MPa, h/a = 0.016
using trigonometric series solution (TSS) with M=12 and N=12 and ANSYS

Aspect Ratio Maximum Deflection (mm)
SSSS Plate CCCC Plate CFCC Plate
a/b wy(a/2,b/2) wo(a/2,b/2) wo(a,b/2)
TSS FEM TSS FEM TSS FEM
1 04161  0.4089 0.1169 0.1204 0.6096  0.6268
1.5 0.2077 0.2064 0.0626 0.0648 0.1311 0.1373
2 0.1040 0.1031 0.0291 0.0304 0.0410 0.0430
25 0.0548  0.0538 0.0138 0.0146  0.0167 0.0176
3 0.0307 0.0291 0.0700 0.0074 0.0800 0.0085

The composite plate may not always be square; it may have different dimensions in
the x and y directions. To understand the effects of aspect ratio on the fiber-
reinforced plate, static bending analysis is made for different aspect ratios. Three
different boundary conditions are used in these calculations. The numerical results
are taken from Table 4-26 and plotted for better examination. Figure 4-90 shows the
effects of aspect ratio on the static bending results of the fiber-reinforced plate.
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Figure 4-90. Effects of a/b ratio on the maximum deflection of the fiber-reinforced
[0,/—45,/45,/90,], laminated simply supported, clamped, and single free three
clamped plate with g = 0.01 MPa, h/a = 0.016 using trigonometric series solution
(TSS) with M=12 and N=12 and ANSY'S

Aspect ratio effects behave similarly on the fiber-reinforced plate for three boundary
conditions. If the aspect ratio of the fiber-reinforced plate increases, the maximum
deflection decreases since stiffness of plate increases, as seen in Figure 4-90. When
the plate boundaries are clamped, maximum deflection falls slower because all
degrees of freedom are fixed. However, while a composite plate has free boundary

conditions, maximum deformation decreases sharply.
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4.4.6 Effects of Aspect Ratio (a/b) on Free Vibration Results

In the previous section, the effects of aspect ratio on the maximum static bending
were examined. The aspect ratio also has certain effects on the fundamental natural
frequency of the fiber-reinforced plate. In order to understand these effects, the
trigonometric series solution (TSS) and finite element method are used for different
aspects ratio of the plate. The material and geometric properties of the fiber-
reinforced laminated plate are taken from Table 4-1 [49] and Table 4-25, as in the
previous section. The boundary conditions of the fiber-reinforced plate are simply-
supported, clamped, single free and three clamped. The change in aspect ratio is
given in Table 4-25. The lamination sequence of the fiber-reinforced laminated plate
is[0,/—45,/45,/90,],. Ply thickness, t is selected as 0.2 mm so the total thickness
of fiber-reinforced plate, h is 3.2 mm. Table 4-27 demonstrates the validation for the
fundamental natural frequency of fiber-reinforced plate with different aspect ratios
using the finite element analysis program ANSYS and the trigonometric series
solution with M=12 and N=12.

Table 4-27. Effects of aspect ratio on the fundamental natural frequency of the fiber-
reinforced [0,/—45,/45,/90,]; laminated simply-supported (SSSS), clamped
(CCCCQ), single free and three clamped (CFCC) plate with, h/a = 0.016 using
trigonometric series solution (TSS) with M=12 and N=12 and ANSYS

Aspect Ratio Natural Frequency, f,, (Hz)
SSSS Plate CCCC Plate CFCC Plate
a/b TSS FEM TSS FEM TSS FEM
1 452.65  450.15 838.71 840.44  391.39  393.09
15 640.28 636.71 115551 1154.30 805.29 805.92
2 904.65 898.12 1680.99 1672.02 139431 1389.20
2.5 1246.19 1235.70 2405.21 2378.40 2155.74 213491
3 1664.84 1654.8 3316.29 3257.61 3088.65 3038.52
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Figure 4-91 shows the effects of aspect ratio (a/b) on the fundamental natural

frequency of the fiber-reinforced plate using numerical results from the Table 4-27.

Free Vibration Comparison of a/b Ratio
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Figure 4-91. Effects of a/b ratio on the fundamental frequency of the fiber-
reinforced [0,/—45,/45,/90,]¢ laminated simply supported, clamped, and single
free three clamped plate with, h/a = 0.016 using trigonometric series solution
(TSS) with M=12 and N=12 and ANSY'S

When the Figure 4-91 is examined, it can be understood that when the aspect ratio
increases with decreasing transverse dimension, natural frequencies of different
boundaries increase since the stiffness of plate increases. When boundaries are
clamped, or a single free and three clamped, fundamental frequency increases more
than when all edges are simply supported. The reason for this situation can be
explained as follows: if there is a clamped boundary condition on a fiber-reinforced

plate, all degrees of freedom are limited.
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45  Comparison with Different Approximation Method

In this section, the new developed trigonometric series solution (TSS) method is
compared with a study in the literature. Deflection and free vibration of
symmetrically laminated, quasi-isotropic, thin rectangular plates for different
boundary conditions were studied by Altunsaray and Bayer in 2013 [49]. This study
examines the maximum deflection and the natural frequency of thin rectangular
plates that are simply supported and clamped from four edges. The effects of changes
in aspect ratio and orientation angle on the results of static bending and free vibration
problems according to the Classical Lamination Plate Theory are parametrically
calculated using the Galerkin Method. The obtained results are compared with the
software package ANSYS, which conducts analyses using the Finite Elements
Method (FEM). While making the comparison, the methods in the article [49] are
compared with the trigonometric series solution method with M and N taken as 12.
The stacking sequences used in the comparison are given in Table 4-28. Material and
geometric properties of the fiber-reinforced plate are taken from Tables 4-1 and 4-2.
The comparison of the maximum deflections of the fiber-reinforced simply
supported and clamped plate according to different aspect ratios are given in Tables
4-29 and 4-30.

Table 4-28. Different lamination types for comparison of TSS with the literature
[49]

Lamination Type  Lamination Sequence Ply Thickness  Plate Thickness

No. t (mm) h (mm)
1 [0,/—45,/45,/90,] 0.2 3.2
2 [—45,/0,/45,/90,] 0.2 3.2
3 [45,/—45,/0,/90,] 0.2 3.2
4 [90,/—45,/45,/0,]s 0.2 3.2
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Table 4-29. Effects of aspect ratio and stacking sequence on the maximum deflection
of the fiber-reinforced laminated simply-supported (SSSS) plate, g = 0.01 MPa,
h/b = 0.016 using trigonometric series solution (TSS) with M=12 and N=12 and
Altunsaray and Bayer [49] results

Lamination Scheme Type No.

a/b Method wo(a/2,b/2) (mm)
1 2 3 4
Altunsaray and
0.401 0.347 0.318 0.407
. Bayer [49]
Present 0.416 0.376 0.330 0.404
FEM 0.416 0.392 0.339 0.416
Altunsaray and
0.891 0.691 0.600 0.507
L4 Bayer [49]
' Present 0.919 0.748 0.618 0.569
FEM 0.923 0.778 0.625 0.568
Altunsaray and
1.623 1.178 0.996 0.729
20 Bayer [49]
' Present 1.665 1.267 1.020 0.701
FEM 1.655 1.287 1.006 0.680

Different approximation methods, Galerkin and Ritz, are given and validated with
ANSYS in Table 4-29 for maximum deflection of simply supported plate. These
results show that the proposed trigonometric series solution (TSS) method has better

accuracy than the Galerkin method, which is given in the literature study [49].
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Table 4-30. Effects of aspect ratio and stacking sequence on the maximum deflection
of the fiber-reinforced laminated clamped (CCCC) plate, ¢ = 0.01 MPa, h/b =
0.016 using trigonometric series solution (TSS) with M=12 and N=12 and

Altunsaray and

Lamination Scheme Type No.

a/b Method wo(a/2,b/2) (mm)
1 2 3 4
Altunsaray and
0.116 0.119 0.121 0.116
. Bayer [49]
Present 0.119 0.127 0.125 0.114
FEM 0.121 0.130 0.127 0.120
Altunsaray and
0.276 0.237 0.216 0.142
L4 Bayer [49]
' Present 0.283 0.255 0.222 0.140
FEM 0.284 0.257 0.224 0.145
Altunsaray and
0.463 0.350 0.300 0.149
20 Bayer [49]
' Present 0.475 0.371 0.306 0.148
FEM 0.473 0.370 0.306 0.149

The maximum deformation of fiber-reinforced clamped plate according to the
different aspect ratios are given in Table 4-30 with trigonometric series solution
(TSS) method and literature example [49] and results are validated using FEM. The
results show that the developed method gives better results than the literature study
[49].

The natural frequency of the fiber-reinforced simply-supported and clamped plates
according to different aspect ratios are compared in Table 4-31 and Table 4-32. The
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results are obtained using the trigonometric series solution (TSS) method and are
compared with the literature [49] that used Galerkin method and FEM.

Table 4-31. Effects of aspect ratio and stacking sequence on the natural frequency of
the fiber-reinforced laminated simply-supported (SSSS) plate, h/b = 0.016 using
trigonometric series solution (TSS) with M=12 and N=12 and Altunsaray and Bayer
[49] results

Lamination Scheme Type No.

a/b Method Natural Frequency, f,, (Hz)
1 2 3 4
Altunsaray and
454.7 483.6 510.9 454.7
Bayer [49]
Present 452.6 471.6 507.4 459.2
FEM 447.6 461.2 494.9 447.6
Altunsaray and
306.1 3435 373.3 380.6
14 Bayer [49]
' Present 304.4 334.1 370.8 387.4
FEM 301.2 327.4 363.3 376.7
Altunsaray and
227.4 263.6 290.5 341.1
20 Bayer [49]
' Present 226.2 257.1 288.9 349.4
FEM 224.3 253.3 284.7 339.2
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Table 4-32. Effects of aspect ratio and stacking sequence on the natural frequency of
the fiber-reinforced laminated clamped (CCCC) plate, h/b = 0.016 using
trigonometric series solution (TSS) with M=12 and N=12 and Altunsaray and Bayer
[49] results

Lamination Scheme Type No.

a/b Method Natural Frequency, f,, (Hz)
1 2 3 4
Altunsaray and
856.3 849.1 844.3 856.3
Bayer [49]
Present 852.8 827.8 836.8 860.6
FEM 842.5 815.8 823.3 842.5
Altunsaray and
560.5 602.8 629.3 759.6
14 Bayer [49]
' Present 557.9 585.7 623.8 776.9
FEM 553.7 579.9 616.8 748.8
Altunsaray and
429.3 490.3 527.0 719.3
20 Bayer [49]
' Present 427.3 478.5 522.7 737.9
FEM 425.2 475.4 518.9 710.1

As can be seen from the natural frequency results for simply supported and clamped
fiber-reinforced plates given in the Table 4-31 and 4-32, the newly developed
trigonometric series solution (TSS) gave results closer to the results calculated by
the finite element method.
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CHAPTER 5

CONCLUSION

This study developed a new trigonometric series expansion method to obtain the
static bending and free vibration behaviors of symmetrically laminated fiber-
reinforced plates. Kirchhoff’s (Classical Laminated Plate) theory is applied in the
analytical formulation of both bending and free vibration problems. Governing
partial differential equations is derived by employing Hamilton's principle. The
effects of boundary conditions on static bending and free vibration problems are
investigated. The boundary conditions are satisfied by expanding mid-plane
displacement into a series of trigonometric shape functions. When the Rayleigh-Ritz
method is used to obtain approximating static bending results, the coefficients of the
trigonometric series form a linear system. For the free vibration problems, the
eigenvalue equation is obtained by solving the minimization of the energy theory of
the fiber-reinforced plate with the Rayleigh-Ritz method. Natural frequencies and
mode shapes of the fiber-reinforced plate are determined by solving this equation.
Using plate elements that incorporate first-order shear deformation theory, finite
element models for both bending and free vibrations are constructed by ANSYS.
Numerical results are obtained for simply supported and clamped composite plates
as well as those for a plate with single free and three clamped edges. The developed
trigonometric series approach is validated by comparing the results of finite element
studies and a study in the literature [49]. Comparisons of this study’s results to those
of finite element analysis and literature show the accuracy of the trigonometric series
solution method used in this study. Further results illustrate the influences of
geometric and material parameters upon the static bending and the free vibration

responses of the fiber-reinforced plate.
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The following outcomes were made from the results obtained in bending problems.

e The minimum deformation occurred in the fiber-reinforced clamped plate
because all degree of freedom are limited along the boundaries.
e The maximum deformation occurred due to the free boundary condition in

the plate with single-free and three-clamped.

A few inferences have also been made from the transverse stress results. Transverse
stresses were examined separately for each layer. Since each layer was laminated at
a different angle, it was observed in which directions more stress occurred on these

layers.

e The highest normal stress in the x and y directions was determined in the
layers that have 0° and 90° of fiber-orientation, respectively, due to the fact
that the orientations of the fibers are parallel to the x and y axes.

e The highest shear stress was calculated in layers with a fiber orientation of
45° or —45° because these fiber orientations are laminated along the shear

direction of the plies.

The stresses of each of the plies along the thickness of the laminate are also

compared.

e Forthe o,,, itis observed that the maximum stress occurs at 0° fiber oriented
layers as expected.

e Forthe g,,, the maximum stress occurs at 45° and -45° fiber oriented layers.
Normally, 90° fiber oriented layers are expected to have highest stress but as
they are at midplane of the laminate, they are subjected to less deformation
than 45° and -45° layers. This causes these fibers have higher stress than 90°
fiber oriented layers.

e For the a,,, the maximum stress occurs at 45° and -45° fiber oriented layers

which is expected.
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Modal analysis is also performed in this study for three different boundary

conditions.

The lowest first natural frequency of the symmetrically laminated fiber-
reinforced plate was found in single-free and three-clamped boundary
conditions which is a result of having a free edge.

The highest value was obtained on the clamped plate since all degrees of

freedom are limited along the boundaries in this case.

The effects of some geometric parameters on the results are investigated as well.

Firstly, the thickness-to-length ratio was examined. It is observed that as the
thickness increases, maximum deflection decreases and natural frequency
increases since the stiffness of the plate increases.

Second parametric study was carried out to understand how the fiber-
orientation angles of the layers behave in static bending and free vibration
problems. Strongest fiber-orientation layer is 45° in simply-supported plate.
When all edges are clamped, all lamination angles give almost the same result
because all degree of freedoms are limited along boundaries. For single-free
and three clamped plate, strongest lamination angle is 90° degrees since the
free edge is in x direction. For natural frequencies, critical lamination angle
is 0° and 90° for simply supported plate. For clamped plate, 45° fiber oriented
layers are critical. Since the free edge is in x direction, 0° fibers are most
critical for single free and three clamped plate.

Finally, a parametric study is carried out to understand how the aspect ratio
affects the results. It is seen that while the transverse dimension decreases,
stiffness of the plate increases. It is also observed that as the aspect ratio

increases, maximum deflection decreases while natural frequency increases.

Another comparison is made for bending and free vibration analysis for simply

supported and clamped plate between the study carried out in this thesis and a

different approximation method existing in the literature [49].
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e |t is seen that the accuracy of the proposed method in this study, leads to

results with higher accuracy than the method employed in the literature study.

The developed method in this study can be used accurately for static bending and
free vibration analysis of a fiber-reinforced laminated plate with different types of
boundary conditions. The proposed method leads to rapid convergence, possesses
computational efficiency, and could be useful in design and optimization studies
involving laminated fiber-reinforced structures. In the future, this method may be
used with unsymmetrical fiber-reinforced plates and solving this method under

thermal loads may be an exciting area of study.
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