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ABSTRACT

DENTAL PANORAMIC AND BITEWING X-RAY IMAGE SEGMENTATION
USING U-NET AND TRANSFORMER NETWORKS

Kaya, Mete Can

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

January 2023, 68 pages

With the advancement in medical imaging systems, and the underlying software plat-

forms, diagnostics success in medicine improved significantly. Even though automa-

tized systems are essential tools for diagnostic success, medical professional opinion

is still used a lot, especially in dentistry. In the area of dentistry, x-ray images are

wildly used for diagnostic purposes, i.e. to find caries, the location of embedded

wisdom teeth, the health of the bone structure, etc. The dentist uses contrast and

region-based information to evaluate these images. However, evaluation can be time-

consuming, and it is not foolproof. In the literature, several studies exist on automatic

detection from dental panoramic or bitewing images separately. Different then these

studies, in this thesis, a transformer-based model is used for the segmentation of teeth

using both panoramic and bitewing images. The proposed model achieved similar

results on a panoramic dataset with state-of-the-art models while achieving %90 ac-

curacy on the bitewing dataset.

Keywords: Dental image, segmentation, transformers, U-net, Data augmentation
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ÖZ

U-NET VE TRANSFORMER AĞLARINI KULLANARAK DENTAL
PANORAMİK VE ISIRMA X-RAY GÖRÜNTÜ BÖLÜTLEME

Kaya, Mete Can

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Ocak 2023 , 68 sayfa

Tıbbi görüntüleme sistemlerinde ve altta yatan yazılım platformlarındaki ilerlemeyle,

tıpta teşhis başarısı önemli ölçüde arttı. Otomatik sistemler teşhis başarısı için te-

mel araçlar olmasına rağmen, tıp uzmanlarının görüşleri, özellikle diş hekimliğinde

hala yaygın olarak kullanılmaktadır. Diş hekimliği alanında röntgen görüntüleri teş-

his amaçlı yani çürüğün konumu, gömülü 20 yaş dişleri, kemik yapısının sağlığı vb.

görüntüler için kullanılmaktadır. Ancak, değerlendirme zaman alıcı olabilir ve ku-

sursuz olmayabilir. Literatürde dental panoramik veya ısırma görüntülerini ayrı ayrı

ele alan birçok çalışma bulunmaktadır. Bu çalışmalardan farklı olarak bu tezde dental

panoramik ve bitewing görüntülerinden çok modelli bir veri tabanı oluşturulmuş ve

dişlerin segmentasyonu için transformatör tabanlı bir model kullanılmıştır. Önerilen

model panoramik veri setinde son teknoloji modellerle benzer sonuçlar elde ederken,

bitewing veri setinde %90 doğruluk elde etmiştir.

Anahtar Kelimeler: Dental Görüntü, bölütleme, transformers, U-net, veri artırma
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CHAPTER 1

INTRODUCTION

X-ray imaging is an essential data source for diagnosis in dentistry. The images are

generated by X-rays that travel through the body, and they are absorbed in differ-

ent amounts by different tissues, depending on the radiological density of the tissues

they pass through. X-ray images contain information on teeth, gums, jaws, and bone

structure of the mouth. Since the tissue structure of the human mouth is known, un-

expected situations can be detected. Without these images, many dental problems

cannot be detected in the early stages as the only other resource is patient complaints.

Also, different fields and application areas in density require these images. Examples

can be given in fields like dental surgery, implantology, and forensic identification.

In dentistry, different imaging techniques were developed depending on the require-

ments. There are two main categories of imaging: intra-oral radiographic and extra-

oral radiographic imaging. The former is usually used before treatment. In this imag-

ing technique, the receiver sensor is placed inside the patient’s mouth. It shows a

smaller area with more detailed information. However, it creates custom shooting

angles and custom regions of interest. In extra-oral radiography, the receiver sensor

is outside of the patient body. This technique has standard shooting angles and re-

gions of interest. The patient is placed in a seated position to stabilize the movement.

Therefore, extra-oral radiographic images are more consistent images than intra-oral

radiographic images.

Bitewing, periapical, and panoramic imaging techniques are the most used imag-

ing techniques in dentistry. Bitewing and periapical images are intra-oral images

that show more detail compared to panoramic images. While Bitewing images are
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used for analysis and treatment of the crown, periapical images are used for root re-

gion. In these images, it is easier to observe caries compared to panoramic images.

Panoramic imaging is an extra-oral radiographic imaging technique. The panoramic

images show the patient’s whole mouth region hence the resolution per tooth is lower.

However, these images can contain more information and can be used to find impacted

teeth like wisdom teeth or early disease detection.

X-ray images require time and professional education to understand and examine.

These are time-consuming and expensive requirements. Hence, there are several

types of research to improve these requirements. Some researchers focus on image

enhancement to improve the content or remove the unnecessary part of the image.

However, the result of this research still requires a dentist’s experience and visual

perception. Hence, developing an automated tool is much more effective. However,

developing an algorithm for this task is challenging because of difficulties such as

variations of patient-to-patient teeth, artifacts used for restorations and prostheses,

poor image qualities caused by certain conditions (such as noise, low contrast, ho-

mogeneity in regions close to objects of interest), space existing by a missing tooth,

and limitation of acquisition methods [1]. In the literature, there are several studies

based on both traditional and learning-based approaches but as expected supervised

deep learning solutions outperform traditional image processing solutions [55].

[50] showed that using 40 bitewing images is enough to train a U-net architecture

[51]. This neural network wins the ISBI 2015 challenge. Then, [55] published an

open panoramic dataset for segmentation, and [29] achieve great results with this

dataset. [34, 48, 62, 10] work on same dataset to improve the segmentation result.

[53] improve the dataset and added the numbering to the dataset. These researches

are an important step for the development of automatic dental analysis tools.
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1.1 Contributions and Novelties

This thesis aims to achieve teeth segmentation on X-ray dental images using deep

learning methods. The contributions are as follows:

• A single deep learning model that can work with bitewing and panoramic im-

ages is proposed. Even though the teeth structure is obtained with the same

methodology between bitewing and panoramic, the teeth structure in these two

methods has different scales, orientations, and positions. One deep-learning

method performs on bitewing and panoramic images without any rotation or

scale in the testing phase. The experiments show that the proposed model can

achieve state of art results in panoramic data while achieving similar results for

bitewing teeth segmentation.

• Significant improvement on bitewing teeth segmentation is achieved with a low

number of images.

1.2 Structure of the Thesis

The outline of thesis is organized as follows. Problem definition, recent studies, and

contributions are given in Chapter 1: Introduction. In Chapter 2, the literature review

is given. Recent studies are divided by their tasks, and important ones are explained

in detail. In Chapter 3, background information about X-ray dental datasets, deep

learning models, loss functions, and metrics are given respectively. In chapter 4, the

proposed method is explained. The chapter starts with the motivation and reasoning

behind the solution. Then, the proposed method is explained. The results of data

augmentation methods and neural network selection are explained in chapter 5. Also,

the used hardware and compression with SOTA models are also given in this chapter.

Finally, the conclusion is given in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we will give the basics of current literature on neural network-based

solutions for dental images. We separated the literature into two groups; classification

and segmentation. The classification will be discussed briefly just to show the usage

of neural networks on different structures of the jaw like bone or gum. The segmen-

tation part will be discussed in more detail, and it will be focused on teeth. Then, we

explain the rationale for our algorithm selection and our problem selection according

to the literature.

For classification, we can see several recent works in table 2.1. The classification

studies are more successful compared to other studies as they work with larger datasets,

and the task is simpler. In these studies, they separate images into two or three classes,

and a CNN network that ends with the FCN layer predicts which class the images be-

long to. These researches also present solutions for different areas. Lee et al [36] and

Kim et al[32] show the usage of periapical dental images for attention on teeth roots.

Also, Geetha et al [21] shows that a smaller dataset and preprocessing are enough for

accurate caries classification.

For segmentation, the task is defined as the process of separating pixels into distinct

groups. These groups can be teeth, caries, implants, and so on. The baseline solution

for segmentation of dental images dates back to 2015, where Ronneberger et al[50]

won ISBI2015 Grand Challenges in Dental X-ray Image Bitewing Radiography, us-

ing their U-net architecture [51]. Their proposed architecture overcomes the gradient

vanishing problem and over-fitting due to the small dataset. This achievement is a

milestone for this area where a large dataset is difficult to generate. However, their
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solution cannot solve the class imbalance problem. Kaya and Akar [30] used octave

convolution [14] and focal loss [42] to solve this problem as octave convolutions are

smaller than normal convolution layer, and focal loss is known to be effective with

class imbalances. However, it shows a little improvement as caries and dental treat-

ments were less in number compared to the main parts of the tooth in the given dataset

[58].

There are several segmentation of teeth studies with their own intra-oral dental image

datasets. In Ari et al [2], they use a dataset with size 1169 periapical radiographs.

However, they train separate U-net models for each tooth structure hence they do

not solve the problem of generating a single model that segments all different tooth

structures. Haghanifar et al [26], Lee et al[38], Bayrakdar et al [4] and Zhu et al [63]

improves the performance on caries segmentation as they used balanced and larger

data set for this task. Brief information on their performance can be seen in table

2.2. Haghanifar et al [26] merge CNN architecture with the capsule network since the

Capsule network is capable of learning the geometrical relationships between features

generated by the CNN part. Lee et al[38] show that the U-net used in [50] is under-fit

and can be trained more with the larger dataset. Zhu et al [63] propose a solution

that passes the U-net that trained with their dataset by %13 in accuracy. They mod-

ify the decoder levels to a network that they proposed as a full-scale axial attention

layer (FSAA). Different from CNN layers, this layer merges FCN output with CNN

output to obtain better global attention. This network holds the best caries segmen-

tation performance at this moment. Ying et al [60] achieve a very close performance

improvement to [63]. They improve the accuracy of [50] by %11. They achieve this

performance with a much smaller dataset compared to [63]. They used a modified

version of TransUnet [11]. They change the encoder to ResNet-v2 [20] and Identity-

ASPP (In-ASPP) layers are used as skip connection parts between the encoder and

decoder. These layers are used for increasing the encoding of multi-scale global in-

formation. These modules are similar to ASPP in [12]. This research is one of the

first research on dental image segmentation that uses transformer networks. They also

obtain similar results to other state of art studies.

There are also semantic segmentation of teeth studies on dental panoramic image
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datasets. These studies can be separated into two by their neural network architec-

tures; encoder-decoder and Region-Based CNN architectures. The latter is usually

used as Mask R-CNN and the research are made with different back-bone, hybrid

loss calculation, and different mask layer. Silva et al [53] work on compare MaskR-

CNN. Pinheiro et al [48] adds PointRend to MaskRCNN with to improve performace

of [53]. Other studies that used encoder-decoder networks used either U-net or a

modified version of U-net. Koch et al [34] uses U-net with the dataset used in [29].

The U-net model outperforms the MaskRCNN in F1-score and Recall metrics. Salih

et al [52] use U-net with non-trainable layers called local ternary pattern (LTP) [9]

which they proposed as The local ternary pattern encoder–decoder neural network

(LTPEDN). This network achieves a very close score to normal U-net with half of the

size of the network. Chen et al [13] proposed a network called Multi-scale location

perception network(MSLPnet). This network adds FCN layers between the encoder

and decoder which improves the network’s global-level perception. This research

also uses a new metric called PFOM [40] that is used for objective boundary measure

of performance. They also use a structural similarity loss to improve their score of

PFOM. Even though this solution gives a %2 increase in accuracy the segmentation

results look more appealing. Zhao et al [62] achieve similar visual and metric per-

formance as [13]. They use a double U-net architecture. The first U-net generates an

attention map while the second U-net generates the segmentation result. They modify

the first U-net with custom layers called global attention and local attention module

that are similar to layers defined in [43]. The global attention module uses the LSTM

network whereas other researchers like [13] use FCN for processing global context

information. The result of these studies can be found in table 2.2.

Instance Segmentation and numbering of teeth on the panoramic images are also pop-

ular research topics. These tasks are not studied in this thesis. However, these studies

work on how to improve the existing solution. Some of the methods also improve

semantic segmentation performances. For example, Pinheiro et al [48] performs im-

proves the work of [53] and added the numbering of teeth. The instance segmentation

performance of studies can be seen in table 2.3. The studies on the numbering of teeth

are tries to predict teeth numbers defined in FDI World Dental Federation notation.
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Results of these studies can be found in table 2.4.

There are some interesting studies on the numbering of teeth that uses anatomical

structures of the human jaw. Lin et al [41] use the structural information on the

jaw since human jaws have symmetric structures and teeth are in order. They also

use several image enhancement methods to achieve successful numbering without

accurate segmentation. Chen et al [10] uses a neural network for segmentation and

initial numbering guessing. However, they also use the structural information to fix

wrong predictions or conflicting ones like premolar after moral tooth. Chung et al

[15] are focused on just numbering without segmentation part. They try to estimate

the center points of the tooth, and they use a two-layered network for this task. The

first layer predicts the center points and the second layer predicts the BBox around

the predicted center points. They use the anatomical structure in post-processing to

improve their results.

Table 2.1: A table of classification studies on Dental images with their brief work and

performances.

Authors Year Network Task Data Set
Metrics

Acc. Prec. Rec. F1 AUC Sens. Spec.

Lee et al [35] 2018 Inception v3 Caries 3000 Periapical 0.82 - - - 0.845 - -

Geetha et al [21] 2020 Preprocess+FCN Caries 105 Periapical 0.971 - - - 0.987 - -

Bergner et al [5] 2021 EMIL Caries 38k bitewing 0.736 - - 0.779 - 0.694 0.778

Lee et al [36] 2018 VGG-19 + SVM Compromised teeth 1044 periapical 0.734 - - - 0.734 - -

Kim et al [31] 2019 DentNet Bone Loss 11,189 panoramic 0.75 0.95 0.77 0.95

Kim et al [32] 2020 Resnet-50 Implant Fixture 901 periapical 0.98 0.98 0.98 0.98 - - -
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Table 2.2: A table of recent Semantic Segmentation studies on Dental images with

their brief work and performances.

Authors Year Method Task Data Set
Metrics

Acc. Spec. Prec. Recall F1 meanIOU mAP

Ronneberger et al [50] 2015 U-net Teeth Structure 120 Bitewing - - 0.453 - - - -

Kaya and Akar [30] 2020 Octave U-net Teeth Structure 120 Bitewing - - 0.48 - - - -

Haghanifar et al [26] 2020 PaXNet Caries 400 Panoramic 0.86 - 0.89 0.86 - - -

Lee et al [38] 2021 U-net Caries 354 Bitewing - - 0.633 0.65 0.64 - -

Zhu et al [63] 2022 CariesNet Caries 1159 Panoramic 0.936 - 0.941 0.86 0.929 - -

Ying et al [60] 2022 TransUnet Caries 153 Bitewing - - 0.74 - - - -

Jader et al [29] 2018 MaskRCNN Teeth 1500 Panoramic 0.98 0.99 0.94 0.84 0.88 - -

Chen et al [10] 2019 Faster RCNN + DNN Teeth 1250 Periapical - - 0.988 0.985 - 0.91 -

Koch et al [34] 2019 U-net Teeth 1500 Panoramic 0.946 0.954 0.9226 0.94 0.93 - -

Silva et al [53] 2020 MaskRCNN Teeth 1500 panoramic 0.96 0.986 0.941 0.866 0.902 - 0.664

Zhao et al [62] 2020 U-net Teeth 1500 Panoramic 0.969 - - 0.938 - - -

Sivagami et al [56] 2020 U-net Teeth 1171 Panoramic 0.97 0.95 0.93 0.94 0.93 - -

Chen et al [13] 2021 MSLPNet Teeth 1500 Panoramic 0.973 0.98 0.93 0.93 - - -

Pinheiro et al [54] 2021 MaskRCNN + PointRend Teeth 1500 Panoramic - - - - - - 0.73

Salih and Duffy [52] 2022 LTPEDN Teeth 11,000 Panoramic 0.943 - - - - - -

Ari et al [2] 2022 U-net Caries 1169 Periapical - - 0.82 0.82 0.82 - -

Bayrakdar et al [4] 2022 U-net Caries 621 Panoramic - - 0.84 0.81 0.84 - -

Çaylak et al [8] 2022 InceptionResV2-U-net Teeth 131 Panoramic 0.976 - - - 0.90 0.82 -

Table 2.3: A table of recent instance segmentation studies on Dental images with their

brief work and performances.

Authors Year Method Task Data Set
Metrics

Acc. Spec. Prec. Recall F1. MeanIoU

Jader et al [29] 2018 Mask RCNN teeth 1500 Panoramic 0.98 0.99 0.94 0.84 0.88 -

Lee et al [37] 2020 Mask RCNN teeth 1024 Panoramic - - 0.858 0.89 0.875 0.877

Table 2.4: A table of recent studies on the automatic numbering of teeth.

Authors Year Network Task Data Set
Metrics

Acc. Prec. Recall F1. mAP MeanIoU

Lin et al [41] 2010 Image Proccesing&structural geometry Teeth 47 Bitewing 0.93 - - - - -

Chen et al [10] 2019 Faster RCNN + DNN Teeth 1250 Periapical - 0.917 0.914 - -

Silva et al [53] 2020 MaskRCNN Teeth 1500 Panoramic - - - - 0.70 0.877

Pinheiro et al [48] 2021 MaskRCNN + PointRend Teeth 1500 Panoramic - - - - 0.71 -

Kılınç et al [33] 2021 Faster RCNN Teeth 421 Panoramic - 0.957 - 0.968 - -

Chung et al [15] 2020 2 Stage Resnet Teeth 818 Panoramic 0.997 - 0.972 - - -
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CHAPTER 3

BACKGROUND INFORMATION

3.1 Dental Datasets

There are three types of imaging in dentistry; bitewing, periapical, and panoramic.

However, bitewing and panoramic imaging types have open datasets with labeled

teeth. Therefore, bitewing image and panoramic image datasets are used in this thesis.

In this section, these datasets will be explained in detail.

3.1.1 Bitewing Dataset

The bitewing dataset used in this thesis is from ISBI 2015 challenge [58]. The dataset

consists of 40 train, 40 validation, and 40 test images. Each image has a ground truth

image. However, the accessible data does not contain the test images. An example

set of image and ground truth pair can be given in figure 3.1.

The bitewing dataset is an unbalanced dataset. The image’s resolution is 710x512

pixels. Enamel, dentin, and pulp classes have dominance in the dataset. Since they

are the main structure of the tooth, they exist on both healthy and unhealthy teeth

except for implants which do not exist in our dataset. The difference between per

average pixel in classes is presented in table 3.1 and in figure 3.2. Hence, this dataset

needs preprocessing, augmentation, and special loss functions that work with data

imbalance.
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Figure 3.1: From left to right, input image, label names and color code, and ground

truth image.
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Figure 3.2: Graphical difference between each class in bar representation. Both the

train and the test datasets are represented.

3.1.2 Panoramic Dataset

The panoramic dataset is made of 1500 images with a resolution of 1991x1127 pixels.

The dataset is shared first in 2018 [55]. This version of the dataset contains a tooth

mask for each tooth in this dataset. Then, it improved at [53]. The annotations become

more accurate and they add COCO formatted boundary boxes for each tooth in an

image. The final version was released in [48], the number of images was reduced

to 450, and images are cropped to a resolution of 1876x1036 pixels. This version
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Table 3.1: Percent values of classes in bitewing dataset for training and testing.

Class Train Set Percentage Test Set Percentage

Back Ground 0.452 0.435

Caries 0.013 0.005

Enamel 0.125 0.133

Dentin 0.277 0.292

Pulp 0.071 0.089

Crown 0.013 0.002

Restoration 0.046 0.039

Root Canal Treatment 0.001 0.002

contains each tooth boundary box with the number that is defined in the FDI World

Dental Federation notation.

In chapter 2, there are many good studies that achieved accuracy higher than %90

accuracy. However, panoramic images are easier to work on since the patient is in a

somewhat locked position and the image is not generated from a single X-ray shot.

However, finding caries on a panoramic image is harder since the amount of dose

falling on a single tooth is low. Hence, these images lack the necessary knowledge to

make an accurate assessment.

Table 3.2: Percent values of classes in Panoramic dataset for training and testing.

Class Train Set Percentage Test Set Percentage

Back Ground 0.805 0.773

Teeth 0.194 0.227

3.2 Neural Network Models in Medical Image Processing

There are different neural network models that are used for medical image process-

ing. The use of these models usually depends on their tasks: classification, semantic
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(a) Input panoramic image

(b) Segmentation mask of input image

(c) Instance segmentation mask and bound box of input image

Figure 3.3: (a) A sample from the panoramic dataset, (b) ground truth mask that

shared in [55], (c) instance segmentation and numbering information shared in [48].

The amount of information in the panoramic dataset increased drastically.

segmentation, and intrinsic segmentation. However, the dataset is also an essential

part of the model selection. For example, transformer-based models require more im-
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Figure 3.4: Graphical difference between teeth and background in bar representation.

Test and Train sets presentation are also given in a color code presented on the plot.

ages than CNN-based counterparts. Hence, the performance of a transformer-based

model on dataset with fewer images will be worse compared to CNN based model.

The networks utilized in this thesis are shown in Figure 3.5. The selected networks

are separated into their basic layers; transformer-based and convolution-based. Then,

they separated into tasks: classification, semantic segmentation, and intrinsic seg-

mentation.

3.2.1 CNN based models

CNN-based models are neural network models that used convolution layers as their

learnable layers. Convolution layers are the most commonly used learnable layers in

neural network models. They are efficient and easily scalable. Convolutional layers

have a filter that has the size cin ∗ cout ∗w ∗h. cin and cout are the dimensions of input

and output respectively, and w and h are the width and height of the filter. These

filters work by convolving with the input matrix. Since they are independent of input

dimensions, they can be used for any image size. One can also add a bias factor to

15



CNN Based Models

Transformer Based
Models

Medical Neural
Networks

Semantic Segmentation

Unet[51]

FastFCN[59]

Semantic Segmentation

TransUnet[11]

SwinUnet[7]

Classification

Vision Transformer (ViT)[19]

Swin Transformer[44]

Classification

ResNet[27]

instance Segmentation

Mask RCNN [48]

Figure 3.5: Schematic representation of neural networks separation by their architec-

ture and task.

the equation as an addition after the convolution operation. This adds non-linearity to

the operation and therefore improves the backpropagation of the neural networks.
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Figure 3.6: Residual learning: a building block taken from [27].

3.2.1.1 Classification

Classification is a task where the model predicts a label for an input image. Classi-

fication applications are simpler compared to segmentation tasks as data labeling is

much simpler. As mentioned in chapter 2, there are classification researches done on

X-ray dental images. The classification studies usually use end-to-end models as seen

in [35, 21, 5].

ResNet

ResNet is instructed in [27]. ResNet is a full CNN network. ResNet can be trained

to deeper levels because skip connections that solve the gradient vanishing problem.

The skip connections pass a few layers forward in the model as seen in Figure 3.6.

This allows a gradient to pass from starting layers of the network.

The ResNet is very popular in transfer learning applications. There are several ver-

sions of ResNets like ResNet-18, ResNet-34, ResNet-50, etc. These models are

trained on large open datasets. The FastFCN and TransUnet use a ResNet model

in their backbone stage since this will reduce the amount data of needed to fully train

the model.
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3.2.1.2 Semantic Segmentation

Semantic segmentation is a task where the prediction is done on the pixel level. Com-

pared to classification, it is a harder task as it is time-consuming to create a dataset. In

this thesis research, the datasets that are used are used for semantic segmentation. The

research done on these datasets is given in table 2.2.In this part, U-net and Fast-FCN

models are explained.

U-net

Skip Connection

U-net is a neural network model that is used for medical image segmentation. U-net

can be thought of as a milestone in medical image segmentation since it can learn on

small datasets and outperform other models.

The model has a U-shape as seen in figure 3.7. The model block can be separated into

encoder and decoder blocks. The encoder is used to obtain dense feature values at the

lower level, and the decoder is used to predict the segmentation mask. The model

uses skip connections for fast training and original features with fine-grained features

from the lower level. This skip connection is between the encoder and decoder at the

same level. Also, loss values can be obtained from each level.

Fast FCN

FastFCN [59] is a neural network model that is used for semantic segmentation as

seen in figure 3.8. The model is a modified version of [45]. It has three parts: back-

bone, Joint Pyramid Upsampling (JPU) layer, and segmentation head. A backbone

network is used for feature extraction. In [59], the ResNet model that is trained with

ImageNet is used. Backbones like efficient or inception cannot be used as they do

not have a hierarchical structure like ResNet. JPU is a custom layer that has a struc-

ture as seen in figure 3.9. This layer uses feature maps from the backbone at differ-

ent scales and levels. This layer improves the extract multi-scale context information

from multi-level feature maps which results in better performance. The head structure
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Figure 3.7: U-net model overview [51].

of FastFCN is used to create the segmentation predictions. One can use DeepLabv3

[12], single convolution layer or ENCNet [61]. For model selection, testing may be

required as their performance differs.

Deeplabv3 uses dilated convolution and Depthwise Separable Convolution in order

Figure 3.8: Framework Overview of FastFCN Method taken from [59].

to improve its performance and reduce its size.
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Figure 3.9: The Proposed Joint Pyramid Upsampling (JPU) taken from [59].

Dilated Convolution

Dilated convolution is a convolution layer that works with a larger area with the same

filter size as seen in figure 3.10.

Depthwise Separable Convolution

Depthwise convolutions are two stages convolutions, and they are more efficient than

normal convolutions without a significant loss in performance. The first stage of this

convolution is the depthwise stage. In this stage, separated convolution operations are

done on each input channel. Then this channel concatenated. The second stage is a

pointwise convolution. In this part, one by one layer is used to a weighted average of

the input channels.

Instrinsic Segmentation

Intrinsic segmentation is a task similar to semantic segmentation. Additional to pixel-

wise prediction, it also distinguishes the same class object and separates them from
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Figure 3.10: Normal convolution multiplication and dilated convolution multiplica-

tion range. Green regions are not multiplied with kernel in that instance.

each other. For example, counting the number of people in an image while predicting

the people on the pixel level. The dataset shared in [53] is applicable for intrinsic

segmentation as it is given in COCO format and each tooth is separately segmented.

The most common models that are used in intrinsic segmentation are Fast RCNN and

Mask RCNN. The research done on intrinsic segmentation of X-ray images is given

in table 2.3.

Mask RCNN

Mask RCNN is a neural network model that works on instance semantic segmenta-

tion. The model is an extension of Fast R-CNN [24] by adding a branch for predicting

an object mask. The model is easy to use and can be used for instance segmentation,

bounding-box object detection, and person keypoint detection.
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Figure 3.11: Schematic representation of depth-wise separable convolution

The research done on the dental dataset usually uses this architecture as seen in table

2.3. The aim of this research is to generate an automatic diagnosis for each tooth.

The model is used for the separation of each tooth from the other and may be used to

find dental caries or other cases on each tooth.

Figure 3.12: Schematic representation of Mask RCNN [48].
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Figure 3.13: Model architecture of transformers

3.2.2 Tranformer Based Models

Transformer-based models are a recent development in deep learning applications

compared to CNN models. Transformer models adopt the self-attention mechanism.

They become popular and successful in natural language processing (NLP) applica-

tions. They also have computer vision applications that outperform CNN models on

large datasets.
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Before going passing these models’ applications on the dental dataset. First basic

transformer models and vision transformers will be explained.

Transformers

Transformers are neural network layers that only use attention instead of recurrence

and convolutions. These models aim to improve parallelization. An encoder-decoder

model made with transformer layers can be seen in figure 3.13.

A single transformer layer consists of Normalization (Norm), multi-head attention,

and multilayer perception (MLP). The Norm and MLP have known layers. The norm

subtracts the mean and divides the result by the standard deviation, and MLP is a

multi-layered FCNN layer. The multi-head attention is a breakthrough part of the

transformer hence it will be explained in more detail by beginning with the attention

mechanism.

Attention Mechanism

In simple terms, the Attention mechanism is a function that takes a weighted sum of

an input value. The input values are defined as V vector. The weights are calculated

as

W = softmax

(
QKT

√
dk

)
Given Q and K are two input vectors called queries and keys. 1√

dk
is a scaling factor.

dk is the dimension of the keys. Hence, the attention function is represented as;

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Multi-Head Attention

Instead of performing a single attention function, it is more beneficial to linearly

project the queries, keys, and values h times with different, learned linear projections

to dk, dk and dv dimensions, respectively [57]. The output of each attention function

with size dv is then concatenated and given as input to a fully connected layer. The
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multi-head attention calculation is given as:

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O

where head = Attention
(
QWQ

i , KWK
i , V W V

i

)
Where weights used for head calculation WQ

i ∈ Rdmodel ×dk ,WK
i ∈ Rdmodel ×dk ,W V

i ∈
Rdmodel ×dv , and fully connected layer represented as weight WO ∈ Rhdv×dmodel A single

attention head average all the input value, hence using multi-head attention allows the

model to work on subsets. This is done by each head working on the different input

information and generating m different representation subspaces. The final output

comes from the weighted averages of these subspaces.

Self-Attention

When the queries, keys, and values input for attention are generated from the same

input, the operation is called Self-attention. The encoder layer of transformer models

usually uses a multi-head self-attention mechanism. The decoders use both multi-

head self-attention and attention. In [57], the decoder model uses self-attention then

the attention model that takes queries and keys from the encoder and values from

self-attention.

Position Encoding

Transformers are designed to work in parallel hence they do not receive the informa-

tion in a serial sequence. However, the relative order of data is important as it can

help with a model to solve the relation between close values. Position encoding is a

solution to solve this problem.

There are two ways to try to solve this problem: adding incremental value that in-

creases the serial order and added with a periodic function. Adding value creates a

problem for different-sized data and causes problems for long sequences as addiction

can cause a loss of information. Hence, addition with a periodic function can solve
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this problem as it helps with long sequences. [57] uses sine and cosine functions:

PE(pos ,2i) = sin
(
pos/100002i/dmodel

)
PE(pos ,2i+1) = cos

(
pos/100002i/dmodel

)
where pos is the position and i is the dimensions. The idea is to use both position of

data and the index of the embedding vector to create a position value. Hence, there

will be no repetition in the position encoding matrix generated by PE.

One can also use learnable position embeddings [22] however it does not show any

improvements according to [57].

Vision Transformers

Vision transformers are a variant of normal transformer layers that are used for images

instead of text. The aim is to obtain a similar performance as transformers show in

Natural language processing. Vision transformers can be trained with self-supervised

learning. They are better at parallelization than CNN models. This research shows

better performance on tooth segmentation on both bitewing and panoramic images.

Self-supervised learning is a machine learning process where the model trains itself

to learn one part of the input from another part of the input. It is also known as pre-

dictive or pretext learning. This learning style has advantages in the use of datasets.

Creating a dataset is a costly task and the data preparation lifecycle is a lengthy pro-

cess in deep learning. For medical data, it can be hard to obtain the data to start

with. Vision transformers have good Self-supervised learning performance compared

to CNN models. BEIT [3] is a good example of such a model. This model shows that

transformers can learn features with annotation data.

Vision transformers work by converting the normal image into small patches. These

patches are entered into the vision transformer layers with position embedding as

seen in figure 3.14. The image x ∈ RH×W×C reshapes into patches xp ∈ RN×(P 2·C)

where (H, W) image resolution, C is channel number, (P, P) is the dimensions of im-
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age patches.

Similar to [57], position encoding is used. The methods that can be used for 1D data

can be used for 2D data since it is flattened before entering the transformer layer. The

vertical relation between patches becomes important with the use of images. There-

fore, using 2D position embedding becomes an option. However, testing different

position encoding methods for the VIT model shows similar performance [19].

Figure 3.14: Model overview of Vision Transformer Network. The Transformer En-

coder is the same as used in figure 3.13. The vision transformers convert and split an

image into fixed-size patches, linearly embed each of them, add position embeddings,

and feed the resulting sequence of vectors to a standard Transformer encoder [19].

3.2.2.1 Classification

Many of the transformer-based models have some benchmark in public datasets like

ImageNet. These models are can be used as the backbone for more complicated tasks

like segmentation tasks. Hence, two transformer models are feasible to use as the

backbone. These are Vision transformer (VIT) [19] and Swin transformer[44].
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Swin Transformer

Swin Transformer [44] is a hierarchical transformer model as seen in figure 3.15. It

works on image patches and uses position embedding the same as VIT. The swin

transformer uses an operation called patch merging to decrease the size of the im-

age while increasing the deep of the image. These create levels similar to ResNet

models and create fine-grained feathers. Swin transformers also use layers called

Window multi-head attention (W-MSA) and Shifted Windows multi-head attention

(SW-MSA) in layers as shown in figure 3.16. The windows-based multi-head atten-

tion layers also improve the computation performance over the normal multi-head

attention layer of VIT as it requires less multiplication. Moreover, Swin transformer

architecture also allows it to replace existing models that use ResNet backbone like

FastFCN and MaskRCNN because of hierarchical structure.

While VIT works on the same non-overlapping image patches in layers, the Swin

transformer uses cyclic shift to change the image patches after each layer as seen in

figure 3.17. It also proposes windowed-based attention which improves the computa-

tion performance compare to the VIT attention layer. Swin transformer architecture

also allows it to replace existing models that use ResNet backbone like FastFCN and

Mask RCNN. Swin Transformer has three additional operations to VIT layers:

patch merging, Window multi-head attention (W-MSA), and shifted windows multi-

head attention (SW-MSA).

28



Figure 3.15: (a) The Swin transformer hierarchical feature maps. (b) VIT feature

maps.

Figure 3.16: Two successive Swin transformer blocks. W-MSA and SW-MSA are

multi-head self-attention modules with regular and shifted windowing configurations,

respectively. [44]
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Figure 3.17: Cyclic shift of Swin transformer layer.
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Patch Merging

Patch merging is an operation that makes the Swin transformers hierarchical. In basic

terms, it splits the input image into patches and stacks patches depth-wise. Then,

merge these stacked patches to create an image with a smaller resolution but a higher

channel. The operation downsamples the image by n as the number of patches. The

image transforms from H ×W × C to H to (H/n)× (W/n)× (n2∗C).

Window-based Multi-Head Self Attention

In VIT, multi-head attention helps to improve the score and obtains a better under-

standing of the model by dividing the attention operation. W-MSA achieves this by

reducing total the computation. The W-MSA layer uses images that are processed by

patch merging operation. The layer creates windows on image patches, and patches

in the same window enter the attention operation. These reduce the complexity of the

multi-head operation and ease its use for high-dimension images.

Shifted Window-based Multi-Head Self Attention (SW-MSA)

In W-MSA, self-attention is restricted to window regions. This reduces the model’s

global understanding of input. To solve this problem, SW-MSA is proposed. SW-

MSA uses cyclic shift to shift the patches as seen in figure 3.17. Then, it uses masked

MSA only to work on the original feature map. The final windows that are used for

MSA are shown in figure 3.18.

3.2.2.2 Semantic Segmentation

The semantic segmentation with transformers is no different than CNN models on

function. They are made of the same layers as used in classification. However, they

do not fully transform. Their architecture is mixed with CNN layers. In this part, two

transformer models will be explained; TransUnet [11] and SwinUnet [7].
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Figure 3.18: An illustration of the shifted window approach for computing self-

attention in the proposed Swin Transformer architecture [44]

TransUnet

TransUnet is a hybrid architecture that uses both CNN layers and VIT layers. The

architecture is based on the U-net model. To improve the fine grain feature extraction

at lower layers. It uses a Transformer block at the lowest layer of the U-net. They

also keep the decoder as the CNN layers and show that it performs better them a full

transformer network. The overall architecture can be seen in figure 3.19

Figure 3.19: Overview of the TransUnet. [11] (a) schematic of the Transformer layer;

(b) the architecture of the proposed TransUnet.
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SwinUnet

SwinUnet is a U-net-like pure transformer model. They use Swin transformers’ hier-

archical structure to create levels. Each Patch merging layer downsizes the image and

increases the feature map dimensions. In the decoder stage, they use patch merging

that concatenates the dimension and increases image size while reducing the feature

dimensions. The model architecture can be seen in figure 3.20 This model outper-

forms other U-net-like models.

The full transformer architecture has two advantages over other models observed dur-

ing this model’s training. Firstly, it backpropagates faster than full CNN models how-

ever it still needs more time to train compared to CNN models. Secondly, the model

can take full advantage of the self-supervised learning that self-attention layers pro-

vide.
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Figure 3.20: Overview of the SwinUnet. [7]
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3.3 Loss Functions

Loss functions are used for the training of neural networks. During the training stage

of a neural network, parameters are updated based on the loss function’s output value.

The loss function can be represented by equation 3.1. x and y are the input and the

ground truth respectively. f() is the neural network represented as a function that

output is expected to be f(x) == y. The final value of the loss function is a single

scalar value. This value can obtainable from a single loss function or a weighted sum

of several loss functions.

Lloss = L(f(x),y) (3.1)

Selecting a loss function is not an easy task. There are several loss functions that per-

form better on performance metrics for different tasks. For example, one may prefer

cross-entropy loss over dice loss for a classification task. However, dice loss may per-

form better than cross-entropy loss on a segmentation task. Therefore, the selection

of a loss function requires a lot of iteration with a selected model and dataset. Custom

loss functions can be used for different cases. For example, [16] aims to multi-class

segmentation on Fundus images. The medical images are high-resolution images and

the target labels are small and many. Hence, a custom loss performs better than dice

or cross-entropy.

The loss functions that have been studied are mean square error (MSE), mean absolute

error(MAE), binary cross-entropy (BCE), label smoothing cross-entropy (LSCE),

dice loss, and focal loss. Each of these loss functions has an advantage over oth-

ers. MSE is used as a baseline loss function. The BCE usually performs better than

MSE. However, BCE and MSE performance decrease when a dataset is noisy. Hence,

LSCE or MAE is used to improve performance. For imbalanced datasets, focal loss

is used to improve the results. Dice loss is very useful to guarantee a label prediction,

it also improves the performance when used in addition to other loss functions like

BCE.
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3.3.0.1 Mean Square Error Loss (MSE)

Mean square error is a loss function that is usually used for regression tasks. How-

ever, it performs well on semantic segmentation too.

MSE is calculated by averaging the squared differences between the target value and

model prediction. MSE is shown in equation 3.2. The y and ŷ are labels and predic-

tions respectively. One can replace ŷ with f(x) where x is the input to the model. n

is the number of pixels in the output of the model.

Lmse =
1

n

n∑
i=1

(yi − ŷi)
2 (3.2)

3.3.0.2 Mean Absolute Error (MAE)

Mean Absolute Error is used for noisy labeled dataset [23]. It outperforms BCE and

MSE loss functions, as these loss functions are affected by noise in the training set.

MAE is calculated by averaging the absolute difference between the target value and

model prediction. Different from MSE, MAE does not use square operation hence

it does not amplify the large differences between target and prediction values. Also,

the use of absolute value operation makes the function symmetrical which makes it

noise-robust.

Lmae =
1

n

n∑
i=1

|yi − ŷi| (3.3)

3.3.0.3 Dice Score

The dice score is a region-based loss function. It shows the similarity between target

and prediction classes. It is used for segmentation tasks and performs sufficiently

well in many cases. It forces the model to match at least a few pixel values with the

target otherwise loss value will be higher compared to other losses like CCE.

The calculation of this score is done as shown in equation 3.4. ptrue and ppred stand for

target class values and prediction values. ϵ value is added to prevent zero division.

The dividend part shows two times the correct prediction, and the divisor part shows
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the sum of predictions and targets.

Ldice = 1−
2 ∗

∑
ptrue ∗ ppred∑

p2true +
∑

p2pred + ϵ
(3.4)

3.3.0.4 Binary Cross-Entropy(BCE)

Binary Cross-Entropy can be used with tasks with two classes. It’s a Distribution-

based Loss function. It uses a cross-entropy function, and common use cases are for

object classification and binary pixel-level classification. BCE is also called Log loss.

BCE is defined as:

Lbce = − 1

n

n∑
i=1

(yi log(p) + (1− yi)log(1− p)) (3.5)

p and y are the predictions and target values. For BCE, the target value is either 1

or 0. The prediction is the output of an activation function like the softmax layer

which also normalizes the prediction values between [0, 1]. In the segmentation task,

equation 3.5 is computed for all pixels in the output image.

3.3.0.5 Categorical cross-entropy (CCE)

Unlike BCE, categorical cross-entropy can be used for more than two classes. CCE

is defined as:

Lcce = − 1

n

n∑
i=1

(yi log(ŷi)) (3.6)

Here, i shows the label index. For any pixel value, only one of them has the value

1, and the loss value for that pixel is the calculated log value of the prediction of the

model for that pixel. The negative mean of these loss values is CCE loss.

3.3.0.6 Label Smoothing Cross Entropy(LSCE)

Label smoothing cross-entropy is used for noisy labeled data sets. The idea is to make

the model less confident in its predictions. Thus, the model becomes obtains a more
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generalized solution for a given noisy dataset compared to CCE.

The equation 3.6 is changed by modifying the p to given equation;

p′ = (1− ϵ)p+
ϵ

n
(3.7)

Here, ϵ is used to increase zero values and decrease the ones. Hence, the model cannot

just predict ones and zeros. Hence, the final equation is given as:

Llsce = −
n∑

i=1

(p′i log(ŷi))

=
n∑

i=1

(
(1− ϵ)pi log(ŷi) + (

log(ŷi)

n
)

) (3.8)

3.3.0.7 Focal Loss

Focal loss[42] is designed to be used on imbalanced datasets. It has two hyper-

parameters that can be tuned to improve the model performance. The function uses a

dynamically calculated weight parameter to balance the dataset. Hence, the dominant

classes’ effect on the loss can be diminished, and minority classes can have a higher

weight.

Focal loss is defined as:

pt =

p if y = 1

1− p otherwise
(3.9)

Lfl = − 1

n

n∑
t=1

(αt (1− pt)
γ log (pt)) (3.10)

αt and γ parameters are hyper-parameters that can be tuned manually. The (1− pt)
γ)

part reduces the value loss of the successfully predicted classes and diminishes its

effect on the updated model.

3.4 Metric Definitions

The following metrics are used to evaluate the neural network model performance.
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3.4.0.1 Confusion Matrix

The confusion matrix is a matrix that use to compare the performance of the model

on target classes. The confusion matrix shows raw performance like TP, FP, FN, and

TN scores for each class as seen in table ??. It shows a good representation of model

performance and it can be transferred to other metrics.

A confusion matrix is also useful for multi-class tasks. Since it shows models perfor-

mance between each class. This helps to tune the model on similar classes or analysis

of the dataset on these classes.

Table 3.3: A basic binary confusion matrix.

True Class

Total Population

= P + N
Positive(P) Negative(N)

Predicted Class
Positive (PP) TP FP

Negative (NN) FN TN

3.4.0.2 Accuracy, Precision, Sensitivity, Specificity, F1 score

There are several scores that can be obtained from the confusion matrix. Accuracy

(3.11) shows correct predictions over the total amount of predictions.

accuracy =
TP + TN

TP + FN + TN + FP
(3.11)

Precision (3.12) is a measure to show the quality of positive predictions of the model.

precision =
TP

TP + FP
(3.12)

Sensitivity (3.13) is a measure to show the percentage of positive has been identified

correctly.

sensitivity = recall =
TP

TP + FN
(3.13)

Specificity 3.14 is a measure to show the quality of negative predictions of the model.

specificity =
TN

TN + FN
(3.14)
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F1-score is a harmonic mean of precision and recall. It is a robust and useful metric

compared to precision and recall. Since threshold value can be used to increase the

precision or lowering it increases recall. For highest F1-score threshold values for

classes had to be fine-tuned.

F1 =
2× precision × recall

precision + recall
(3.15)
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CHAPTER 4

PROPOSED METHOD

4.1 Motivation

For teeth segmentation on both bitewing and panoramic images, the following prob-

lems have to be resolved:

• Background-foreground imbalance for panoramic images.

• Difference scale, distribution, and resolution between two datasets.

• Class imbalances between bitewing image and panoramic image count.

As seen in section 3.1, on average %77 percent of the image is background region.

This ratio is %45 percent in bitewing images. Also, panoramic images contain more

bone structure than bitewing. Center cropping is a method used in [48] to solve

this problem. However, using center cropping reduces the results from bitewing and

panoramic images. Hence, this method is not adapted. Random cropping is used

in the augmentation pipeline to create samples with different background foreground

ratios.

Another problem is the difference between the two datasets. These datasets have dif-

ferent imaging techniques. Even though, teeth can be seen clearly to the human eye

in both datasets. Without any change in datasets, the neural network models do not

learn both of them. One may try to solve this problem with deep multimodal learning

methods like multimodal regularization and fusion structure learning and optimiza-

tion [49]. However, the two datasets are similar enough to solve by using image

augmentation. The problem is simpler than multimodel use cases.
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A custom batch sampler is written to solve the problem of the imbalanced data count.

This gives additional control over model training. With a custom batch sampler, one

can adjust the ratio of images taken from each dataset used in the batch.

4.2 Image Augmentation

Augmentation is a method used to increase the search space. It helps to balance

the difference between classes and improves the model’s robustness. This effect also

helps with model over-fitting. In image augmentation, there are many transformations

that can be used. These transformations can be separated into two classes: Geometric

and color based. The transformations that fall under these classes are given in table

4.1.

Table 4.1

Geometrical

Transformation

Color Based

Transformation

Rotate Equalize

Vertical Shift Solarize

Horizontal Shift Random Noise

Vertical Shear Posterize

Horizontal Shear Brightness

4.2.1 Center Cropping

Center cropping is a solution for solving the foreground and background imbalances

in the panoramic dataset. During the training and testing stages, center cropping

is always applied. This method is the robust and basic method that works unless the

panoramic machine changes. Cases like improved resolution or orientation may cause

problems for future use.
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4.2.2 Rotation

Rotation is a geometric transformation and it is the most important one. In [18],

rotation achieves the highest effect on average improvements by %0.01 percent. In

this thesis, the effect of rotation is %0.15 percent. The proposed idea is rotation

breaks the static structure of panoramic images. Hence, the neural network does not

depend on the orientation of the image and learns the features of a tooth.

4.2.3 Rand-Augmentation

There are several methods and libraries that can be used to design an image augmen-

tation pipeline. There are four different methods that are considered:

• Using independent probabilities values for all transformations to decide apply

or not.

• AutoAugmentation (AA) [17],

• Population-Based Augmentation (PBA)[28],

• Randaugmentation (RA) [18],

The fastest method for developing an augmentation pipeline is to use independent

probabilities for each transformation. This method is easy to use however it lacks

stability. The transformed image can vary and some outputs do not look like a dental

image at all.

AA is a method already implemented in the albumentation library [6]. The AA work

by designing the augmentation parameters automatically. However, this method is

designed for classification tasks and it works slowly. PBA is an alternative that works

faster and more dynamically. However, it has a higher search space of parameters,

and it consumes additional computational resources.

RA is a better alternative to the other three methods. It is simple to implement and
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deploy. It also does not have any additional computational cost. RA work by ran-

domly selecting the augmentation operation. It selects N operation in total for each

iteration. The magnitude of these operations is randomly decided in each iteration.

The maximum range of magnitude is determined by the parameter M . Hence, RA

has two important hyperparameters N and M . N and M were selected as 3 and 4

respectively. Since the most effective transformation is rotation, it is used with an

increased probability to be selected more often than other transformations.

4.3 Neural Network Training Pipeline

Selecting correct methods and hyperparameters for a training neural network is an es-

sential part of the segmentation problem. From dataset to dataset, different setups can

have different performances. Hence, testing different training settings is important.

There are five setting decisions made in the training pipeline: neural network model,

optimizer, loss scheduler, loss function, and batch sampler.

4.3.1 Model Selection

In section3.2, neural network models are described in detail. Both the transformer

and CNN-based models are tested on panoramic and bitewing datasets. The results

showed the transformer models performed better than the CNN-based model on both

of the datasets. This result is compatible with the fact at transformers have a better

fine-grain feature extraction performance than CNN models when the dataset is large

enough. Due to this, transformer-based models are used for experimental evaluation.

At the time, swin transformers [44] is the best model that achieved the highest score

in the public classification and segmentation datasets like coco and cityscapes. How-

ever, for bitewing and panoramic datasets, transUnet [11] performs better than the

swinUnet [7]. However, The swinUnet is a faster and lighter model. In this thesis,

transUnet is selected as the base model since metric performance is more important

than speed in medical research fields. The performance difference between models

will be given in chapter 5.
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4.3.2 Optimizer Selection

There are two popular optimizers; ADAM and Stochastic Gradient Descent (SGD).

In [19], ADAM with weight decay shows better performance compare to SGD which

is the opposite for CNN-based models like ResNet.

For dental datasets, ADAM and SGD are both tested for the proposed model, and

ADAM shows better performance. It also converges much faster than SGD which

improves the number of hyperparameter tests that can be contacted.

4.3.3 Scheduler Selection

The learning rate (LR) is a value that determines the speed at which a machine-

learning model is able to learn and make updates to its parameters. It affects the

model’s ability to accurately find the optimal solution and can have a significant im-

pact on its performance. If the learning rate is too high, the model may make large,

inaccurate updates to its parameters. If the learning rate is too low, the model may

take a long time to learn and may not perform as well. The learning rate has to high

enough. It is important to choose an appropriate learning rate for the selected model.

There are two approaches used to find an appropriate learning rate: Warm-up, and

cosine annealing. Warm-up[25] is a procedure that starts with a very low learning

rate and increases it gradually for a few epochs. An example learning rate that uses

warm-up can be seen in figure 4.1. This method is successful at preventing early

over-fitting and it returns the learning rate to a higher value. Using a high learning

rate at in the training is important as it helps the model to get a better generalization

of data[39]. The Cosine annealing [46] is a successful scheduling method that outper-

forms the other tested options like Step LR and exponential LR. An example plot of

the learning rate by these three schedulers is given in figure 4.2. The use of warm-up

start and cosine annealing gives the best result.

4.3.4 Loss Function Selection

There are many loss functions that can be used for different cases. Depending on

the dataset and neural network model loss functions selection becomes essential. For

45



Figure 4.1: An example learning rate graph with a warm-up start.

example, Dice loss is essential for a highly imbalanced dataset. However, dice loss

does not get the best results in datasets like ImageNet. Hence, mixed loss usage is

practiced in this study. The use of mixed loss is a know application in medical studies

[11, 7].

The mean of Dice loss and BCE loss is used as a loss function as this method merges

the pixel-based performance and entropy-based performance. A similar combination

of loss functions was also tested like MSE and focal loss which works similarly to

Dice and BCE losses, respectively. These experiments showed that the use of mixed

loss improves the metrics around %0.1.

4.3.5 Batch Sampler

The data is fed to the neural network in batches. The batches are a selected set from

the dataset. In the PyTorch library, the default process of batch sampling is to use ran-

dom index numbers to create the batch. This works very well for the balanced dataset.

However, in the combined set of bitewing and panoramic datasets, the panoramic data

set has a probability of 0.96 of being selected as a sample. For batch size 4, the prob-

ability of having a bitewing image in a batch is 0.15. Hence, the neural network does

not learn the bitewing as it seldomly exists in a batch.
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To solve this problem, there are two solutions in literature: weighted loss or balanced

batch sampler. In theory, the effect of both must be the same since both solutions af-

fect overall loss similarly. However, since the model is updated per batch, the effect of

weighted loss becomes inefficient. Hence balanced batch sampler solution is favored

and implemented. New batch sampler works by creating a batch with a weighted

rate from bitewing and panoramic. The selected weights are 0.75 panoramic and 0.25

bitewing. This ratio gives the best score.
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(a) The plot of change in learning rate with step LR function.

(b) The plot of change in learning rate with exponential LR function.

(c) The plot of change in learning rate with cosine annealing LR function.

Figure 4.2: Change is LR for different LR schedulers.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Hardware and Software Specifications

All the experiments were performed on two computers. The computer’s specifica-

tions are given in table 5.1. The two pieces of hardware were used to speed up the

experiments. Tests for the effect of a hyperparameter were made on the same ma-

chine. The same batch size was used for both machines. Only for batch size test, only

PC 2 used as Quadro P5000 has 16 Gb of dram while Gtx 1080Ti has 11 Gb of dram.

Both machines have the same Cuda library, GCC compiler, python, and Pytorch. For

reproducibility of experiment results, PyTorch cudnn benchmark parameter is set to

false, and the experiment was done with constant random seed values for python lan-

guage, NumPy, and PyTorch libraries.

Table 5.1: Test computers hardware specifications.

Hardware PC 1 PC 2

GPU NVIDIA GTX 1080TI NVIDIA QUADRO P5000

CPU INTEL i7770 INTEL XEON

RAM 32 GB DDR4 32 GB DDR4

Operating System Ubuntu 20.04 LTS Ubuntu 20.04 LTS

The training time and performance can change with versions of the library. Less op-

timized functions or an unknown bug in software may cause different results when

libraries are improved or fixed. Hence, it is important to think of the software used

in these experiments. All experiments, including training, testing, and benchmark-

ing neural network models, are done with the following versions; PyTorch 1.11 [47],

49



CUDA 11.3, and python 3.10. The source code can be found in https://github.com/metcan/pano_bite_segmentation.

5.2 Training and Implementation Details

In this section, the effect of loss, model, batch size, image size, and augmentation

selection are shown. However, some parameters are kept the same. These settings

are:

• The custom batch sampler gives 3 panoramic images for each bitewing image.

• ADAM optimizer used for all experiments. The optimizer parameters are Weight

Decay: 1e-5, and learning rate: 5e-5. The rest of the parameters are used in the

default configuration.

• The mixed loss functions are balanced. The total loss is the mean of loss func-

tions.

5.2.0.1 Effect of Batch Size

Batch size is an effective parameter in the training stage. It shows how many input

images enter the model at the same time. Usually, the higher the batch size is better

since it improves the model’s generalization on the dataset. However, it is usually

limited by hardware.

In this thesis, batch size 16 is used as the proposed model. As seen in table 5.2,

increasing the batch size does not give the best result for both bitewing and panoramic.

Batch size 48 gives the best result for a panoramic image. However, this setting

does not give the best result for the bitewing dataset. Since these images are very

limited. Most of the bitewing images appeal in the same batch with seems to reduce

the performance. Therefore, batch size 16 is selected since the best bitewing results

obtain at this batch size.
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Table 5.2: The effect of batch size for validation metrics.

Batch Size
Panoramic Bitewing

Acc. Prec. Recall F1 Spec Acc. Prec. Recall F1 Spec

4 0,966 0,966 0,966 0,965 0,978 0,906 0,906 0,906 0,906 0,886

8 0,967 0,967 0,967 0,967 0,979 0,907 0,907 0,908 0,906 0,890

16 0,967 0,967 0,967 0,967 0,975 0,908 0,909 0,908 0,908 0,907

32 0,967 0,967 0,967 0,967 0,978 0,902 0,901 0,902 0,901 0,884

48 0,968 0,968 0,968 0,968 0,978 0,901 0,900 0,901 0,900 0,880

5.2.0.2 Effect of Augmentation and Batch Sampler

Table 5.3 shows the effect of augmentations and batch sampler on validation perfor-

mance. The following step of the tests are concluded: proposed method(PM), with-

out sampler (WS), without rotation (WR), with the center crop(WC), and without

augmentation(WA). Each augmentation improves the result of bitewing performance.

Their individual effect on the panoramic dataset is not significant. Using a center crop

reduces the panoramic results. In [48] is suggested to improve panoramic results. This

may be because of the difference in model architectures and other augmentations that

are not used by [48].

5.2.0.3 Effect of Dataset Selection

In table 5.4, using both datasets (BD), only using bitewing (B) and panoramic datasets(P)

are tested. They represented as As seen in this table, just using one dataset does per-

form worse than using two datasets. The result in just bitewing is expected as there

is a low amount of these images, and the model may not fully train just by bitewing

images. However, using both datasets performs on panoramic images better than just

panoramic dataset. This shows that bitewing images create a challenge to model with

the help of the validation dataset.
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Table 5.3: The effect of augmentation and sampler.

Method
Panoramic Bitewing

Acc. Prec. Recall F1 Spec Acc. Prec. Recall F1 Spec

PM 0,967 0,967 0,967 0,967 0,975 0,908 0,909 0,908 0,908 0,907

WS 0,965 0,967 0,965 0,966 0,968 0,876 0,875 0,874 0,870 0,849

WR 0,967 0,967 0,967 0,967 0,975 0,893 0,893 0,893 0,893 0,878

WC 0,955 0,956 0,955 0,956 0,965 0,88 0,88 0,88 0,88 0,86

WA 0,967 0,968 0,967 0,967 0,976 0,887 0,888 0,887 0,886 0,843

Table 5.4: The effect of the training datasets.

Methods
Panoramic Bitewing

Acc. Prec. Recall F1 Spec Acc. Prec. Recall F1 Spec

BD 0,967 0,967 0,967 0,967 0,975 0,908 0,909 0,908 0,908 0,907

B - - - - - 0,746 0,718 0,781 0,798 0.756

P 0,964 0,966 0,964 0,964 0,964 - - - - -

5.2.0.4 Effect of Loss Function

In table 5.5, several loss functions and their mixed versions are tested. The experi-

ments are shown that weighted merge of DICE and BCE loss performs best for the

panoramic dataset and bitewing. Even though, loss functions perform close to each

other on the panoramic dataset, their performance on the bitewing dataset changes.

Mixed loss of DICE and BCE also obtain good robustness as the specificity metric

for both datasets is highest for DICE+BCE for the loss function.
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Table 5.5: The effect of the loss functions on validation performance.

Loss
Panoramic Bitewing

Acc. Prec. Recall F1 Spec Acc. Prec. Recall F1 Spec

DICE+MSE 0,968 0,968 0,968 0,968 0,976 0,907 0,907 0,907 0,907 0,891

DICE+BCE 0,967 0,967 0,967 0,967 0,975 0,908 0,909 0,908 0,908 0,907

DICE 0,967 0,967 0,967 0,967 0,975 0,905 0,905 0,905 0,905 0,887

FOCAL 0,968 0,968 0,968 0,968 0,978 0,898 0,898 0,898 0,898 0,88

BCE 0,967 0,967 0,967 0,967 0,977 0,895 0,895 0,895 0,895 0,869

MSE 0,967 0,967 0,967 0,967 0,976 0,892 0,893 0,893 0,891 0,889

5.2.0.5 Effect of Image Size

The image size is an effective parameter in training. With a smaller size, some of the

details on the image may be lost. However, with larger sizes, the hardware will limit

the batch size, and the training will be longer.

In table 5.6, 128x128, 256x256, and 512x512 image sized are tested. The image

size does not tested beyond 512x512 since training image dimensions become bigger

than all bitewing images. Table 5.6 shows larger the image size better the results for

panoramic images. However, the training cost of 512 by 512 images is 21 hours while

256 by 256 is 4 hours and 46 minutes. Due to resource limitations, using 256 by 256

becomes more efficient. Also, the model’s bitewing performance starts to decline at

512x512.

Table 5.6: The changes in performance for different image sizes.

Image Size
Panoramic Bitewing

Acc. Prec. Recall F1 Spec Acc. Prec. Recall F1 Spec

128 0,959 0,96 0,959 0,959 0,97 0,907 0,907 0,907 0,907 0,903

256 0,967 0,967 0,967 0,967 0,975 0,908 0,909 0,908 0,908 0,907

512 0,972 0,972 0,972 0,972 0,98 0,911 0,912 0,911 0,911 0,902
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5.3 Performance Comparison of TransUnet, SwinUnet, U-net, FastFCN, and

state-of-the-art models

There are four models that tested for semantic segmentation: FastFCN, U-net, Swi-

nUnet, and TransUnet. U-net, SwinUnet, and TransUnet all have U-shaped architec-

ture and skip connections, While Fastfcn has a JPU layer that merges the outputs of

different levels of the model.

The FastFCN is the worst-performed model in experiments. The model does not

separate the teeth in the bitewing image and does not separate the empty region be-

tween the upper and lower jaw in panoramic images. This problem does not exist in

U-shaped architects. The U-net model predicts the teeth boundary on both bitewing

and panoramic images. The visual performance difference between U-net, SwinUnet,

and TransUnet is not very clear. All models predict the edge boundaries correctly. All

models have problems with bitewing images when the label is on the edges of the im-

age. This problem is caused by the bitewing dataset as these images are converted

from the real film which creates the black region around the image and writings on

the image. This noise affects the model’s performance.

The difference between U-shaped model appeal in metrics scores. Even though their

visual performances are close to each other, the transUnet model has the best metrics

scores for both panoramic and bitewing as seen in table 5.7. The results from 2 are

also given in table 5.7 to show that the TransUnet model can get %90 results on the

bitewing dataset while it performs close to state-of-the-art model on the panoramic

images. In table 5.6, 512x512 images achieve a similar result to state-of-the-art per-

formance in accuracy and outperform them in Recall and F1 scores. However, work-

ing with this image size is not feasible with the resources at hand.

There are no studies to compare thesis results in bitewing teeth segmentation. Bitew-

ing images are usually used for caries detection. However, these results show that

using the dental image dataset as a simple multimodel dataset can improve the over-

all performance. Also, the results were achieved with a small number of bitewing

images. The bitewing images also include teeth with treatments. This model can be
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used to extract teeth from bitewing images to process by a second network or post-

processing to extract more information like caries or a treatment. This accurate teeth

extraction in bitewing images can result in reducing the required dataset for a more

detailed analysis of bitewing images.

Table 5.7: comparison table of tested neural network models and SOTA studies on

panoramic images.

Models
Panoramic

Acc. Prec. Recall F1 Spec

TransUnet 0,967 0,967 0,967 0,967 0,975

SwinUnet 0,959 0,958 0,958 0,958 0,972

U-net 0,967 0,967 0,967 0,967 0,978

FastFCN 0,897 0,904 0,897 0,9 0,912

Chen et al [13] 0.973 0.93 0.93 - 0.98

Caylak et al [8] 0.976 - - 0.9 -

Jader et al [29] 0.98 0.94 0.84 0.88 0.99

Table 5.8: Model Comparison comparison on bitewing settings.

Models
Bitewing

Acc. Prec. Recall F1 Spec

TransUnet 0,908 0,909 0,908 0,908 0,907

SwinUnet 0,879 0,876 0,876 0,876 0,858

U-net 0,854 0,86 0,854 0,855 0,89

FastFCN 0,819 0,821 0,819 0,817 0,724
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(a) Input bitewing image. (b) Ground-Truth image.

(c) FastFCN prediction image. (d) U-net prediction image.

(e) SwinUnet prediction image. (f) TransUnet prediction image.

Figure 5.1: Predictions of FastFCN, U-net, SwinUnet, and TransUnet on a healthy

bitewing image.
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(a) Input bitewing image. (b) Ground-Truth image.

(c) FastFCN prediction image. (d) U-net prediction image.

(e) SwinUnet prediction image. (f) TransUnet prediction image.

Figure 5.2: Predictions of FastFCN, U-net, SwinUnet, and TransUnet on a bitewing

image with treatments.
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(a) Input panoramic image. (b) Ground-Truth image.

(c) FastFCN prediction image. (d) U-net prediction image.

(e) SwinUnet prediction image. (f) TransUnet prediction image.

Figure 5.3: Predictions of FastFCN, U-net, SwinUnet, and TransUnet on a panoramic

image with the closed jaw.
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(a) Input panoramic image. (b) Ground-Truth image.

(c) FastFCN prediction image. (d) U-net prediction image.

(e) SwinUnet prediction image. (f) TransUnet prediction image.

Figure 5.4: Predictions of FastFCN, U-net, SwinUnet, and TransUnet on the

Panoramic with wide distance between upper and lower jaw.
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CHAPTER 6

CONCLUSION

In this study, a neural network training method was proposed to segment teeth on both

panoramic and bitewing images. The proposed method achieves state-of-the-art re-

sults on panoramic images and achieves over %90 percent on the accuracy, precision,

recall, F1-score, and specificity metrics on bitewing images.

There are three problems that are required to be solved to achieve these results.

Firstly, the panoramic dataset has an imbalanced distribution of background and fore-

ground. Secondly, the panoramic dataset is much larger than bitewing. Finally, bitew-

ing and panoramic images have differences in scale, orientation, and resolution.

The solution to the first problem is using random cropping to create images with dif-

ferent background and foreground rations. The second problem is solved by using the

custom batch sampler. The aim is to generate each batch with an adjustable amount of

bitewing and panoramic images. This way loss generated from each batch is based on

both bitewing and panoramic images. The use of image augmentation solves the final

problem. The augmentation on bitewing increases the amount of bitewing number

and the augmentation on panoramic images forces the model to learn teeth features,

not position.

There are several experiments concluded to select the best neural network model,

optimizer, scheduler, and loss function. For the model, the use of two datasets will

require a more robust model. Transformers-based models are selected as these mod-

els can learn more about input data because of self-attention. The optimizer and

scheduler are selected based on testing, and other transformer implementation and
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source codes. The loss function is selected based on testing. These choices result in

performance similar to state of art models in panoramic images and %90.7 accuracy

performance in the bitewing dataset.

The successful segmentation of teeth in bitewing images can lead to many benefits.

The studies on panoramic images show that with increasing segmentation perfor-

mance, the numbering of teeth also increases. Numbering in the bitewing images can

have many benefits like auto treatment registration. This means it will be easier to

hold the patient’s treatment history or register the patient. In the bitewing dataset, the

model also predicts the large caries regions, root canal treatments, and crowns. It can

also be used for future annotation tools to separate each tooth.

As future work, a periapical dataset can be added to the datasets. This way, all dental

X-ray images can be segmented by one model. Also, segmentation of teeth structure

on all dental image types can be added to improve the functionality of current models.

Caries detection can be added to the current model with a large enough bitewing

or periapical dataset. Then, a self-supervised train can be done to find caries on

panoramic images.
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