
PHYSICS INFORMED NEURAL NETWORKS FOR COMPUTATIONAL FLUID
DYNAMICS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ATAKAN AYGÜN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

JANUARY 2023

Approval of the thesis:

PHYSICS INFORMED NEURAL NETWORKS FOR COMPUTATIONAL
FLUID DYNAMICS

submitted by ATAKAN AYGÜN in partial fulfillment of the requirements for the
degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. M. A. Sahir Arıkan
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Ali Karakuş
Supervisor, Mechanical Engineering, METU

Dr. Romit Maulik
Co-supervisor, Mathematics and Computer Science,
Argonne National Laboratory

Examining Committee Members:

Prof. Dr. Cüneyt Sert
Mechanical Engineering, METU

Assist. Prof. Dr. Ali Karakuş
Mechanical Engineering, METU

Assist. Prof. Dr. Özgür Uğraş Baran
Mechanical Engineering, METU

Assist. Prof. Dr. Altuğ Özçelikkale
Mechanical Engineering, METU

Assoc. Prof. Dr. Barbaros Çetin
Mechanical Engineering, Bilkent University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Atakan Aygün

Signature :

iv

ABSTRACT

PHYSICS INFORMED NEURAL NETWORKS FOR COMPUTATIONAL
FLUID DYNAMICS

Aygün, Atakan

M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Ali Karakuş

Co-Supervisor: Dr. Romit Maulik

January 2023, 81 pages

In this work, we use physics-informed neural networks (PINN) to model the prob-

lems generally used in computational fluid dynamics (CFD). Since PINN does not

need any discretization scheme or mesh generation, this approach is easier to imple-

ment compared to conventional numerical methods. In the context of CFD problems,

the effect of network parameters is shown in the convergence and the accuracy of the

solution. The solutions to forward problems are chosen with simple geometries since

as the nonlinearity increases in the PDE, the PINN has difficulties providing physi-

cally meaningful solutions. Therefore, the provided solutions to flow problems are

in low Reynolds number regions. Applications in this thesis include the solution of

flow problems represented with Navier-Stokes and Euler equations. The problems in

Euler equations are in a one-dimensional domain. The solution of thermal convec-

tion equations that couples the flow equations with the energy equation is presented.

The effect of weighting in each loss term is presented along with different neural net-

work types. Mesh deformation for moving boundary problems in CFD is presented.

The deformation is modeled with elliptic equations. The exact boundary values are

v

enforced on the network output to ensure the boundary is in its exact position. The

quality of the mesh is presented with the element shape and area changes. PINN can

be used in sub-tasks that do not affect the accuracy of high-fidelity solvers.

Keywords: physics informed neural networks, computational fluid dynamics, thermal

convection, mesh deformation

vi

ÖZ

HESAPLAMALI AKIŞKANLAR DİNAMİĞİNDE FİZİKLE ÖĞRENEN
YAPAY SİNİR AĞLARI

Aygün, Atakan

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ali Karakuş

Ortak Tez Yöneticisi: Dr. Romit Maulik

Ocak 2023 , 81 sayfa

Bu çalışmada, genellikle hesaplamalı akışkanlar dinamiğinde (CFD) kullanılan prob-

lemleri modellemek için fizikle öğrenen yapay sinir ağlarını (PINN) kullanıyoruz.

PINN herhangi bir ayrıklaştırma şemasına veya ağ oluşturmaya ihtiyaç duymadığın-

dan, bu yaklaşımın uygulanması geleneksel sayısal yöntemlere kıyasla daha kolay-

dır. CFD problemleri bağlamında, ağ parametrelerinin etkisi, çözümün yakınsama ve

doğruluğunda gösterilmiştir. PDE’de doğrusal olmama arttıkça, PINN fiziksel olarak

anlamlı çözümler sağlamakta zorluk çektiğinden, doğrudan problemlere yönelik çö-

zümler karmaşık olmayan bölgelerde seçilir. Bu nedenle akış problemlerine sağlanan

çözümler düşük Reynolds sayılı bölgelerdedir. Uygulamalar Navier-Stokes ve Euler

denklemleriyle temsil edilen akış problemlerinin çözümünü içermektedir. Euler denk-

lemlerindeki problemler, mevcut PINN yetenekleri bölgesinde, tek boyutlu bir alan-

dadır. Akış denklemlerini enerji denklemiyle birleştiren ısıl taşınım denklemlerinin

çözümü sunulmaktadır. Her kayıp terimindeki ağırlıklandırmanın etkisi, farklı sinir

ağı türleri ile birlikte sunulur. Son olarak CFD’de hareketli sınır problemleri için ağ

vii

deformasyonu sunulmuştur. Deformasyon eliptik denklemlerle modellenmiştir. Kesin

sınır değerleri, sınırın gerçek konumunda olmasını sağlamak için ağ çıkışına uygula-

nır. Ağın kalitesi, eleman şekli ve alan değişiklikleri ile sunulur.

Anahtar Kelimeler: fizikle öğrenen yapay sinir ağları, hesaplamalı akışkanlar dina-

miği, ısıl taşınım, ağ bozunumu

viii

To my beloved family.

ix

ACKNOWLEDGMENTS

Firstly I would like to express my sincere gratitude and respect to my advisors Dr.

Romit Maulik and Dr. Ali Karakuş for their constant support and guidance for this

thesis. Although Dr. Karakuş’s immense knowledge of numerical methods left me

shaken during our coffee breaks, I learned more than I could imagine.

I am very grateful to be a member of a research group. I would like to thank all the

members of the Accelerated Multiphysics Research Group. Having people around

with similar interests always helps me to motivate and improve myself. Thanks to

them for their support in my struggles and fun conversations in our laboratory.

I would like to thank my friends who look at me and think doing an MSc. is easy.

They show me constant support and bring me up when I am down. They were amaz-

ing throughout this journey even though generally they did not understand what I am

doing. And of course, I am very grateful that they are always hungry for a 2 a.m.

snack.

Last, but the most, I am very grateful to my parents and my brother. During the

pandemic, we faced some challenges as a family. Together we overcome the struggle.

I am deeply thankful for their continuous support, unconditional love, and financial

support during my unemployment period. Without them, this research would never

have been completed.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Overview of Conventional Differential Equation Solvers 1

1.2 Machine Learning for the Solution of Differential Equations 4

1.2.1 Physics-Informed Neural Networks 6

1.2.1.1 Application Highlights 8

1.2.1.2 Improvements on Convergence and Accuracy 9

1.3 Motivation and Contributions . 11

1.4 The Outline of the Thesis . 12

2 METHODOLOGY . 15

2.1 Artificial Neural Networks . 15

xi

2.2 Physics-Informed Neural Networks 19

2.2.1 Activation Functions in PINN 21

2.2.2 Sampling of Points . 22

3 PINN FOR INCOMPRESSIBLE & COMPRESSIBLE FLOW EQUATIONS 25

3.1 Incompressible Navier-Stokes Equations 25

3.1.1 Formulation . 25

3.1.2 Results . 26

3.2 Compressible Euler Equations . 30

3.2.1 Results . 31

4 PHYSICS-INFORMED NEURAL NETWORKS FOR THERMAL CON-
VECTION PROBLEMS . 37

4.1 Formulation . 38

4.2 Results . 39

4.2.1 Poiseuille Flow . 40

4.2.2 Differentially Heated Cavity 42

4.2.3 Heated Block . 45

5 PHYSICS-INFORMED NEURAL NETWORKS FOR MESH DEFORMA-
TION WITH EXACT BOUNDARY ENFORCEMENT 49

5.1 Exact Boundary Enforcement . 51

5.2 Mesh Deformation . 52

5.3 Results . 54

5.3.1 Deformed Square . 55

5.3.2 Translation and Rotation tests 57

5.3.3 Flexible Beam . 63

xii

6 CONCLUSION AND FUTURE WORKS 67

REFERENCES . 71

xiii

LIST OF TABLES

TABLES

Table 1.1 Generic properties of common numerical methods. + and x indicate

success and failure respectively, while the (+) symbol indicates that the

method requires modifications to be capable of solving the problem [1]. . 3

Table 4.1 L2 norm of the error of the predicted u velocity and the temperature

fields. 41

Table 4.2 L2 norm of the error of the predicted u velocity and the temperature

fields with changing number of collocation points 41

Table 4.3 L2 norm of the error of the predicted u velocity and the temperature

fields with changing batch size with dynamic sampling strategy 42

Table 4.4 Maximum and minimum velocities along the center lines of the

square cavity for Pr = 0.71 and Ra = 103, 104, 105. 43

Table 4.5 Maximum and minimum velocities along the center lines with dif-

ferent weight ratios of residual loss and the boundary loss. 44

Table 5.1 Global area and shape changes of translation tests. The solution is

performed in 10 steps. The values are given in every step. 60

Table 5.2 Global area and shape changes of rotation tests. The solution is

performed in 10 steps. The values are given in every step. 61

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Representation of a physics-informed neural network for a 1D

harmonic oscillator. 6

Figure 1.2 Solution of a 1D harmonic oscillator with a fully connected neu-

ral network and a physics-informed neural network. The neural network

can fit a function where data is available. The PINN approach uses the

differential equation and find a solution even if the regions where ob-

servations are not available. 7

Figure 2.1 Schematic of a multilayer perceptron 16

Figure 2.2 Plots of commonly used activation functions 16

Figure 2.3 Schematic of a physics-informed neural network. The residual

loss is shown with the viscous Burgers’ equation. 20

Figure 3.1 The schematic and the boundary conditions of the lid-driven cav-

ity benchmark problem. 26

Figure 3.2 Results compared with Ghia’s reference solution [2] for the grid

search study. The u velocity at y = 0.5 is plotted. The scattered data is

the reference solution and the plotted curve is the PINN solution. The

horizontal axis represents u velocity and the vertical axis represents the

y coordinate. 27

xv

Figure 3.3 Velocity field of the lid-driven cavity problem. The solution is

obtained by a 7×50 PINN configuration. The figure (a) shows the u

velocity profile while the figure (b) shows the v velocity profile 28

Figure 3.4 Loss history of the training of PINN. A mini-batch solution with

128 sample points in each iteration is represented along a fixed set of

training with 1000 collocation points and 120 boundary points. 29

Figure 3.5 Loss history of the fixed set of points training of PINN. The

history of each loss term is presented 29

Figure 3.6 Schematic of a physics-informed neural network for the solution

of compressible Euler equations. 31

Figure 3.7 Computational domain and sampled points for the solution of

compressible Euler equations with PINN. The figure on the right shows

the addition of 150 exact solution points. 33

Figure 3.8 Density contour of the solution of Euler equations 33

Figure 3.9 Error fields of the solution to Euler equations. Figure (a) shows

the pressure error profile while figure (b) shows the velocity error pro-

file without any additional true observations 34

Figure 3.10 Line plot of the density at time t = 2.0s compared with the exact

solution. The first figure shows the density values with only boundary

and initial data training. Figure right is the PINN solution trained with

the exact solution addition. 35

Figure 4.1 Prediction of the Poiseuille flow with PINN. The u velocity,

pressure, and temperature fields are shown in order. Black contours

show the exact solution, while the red dashed contours show the solu-

tion with PINN. 41

xvi

Figure 4.2 Temperature contours for the square cavity test. The high fidelity

solution obtained with high fidelity discontinuous Galerkin solver be-

tween 1 and 0 with the increment of 0.05 for Ra = 103, 104, 105 from

left to right shown with the black contours while the red dashed con-

tours are the solution with PINNs. 44

Figure 4.3 Velocity and temperature profiles along the y = 0.5 and x = 0.5

lines for different Ra numbers. The first row shows the values obtained

with the PINN, while the second row shows the values of the high-order

discontinuous Galerkin solver. 45

Figure 4.4 Behavior of the total loss in the square cavity problem with

Ra = 103 with different types of neural network architectures. 46

Figure 4.5 Schematic of the partially blocked channel 46

Figure 4.6 Velocity and temperature profiles for the heated block case. The

figure on the top shows the velocity profile and the figure on the bottom

shows the temperature field predicted by the PINN. 47

Figure 5.1 Schematic of PINN approach with exact boundary enforcement.

The first PINN on the left shows the original formulation with weakly

enforced Dirichlet boundary conditions. The second network uses the

particular solution with exact boundary enforcement to satisfy Dirichlet

boundaries exactly . 51

Figure 5.2 The initial unstructured mesh consists of 2744 triangular elements. 55

Figure 5.3 Deformed square case with its deformed top boundary. The first

deformed figure (a) shows the solution with classical PINN. Figure (b)

represents the solution with exact boundary enforcement. 56

Figure 5.4 Element quality metrics of the square with deformed top bound-

ary. The figure on the left shows the element area change and the figure

on the right shows the element shape change with respect to the initial

mesh elements. 57

xvii

Figure 5.5 The deformed square is squeezed from its top and bottom bound-

ary. Figure (a) shows the solution with classical PINN. Figure (b) rep-

resents the solution with exact boundary enforcement. 58

Figure 5.6 Element quality metrics of the square deformed from the top

and bottom boundaries. The figure on the left shows the element area

change and the figure on the right shows the element shape change with

respect to the initial mesh elements. 58

Figure 5.7 Initial unstructured mesh with a total of 2182 triangular elements. 59

Figure 5.8 Deformed mesh after a total translation of 5 units. The solution

in figure (a) is performed in 10 steps while the solution in figure (b) is

performed in 5 steps. 60

Figure 5.9 Deformed mesh after a total rotation of 0.25π. The solution in

figure (a) is performed in 10 steps while the solution in figure (b) is

performed in 5 steps. 61

Figure 5.10 Global area and shape change metrics of the translation and ro-

tation tests compared with the FEM solution in [3]. The first row shows

the comparison of the translation test, while the second row shows the

comparison of the rotation tests. 62

Figure 5.11 Initial mesh of the flexible beam test case with 2098 triangular

elements. The elements are concentrated on the moving boundary to

track the deformation in a precise way. 63

Figure 5.12 Element quality metrics when the structure tip moves to y = 4. . 64

Figure 5.13 Element quality metrics when the structure returns its original

position. 65

xviii

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

PDE Partial Differential Equation

PINN Physics Informed Neural Network

FDM Finite Difference Method

FVM Finite Volume Method

FEM Finite Element Method

DG Discontinuous Galerkin

ANN Artificial Neural Network

ODE Ordinary Differential Equation

NS Navier-Stokes

MLP Multilayer Perceptron

MSE Mean Squared Error

SGD Stochastic Gradient Descent

BGK Bhatnagar–Gross–Krook

cPINN Conservative Physics Informed Neural Network

XPINN Extended Physics Informed Neural Network

VPINN Variational Physics Informed Neural Network

BFGS Broyden–Fletcher–Goldfarb–Shanno

NTK Neural Tangent Kernel

SPH Smoothed Particle Hydrodynamics

DEM Diffuse Element Method

xix

xx

CHAPTER 1

INTRODUCTION

In the first part of this chapter, the literature survey is presented to show the cur-

rent state of the art. The solution methods for partial differential equations (PDE)

are presented in the first section, including the conventional methods and machine

learning approaches. Followed by the introduction of physics-informed neural net-

works (PINN). The current work on the PINN methodology and its applications are

presented. In the second part, the motivation of this thesis is explained.

1.1 Overview of Conventional Differential Equation Solvers

Differential equations arise in many engineering problems, such as fluid flow, heat

transfer, wave propagation, etc. Solving these equations is important to represent

these physics in real life. To do so, there are quite a number of different meth-

ods. Conventional numerical methods such as the finite difference method (FDM),

finite volume method (FVM), and finite element methods (FEM) are widely used.

In the finite difference method, which is the historically oldest method [1], a grid

is constructed in space. The geometry is represented with K finite points on the

computational domain. In the neighborhood of each grid point xk, the solution is

approximated by local polynomials. These K finite points yield K finite difference

equations for K unknowns. To approximate the first and second derivatives, which

arise in conservation laws, Taylor series expansion or polynomial fitting is generally

used. This method is appealing due to its simplicity. Especially on structured grids,

the finite difference method is very effective [4]. However, Since FDM relies on a

local one-dimensional polynomial approximation, it struggles in higher dimensions.

1

Also, the method has complications around the boundaries and discontinuous regions.

Due to these problems, FDM is ill-suited for complex geometries in the aspect of both

discontinuous regions and the local order of the solution [1].

These drawbacks of finite difference methods lead to methods that have geometric

flexibility. To overcome these, element-based methods are introduced. These meth-

ods partition the overall domain Ω into k different elements, Dk, generally triangles

or quadrilaterals in two-dimension, and tetrahedra or hexahedra in three-dimension.

One is the finite volume method, in which the solution is subdivided into a finite

number of control volumes. In the simplest form, the solution is approximated at the

centroid of each control volume by a constant. In FVM, the approximation is purely

local, and therefore, it has no condition on the grid structure. The conservation laws

are solved in the control volumes. This yields an algebraic equation for each control

volume with the number of neighboring nodes appearing. The flux in FVM is eval-

uated in the boundary of the element. However, the solution is approximated in the

cell center. There are several ways to approximate these fluxes and details lead to dif-

ferent FVM [1]. These terms reduce a surface term by using the divergence theorem,

and these integrals are approximated by suitable quadrature methods [4]. In FVM,

problems occur if one wants to increase the order of the accuracy. Increasing the or-

der introduces a need to have a specific mesh structure. This opposes the initial need

to have geometric flexibility. The high-order reconstruction with proper methods in

FVM is both complex and prone to instability [1]. Thus, the main limitation of FVM

is extending to higher order accuracy on general unstructured meshes.

The finite element method distinguishes itself from the FVM by multiplying the equa-

tions by a weight function before the integration over the entire domain [4]. The so-

lution is approximated by a shape function within an element. The simplest approach

introduces linear shape functions that guarantee the continuity of the solution across

the boundaries [4]. The main idea to introduce another approach beyond the FVM

is to obtain high-order approximations. This can be achieved in FEM by introducing

additional degrees of freedom inside an element. This allows having different orders

of approximation on each element, enabling changes in both size and order named

as hp-adaptivity [1]. Using symmetric basis functions in the classical finite element

approach can be unstable for some problems such as wave problems and conservation

2

Table 1.1: Generic properties of common numerical methods. + and x indicate suc-

cess and failure respectively, while the (+) symbol indicates that the method requires

modifications to be capable of solving the problem [1].

FDM FVM FEM DG

Complex geometries x + + +

High-order accuracy + x + +

Explicit semi-discrete form + + x +

Wave dominated problems + + (+) +

Elliptic problems + (+) + (+)

laws. In these types of problems, the information propagates from a specific direc-

tion. In FDM and FVM this problem can be solved by using an upwinding scheme.

A combination of FEM and FVM leads to the discontinuous Galerkin (DG) finite

element method. This utilizes the space of basis functions in FEM but satisfies the

equation similar to the FVM. This formulation gives the flexibility to ensure stability

by designing a numerical flux and still can achieve high-order accuracy on general

grids [1].

The generic properties of widely used numerical methods are summarized in Table

1.1. This table includes the basic properties of the methods. For further information,

one can refer to [1].

These conventional methods are not suitable for problems including extremely large

deformations of the mesh such as the simulation of manufacturing processes such as

extrusion and molding [5]. Especially for the problems involving moving discontinu-

ities, these methods struggle since the mesh lines should remain coincident with these

regions. The most feasible solution is remeshing. However, this approach introduces

a need to project the solution on a new mesh and this causes numerous difficulties.

Meshless methods eliminate this problem by approximating the solution in terms of

nodes. The starting point of the meshless method is the smoothed particle hydrody-

namics (SPH) [6]. This method is initially proposed for simulations of astrophysical

problems involving fluid masses in the absence of boundaries. This method uses ker-

nel estimation at particles to solve the governing system of equations. The rate of

3

change is calculated from particle interactions. However, setting boundary conditions

is not as forward as the grid-based methods and needs special treatments [7]. Nay-

roles et al. [8] introduced the diffuse element method (DEM). This method is based on

moving least squares interpolation functions. This provides smooth approximations

of function values across irregular data points [9]. The reproducing kernel particle

method was introduced by Liu et al. [10]. This is a correction of the SPH method

which introduces a new correction kernel for the original function of SPH [11].

1.2 Machine Learning for the Solution of Differential Equations

Besides these conventional methods, machine learning techniques are also used to

solve differential equations. These regression methods offer effective and mesh-free

approaches [12]. In [13], the authors use a neural minimization algorithm to solve the

finite difference equations. Using this approach, they tackle the numerical load of the

finite difference equations with a highly parallel algorithm. In Ref. [14], a method

to solve initial and boundary value problems is presented using artificial neural net-

works (ANN). This method relies on the function approximation capacity of neural

networks. They generalize their approach to ordinary differential equations (ODE),

systems of ODEs, and PDEs. The solutions are compared with Galerkin finite ele-

ment solutions, and the results match these numerical solutions.

Recently, with the growth of computing resources, advances in machine learning tech-

nology, and the availability of mass amounts of data, these techniques have increased

their popularity in approximating the solution of differential equations. These low-

fidelity surrogate models aim to decrease computational time with acceptable accu-

racy in the model. However, these surrogates cannot achieve great accuracy by them-

selves. This leads to multifidelity models, which were first introduced in a linear,

auto-regressive, Bayesian manner by Kennedy & O’Hagan [15]. They introduced the

linear relation between the low and high-fidelity models using data-driven Gaussian

Processes regression [16]. This technique requires a kernel function to define the

prior covariance between any two function values [17], and the choice of this prior

highly affects the solution. This work of Kennedy & O’Hagan attracted interest in

the computational science community to improve the shortcomings of the model and

4

to implement the modeling of stochastic dynamical systems. Perdikaris et al. [18],

used this approach with Gaussian-Markov random fields to provide an accurate uncer-

tainty quantification of Burgers equation from a random initial state with a decrease

of computational time. In [19], they extended the recursive approach and introduced

a multivariate recursive Gaussian processes regression to predict vector-valued ran-

dom fields. They implemented this method to the stochastic Burgers equation and the

stochastic Oberbeck-Boussinesq equations and got a very small absolute error, pre-

dictor mean, and standard deviation compared to the benchmark solutions. Moreover,

Raissi [20] proposed a probabilistic regression framework for solving linear integro-

differential equations from noisy data. Their approach returns solutions of the fields

with uncertainty quantification for spatio-temporal and high dimensional problems.

However, this approach lacks the solution of nonlinear operators. Perdikaris et al.

[21] proposed a framework considered as a generalization of the work of Kennedy

& O’Hagan to nonlinear autoregressive schemes to predict the multi-fidelity approx-

imation of the Branin function and, for a practical application, modeling of mixed

convection. Their nonlinear approach has higher predictive accuracy even with less

training data compared to the classical linear, autoregressive approach. Lee et al.

[22] improved the NARGP algorithm to capture the discontinuities. Since a smooth,

stationary kernel cannot capture the discontinuities, they used non-stationary kernels

with space-dependent hyperparameters to overcome this problem. However, this ap-

proach still has drawbacks in the form of the curse of dimensionality and overfitting.

Constructing data-informed kernels, as in [23] can be a solution. They use an entirely

data-driven method for forecasting the weekly average sea temperature. They use

kernel methods and propose to learn that kernel from data using a cross-validation

technique called Kernel Flows [24]. This multifidelity approach is also implemented

with deep neural networks. Raissi and Karniadakis [25] offered a surrogate model

that captures discontinuities with multi-fidelity data. The discontinuity is captured

with neural networks but as a drawback, it cannot model the uncertainty, unlike the

Gaussian processes. Moreover, Meng and Karniadakis [26] created a composite neu-

ral network that learns from multi-fidelity data. There is one low-fidelity deep neural

network (DNN) connected to two high-fidelity DNNs.

5

1.2.1 Physics-Informed Neural Networks

The flexibility of defining a prior of Gaussian processes has some limitations. The

Bayesian nature requires specific prior assumptions for the model and limits the pre-

diction capability for the nonlinear problems [27]. Additionally, the need for high-

fidelity data for the training phase is still a computational burden. To overcome these

problems, Raissi et al. [27] offered physics-informed neural networks (PINN). A

sample figure of a PINN is shown in Figure 1.1.

LOSS

NN(w,b) PDE

x

Figure 1.1: Representation of a physics-informed neural network for a 1D harmonic

oscillator.

These networks use the well-known capability of the networks being universal func-

tion approximators [28] and directly solve the nonlinear problems without any prior

assumptions. They use automatic differentiation [29] to differentiate the neural net-

work prediction, therefore they can construct a PDE. These networks are used to get

a solution or learn an operator in a partial differential equation. The main advantages

of PINN are it does not need to generate complex meshes or use any discretization

scheme. Instead, it uses point clouds generated from a statistical distribution. The

discretization of a differential equation is replaced by automatic differentiation which

uses consecutive chain rules to get the derivative. A sample solution of a PINN can

be seen in Figure 1.2 for a 1D harmonic oscillator. A classical neural network can fit

a function where data is available. However, the prediction of the area without any la-

beled data is completely wrong. PINNs can use the information from the differential

6

equation and predicts the solution well for this simple problem.

0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Exact solution
Neural network prediction
Training data

0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Exact solution
Neural network prediction
Training data
Physics loss training locations

Figure 1.2: Solution of a 1D harmonic oscillator with a fully connected neural net-

work and a physics-informed neural network. The neural network can fit a function

where data is available. The PINN approach uses the differential equation and find a

solution even if the regions where observations are not available.

The original paper introduced the solution of Schrödinger and Allen-Cahn equations

with fully connected networks. The solution can be found by using an optimization

algorithm and minimizing the loss on the points generated. The common optimization

algorithm used in PINN is the stochastic gradient descent algorithm. It finds the

gradient of the objective function and updates parameters in the opposite direction of

the gradient. In the same paper, the authors try to find unknown differential operators

with some known data points. Using the same formulation parameters in the Navier-

Stokes and Korteweg-de Vries equations can be learned. With the known observations

in the computational domain, one can learn the operators or even boundary conditions

[30].

7

1.2.1.1 Application Highlights

The PINN approach got attention and has been studied widely for the solution and

identification of different partial differential equations. In [31], the Navier-Stokes

equations are solved with velocity-pressure and velocity-velocity formulations for

the incompressible flows. Using this formulation two-dimensional Kovasznay flow,

two-dimensional cylinder wake, and three-dimensional Beltrami flow are solved. For

the inverse flow problems, hidden fluid mechanics is proposed [32]. The flow prop-

erties and patterns described by partial differential equations are extracted from the

flow visualizations. Their algorithm is free from the geometry or the boundary/initial

conditions which makes this approach very flexible in choosing the domain of interest

for data acquisition. In that work, the authors extract the quantitative hemodynam-

ics data from three-dimensional intracranial aneurysm visualization only. Solving the

fluid flow problems using PINN is extended to high-speed aerodynamic flows using

inviscid Euler equations [33]. A one-dimensional transient flow is used to solve a

forward problem and track the position of a shock. A standard PINN approach can

capture the discontinuity position. However, if the residual point generation is clus-

tered near the discontinuity, the sharp gradient is captured more accurately. Moreover,

the Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) collision model is

studied with PINN to solve forward and inverse problems of multiscale flows [34].

This is a well-known model describing flows in different regimes from hydrodynamic

limit to free molecular flows. This approach is especially efficient in solving inverse

problems but not for forward problems specifically for flows with low Knudsen num-

bers. Cai et al. added the energy equations coupled with the flow equations and

solved different heat transfer problems [30]. They obtained the velocity and tem-

perature fields for the forced and mixed convection problems with unknown thermal

boundary conditions with the help of sparse temperature measurements. Moreover,

they presented solutions to power electronics problems of realistic industrial applica-

tions. This shows the capability of PINN to tackle problems at the industrial level.

This paper also includes a solution to a Stefan problem, but this is solely examined by

Wang and Perdikaris [35]. They proposed a multi-network approach for the moving

free boundary problems. The moving boundary is also an unknown in free boundary

or Stefan flows. They parametrized the free boundary by a neural network, different

8

than the network constructed to find the latent solution. These network outputs are

then coupled with the Stefan condition to find the solution.

1.2.1.2 Improvements on Convergence and Accuracy

The physics-informed neural networks can converge to a solution for simple prob-

lems. Despite this, PINNs can have difficulties with the problems having multiphysics

or multiscale behavior [12]. The loss function of PINN generally consists of multiple

terms, including residual and boundary condition losses. This yields highly non-

convex optimization problems [36]. Several different approaches are presented to

tackle different weaknesses of PINN. Jagtap et al. [37] proposed conservative PINN

(cPINN). This approach is a domain decomposition technique for solving conserva-

tion laws. They partitioned the domain into numerous subregions. This approach

offers the flexibility to apply different neural networks for each region. Prior to the

knowledge of physics in each region, the neural network can be tailored to obtain

more accurate solutions. Between the region interfaces, the flux continuity in the

strong form is enforced to imply the conservation property. Since this approach uses

domain decomposition, the algorithm can be implemented in parallel. This proposed

cPINN formulation is extended by Jagtap and Karniadakis [38] named as extended

physics-informed neural networks (XPINN). This approach works on any type of

PDE by applying the interface conditions according to the problem itself such as so-

lution continuity, flux continuity, etc. The major addition from cPINN is that it can be

employed for any arbitrary complex domains, especially in higher dimensions. This

also gives the flexibility to decompose the domain in any arbitrary way, increasing the

representation and parallelization capacity. . Domain decomposition in PINN is used

in [39] as hp-VPINN. These are variational physics-informed neural networks with

hp refinement. The paper focuses on variational formulation based on the Petrov-

Galerkin subdomain method with the trial space as the space of neural networks, and

the test space is high-order polynomials. The domain decomposition allows h refine-

ment and the projection onto space of high-order polynomials allows p refinement to

the offered approach. This formulation works efficiently, especially when there exists

singularities or sharp changes in the solution.

9

The proposed formulations above are attempts to improve the general PINN formu-

lation and solve specific problems that the original formulation has. However, due

to the nature of the loss function in PINN, the convergence of a solution is not guar-

anteed. The different terms in the loss function can affect different amounts for the

overall convergence of the model. There are several methodologies proposed PINNs

to converge to desired functions, and accelerate the convergence. Jagtap et al. [40]

employed adaptive activation functions for physics-informed neural networks to ac-

celerate the convergence rate. This adaptive term is introduced in the activation func-

tion as a scalable hyper-parameter and trained throughout the training process. By

solving various problems, authors show that this approach not only improves the con-

vergence but increases the accuracy also. Similar to this approach, the authors in [41]

introduced layer-wise and neuron-wise adaptive activation functions for PINN. They

additionally added a slope recovery term in the loss function. Although these addi-

tions increase the computational cost, they increase the accuracy and convergence rate

of the neural networks. Moreover, some research focuses on sampling strategies to

minimize the failure of convergence. In [42], the authors used an adaptive sampling

strategy to solve phase field models of Allen-Cahn and Cahn-Hilliard type equations.

Instead of fixed sample points, an adaptive resampling in every iteration is proposed

to improve the accuracy. First, they train a network with points sampled from a spec-

ified distribution. Then, the proposed method picks a portion of points where the

total error is significantly high and adds this set to the previous points, and trains the

network again. This approach is particularly important for problems with moving

interfaces. A similar approach is used in [43] to minimize propagation failures in

PINN. The PINN solutions propagate from the proper initial/boundary conditions to

the interior points. With poor sampling strategies, a solution can get stuck on a triv-

ial solution. To prevent this, they proposed an evolutionary sampling algorithm that

collects the collocation points in the regions of high PDE residuals.

In the context of achieving greater accuracy, there are some proposed formulations

for the learning cycle of PINN. In [44], Wang et al. analyzed the neural networks’

gradient pathologies and found a mode of failure related to numerical stiffness. This

failure mode leads to unbalanced gradients during the training of the PINN model. To

overcome this problem, the authors offer a learning rate annealing algorithm. This al-

10

gorithm identifies the unbalanced gradients, and adaptively assigns different weights

to different loss terms. In another approach, Wang et al. [45] analyzed the training dy-

namics of PINN in the context of neural tangent kernel (NTK) theory [46]. With this

formulation, it is stated that fully connected PINNs converge to Gaussian processes at

the infinite width limit. Additionally, the NTK of PINN converges to a deterministic

kernel under suitable assumptions. This kernel remains constant during the training

process with an infinitesimally small learning rate. This shows that fully connected

PINNs suffer from spectral bias [47] that prevents the networks from learning high-

frequency functions. Analyzing PINNs in the context of NTK allows them to observe

the training dynamics. With this observation, they observed the discrepancy of differ-

ent terms in the loss function on the convergence rate. To address this, they proposed

an algorithm that uses the eigenvalues of the NTK of PINN and adaptively changes

the coefficients of different loss terms. This balances the convergence rate of different

terms in the overall training error.

1.3 Motivation and Contributions

Physics-informed neural networks offer a promising approach for solving different

types of PDEs without needing complex mesh generation and discretization schemes.

Using an optimization algorithm to minimize a PDE residual, they can tackle a wide

range of forward and inverse problems. Especially, in the context of tasks that do

not need a high degree of accuracy, PINNs can give insight into the problem in a

quick manner. The code development process of PINN is very fast compared to the

traditional numerical methods. PINN does not need any discretization scheme and

therefore the construction of a PDE consists of a couple of lines of code. This is one

of the main motivations to use PINN for solving PDEs.

The aim of this research is to test physics-informed neural networks for computational

fluid dynamics problems. This includes the solution of simple problems as well as the

indirect formulations that help to get a solution. In the context of these requirements,

this research compromises the following,

• Physics-informed neural networks are analyzed to get a solution for incom-

11

pressible and compressible flow equations. Different sampling strategies are

analyzed for low Reynolds number incompressible problems to test the PINN

framework. The compressible flow problems show the capability of PINN to

capture discontinuity.

• Solutions for two-dimensional thermal convection with Boussinesq approxima-

tion are presented. Effects of weights in the loss function and different types

of neural networks for these types of problems are analyzed. This is the first

application of PINN for the solution of thermal convection problems in the lit-

erature.

• PINNs are used to get a solution for mesh deformation problems. The moving

boundaries in CFD solutions require moving the mesh. With PINN, this prob-

lem can be solved with acceptable accuracy. Exact boundary enforcement is

employed to ensure the boundaries are in their exact position.

1.4 The Outline of the Thesis

The remainder of the thesis study is structured as follows,

Chapter 2. The details of artificial neural networks and PINN are presented. Starting

from the learning dynamics of general artificial neural networks, PINN methodology

is introduced by the addition of physics loss on ANN formulation. The common

activation functions and sampling strategies used in this research are presented.

Chapter 3. This chapter involves the solution of incompressible and compressible

flow equations. The solution of incompressible Navier-Stokes equations for low

Reynolds number flows is presented. This is extended with different PINN formula-

tions to improve the solution. This chapter also includes the solution of compressible

Euler equations with a discontinuity.

Chapter 4. Physics-informed neural networks for the solution of two-dimensional

thermal convection equations are introduced in this chapter. The effect of different

weight coefficients is presented for different convection regimes. Instead of fully

connected networks, different types of networks are used and their difference is pre-

12

sented.

Chapter 5. A solution to mesh deformation problems is proposed. The mesh de-

formation for moving boundary problems is suitable for PINN formulation. A linear

elastic method is used with hard boundary condition enforcement. This ensures the

boundary is in its exact position.

13

14

CHAPTER 2

METHODOLOGY

In this chapter, the methodology of physics-informed neural networks will be dis-

cussed. First, neural networks will be considered. The learning parameters and their

effect on convergence and accuracy are discussed. Then, the theory of PINN is pre-

sented.

2.1 Artificial Neural Networks

An artificial neural network (ANN) is a collection of connected artificial neurons.

These neurons receive and pass information to and from other neurons. Each unit

receives information from the previous units with a corresponding weight wi. All the

information from these units is summed. Then a bias is added to this sum. Finally, a

function takes this sum and provides an output y. This process can be written as:

y = σ

(
N∑
i=1

wixi + b

)
, (2.1)

where σ is the activation function, and N is the number of previous information units.

The simplest neural network, generally called a fully connected network or multilayer

perceptron (MLP), consists of multiple artificial units connected to each other. This

type of network consists of an input and an output layer, and in between, there are

hidden layers with specified depth and width and a nonlinear activation function. The

schematic of a fully connected network can be seen in Figure 2.1.

A nonlinear activation function is a key to increasing the complexity of the neural

network. Without such a function, a neural network is only capable of linear map-

ping. Some common activation functions include rectified linear unit (ReLU) [48],

15

.

.

.

Hidden LayersInput
Layer

Output
Layer

Figure 2.1: Schematic of a multilayer perceptron

hyperbolic tangent, sigmoid [49] and swish [50]. The plots of these functions can be

seen in Figure 2.2.

4 2 0 2 4
x

1

0

1

(x
)

tanh

4 2 0 2 4
x

0

2

4

(x
)

ReLU

4 2 0 2 4
x

0.0

0.5

1.0

(x
)

sigmoid

4 2 0 2 4
x

0

2

4

(x
)

swish

Figure 2.2: Plots of commonly used activation functions

Hidden layers in an MLP take inputs from the previous layer. Each input is multiplied

by a specific weight. The nodes in the hidden layers and the output layer also have

a bias term. As mentioned previously, the hidden layers have a nonlinear activation

function. However, in the output layer, the activation function is an identity function

16

since the variable in the output layer is generally a real-valued target in regression or

a value representing class scores in classification. In general, an L-layered network

can be written as:

N 0(x) = x (2.2a)

N i(x) = σ(WiN i−1(x) + bi) (2.2b)

N L(x) = WLN L−1(x) + bL, (2.2c)

where W and b are the weight matrix and the bias vector, respectively. W is an

(m × n) matrix where n is the length of the input vector and m is the length of the

output vector. b is an (m × 1) vector. This product produces an output vector y

which has a dimension of (m × 1). In matrix form, computation between layers can

be written as:
y1

y2
...

ym

 = σ

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
...

wm,1 wm,2 . . . wm,n

x1

x2

...

xn

+

b1

b2
...

bm

 (2.3)

Weights and biases are trainable parameters named hyperparameters, labeled with θ.

The learning procedure of the neural networks is to find an optimized set of hyperpa-

rameters that minimizes a specific loss function. The loss function (or the objective

function) is an indicator of how the neural network fits the model. It measures how

much the output layer diverges from the desired target. One of the most common loss

functions is the mean squared error (MSE), which measures the average of the square

of the difference between the predicted and the true value. It can be expressed as

LMSE =
1

Nd

Nd∑
i=1

|ŷi − yi|2, (2.4)

where ŷi is the neural network’s output, and yi is the target value. Before any learning

procedure starts, the hyperparameters need to be initialized. Learning procedure with

random initialization is doing poorly in deep neural networks [51]. To handle this

issue Xavier initialization [51] is utilized. The weights are randomly sampled from a

truncated normal distribution with a standard deviation of:

σXavier =

√
2

n+m
, (2.5)

17

where n and m are the input and the output dimensions, respectively.

Since the main goal here is to predict the exact value, the loss needs to be minimized.

This optimization problem can be represented as:

θ∗ = argmin
θ

J(θ;x), (2.6)

where J is the objective function, such as in Equation 2.4. The hyperparameters can

be updated in successive iterations by approximating the solutions to this minimiza-

tion problem. This can be achieved by using one of the stochastic gradient descent

(SGD) algorithms [52]. Gradient descent minimizes the objective function J(θ), by

finding new parameters θ in the opposite direction of the gradient of the loss function

∇θJ(θ). The gradient of this loss function with respect to hyperparameters is calcu-

lated by backpropagation [53]. It first calculates the loss by using existing weights

and biases (forward pass), then finds the gradient of loss by using the chain rule while

moving backward in the network. Plain gradient descent, also called batch gradient

descent, calculates the gradient of the objective function for the entire training dataset:

θ = θ − η · ∇θJ(θ;x), (2.7)

where η is the learning rate. It is a parameter that determines the size of the step

to take in the direction of the negative gradient to reach a local minimum [52]. The

choice of the learning rate affects the behavior, and the path of the gradient descent

[54]. The widely used technique for learning rate implementation is learning rate

decay. This approach starts with a large learning rate at the first iterations (epochs),

then reduce the learning rate gradually with the form:

η(t) = η0d
t/T , (2.8)

where t is the iteration number, T is the number of steps to decay in and d is the decay

rate. The effect of decaying is to start with an initially large rate to avoid memoriza-

tion of noisy data and decay to a smaller value to prevent oscillations around a local

minimum [55]. Batch gradient descent calculates the gradient of the whole dataset for

every update. Therefore, it can be slow or can fill the memory for large datasets, but

it is guaranteed to converge to the global minimum for convex optimization problems

[52]. On the other hand, stochastic gradient descent performs a parameter update at

18

each training example of xi:

θ = θ − η · ∇θJ(θ;x
i). (2.9)

Since the parameter update is one update at a time, SGD is usually faster.

In this work, we use one of the most common optimizers named adaptive moment

estimation, Adam [56]. It is an algorithm for first-order gradient-based optimization

of stochastic loss functions. Most popular machine learning frameworks such as Ten-

sorFlow [57], and PyTorch [58] contains this method. One iteration of the Adam

algorithm starts with the calculation of the gradient based on the previous iteration

((t− 1)), gt:

gt = ∇θJ(θ
(t−1)). (2.10)

Next, the biased first (mt) and second raw moment (vt) estimates are updated:

mt = β1 ·mt−1 + (1− β1)gt (2.11a)

vt = β2 · vt−1 + (1− β2)g
2
t . (2.11b)

Then, the biases are corrected for the first and second raw moment estimates:

m̂t =
mt

1− βt
1

(2.12a)

v̂t =
vt

1− βt
2

. (2.12b)

Lastly, the parameters are updated:

θt = θt−1 − η
m̂t

ϵ+
√
v̂t
. (2.13)

β1 and β2 are the hyperparameters that control the exponential rate decay of the mov-

ing average of gradient mt and the squared gradient vt. ϵ is selected as a very small

number to prevent division by zero.

2.2 Physics-Informed Neural Networks

Physics-informed neural networks (PINN), introduced by Raissi et al. [27], are neural

networks trained by considering given laws of physics described by general nonlinear

partial differential equations. It employs the capability of neural networks as uni-

versal function approximators [28, 49]. By utilizing automatic differentiation [29],

19

PINN can differentiate the neural network with respect to input coordinates. With

this property, one can add the differential equation residual into the loss function. In

PINN there is no need to generate a mesh which can be complex and needs expertise.

Instead, a point cloud is generated in the domain and the boundaries. Automatic dif-

ferentiation can use these coordinates and calculates the derivatives needed. In Figure

2.3, the schematic of a PINN is shown with the viscous Burgers’ equation.

t

x

u

LOSS

NN(w,b) PDE

Figure 2.3: Schematic of a physics-informed neural network. The residual loss is

shown with the viscous Burgers’ equation.

PINN can be used in forward or inverse problems. In forward problems, it is used to

approximate the physics in a domain considering the differential equation with only

boundary and/or initial condition data provided. For the inverse problems, PINN can

learn nonlinear continuous operators from a relatively small dataset [59]. To show the

methodology of PINN, consider a general partial differential equation:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T] (2.14a)

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, T] (2.14b)

u(x, 0) = h(x), x ∈ Ω (2.14c)

where u(x, t) represents the hidden solution, N [·] is a generalized nonlinear operator,

g(x, t) represents the boundary conditions and h(x) is the initial condition. The hid-

den solution can be approximated by a feedforward neural network, û(x, t). However,

for PINN the objective function is a composite loss function in the form:

L = wRLR + wBCLBC + wICLIC , (2.15)

20

where w terms are specific weighting on the total loss. Using mean squared error for

the loss function, the terms become:

LR =
1

NR

NR∑
i=1

|ût +N [û]|2 (2.16a)

LBC =
1

NBC

NBC∑
i=1

|û(xi, ti)− g(xi, ti)|2 (2.16b)

LIC =
1

NIC

NIC∑
i=1

|û(xi, 0)− h(xi)|2 (2.16c)

LR, LBC , and LIC represent the residual of the governing PDE, the boundary con-

ditions, and the initial condition respectively. NR, NBC , and NIC are the number

of sampled data points for different terms. Using automatic differentiation to cal-

culate the derivatives with respect to input coordinates, this formulation forms the

total loss with the residual, boundary, and initial conditions. Optimization algorithms

mentioned in the previous section minimize this objective function. This leads to

predicting a field that represents the governing physical laws.

2.2.1 Activation Functions in PINN

Consider a Poisson equation as the model problem.

uxx(x) = f(x), x ∈ Ω (2.17a)

u(x) = g(x), x ∈ ∂Ω. (2.17b)

If one wants to predict a solution with a PINN consisting of only one hidden layer.

We can write the network explicitly as:

u(x; θ) = W1 · σ(W0x+ b0) + b1, (2.18)

where θ = (W0,W1,b0,b1) represents all the parameters in the network. Then, the

second derivative is straightforward such that,

uxx(x; θ) = W1 ·
[
σ̈(W0x+ b0)⊙W0 ⊙W0

]
, (2.19)

where ⊙ represents element-wise multiplication. The term σ̈ shows there is a need

to select an activation function that is two times differentiable. The second-order

21

derivative is present for most of the engineering applications of differential equa-

tions. Therefore, in PINN, the choice of activation function is generally a two times

differentiable function. The activation function plays an important role in training

PINNs. However, there is no obvious choice for it since it is problem-dependent [40].

To tackle this issue, adaptive activation functions are presented in the literature [40].

In this approach, there is a learnable parameter inside the activation function such

that,

σ(α(Wx+ b)). (2.20)

This new term α is also a parameter that needs to be trained and optimized by SGD

algorithms. In every learning epoch the parameter update has an additional term of

α = α− η · ∇αJ(α). (2.21)

The authors in [40] use this adaptive approach for solving the sine-Gordon equation,

Helmholtz equation, Klein-Gordon equation, and Burgers equation. This trainable

hyperparameter in the activation function increases the convergence of the neural

network and also the accuracy compared to fixed activation functions.

2.2.2 Sampling of Points

One of the important factors in PINN is to sample the collocation points, which are

used to calculate the residual of the governing PDE. Residual minimization in these

interior points in the domain Ω, can stuck at the trivial solution u(x, t) = 0 for any

homogeneous PDE, if the provided data for the correct initial/boundary condition is

not sufficient. Also, to minimize the loss, PINN requires the gradient of the output

with respect to input data. Therefore, the solution at an interior point is affected by

the solutions at nearby points. In order for PINN to converge to the correct solution, it

must propagate from the known initial/boundary points to the collocation points [43].

The basic method is to sample all the points before starting the learning procedure.

This can be done by sampling the points from a statistical distribution. Common

methods are sampling randomly from a uniform distribution or Latin hypercube sam-

pling [60]. However, to prevent propagation failure, different sampling strategies are

present. Although there are numerous strategies, such as evolutionary sampling [43]

and importance sampling [61], the dynamic random sampling strategy and fixed set

22

of sampled points are used in this thesis. It is a simple strategy that dynamically

samples a random set of collocation points at every iteration. It is computationally

cheaper than the method that samples all the points at once since, generally, the set in

dynamic sampling is smaller.

23

24

CHAPTER 3

PINN FOR INCOMPRESSIBLE & COMPRESSIBLE FLOW EQUATIONS

3.1 Incompressible Navier-Stokes Equations

Most flows generated by nature or human industrial applications can be modeled with

Navier-Stokes (NS) equations. Therefore these equations are widely studied in engi-

neering research. Physics-informed neural networks are also used to solve the Navier-

Stokes equations in the literature. These simulations are restricted to low Reynolds

number flows since PINN can have difficulties in learning the solutions of multiscale

and time-dependent problems. Resolving turbulence needs the addition of data [62]

or fully developed turbulent initial conditions [32]. In this section, we will analyze

a classical benchmark case at a low Reynolds number to test the PINN framework

for incompressible Navier-Stokes equations. All experiments are conducted on a Dell

Precision mobile workstation with an NVIDIA RTX A1000 laptop GPU and an Intel

Core i7-12800H processor.

3.1.1 Formulation

The steady, incompressible, laminar flow of fluids is governed by the Navier-Stokes

equations defined on the domain Ω. Domain boundary is represented with ∂Ω. The

non-dimensional incompressible Navier-Stokes equations and the continuity equation

on the domain Ω can be written as

(u · ∇)u = −∇p+
1

Re
∆u, x ∈ Ω, (3.1a)

∇ · u = 0, (3.1b)

25

where u and p are the non-dimensional velocity and the scalar pressure field, respec-

tively. The non-dimensional quantities are obtained with the following parameters.

x =
x∗

Lr

, u =
u∗

Ur

, p =
p∗

ρrU2
r

, ρ =
ρ∗

ρr
, ν =

ν∗

νr
. (3.2)

Here, the superscript * denotes the dimensional parameters, and the subscript r de-

notes the reference values. The non-dimensional Reynolds number is defined as

Re = UrLr/νr.

3.1.2 Results

The lid-driven cavity flow is a classical benchmark problem widely studied to test

the numerical methods for incompressible Navier-Stokes equations [2, 63, 64]. The

computational domain is Ω = [0, 0] × [1, 1], boundaries are no-slip walls except the

boundary at y = 1, where there is a horizontal lid velocity taken as Ulid = 1.

Figure 3.1: The schematic and the boundary conditions of the lid-driven cavity bench-

mark problem.

First, a grid search methodology is conducted to find the optimal width and depth

of the network. A series of simulations are performed with 50000 iterations and a

learning rate of 5 × 10−3 for Reynolds number Re = 100. A dynamic sampling

26

0.0 0.5 1.0
0.0

0.5

1.0

de
pt

h=
6

width=40

0.0 0.5 1.0
0.0

0.5

1.0
width=50

0.0 0.5 1.0
0.0

0.5

1.0
width=60

0.0 0.5 1.0
0.0

0.5

1.0

de
pt

h=
7

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

de
pt

h=
8

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

Figure 3.2: Results compared with Ghia’s reference solution [2] for the grid search

study. The u velocity at y = 0.5 is plotted. The scattered data is the reference solution

and the plotted curve is the PINN solution. The horizontal axis represents u velocity

and the vertical axis represents the y coordinate.

strategy [43] is used for all simulations. This strategy samples a different number

of points from a random uniform distribution for every iteration of the optimization

process. A batch size of 128 is used for the collocation points and each boundary.

The u velocity is plotted at y = 0.5 line, and the results are compared with Ghia’s

reference solution [2]. The comparison can be seen in Figure 3.2.

In most of the results, the trend of the u velocity of the PINN prediction is similar to

the reference solution. For the rest of the study, the solution with 7× 50 is used since

it represents the most similar result.

The velocity field with the 7×50 configuration is presented in Figure 3.3. The u

velocity field is presented on the left, and the v velocity field is on the right. The

PINN solution captures the trend of the flow well. However, near the corners of the

top boundary, the solution deviates from the common trend. The lid velocity is not in

its true value of 1, and the v velocity cannot propagate through the corners.

27

(a) (b)

Figure 3.3: Velocity field of the lid-driven cavity problem. The solution is obtained

by a 7×50 PINN configuration. The figure (a) shows the u velocity profile while the

figure (b) shows the v velocity profile

To show the difference in sampling strategies, a new solution is obtained with a fixed

sample of points in the computational domain. This approach requires higher com-

putational time since the number of loss calculations and automatic differentiation in

every step increases. A fixed 1000 points are sampled from a uniform distribution for

the computational domain. Similarly, 120 points are sampled for each boundary. The

solution is obtained with the same configuration in 50000 iterations. The loss history

of the training is presented in Figure 3.4. The training time for mini-batch solution

is 40 minutes, while the training time for the solution with fixed sample of points is

roughly 2 hours.

The loss history shows that compared to mini-batch training, using a fixed set of

points results in a lower loss after 50000 iterations for this problem. Moreover, the

oscillations in the overall loss get lower. This is due to the nature of mini-batch

sampling. In every iteration, the sampled 128 points are in different regions. Every

point contributes differently to the loss function according to the region of interest.

The loss history of each term for the fixed set of sampling is shown in Figure 3.5.

28

0 10000 20000 30000 40000 50000
Iterations

10 3

10 2

10 1

100

Lo
ss

Mini Batch
Fixed

Figure 3.4: Loss history of the training of PINN. A mini-batch solution with 128

sample points in each iteration is represented along a fixed set of training with 1000

collocation points and 120 boundary points.

0 10000 20000 30000 40000 50000
Iterations

10 4

10 3

10 2

10 1

100

Lo
ss

Total
Residual
Boundary

Figure 3.5: Loss history of the fixed set of points training of PINN. The history of

each loss term is presented

29

The residual loss starts from a very low number resembling the trivial solution. It

immediately jumps back to a higher loss with boundary term. The overall loss mostly

comes from the supervised boundary loss. For this problem, there are discontinuities

in the corners affecting the trend of the loss. The profile of the residual term and the

boundary term looks similar. Although the effects of each term on the overall loss

function are different, they are correlated. The residual solution is propagated from

the boundary to the interior points [43].

3.2 Compressible Euler Equations

In this study, physics-informed neural networks have been applied to solve compress-

ible Euler equations. As a pioneering study, the progression of a one-dimensional,

time-dependent shock has been examined. The details of the computation domain

and the artificial neural networks used for the solution are presented, and the obtained

results are compared with the real solutions. The following loss term is used in PINN

to solve the Euler equations.

L = wDLD + wRLR + wBCLBC + wICLIC . (3.3)

The term LD term indicates the loss on the observed data used in this case. Similarly,

wD is the weighting term for this loss.

In an inviscid, compressible flow, mass, momentum, and energy conservation can be

modeled using the Euler equations. These equations can be written as:

∂tU +∇ · f(U) = 0, x ∈ Ω ⊂ R, t ∈ [0, T] (3.4)

These terms U and f(U) are written as

U =

ρ

ρu

ρE

 , f(U) =

ρu

ρu2 + p

u(ρE + p)

Here, ρ is the density, u is the one-dimensional velocity, p is the pressure and E is

the total Energy. In addition to these equations, a state equation is also required. This

equation is:

p = (γ − 1)

(
ρE − 1

2
ρu2

)
.

30

t

x

LOSS

Figure 3.6: Schematic of a physics-informed neural network for the solution of com-

pressible Euler equations.

For air as the working fluid, γ can be taken as 1.4.

As shown in Figure 3.6, the PINN take the spatial and temporal coordinates as input

and passes them through hidden layers to estimate the density (ρ), velocity (u), and

energy (E) terms required for the compressible Euler equations. Then, these variables

are placed in the boundary conditions and initial conditions. The losses are calculated

at the sampled boundary, initial, and sampled collocation points, and the derivatives

are calculated with automatic differentiation. These calculations are placed in the

compressible Euler equations to ensure that they are satisfied. The total error function

consists of the sum of these errors and is tried to be brought close to zero with the

Adam optimization algorithm.

3.2.1 Results

The following settings are used to demonstrate the solution for the compressible Euler

equations. The computation domain is between [0, 1] and a shock is located at the

point x = 0.5 as the initial condition. The initial values on the left and right sides of

the shock are:

(ρL, uL, pL) = (1.4, 0.1, 1.0), (ρR, uR, pR) = (1.0, 0.1, 1.0).

31

The exact solution is used as a Dirichlet boundary condition [33]. The exact solution

is

ρ(x, t) =

1.4 x < 0.5 + 0.1t,

1.0 x > 0.5 + 0.1t,
u(x, t) = 0.1, p(x, t) = 1.0

For the training phase of the artificial neural networks, 60 boundary points, 60 ini-

tial points, and 1000 points within the computation domain were randomly selected

using Latin Hypercube sampling. In addition, 150 values from real solutions were

also added to the artificial neural network in a different calculation. This selec-

tion is shown in Figure 3.7 and the points marked in purple are obtained by ran-

domly selecting the real values. The solution is analyzed with a maximum time

of t = 2.0s. In this study, time is treated as a continuous variable such as the

spatial variable x. The network structure includes 4 hidden layers with 40 neu-

rons in each hidden layer. The Adam optimizer with a learning rate of 0.001 and

20000 iterations was used to calculate the optimal parameters, followed by the BFGS

(Broyden–Fletcher–Goldfarb–Shanno) method for fine-tuning. The hyperbolic tan-

gent function is used as the activation function. The training time is roughly 5 min-

utes for all experiments on a Dell Precision mobile workstation with an NVIDIA RTX

A1000 laptop GPU and an Intel Core i7-12800H processor.

In Figure 3.8, the density contour of the PINN solution is presented. The initial and

boundary condition are well presented as we can see the initial discontinuity at the

point x = 0.5. This initial shock moves on the spatial domain according to Equation

3.4. The discontinuous region can be seen such that the density contour changes its

value in a very sharp manner. In Figure 3.9, the prediction errors of the pressure

and velocity fields are shown. The errors are relatively higher near the discontinuous

region.

In Figure 3.10, the comparison of PINN solutions with the exact solution at time

t = 2.0s is shown. The PINN formulation can predict the position of discontinuity

well. However, it cannot capture the sharp change and small oscillations are observed

near the discontinuous region. To suppress these oscillations, we can add labeled

data. The figure on the right shows the solution with additional 150 data from the

exact solution. This addition helps regularize the PINN into a more accurate solution

32

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
t

N = 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t

N = 150

Figure 3.7: Computational domain and sampled points for the solution of compress-

ible Euler equations with PINN. The figure on the right shows the addition of 150

exact solution points.

Figure 3.8: Density contour of the solution of Euler equations

33

(a) (b)

Figure 3.9: Error fields of the solution to Euler equations. Figure (a) shows the

pressure error profile while figure (b) shows the velocity error profile without any

additional true observations

and the sharp gradient can be captured.

34

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.1

1.2

1.3

1.4

N=0
PINN
Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40
N=150

PINN
Exact

Figure 3.10: Line plot of the density at time t = 2.0s compared with the exact so-

lution. The first figure shows the density values with only boundary and initial data

training. Figure right is the PINN solution trained with the exact solution addition.

35

36

CHAPTER 4

PHYSICS-INFORMED NEURAL NETWORKS FOR THERMAL

CONVECTION PROBLEMS

Thermal convection problems arise in many practical engineering applications, such

as the cooling of electronic chips. This type of real-life analysis of fluid flow and

heat transfer requires high degrees of freedom to minimize numerical error. This can

be achieved with high-quality mesh or high-order discretizations. However, mesh

generation is time-consuming and needs expertise, and high-order simulation tools

for this type of problem are computationally demanding.

The incompressible thermal convection is studied in the literature with various numer-

ical methods [65]. [66] used a least squares finite element method based on a velocity,

pressure, vorticity, temperature, and heat flux formulation for time-dependent prob-

lems. [67] developed a spectral/hp element method for the Direct Numerical Simu-

lation (DNS) of incompressible thermal convective flows by considering Boussinesq-

type thermal body-forcing with periodic boundary conditions and enforcing a con-

stant volumetric flow rate. In [68], the author presented a GPU-accelerated nodal

discontinuous Galerkin method on unstructured triangular meshes for solving prob-

lems on different convective regimes.

Due to the popular deep learning frameworks such as TensorFlow [57], and PyTorch

[58], and their easy implementation, PINNs have become quite popular for solving

PDEs. Moreover, there are some software libraries specifically designed for physics-

informed machine learning such as DeepXDE [69] and NeuralPDE [70]. It is used

for solving incompressible and compressible Navier-Stokes equations [71, 31, 72], as

well as in inverse heat transfer problems [30].

37

In this work, we present the application of PINNs to coupled fluid flow and heat

transfer problems in different thermal convection regimes. In particular, we show

the accuracy of the prediction increases by adding numerous true observations or

high-fidelity data. As the number of high-fidelity data increases the accuracy of the

solution increases. This model relies on the specific weights assigned to different loss

terms in a composite loss function. We show that changing these specific weights can

increase accuracy according to the problem where boundary conditions or flow inside

the computational domain dominates. In addition, for thermal convection problems,

different types of networks can be used instead of simple fully connected networks.

We show how different networks can change the convergence rate of the total training

error. All the experiments are conducted on a machine with Intel Core i7-6700HQ

CPU and Ubuntu 20.04 operating system.

4.1 Formulation

We consider a two-dimensional domain Ω ⊂ R2 and denote the boundary of Ω by

∂Ω. Following the notation presented in [73], we denote the Dirichlet and Neumann

boundary conditions as ∂ΩD and ∂ΩN respectively on ∂Ω. We are interested in the ap-

proximation of non-isothermal incompressible Navier-Stokes equations coupled with

the energy equation through the Boussinesq approximation, which reads:

∇ · u = 0 in Ω× (0, T] (4.1a)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u+ su in Ω× (0, T], (4.1b)

∂θ

∂t
+ (u · ∇) θ =

1

RePr
∆θ + sθ in Ω× (0, T], (4.1c)

in non-dimensional form and subject to the initial conditions

u = u0, θ = θ0 for t = 0,x ∈ Ω, (4.2)

38

and the boundary conditions

u = gD on x ∈ ∂Ωu
D, t ∈ (0, T], (4.3a)

∂u

∂n
= 0, p = 0 on x ∈ ∂Ωu

N , t ∈ (0, T]. (4.3b)

θ = gD on x ∈ ∂Ωθ
D, t ∈ (0, T], (4.3c)

∂θ

∂n
= gN on x ∈ ∂Ωθ

N , t ∈ (0, T]. (4.3d)

Here u, p, and θ are non-dimensional velocity, static pressure, and temperature fields,

respectively. The following approach is used to get the non-dimensional representa-

tion of the equation.

x =
x∗

Lr

, t =
t∗

Lr/Ur

, u =
u∗

Ur

, p =
p∗

ρrU2
r

,

ρ =
ρ∗

ρr
, ν =

ν∗

νr
, α =

α∗

αr

, θ =
T − Tr

Ts

(4.4)

Here the superscript * denotes the dimensional parameters and subscript r denotes the

reference values for specific terms with reference length scale Lr, velocity Ur, den-

sity ρr, viscosity νr, thermal diffusivity αr, and temperature Tr. The non-dimensional

Reynolds and Prandtl numbers are defined as Re = UrLr/νr and Pr = νr/αr.

su = (gβ (T − Tr)Lr/Ur) θ is the forcing term for Navier-Stokes, where g is the

gravitational acceleration, β is the expansion coefficient and subscript r refers the

reference value for the corresponding field. sθ = sθ (θ,∇θ,u) is the generic gener-

ation term for the energy equation written in terms of temperature. The superscripts

u and θ in boundary representation separate the Dirichlet and Neumann conditions,

represented with the subscripts D and N , on the physical boundary set for flow and

heat transfer equations.

4.2 Results

We have implemented our physics-informed neural network on top of the NVIDIA

Modulus framework [74]. We use the Adam optimizer [56] to minimize the loss func-

tion of the PDE and use 8 hidden layers with 40 units for each test case where the

neural network parameters are initialized using the Glorot scheme [51]. We solve dif-

ferent 2D thermal convection tests to show the solutions by representing the velocity,

pressure, and temperature fields.

39

4.2.1 Poiseuille Flow

We consider a two-dimensional channel flow with a fully developed Poiseuille profile

in the first test case. The channel dimension is [0, 2] × [−1, 1]. The upper and lower

walls have constant temperatures of θL = 1 and θU = 0. No-slip boundary conditions

are imposed for upper and lower walls. The fully developed solution of the velocity

field with linear temperature profile shown below is implemented as the boundary

conditions of the inlet and the outlet. The flow conditions are stated as Ra = 103,

Pr = 0.71 and Re = 100.

u = 1− y2, v = 0, p =
Ra

2PrRe2

(
y − y2

2

)
− 2x

Re
, θ =

1− y

2

We trained our framework with 250 samples inside the domain and 30 samples on

each boundary with 10000 iterations for this case. The training time for this case is

40 minutes. The training points are sampled using Latin hypercube sampling, and the

loss function for this problem contains only the Dirichlet boundary condition loss for

the velocity and the temperature on the walls combined with the residual loss inside

the domain. After training, we performed a prediction on a (251 × 251) grid and

obtained the velocity, pressure, and temperature fields. The predicted fields can be

seen in Figure 4.1. The accuracy of the PINN is highly dependent on the weights

of the loss function. In this case, we tried different weights of the different terms

of the loss function to match our solution with the exact solution. Especially for

an accurate pressure field, we increased the weights of the boundary condition losses.

The solution in Figure 4.1 is obtained with a boundary loss weight ωBC , which is eight

times higher than the weight of the residual loss ωR. Since the convective effects are

not very dominant for this problem, boundary losses are dominant, so increasing the

boundary loss weights increases the accuracy.

We test the performance of the PINNs with the addition of true observations at ran-

dom points on the domain. We fused different numbers of randomly sampled exact

solutions inside the domain to the network and add a data loss term into the loss func-

tion. The training process is done with 250 points inside the domain and 30 boundary

points on each boundary beside the true solution points. In Table 4.1, we can see the

L2 norm of the error of the predicted u velocity and temperature fields. The number

of observations represents the addition of the true solutions. Increasing this number

40

Figure 4.1: Prediction of the Poiseuille flow with PINN. The u velocity, pressure, and

temperature fields are shown in order. Black contours show the exact solution, while

the red dashed contours show the solution with PINN.

Table 4.1: L2 norm of the error of the predicted u velocity and the temperature fields.

Number of Observations u T

20 0.527 0.087

50 0.253 0.057

100 0.166 0.034

150 0.141 0.032

reduces the L2 norm of the prediction of the velocity and the temperature from the

true solution.

Table 4.2: L2 norm of the error of the predicted u velocity and the temperature fields

with changing number of collocation points

Number of Collocation Points u T

250 0.3670 0.0252

500 0.3596 0.0571

1000 0.4054 0.0372

To show the effect of the number of sample points on the accuracy, a series of so-

lutions are obtained with different numbers of fixed collocation points and also with

41

different batch sizes for dynamic sampling. In Table 4.2 the L2 norms of the error of

predicted u velocity and temperature fields are presented. Additionally, in Table 4.3,

the same results are presented with changing batch sizes of dynamic sampling. In this

study, we cannot observe any convergence rate with changing the number of points as

is the case in traditional numerical methods. The convergence rate in PINN is related

to its neural tangent kernel [45] and specific to the solved PDE.

Table 4.3: L2 norm of the error of the predicted u velocity and the temperature fields

with changing batch size with dynamic sampling strategy

Batch Size u T

128 0.3594 0.0598

256 0.3244 0.0388

512 0.4034 0.0522

4.2.2 Differentially Heated Cavity

We focus on the natural convection problem on a two-dimensional closed enclosure.

The enclosure is a square cavity with its height denoted as H = 1 and width as W =

1. The boundary conditions of the cavity are simple no-slip walls, u = 0, v = 0,

on all four walls. The thermal boundary conditions on the left and right walls are

prescribed as

θL = 1, θR = 0,

and the upper and the lower walls are thermally insulated

∂θ

∂y
= 0, for y = 0 and y = H.

The flow conditions are Pr = 0.71, and three different Rayleigh numbers as Ra =

103, 104, 105.

For the PINN solution, we sampled 150 points on each boundary and 1000 colloca-

tion points inside the domain for the training process. Boundary points are used to

minimize the loss of Dirichlet and Neumann boundary conditions, and collocation

42

points are used to minimize the residual inside the domain. Automatic differentiation

is used to calculate the derivatives on Neumann boundaries. All the experiments are

done with 25000 iterations in roughly 1.5 hours.

Table 4.4: Maximum and minimum velocities along the center lines of the square

cavity for Pr = 0.71 and Ra = 103, 104, 105.

Ra = 103 Ra = 104 Ra = 105

umax vmax umax vmax umax vmax

PINN 0.137 0.138 0.192 0.233 0.128 0.258

Karakus [68] 0.137 0.139 0.192 0.233 0.129 0.257

Stokos et al. [75] 0.137 0.139 0.192 0.233 0.130 0.256

De Vahl Davis [76] 0.136 0.138 0.192 0.234 0.153 0.261

After the training process, prediction is performed on a (251 × 251) grid. In Table

4.4, we presented the maximum and minimum velocities on the horizontal and verti-

cal centerlines after the prediction with PINN. For cases with different Ra numbers,

our framework has values that are comparable with the ones in the literature. In Fig-

ure 4.2, the solution of PINN and its comparison with a high-fidelity solver through

the temperature contours can be seen. Also, Figure 4.3 shows the center line profiles

of velocity and temperature for different Ra numbers. These contours and profiles

qualitatively match with the high-order solutions [68]. To increase the accuracy, we

changed the weights of different loss terms as Ra changes. In Table 4.5, we presented

the center line velocities for different Ra numbers and different weight ratios of the

residual loss over the boundary loss where ωR represents the weight of the residual

loss, and ωBC represents the weight of loss on the boundary conditions. We stopped

changing weights when we matched the center line velocities with the reference so-

lutions. As the Ra increases, the convective effects inside the domain become more

dominant. Hence we need to decrease the weight of the boundary losses and focus

more on the residual inside the domain. We select the loss ratio according to Table

4.5 that minimizes the error both inside the domain and on the boundaries. To obtain

different solutions, the weight ratio is multiplied with two for different configurations

and the maximum centerline velocities are compared.

43

Table 4.5: Maximum and minimum velocities along the center lines with different

weight ratios of residual loss and the boundary loss.

ωR/ωBC

Ra = 103 Ra = 104 Ra = 105

umax vmax umax vmax umax vmax

0.5 0.137 0.138 0.190 0.231 0.137 0.273

1 0.192 0.233 0.128 0.258

2 0.132 0.261

4 0.130 0.261

0 1
0

1

0 1
0

1

0 1
0

1

Figure 4.2: Temperature contours for the square cavity test. The high fidelity solution

obtained with high fidelity discontinuous Galerkin solver between 1 and 0 with the

increment of 0.05 for Ra = 103, 104, 105 from left to right shown with the black

contours while the red dashed contours are the solution with PINNs.

We tested different types of neural network architectures and monitored the behavior

of the total loss of the Adam optimizer for the cavity problem with Ra = 103 and

presented in Figure 4.4. The plain fully connected network (FCN), a variation of

the fully connected network named as Deep Galerkin Method (DGM) [77], a Fourier

network and a modified Fourier network [78], a modified highway network using

Fourier features [79], and a multiplicative filter network [80] are used. All of these

architectures are readily available in the NVIDIA Modulus framework. In all the

tests, 8-layer networks are constructed with 40 units. Hyperbolic tangent is set as the

activation function, and the learning rate is 10−3. The Fourier mapping architectures

converge later than the plain fully connected network since the problem does not have

44

0 0.5 1
-0.2

-0.1

0

0.1

0.2

0 0.5 1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
-0.2

-0.1

0

0.1

0.2

0 0.5 1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 4.3: Velocity and temperature profiles along the y = 0.5 and x = 0.5 lines for

different Ra numbers. The first row shows the values obtained with the PINN, while

the second row shows the values of the high-order discontinuous Galerkin solver.

multi-scale behavior. For this simple problem, we do not need a Fourier mapping.

Hence networks that are basically built on plain, fully connected networks converge

in fewer iterations.

4.2.3 Heated Block

In this section, we focus on an application of coupled heat transfer with a partially

blocked channel. The domain and the boundary conditions can be seen in Figure

4.5. The heated block represents an electronic part on a vertical electronic board [81].

The top wall is adiabatic, and the bottom wall is at a prescribed temperature. A low-

temperature flow comes from the inlet, and the outflow is a fully developed outlet

meaning the changes in the x direction is zero. The Prandtl number is set to 0.7 for

this problem and the Reynolds number is 37.8. The ratio of Gr/Re2 is 1 and the

forcing is in the x direction.

For training the network, we sampled 30 points on the inlet and the outlet, 210 points

45

0 0.5 1 1.5 2 2.5

10
4

0

2

4

6

8

10
10

-3

0 0.5 1 1.5 2 2.5

10
4

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

Figure 4.4: Behavior of the total loss in the square cavity problem with Ra = 103

with different types of neural network architectures.

x

y

Adiabatic Plate

Fully Developed
Outlet

Figure 4.5: Schematic of the partially blocked channel

on the adiabatic wall, 40 points on the heated block, 180 points on the bottom wall,

and 1400 points inside the domain. We used 25000 iterations for the Adam optimizer

with the learning rate of 5 × 10−4 and obtained the solution presented in Figure 4.6.

PINN solution well predicts the Neumann boundary conditions on the top wall, the

fully developed outlet, and the no-slip Dirichlet velocity conditions.

46

Figure 4.6: Velocity and temperature profiles for the heated block case. The figure on

the top shows the velocity profile and the figure on the bottom shows the temperature

field predicted by the PINN.

47

48

CHAPTER 5

PHYSICS-INFORMED NEURAL NETWORKS FOR MESH

DEFORMATION WITH EXACT BOUNDARY ENFORCEMENT

Dynamic grids in numerical fluid flow simulations generally arise in many appli-

cations, such as airfoil movement [82, 83], blood flow [84], parachute mechanics

[85, 86], and free surface flow problems [87]. These and other fluid-structure inter-

action (FSI) problems need to move the computational grid with moving boundaries.

The naive choice is to regenerate the mesh every time the boundary moves. Regen-

erating the mesh for a complex geometry results in a need for an automatic mesh

generator [88]. This approach alters the grid connectivity and, therefore, brings up a

need to project the solution to the new mesh. This introduces new projection errors

each time the mesh is updated. Moreover, the cost of calling a new mesh generation

algorithm can be overwhelming, especially for 3D problems [89].

Specific mesh moving techniques can overcome the drawbacks of remeshing for mov-

ing boundary problems. These methods try to update the position of the nodes of the

original mesh under some prescribed laws without changing the grid connectivity.

Farhat et al. introduced a spring analogy, where they fictitiously insert a torsional

spring to the nodes of the mesh [90]. The system has fictitious mass, damping, and

stiffness matrices, and the forcing is the displacement of the moving boundaries. This

approach prevents vertex collisions as well as penetrating grid edges. In [89], the

authors used a linear elastic equation to represent the fluid domain as an elastically

deformable body and introduced a parallel finite element strategy. Using the same

elasticity formulation, Stein et al. [3] solved the equation using a Jacobian-based

stiffening. They introduced an additional stiffening power as a function of transfor-

mation Jacobian in the finite element formulation. This addition allowed them to

49

stiffen the smaller elements more than the larger ones, resulting in improved mesh

quality near the moving surfaces. Takizawa et al. [91], introduced a method based

on the fiber-reinforced hyperelasticity model. They introduced fibers in different di-

rections according to the motion, which allows the model to reduce the distortion of

a mesh element. The moving mesh problem can be solved using the Laplacian or bi-

harmonic equations [92, 93, 94]. Although using the biharmonic operator introduces

extra computational complexity compared to the Laplacian equation systems, it can

give the extra ability to control the normal mesh spacing [94].

Despite the success of PINN across a range of different problems, it can face difficul-

ties when solving multiscale and multiphysics problems [12], especially for dynam-

ical systems with chaotic or turbulent behavior [95]. The fully connected networks

face difficulties in learning high-frequency functions. This phenomenon is named

spectral bias [47, 45]. The high-frequency behavior in the objective function results

in sharp gradients. Therefore, PINN models can have difficulties while penalizing

the residual loss. Although there are several approaches to tackle these problems and

improve the training capabilities of PINN, the classical PINN method shows better

performance to accurately solve the PDEs that govern the mesh deformation. There-

fore our research focuses on using PINNs in the application of these problems.

The main objective of this chapter is to show the applicability of physics-informed

neural networks for moving mesh problems. The PINN approach can produce sat-

isfactory solutions for the movement of boundaries without needing a discretization

scheme. However, using the original PINN formulation for mesh moving problems

can have difficulties with the static and moving boundaries. PINN minimizes the loss

at the boundaries, without imposing boundary conditions exactly. To overcome this

problem, we used exact boundary enforcement. After obtaining a particular solution

that weakly satisfies the boundary conditions, the prediction is corrected by train-

ing another PINN. To the best of our knowledge, using PINNs on mesh movement

problems with exact boundary enforcement is not studied in detail in the literature.

50

x

LOSS

NN(w,b)

PDE

LOSS

NN(w,b)

PDE

x

Figure 5.1: Schematic of PINN approach with exact boundary enforcement. The

first PINN on the left shows the original formulation with weakly enforced Dirichlet

boundary conditions. The second network uses the particular solution with exact

boundary enforcement to satisfy Dirichlet boundaries exactly

5.1 Exact Boundary Enforcement

The optimization algorithm used in PINN tries to minimize the physics-based loss,

LR. Using proper boundary and initial conditions can regularize the physics loss

in deep neural networks. This classical PINN boundary condition implementation

is named soft boundary enforcement [96]. In this approach, the boundary predic-

tion is minimized in the composite loss function. Although the SGD algorithms can

minimize these loss functions they do not satisfy the boundary conditions exactly.

However, some PDE applications, such as mesh movement, need exact boundary

values. For this purpose, we apply exact boundary enforcement. First, we trained

a PINN with soft boundaries. For the mesh movement problem, the displacement

vector u = [X, Y]T will give the new coordinates of the nodes from the first neural

network prediction. This solution is then changed on the boundaries with the exact

values. This new solution is the particular solution of our approach. Then, a new

PINN is trained with an output û(x; θ). This output is modified with the following

equation.

ũ(x; θ) = upar(x) +D(x)û(x; θ). (5.1)

51

Here, upar is a particular solution that is a globally defined smooth function that

only satisfies the boundary conditions. Any smooth function can be used for the

particular solution such as radial basis functions (RBF) or linear functions [96]. In

this work, we use the classical PINN predictions with the soft boundary condition

implementation as the particular solution. D is a specified distance function from the

boundary. Equation 5.1 states that on the boundaries D(x) = 0, the particular solution

satisfies the exact boundary values, u = g on ∂Ω. For a general approach, we used the

shortest distance between the residual points and the boundaries. Since the geometries

in this study are not too complex, this approach is not consuming much time. For

complex geometries, approximate distance functions using R-functions [97] or pre-

trained deep neural networks [98] can be used. This modified output contributes to

the physics loss of the new PINN. In this network, the objective function is only

consisting the PDE residual LR and trained with the same PDE. This approach allows

us to exactly satisfy the Dirichlet boundary conditions using PINN and the schematic

can be seen in 5.1.

5.2 Mesh Deformation

Mesh movement strategies to deform the mesh with a moving boundary generally

can be performed by solving a PDE or using an interpolation scheme [99]. All of

these techniques have the goal to provide a displacement of the moving boundary

and propagate this movement into the domain. Methods with a PDE solution, gen-

erally model the domain as a physical process which can be solved using numerical

methods. One of the popular versions includes modeling the domain with torsional

springs that prevent the vertices to collide [90]. In a similar manner, this movement

can be modeled with an elastic [89, 3] and hyperelastic [91] analogy, where the com-

putational domain is simulated as an elastic body. Nonlinear elasticity equations with

neo-Hookean models can be used in the same way as the elastic equations [100].

Other techniques include mesh deformation as a diffusive system modeled with the

Laplacian or biharmonic equations [94]. All these PDEs can be solved using tradi-

tional numerical methods such as FEM.

Interpolation schemes consider the mesh movement as a problem of interpolation

52

from the boundaries to the domain. These schemes use interpolation on scattered

data and generally do not need connectivity information. Using radial basis functions

(RBF) is one of the common methods. In [101], de Boer et al. use RBF interpolation

on unstructured grids to estimate the movement. The equation system only involves

the boundary nodes and displacement of the whole mesh is modeled. Extending this

method, in [102], the authors use data reduction algorithms using a coarse subset of

the surface mesh. With greedy algorithms, this approach is effective, especially for

mesh motion problems with smooth surface deformations.

In this work, we used one of the common PDEs for mesh movement. The mesh

motion is calculated by using the linear elasticity equation from structural mechan-

ics. The coordinates of the nodes will be defined as u, the computational domain is

referred to as Ω, and the boundaries are ∂Ω. Boundaries also include the moving ob-

jects inside the meshes. The new coordinates of the moving and stationary boundaries

are given as the Dirichlet boundary condition. The movement of an object inside the

mesh deforms the computational domain which is modeled as an elastic body. The

new coordinates can be found by the following linear elasticity equation:

∇ · σ(u) = 0 in Ω (5.2a)

u = ub on ∂Ω. (5.2b)

Here σ is the Cauchy stress tensor. It is related to the strain tensor ϵ = (∇u +

∇uT)/2. The stress tensor can be written in a way by Hooke’s law:

σ = λtr(ϵ)I+ 2µϵ. (5.3)

The Lamé parameters λ and µ are structural parameters coming from the elastic mod-

ulus E and Poisson’s ratio ν. Since the mesh domain is not a real elastic body, the

exact values for these parameters are not known. A value between 0.3 and 0.45 is rec-

ommended for Poisson’s ratio [100] since a high value can lead to distorted elements,

and a lower value can reduce the resistance.

To be able to compare the effectiveness of different mesh movement techniques after

a deformation, we use a mesh quality metric based on [3]. In these metrics, the area

and shape changes are considered by checking the element area and the aspect ratio.

53

Both metric uses the initial mesh elements as reference elements and measures the

change according to them. The element area change f e
A and shape change f e

AR is

defined as :

f e
A =

∣∣∣∣log(Ae

Ae
o

)
/ log(2.0)

∣∣∣∣ , (5.4a)

f e
AR =

∣∣∣∣log(ARe

ARe
o

)
/ log(2.0)

∣∣∣∣ . (5.4b)

Here, the superscript e represents the specific element, and the subscript o is the initial

mesh element before the deformation occurs. ARe is the element aspect ratio defined

in [3] as:

ARe =
(lemax)

2

Ae
. (5.5)

Here, lemax is the maximum edge length for the specific element. For comparison of

different techniques, we use the global area and shape changes by considering the

maximum values of element area and shape changes, respectively.

5.3 Results

The movement of dynamic meshes with PINN is presented with several different

test cases. First, a deformed square is presented where we squeeze the domain from

the top and bottom. Then, the basic translation and rotation tests are performed and

the solutions of the PINN approach are compared with the finite element solutions.

Lastly, the movement of a flexible beam is presented where one end of the beam is

fixed. For all the problems, initial meshes are generated using Gmsh mesh generator

[103]. We used TensorFlow to construct our PINN framework with Adam optimizer

as the gradient descent algorithm. We initialized all the neural networks using the

Glorot scheme and used 7 hidden layers with 50 units. The classical neural networks

are trained for 40000 iterations, and the networks with exact boundary enforcement

are trained for 5000 iterations. The learning rate is 10−3 with a decay rate of 0.9.

Training time for all the experiments are roughly 25 minutes for classical neural net-

works and 3 minutes for the exact boundary enforcement.

54

Figure 5.2: The initial unstructured mesh consists of 2744 triangular elements.

5.3.1 Deformed Square

In this test case, a square domain is deformed from its boundaries. The square domain

is x, y ∈ [0, 1]×[0, 1] and the unstructured mesh consists of 2744 triangular elements.

The initial mesh can be seen in Figure 5.2. We want to find a deformed mesh where

the position of the top boundary becomes ŷ = y − 0.25 sin(πx). On the top surface,

we implement this condition as a Dirichlet boundary condition as well as x̂ = x.

All the other boundaries have the same Dirichlet boundary condition as ŷ = y, and

x̂ = x. The deformed mesh can be seen in Figure 5.3. The figure in the middle

shows the results obtained by only using classical PINN. This shows the boundaries

are not in the exact position and are deformed in an undesired way. The figure on the

right shows the solution after exact boundary enforcement. The boundary values are

corrected with the exact positions with the proposed approach. The L2 error on the

boundary nodes is calculated as 0.031. For this test case, we increased the specific

weight of the boundary loss of the composite loss function. Since the deformation

of the boundary is higher than the deformation of the computational domain, the

boundary weight is increased. The weight ratio of the boundary loss and the residual

loss is set to 25 to capture the boundary values more precisely.

The mesh quality measure of the deformed mesh based on the element area and shape

changes can be seen in 5.4. The top surface is deformed according to a sinusoidal

55

(a) (b)

Figure 5.3: Deformed square case with its deformed top boundary. The first deformed

figure (a) shows the solution with classical PINN. Figure (b) represents the solution

with exact boundary enforcement.

function. The elements near the deformed boundary have the most change in size

and shape as expected. Especially in the middle where the deformation is the largest,

the elements are squeezed and get smaller. In the corners where the element vertices

have two boundary conditions in each direction, the element area change is not sig-

nificantly large. However, the shape of the corner elements changes more than the

other elements on the boundary. These elements are bounded by the two boundaries

and therefore the aspect ratios get larger. The deformation of the inner elements is

relatively low, especially near the bottom boundary. The mesh deformation values

get lower as the elements’ position is away from the deformed boundary. The global

area and shape change metrics are calculated as |f∞
A | = 0.744, |f∞

AR| = 1.264, re-

spectively.

To see the capabilities of our approach we further deform the bottom boundary with

its coordinates ŷ = y + 0.25 sin(πx). The Dirichlet boundary conditions on the other

boundaries are the same as the other, x̂ = x, ŷ = y. The same specific weight ratio

for the loss function of the PINN formulation is used. The deformed configuration

can be seen in Figure 5.5. The figure in the middle is the solution with the classical

56

0 0.2 0.4 0.6 0.8

(a) Area change

0 0.25 0.5 0.75 1 1.25

(b) Shape change

Figure 5.4: Element quality metrics of the square with deformed top boundary. The

figure on the left shows the element area change and the figure on the right shows the

element shape change with respect to the initial mesh elements.

PINN approach. The vertices on the boundaries are not in exact positions. Especially

on the corners, the classical PINN solution has difficulty satisfying the positions. The

L2 error of the boundary positions is calculated as 0.076 for this case.

The elementwise quality measures of this case can be seen in Figure 5.6. Same as

the case with only top boundary deformation, the elements on the top and the bot-

tom boundaries are deformed the most. The elements in the middle collapsed more

than the case before. The global area and shape change values are |f∞
A | = 1.701,

|f∞
AR| = 1.845, respectively. The element shape and size change significantly as the

deformation is increased.

5.3.2 Translation and Rotation tests

To test the accuracy of our approach, classical translation and rotation tests in [3] is

performed. The original mesh can be seen in Figures 5.8 and 5.9. There is a line

object located in (−L, 0) × (L, 0) in a (−2L,−2L) × (2L, 2L) domain. A total of

2182 triangles are generated for the mesh.

57

(a) (b)

Figure 5.5: The deformed square is squeezed from its top and bottom boundary. Fig-

ure (a) shows the solution with classical PINN. Figure (b) represents the solution with

exact boundary enforcement.

0 0.425 0.85 1.275 1.7

(a) Area change

0 0.45 0.9 1.35 1.8

(b) Shape change

Figure 5.6: Element quality metrics of the square deformed from the top and bottom

boundaries. The figure on the left shows the element area change and the figure on

the right shows the element shape change with respect to the initial mesh elements.

58

Figure 5.7: Initial unstructured mesh with a total of 2182 triangular elements.

For the translation tests, the object is moved 0.5L upwards. The movement is per-

formed in 10 steps with 0.05L and in 5 steps with 0.1L movement upwards in two

different training settings. The last step of the movement can be seen in Figure 5.7.

In Figure 5.10, the PINN method is compared with the approach in [3]. The area

and shape change metrics of two PINN solutions are presented alongside the classi-

cal finite element solutions and solutions with Jacobian-based stiffening. The authors

applied a stiffening power to prevent the deformation of the smaller elements. The

stiffened approach represents the best value obtained in [3] with different applied

stiffening power. The two PINN solutions are representing the overall motion in 5

and 10 steps. The total number of steps is represented in parentheses in the figure.

As seen in the first row of Figure 5.10, the PINN solutions are comparable with the

FEM solutions with Jacobian-stiffening. As mentioned before, the PINN approach

does not have any criteria to prevent mesh overlapping and sudden movements move

the vertex nodes in an undesired way. Therefore, the quality of the deformed mesh

improves as the number of steps increases.

For the rotation tests, the object is rotated 0.25π counterclockwise. Again to prevent

overlapping of edges and collision of vertices, the movement is performed in steps

with 0.025π and 0.05π counterclockwise movement in two different training. The last

step of the rotation can be seen in Figure 5.9. The deformed mesh differs especially

on the boundaries between different PINN solutions. The small elements near the

59

(a) (b)

Figure 5.8: Deformed mesh after a total translation of 5 units. The solution in figure

(a) is performed in 10 steps while the solution in figure (b) is performed in 5 steps.

Table 5.1: Global area and shape changes of translation tests. The solution is per-

formed in 10 steps. The values are given in every step.

∆y 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

|fA|∞ 0.67 1.20 1.19 1.29 1.52 1.63 1.70 1.72 1.79 2.00

|fAR|∞ 0.60 1.13 1.12 1.22 1.45 1.56 1.63 1.66 1.92 2.26

moving boundary start to collapse in the PINN solution with 5 steps. As the step

number increases, the mesh quality increases. The comparison of the rotation tests

with the same finite element solution of the translation tests is presented in Figure

5.10. The PINN approach again lies between the classical solution and the solution

with Jacobian-based stiffening.

In both tests, the global mesh quality metric presented in section 5.2 is used. The

|fA|∞ and |fAR|∞ are calculated as the maximum area and shape change of the values

in Equation 5.4 in every step. The area change and shape change values are presented

in Tables 5.1 and 5.2, for the translation and rotation tests, respectively.

60

(a) (b)

Figure 5.9: Deformed mesh after a total rotation of 0.25π. The solution in figure (a)

is performed in 10 steps while the solution in figure (b) is performed in 5 steps.

Table 5.2: Global area and shape changes of rotation tests. The solution is performed

in 10 steps. The values are given in every step.

∆θ(π) 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

|fA|∞ 0.27 0.43 0.66 0.88 0.88 1.15 1.09 1.26 1.30 1.32

|fAR|∞ 0.36 0.51 0.75 1.03 1.27 1.55 1.91 2.14 2.52 2.57

61

0.0 0.1 0.2 0.3 0.4 0.5
y

0

1

2

3

4

5

|f A
R
|

Shape Change

PINN (10)
PINN (5)
Stiffened FEM
Classical FEM

0.0 0.1 0.2 0.3 0.4 0.5
y

0

1

2

3

4

5

|f A
|

Area Change

PINN (10)
PINN (5)
Stiffened FEM
Classical FEM

0.00 0.05 0.10 0.15 0.20 0.25
0

1

2

3

4

5

|f A
R
|

Shape Change

PINN (10)
PINN (5)
Stiffened FEM
Classical FEM

0.00 0.05 0.10 0.15 0.20 0.25
0

1

2

3

4

5

|f A
|

Area Change

PINN (10)
PINN (5)
Stiffened FEM
Classical FEM

Figure 5.10: Global area and shape change metrics of the translation and rotation tests

compared with the FEM solution in [3]. The first row shows the comparison of the

translation test, while the second row shows the comparison of the rotation tests.

62

Figure 5.11: Initial mesh of the flexible beam test case with 2098 triangular elements.

The elements are concentrated on the moving boundary to track the deformation in a

precise way.

5.3.3 Flexible Beam

This test case consists of a mesh movement due to a motion of a flexible beam adapted

from the problem in [100]. The beam is fixed on its left end and sits in the center

of the domain. Domain dimensions are (−10, 10) × (−10, 10) and the structure’s

position is (−5, 5) × (−0.5, 0.5) The deformation is based on a sinusoidal function

sin(π
2
x
L
) with varying amplitude. The initial mesh can be seen in Figure 5.11. This

unstructured mesh consists of 2098 triangular elements. The right end of the structure

first moves to 4 units upwards, then 8 units downwards, following a 4-unit upward

motion to return to its initial state. The movements are performed step by step with a

2-unit motion, upwards or downwards.

In Figure 5.12, the deformed mesh after two steps of movement is presented with

the mesh quality presented with the global area and shape change metric. Using

exact boundary enforcement gives the true boundary position and therefore fixes the

vertices on the boundaries. Therefore, on the outer boundaries, elements are stretched

and squeezed more than the inner elements. Especially elements near the tip of the

moving boundary have the most area and shape changes.

63

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(a) Area change

0 0.4 0.8 1.2 1.6 2

(b) Shape change

Figure 5.12: Element quality metrics when the structure tip moves to y = 4.

In figure 5.13, the mesh after one cycle of motion is presented. The structure returns to

its original place after eight steps. By looking at the area change the sinusoidal motion

of the structure can be observed. The most deformed elements are located at the top

and bottom boundaries and near the moving tip of the structure. These elements are

squeezed first and cannot recover themselves after the relative stretching.

64

0 0.2 0.4 0.6 0.8 1 1.2

(a) Area change

0 0.2 0.4 0.6 0.8 1 1.2

(b) Shape change

Figure 5.13: Element quality metrics when the structure returns its original position.

65

66

CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this research, physics-informed neural networks are analyzed in the context of

computational fluid dynamics applications. These networks learn from the nature of

the considered partial differential equation. The networks are used to get direct solu-

tions to CFD problems as well as the solutions for complementary equations needed

in CFD. The accuracy and convergence rate of the networks are further increased

by changing the network parameters and adding labeled data from high-fidelity solu-

tions.

PINN methodology minimizes a physics-informed loss function defined on a com-

putational domain. This minimization problem often gets stuck on a local minimum

and cannot converge to a physically meaningful solution. The current formulation

of PINN allows getting solutions of partial differential equations on simple domains

and equations that do not have multiscale behavior. Therefore, the presented differ-

ential equations in this research cover the solutions to flow problems in low Reynolds

number regimes. As the Reynolds number increases, the nonlinearity of the solution

increases, and PINN formulation faces difficulties. Because of that for the Navier-

Stokes equations, the solution of a lid-driven cavity at Re = 100 is presented. Classi-

cal PINN formulation can capture the trend of the flow but struggles to get an accurate

solution on the corner discontinuity. To show the convergence, the plot of the PINN

loss is presented in the lid-driven cavity solution. The residual loss starts from a very

low number indicating the trivial solution. The information on the boundary then

propagates and the loss value jumps to a higher value. It is shown that the trend of the

boundary and the residual loss plots are similar because the propagation of the infor-

mation is from the boundary to the domain. In the context of Euler equations, a con-

67

tact discontinuity is captured with PINN. The problem is a simple one-dimensional

problem and PINN works well to get an accurate solution. However, around the

discontinuity, the solution oscillates. For capturing sharp gradients we imposed addi-

tional labeled data from the analytical solution. This addition improves the accuracy

around the discontinuous region as well as the overall accuracy.

The weights in each loss term in the overall composite loss function can change the

solution since each term affects differently to the convergence of PINN. In the context

of thermal convection problems, it is presented that the weight of the boundaries is

important when the flow is in a low Rayleigh number regime. This effect decreases

as the Rayleigh number increases. As the flow regime gets complicated the learning

capacity of PINN decreases. Therefore, in the literature, the research focuses on

improving the learning dynamics of PINN.

Dirichlet boundary conditions are learned as supervised learning since these labeled

data are supplied to the network. The optimization algorithm minimizes this super-

vised loss up to a threshold. However, in some problems, such as mesh deformation,

the boundary values should be exact. For these types of problems, exact boundary

enforcement is used. A particular solution is constructed with a classical PINN for-

mulation. Then, the boundary values are corrected to the exact values and trained

again with only PDE residual. This approach ensures the boundaries are in their true

positions.

As mentioned many times earlier in this research, the current PINN formulation is

suitable for problems that do not have multiphysics or multiscale behavior. Therefore,

the partial differential equations used in this thesis show elliptic behavior or very little

nonlinearity. PINN research is still a work in progress to solve challenging real-life

problems. Instead of a replacement, using PINN as a complementary tool to high-

order solvers can be a good practice. This idea is the direction of future works such

that the problems without a need for high-order accuracy may be investigated. The

mesh deformation study in this thesis can be extended with additional constraints to

keep the mesh quality high. The mesh quality parameter can be a variable in the PINN

formulation. Moreover, the identification of the amount and location of the artificial

diffusion in nonlinear hyperbolic equations can be represented by PINN formulation.

68

Absorbing boundaries for wave propagation problems can also be future work.

69

70

REFERENCES

[1] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods,

vol. 54 of Texts in Applied Mathematics. New York, NY: Springer New York,

2008.

[2] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible

flow using the Navier-Stokes equations and a multigrid method,” Journal of

Computational Physics, vol. 48, pp. 387–411, Dec. 1982.

[3] K. Stein, T. Tezduyar, and R. Benney, “Mesh moving techniques for fluid-

structure interactions with large displacements,” J. Appl. Mech., vol. 70, no. 1,

pp. 58–63, 2003.

[4] J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid

Dynamics, vol. 3. Springer, 2002.

[5] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless

methods: An overview and recent developments,” Computer Methods in Ap-

plied Mechanics and Engineering, vol. 139, pp. 3–47, Dec. 1996.

[6] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: Theory

and application to non-spherical stars,” Monthly notices of the royal astronom-

ical society, vol. 181, no. 3, pp. 375–389, 1977.

[7] S. Adami, X. Y. Hu, and N. A. Adams, “A generalized wall boundary condi-

tion for smoothed particle hydrodynamics,” Journal of Computational Physics,

vol. 231, no. 21, pp. 7057–7075, 2012.

[8] B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite element

method: Diffuse approximation and diffuse elements,” Computational Me-

chanics, vol. 10, no. 5, pp. 307–318, 1992.

[9] P. Breitkopf, A. Rassineux, J. M. Savignat, and P. Villon, “Integration con-

71

straint in diffuse element method,” Computer Methods in Applied Mechanics

and Engineering, vol. 193, pp. 1203–1220, Mar. 2004.

[10] W. K. Liu, S. Jun, and Y. F. Zhang, “Reproducing kernel particle methods,”

International Journal for Numerical Methods in Fluids, vol. 20, no. 8-9,

pp. 1081–1106, 1995.

[11] R. Salehi and M. Dehghan, “A moving least square reproducing polynomial

meshless method,” Applied Numerical Mathematics, vol. 69, pp. 34–58, 2013.

[12] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,

“Physics-informed machine learning,” Nature Reviews Physics, 2021.

[13] H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,”

Journal of Computational Physics, vol. 91, no. 1, pp. 110–131, 1990.

[14] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solv-

ing ordinary and partial differential equations,” IEEE transactions on neural

networks, vol. 9, no. 5, pp. 987–1000, 1998.

[15] M. Kennedy and A. O’Hagan, “Predicting the output from a complex computer

code when fast approximations are available,” Biometrika, vol. 87, no. 1, pp. 1–

13, 2000.

[16] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learn-

ing, vol. 2. MIT press Cambridge, MA, 2006.

[17] D. Duvenaud, Automatic Model Construction with Gaussian Processes. Doc-

tor of Philosophy, University of Cambridge, 2014.

[18] P. Perdikaris, D. Venturi, J. O. Royset, and G. E. Karniadakis, “Multi-fidelity

modelling via recursive co-kriging and Gaussian–Markov random fields,”

Proc. R. Soc. A., vol. 471, no. 2179, 2015.

[19] L. Parussini, D. Venturi, P. Perdikaris, and G. Karniadakis, “Multi-fidelity

Gaussian process regression for prediction of random fields,” Journal of Com-

putational Physics, vol. 336, pp. 36–50, May 2017.

72

[20] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Inferring solutions of dif-

ferential equations using noisy multi-fidelity data,” Journal of Computational

Physics, vol. 335, pp. 736–746, Apr. 2017.

[21] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, and G. E. Karniadakis,

“Nonlinear information fusion algorithms for data-efficient multi-fidelity mod-

elling,” Proc. R. Soc. A., vol. 473, no. 2198, 2017.

[22] S. Lee, F. Dietrich, G. E. Karniadakis, and I. G. Kevrekidis, “Linking Gaussian

process regression with data-driven manifold embeddings for nonlinear data

fusion,” Interface Focus., vol. 9, no. 3, p. 20180083, 2019.

[23] B. Hamzi, R. Maulik, and H. Owhadi, “Simple, low-cost and accurate data-

driven geophysical forecasting with learned kernels,” Proc. R. Soc. A., vol. 477,

no. 2252, p. 20210326, 2021.

[24] H. Owhadi and G. R. Yoo, “Kernel Flows: From learning kernels from data

into the abyss,” Journal of Computational Physics, vol. 389, pp. 22–47, 2019.

[25] M. Raissi and G. Karniadakis, “Deep multi-fidelity Gaussian processes,”

arXiv: 1604.07484, 2016.

[26] X. Meng and G. E. Karniadakis, “A composite neural network that learns from

multi-fidelity data: Application to function approximation and inverse PDE

problems,” Journal of Computational Physics, vol. 401, p. 109020, 2020.

[27] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural net-

works: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations,” Journal of Computational

Physics, vol. 378, pp. 686–707, 2019.

[28] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,

1989.

[29] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic

differentiation in machine learning: a survey,” The Journal of Machine Learn-

ing Research, vol. 18, no. 1, pp. 5595–5637, 2017.

73

[30] S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis, “Physics-

informed neural networks for heat transfer problems,” Journal of Heat Trans-

fer, vol. 143, no. 6, 2021.

[31] X. Jin, S. Cai, H. Li, and G. E. Karniadakis, “NSFnets (Navier-Stokes flow

nets): Physics-informed neural networks for the incompressible Navier-Stokes

equations,” Journal of Computational Physics, vol. 426, p. 109951, 2021.

[32] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: Learn-

ing velocity and pressure fields from flow visualizations,” Science, vol. 367,

no. 6481, pp. 1026–1030, 2020.

[33] Z. Mao, A. D. Jagtap, and G. E. Karniadakis, “Physics-informed neural net-

works for high-speed flows,” Computer Methods in Applied Mechanics and

Engineering, vol. 360, p. 112789, 2020.

[34] Q. Lou, X. Meng, and G. E. Karniadakis, “Physics-informed neural networks

for solving forward and inverse flow problems via the Boltzmann-BGK formu-

lation,” Journal of Computational Physics, vol. 447, p. 110676, 2021.

[35] S. Wang and P. Perdikaris, “Deep learning of free boundary and stefan prob-

lems,” Journal of Computational Physics, vol. 428, p. 109914, 2021.

[36] A. L. Blum and R. L. Rivest, “Training a 3-node neural network is NP-

complete,” Neural Networks, vol. 5, no. 1, pp. 117–127, 1992.

[37] A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis, “Conservative physics-

informed neural networks on discrete domains for conservation laws: Appli-

cations to forward and inverse problems,” Computer Methods in Applied Me-

chanics and Engineering, vol. 365, p. 113028, 2020.

[38] A. D. Jagtap and G. E. Karniadakis, “Extended Physics-Informed Neural Net-

works (XPINNs): A Generalized Space-Time Domain Decomposition Based

Deep Learning Framework for Nonlinear Partial Differential Equations,” Com-

munications in Computational Physics, vol. 28, no. 5, pp. 2002–2041, 2020.

[39] E. Kharazmi, Z. Zhang, and G. E. M. Karniadakis, “hp-VPINNs: Variational

physics-informed neural networks with domain decomposition,” Computer

Methods in Applied Mechanics and Engineering, vol. 374, p. 113547, 2021.

74

[40] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis, “Adaptive activation func-

tions accelerate convergence in deep and physics-informed neural networks,”

Journal of Computational Physics, vol. 404, p. 109136, Mar. 2020.

[41] A. D. Jagtap, K. Kawaguchi, and G. Em Karniadakis, “Locally adaptive ac-

tivation functions with slope recovery for deep and physics-informed neural

networks,” Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, vol. 476, p. 20200334, July 2020. Publisher: Royal

Society.

[42] C. L. Wight and J. Zhao, “Solving Allen-Cahn and Cahn-Hilliard equa-

tions using the adaptive physics informed neural networks,” arXiv preprint

arXiv:2007.04542, 2020.

[43] A. Daw, J. Bu, S. Wang, P. Perdikaris, and A. Karpatne, “Mitigating

propagation failures in PINNs using evolutionary sampling,” Oct. 2022.

arXiv:2207.02338 [cs].

[44] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient

flow pathologies in physics-informed neural networks,” SIAM Journal on Sci-

entific Computing, vol. 43, no. 5, pp. A3055–A3081, 2021.

[45] S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: A

neural tangent kernel perspective,” Journal of Computational Physics, vol. 449,

p. 110768, 2022.

[46] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and

generalization in neural networks,” Advances in neural information processing

systems, vol. 31, 2018.

[47] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio,

and A. Courville, “On the spectral bias of neural networks,” in International

Conference on Machine Learning, pp. 5301–5310, PMLR, 2019.

[48] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,”

Biological Cybernetics, vol. 20, pp. 121–136, Sept. 1975.

[49] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Mathematics of Control, Signals and Systems, vol. 2, pp. 303–314, Dec. 1989.

75

[50] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Func-

tions,” Oct. 2017. arXiv:1710.05941 [cs].

[51] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” in Proceedings of the Thirteenth International Con-

ference on Artificial Intelligence and Statistics, pp. 249–256, JMLR Workshop

and Conference Proceedings, 2010. ISSN: 1938-7228.

[52] S. Ruder, “An overview of gradient descent optimization algorithms,” June

2017. arXiv:1609.04747 [cs].

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct. 1986. Num-

ber: 6088 Publisher: Nature Publishing Group.

[54] J. Lorraine and D. Duvenaud, “Stochastic hyperparameter optimization

through hypernetworks,” Mar. 2018. arXiv:1802.09419 [cs].

[55] K. You, M. Long, J. Wang, and M. I. Jordan, “How Does Learning Rate Decay

Help Modern Neural Networks?,” Sept. 2019. arXiv:1908.01878 [cs, stat].

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[57] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, et al., “TensorFlow: a system for large-scale ma-

chine learning,” in 12th USENIX symposium on operating systems design and

implementation (OSDI 16), pp. 265–283, 2016.

[58] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala, “PyTorch: An imperative style, high-performance deep learning li-

brary,” in Advances in Neural Information Processing Systems, vol. 32, Curran

Associates, Inc., 2019.

[59] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlin-

ear operators via DeepONet based on the universal approximation theorem of

operators,” Nature Machine Intelligence, vol. 3, pp. 218–229, 2021.

76

[60] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three

methods for selecting values of input variables in the analysis of output from a

computer code,” Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

[61] M. A. Nabian, R. J. Gladstone, and H. Meidani, “Efficient training of physics-

informed neural networks via importance sampling,” Computer-Aided Civil

and Infrastructure Engineering, vol. 36, no. 8, pp. 962–977, 2021.

[62] P.-Y. Chuang and L. A. Barba, “Experience report of physics-informed neural

networks in fluid simulations: Pitfalls and frustration,” Proceedings of the 21st

Python in Science Conference, pp. 28–36, 2022. Conference Name: Proceed-

ings of the 21st Python in Science Conference.

[63] M. Tavelli and M. Dumbser, “A staggered semi-implicit discontinuous

Galerkin method for the two dimensional incompressible Navier–Stokes equa-

tions,” Applied Mathematics and Computation, vol. 248, pp. 70–92, Dec. 2014.

[64] M. Dumbser, I. Peshkov, E. Romenski, and O. Zanotti, “High order ADER

schemes for a unified first order hyperbolic formulation of continuum mechan-

ics: Viscous heat-conducting fluids and elastic solids,” Journal of Computa-

tional Physics, vol. 314, pp. 824–862, 2016.

[65] A. Baïri, E. Zarco-Pernia, and J.-M. G. De María, “A review on natural con-

vection in enclosures for engineering applications. The particular case of the

parallelogrammic diode cavity,” Applied Thermal Engineering, vol. 63, no. 1,

pp. 304–322, 2014. Publisher: Elsevier.

[66] L. Q. Tang and T. T. Tsang, “A least-squares finite element method for time-

dependent incompressible flows with thermal convection,” International Jour-

nal for Numerical Methods in Fluids, vol. 17, no. 4, pp. 271–289, 1993. Pub-

lisher: Wiley Online Library.

[67] M. Z. Hossain, C. D. Cantwell, and S. J. Sherwin, “A spectral/hp element

method for thermal convection,” International Journal for Numerical Meth-

ods in Fluids, vol. 93, no. 7, pp. 2380–2395, 2021. Publisher: Wiley Online

Library.

77

[68] A. Karakuş, “An accelerated nodal discontinuous Galerkin method for thermal

convection on unstructured meshes: Formulation and validation,” Journal of

Thermal Science and Technology, pp. 91–100, 2022.

[69] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “DeepXDE: A deep learn-

ing library for solving differential equations,” SIAM Review, vol. 63, no. 1,

pp. 208–228, 2021.

[70] K. Zubov, Z. McCarthy, Y. Ma, F. Calisto, V. Pagliarino, S. Azeglio, L. Bot-

tero, E. Luján, V. Sulzer, A. Bharambe, N. Vinchhi, K. Balakrishnan, D. Upad-

hyay, and C. Rackauckas, “NeuralPDE: Automating physics-informed neural

networks (PINNs) with error approximations,” arXiv:2107.09443, 2021.

[71] C. Rao, H. Sun, and Y. Liu, “Physics-informed deep learning for incompress-

ible laminar flows,” Theoretical and Applied Mechanics Letters, vol. 10, no. 3,

pp. 207–212, 2020.

[72] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed

neural networks (PINNs) for fluid mechanics: a review,” Acta Mechanica

Sinica, 2022.

[73] A. Karakus, N. Chalmers, K. Świrydowicz, and T. Warburton, “A GPU accel-

erated discontinuous Galerkin incompressible flow solver,” Journal of Compu-

tational Physics, vol. 390, pp. 380–404, 2019.

[74] O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali,

Z. Fang, M. Rietmann, W. Byeon, and S. Choudhry, “NVIDIA SimNet™: An

AI-accelerated multi-physics simulation framework,” in International Confer-

ence on Computational Science, pp. 447–461, Springer, 2021.

[75] K. Stokos, S. Vrahliotis, T. Pappou, and S. Tsangaris, “Development and val-

idation of an incompressible Navier-Stokes solver including convective heat

transfer,” International Journal of Numerical Methods for Heat & Fluid Flow,

vol. 25, pp. 861–886, 2015.

[76] G. De Vahl Davis, “Natural convection of air in a square cavity: A bench mark

numerical solution,” International Journal for Numerical Methods in Fluids,

vol. 3, no. 3, 1983.

78

[77] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for solv-

ing partial differential equations,” Journal of Computational Physics, vol. 375,

pp. 1339–1364, 2018.

[78] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient

flow pathologies in physics-informed neural networks,” SIAM Journal on Sci-

entific Computing, vol. 43, no. 5, pp. A3055–A3081, 2021.

[79] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep networks,”

in Advances in Neural Information Processing Systems, vol. 28, Curran Asso-

ciates, Inc., 2015.

[80] R. Fathony, A. K. Sahu, D. Willmott, and J. Z. Kolter, “Multiplicative filter

networks,” in International Conference on Learning Representations, 2021.

[81] S. Habchi and S. Acharya, “Laminar mixed convection in a partially blocked,

vertical channel,” International Journal of Heat and Mass Transfer, vol. 29,

no. 11, pp. 1711–1722, 1986.

[82] J. T. Batina, “Unsteady Euler airfoil solutions using unstructured dynamic

meshes,” AIAA journal, vol. 28, no. 8, pp. 1381–1388, 1990.

[83] B. A. Robinson, J. T. Batina, and H. T. Yang, “Aeroelastic analysis of wings

using the Euler equations with a deforming mesh,” Journal of Aircraft, vol. 28,

no. 11, pp. 781–788, 1991.

[84] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. Hughes, “Isogeometric fluid–

structure interaction analysis with applications to arterial blood flow,” Com-

putational Mechanics, vol. 38, no. 4, pp. 310–322, 2006.

[85] K. Stein, R. Benney, V. Kalro, T. E. Tezduyar, J. Leonard, and M. Accorsi,

“Parachute fluid–structure interactions: 3-d computation,” Computer Methods

in Applied Mechanics and Engineering, vol. 190, no. 3-4, pp. 373–386, 2000.

[86] T. E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and

J. Crabtree, “Interface projection techniques for fluid–structure interaction

modeling with moving-mesh methods,” Computational Mechanics, vol. 43,

no. 1, pp. 39–49, 2008.

79

[87] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou, “A new strategy for fi-

nite element computations involving moving boundaries and interfaces—the

deforming-spatial-domain/space-time procedure: II. computation of free-

surface flows, two-liquid flows, and flows with drifting cylinders,” Computer

methods in applied mechanics and engineering, vol. 94, no. 3, pp. 353–371,

1992.

[88] T. E. Tezduyar, “Finite element methods for flow problems with moving

boundaries and interfaces,” Archives of Computational Methods in Engineer-

ing, vol. 8, no. 2, pp. 83–130, 2001.

[89] A. A. Johnson and T. E. Tezduyar, “Mesh update strategies in parallel finite ele-

ment computations of flow problems with moving boundaries and interfaces,”

Computer methods in applied mechanics and engineering, vol. 119, no. 1-2,

pp. 73–94, 1994.

[90] C. Farhat, C. Degand, B. Koobus, and M. Lesoinne, “Torsional springs for

two-dimensional dynamic unstructured fluid meshes,” Computer Methods in

Applied Mechanics and Engineering, vol. 163, no. 1, pp. 231–245, 1998.

[91] K. Takizawa, T. E. Tezduyar, and R. Avsar, “A low-distortion mesh mov-

ing method based on fiber-reinforced hyperelasticity and optimized zero-stress

state,” Computational Mechanics, vol. 65, no. 6, pp. 1567–1591, 2020.

[92] R. Löhner and C. Yang, “Improved ALE mesh velocities for moving bod-

ies,” Communications in numerical methods in engineering, vol. 12, no. 10,

pp. 599–608, 1996.

[93] I. Robertson and S. Sherwin, “Free-surface flow simulation using hp/spectral

elements,” Journal of Computational Physics, vol. 155, no. 1, pp. 26–53, 1999.

[94] B. T. Helenbrook, “Mesh deformation using the biharmonic operator,” Interna-

tional journal for numerical methods in engineering, vol. 56, no. 7, pp. 1007–

1021, 2003.

[95] S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality is all

you need for training physics-informed neural networks,” arXiv preprint

arXiv:2203.07404, 2022.

80

[96] L. Sun, H. Gao, S. Pan, and J.-X. Wang, “Surrogate modeling for fluid flows

based on physics-constrained deep learning without simulation data,” Com-

puter Methods in Applied Mechanics and Engineering, vol. 361, p. 112732,

2020.

[97] N. Sukumar and A. Srivastava, “Exact imposition of boundary conditions

with distance functions in physics-informed deep neural networks,” Computer

Methods in Applied Mechanics and Engineering, vol. 389, p. 114333, 2022.

[98] J. Berg and K. Nyström, “A unified deep artificial neural network approach

to partial differential equations in complex geometries,” Neurocomputing,

vol. 317, pp. 28–41, 2018.

[99] E. Luke, E. Collins, and E. Blades, “A fast mesh deformation method us-

ing explicit interpolation,” Journal of Computational Physics, vol. 231, no. 2,

pp. 586–601, 2012.

[100] A. Shamanskiy and B. Simeon, “Mesh moving techniques in fluid-structure

interaction: robustness, accumulated distortion and computational efficiency,”

Computational Mechanics, vol. 67, no. 2, pp. 583–600, 2021.

[101] A. de Boer, M. S. van der Schoot, and H. Bijl, “Mesh deformation based on

radial basis function interpolation,” Computers & Structures, vol. 85, no. 11,

pp. 784–795, 2007.

[102] T. C. S. Rendall and C. B. Allen, “Efficient mesh motion using radial basis

functions with data reduction algorithms,” Journal of Computational Physics,

vol. 228, no. 17, pp. 6231–6249, 2009.

[103] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh genera-

tor with built-in pre-and post-processing facilities,” International journal for

numerical methods in engineering, vol. 79, no. 11, pp. 1309–1331, 2009.

81

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Overview of Conventional Differential Equation Solvers
	Machine Learning for the Solution of Differential Equations
	Physics-Informed Neural Networks
	Application Highlights
	Improvements on Convergence and Accuracy

	Motivation and Contributions
	The Outline of the Thesis

	Methodology
	Artificial Neural Networks
	Physics-Informed Neural Networks
	Activation Functions in PINN
	Sampling of Points

	PINN for Incompressible & Compressible Flow Equations
	Incompressible Navier-Stokes Equations
	Formulation
	Results

	Compressible Euler Equations
	Results

	Physics-Informed Neural Networks for Thermal Convection Problems
	Formulation
	Results
	Poiseuille Flow
	Differentially Heated Cavity
	Heated Block

	Physics-Informed Neural Networks for Mesh Deformation with Exact Boundary Enforcement
	Exact Boundary Enforcement
	Mesh Deformation
	Results
	Deformed Square
	Translation and Rotation tests
	Flexible Beam

	Conclusion and Future Works
	REFERENCES

