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ABSTRACT 

 

DESIGN OF HELICOPTER TRANSMISSION OIL COOLING FAN 

IMPELLER WITH MULTI-OBJECTIVE OPTIMIZATION METHOD 

 

 

 

Avşar, Gökhan 

Master of Science, Aerospace Engineering 

Supervisor: Assist. Prof. Dr. Özge Başkan Perçin 

 

 

January 2023, 74 pages 

 

 

This study aims to optimize the impeller geometry of a backward-curved blade 

centrifugal fan in a helicopter oil cooler to improve the aerodynamic performance of 

the impeller. The study consists of three main parts: aerodynamic design and 

parametrization of the impeller, numerical analysis of impeller performance, and 

multi-objective design optimization to maximize fan static pressure and total to static 

isentropic efficiency. In the first part, a one-dimensional impeller design is 

performed using quasi-experimental methods and a direct optimization method with 

the multi-objective genetic algorithm, and the impeller geometry is parameterized 

through a commercial tool. The three-dimensional flow through the impeller is 

solved in the second part with a commercial computational fluid dynamics tool. The 

Reynolds-Averaged Navier-Stokes equations are solved on a multi-block grid, and a 

second-order accurate finite volume method is employed. The most appropriate 

turbulence model and grid size are selected considering time, cost, and fidelity. In 

the third part, a sensitivity analysis is performed with the design-of-experiment 

method, and the parameters that affect the objective function most significantly are 

determined. A multi-objective design optimization based on a non-dominated sorting 
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genetic algorithm is performed with the Kriging Response Surface Method, and 

pareto optimal solutions are obtained. Results show that, at the design point, there is 

a 9.6% and 0.96% increase in the fan static pressure and total to static isentropic 

efficiency, respectively. The trained Kriging response surface model predicts the fan 

static pressure and total to static isentropic efficiency with an error of 0.12% and 

0.33%, respectively. 

 

 

 

 

Keywords: Helicopter, Oil Cooling Fan, Centrifugal fan, Optimization, Genetic 

Algorithm, 
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ÖZ 

 

HELİKOPTER TRANSMİSYON YAĞ SOĞUTMA FAN ÇARKININ ÇOK 

AMAÇLI OPTİMİZASYON YÖNTEMİ İLE TASARIMI 

 

 

Avşar, Gökhan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Dr. Öğr. Üyesi Özge Başkan Perçin 

 

 

Ocak 2023, 74 sayfa 

 

Bu çalışma, helikopter trasmisyon yağının soğutulması için kullanılan geriye eğik 

kanatlı bir salyangoz fan çarkı tasarımının optimizasyonunu amaçlamaktadır. 

Çalışma 3 ana bölümden oluşmaktadır: çark tasarımı ve parametrizasyonu, sayısal 

analizler ile performans hesabı ve fan statik basıncı ve izantropik verimliliği en üst 

düzeye çıkarmak için çok amaçlı tasarım optimizasyonu. Birinci bölümde, yarı 

deneysel yöntemler ve Çok Amaçlı Genetik Algoritma ile Direkt Optimizasyon 

yöntemi kullanılarak tek boyutlu çark tasarımı yapılmış ve çark geometrisi ticari bir 

yazılım aracılığıyla parametreleştirilmiştir. İkinci bölümde, çarktan geçen üç boyutlu 

akış ticari bir hesaplamalı akışkanlar dinamiği aracılığıyla çözülmüştür. Reynolds-

Averaged Navier-Stokes denklemleri çok bloklu ağ kullanılarak ve ikinci derece 

çözünürlükte sonlu hacimler prensibiyle çözülmüştür. Zaman, maliyet ve uygunluk 

dikkate alınarak en uygun türbülans modeli ve grid boyutu seçilir. Üçüncü bölümde, 

deney tasarımı yöntemi ile duyarlılık analizi yapılarak amaç fonksiyonu en çok 

etkileyen parametreler belirlenir. Kriging Tepki Yüzey Yöntemi ile Baskın Olmayan 

Sıralama Genetik Algoritmasına dayalı çok amaçlı bir tasarım optimizasyonu 

gerçekleştirilmiş ve Pareto-optimal çözümler elde edilmitşir. Sonuçlar, tasarım 
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noktasında fan statik basıncında ve toplam-statik izantropik verimde sırasıyla %9.6 

ve %0.96’lık bir artış olduğunu göstermektedir. Eğitilen Kriging Tepki Yüzey 

Yöntemi modeli, sırasıyla %0.12 ve %0.33’lük bir hatayla fan statik basıncını ve 

toplam-statik izantropic verimliliği tahmin eder.  

Anahtar Kelimeler: Helikopter, Yağ Soğutma Fanı, Salyangoz Fan, Optimizasyon, 

Genetik Algoritma 
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CHAPTER 1  

1 INTRODUCTION  

Centrifugal fans are used in many areas such as heating, cooling, ventilation and dust 

collection units and helicopter oil cooling in todays. Since helicopter operation is 

critical, helicopter systems such as transmission gearbox, engine and electrical 

generator, are frequently lubricated and cooled using separate oil supplies. However, 

separated oil supplies may be cooled with a fan. Air/Oil coolers are effectively used 

in many helicopters such as Chinook – 47, AW189 [1], AW139, UH-60, and AS332.  

 

The centrifugal fan, which can be seen in Figure 1, consists of two essential parts: 

an impeller and a volute.  Flow enters the centrifugal fan parallel to the rotation axis. 

When air flows through the blade passages, it is directed toward the tip of the 

impeller. This causes a 90° rotation in the flow direction in the meridional plane and 

an increase in the pressure. Pressurized air leaving the impeller enters the spiral 

structure, the volute, where it travels at a constant speed to the exit. Based on the 

direction of the blade curvature, centrifugal fans can be categorized as having either 

forward curved (FC), backward curved (BC), or radial blades, as indicated in Figure 

2. Aside from their compact size and low noise, the highest pressure rise and highest 

flow rate are two specific advantages of forward curved fans among the centrifugal 

fans with the same rotational speed and diameter. Their power increases as the flow 

rate increases. Because of high blade loading, the number of blades are between 30-

60. On the other hand, fans with backward-curved or radial blades typically have 6-

16 blades, a narrower width, and a longer chord length. Although forward-curved 

and radial centrifugal impellers provide high absolute velocity, backward-curved 

centrifugal fans have a high static efficiency. Because head loss is proportional to 



 

 

2 

absolute velocity squared, BC centrifugal fans are the most efficient [2]. It is crucial 

to design the BC centrifugal fan to maximize efficiency. 

 

Figure 1. Centrifugal fans are composed of two main parts: an impeller and a 

volute. The blue arrows show the direction of the flow in the fan. (Reproduced 

from [3]) 

 

 

Figure 2. Centrifugal fan with forward-curved (FC) (left), backward-curved (BC) 

(middle) radial blades (right) [4] 

1.1 Aim of the Thesis 

The energy efficiency of turbomachines, which are frequently used in areas where 

high electricity is consumed (industry, etc.), is an important parameter that should 

guide the design. A study conducted in the USA in 2002 showed that turbomachines 

constitute 22-27% of industrial electricity consumption [5]. In the oil cooling fans of 
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helicopters, a rise in efficiency reduces fuel consumption and the drag caused by fan 

intake and while increasing payload. It's also crucial to note that the temperature of 

an electrical generator has a direct effect on the efficiency of the generator's 

performance. Therefore, provided mass flow rate and fan efficiency are crucial for 

air-cooled electric generators. For these reasons, it is crucial to design high-

efficiency fans to increase energy savings and minimize the effects on nature. 

The purpose of this research is to determine the design parameters of a centrifugal 

fan impeller used to cool helicopter oil and optimize its performance by increasing 

fan static pressure and total to static isentropic efficiency. Fan static pressure ∆𝑃𝑡𝑠 

and total-to-static efficiency 𝜂𝑡𝑠  are given in Equations 1.1 and 1.2, respectively: 

∆𝑃𝑡𝑠 = 𝑃𝑠2 − 𝑃𝑡1 1.1 

 

𝜂
𝑡𝑠

=
(

𝑃𝑠2

𝑃𝑡1
)

(𝛾−1)/𝛾

− 1

(
𝑇𝑡2

𝑇𝑡1
) − 1

 1.2 

where 𝑃𝑠 is the static pressure, 𝑃𝑡 the total pressure, 𝑇𝑡 the total temperature and 𝛾 

the ratio of specific heats. Subscripts 1 and 2 stand for the inlet and outlet of the 

impeller, respectively.  

Considering that the entropy generation in the impeller is higher than that in the 

volute [6], the study concentrates on the aerodynamic optimization of the impeller. 

1.2 Literature Review 

There are many studies in the literature on centrifugal fan design. In some studies 

[7], [8], experiments are conducted to assess the fan performance, and fan design 

parameters that affect the performance most are determined based on the 

performance of several fans with different geometries. Since that approach causes a 

lot of time, effort, and cost, today, numerical methods are preferred instead of 

experimental ones [9]. Design optimization coupled with Computational Fluid 
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Dynamics (CFD), a  widely used method in turbomachinery design, comes to the 

fore among numerical analysis methods due to its efficiency in time and cost [10]. 

Considering the studies in the literature, centrifugal fan optimization mainly focuses 

on two aspects: improving the meridional profile [11]–[16] and investigating the 

effect of blade design parameters on fan performance, such as inlet/outlet width and 

inlet/outlet blade angle [9], [10], [17], [18]. The former is known as shape 

optimization, and the latter is size optimization. Only one study will be discussed to 

give insight into impeller shape optimization. 

Kim et al. [14], used a hybrid multi-objective evolutionary algorithm (MOEA) with 

a surrogate model to optimize the design of a centrifugal impeller. While keeping the 

leading edge and trailing edge of the impeller fixed, four points on the meridional 

contour defined by the Bezier curve were selected for parametrization, which is 

shown in Figure 3. In their study, Radial Basis Neural Network was used to evaluate 

objective functions pressure ratio and isentropic efficiency. Pareto Optimum Fronts 

(POF) were obtained with the use of NSGA-II, and these POFs contain two endpoints 

that efficiency was increased by 0.65% and 0.19%, and the PR was increased by 

0.86% and 1.40 Evidence from this study shows that the present optimization, which 

combines a hybrid MOEA and RANS analysis, was a valuable technique for 

determining the optimal form of a centrifugal impeller blade. 
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Figure 3. Centrifugal impeller meridional view [14] 

Heo et al. [10], conducted a study with the goal of optimizing efficiency and pressure 

by adjusting the location of the splitter blade and the ratio of their inlet and outlet 

widths. Using the Response Surface Approximation model and a multi-objective 

evolutionary algorithm, a Pareto optimal solution (POS) was generated. The 

surrogate model is trained with thirteen design points using Latin Hypercube Design. 

Flow domain computations were performed using the ANSYS TurboSystem tools 

BladeGen, TurboGrid and CFX. k-ω Shear Stress Transport (SST) was used as the 

turbulence closure model.  The research found that the fan blade without the splitter 

blade increased efficiency by about 6.7% and static pressure by about 8.7%. 

In the study conducted by Zhang et al. [17], a model to predict centrifugal fan 

performance parameters was constructed using multi-objective optimization design 

relied on orthogonal design (OD) and the Back Propagation Neural Network 

(BPNN). The number of blades, blade outlet stagger angle and width were selected 

as the design variables, with efficiency and total pressure increase as the objective 

functions. The developed model predicts pressure and efficiency with an error of 

0.97% and 0.33%, respectively. The results show that predictive values and sample 

values are almost equal (Figure 4). A genetic algorithm was used to find the optimum 

centrifugal fan blade design. As can be seen in Figure 5 (a), there was an upward 
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shift in total pressure, and an increase of 6.91% in total pressure at the design point. 

The high-efficiency area was broadened and efficiency is increased by 0.5% at the 

design point, as shown in Figure 5 (b). Moreover, BPNN was discovered to be an 

efficient surrogate model that can be used to optimize centrifugal fan performance. 

 

Figure 4. Comparisons of the sample and predicted total pressure (left) and 

efficiency (right)  values inferred from the fan performance prediction model 

established in Ref. [17] 

 

Figure 5. Fan performance curves obtained from numerical simulations performed 

in Ref. [17]: Total pressure vs. volumetric flow rate (left) and efficiency vs. 

volumetric flow rate (right) 

In the study of Meng et al. [18], an impeller of a backward-curved centrifugal fan 

was optimized using response surface methodology by maximizing efficiency. The 

inlet blade angle, the exit blade angle, and the total number of blades are all three 

design variables. Box-Behnken Design was a Design of Experiment technique used 

for selecting sample points. Using least squares regression, response surface data 
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was fitted. As a result, centrifugal fan efficiency was increased by 1.4%, as shown 

in Table 1. 

Table 1. RSM optimization and CFD result 

  

RSM Optimization 
Result 

CFD Optimization 
Result 

Original 
Fan 

Efficiency η 93.70% 93.60% 92.07% 

 

Unlike other studies, in the study by Zhu and Qin [9], the potential for the use of 

RSM in turbomachinery was examined. The inlet radius and blade outlet height were 

chosen as design variables and efficiency and pressure were chosen as objective 

functions. Firstly, RSM was built with a single design space by fitting all 

experimental data to a polynomial equation of second-order. Design of Experiment 

(DoE) was implemented using a full factorial design approach. In other words, the 

RSM result did not match the test results. As a solution, the design area was divided 

into four sub-regions, and the efficiency and pressure increase for each area were 

found separately, as seen in Figure 6. The optimization findings were consistent with 

the test results. Genetic Algorithm produced the best results for each RSM function 

after fitting surrogate models, as shown in Table 2.  As a result, the RSM was 

determined to be an effective and appropriate surrogate model. This method was 

found to significantly reduce objective function complexity and overall optimization 

time. 
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Figure 6. The test points and their responses.  Response surface equations for the 

whole zone (left) and for each sub-zone (right) differ from each other. Therefore, 

the optimum of each sub-zone is different than the optimum of the whole zone [9] 

Table 2. Genetic algorithm calculation results (reproduced from [9]). 

Serial Number r1 (mm) b2 (mm) η 

A 151.2 86.8 0.906 

B 148.7 90.8 0.874 

C 146.77 91.4 0.864 

D 151.26 98.9 0.88 

 

In his MSc thesis at the Department of Aerospace Engineering at METU, Çevik 

designed and optimized a mixed-flow compressor impeller [19]. The study consists 

of the following parts, 1D design of the centrifugal impeller, optimization, impeller 

modelling, and Computational Fluid Dynamics analysis of the optimized impeller. 

The design period began with defining the engine's performance requirements, 

followed by calculating the required compressor performance using an engine 

parametric cycle design code. To optimize the specific thrust and decrease thrust-

specific fuel consumption, blade exit angle, blade tip depth, incidence angle, rotor 

inlet diameter ratio, and rotor meridional exit angle were selected as design variables. 

The Neural Network algorithm was trained using a dataset generated by DoE 

orthogonal arrays to approximate functions. Finally, mixed-flow impeller design 

optimization was performed by a multi-directional search algorithm.  In this study, a 
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turbojet engine which has a typical radial compressor was compared with a turbojet 

engine with an optimized mixed-flow impeller, and the results are presented in Table 

3. The results demonstrate an 11% improvement in thrust and a 13% improvement 

in thrust-specific fuel consumption. 

Table 3. Comparison of the optimized mixed-flow compressor-based turbojet 

performance with radial compressor-based turbojet performance 

Parameters 
A turbojet engine with a 
typical radial compressor 

Current 
Design 

Difference [%] 

Mass Flow Rate (kg/s)  0.36 0.388 8 

Pressure Ratio 3.1 4.34 40 

Thrust (N) 216 240 11 

TSFC (kg/sec/N) 6.20E-05 5.38E-05 -13 

Flight Mach Number 0.3 0.3 - 

 

The preliminary results of the current study were presented in Ref [20]. In this study, 

pressure ratio and efficiency were taken into account when performing multi-

objective optimization on a centrifugal fan impeller. NSGA-II and Kriging-based 

RSM were employed as the optimization algorithm and surrogate model, 

respectively. Design-of-experiment study was performed using Latin Hypercube 

Design. 53 design points were employed to train the response surface. At the design 

point, the pressure ratio increased by 3.14%, and an increase was observed at all 

mass flow rates considered. However, although the efficiency was slightly increased 

(1.16%) at the design point, a decrease in efficiency was observed for higher mass 

flow rates. 

A summary of the literature review is given in Table 4. Centrifugal impeller studies 

in the literature focus on either shape optimization by improving the meridional 

profile or size optimization by changing the design parameters including inlet/outlet 

width, blade angle and blade number. There are two objective functions for 

centrifugal fan impeller optimization in the literature; maximizing pressure rise 

and/or efficiency. If multi-objective optimization is desired, both can be selected as 

objectives using the weight constant or by obtaining a pareto optimal front. As a 
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surrogate model and optimization algorithm, Response Surface Method and 

evolution-based algorithms are generally used, respectively. 

Table 4. Centrifugal impeller optimization literature summary 

Investigators  DoE Design Variables 
Objective 
Functions 

Surrogate 
Model 

Optimization 
Algorithm Results/Achievement 

Man-Woong Heo, 
Jin-Hyuk Kim and 
Kwang-Yong Kim  

[10] 

LHS 

-the impeller’s inlet and 
outlet height ratio 

-the position of  splitter 
blades  

Efficiency 
pressure 

rise 

Response 
Surface 
Model  

 Evolutionary 
Algorithm 

6.6% increase in 
efficiency 

8% increase in 
pressure  

ZHANG Lei, WANG 
Songling, HU 

Chenxing, and 
ZHANG Qian [17] 

Orthogonal 
Design 

-Blade number 
-Exit stagger angle  

-Impeller outlet width 

Total 
pressure 
Efficiency 

 
BP neural 
network  

Genetic 
Algorithm 

 6.91% increase in total 
pressure 

0.5% increase in 
efficiency 

The fan noise is 
reduced.  

Changyun Zhu, 
Guoliang Qin [9] 

Full 
Factorial 
Design 

-Inlet Radius (r1) 
-impeller outlet 

width(b2) 
Efficiency  

Response 
Surface 
Model  

Genetic 
Algorithm 

RSM is found an 
effective method. 

J-H Kim, J-H Choi, 
A Husain, and K-Y 

Kim [14] 
LHS Bezier Control Points 

Isentropic 
Efficiency 
Pressure 

Ratio 

Radial Basis 
Neural 

Network 
NSGA-II 

The isentropic 
efficiency and pressure 
ratio are improved in 
design and off-design 

situations. 

Fannian Meng, 
Quanlin Dong, Yan 

Wang, Pengfei 
Wang and Chunxi 

Zhang [18] 

 BBD 
-inlet and outlet blade 

angle  
-blade number 

Efficiency 
Response 
Surface 
Model 

- 
1.66% increase in 

efficiency 

Mert Çevik, Oğuz 
Uzol and İbrahim 
Sinan Akmandor 

[19] 

 
Orthogonal 

Array 

-Blade Exit Angle 
-Blade tip depth  
-Incidence Angle  

-Rotor Inlet Diameter 
Ratio 

-Rotor meridional Exit 
Angle 

Maximizing 
Specific 
thrust  

Minimizing 
TSFC 

Neural 
Network - 

Leuvenberg-
Marquardt  

Direct Search 
Algorithm 

11% increase in Thrust  
13% decrease in TSFC 

Gökhan Avşar, 
Alper Ezertaş and 

Özge Başkan 
Perçin [20] 

LHS 

Tip Radius 
Inlet Height 

Outlet Height 
Tip Width 

Hub Inlet Angle  
Hub Outlet Angle 

Shroud Inlet Angle 
Shroud Outlet Angle 

Pressure 
Ratio 

Isentropic 
Efficiency 

Response 
Surface 
Model 

Genetic 
Algorithm 

3.15% increase in PR 
1.16% increase in 

Efficiency 

 

 

1.3 Methodology 

Using ANSYS DesignXplorer, a commercial multi-objective optimization algorithm 

coupled with CFD simulations, this study optimizes the aerodynamic design of a 
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backward-curved centrifugal fan impeller. The road map of the study is shown in 

Figure 7. The methodology consists of preliminary impeller design, CFD analysis, 

and optimization. Preliminary design is performed in VistaCCD based on several 

input parameters, including the pressure ratio (PR), mass flow rate, rotational speed, 

and other geometric constraints. The impeller model is created by transferring the 

preliminary design to the BladeGen tool, which allows the meridional profile, blade 

angle, and blade thickness distribution to be adjusted. The geometry that has been 

created is then transferred to the BladeEditor for parametrization. The inlet and outlet 

width, axial length, and tip radius are selected as preliminary inputs for the sensitivity 

analysis study. After the impeller is designed, the computational mesh is generated 

in the TurboGrid tool for the numerical simulations. High-fidelity CFD analyses are 

performed using the ANSYS CFX. After numerical calculations are completed, the 

baseline analysis set is transferred to the ANSYS DesignXplorer optimization tool. 

First, in the DoE part, sensitivity analysis is performed, and the design parameters 

that primarily affect the objective function are determined. Then, the meta-model is 

trained using design points selected by DoE. The study of centrifugal fan design 

optimization is carried out with the goal of maximizing fan static pressure and total-

to-static isentropic efficiency. The Pareto Optimal Solution is discovered as a result 

of the optimization study, and one candidate is chosen from among them. Fan static 

pressure, and total to static isentropic efficiency curves are plotted for the optimum 

solution and compared with the baseline set. 
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Figure 7. The centrifugal fan impeller design optimization roadmap consists of 

three main parts: Impeller design, numerical calculations, and multi-objective 

design optimization.
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CHAPTER 2  

2 AERODYNAMIC OPTIMIZATION 

Optimization is the procedure of finding the best solution to a problem while 

satisfying certain constraints. In design optimization, design variables (or design 

parameters), design space, constraints, and the objective function are the main 

components of optimization. In a design process, any engineering system is defined 

by a set of quantities, and these quantities are known as preassigned parameters if 

they are fixed during the automated design process. It implies that the designer is not 

free to select specific parameters. Design variables are all other quantities that are 

treated as variables during the design process. In other words, design variables can 

be changed. Design variables can be either continuous or discrete. A design value is 

referred to as continuous if it is free to assume any value within a specified bound, 

or discrete if it can only assume preset values within a predefined set. Design 

constraints are the constraints that must be met to produce an acceptable design [21]. 

As an example, the maximum power required by a centrifugal fan may be limited. 

The objective function is a set of criteria that the designer hopes to achieve; it is 

written as a function of the design variables. One or more goals can be involved in 

an optimization problem. The following is a mathematical representation of a multi-

objective optimization problem,  

𝐹(𝑥) = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯ + 𝑤𝑛𝑓𝑛(𝑥) 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑤𝑖

𝑛

𝑖=1

= 1 2.1 

In this equation, wi represents the weight constant whereas fi represents the objective 

function. 

A priori methods are used to make decisions before starting the optimization process. 

To indicate how important each objective is, weight set is required. The aggregation 
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of objectives enables single objective optimizers to find the global optimal solutions 

more efficiently. Although simple and computationally inexpensive, determining the 

assigned weight requires expertise. The a posteriori method refers to decision-

making that occurs after an optimization procedure. There is no need to assign 

weights when using this method to find Pareto Fronts in a single run. However, it is 

more computationally expensive than the priori method. The optimization 

framework is shown in Figure 8. The system is treated as a black box by optimizer. 

It evaluates output and provides a set of inputs accordingly.  

 

Figure 8. Optimization Framework 

Turbomachinery design is a difficult task, because of the complicated flow inside 

and the thermal and structural issues that arise as a result of the flow passing through 

the blade passages and the rotation of the device. The typical trial-error design 

method, which mainly relies on the designers’ experience, cannot provide globally 

optimum design [22]. As a result of automating the traditional design procedure and 

coupling an optimization method, the cost of the designer is reduced and the design 

process that depends more on a systematic approach rather than on designer 

experience is developed.  An overview of turbomachinery aerodynamic design 

optimization is shown in Figure 9 which is reproduced from Ref. [22]. There are two 

types of turbomachinery aerodynamic design optimization techniques: inverse 
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designs and direct designs. In the case that the ideal turbomachinery shape is derived 

from the specified ideal flow conditions, the design method is known as inverse 

design. While the computational cost of the inverse design is inexpensive, designer 

understanding and experience are necessary to specify desired characteristics such 

as velocity or pressure. Direct design is utilized when the ideal objectives are 

determined by modifying the design variables. In a direct method, the input is the 

geometry and the output is the performance of the flow field. Gradient-based 

approaches and stochastic algorithms are two types of direct design. Gradient-based 

approaches rely on the objective function’s local derivative.  These techniques use 

the steepest descent method, conjugate gradient method, quasi-Newton techniques, 

or adjoint formulations to determine a search direction by beginning with a single 

design point and utilizing the local gradient of the objective function in relation to 

changes in the design variable. In these methods, first a design point is chosen and 

then the search direction is determined based on the local gradient of the objective 

function with respect to the change in the design variable. Provided that the objective 

function is convex and differentiable, these methods are effective and allow finding 

the optimum point. The optimization process, however, can occasionally produce a 

local optimum close to the initial point, instead of a global optimum [22]. Stochastic 

algorithms, search for global optimum rather than local optimum. Compared to 

gradient-based methods, stochastic algorithms are computationally expensive. 

Furthermore, the shape of the objective function is often complex due to the fact that 

the aerodynamic performance is not directly related to geometrical design parameters 

[9]. Simulated annealing (SA), particle swarm optimization (PSO), genetic 

algorithms (GAs), and evolutionary algorithms are all examples of popular stochastic 

optimization methods. Surrogate models are thus used to predict computationally 

expensive functions. In the field of turbomachinery design, some well-known 

models include the Artificial Neural Network (ANN), the Response Surface Method 

(RSM), and the Kriging Model. Surrogate models must be both cost-effective and 

accurate. 
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Figure 9. Turbomachinery aerodynamic design optimization overview (Produced 

from [22]) 

2.1 Design of Experiment 

A minimum dataset of input and the corresponding output is required to construct a 

meta-model. To decrease the number of design calculations, which are 

computationally expensive, experimental designs attempt to give the most data with 

the fewest design experiments [22]. Since the cost of the experiment is significantly 

influenced by the quantity of data and the distribution of the points has an impact on 

the surrogate model prediction capacity, the design of the experiment should be 

selected by considering reducing the fitting error and time cost of the experiment [9]. 

Classical experimental designs include Central Composite Design (CCD), Factorial 
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Design, D-Optimal Design, and Box-Behnken Design. CCD is a five-level factorial 

design that is a good alternative to quadratic response surface approaches [23]. 

Several experiments are calculated using the 2n+2n+1 equation, and point 

distributions consist of one center point others are mainly on edges and outside of 

the design space [24]. Many authors agreed that space-filling experimental designs 

should be used for deterministic computer analysis [25], [26]. The Latin Hypercube 

Design (LHD) sampling method is a gap-filling method that allows for widespread 

and fills the design space [25]. Furthermore, LHD estimates the mean, variances, and 

distribution functions of the output more precisely than random sampling. LHD is 

also less expensive and capable of dealing with a high number of input variables 

[22]. LHD is a matrix m x n order, where m represents the number of sampling points 

to be evaluated and n represents the number of design variables. Maximizing the 

reciprocal distance between samples in the decision variable space is a part of the 

optimal space-filling design, which ensures DoE’s apparent efficacy is increased. 

LHD and Optimal Space Filling Design are compared in Figure 10.  Optimal space 

filling is the optimization of LHD to better fill the parameter space. It evenly 

distributes the design parameters over the design space.  

 

Figure 10. Comparison of LHD (a) and Optimal Space Filling Design (b) [23] 
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2.2 Surrogate Models 

Surrogate models are used for replacing the real functions which are computationally 

expensive with reasonable predictions.  Surrogate models, in other words, are low-

fidelity models or merely approximation models. The low-fidelity model gathers 

data from the high-fidelity one in order to generate a solution quickly. Mostly used 

surrogate models are Polynomial Response Surface Model, Artificial Neural 

Network (ANN), and the Kriging Model.  

The multilayer perceptron (MLP), Back Propagation Neural Network (BPNN), and 

the Radial Basis Function (RBF) are just a few examples of the many various kinds 

of ANN techniques. The most commonly used ANN technique is the Back 

Propagation Neural Network (BPNN). In this technique, the process starts with a 

small random values of the weight and bias factors. The input vector of the first 

training sample is then fed into the network, and the signal is then sent to the output 

layer. In most cases, during the forward training phase, the output vector produced 

by the network does not match the desired output vector connected to this input 

vector. Then, the difference between the real and desired output vectors is back-

propagated to the network's input, and the difference is used to change the connection 

weights to reduce error. In the learning process, a set of input and output vectors are 

required to be successfully input to the network input and output layers. Until the 

weights converge, this process (i.e., presenting the input and output vectors to the 

network and updating the weights) is repeated for each training set [22]. Training a 

network with an RBNN takes significantly less time on the computer than with the 

more common BPNN. The RBNN has three layers: input, hidden, and output. These 

layers are composed of nodes and the nodes in each layer are connected to the nodes 

in the previous layer. The nodes in the input layer have the information of input 

variables and these are linked directly to the hidden layer without any weights, 

meaning that each hidden node receives the original form of input values. In the 

nodes of hidden layer, transfer functions, i.e., Radial Basis Functions (RBFs), are 

present. In multidimensional space, an RBF is symmetric around a mean or center 
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point. The output nodes are weighted in the second layer of connections, which are 

evaluated using a simple summation. The RBNN framework is given in Figure 11. 

 

Figure 11. RBNN Structure [27] 

 

Polynomial response surface methodology is another commonly used surrogate 

model. A response surface is a curve that best fits the data; it will be utilized in place 

of the data, as shown in  Figure 12 [23]. The first step in RSM is to select a number 

of design points for the evaluation of the objective function, determination of which 

is computationally expensive. After looking into these points in depth, response 

surfaces are made to show how the design variables and the objective functions work 

together [22]. The most commonly used polynomial RSM method is a second-order 

function, which is given in Equation 2.1.  

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑁

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑁

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑁

𝑖=1

+ 휀 2.1 

where β is the regression coefficient, x the predictor variables  and ε the total error 

[22]. 

As illustrated in Figure 12, second-order polynomial RSM has limited predictive 

capacity. The Kriging model fits the response surface from all design points. Due to 

the large number of correlation functions that can be used to construct approximation 

surfaces, they are adaptable. Thus, both linear and nonlinear functions are accurately 



 

 

20 

predicted by Kriging models. The Kriging model's strength lies in its ability to 

minimize the number of input parameters, which is especially helpful when working 

with a small database [22]. Kriging models are thought to give the most accurate 

predictions of all the possibilities, but they need a great deal of computing power to 

construct [28]. In contrast to polynomial RSM, Kriging utilizes a multidimensional 

interpolation that combines a polynomial model with local deviations. While the 

polynomial model models the design space globally, local functions are used for 

modeling the local deviations. The interpolation difference between Kriging and 

Polynomial RSM can be seen in  Figure 12. The output function can be formulated 

as,  

𝑦(𝑥) = 𝑓(𝑥) + 𝑍(𝑥) 2.2 

 

where f(x) is a second-order polynomial and Z(x) is a perturbation term.  

 

Figure 12. Kriging interpolation as compared to polynomial RSM (blue line 

represents second-order polynomial, red line represents Kriging) [23]  

2.3 Optimization Algorithm 

In this study, the centrifugal fan impeller is optimized using a Genetic Algorithm 

(GA) based on previous investigation in the literature [9], [15], [17]. Using Darwin's 
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evolutionary theory as a basis, the Genetic Algorithm attempts to optimize solutions. 

Figure 13 depicts a flow chart of the Genetic Algorithm, which is based on natural 

selection. A random population is used as a starting point for the Genetic Algorithm, 

which then iteratively improves upon that population. After a population is generated 

at random and the first generation is taken into account, objective functions or fitness 

values are determined. Using selection, crossover or recombination, and mutation as 

the main operators, we can generate new generations. Parents are selected from the 

general population based on their level of physical fitness. If you have higher fitness, 

you have a better chance of being picked by the selection operator. A roulette wheel 

or tournament selection is used to randomly select participants. Two parents are 

selected and then combined using the recombination operator to create offspring for 

the next generation. The first two operators, selection and crossover, involve the 

mixing of genes without producing any novel genes. It's possible that this would lead 

to less variety and the discovery of local optima. The mutation operator is applied to 

these issues by substituting a random number for a gene. Since the selection operator 

calls for a criterion to judge the quality of solutions, the GA algorithm can't handle 

problems with multiple objectives that have multiple best solutions. Accordingly, the 

GA algorithm needs to be adjusted so that it can effectively address problems with 

multiple objectives [29]. 

 

Figure 13. Flow Chart of Genetics Algorithm [9] 
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The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) provides an efficient 

means of finding Pareto Optimal solutions in multi-objective optimization [30]. 

NSGA-II employs a fast nondominated sorting procedure, an elitist preserving 

strategy, and a parameterless niching strategy. The NSGA-II is intended to address 

the shortcomings of its predecessor, the NSGA. Non-dominated sorting genetic 

algorithm has many drawbacks, such as its high computational cost, lack of elitism, 

and the need to specify the sharing parameter. It is worth noting that even though the 

process time has decreased from O(MN3) to O(MN2), the storage requirements have 

increased from O(N) to O(N2). 

Each solution is compared to the other solutions in the population to find out which 

ones belong to the set of solutions on the first dominant surface. On the first dominant 

surface, this process is repeated for each solution. For the second dominant surface 

solution, the first-order solutions are discarded and start over. Therefore, individuals 

are categorized according to their level of dominance. For each of the p members of 

the P population, the dominance number and the dominant solution set are computed. 

The domination count for all solutions in the first nondominated front will be zero. 

Following that, it is compared to the other solutions. As a result, if member’s 

domination count drops to zero, that member is moved to its own list, Q. These 

individuals are part of the second nondominated front. Next, we follow the same 

steps with the rest of the group to locate the third front. Once a front is identified, the 

procedure is repeated to find any others. The fast non-dominated sorting algorithm 

can be seen in Figure 14. 
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Figure 14. Fast non-dominated sorting algorithm [30], [31] 

Another important approach of NSGA-II is crowded comparison, which is replaced 

by the sharing function of NSGA so that the Pareto solution set has dispersion and 

diversity of solutions. This new method keeps populations diverse without requiring 

the user to set any parameters.  A rough estimate of the density of solutions in this 

region can be obtained by calculating the average distance along each objective 

between two points on either side of a solution in the population. An approximation 

of the perimeter of a cuboid whose vertices are points that are the next most distant 

neighbors is provided. The average side length of the cuboid shown in Figure 15 as 

a dashed box, is the crowding distance of the ith solution in its front. The selection 

process is directed by the crowded distance comparison operator to evenly disperse 

the Pareto Optimal Front. As a result, if irank equals to jrank, the solution is dominated 

by the higher crowded distance. 
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Figure 15. Crowded-distance for two objective functions [30] 

Figure 16 depicts the NSGA-II procedure. Firstly, populations P and Q are combined 

to form population Rt. The new population Rt, which has a size of 2N, is ranked and 

sorted based on non-domination. In general, the population size would be greater 

than the number of solutions in all sets from F1 to Fl. All solutions until Fl, F1, and 

F2 in Figure 16, are direct members of Pt+1. To select exactly N population members, 

solutions of the last front, F3 in Figure 16,  is sorted in descending order using the 

crowded-comparison operator and the best solutions required to fill all population 

slots are selected. The new population Pt+1 is now used for selection, crossover, and 

mutation, resulting in the creation of a new population Qt+1. 
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Figure 16. NSGA-II methodology [30] 
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CHAPTER 3  

3 VALIDATION STUDY 

In this part of the study, the experiment conducted by Hathaway et al. [32] is used to 

confirm the validity of the numerical model. In that study, the flow field of the NASA 

Low-Speed Centrifugal Compressor (LSCC) was experimentally investigated by the 

laser anemometry method. The experiments were performed in 1995, and since then, 

the results of the study have been used in many studies to assess  the ability of the 

three-dimensional Navier-Stokes codes. Figure 17 shows a schematic diagram of the 

LSCC facility. The backswept impeller was equipped with a vaneless diffuser in the 

experimental setup. An air straightener was used to draw the room air into the 

plenum. A bell-mouth inlet with a contraction ratio of 10:1 was designed and utilized 

to create the inflow conditions specific to the compressor. 

 

Figure 17. NASA Low-Speed Centrifugal Compressor (LSCC) experimental 

facility schematic diagram [32] 
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The three-dimensional velocity field was measured at several locations upstream, 

within, and downstream of the rotor in in Ref. [32]. At stations upstream and 

downstream of the rotor, span-wise pneumatic probe surveys of total and static 

pressures, total temperature, and flow yaw and pitch angles were also performed. 

Overall compressor performance was calculated using the probe survey data. 

Figure 18 depicts the test impeller, which has a design tip speed of 153 m/s. A 

vaneless diffuser was positioned downstream of the impeller to create an 

axisymmetric outflow boundary condition, a type of boundary condition frequently 

employed in Computational Fluid Dynamics (CFD) analysis of isolated blade rows. 

 

Figure 18. NASA LSCC Test Impeller [32] 

Design parameters are given in Table 5. The impeller has 20 blades and a backsweep 

angle of 55°. The exit blade height is 0.141 m and the exit diameter is 1.524 m. 
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Table 5. NASA LSCC Impeller Blade Parameters. (Reproduced from  [32]) 

Parameter  Value  Unit  

Inlet total pressure, Pt1 Variable*  [Pa]  

Inlet total temperature, Tt1 Variable*  [K]  

Design Shaft speed, n 1862  [rev/min]  

Design mass flow rate, m 30  [kg/s]  

Number of  blades 20  -  

Backsweep from radial 55  [degree]  

Pressure ratio of impeller 1.14  -  

Impeller efficiency 92%  -  
* Pressure and temperature values are provided throughout the span at the inlet of the impeller 

3.1 Generation of the impeller model 

The impeller model is generated in two tools, i.e., BladeModeler, used for blade-

modeling and TurboGrid, especially used for meshing, to assess the performance of 

both tools. In the BladeModeler, blade angle and thickness distributions of the LSCC 

impeller geometry, which can be seen in Figure 19, are prescribed, whereas in 

TurboGrid, hub, shroud, and blade profile curves are imported in order to the 

impeller model. BladeModeler also allows the designer to enable the hub fillet option 

and parametrize it. Then, the impeller fluid domain is created and meshed for further 

numerical calculations. For both approaches, the pressure ratio and the efficiency 

values are calculated and tabulated in Table 6. Since the two methods yield similar 

results, TurboGrid is selected for the generation of the impeller model in further 

analyses.  
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Figure 19. NASA LSCC impeller model created in Siemens NX 

Table 6. Pressure ratio and efficiency calculations at the design point by using 

BladeModeler and TurboGrid 

Tool Pressure Ratio Efficiency 

BladeModeler 1.138 0.918 

TurboGrid 1.139 0.938 

Experiment 1.141 0.922 

 

BladeModeler is a tool which provides the blade angle and thickness distributions; 

therefore, it is used for investigating our model blade angle and thickness 

distributions. Figure 20 and Figure 21 show the comparisons of the blade angle and 

thickness distributions of the model with those of the NASA LSCC [33].  A slight 

shift can be seen between the model and the original distributions of blade angle and 

thickness. 
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Figure 20. Beta angle distribution at the NASA LSCC impeller hub and shroud 

(yellow and gray lines) and the model (blue and red lines) 

 

Figure 21. Thickness distribution at the NASA LSCC impeller hub and shroud 

(gray and yellow lines) and the model (blue and red lines) 
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3.2 Mesh Independence Study 

Mesh independence study is carried out to determine the optimal number of grid 

points in the computational mesh. One flow passage of the 20-bladed impeller is 

modeled using a periodic boundary condition to shorten the computational time for 

CFD analyses. TurboGrid is used to generate an H-type mesh topology after the 

model is created. According to Denton [34], using an O-type mesh topology on the 

leading edge instead of an H-type reduces losses significantly. Accordingly, the 

leading edge is discretized with an O-type mesh topology. Furthermore, because an 

error on the leading edge will affect the overall result, the leading edge's local mesh 

has been improved by increasing edge refinement [34]. In the mesh independence 

study, k−𝜔 Shear Stress Transport (SST) and Spalart Allmaras (SA) turbulence 

models are used. The pressure ratio and total isentropic efficiency values obtained 

from the mesh independence study are shown in Figure 22 and Figure 23, 

respectively. 

 

Figure 22. Mesh independence study based on the pressure ratio at the design point 

by NASA LSCC 
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Figure 23. Mesh independence study based on the efficiency at the design point by 

NASA LSCC 

Table 7 shows the passage, outlet, and entire domain mesh size. According to the 

results of the mesh independence simulations, the computational mesh with 0.4M 

grid points provides sufficient accuracy, which is consistent with the studies that 

have been published [34], [35]. In order to shorten the computation time for the 

optimization study, a computational mesh with 0.4M grid points is chosen. 

TurboGrid specifications for the selected mesh geometry and the mesh structure are 

given in Table 8  and Figure 24, respectively. 

Table 7. Mesh Independence Study Results 

Mesh Size 
(Elements/Millions) 

k-w SST SA 

Passage All Domains PR TR  Efficiency PR TR  Efficiency 

0.11 0.26 1.105 1.039 0.748 1.091 1.037 0.693 

0.17 0.39 1.138 1.039 0.922 1.137 1.041 0.914 

0.26 0.56 1.139 1.041 0.927 1.139 1.041 0.925 

0.44 0.87 1.139 1.041 0.929 1.140 1.041 0.924 

0.83 1.81 1.140 1.041 0.933 1.141 1.041 0.931 
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Table 8. Validation Case TurboGrid Specifications 

TurboGrid Specifications 

Target Passage Mesh Size 400000 

First Element Offset [m] 3.E-06 

Constant First Element Offset Enabled 

Cutoff Edge Split Factor 1 

Target Maximum Expansion Ratio Rate 1.3 

Spanwise Blade Distribution Parameter Method Proportional 

Shroud Tip - Uniform 10 

Outlet Expansion Rate 1.1 

Limit Aspect Ratio Request Max AR-900 Enabled 

Total Nodes 920145 

Total Elements 870860 

 

 

Figure 24. Detailed view of the 0.87M element mesh structure created with 

TurboGrid 

3.3 CFD Solver and the Turbulence Model 

The three-dimensional flow in the NASA LSCC flow is simulated using the ANSYS 

CFX under steady-state conditions. The simulations are also performed in the 

commercial StarCCM+ software to provide additional comparisons regarding the 

numerical solver. The working fluid is air, which is defined as an ideal gas. As inlet 



 

 

35 

and outlet BCs, the total pressure and the mass flow rate are provided, respectively. 

Other boundary conditions are specified as no-slip walls, excluding the blade shroud, 

which is defined as a counter-rotating wall. A second-order accurate high-resolution 

method is used to solve the convection-diffusion equations. The flow field consists 

of two regions (rotating and stationary) and an interface, as shown in Figure 25. The 

interface employs the frozen rotor method. According to the experiments, the tip 

clearance is 0.254 cm [32].  

 

Figure 25. NASA LSCC Flow Field Domain 

Processes in which the mesh topology needs to be changed automatically, such as 

compressor geometry optimization, require robust turbulence models that can deal 

with different mesh topologies and reduce failed solutions [36]. Hence, 𝑘−𝜔 SST 

and SA models are used for the turbulence closure. The 𝑘−𝜔 model uses a blending 

function in the SST model which provides a seamless transition between two models; 

a 𝑘−𝜔 model at the near-wall region and the k–ε model in the bulk region. Moreover, 

the treatment of near-wall effects in turbulence modeling is crucial since near-wall 

formulation governs the precision of the wall shear stress. To fully solve the near 

wall region, the y+ value less than one is aimed, which corresponds to a first cell 
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height of 3x10-6 m. The y+ contours of both CFX and Star CCM+ solvers are shown 

in Figure 26. 

 

Figure 26. y+ contours belong to CFX (left) and Star CCM+ (right) 

Figure 27 compares the performance curves generated by numerical analyses in CFX 

and Star CCM+ to the NASA LSCC experimental data. The figure demonstrates that 

the results of the simulations with 𝑘−𝜔 SST and SA turbulence models are very close 

to the results of the experiments. During the experiment [37], audible unstable flow 

conditions are recorded at flow rates of less than 20 kg/s. As mentioned by Bourabia 

et al. [38], an unsteady analysis should be preferred to provide more accurate results 

where the flow rate is less than 20 kg/s. 
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Figure 27. NASA LSCC performance curve [32] and the comparison of the 

performance of two different turbulence models (𝑘−𝜔 SST and SA) and two 

different commercial tools (ANSYS CFX ve StarCCM+) on the prediction of the 

performance curve of NASA LSCC 

As a result, the CFX with the turbulence model 𝑘−𝜔 SST is selected to be used in 

the optimization due to its performance in the calculation of the pressure ratio. It 

should be noted that ANSYS Workbench Environment, which includes tools for 

geometry, meshing, CFD analysis, and design exploration, provides an integrated 

and automated optimization workflow in this manner. 
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CHAPTER 4  

4 APPLICATIONS AND EVALUATIONS 

4.1 1D Centrifugal Fan Impeller Preliminary Design 

Since the entire design process is based on simultaneous experimental or numerical 

analyzes, the required time and cost are high, and such studies are considered 

inefficient. Preliminary design studies are now carried out, which comprise the start 

of the impeller design utilizing the experimental data (correlations) available in the 

literature. Many commercial software packages are utilized in preliminary design 

research. The low-fidelity techniques used by all of these commercial software are 

based on experimental correlations and aerothermodynamics relations. Vista CCD 

was utilized in the preliminary design phase of this study because of the wide range 

of design parameters that may be fed into the software [38].   

Efficient fan design starts with the selection of a fan type, which is primarily based 

on the Cordier diagram, which is a measurement-based empirical diagram. It 

establishes a connection between the four variables of flow rate Q (m3/s), pressure P 

(Pa), rotating speed ω (rad/s), and diameter D (m). It is dependent on speed number 

σ and diameter number δ.  

𝜎 =
𝜔 ∗ √𝑄

(
∆𝑃
𝜌 )

0.75

 

 4.1 

 

𝛿 =
𝐷 ∗ (

∆𝑃
𝜌 )

1/4

√𝑄
 

4.2 

As seen in Figure 28, a fan that has a specific speed greater than two is more suitable 

to be in axial configuration, whereas specific speed less than 0.4 stands for a radial 
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flow. In between these values, a diagonal (mixed) flow fan should be selected. Since 

provided drive shaft for the oil cooler fan is vertical, the installation is the main 

criterion driving the fan type selection. For the oil cooler fan, the expected 

requirements are specified as follows;  

Table 9. Oil Cooler Fan Expected Requirements 

Parameter Value 

Mass Flow Rate [kg/s] 0.9 

Pressure Rise [Pa] 7100 

Rotational Speed [rpm] 9000 

Max Operating Temperature1 [⁰C] 110 

Max Power @110 ⁰C [kw] 15 

Note 1: Maximum oil temperature is 110 ⁰C and the centrifugal fan is placed 

downward of the heat exchanger, the maximum fan air inlet is assumed 110 ⁰C. 

When customer requirements are inserted in equation 1, the speed number is found 

1.14 which indicates for diagonal (mixed) type. Because centrifugal fans increase air 

temperature at the exit, it is best to install them downstream of the oil cooler heat 

exchanger to maximize heat exchanger efficiency. Outside ram air is directly 

supplied to the oil cooler as a result of this design. It is also preferable to direct 

exhaust air from fans to the atmosphere. Given the installation and structural 

constraints, it is required to design a centrifugal fan for the oil cooler which has 

vertical drive shaft. 
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Figure 28. Cordier Diagram [39] 

There are some important parameters provided in the 1D design phase.  Some of 

these are, diffusion ratio, meridional velocity gradient, incidence angle, tip clearance, 

impeller inlet and outlet angles. 

The establishment of an appropriate diffusion ratio is one of the key principles for 

the aerodynamic design of impellers. The relative Mach number ratio, the relative 

velocity ratio, or the diffusion factor can be used to represent the impeller's diffusion 

[40]. In the literature, diffusion is expressed as either the Lieblein diffusion factor or 

the De-Haller number. The Lieblein diffusion factor, which is given in Equation 4.3, 

is concerned with diffusion along a blade surface [41]. In the study by Lieblein et al. 
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[42], the total pressure loss coefficient gradually increases until a diffusion factor of 

about 0.6, at which point the loss rapidly increases. 

𝐷𝐹 =
𝑤𝑚𝑎𝑥 − 𝑤2

𝑤1
 4.3 

The De-Haller number is the ratio of the relative velocity at the outlet to that at the 

inlet. In contrast to the Lieblein diffusion factor, it is concerned with diffusion on 

end walls [41], and it is defined in Equation 4.4. 

𝐷𝐻 =
𝑤2

𝑤1
 4.4 

For the radial fans and pumps, a local diffusion factor may be used as well. It is 

defined in Equation 4.5. This factor should be limited to approximately 0.5 to avoid 

flow separation [43].  

𝐷𝐹𝑙𝑜𝑐 =
𝑤𝑚𝑎𝑥 − 𝑤2

𝑤𝑚𝑎𝑥
 4.5 

It can be seen in Equation 4.6 that the higher the diffusion factor is the more fan 

pressurizes the fluid. However, it should be selected to limit pressure losses and 

avoid flow separation.  

∆𝑃𝑡 =
𝜌

2
[(𝑢2

2 − 𝑢1
2) + (𝑤1

2 − 𝑤2
2)] +

𝜌

2
(𝑐2

2 − 𝑐1
2) 4.6 

Another crucial factor is the inlet incidence which influences the operating range and 

efficiency, as shown in Figure 29. It is reported that the impeller incidence angle is 

typically set to almost zero at the design conditions [40]. Casey et al. stated thin 

compressor blades with a higher subsonic inlet Mach number may have an incidence 

range ±5°. 
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Figure 29. Influence of incidence angle on efficiency and operating range [40] 

Another essential consideration is tip clearance. It has an effect on performance 

because it expands secondary flows within the impeller blades and creates intense 

tip vortices [40]. When tip clearance size is increased, efficiency declines and the 

stall margin deteriorates considerably [41]. The tip clearance in this investigation is 

set to 1 mm. Therefore, tip clearance ratio (tip clearance to blade height), is 0.014% 

for the leading edge and 0.021% for the trailing edge.  

Shrouded and unshrouded impellers are the two common forms. The flow velocity 

around the casing of unshrouded impellers is very low at the inlet and increases near 

the exit. The velocity relative to the shroud for shrouded impellers is comparable to 

the velocity relative to the blade surface. As a result, shrouded impellers are 

frequently more efficient than unshrouded impellers [40]. 

Diffusers are used to transform kinetic energy into static pressure rise at the rotor 

exit. Vaned or vaneless are the types of diffusers that are used with centrifugal 

impellers. In this study, a vaneless diffuser is used. As stated by Lakshminarayana 

[44], Abdelhamid and Bertrand (1979) conducted experiments with and without a 

vaneless diffuser in a basic blower. The data were collected without a diffuser, with 
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the flow discharging into a room. It is discovered that the flow was stable without 

the diffuser and that the pressure rise improved significantly with the inclusion of a 

diffuser. However, the inclusion of the diffuser caused unsteadiness. It is the static 

pressure recovery coefficient, which gives the increase in static pressure between the 

diffuser's intake and its exit relative to the change in dynamic pressure at the inlet, 

that is the most important design parameter for evaluating the diffuser's performance. 

The pressure recovery coefficient, which is a measure of how much of the kinetic 

energy input into the diffuser is transformed into a static pressure increase at the 

diffuser outlet, is calculated using Equation 4.7 [41]. 

𝐶𝑝 =  
𝑃2 − 𝑃1

𝑃𝑡1 − 𝑃1
 4.7 

For the centrifugal fan, the optimum blade angle at the entry is found to be about 35⁰ 

[45].  It is recommended that the rake angle of the trailing edge should be less than 

45⁰ [46]. It is recommended to have a backsweep angle, in the range of 20° to 55° 

[41]. The rake angle, backsweep angle, and shroud vane inlet angle are selected as 

default values of 30⁰ and 45⁰ and 60⁰, respectively.  The rake and backsweep angle 

representation are given in Figure 30. 

 

Figure 30 a) Blade rake b) Blade backsweep angle [47] 

The flow coefficient of different turbomachines with respect to polytropic efficiency 

is given in Figure 31. As can be seen, Bommes – centrifugal fans have maximum 

polytropic efficiency between 0.07 and 0.10, which are the region for the high-
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efficiency fans. Therefore, it is expected to design centrifugal fans in this flow 

coefficient range.  It is also recommended to have a blade loading coefficient 

between 0.6 and 0.65 [41]. 

 
Figure 31. Polytropic efficiency versus flow coefficient (courtesy of Cambridge 

University Press) [41] 

The geometric envelope and performance level are determined by one-dimensional 

(1D) design, which is one of the most crucial points in the design period. Since 1D 

design impacts the entire design process and a potentially incorrect design may not 

be corrected in the proceeding optimization study, it is crucial to have a reliable 1D 

design at the beginning of the process. Therefore, an optimization study for the 1D 

design is conducted.  For the 1D design optimization reference parameters, and 

design space are given in Table 10. 

Table 10. 1D design reference parameters and design space 

Parameters Lower Bound Reference Upper Bound 

Relative Velocity Ratio 0.4 0.52 0.6 

Incidence at shroud 0° 1.5° 3° 

Inlet Blade Angle 30° 35° 60° 

Backsweep Angle 20° 45° 55° 

Blade Number 11 13 15 
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Maximizing static pressure and impeller isentropic efficiency are selected as 

objectives in the 1D optimization study. Moreover, Table 11 shows the constraints 

used in the 1D optimization study and their range.  

Table 11. 1D optimization constraints and their range 

0.08 ≤ Flow coefficient ≤ 0.10 

0.60 ≤ Blade Loading ≤ 0.65 

 

The parameters as input to the VistaCCD software for the 1D design and the values 

of these parameters are given in Table 12. The 1D preliminary design values obtained 

as a result of the analysis are tabulated in Table 13. 

Table 12. 1D preliminary design specifications for the centrifugal fan impeller 

Parameter Value Parameter Value 

Total pressure ratio 1.08 Hub Diameter 30 mm 

Mass flow rate 0.9 kg/s Vane inlet angle 58° 

Rotational speed 9000 rpm Tip Clearance 1 mm 

Inlet temperature 383.15 K Blades Number 11 

Meridional velocity 

gradient 
1.15 Backsweep 55° 

Relative velocity ratio 0.58 Rake angle 30° 

Incidence at shroud 1.74° 
LE location on shroud 

[%M] 
0 
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Table 13. The values of the impeller parameters obtained as a result of the 1D 

preliminary design optimization 

Parameter Value 

Impeller exit diameter [mm] 276 

Impeller exit height [mm] 47 

Impeller Inlet height [mm] 75.52 

Peripheral Velocity [m/s] 130 

Tip Mach number 0.332 

Power [kW] 9.52 

Isentropic Efficiency 0.81 

Flow Coefficient 0.098 

Blade Loading 0.624 

 

4.2 Parametrization 

Parametrization is one of the significant parts of the optimization procedure. Radial 

impeller geometry is typically defined by the parametrized meridional contour at the 

hub and shroud (Figure 32a), and the blade camber line by the distribution of the 

angle β between the meridional plane and the blade camber line (Figure 32b). 

Third-order polynomials are used to define the distributions at the hub and shroud 

[48]:  

𝛽(𝑚) = 𝛽𝐿𝐸(1 − 𝑚)3 + 3𝛽1𝑚(1 − 𝑚)2 + 3𝛽2𝑚2(1 − 𝑚) + 𝛽𝑇𝐸𝑚3 4.8 

where m stands for non-dimensional meridional length. Leading edge and trailing 

edge angles are denoted by 𝛽𝐿𝐸 and  𝛽𝑇𝐸, respectively. Then, the camber line 

circumferential angle θ from LE to TE, which is obtained using Equation 4.1, can be 

seen in Figure 32b. 

𝑅𝑑𝜃 = 𝑑𝑚𝑡𝑎𝑛𝛽 4.9 

where R denotes the radius and dm denotes the differential meridional length.  
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Figure 32. a) Meridional contour defined by Bezier control points b) Definition of 

the blade camber line by β angle [48] 

The baseline blade angle distribution can be seen in Figure 33. 

 

Figure 33. Baseline set blade angle (beta) distribution 

According to the statement in the study conducted by Bamberger et al. [49], blade 

thickness is often chosen for structural factors and has little bearing on aerodynamic 
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performance. Additionally, since the thickness is one of the manufacturing 

limitations, during the optimization phase, the blade thickness is not selected as an 

optimization parameter.  

Aerodynamic efficiency is increased and boundary layer losses are decreased by 

modeling the leading edge of the blades with an elliptical ratio of 4:1 at the hub and 

shroud, while the trailing edge is kept cut off  [50]. 

Since this study mainly focuses on size optimization, impeller size is parametrized.   

4.3 Baseline Design CFD Analysis 

To observe the effect of 1D design optimization, two centrifugal impellers are 

designed, and an optimization study is performed on one of them. The other baseline 

design is based on the 1D design with reference values as stated in Table 10. 

Isometric 3D view of the 1D optimized baseline impeller can be seen in Figure 34. 

 

Figure 34. 1D Optimized baseline impeller 3D view 
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Volumetric flow rate versus fan static pressure and total to static efficiency graphs 

of the baseline designs are obtained using the CFX tool. While creating the grid 

topology and analysis structure of the basic design analysis, the validation study is 

accepted as the reference.  

Figure 35 and Figure 36 illustrate the fan static pressure and efficiency curves for the 

baseline designs, respectively. According to the data presented in Figure 36 the 

optimal efficiency of the design centrifugal impeller is very close to the optimal 

efficiency of the baseline centrifugal impeller. The fan static pressure and total to 

static isentropic efficiency values, at the design point, are provided in Table 14. The 

1D optimization study reveals that the fan static pressure and total to static isentropic 

efficiency are increased by 5.2% and 2.9%, respectively, 

 

Figure 35. Baseline design fan static pressure curve 
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Figure 36. Baseline designs fan total to static efficiency curve 

Table 14. Baseline designs fan static pressure and total to static efficiency values 

Baseline Design Fan Static Pressure Efficiency 

w/o 1D Optimization 6542.12 0.666 

with 1D Optimization 6879.99 0.685 

Percentage Increase 5.2 2.9 

 

4.4 Optimization Procedure 

In this study, an optimization study is performed by using ANSYS DesignXplorer 

with the Multi-Objective Genetic Algorithm (MOGA) together and he Kriging 

Response Surface Method (RSM). Design of Experiment (DoE) is an efficient 

method for gathering the data required to build the RSM. The RSM ability to predict 

outcomes is affected by how DoE distributes points within the design space [9]. 

According to Wang [22], the sampling method to be used in the experimental design 

should be suitable for the function to be estimated and should produce a minimum 

number of samples to accurately reflect the function of the meta-model. In the study 

by Khalfallah and Ghenait [25], it is stated that the sampling should be space-filling 

computer experiments. The Latin Hypercube Design (LHD) sampling method, 
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which is a gap-filling method, covers the design space, and provides a good spread. 

However, the Optimal Space Filling Design provides a more efficient spread along 

the design space. For these reasons, Optimal Space Filling Design with a max-min 

design type is used in the experimental design studies. In the experimental design, 

the design space is chosen ±10% of each input variable. Selected parameters and 

their range can be seen in Table 15. 

Table 15. Input parameters design space 

Parameters Lower Bound Baseline Upper Bound 

Axial Length (mm) 86.99 96.65 106.32 

Tip Width (mm) 42.76 47.51 52.26 

Inlet Height (mm) 66.09 73.43 80.78 

Tip Radius (mm) 124.27 138.08 151.88 

 

The designer can control the LHD sample size in terms of time, budget, or other 

constraints. There is no complete theory that governs that specifies how many design 

points are required to make LHD response surface models [22]. The quality of the 

response surface, however, is proportional to the size of the sample. Therefore, the 

surface quality should be always checked after the DoE study. It is known that a 

fixed minimum sample size is required based on the number of variables. However, 

it is typically preferable to use a larger sampling size than the minimum required in 

order to increase accuracy and have the possibility of estimating how good the meta 

model is [26]. For the linear and quadratic polynomial response surface, the 

minimum number of data points will be calculated in Equation 4.1 and Equation 4.2, 

respectively. Additionally, another option is to use a Central Composite Design 

sample size, as calculated in Equation 4.3. The sample size rises exponentially as the 

number of design variables increases. 

𝑛𝑚𝑖𝑛 = 1 + 𝑘 4.1 

𝑛𝑚𝑖𝑛 = 1 + 2𝑘 +
𝑘(𝑘 − 1)

2
=

(𝑘 + 1)(𝑘 + 2)

2
 4.2 

𝑛 = 2𝑘 + 2𝑘 + 1 4.3 
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For the 4 variables, the required sample size for linear, quadratic, and CCD is 5, 15, 

and 25, respectively. In this study, 25 data points are used to train the meta-model. 

Response surface quality will be checked to assess whether the provided number of 

data points is sufficient or not. When necessary, refinement points are added to the 

meta-model to increase its accuracy. 

Because extra dynamic pressure at the impeller outlet in centrifugal fans is wasted 

unless it is partially converted into static pressure by a diffuser, fan static pressure 

and total to static isentropic efficiency are used for the evaluation of fan performance 

[39].  Two objective functions, fan static pressure and total to static isentropic 

efficiency, are selected for this study.  

Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is a powerful method for 

finding Pareto Optimal solutions in multi-objective optimization. NSGA-II employs 

a fast non-dominated sorting procedure, an elitist persevering strategy, and a 

parameterless niching strategy [30]. 
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CHAPTER 5  

5 RESULTS AND DISCUSSION 

In the literature, second-order polynomial and Kriging are two response surface 

model, which is mostly used. Since Kriging fits the response surface from all design 

points, it is expected that goodness of fit measurements will always be good [23],  

therefore interpolation was made with the Kriging model, using both global and local 

approaches in the design field. Moreover, Kriging works especially well with space-

filling designs [26]. In this study, goodness of fit curve for both second order and 

Kriging response model is observed. As seen in Figure 37 and Figure 38, prediction 

from the Kriging response surface is well-fitted with an observation from design 

points. Therefore, Kriging response model is preferred instead of second-order 

response surface model. 

 

Figure 37. Goodness of fit curve for second-order polynomial RSM 
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Figure 38. Goodness of fit curve for Kriging RSM 

Sensitivity analysis is performed and parameters affecting the objective values 

mostly, are determined. Figure 39 indicates that tip radius has the greatest impact on 

fan pressure, whereas tip width has the least. The axial length and inlet height have 

nearly equal effects on fan pressure. However, while the fan pressure increases as 

the axial length increases, it decreases as the inlet height increases. As illustrated in 

Figure 40, the tip radius and inlet height have the greatest influence on the total to 

static isentropic efficiency. Total to static efficiency decreases with increasing tip 

radius and inlet height. Tip width and axial length show the same trend. 
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Figure 39. Fan Static Pressure sensitivity with respect to design variables 

 

Figure 40. Total to static isentropic efficiency sensitivity regarding design variables 

As seen in Figure 41, as the tip radius increases fan static pressure is increasing, 

however, it is decreasing as inlet height is increasing. Figure 42 shows there is a tip 

radius and inlet height interval where total to static efficiency is increasing.  For the 

tip radius, and inlet height, these intervals are 128-136 mm and 68-72 mm. Besides 

that, total to static efficiency is decreasing with respect to tip radius and inlet height. 
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As seen in Figure 41 and Figure 42, there is no local maxima or minima in the 

response surface, which is also observed in other turbomachinery studies [9], [51]–

[53]. 

 

Figure 41. Fan Static Pressure Response Surface with respect to tip radius and inlet 

height 

 

Figure 42. Total to Static Isentropic Efficiency Response Surface with respect to tip 

radius and inlet height 



 

 

59 

Figure 43 depicts the relationship between the parameters by using correlation plot 

generated by a trained Kriging Response Surface Model.  

 

Figure 43. Correlation plot by using the Kriging Response Surface Model 

Figure 44 shows Pareto Optimal Solutions. Among the Pareto Optimal Solutions 

(POS), one candidate point is selected, which is indicated in Figure 44 by a red dot. 

In Table 16, the meta-model solution and CFD results are compared. It is found that 

fan static pressure and total to static isentropic efficiency, as compared to CFD 

results, are calculated with an error of 0.12% and 0.33%, respectively. For the 

selected size optimization impeller, 3D view can be seen in Figure 45. 

 

Figure 44. Pareto optimal solutions 
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Table 16. Meta-model and CFD results comparison 

Objective Function Meta-Model CFD Error % 

Fan Static Pressure 7547 Pa 7538 Pa 0.12 

Efficiency 0.693 0.69 0.33 

 

 

Figure 45. Size optimization impeller 3D view 

Figure 46 and Figure 47 compare optimized centrifugal fan impeller fan static 

pressure and total to static isentropic efficiency to baseline. As can be seen, the fan 

static pressure rise is greater until 1.5 m3/s, but then it decreases. Figure 47 illustrates 

that, at the design point, total to static isentropic efficiency is increased and remained 

nearly the same at off-design points, until 1.5 m3/s, but then it starts to decrease 

suddenly. It can be deduced that the optimized impeller produces better total to static 

pressure rise with 1% increased efficiency at the design point, which is marked with 

a red dot, and nearly the same efficiency until 1.5 m3/s.  
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Figure 46. Fan Static Pressure comparison between baseline and optimized 

impeller. Red points correspond to the design point where the volumetric flow rate 

is 1 m3/s. 

 
Figure 47. Total to Static efficiency comparison between baseline and optimized 

impeller. Red points correspond to the design point where the volumetric flow rate 

is 1 m3/s. 

In order to see the flow distribution effect and associated losses, the baseline set and 

optimized impeller are compared using the entropy contours. Figure 48 Figure 49, 

and Figure 50, show entropy contours along the 20%, 50%, and 80% span, 
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respectively. Flow separation increases with increasing span percentage for the 

baseline and optimized impellers.   

 

Figure 48. Entropy contours along 20% Span a) Baseline impeller b) Optimized 

impeller 

 

Figure 49. Entropy contours along 50% Span a) Baseline impeller b) Optimized 

impeller 
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Figure 50. Entropy contours along 80% Span a) Baseline impeller b) Optimized 

impeller 

In order to decrease separations for the baseline impeller, blade loading distribution 

is updated when the different relative velocity ratio of the 1D optimized impeller is 

established, while other parameters in Table 12 remain unchanged.  Figure 51 depicts 

the effect of the varying relative velocity ratios considering the entropy contours and 

relative Mach number distribution at the 80% span. Flow separations and 

corresponding losses are observed to decrease as relative velocity increases.  It is 

also seen in Figure 52, as the relative velocity ratio increases, flow separations reduce 

and air exits the impeller smoothly.  
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Figure 51. Entropy contours of 80% span at the left and relative Mach number 

distribution of 80% span at the right a) Relative velocity ratio=0.58, b) Relative 

velocity ratio=0.70, and c) Relative velocity ratio=0.85 
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Figure 52. Velocity streamlines a) Relative velocity ratio=0.58, b) Relative velocity 

ratio=0.70, and c) Relative velocity ratio=0.85 
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As shown in Table 17, as the relative velocity ratio increases, the impeller diameter 

increases, and the tip width decreases. As a result of that total isentropic efficiency 

decreases correspondingly.  It is also observed that the flow coefficient and head 

coefficient decrease with increasing relative velocity ratio.  

Table 17. Effect of the relative velocity ratio on impeller parameters 

Parameter 0.58 0.7 0.85 

Impeller Diameter [mm] 276.15 289.39 307.02 

Tip Width [mm] 47.507 35.548 26.443 

Total Isentropic Efficiency 0.88 0.876 0.868 

Flow Coefficient 0.098 0.086 0.072 

Head Coefficient 0.624 0.571 0.513 
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CHAPTER 6  

6 CONCLUSION AND FUTURE WORK 

In this study, the impeller geometry of a backward-curved blade centrifugal fan was 

optimized by coupling the optimization algorithm with computational fluid 

dynamics simulations. The experimental results of the NASA LSCC verified the 

validity of the numerical model. The CFD simulations performed in ANSYS CFX 

flow solver with the 𝑘−𝜔 SST turbulence model gave the best agreement with the 

experimental data; therefore, ANSYS CFX flow solver with the 𝑘−𝜔 SST turbulence 

model was used in the optimization process. 

In the optimization phase, the Kriging RSM was utilized and trained using 25 

different designs. NSGA-II was used in the optimization study to determine the best 

solution among the POS. Fan static pressure and efficiency were increased by 8.34% 

and 0.96% at the design point, respectively. In conjunction with the optimal space-

filling design, the Kriging method was shown to be effective for turbomachinery 

design optimization. 

In order to improve the automated design procedure given in this thesis, the 

following topics can be considered in future studies: 

 Our study focuses on the optimization of a centrifugal fan impeller only. In 

future studies, volute design and optimization can also be considered as a part 

of the optimization procedure. 

 Extending the design space and increasing the number of design variables are 

two ways to enhance the 1D optimization presented in this thesis. 

 An aerodynamic optimization approach is used in this investigation. Before 

constructing an impeller, structural optimization can be combined with 

aerodynamic optimization. 
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