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ABSTRACT 

 

MODEL-BASED ROUTE PLANNING AND DIFFICULTY ESTIMATION OF 

INDOOR BOULDERING PROBLEMS 

 

 

 

Türedioğlu, Mert 

MSc., Department of Cognitive Sciences 

Supervisor: Assoc. Prof. Dr. Barbaros Yet 

 

January 2023, 74 pages 

 

Bouldering – a subdiscipline of climbing– is a both mentally and physically demanding 

sport as it challenges both the problem-solving skills and physical abilities of climbers.  In 

order to be successful, boulder climbers must find fast and accurate solutions to novel 

climbing problems they encounter. This study focuses on the decision-making processes 

of climbers when solving  boulder problems in an artificial and standardized climbing wall 

called MoonBoard. MoonBoard is a popular climbing wall that has a large international 

community. This study aims to build a goal-based AI agent that learns from previous 

solutions to plan the sequence of actions for novel boulder problems it encounters. We 

evaluate the agent's cost estimates and climbing solutions by comparing it to the difficulty 

estimations and solutions provided by expert climbers.  

Keywords: Artificial Intelligence, Bayesian Network, Machine Learning, Climbing, 

Bouldering 
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ÖZ 

 

KISA KAYA PROBLEMLERİNİN MODEL TABANLI ROTA PLANLAMASI  VE 

ZORLUK TAHMİNİ 

 

 

Türedioğlu, Mert 

Yüksek Lisans, Bilişsel Bilimler Bölümü 

Tez Yöneticisi: Doç. Dr. Barbaros Yet 

 

Ocak 2023, 74 sayfa 

 

Tırmanışın bir alt disiplini olan kısa kaya tırmanışı, tırmanışçıların hem problem çözme 

becerilerini hem de fiziksel yeteneklerini sınayan bir spordur. Başarılı olmak için, kaya 

tırmanışçıları karşılaştıkları yeni tırmanış problemlerine hızlı ve doğru çözümler 

bulmalıdır. Bu çalışma, yapay ve standartlaştırılmış bir tırmanma duvarı olan 

MoonBoard’taki kısa kaya problemlerini çözerken tırmanışçıların karar verme süreçlerine 

odaklanmaktadır. MoonBoard, geniş bir uluslararası topluluğa sahip popüler bir tırmanma 

duvarıdır. Bu çalışma, karşılaştığı yeni kısa kaya problemleri için hamle sırasını 

planlamak üzere önceki çözümlerden öğrenen, hedef tabanlı bir yapay zeka modeli 

geliştirmeyi amaçlamaktadır. Modelin hamle zorluğu tahminlerini ve tırmanış 

çözümlerini, uzman tırmanıcılar tarafından sağlanan zorluk tahminleri ve çözümlerle 

karşılaştırarak değerlendiriyoruz.  

Anahtar Sözcükler: Yapay Zeka, Bayes Ağı, Makine Öğrenmesi, Tırmanış, Kısa Kaya 

Tırmanışı 
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CHAPTER 1 

CHAPTERS 

1. INTRODUCTION  

 

Climbing is a sport that tests one's physical and mental abilities. Physical difficulties 

include climbing up with the help of his hands and feet in a steep and environment. 

Alongside the physical difficulties of this task, climbing intensely challenges one's mental 

skills. Hörst (2008) sees climbing as a well-balanced sport between physical, technical, 

and mental skill requirements (see Figure 1). Each climbing route is a decision problem 

waiting to be solved. A climbing route is the sum of the climbing holds, of which start 

holds, and end holds are specified.  To achieve a successful climb, the climber plans and 

executes a movement series that includes only the designated holds in the route. In a 

climbing competition, the athlete sees the route to climb for the first time. The athlete 

plans the sequence of movements before climbing in the limited observation time. This 

plan he developed for the novel route consists of deciding which hold to hold with which 

limb and in which order. This sequence of movements (solution) determined by the athlete 

is called beta. When the athlete climbs with a false beta, the required physical effort may 

increase and cause failure. For example, when Olympic winner in climbing Janja Garnbret 

broke new record by winning an entire season of IFSC Climbing World Cups (Jahns, 

2021), she has accurately and efficiently solved 74 of the 78 novel boulder problems she 

had encountered the first time and successfully climbed them. 

 

Figure 1: Relative Demands of Various Sports (Adapted from (Hörst, 2008)) 
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Climbing is both an outdoor and indoor sport. It started as an outdoor sport. Later, people 

started doing this sport on artificial indoor climbing walls to train for outdoor routes. 

Today, indoor climbing has become a discipline on its own. It gained Olympic sport status 

with the 2020 Tokyo Olympics (The International Olympic Committee, 2016). Athletes 

compete in 3 different branches: Speed, Lead, and Bouldering. All these test the climber, 

physically and mentally, at different levels and ways.  

Bouldering routes, also called bouldering problems, are shorter than lead and speed but 

are the most mentally challenging and hardest to solve. This thesis uses the terms 'routes' 

and 'problems' interchangeably. Bouldering problems are designed to force athletes make 

many tries before successfully climbing routes. Efficient solutions are precious in 

bouldering problems. In International Bouldering World Cups, athletes have four minutes 

to climb a problem. The number of attempts in this four minute climbing period measures 

athletes' success on the problem. The athlete must flash the problem to get the highest 

score. To flash a problem means climbing a problem on the first try. That is why it is 

essential to find an efficient solution in a few tries. Expert athletes can consistently do so. 

This shows their improved problem-solving skills as well as physical fitness for this task.  

To develop their physical and problem-solving skills, athletes use various tools. One of 

these tools is ‘training boards’, which has become more popular over the years. The 

training board is a single-plane artificial climbing wall consisting of many holds. These 

multiple holds allow for a wide variety of only the designated holds. Some of these 

training boards are standardized such as MoonBoard. MoonBoard is one of the most 

widely used climbing boards (see Figure 2). These standardized training boards have large 

communities. Climbers share their newly created problems and solutions in these online 

communities. 

 

Figure 2: MoonBoards World Map (Adapted from (Moon Climbing, 2022e)) 
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Training boards are well suited for computational research for two reasons. First, climbing 

boards are standardized. Second, they are in grid structure on which evenly spaced 

climbing holds bolted. This standardized grid structure enables one to digitize the 

climbing problems and collect computer interpretable data. This study focuses on 

climbing problems based on MoonBoard.  

MoonBoard climbing board layouts share the same grid structure and dimensions. The 

layouts of climbing holds have been revised in 2016, 2017, and 2019. We focused on the 

original MoonBoard layout, which is the 2016 layout. It is a 40-degree negatively angled 

climbing board (see Figure 3). This board comprises two parts: the main board (upper 

part), which is a 18x11 grid, and the kicker(lower part), which is a 5x2 grid. The kicker 

part is the same in all layouts. There are ten footholds on the kicker. The main board differs 

by combinations of MoonBoard hold sets used. The 2016 layout has 140 climbing holds 

on the main board. 

 

Figure 3: MoonBoard 2016 Layout (Adapted from (Moon Climbing, 2022b)) 
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In a typical MoonBoard problem, the goal is to reach the target hold and grab it with two 

hands in a controlled manner. Figure 4 is a typical MoonBoard problem. Holds marked 

with colored circles represent the legitimate-to-touch holds in a problem. A MoonBoard 

problem consists of all these holds. The target hold is red-circled, the start hold is green-

circled, and the blue-circled ones are intermediate holds. 

 

Figure 4: A Typical MoonBoard Problem (Adapted from (Moon Climbing, 2022c)) 

This thesis aims to study decision-making in climbing, especially in bouldering. We tackle 

this problem by building a goal-based agent that learns movement costs and difficulties 

from data and plans sequence of actions to minimize these costs.  We compare the 

predictions and plans of the agents with the difficulty classifications and solutions 

generated by human climbers. We aim to shed light on this decision-making problem by 

developing an AI agent. To achieve this aim, three research questions are addressed: 

Q.1. Can we design a learning and search-based AI agent making climbing 

decisions that athletes can implement? 

Q.2. Can this agent accurately classify the difficulty of boulder problems? 

Q.3. Can this agent find an accurate solution for a novel boulder problem? 

The novelty of this study lies in its methodology and subject. Climbing has yet to be 

studied as a decision-making problem. The other novelty is that the planning task was not 
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treated as just a distance optimization problem. It is based on data and experience while 

calculating the costs of all possible moves. Then, it finds an optimized solution to a given 

bouldering problem. The statistical model was developed in the Bayesian framework to 

calculate those costs. Data of this statistical model are composed of previous climbs of 

several climbers of several problems at different grades. The solutions produced were 

validated with data. 

This thesis is structured as follows: Chapter 2 is a literature review in which related terms 

of climbing are explained and the studies in the literature reviewed. Chapter 3 presents 

the methodology of the study. The AI agent is defined in this chapter, and the learning and 

planning models are explained. Chapter 4 reports the results and validations of the 

models. Chapter 5 concludes this thesis. The study is summarized, the results are 

discussed, and suggestions for future studies are shared. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

2.1. Related Terms of Climbing  

2.1.1. Route 

A climbing route is the sum of the climbing holds, of which start holds, and end holds are 

specified. The climber carries himself up using these holds. To achieve a successful climb, 

the climber plans and executes a movement series that includes only the designated holds 

in the route. There are different types of climbing routes, both indoor and outdoor. The 

length and environment of the climbing routes provide this diversity: sport climbing, 

bouldering, ice climbing, alpine climbing, big wall climbing, deep water soloing, etc. The 

focus of this thesis is indoor bouldering routes. Indoor bouldering routes are short and 

difficult to solve climbing problems. A typical boulder problem consists of designated 

start and end holds and intermediate holds. The climber plans a sequence of movements 

involving these holds. When he follows this plan and reaches the end hold, he successfully 

climbs the indoor boulder route. 

2.1.2. Beta 

Beta is the name given to one's sequence of moves while climbing a route (Flanagan, 

2013). The term beta may be used for a solution only for a part of the route or the whole 

route. It could be very specific or a rough description. It is expected to be the optimal 

solution to the climbing problem. Yet, the optimal solution may differ depending on one's 

anthropometric measurements. There may be more than one beta for a route, depending 

on one's problem-solving skills. There may be more than one beta depending on one's 

problem-solving skills. 

2.1.3. Hold 

Holds are fundamental elements of climbing routes. They are in different shapes and sizes. 

A climbing hold can be both natural (granite, sandstone, limestone, etc.) or manufactured 

(polyurethane, wood, fiberglass, granite, etc.). A climbing route consists of holds.  

2.1.4. Difference Between Boulder Problem and Climbing Route 
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Boulder is a large rock fragment shaped by water or weather erosion (Oxford, 2022). 

There are indoor (artificial, see Figure 4) and outdoor (natural, see Figure 5) boulder 

problems. Compared to routes, boulder problems are much shorter. The height of a 

boulder problem may go up to ten meters. There is no safety gear involved except crash 

pads. Crash pads are portable cushions that are laid under a boulder.  

 

Figure 5: An outdoor boulder problem (Adapted from (Climbing Magazine, 2022)) 

An indoor boulder problem consists of three groups of holds such as starting holds; 

intermediary holds; top holds. To complete a boulder problem, one must start climbing 

only touching starting holds and complete the climb by matching the top hold with both 

hands in a controlled position. In contrast, an outdoor boulder problem has no specific 

starting and top holds. A typical boulder problem starts from a specific part of the boulder 

and ends by climbing onto it.  

A climbing route is a specific path one follows to reach the top. The top of a climbing 

route may be a mountain peak, an anchor of a sports climbing route, or a peak of a frozen 

waterfall. The route length may vary from five meters to more than two thousand meters. 

There are indoor and outdoor climbing routes. One may need safety equipment like a 

climbing rope, gear, and harness to climb a route. 

2.1.5. Grade 
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Grade is the term used to indicate the difficulty level of route or boulder problems in 

climbing. Grade has no formal definition or formula to calculate it. Routes or problems 

are graded in comparison to each other. Multiple factors affect the grade: the size of the 

holds in the route or problems, their direction, their distance from each other, their friction, 

their grip difficulty, the length of the route or problem, angle of the route or problem. 

There are multiple grade scales that can be converted to each other. There are separate 

scales for climbing routes and boulder problems. These scales have emerged regionally, 

and some are used worldwide. There are two commonly used scales for Boulder problems: 

The Fontainebleau grading system (font grade for short), The Hueco Scale (or V-Scale). 

Commonly used scales for climbing routes are YDS (The Yosemite Decimal System), 

The French Numerical System, The British Grading System, and The UIAA Grading 

System. For more scales and their analysis, refer to this resource. The scope of this study 

is boulder problems. The table below shows the two mentioned bouldering grade scales 

and their conversion to each other. 

 

Table 1: Bouldering Grade Scales Conversion Chart 

Hueco Fontainebleau Hueco Fontainebleau 

VB 3 V7 7A+ 

V0- 4- 
V8 

7B 

V0 4 7B+ 

V0+ 4+ V9 7C 

V1 5 V10 7C+ 

V2 5+ V11 8A 

V3 
6A V12 8A+ 

6A+ V13 8B 

V4 
6B V14 8B+ 

6B+ V15 8C 

V5 
6C V16 8C+ 

6C+ V17 9A 

V6 7A     

 

2.1.6. Merged Grade 

Merged grade is the name we give to combining multiple grades that are close to each 

other. There is no such term as merged grade in the literature. However, as mentioned 

when explaining the grade term, the grades of climbing routes or boulder problems are 

determined compared to each other. Therefore, from time to time, there are changes of 

one or two degrees up or down in grades. There are common terms for naming these 
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changes: upgrade and downgrade. In order to cover such cases, we obtained 'merged 

grades' by combining the grades of the boulder problems in the study. These types of 

merged grades are used to indicate the skill level of climbers. A climber's skill level is 

directly related to the grade of the most difficult problems they climb. Some grade ranges 

define skill level categories for climbers. There are studies in which participants are 

grouped according to their skill levels: (Nick et al., 2011) and (Vereide et al., 2022). The 

participants’ skill levels are determined by their hardest route achievement. In these 

studies, routes are not bouldering routes, but sport climbing routes. There is no research 

in the literature that groups participants according to their boulder grade ranges. Yet, Hörst 

grouped climbers according to boulder grade ranges in his book (2008). The merged grade 

ranges and Fontainebleau grades of the problems in the dataset are specified in Chapter 

3.2.1.1.  

2.1.7. MoonBoard 

A Training board is an artificial climbing wall that consists of manufactured holds. 

MoonBoard (see Figure 3) is one of the standardized training boards. MoonBoard is the 

pioneer of standardized training boards. What makes it a pioneer and suitable to study is 

that it is standardized. It is standardized in two ways. First, the board has a specific angle, 

namely 40 degrees overhanging board. Second, holds are standard, bolted on fixed spots 

that are the same on every MoonBoard. These features enable us to collect data from 

different climbers from different locations.  

There is more than one layout. In this study, we focused on MoonBoard 2016 layout. It 

has 140 holds on its 18x11 grid structure. At the time of this study, there were 451 

benchmark routes of this layout.  

2.1.8. Move 

In the context of climbing, move is the name of the transitioning of the hand or feet from 

one hold to another hold. A move may involve multiple limb relocations. If we call the 

list of climber's limb positions a state at any given moment, it is possible to conceive the 

move as transitioning from one state to another. For a figure-supported explanation and 

computer-readable representation of a move, see Chapter 3.2.1.4. 

2.1.9. The Distinction of Benchmark and Non-benchmark Problems 

There are two types of MoonBoard problems: 'benchmark' problems and 'non-benchmark' 

problems. Benchmark problems are those whose quality has been validated by the 

MoonClimbing moderators. Multiple factors determine this quality. As mentioned above, 

the problems are graded according to their difficulty. Benchmark problems are those 

whose grade has been validated. Another factor affecting the quality of the problem is that 

there are neither too many nor too many holds in the problem. Benchmark problems also 

satisfy this criterion. Such a distinction was needed because there are more than 50 
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thousand problems in the MoonBoard problem database. Not every problem that 

community designs and uploads to the dataset meet these criteria. 

Two problems are visualized side by side in Figure 6. The problem on the left is a 

benchmark problem, and the problem on the right is a non-benchmark problem. Holds 

marked with colored circles represent the legitimate-to-touch holds in the problem. The 

climber may only use circle-marked holds while climbing the problem. One problem 

consists of all these holds. The 'non-benchmark problem' on the right has too few holds to 

be climbable, while the benchmark problem on the left has enough holds.  

  

Figure 6: Benchmark (Left Adapted from (Moon Climbing, 2022c)),  and Non-benchmark (Right Adapted 

from (Moon Climbing, 2022d)) 

2.2. Previous Studies in Climbing  

Previous quantitative studies on boulder climbing mainly focused on problem grade 

estimation and new route generation in training boards such as MoonBoard. These tasks 

were mainly studied with machine learning algorithms.  This section reviews the previous 

work on MoonBoard problems.  

Dobles et al. (2017) used machine learning techniques for boulder problem grade 

estimation in their research. Their preferred technique is the Convolutional Neural 

Network technique, which is widely used in pattern recognition. This technique is 

generally used to detect patterns in images and to recognize the object in the image. The 

pattern recognition capability of this technique is promising in identifying similar patterns 
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in route difficulties. They represented the MoonBoard routes as multi-hot encoded as in 

the above research. As mentioned above, this representation only contains information 

about which holds are in the route and which are not. Their study experimented with three 

different classifiers: Naive Bayes classifier, Softmax Regression Classifier, and 

Convolutional Neural Network classifier. They also used the Support Vector Machine but 

did not report the result due to its poor performance in the validation set. They compared 

the accuracy scores of 3 different models with people's predictions. They achieved an 

accuracy score of 36.5% from all three models. People's accuracy score was reported as 

93.4%. They see one of the reasons behind this as people guessing routes not just from 

pictures but from their climbs. 

Tai et al. (2020) approached the boulder problem grade estimation using neural networks 

in their research. They were inspired by the NLP (Natural Language Processing) domain 

in which Graph Convolutional Network architectures have proven successful in text 

classification. They have preprocessed their problems into multi-hot encoded 

representations. To briefly explain the character of this representation, the route 

representations consist only of which of the 140 holds of the MoonBoard is on the route. 

They trained their models with these multi-hot encoded route representations and did not 

do any feature engineering. This representation does not contain any other information 

about the characteristics of the routes. They compared the accuracy scores of 17 different 

machine-learning models. The most successful model in this comparison was the Graph 

Convolutional Model, inspired by the NLP domain. They compared the accuracy scores 

of 17 different machine-learning models. In this comparison, the most successful model 

was the Graph Convolutional Model, inspired by the NLP domain, with an accuracy score 

of ~73%. In this study, unlike the research in this report, the number of routes used in the 

model is more than seventeen thousand. In addition to the routes whose difficulty levels 

and quality were approved by the MoonBoard team (Benchmark Routes), other 

MoonBoard routes added by the climbers were also used in their research. The 451 

Benchmark routes are insufficient sample sizes for developing machine learning models. 

They used the mentioned community routes (non-benchmark problems) to increase this 

number while developing and testing their models. 

In both studies, one of the most important factors reducing the accuracy score is that the 

difficulty levels of the route in the sample are not evenly distributed. There are far more 

routes from easy grades and fewer routes from hard grades. These imbalances have a 

detrimental effect on models' accuracy performance scores. 

Duh & Chang (2021) approached the route difficulty assessment and generation using 

neural networks in their research. They have established three separate neural network 

models: BetaMove, GradeNet, and DeepRouteSet. BetaMove is developing a solution to 

the given route problem. GradeNet estimates climbing route difficulty taking into account 

the beta provided by BetaMove. DeepRoute set produces climbing routes. They preferred 

the Recurrent Neural Network algorithm because of the sequential nature of the climbing 

routes. GradeNet achieved an accuracy rate of 64.3% in the training set and 46.7% in the 

test set. Climbing routes are labeled as discrete. However, the routes in the same difficulty 
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label differ in some difficulty. Therefore, Duh & Chang also reported an accuracy rate of 

+-1 in their research. GradeNet's +-1 accuracy rate was reported as 91.3% on the training 

set and 84.8% on the test set. The +-1 accuracy rate is a good test indicator in terms of 

capturing the slight differences in the difficulty of the climbing routes according to the 

differences in the heights of the climbers. The quality evaluation of the routes generated 

by DeepRouteSet was made through a survey. The survey evaluated problems under four 

headings: unnecessary holds, strange moves/fluency of moves, reasonable route, and route 

quality. Routes produced by DeepRouteSet are presented for evaluation together with 

MoonBoard routes. DeepRouteSet was found to be more successful than MoonBoard 

routes in 4 headings. Researchers believe that the success of GradeNet and DeepRouteSet 

lies in the success of BetaMove. It has successfully produced and evaluated routes suitable 

for climbing with betas offered by BetaMove to routes. 

Stapel (2020) used a heuristic approach for generating new climbing routes. To achieve 

this purpose, climbing holds, and climbing moves were classified, and the effects of these 

classifications on the difficulty of climbing routes were evaluated. These classifications 

are also expected to assist future machine learning research. As in this research, the scope 

of the research has been reduced to MoonBoard problems. It is assumed that there is a 

relationship between the climbing hold difficulty and the route grade difficulty. Climbing 

holds were graded with the help of a questionnaire. The climbers evaluated all the holds 

on the MoonBoard and suggested a number. With the help of these difficulty suggestions 

and the climbing hold type, the following possible holds to the climb route hold sequence 

are selected by a Greedy algorithm. In addition, the distance and rotational angle of the 

following hold are presented to the model for this Greedy algorithm to consider. The 

climbers evaluated the climbing routes produced by this algorithm with a questionnaire. 

People who participated in the survey evaluated climbing routes based on grade, route 

flow, and enjoyment of the climber. The flow of the generated routes was found to be 

worse than the flow of the MoonBoard routes. A main limitation of their algorithm is that 

it does not consider the climber's last position when adding a new hold to the hold 

sequence. So, it disrupts the flow of the route. Another limitation is that the footholds in 

the route are not considered. 

Seal and Seal (2022) have included graph theory in their work on climbing and routing. 

Inspired by MoonBoard and similar training boards, they simulated an artificial climbing 

wall with randomly positioned holds. They then determined a start and end hold on the 

board with these random holds. With the help of Dijkstra's algorithm, they found the 

shortest hold path between the starting and ending holds. The paths found are suitable for 

climbers with specific physical characteristics. Different routes have been found for 

people with different physical characteristics. Adjacent nodes and edges are determined 

based on these physical properties. All the holds were filtered according to the defined 

physical properties, and graphs were created from the appropriate nodes. They found that 

the model found different routes for people of different heights. They compared the 

difficulty levels of the routes found over their node numbers and total distances. Routes 

that are longer than the shortest route or that contain more nodes are more difficult. In this 
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paper, it is recommended to include the properties of the holds in the route to estimate the 

difficulty level. 

Çelik (2022) studied the boulder problem difficulty. The research question of his thesis is 

how much model complexity affects difficulty estimation accuracy. Climber's best 

practices are included in the model as a set of rules. The model is designed so that 

violations of these rules increase the route difficulty. There are two elements to increase 

model complexity: hold properties and climber properties. Hold properties are the type of 

holds, distance to hold surface, and hold direction. Climber properties are limbs. The base 

model does not include the climber property. He stated that including Climber properties 

did not significantly increase accuracy compared to the base model. However, including 

hold properties in the model significantly improved the model's prediction accuracy. 

No study in the literature produces solution sequences that include both hand and foot 

movements for MoonBoard problems. In order to produce such a movement sequence, 

movement costs must be calculated. There is no study that uses a machine learning method 

to learn costs. This study includes both novelties. The next chapter explains the climbing 

agent includes these novelties. In the next chapter, the climbing agent, which includes 

these innovations, will be explained.  
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CHAPTER 3 

 

3. METHODOLOGY 

3.1. Agent  

3.1.1 Climber as a goal-based agent  

This study aims to design a goal-based agent in the climbing domain. This agent is 

expected to accomplish two climbing-related tasks: accurately guessing the 

grade(difficulty of a climb) of a boulder problem and finding accurate, lowest-cost 

solutions to novel boulder problems. Since the proposed agent is a goal-based agent 

solution sequences must end with goal-states. The goal state is defined as any position in 

which both hands are in contact with end nodes of given problem. 

This agent learns from experience. There are two datasets for this goal-based agent to gain 

experience. The first will give the goal-based agent experience in estimating the route 

difficulty, and the other will help it calculate the costs of the moves to find the lowest-cost 

solution to the novel boulder problems. The datasets of this study are novel. It was 

collected from the web for this study. The first dataset was obtained from MoonBoard's 

website with a bot we developed in Python, and the second dataset was obtained from 

MoonBoard's mobile application. 

Following Norvig & Russell (2020), we define the task environment and structure of the 

agent in this section..  

3.1.1.1. Task Environment 

The task environment is defined in terms of Performance Measures, Environment, 

Actuators and Sensors (PEAS) (Norvig & Russell, 2020). An overview of the performance 

measures of the agent is listed as follows: 

• Finding lowest-cost solutions to boulder problems. 

• Giving accurate grades to boulder problems. 
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• Climbing efficiently in the sense that there is no redundant or extremely hard 

movement.  

• Making climbing decisions that athletes can implement. 

 

Yet, these measures need to be more specific and well-defined. To follow the formal 

description of task environments Norvig and Russell proposed (2020), the following 

dimensions of our task will be specified. The dimension options are as follows: Fully 

Observable or Partially Observable; Deterministic or Stochastic; Single Agent or Multi-

Agent; Episodic or Sequential; Static or Dynamic; Discrete or Continuous; Known or 

Unknown. The properties of our task can be specified as follows: Fully Observable, Single 

Agent, Deterministic, Sequential, Static, Discrete, and Known. In other words, our agent 

has information about the whole environment at any time. There is only one agent in the 

environment; there are no rival or ally agents. The environment is deterministic. It 

contains no randomness. It is sequential because each move affects the next move while 

solving a boulder problem. The environment does not change; it is static. It doesn't have 

any dynamic elements in it. Although solutions to boulder problems are sequential, the 

task environment is discrete. Solutions consist of discrete states. It is a known environment 

since the agent knows the resulting states of its actions beforehand. 

Below is the specification of all letters in the PEAS acronym for the AI agent:  

• Performance measures: Accurate solutions to suggested solutions, Distance, Path 

Cost, Number of Moves 

• Environment: Directed Graph with the properties: Fully Observable, Single Agent, 

Deterministic, Sequential, Static, Discrete, and Known. 

• Actuators: Character output on screen  

• Sensors: Keyboard input 

3.1.2 Bouldering as an AI problem  

The figure below is an example of raw input of a MoonBoard problem. The goal of the 

AI agent is to reach a goal state of to the problem. The green circled holds are the starting 

holds of the problem. The red circled hold is the goal hold of the problem. Basically, the 

agent must find a solution which is a sequence of moves. The sequence must start with 

green circled holds and ends with red circled goal hold. The goal in this problem is 

reaching a state in which the agent’s both hands are on the goal hold. 
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Figure 7: Problem named Bitter (Adapted from (Moon Climbing, 2022g)) 

 

To define this problem more systematically, we will define it through five components 

suggested by Norvig and Russell (2020). These are: initial state, possible actions, 

transition model, goal test, path cost.  

To specify these five components, what state means in our problem should be explained 

briefly. The details of the representation of states of a climber are given in Chapter 

3.3. States are lists of the positions of limbs of a climber on the MoonBoard. Figure 14 

shows a climber on a MoonBoard problem. The state of the climber is an ordered list of 

positions of his limbs which is ['G8', 'H11', 'K5', None]. 

• Initial State: 

o Hands: They are on designated start hold or holds. If there is only one start 

hold, then both hands must be on the start hold. If there are two starting 

holds, one hand must be started with one start hold and the other hand on 

the other start hold. 

o Feet: The feet must be either on the kicker holds or in such a way that they 

do not touch any other hold. 
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• Possible Actions: Take one or more limbs to another hold or cut contact from the 

hold. 

• Transition Model: Updating the state with the new limb positions. 

• Goal Test: Checks whether any goal state is achieved. Any goal state must satisfy 

the following rules: 

o Hands: If there is only one end hold, then both hands must be matched on 

the end hold. If there are two end holds, then one hand must be on one end 

hold and the other hand on the other end hold. 

o Feet: The feet must be either on designated holds of the problem or in such 

a way that they do not touch any other hold. 

• Path Cost: Path cost is the sum of all move costs. 

3.2. Learning 

3.2.1. Data 

3.2.1.1. Problem Dataset: The Explanation of the Dataset and An Example MoonBoard 

Problem  

The boulder problem dataset of this study consists of MoonBoard boulder problems. 

MoonBoard has multiple layouts. We focused on the problems from the MoonBoard 2016 

layout. Although there are more than fifty thousand problems in this layout, we only used 

benchmark problems (for benchmark/non-benchmark distinction check Chapter 2.1.). 

Climbers set boulder problems and share with other climbers via MoonBoard mobile and 

web applications. Thanks to the standardized design of the MoonBoard, any climber can 

access any same boulder problem and climb those problems. We acquired the problems 

from the MoonBoard website. With the help of a bot built in Python, we collected the hold 

information and difficulty level of those boulder problems. We developed that bot using 

Python's Selenium package to acquire problem dataset. 

There are 451 benchmark boulder problems in the problem dataset. The problem dataset 

is slightly skewed towards easier grades. The below histogram shows the original grade 

(Fontainebleau) distribution of boulder problems: 
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Figure 8: Distribution of Problems by Grade 

We merged Fontainebleau grade categories into 3 categories: Intermediate, Advanced, 

Elite. For the detailed explanation of term merged grade and the reason for this need, see 

Chapter 2.1.  

• Intermediate: from 6B+ to 7A. 238 problems 

• Advanced: from 7A+ to 7C. 173 problems. 

• Elite: 7C+ to 8B. 40 problems. 

The below histogram shows the merged grade distribution of boulder problems. 



20 

 

 

Figure 9: Distribution of Problems by Merged Categorical Grade 

3.2.1.1.1.  An Example MoonBoard Problem 

The problem dataset consists of MoonBoard problems. A MoonBoard problem has two 

essential features: the holds that make up the route and the grade of the route. A 

MoonBoard problem consists of holds specified on the MoonBoard. There are three types 

of holds in any MoonBoard problem: starting holds, intermediary holds, and ending holds. 

End holds are called top holds. A MoonBoard problem consists of 1 or 2 starting holds, 1 

or more intermediary holds, and 1 or 2 top holds.  

For a graphic of a MoonBoard problem, see Figure 10 below:  

• The starting holds are green-circled.  

• The intermediary holds are blue-circled.  

• The top holds are red-circled. 
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Figure 10: A MoonBoard Problem (Adapted From (Moon Climbing, 2022f)) 

Figure 10 shows the raw data point of a problem.  

 

Table 2 shows the processed version of that data. The explanation of columns is below 

the table. 
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Table 2: An Example of Processed MoonBoard Problem Data 

Id 

G

ra

de 
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ed 
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e Holds 

# of 

Hol

ds 

Total 
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Mean 

Dista

nce 

# of 
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w 

Holds 

Yellow 

Holds 

Percent 

Tot

al 

Inc

ut 

Mea

n 

Incu

t 

Catego

rical 

Grades 

2

6

6

2

0 

6

C 0 

['G2', 'E6', 

'I12', 'E15', 

'F7', 'C10', 

'E18'] 7 

491.7

2 81.95 1 0.14 12 1.71 

Interm

ediate 

 

• The 'Id' column contains the route id. 

• The 'Grade' column indicates the Fontainebleau grade of the route. 

• The 'Merged Grade' column shows the route's grade reduced to 3 grade categories. 

• 'Holds' is the list of holds that make up the route. 

• The '# of Holds' column contains the total number of holds in the route. 

• The 'Total Distance' column is the total distance of the holds in the route from each 

other. 

• 'Mean Distance' is the average of the total distance between the holds in the route. 

• '# of Yellow Holds' is the total number of yellow holds on the route. 

• 'Yellow Holds Percent' is the percentage of yellow holds on the route. 

• 'Total Incut' is the total 'incut size' of the holds in the route. 

• The 'Mean Incut' column is the route's average 'incut size'. 

• 'Categorical Grades' is the Fontainebleau grade of the route reduced to 3 climber 

levels (Categories: Intermediate, Advanced, Elite). 

3.2.1.3. MoonBoard Holds 

There are 140 holds on the 2016 layout. In addition, ten foot holds are fixed to the kicker 

part (bottom part) of the training board, which is common to all layouts. Each has a 
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specific position. The difference between the layouts is the variety and positions of the 

hold sets. 

These 140 holds consist of 50 white, 50 black, and 40 yellow holds. All 140 holds on a 

MoonBoard are unique. None of them are the same. Besides, all MoonBoards are the 

same. They all consist of the same holds. Color differences of Holds do not indicate a 

feature difference, except for yellows. Yellow holds are consistently small compared to 

other color sets and difficult to grab. 

The grid structure of MoonBoard makes it convenient to name the locations of the holds. 

Starting from the bottom left, the x-axis is lettered from A to K, and the Y-axis is 

numbered from 1 to 18. 

Table 11 (see Appendix B) shows the classification of the holds. Table 11 consists of 4 

columns: 

• The column 'Name' consists of the location information of the holds. Hold's name 

consists of letters and numbers. The letter part indicates the column; the number 

part indicates the row. 

• The column 'Color' gives the color information of the hold. 

• The column ' Incut' specifies the incut size of the hold in 3 levels. Categories are 

0, 1, and 2. From 0 to 2, the incut size of the hold increases. 

• The column ‘Match’ specifies whether a hold can be grabbed the by two hands. 

 

3.2.1.4. Beta / Solution Dataset of the Bayesian Model for Move Difficulty 

The beta / solution dataset of this study consists of solutions to MoonBoard boulder 

problems. We focused on the solutions from the MoonBoard 2016 layout.  

The boulder problem dataset of this study consists of MoonBoard boulder problems. 

MoonBoard has multiple layouts. Although there are more than fifty thousand problems 

in this layout, we only used solutions for subset of benchmark problems(for 

benchmark/non-benchmark distinction check Chapter 2.1.). We collected the solutions 

from the MoonBoard mobile application.  

There are 201 beta / solution data for 183 benchmark MoonBoard problems in the beta / 

solution dataset. The below histogram shows the original grade (Fontainebleau) 

distribution of problems in beta / solution dataset: 
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Figure 11: Fontainebleau Grade Distribution of Problems in Beta/Solution Dataset 

In each beta data, there are many individual moves. The beta/solution dataset consists of 

the sum of these unique moves. There are 2456 moves in beta/solution dataset. The below 

histogram shows the original grade (Fontainebleau) distribution of all moves in beta / 

solution dataset: 

 

Figure 12: Fontainebleau Grade Distribution of Moves in Beta/Solution Dataset 

The Fontainebleau grade categories merged into four categories. The below 

histogram shows the merged grade distribution of moves in the beta/solution 

dataset.  

• from 6B+ to 6C+, 715 unique moves 
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• from 7A to 7B, 732 unique moves. 

• from 7B+ to 7C,  699 unique moves.  

• from 7C+ to 8B, 310 unique moves 

 

Figure 13: The Merged Grade Distribution of Moves in Beta/Solution Dataset 

3.2.1.4.1.  An Example Computer-Readable Move Data 

The beta dataset consists of moves extracted from solutions. Below there are two figures 

related to two tables. The two figures show the climber's two consecutive moments on a 

MoonBoard problem. Figure 14 shows the climber's starting position of a move, and 

Figure 15 shows the end position of the move. The sum of these two positions makes one 

move. Table 3 shows the computer-readable raw data of this move. Table 4 shows the 

processed version of this raw data and the obtained features. 



26 

 

 

Figure 14: Starting position of a move on MoonBoard 
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Figure 15 Ending position of a move on MoonBoard 

 

Table 3: Computer-readable raw data of a move 

Move ID Grade Merged Grade HN1 Quadruple HN2 Quadruple 

2628460008 6B+ 0 ['G8', 'H11', 'K5', None] ['E13', 'H11', 'K5', None] 
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The explanation the columns of the Table 3 is below: 

• The ‘Move ID’ column contains the move id. 

• The 'Grade' column indicates the Fontainebleau grade of the problem in which 

the move is made. 

• The 'Merged Grade' column shows the problem’s grade reduced to 3 grade 

categories. 

• The 'HN1 Quad' lists the climber's limb positions. It consists of left-hand, right-

hand, left-foot, right-foot, respectively. If a limb does not touch a hold on the 

board, it is represented as 'None'. HN1 represents the starting position of a move. 

• The 'HN2 Quad' lists the climber's limb positions. It consists of left-hand, right-

hand, left-foot, right-foot, respectively. If a limb does not touch a hold on the 

board, it is represented as 'None'. HN2 represents the ending position of a move. 

 

Table 4: Computer-readable processed data of a move 

Move 

ID 

Gr

ade 

Merged 

Grade 

HN1 

Quadruple 

HN2 

Quadruple 

Total # of 

'None's COG 

Dist

ance 

Total 

None 

Cat. 

26284

60008 

6B

+ 0 

['G8', 'H11', 

'K5', None] 

['E13', 'H11', 

'K5', None] 2 

(153.33, 

178.33) 

126.

16 0 

 

The explanation the columns of the Table 4 is below: 

• The ‘Move ID’ column contains the move id. 

• The 'Grade' column indicates the Fontainebleau grade of the problem in which 

the move is made. 

• The 'Merged Grade' column shows the problem’s grade reduced to 3 grade 

categories. 

• The 'HN1 Quad' lists the climber's limb positions. It consists of left-hand, right-

hand, left-foot, right-foot, respectively. If a limb does not touch a hold on the 

board, it is represented as 'None'. HN1 represents the starting position of a move. 

• The 'HN2 Quad' lists the climber's limb positions. It consists of left-hand, right-

hand, left-foot, right-foot, respectively. If a limb does not touch a hold on the 

board, it is represented as 'None'. HN2 represents the ending position of a move. 
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• The 'Total # of 'None's' column gives the total number of None in the HN1 

Quadruple and HN2 Quadruple. In other words, it provides the total number of 

limbs not touching the board in the starting and ending positions of the move. 

• The 'COG' column gives the approximate point of Center of Gravity of the climber 

at the starting position of the move. Treats the board as a coordinate plane and 

returns an X, Y value. 

• The 'Distance' column gives the Euclidean distance from the climber's 

COG(Center of Gravity) to the new hold it contacts in an ending position. 

• The 'Total None Cat.' column shows the value in the 'Total # of 'None's' column 

converted to the 3-level None Category (0, 1, or 2). 

3.2.1.5. Problem Dataset of the Planning Model 

The problem dataset to test the network consists of 30 problems. The network is explained 

in Chapter 3.3.1. These problems are benchmark problems. For the figure of an example 

benchmark problem, see Chapter 3.2.1.2. For an explanation of the benchmark/non-

benchmark distinction, see Chapter 2.1. There is a balanced distribution in terms of grade 

in the dataset: There are seven problems in the 6B+ - 6C+ (merged grade 0) range, eight 

problems in the 7A-7B range (merged grade 1), eight problems in the 7B+-7C+ range 

(merged grade 2), and seven problems in the 8A-8B range (merged grade 3). The number 

of nodes of the problems ranges from 4 to 11. There are an average of 6.7 nodes in 30 

problems. See APPENDIX C for the problem list of the network. 

3.2.2. Models 

Bayesian models were used to predict (see Chapter 3.2.2.1) to predict the grade of the 

routes and to estimate the difficulty of moves. The data described These models were 

learned from the dataset of route grades and moves described in Section 3.2.1. The second 

model for predicting the difficulty of moves were used to define the costs in the search 

algorithm that plans the sequence of moves. 

A Bayesian network is a probabilistic graphical model that consists of a graphical structure 

(Directed Acyclic Graph also known as DAG) and parameters of conditional probability 

distributions corresponding to the structure (Pearl, 1988; Yet et al., 2016). The graphical 

structure of a Bayesian network is composed of nodes representing variables and directed 

edges representing the relations between the variables. The parameters of a Bayesian 

network represent the nature and strength of these relations represented by the edges. Both 

Bayesian Networks designed in this study are trained using the PyMC package developed 

in Python (Salvatier et al., 2016). 

DAG is a directed acyclic graph in which there are no directed circles. A DAG consists of 

nodes and edges. DAGs are used to represent causal relations between variables. They are 

helpful tools to investigate causal relations between variables and enable us to decide what 
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effect can be calculated given the causal relations. In this study, two DAGs were drawn 

for both models (see Figure 16 and Figure 17). 

3.2.2.1. Bayesian Network  for Estimations of Grades of Problems 

A Bayesian network was designed to estimate problem grades. The dependent variable of 

this network is grade. As stated earlier (see Grade in chapter 2.1.), grade is a categorical, 

ordinal variable”. Ordered Logit was preferred because it is more suitable for the 

categorical, ordinal variable. The variables of this Bayesian network are listed as follows: 

• Number of holds (N): Total number of holds in the problem. 

• Distance (D): The average distance between the holds 

• Percentage of Yellow holds (Y): What percentage of holds are yellow. 

• Incut (I): The average of the sum of the incut sizes of the holds 

• Grade (G): Merged grade of the problem 

In APPENDIX A.1 the average values, and the standard errors of a variable for each 

merged grade is drawn. The dashed line in each figure shows the overall average of the 

variable. Standardized values are used.  

The DAG below represents the Bayesian Network. The parameters and conditional 

dependencies of the structure shown in this figure are below. 
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Figure 16: Directed Acyclic Graph (DAG) of Problem Grade Model 

 

Parameters and equations of the model: 

𝐺𝑖 ∼ OrderedLogit(ϕ𝑖, α) 

ϕ𝑖 = β𝐷𝐷𝑖 + β𝑁𝑁𝑖 + β𝑌𝑌𝑖 ++β𝐼𝐼𝑖 

β𝐷 , β𝑁, β𝑌, β𝐼 ∼ Normal(0,1) 

α𝑗 ∼ Normal(0,1) 

3.2.2.2. Bayesian Network for Estimations of Move Difficulty 

A Bayesian network was designed to estimate move difficulties. The dependent variable 

of this network is grade. As stated earlier in Chapter 2.1, grade is a categorical, ordinal 

variable. Ordered Logit was preferred because it is more suitable for the categorical, 

ordinal variable. The dependent and independent variables are following: 

Independent Variables: 

• Distance (D): Distance from the target hold to the center point of contact points in 

the starting position of the move 
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• Number of limbs has no contact to any hold (N) Total number of holds in the 

problem 

Dependent Variable: 

• Grade (DG): Merged grade of the problem.  

In APPENDIX A.2 the average values, and the standard errors of a variable for each 

merged grade is drawn. The dashed line in each figure shows the overall average of the 

variable. Standardized values are used.  

Figure 17 shows the structure of this model. The parameters and conditional dependencies 

of the structure shown in this figure are below. 

 

Figure 17: Directed Acyclic Graph (DAG) of Move Grade Model 

𝐺𝑖 ∼ OrderedLogit(𝜙𝑖, 𝛼) 

ϕ𝑖 = β𝐷,𝐻[𝑖],𝑇[𝑖]𝐷𝑖 + β𝑁 ∑ δ𝑗𝛽𝐷

𝑁𝑖−1

𝑗=0

 

β𝐷 ∼ Gamma(2,2) 

β𝑁 ∼ Normal(0,1) 

𝛼𝑗 ∼ Normal(0,1) 

δ ∼ Dirichlet(α) 

3.3. Planning 

One of this thesis aims is to develop an AI agent that finds accurate solutions to 

MoonBoard problems. This task is defined as a routing problem on a network. The grid 

structure of MoonBoard enables us to define this task as a routing problem on a network. 
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Below the details of the network and transformation of the network into a hypernetwork 

are explained. 

3.3.1. Network 

MoonBoard is conceived as a raw network. The holds attached to the MoonBoard are the 

nodes of this network. However, regarding this problem, this raw network is not adequate 

yet for our routing task. A transformation is needed since a climber uses more than one 

node at any moment while climbing a problem. Up to four limbs of a climber are in contact 

with the MoonBoard at any moment. Therefore, this network is transformed into a 

hypernetwork in which nodes are transformed into hypernodes. While a node consists of 

one hold, a hypernode consists of up to four nodes. This hypernetwork will be called the 

network in the remainder of this study. 

Multiple networks are created for each problem. The reason for creating more than one 

network for a problem is as follows. Every problem has a specific starting node/s and 

ending node/s. Multiple possible start and end body positions (hypernodes) containing 

these nodes are possible. For a detailed description of Legitimate start and end positions, 

see Section 3.1.2. Networks containing all possible start/end position combinations are 

defined for each problem. After finding the shortest path with the Dijkstra algorithm in 

these networks, the lowest cost one is the solution found by the planning model. A detailed 

explanation of the algorithm and the elements that make up these networks is below. 

This network will be explained through an example problem. In this example, 3 figures 

will be referred: Figure 18, Figure 14, and Figure 15. Figure 18 is an example input of 

raw network. This figure shows the graphic of a MoonBoard problem named “Bitter”. The 

circled holds are the allowed holds on MoonBoard to grab while climbing the problem. 

Figure 14 and Figure 15 are the consecutive states of a climber on the problem. The 

elements of the network are following. 
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Figure 18: Problem named Bitter (Adapted from (Moon Climbing, 2022g)) 

3.3.1.1. Node 

A raw network's nodes are the holds permitted to use in a solution. There are three types 

of nodes in any raw network: 

• Holds that define the problem. In this example, holds that are circled: "K5", 

"I8", "G8", "H11", "E13", "E15", and "E18". 

• There are 10 foot holds below the main board. All problems, by default, share 

these holds. 

3.3.1.2. Hypernode 

Hypernodes consist of nodes. Hypernode is a representation of a state of a climber while 

climbing a problem. In hypernode, the limbs of a climber are represented. The form of the 

generic hypernode is [“Left-Hand”, “Right-Hand”, “Left-Foot”, “Right-Foot”]. In 

hypernode, limbs are always represented in a specific order. For example, Figure 14 is a 

photo of the climber on the problem (see Figure 17).  The hypernode representation of the 

Figure 14 is [“G8”, “H11”, “None”, “K5”]. Figure 15 is the next state comes after the 

state pictured in Figure 12. The hypernode representation of Figure 15 is [“E13”, “H11”, 

“None”, “K5].  
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A hypernode consists of 4 permutations of all nodes in the raw network. After network 

transformation, in principle, there are 73,440 possible hypernodes in the network of this 

problem. 4 permutations of 18 (7 circled nodes, 1 “None” node, 10 shared foot holds) 

equals 73440. However, not all these hypernodes are included in the network. Infeasible 

hypernodes are filtered. Chapter 3.3.1.5. gives the details of this elimination.  

3.3.1.3. Hyperedge 

Hyperedges connect hypernodes. Hyperedges represents moves of climbers. Hyperedges 

are directed. Each hyperedge has a cost value. The cost of an hyperedge detailed in 

Chapter 3.3.1.4. For example, there is a hyperedge that connects hypernode 

representations of Figure 14 and Figure 15.  

After the network transformation, in principle, there are more than five billion possible 

hyperedges in the network of the problem in Figure 18. However, not all these hyperedges 

are included in the network. Infeasible hyperedges are filtered. Chapter 3.3.1.5. gives the 

details of this elimination. 

3.3.1.4. Hyperedge Cost 

To be able to find a path with minimum cost, hyperedges need cost values. Table 3 shows 

the raw data of a hyperedge that connects the hypernode representations of Figure 14 

and Figure 15. This raw hyperedge data is processed to get cost values of hyperedges . 

The output values of this process are given in Table 4. These output values are the input 

parameters of a hyperedge cost function. The coefficients of these parameters are obtained 

after training of Bayesian Networks explained in Chapter 2.2.2. For the details of the 

coefficients, see Chapter 3.2.2.2. 

3.3.1.5. Filtering out Infeasible Hypernodes and Hyperedges 

On average, there are roughly seven holds in a typical MoonBoard problem. In principle, 

this makes more than seventy thousand possible hypernodes and more than five billion 

possible hyperedges. Not all these hypernodes and hyperedges are feasible. These 

infeasible hypernodes and hyperedges are filtered out. These filtrations are handled with 

two functions: one function is for infeasible hypernodes, and another is for infeasible 

hyperedges. 

The first function is to filter out infeasible hypernodes. Recall that a hypernode is a 

representation of the limbs of a climber. Some of the possible hypernodes are beyond the 

physical capabilities of any human being. For example, some possible hypernodes require 

4 meters tall person or a person with 3 meters arm-span. Hypernodes that are beyond 

physical capabilities are filtered out. The physical limits are derived from the beta / 

solution dataset and expert knowledge. They are defined in a dictionary, and each possible 

hypernode is tested to determine whether it exceeds these limits. 
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The other function is to filter out infeasible hyperedges. Hyperedge is a representation of 

a move of a climber. Some hyperedges were beyond the physical capabilities of any 

human being. For example, some of the possible hyperedges require 3 meters jump or 

simultaneous changes in all four limbs. The limits are derived from the beta / solution 

dataset and expert knowledge. This expert knowledge and the derived limits are reflected 

in a function. Each possible hyperedge is tested to determine whether it is in parallel with 

the expert knowledge and within the derived limits. 

These two functions reduced the sizes of the networks immensely. As mentioned above, 

there are more than seventy thousand possible hypernodes and more than five billion 

possible hyperedges in a network of a typical MoonBoard problem with seven holds. 

Thanks to these two filtering functions, there are around five hundred hypernodes and 

fifteen thousand hyperedges in a network of a typical MoonBoard problem with seven 

holds. 

3.3.1.6. Routing Algoritm 

The routing algorithm used in this study is Dijkstra’s Shortest Path Algorithm. There are 

several reasons why Dijkstra’s Shortest Path Algorithm is preferred in this study. First, 

climbers always seek solutions for problems with minimum physical demand to climb 

efficiently. Second, difficulties of any climbing problems are graded according to the most 

efficient and easiest solution, including our domain of MoonBoard. Third, the networks 

in this study have positively weighted edges, which makes our task suitable for Dijkstra’s 

algorithm. Finally, Dijkstra’s Algorithm is guaranteed to find the shortest path. 

After hypernodes and hyperedges are generated for a problem, to find the solutions with 

the shortest paths, or in other words, solutions with minimum costs, an open source Python 

package NetworkX (Hagberg et al., 2008) is used. Digraph object of the package is 

preferred since hyperedges in this study are directed and have positive weights. This 

problem has 22 feasible start hypernodes and 17 goal hypernodes. A network was created 

for all binary combinations of these starts and ends. Then, `shortest_path` method applied 

to each network, which implements the Dijkstra’s algorithm. Among all the shortest paths 

found, the one with the lowest cost was chosen as the path found by the planning model. 
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CHAPTER 4 

 

4. RESULTS 

In this chapter, the posterior parameters of the Bayesian models described in Section 3.2.2 

are presented (Section 4.1) and an example of the outputs of the route planning model 

described in Section 3.3.1. is shown (Section 4.2). Validation results of the grade 

classification, movement cost estimation and planning models are presented in Sections 

4.2, 4.3 and 4.4 respectively. 

4.1. Posteriors of the Bayesian Models 

The Bayesian models are trained with the datasets described in Section 3.2.1. The 

posteriors of both models are computed with PyMC using Markov chain Monte Carlo 

methods (Salvatier et al., 2016). PyMC is a probabilistic programming library. Below are 

the posterior sampling results for both models reported as a summary table which are 

obtained using ArviZ. ArviZ is a Python package developed for exploratory analysis of 

Bayesian models (Kumar et al., 2019). In addition to these posterior sampling summary 

tables, both models’ out-of-sample prediction accuracies are reported. The out-of-sample 

performances of both models is computed by Pareto Smoothed Importance Sampling - 

Leave-one-out-cross-validation (PSIS-LOO). (See (Vehtari et al., 2017) for the details of 

the PSIS-LOO approach). Following the reporting guidelines proposed by Kruschke 

(Kruschke, 2021), the results tables and descriptions are provided below for each model. 

4.1.1. The Results of the Model for Problem Grade 

This model is trained to estimate the problem grade and to study the causal effects of the 

variables that have been explained. The details of the dataset and variables are given in 

Chapter 3.2.1. Table 5 shows the summary statistics table of the posterior samplings of 

the variables. Table 6 shows the model's PSIS-LOO validation. The sampling was done 

with four chains and two thousand draws with the target acceptance rate of %95. Each 

chain is tuned by two thousand draws.   

The columns of Table 5, which are 'mean,' 'sd,' 'hdi_3%,' and 'hdi_97%,' are related to the 

model's parameters. The rest of the columns, which are 'mcse_mean,' 'mcse_sd,' 'ess_bulk,' 

'ess_tail,' and 'r_hat,' is related to the sampling efficiencies of those parameters. The high-
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density intervals (HDI) of parameters reported here cover the 3%-97% range. The dataset 

is standardized before model fit.  

alpha[0] and alpha[1] are the cutpoints of the estimand grade. bY, bI, bD, and bN are the 

parameters of the independent variables; Y (the percentage of yellow the holds), I (the 

average of the sum of the incut sizes of the holds), D (the average distance between the 

holds), N (the total number of the holds), respectively. The summary statistics shows that 

each independent variable has an effect on the estimand.  

The effects of the variables are either positive or negative. The average distance between 

the holds has the highest positive effect on the difficulty of a problem(0.867 - 1.491). The 

percentage of yellow holds had a positive effect (0.169 - 0.746). In contrast, the average 

of the incut sizes of the holds has the highest negative effect on the difficulty of a problem. 

The easier the holds to grab, the easier the problem. The total number of holds has a 

negative effect (-0.421 - 0.137). 

The summary statistics regarding sampling efficiencies of the model show that our chains 

sampled efficiently, according to the paper of Vehtari et al. (2019). All R-hat values are 1 

indicating efficient sampling. Effective Sample Size (ess_bulk and ess_tail) summary 

statistics of all parameters also show that our sampling is successful. We took a total of 

8000 steps; recall that there are four chains with two thousand draw for each. If Vehtari et 

al.'s suggestion were adapted to this model, these ess values would have to be greater than 

1600 for successful sampling. The ess values of all parameters are greater than five 

thousand, which indicates that the sampling was successful. 

 

Table 5: Summary Statistics of the Model for Problem Grade 

 

 

The following interpretation is suitable here regarding the summary statistics given 

in Table 5. The variables Y and D have positive effects, whereas the variable I and N have 

negative effects on the estimand grade. In summary, if there are more holds or holds that 

are easier to grab in a problem, the problem is easier. A problem becomes more difficult 
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if the percentage of yellow holds in the problem is large or the average distance between 

the holds increases. 

4.1.2. The Results of the Model for Move Difficulty 

This model is trained to estimate the move difficulty and to study the causal effects of the 

variables that have been explained. The details of the dataset and variables are given in 

Chapter 3.2.1.4 and Chapter 3.2.2.2, respectively. Table 6 shows the summary statistics 

table of the posterior samplings of the variables. Table 7 shows the model's PSIS-LOO 

validation. The sampling was done with four chains and two one draws with the target 

acceptance rate of %95. Each chain is tuned by one thousand draws.  

The columns of Table 6, which are 'mean,' 'sd,' 'hdi_3%,' and 'hdi_97%,' are related to the 

model's parameters. The rest of the columns, which are 'mcse_mean,' 'mcse_sd,' 'ess_bulk,' 

'ess_tail,' and 'r_hat,' is related to the sampling efficiencies of those parameters. The high-

density intervals (HDI) of parameters reported here cover the 3%-97% range. The dataset 

is standardized before model fit. 

alpha[0], alpha[1] and alpha[1] are the cutpoints of the estimand grade. bD[0, 0], bD[0, 

1], bD[1, 0], bD[1, 1], bNS, delta_ns[0], delta_ns[1] and delta_ns[2] are the parameters of 

the independent variables; D (distance from the target hold to the center point of contact 

points in the starting position of the move), N (the total number of limbs that has no contact 

to any problem). Delta parameters are the parameters of the Dirichlet distribution. 

Dirichlet distribution was preferred to better reflect the effect of the increased number of 

limbs not in contact with the board in the move on the difficulty. The delta values here are 

the values of Dirichlet prior. 

Note that there are four different parameters for variable D. The shape of the parameter is 

two by two. The first index shows whether the move is a hand or a foot move. 0 indicates 

foot move, and 1 indicates hand move. The second index shows whether the move is 

longer than a certain threshold distance. We have determined such a threshold because we 

believe that moving longer than a certain threshold will cause more effect than a linear 

difficulty increase. This belief became valid when we fit the model. For both thresholds, 

parameter considerable increases were seen for moves with distances below the thresholds 

and above. The detailed increase is reported below. 

The number of limbs that has no contact with the wall has the highest effect on move 

difficulty (1.195 - 2.904). The distance also had a positive effect. The distance increase of 

hand and foot moves affects the difficulty increase. In addition, the effects increased when 

the distance thresholds were exceeded. Exceeding the distance threshold in hand moves 

caused more increase of effect(from 0.004 - 0.109 to 0.295 - 0.582) than exceeding the 

threshold of foot moves (from 0.138 - 0.349 to 0.284 - 0.753).  
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The summary statistics (see Table 6) of regarding sampling efficiencies of the model show 

that our chains sampled efficiently (Vehtari et al., 2019). All R-hat values are 1 indicating 

efficient sampling. Effective Sample Size (ess_bulk and ess_tail) summary statistics of all 

parameters also show that our sampling is successful. We took a total of 4000 steps; recall 

that there are four chains with one thousand draw for each. If Vehtari et al.'s suggestion 

were adapted to this model, these ess values would have to be greater than 400 for 

successful sampling. The ess values of all parameters are greater than two thousand, which 

indicates that the sampling was successful. 

Table 6: Summary Statistics of the Model for Move Difficulty 

 

4.2. Outputs of the Planning Model  

The problem dataset to test the network described in Section 3.3.1 consists of 30 problems. 

(for the dataset see APPENDIX C). There is a balanced distribution in terms of grade in 

the dataset: 

• Seven problems in the 6B+ - 6C+ range (merged grade 0) 

• Eight problems in the 7A-7B range (merged grade 1) 

• Eight problems in the 7B+-7C+ range (merged grade 2) 

• Seven problems in the 8A-8B range (merged grade 3) 

For the planning model to find solutions to boulder problems, start nodes, intermediary 

nodes, and end nodes in Table 12 are given as input to the planning model. Each problem 
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consists of the sum of these three node types. A network was generated from the 

hypernodes created by these nodes. The expected output path from the network can be 

summarized as follows: the network will develop a sequence of moves, the first hypernode 

of this sequence contains the start nodes specified in the input, the last hypernode will 

contain the end nodes from the input, Hypernodes in this sequence of moves can only have 

nodes specified in the input or a 'None' node.  

The outputs of the planning model are the paths with the lowest cost that Dijkstra's 

algorithm finds on networks developed separately for each problem, i.e., move sequences. 

The shortest paths consist of hypernodes. The shortest paths are shared in Appendix D, 

and their validation is presented in Section 4.5. 

I will describe the input and output of the planning model over a problem. Figure 19 is an 

image of the nodes of this problem. The green circle signs the start node. Blue circles mark 

intermediate nodes. The red circle also indicates the end node. This node information is 

given to the planning model as input (list of nodes: F5, H11, E15, and E18).  

 

Figure 19: The Nodes of a Problem (Adapted from (Moon Climbing, 2022a)) 

The model derives all possible hypernodes from these input nodes. A hypernode consists 

of 4 permutations of all input nodes plus default nodes(10 kicker nodes and a 'None' node). 

After network transformation, in principle, there are 32.760 possible hypernodes in the 

network of this problem. Four permutations of 15 (4 circled nodes, 1 “None” node, ten 

shared foot holds) equals 32,760. Of these possible hypernodes, the infeasible ones are 

discarded. The number of feasible hypernodes is 134 after this filtering.  

Among these hypernodes, 3517 out of 17822 possible hyperedges are feasible. After 

calculating the costs of the hyperedges with the posterior distributions of the Bayesian 
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model's (the model detailed in Chapter 3.2.2.2.) parameters, the network transformation 

is completed.  

There are multiple start hypernodes and goal hypernodes on this network that match the 

problem description. The start hypernode must contain all of the start nodes marked in 

green. The goal hypernode must contain all of the red-marked end nodes. The Dijkstra 

algorithm finds the shortest paths on the network for all two possible permutations of these 

start and goal hypernodes. The output of the planning model is a list of hypernodes which 

has the lowest cost of these shortest paths. The result of the planning model for a problem 

is this shortest path's hypernode sequence.  

Visualizing the entire network is challenging, as even a four hold problem has 134 

possible hypernodes and 3517 hyperedges. However, you can refer to Figure 20 for the 

visual of the network consisting of hypernodes only in the shortest path of the above 

problem. NetworkX’s related method used to draw the figure (Hagberg et al., 2008).  

In Figure 20, the green hypernode is the start hypernode, the blue hypernodes are the 

intermediate hypernodes, and the red hypernode is the goal hypernode. The green 

hypernode(F5, F5, None, F0) is a legitimate start hypernode because the hypernode's hand 

nodes(F5) contain the start nodes(F5) of the problem. The red hypernode (E18, E18, None, 

H11) is a legitimate goal hypernode because the hypernode's hand nodes contain the end 

nodes of the problem (E18).  

 

Figure 20: The Network of the Shortest Path 



43 

 

4.3. Validation of the Model for Problem Grade 

For validating the problem grade classification model, 451 benchmark problems were. 

Note that, only the benchmark problems graded by the MoonClimbing moderator team 

were used to make validation more reliable (benchmark – non-benchmark distinction 

explained in Section 2.1.9). MoonClimbing is the manufacturer of the artificial climbing 

board on which the study was conducted, and the moderators team consists of experts in 

this field. 

Firstly, PSIS-LOO cross validation was done using PyMC. Table 7 shows the results. All 

estimated shape k parameters are less than 0.5. This makes the estimations reliable, 

according to the above-mentioned paper of Vehtari et al (2017).  

 

Table 7: PSIS-LOO Validation – Problem Grade 

 

Secondly, classification performance of the posterior predictions of the grade 

classification model were evaluated.  Most probable grades in the posterior predictions 

were compared with the true grades. The 451 benchmark problems were divided into train 

and test sets. The train-test split was done using the Python module  Scikit-learn’s 

train_test_split method (Pedregosa et al., 2011) with 70-30 ratio. This split was done in a 

stratified fashion since the dataset set was imbalanced. There were more problems in the 

easier grades compared to harder grades. Scikit-learn’s train_test_split method has a 

stratify parameter that enables one to do so. Doing so ensures that the grade proportions 

were the same in the train and test datasets.  

Table 8 and Figure 21 reports the results of the second validation. Table 8 is the 

classification report of the validation obtained with the classification_report object of the 

mentioned library (Pedregosa et al., 2011). Figure 21 is a heatmap of the confusion matrix 

of the validation obtained with the heatmap method of Seaborn (Waskom, 2021) , which 

is an open-source data visualization library of Python. The original labels of the dummy 

variables ‘0’,’1’ and ‘2’  of Figure 21 are ‘Intermediate’, ‘Advanced’, and ‘Elite’ 

respectively.  
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Table 8: Classification Report - Problem Grade 

 

 

Figure 21: Confusion Matrix - Problem Grade 
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4.4. Validation of the Model for Move Difficulty 

The validation method is the Pareto-smoothed Importance Sampling Leave-one-out Cross 

(PSIS-LOO) validation mentioned above. For this validation, there are 2456 individual 

moves in the dataset. PSIS-LOO is computed using ArviZ's loo method implemented in 

Python (see Table 9). All estimated shape k parameters are less than 0.5. This makes the 

estimations reliable, according to the paper mentioned above by Vehtari et al 2017).  

Table 9: Pareto-smoothed Importance Sampling Leave-one-out Cross (PSIS-LOO) Validation – Move 

Difficulty 

 

4.5. Validation of the Planning Model  

The results of the planning model validated with the suggested solutions in the 

MoonBoard application. The planning model found solutions to all thirty boulder 

problems in the problem dataset (see Appendix C). Each solution found by the model is 

compared with the suggested solution. This study used four performance metrics to 

validate the planning model: distance, cost, number of moves, and node accuracies. The 

predicted solution and the suggested solution to each problem were compared. Tables with 

validation results are in Appendix D.2. In this section, first, a general evaluation of the 

results will be made. Then, the results of each metric will be discussed separately. The 

relationship between them will be indicated. 

 The performance metrics are the following:  

• the number of moves (see Table 13 in Appendix D.2.) 

• the distance (see Table 14 in Appendix D.2.) 

• the path cost (see Table 15 in Appendix D.2.) 

• the node accuracies (see Table 16 in Appendix D.2.) 
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If we evaluate the model across the entire dataset, it found the correct hand nodes with an 

average accuracy of 62%. In addition, the number of hand moves made by the model is 

on par with the suggested solutions. Suggested solutions had an average of 6.26 hand 

moves, while the model made an average of 6.2 hand moves. However, the model 

performed poorly in foot moves. The model found the correct foot nodes with an average 

accuracy of 24%. Because the model made 62% fewer foot moves. Suggested solutions 

have an average of 6 foot moves, while the model has 2.26. So, the overall node accuracy 

of the model is 39%. The model's tendency to make fewer foot moves kept the path cost 

and distance of the solutions low. The average path cost of the solutions found by the 

model is 38% less than that of the suggested solutions (6.80 and 11.05). Also, the total 

distance of the solutions found by the model is 30% less than that of the suggested 

solutions (768.82 and 111.69). 

In addition, the solutions that the planning model found used almost all available nodes in  

the problems. It showed similar performance with the suggested solutions. On average, 

the model used %88 of available nodes. The suggested solutions used %91 of all nodes. 

The model skips very few nodes. In benchmark problems, unnecessary nodes occur very 

rarely. In the problem where there is no unnecessary node, skipping a node indicates an 

efficiency problem. The model showed that it did not make this mistake by skipping very 

few nodes. 

The first metric to be discussed is 'number of moves'. The three types of moves in each 

solution were calculated separately: moves that a hand leads, moves that include only foot 

changes, and all moves. For the comparison table of this metric, see Table 13. All but one 

predicted solution has fewer moves than the suggested solution. This is because predicted 

solutions involve fewer foot moves. Although this may seem like a good thing at first, it 

is actually due to the fact that the model is not able to catch foot move needs. It is the feet 

that allow the climber to transfer weight on the board. More footwork means breaking up 

the weight transfer work into smaller pieces. The model does not reflect this need well. 

This deficiency will show itself indirectly in other metrics as well. 

The second metric is distance. The total distances of suggested and predicted solutions are 

calculated. Table 14 shows the results. The distances of all predicted solutions except one 

are smaller than those of the suggested solutions. Again, this is because the planning 

model tends to take fewer foot moves to reach the goal hypernode. It is expected that this 

distance difference will not be observed in a model that can reflect that making more foot 

moves is more cost-efficient. 

The third metric is cost. The total path costs and mean path costs are calculated. Table 15 

shows the results. The total path costs of all predicted solutions except one are smaller 

than those of the suggested solutions. Again, this is because the planning model tends to 

take fewer foot moves to reach the goal hypernode. This causes the total path cost to 

decrease. This effect is also seen when we focus on mean path costs. This time, all mean 

path costs except four are larger in predicted solutions. Although the total path cost is less 
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in predicted solutions, the average difficulty per move is higher. The model fails to capture 

the benefit of dividing the weight transfer work into smaller parts with more footwork. 

The last metric is node accuracy. Node accuracies of each solution were calculated. The 

percentages of three node accuracies are calculated: 

• The percentage of true nodes 

• The percentage of hand nodes 

• The percentage of foot nodes 

Chapter 4.2. described the outputs of the planning model using an example. The same 

example will be used here in the context of validating the planning model. The shortest 

path for this example will be compared with the suggested path in the MoonBoard 

application in terms of the performance metrics above. 

Figure 22 shows the result of the model on the left and the suggested path in the 

MoonBoard application on the right. Performance metrics for paths are shown in Table 

10. NetworkX’s related method used to draw the figure below (Hagberg et al., 2008). 

 

Figure 22: The Comparison of the Predicted Path (Left) and the Suggest Path (Right)  
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Table 10: The Comparison of the Performance Metrics of the paths in Figure 22 

Problem ID: 50356 

# of the pred. 

moves 

# of the 

sug. 

moves 

# of  hand moves 

in the pred. path 

# of  hand moves 

in the sugg. path 

# of foot moves in 

the pred. path 

# of foot moves in 

the sugg. path 

6 7 4 4 2 3 

total predicted distance total suggested distance 

569.42 776.21 

path cost of the 

predicted path path cost of the suggested path mean predicted move cost 

mean suggested 

move cost 

5.38 7.66 0.9 1.09 

percentage of accurate 

nodes percentage of accurate hand nodes percentage of accurate foot nodes 

0.64 1 0.43 

 

The number of moves metric contains three different numbers. The total number of all 

moves, the number of moves to the new hand node, and the number of moves to the new 

foot node. Each hyperedge in Figure 22 is a move. In this problem, the number of 

predicted moves is one less than the number of suggested moves. In the predicted solution, 

1 less foot move is made. The first two nodes of each hypernode are hand nodes, and the 

last two are foot nodes. In the new hypernode in the directed part of hyperedge, if the hand 

node has changed compared to the previous hypernode, it is a hand move. If only the foot 

node in the new hypernode in the directed part of the hyperedge has changed compared to 

the previous hypernode, it is a foot move. In this problem, the number of moves in both 

solutions is very close. The fact that the model solves the problem with such a close 

number of moves indicates that it is a human-like solution. The closeness of these move 

numbers implies success in other metrics as well. The planning model's performance 

across all 30 problem validation datasets will sometimes differ from this. A general 

evaluation of this metric across the entire dataset is provided will be made in detail in 

Chapter 5.1. The explanations for all the metrics in this example are as follows. 

The distance metric shows the sum of the distances of the new node in each move to the 

midpoint of the nodes of the previous hypernodes. In this problem, the total distance in 

the predicted path is 569.42 units, while the total distance in the suggested path is 776.21. 

There are two reasons for the approximately 35% difference. The suggested path has more 

moves, and the moves in the suggested path are longer moves. The predicted path found 

here is more suitable for short climbers than the suggested path. 



49 

 

The path cost metric shows the total path cost of both paths. In this problem, the total path 

cost of the predicted path is 5.38 units, while the path cost of the suggested path is 7.66. 

One reason for this difference is that the number of moves is one more in the suggested 

path. The other reason is that moves with more distance have more costs. As mentioned 

above, in this problem, there was a total distance difference of about 35% from the 

predicted path in the suggested path. 

The last metric is the node accuracy metric. As in 'number of moves', three different 

accuracy percentages were calculated:  all nodes, hand nodes, and foot nodes. If the new 

node reached in any move of the predicted path is present in the suggested path, then this 

node is evaluated as true. The only condition is that the node must have been used with 

the same limb in both paths. In this problem, the overall percentage of accurate nodes is 

0.64, the percentage of accurate hand nodes is 1, and the percentage of accurate foot nodes 

is 0.43. Although the model was good on both overall and hand accuracies, it could not 

find an accurate solution in foot moves. Poor performance in foot moves was also seen in 

other problems. This is discussed in Chapter 5.1. 

The general discussion of all validation results of the planning model is in Chapter 5.1. 
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CHAPTER 5 

 

5. CONCLUSION  

5.1. Conclusion and Discussion  

This study focussed on, climbing sport, specifically bouldering, as a decision-making 

problem and tackles this problem with a goal-based learning agent. This research has three 

research questions: 

Q.1. Can we design an AI agent that shows human-like climbing behavior? 

Q.2. Can this agent accurately guess the difficulty of boulder problems? 

Q.3. Can this agent find an accurate solution for a novel boulder problem? 

A goal-based agent was designed to answer these questions. This agent achieves two tasks: 

estimates the difficulty of a given problem and finds a solution to a given problem. This 

agent is supported by three different models: two separate learning models and one 

planning model. Learning models are developed in the Bayesian framework. On the other 

hand, the Planning model finds the shortest paths on Digraphs on which the Dijkstra 

algorithm is run. 

This study is unique in its methodology and subject matter. Climbing has not yet been 

studied as a decision-making problem. The other novelty is that the planning task was not 

treated as just a distance optimization problem. It was based on data and experience while 

calculating the costs of all possible moves. The statistical model was developed in the 

Bayesian framework to calculate those costs. These costs were then used to find an 

optimized solution to a given bouldering problem.  

A learning model was designed in the Bayesian framework to answer Q2. MoonBoard 

problems were collected from the MoonBoard web application to train this model. This 

dataset of 451 problems was collected by developing a web bot. The raw data collected 

was processed before training this model. In the raw data, only the holds that constitute a 

MoonBoard problem had location information on the board or node information, as it is 

technically called in this study. After processing the raw data, four different features were 

obtained for each route: distance, number of nodes, incut information, and percentage of 



52 

 

yellow holds. It is thought that there is a causal relationship between these four features 

and problem difficulty. See Figure 23 in Appendix A.1 for the average values and standard 

errors of these features and the relationship between their difficulty levels.  

By looking at the posterior distributions of the Bayesian model, it can be said that 

increases in distance and percentage of yellow holds increase the difficulty, while 

increases in the number of holds and incut have a facilitating effect (see Table 5 in Chapter 

4.1.1.). If the distance between the holds in a problem increases, the difficulty level of a 

problem increases. This effect is seen because reaching a hold farther away is more 

difficult. The problem becomes more difficult if the yellow hold density increases in a 

problem. The effect observed in the percentage of yellow holds feature is because the 

yellow holds are consistently smaller in size than the other holds on the board. If there are 

more holds in a problem, more options exist. According to the climber's position and the 

angle of the available holds, it is possible to choose the most suitable hold, and this has a 

facilitating effect on the problem. Regarding incut, an increase in the incut of a hold means 

that it is easier to grab that hold. It would be misleading to think there is a linear 

relationship between the hold's size and its incut. A small hold can have a larger incut than 

a large hold. This makes the small hold easier to hold. A problem consisting of holds with 

more incut is expected to be easier. The posterior distributions of the parameter of incut 

support this causal effect (see parameter ‘bI’ in Table 5 in Chapter 4.1.1.). 

The results of the model's estimation performance can be seen in Figure 21 and Table 8. 

The model's accuracy was over 70% for all merged grade categories (for the explanation 

of the term merged grade, see Chapter 2.1.). However, recall values for categories of 

merged grades 1,2 and 3 were observed as 81, 63, and 42 for each category, respectively. 

We think that the reason for this thought is that the dataset is unbalanced. Four hundred 

fifty-one problems were divided into train-test sets with a rate of 30%. Since the dataset 

is unbalanced, there are fewer problems in more difficult grades. The train-test split was 

performed in a stratified way. This stratified fashion preserved the merged grade ratios in 

the train and test sets. As can be seen from the table, support decreased as the merged 

grade increased. While there are only 12 problems from the merged grade 2 category in 

the test data, there are 72 problems from the merged grade 1 category. This unbalance 

makes it difficult for the model to learn merged grade 2. As a result, the recall value of 

the model is low in the merged grade 2 category. 

The following can be done to improve the model designed in the context of research 

question 2. recall that four features were used in the model designed for problem difficulty, 

and three different merged grade category predictions were produced. Scale can be 

divided into more categories by increasing the merged grade category. For this, the 

number of problems in the dataset must be increased. Another improvement can be made 

as follows. This model has four different input features. The number of these features can 

be increased. For example, a better model may include the features: the angles of the holds 

and the slopeness of the holds. 
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Q1 and Q3 are related. Two models were designed to these questions. One model is a 

learning model in the Bayesian framework. The other model is a planning model that finds 

solutions to given boulder problems. The learning model supports the planning model. 

The learning model is trained to estimate the difficulty of a move. The posterior 

distributions of the parameters of this model are used in the planning model. The path 

costs of the planning model are calculated by these parameters.  

Table 16 shows the results and averages. The model performed well in predicting hand 

moves. The model showed an average of 62 percent accuracy over 30 problems on hand 

nodes. However, the model needs to improve in predicting foot moves. The model showed 

an average of 25 percent accuracy on foot nodes over 30 problems. The model showed an 

average of 36 percent accuracy in its overall node prediction. The model's success in the 

hand move was observed at the highest level in 3 problems. In 3 problems, the model 

found solutions containing the exact hand sequences from the suggested solutions. But in 

general, the problem mentioned above has also manifested itself here. The model's 

tendency to do less footwork resulted in a lower overall node accuracy. The average path 

cost of the solutions found by the model is 38% less than that of the suggested solutions 

(6.80 and 11.05). Also, the total distance of the solutions found by the model is 30% less 

than that of the suggested solutions (768.82 and 111.69).  

In addition, the solutions that the planning model found used almost all available nodes in  

the problems. It showed similar performance with the suggested solutions. On average, 

the model used %88 of available nodes. The suggested solutions used %91 of all nodes. 

The model skips very few nodes. In benchmark problems, unnecessary nodes occur very 

rarely. In the problem where there is no unnecessary node, skipping a node indicates an 

efficiency problem. The model showed that it did not make this mistake by skipping very 

few nodes. 

In terms of Q1, the model performed as expected in hand moves. An athlete can implement 

hand movement decisions of the model. The model does not produce positions that would 

exceed the physical limits of any human being. 62% hand node accuracy also supports 

this. However, the model's tendency to make an average of about 60% fewer foot moves 

reduces the quality of the solutions found by the model to be applied by an athlete. The 

tendency to make few foot moves pushes the model to make difficult long dynamic moves. 

For example, there are problems where the model prefers to approach the goal state with 

one powerful (long, dynamic move) move instead of making three more foot moves in a 

less powerful (static) style. 

The model's tendency to make fewer foot moves causes it to make a mistake seen in 

amateur climbers. Amateur climbers have difficulty maintaining foot contact with the wall 

while climbing on a steep-angled board like MoonBoard. Both feet lose contact with the 

wall and make contact again while climbing. They cannot keep the tension in their body, 

and their feet lose contact with the wall from time to time. This is encountered in the 

solutions developed by the model. Due to the nature of MoonBoard problems, it is normal 

to a certain point that the feet are not in contact with the wall. There are many problems 
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to practice dynamic, powerful moves in MoonBoard problems. However, apart from such 

problems, the model also cuts off the contact of the feet with the wall. 

The solutions that the planning model generated are validated with the suggested solutions 

from MoonBoard mobile App. Although suggested solutions are successful in the sense 

that they are legitimate and sequences that a human can follow, they may be sub-optimal. 

Suggested solutions may have skipped holds. It may include some redundant foot moves 

or hand moves. Fitter and more experienced climbers may suggest another solution to the 

same problem. Not only her fitness or anthropometric characteristics but also the 

flexibility of a climber increases the number of possible moves. A flexible climber may 

increase the number of contact points to the board and thus distribute the load on their 

limbs more evenly.  

There are certain limitations of the planning model. First, the model does not consider the 

angle of the holds. In some cases, this deficiency leads to more difficult solutions. The 

planning model can find more accurate solutions if the hold angles information can be 

included in the model that estimates the move difficulty. Second, the beta dataset consists 

of only successful moves. There are no failed moves in the dataset. When trying to find a 

solution to a problem, the climber makes unsuccessful attempts if he is inexperienced. 

These unsuccessful attempts may be due to physical incapacity or decisions that will put 

the climber in impossible positions. The absence of such wrong moves in the dataset 

makes it difficult to distinguish what is feasible and what is not. Third, the model makes 

some moves that require a lot of strength and power. Although these moves are within the 

limits of the solution dataset in terms of body positions, some moves that the model finds 

require a lot of strength and power. The model does not include the data of the force 

exerted by the climber on the holds. For this reason, the model sometimes makes moves 

that require a lot of strength and power.  

5.2. Suggestions for Further Studies 

In future studies, Generalized Additive Models (GAM) and Gaussian Process models can 

be used for the effect of distance in models that estimate the difficulty of a move. 

The planning model found solutions from the starting position to the ending position in 

one go with the shortest path algorithm. Alternatively, solutions can be developed 

dynamically. The task can be handled by dividing it into parts, with an algorithm that 

develops a solution for each part. Approaching this way can prevent possible hold skips. 

There has been a significant increase in the number and variety of standardized training 

boards in recent years. Personalized beta and problem suggestion features can be added to 

these boards' mobile or web applications. These features will take as input the person's 

physical characteristics, limits, and problems he has climbed before. By evaluating these 

inputs, the application will be able to suggest a personalized beta for the given problem or 
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make problem suggestions according to the topic of the training that day. Thanks to these 

features, the training efficiency of the climbers can be increased. 

The need for automated management of problems was realized while creating the dataset 

of this research. The main reason is that this training board's problem dataset is very large, 

namely more than 50 thousand. There is a large community that expands this problem 

pool. However, there is a limited moderator’s team that certifies that the difficulty level 

of problems is given accurately by route setters and that the routes are of good quality. It 

is not possible for a limited team to manage such a large problem pool manually. 

Therefore, an automated moderation can be added to the application. Two different 

models can evaluate whether the difficulty level proposed by the community is accurate 

and whether the route is of good quality. 

Sensor data can be included in the dataset to make the dataset more detailed and the  beta-

finding planning model more comprehensive. Three different types of sensors can be used 

to obtain this sensor data: 

-IMU: a specific type of sensor that measures angular rate, and force. 

-EMG: measures small electrical signals generated by your muscles when you move them. 

-LOADCELL: converts force into measurable electrical output. 

With the help of these sensor data, the difficulty of the climber's moves on the board can 

be better determined and modeled. In fact, with these data, the physical skills of the 

climbers can be profiled, and problem suggestions can be made to improve their 

deficiencies. 

Climbing style and physical features can be added to the planning model. When creating 

a Network for a problem, possible body positions (Hypernodes) and moves (Hyperedges) 

can be manipulated according to the climber's desired climbing style and physical limits. 

For a more dynamic climbing style, hyperedges with multiple limb replacements are 

defined, while for more static, conservative climbing styles, hyperedges involving 

multiple limb replacements may be restricted. For climbers with more flexibility, body 

positions with the feet closer to the hands can be included in the network. Such hypernodes 

may be restricted for climbers with little flexibility. 

The study validated the planning model with suggested solutions in the application. 

Further analysis can do two things for a more comprehensive assessment of the solutions 

developed by this model. First, experienced climbers can evaluate solutions through a 

survey. Second, the climbers can try the solutions on the board. After trying them on the 

board, climbers can evaluate the solutions through a survey. In this way, it can be more 

accurately evaluated whether the solutions produced are human-like, efficient or not, and 

possible. 
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APPENDICES 

APPENDIX A 

Appendix A.1. The Plots of the Variables of the Bayesian Model for Problem Grade 

 

 

Figure 23: The Plots of Each Variable with The Average Values and Standard Error Bars for each Merged 

Grade 
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Appendix A.2. The Plots of the Variables of the Bayesian Model for Move Difficulty 

 

Figure 24: The Plots of Each Variable Standardized or Mean Values and Standard Error Bars for each 

Merged Grade 
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APPENDIX B 

MoonBoard Holds Classification 

Table 11: MoonBoard Hold Classification 

name color incut match name color incut match 

A5 white 0 TRUE F12 white 0 FALSE 

A9 black 1 FALSE F13 black 1 FALSE 

A10 yellow 0 FALSE F14 white 2 TRUE 

A11 yellow 0 FALSE F15 yellow 1 FALSE 

A12 white 0 FALSE F16 white 0 FALSE 

A13 yellow 1 FALSE G2 white 2 TRUE 

A14 black 2 FALSE G4 black 1 TRUE 

A15 white 1 FALSE G6 black 2 TRUE 

A16 yellow 1 FALSE G7 yellow 0 FALSE 

A18 black 1 TRUE G8 white 1 TRUE 

B3 white 2 TRUE G9 black 2 FALSE 

B4 yellow 1 TRUE G10 black 1 FALSE 

B6 black 1 TRUE G11 yellow 1 FALSE 

B7 yellow 0 FALSE G12 white 1 FALSE 

B8 white 1 FALSE G13 white 2 TRUE 

B9 white 1 FALSE G14 black 1 TRUE 

B10 black 2 FALSE G15 black 2 FALSE 

B11 white 2 TRUE G16 yellow 0 FALSE 

B12 black 0 FALSE G17 black 1 FALSE 

B13 white 2 TRUE G18 white 2 TRUE 

B15 black 0 FALSE H5 black 2 TRUE 

B16 white 1 FALSE H7 yellow 0 FALSE 

B18 white 2 TRUE H8 black 1 FALSE 

C5 black 1 TRUE H9 yellow 2 FALSE 

C6 white 0 TRUE H10 black 2 TRUE 

C7 yellow 2 TRUE H11 white 2 TRUE 

C8 black 1 FALSE H12 black 0 FALSE 

C9 yellow 0 FALSE H13 black 2 FALSE 

C10 white 2 FALSE H14 yellow 2 FALSE 

C11 white 0 FALSE H15 yellow 0 FALSE 

C12 yellow 1 FALSE H16 black 1 FALSE 

C13 black 2 TRUE H18 yellow 1 TRUE 

C14 white 1 FALSE I4 white 1 TRUE 
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C15 yellow 2 FALSE I5 yellow 2 TRUE 

C16 black 1 FALSE I6 white 0 TRUE 

C18 yellow 1 TRUE I7 black 0 FALSE 

D3 yellow 1 TRUE I8 yellow 0 FALSE 

D5 white 0 TRUE I9 black 2 TRUE 

D6 yellow 0 TRUE I10 black 1 TRUE 

D7 black 0 FALSE I11 white 1 FALSE 

D8 yellow 0 FALSE I12 yellow 2 FALSE 

D9 white 1 FALSE I13 white 0 FALSE 

D10 yellow 2 FALSE I14 black 2 TRUE 

D11 black 2 FALSE I15 black 1 FALSE 

D12 white 2 TRUE I16 white 1 TRUE 

D13 yellow 2 FALSE I18 black 2 TRUE 

D14 white 0 FALSE J2 white 2 TRUE 

D15 black 2 TRUE J5 black 2 TRUE 

D16 yellow 0 FALSE J6 white 0 TRUE 

D17 white 1 TRUE J7 black 1 FALSE 

D18 black 2 TRUE J8 white 2 TRUE 

E6 black 1 TRUE J9 white 2 FALSE 

E7 white 1 TRUE J10 white 1 FALSE 

E8 black 1 TRUE J11 yellow 0 FALSE 

E9 black 0 FALSE J12 black 0 FALSE 

E10 white 2 FALSE J13 black 2 FALSE 

E11 white 1 FALSE J14 yellow 1 FALSE 

E12 black 2 FALSE J16 black 1 FALSE 

E13 white 1 FALSE K5 white 2 TRUE 

E14 black 2 FALSE K6 yellow 0 TRUE 

E15 white 2 TRUE K7 yellow 0 FALSE 

E16 black 2 TRUE K8 yellow 0 FALSE 

E18 white 2 TRUE K9 black 2 FALSE 

F5 white 2 TRUE K10 yellow 0 FALSE 

F6 yellow 0 TRUE K11 white 2 FALSE 

F7 white 1 FALSE K12 yellow 0 FALSE 

F8 yellow 0 FALSE K13 yellow 0 FALSE 

F9 yellow 1 FALSE K14 black 2 FALSE 

F10 white 1 FALSE K16 black 1 TRUE 

F11 black 1 FALSE K18 white 2 TRUE 

 

 



65 

 

 
 

APPENDIX C 

 

Table 12: Problem Dataset of the Network 

probl

em id 

font. 

grade 

merge

d 

grade 

number 

of nodes 

start 

node

s intermediate nodes 

end 

node

s nodes 

8222

4 8B 3 4 J5 I9, E14 H18 J5, I9, E14, H18 

6257

5 8A+ 3 6 K6 

D10, H14, A16, 

K7 A18 

K6, K7, D10, H14, A16, 

A18 

2318

4 8A 3 8 

B4, 

G7 

H7, K8, K10, K13, 

G16 H18 

B4, G7, H7, K8, K10, 

K13, G16, H18 

2410

45 8A+ 3 8 

D3, 

B4 

G7, I8, K12, H14, 

H15 C18 

D3, B4, G7, I8, K12, 

H14, H15, C18 

6256

0 8A 3 5 D6 F9, H9, F15 C18 C18, D6, F15, F9, H9 

3507

83 8A 3 8 

G2, 

E6 

J6, F8, J12, F15, 

F16 A18 

E6, G2, J6, F8, J12, F15, 

F16, A18 

3715

79 8A 3 8 

D3, 

E6 

I8, A12, G14, 

G16, A16 A18 

D3, E6, I8, G14, G16, 

A16, A12, A18 

4457

8 7C+ 2 5 A5 C14, E7, H11 G18 A5, C14, E7, G18, H11 

4301

0 7C+ 2 6 

F6, 

K6 A10, G11, C15 C18 

F6, K6, G11, A10, C15, 

C18 

4521

1 7C 2 8 

H5, 

D6 

E9, E11, J11, J14, 

I15 H18 

D6, H5, E9, E11, J11, 

J14, I15, H18 

2069

8 7B+ 2 6 A5 A9, F11, F13, E16 I18 

A5, A9, F11, F13, E16, 

I18 

4893

9 7B+ 2 6 

B6, 

F6 F11, I14, G15 D18 

B6, F6, F11, G15, I14, 

D18 

4305

86 7C+ 2 7 B3 

D8, C11, K10, I13, 

H14 K18 

B3, D8, C11, H14, I13, 

K18, K10 

2279

99 7C 2 7 J2, I6 

G10, D10, F15, 

C16 I18 

C16, D10, F15, G10, I6, 

I18, J2 

3970

9 7B+ 2 5 G4 C7, H7, E13 C18 C7, C18, E13, G4, H7 

3450

39 7B 1 8 J5 

E6, F7, A9, E12, 

F13, I15 H18 

J5, E6, F7, A9, E12, F13, 

I15, H18 

2922

63 7B 1 6 E6 A9, C9, A13, B15 G18 

A9, A13, B15, C9, E6, 

G18 

4872

3 7A+ 1 7 A5 

H5, E8, E9, G13, 

E16 D18 

A5, D18, E8, E9, E16, 

G13, H5 

2468

1 7A+ 1 6 I5 

H9, D10, H14, 

D16 H18 

D16, D10, H18, H14, H9, 

I5 
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3138

75 7A 1 6 K5 J8, F11, G14, E16 G18 

K5, J8, F11, G14, E16, 

G18 

5035

6 7A 1 4 F5 H11, E15 E18 E15, E18, F5, H11 

1181

71 7B 1 11 

J2, 

K5 

A5, E7, F7, J8, 

B11, C11, F14, 

G14 K18 

A5, B11, C11, E7, F14, 

F7, G14, J8, J2, K5, K18 

2020

64 7B 1 7 C5 

H5, E9, F11, H12, 

G15 I18 

C5, E9, H5, F11, H12, 

G15, I18 

1720

10 6C 0 8 F5 

E7, A9, K12, E12, 

F14, G17 D18 

A9, D18, E7, E12, F14, 

F5, G17, K12 

2689

43 6C 0 7 

A5, 

D6 E8, D10, H11, F14 G18 

A5, D6, E8, D10, H11, 

F14, G18 

1347

95 6B+ 0 9 

F5, 

G2 

D12, D9, E15, G8, 

H14, H11 E18 

D12, D9, E15, E18, F5, 

G2, G8, H14, H11 

9687

9 6B+ 0 6 F5 E8, C10, G14, F15 I18 

F5, E8, C10, G14, F15, 

I18 

3375

44 6C 0 10 

J5, 

K5 

G6, B7, H8, E10, 

E12, A14, E15 G18 

K5, J5, G6, H8, B7, E10, 

E12, A14, E15, G18 

2003

8 6C+ 0 5 I5 H9, I12, F15 H18 F15, H18, H9, I5, I12 

2326

1 6C+ 0 6 F5 

H10, D11, E15, 

B16 E18 

B16, D15, D11, E18, F5, 

H10 
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APPENDIX D 

Appendix D.1. The results of the planning model 

• Problem ID: 82224, the path: ('J5', 'J5', 'F0', 'J-1'), ('I9', 'J5', None, 'J-1'), ('I9', 'I9', 

None, 'J-1'), ('I9', 'I9', 'J5', None), ('E14', 'I9', 'J5', None), ('E14', 'I9', None, 'I9'), 

('E14', 'H18', None, 'I9'), ('H18', 'H18', None, 'I9'). 

• Problem ID: 62575, the path: ('K6', 'K6', 'F0', 'J0'), ('K6', 'K7', 'F0', None), ('D10', 

'K7', None, None), ('D10', 'K7', None, 'K6'), ('D10', 'H14', None, None), ('D10', 

'H14', 'D10', None), ('A16', 'H14', None, None), ('A16', 'H14', None, 'D10'), ('A16', 

'A18', None, 'D10'), ('A18', 'A18', None, 'D10') 

• Problem ID: 241045, the path: [('B4', 'D3', 'H-1', 'J-1'), ('D3', 'D3', 'H-1', 'J-1'), 

('D3', 'I8', 'H-1', 'J-1'), ('H14', 'I8', None, None), ('H14', 'I8', None, 'I8'), ('H14', 

'H15', None, None), ('H14', 'H15', 'I8', None), ('C18', 'H15', None, None), ('C18', 

'H15', 'H14', None), ('C18', 'C18', 'H14', None)] 

• Problem ID: 23184, the path: [('B4', 'G7', 'F-1', 'F0'), ('B4', 'H7', 'F-1', 'F0'), ('G7', 

'H7', None, 'F0'), ('G7', 'K8', None, 'F0'), ('G7', 'K10', None, 'F0'), ('G7', 'K10', 'G7', 

None), ('K8', 'K10', 'G7', None), ('K13', 'K10', 'G7', None), ('G16', 'K10', None, 

None), ('G16', 'K10', None, 'K10'), ('G16', 'K13', None, 'K10'), ('G16', 'H18', None, 

'K10'), ('H18', 'H18', None, 'K10')] 

• Problem ID: 62560, the path: [('D6', 'D6', 'D0', 'H0'), ('D6', 'H9', 'D0', None), ('F9', 

'H9', 'D0', None), ('F9', 'H9', None, 'D6'), ('F9', 'F15', None, None), ('F9', 'F15', 'F9', 

None), ('C18', 'F15', 'F9', None), ('C18', 'C18', 'F9', None)] 

• Problem ID: 350783, the path: [('E6', 'G2', 'D0', 'J0'), ('F8', 'G2', None, 'J0'), ('F8', 

'J12', None, None), ('F8', 'J12', 'F8', None), ('F15', 'J12', 'F8', None), ('F15', 'J12', 

'F8', 'J12'), ('F15', 'F16', 'F8', None), ('A18', 'F16', None, None), ('A18', 'F16', 'F15', 

None), ('A18', 'A18', 'F15', None)] 

• Problem ID: 371579, the path: [('D3', 'E6', 'B0', None), ('A12', 'E6', None, None), 

('A12', 'E6', None, 'E6'), ('A12', 'G16', None, None), ('A12', 'G16', 'A12', None), 

('A18', 'G16', 'A12', None), ('A18', 'A18', 'A12', None)] 

• Problem ID: 44578, the path: [('A5', 'A5', 'D0', 'F0'), ('A5', 'E7', 'D0', 'F0'), ('E7', 

'E7', None, 'F0'), ('E7', 'H11', None, 'F0'), ('E7', 'H11', 'E7', None), ('C14', 'H11', 

'E7', None), ('C14', 'H11', None, 'H11'), ('C14', 'G18', None, 'H11'), ('G18', 'G18', 

None, 'H11')] 
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• Problem ID: 43010, the path: [('F6', 'K6', None, 'F0'), ('F6', 'G11', None, 'F0'), ('F6', 

'G11', 'F6', None), ('C15', 'G11', 'F6', None), ('C15', 'G11', None, 'G11'), ('C15', 

'C18', None, 'G11'), ('C18', 'C18', None, 'G11')] 

• Problem ID: 430586, the path: [('B3', 'B3', None, 'B-1'), ('B3', 'D8', None, 'B-1'), 

('B3', 'D8', 'B3', None), ('C11', 'D8', None, None), ('C11', 'D8', None, 'B3'), ('C11', 

'I13', None, None), ('C11', 'I13', 'D8', None), ('H14', 'I13', None, None), ('H14', 

'I13', None, 'K10'), ('H14', 'K18', None, 'K10'), ('K18', 'K18', None, 'K10')] 

• Problem ID: 45211, the path: [('D6', 'H5', 'D0', 'F0'), ('D6', 'E9', 'D0', None), ('E11', 

'E9', 'D0', None), ('E11', 'E9', None, 'D6'), ('E11', 'J11', None, 'D6'), ('E11', 'J14', 

None, 'D6'), ('E11', 'J14', 'E11', None), ('I15', 'J14', 'E11', None), ('H18', 'J14', 'E11', 

None), ('H18', 'H18', 'E11', None)] 

• Problem ID: 227999, the path: [('I6', 'J2', 'D0', 'F0'), ('I6', 'I6', 'D0', 'F0'), ('D10', 

'I6', None, 'F0'), ('D10', 'G10', None, 'F0'), ('D10', 'G10', 'I6', None), ('F15', 'G10', 

'I6', None), ('F15', 'G10', 'I6', 'D10'), ('C16', 'G10', None, 'D10'), ('C16', 'F15', None, 

'D10'), ('C16', 'I18', None, 'D10'), ('I18', 'I18', None, 'D10')] 

• Problem ID: 20698, the path: [('A5', 'A5', 'B0', 'F0'), ('A9', 'A5', None, 'F0'), ('A9', 

'F11', None, None), ('A9', 'F11', 'A5', None), ('F13', 'F11', 'A5', None), ('E16', 'F11', 

None, None), ('E16', 'F11', None, 'F11'), ('E16', 'F13', None, 'F11'), ('E16', 'I18', 

None, 'F11'), ('I18', 'I18', None, 'F11')] 

• Problem ID: 48939, the path: [('B6', 'F6', 'F0', None), ('F11', 'F6', 'F0', None), 

('F11', 'F6', None, 'F6'), ('F11', 'I14', None, None), ('F11', 'I14', 'F6', None), ('G15', 

'I14', 'F6', None), ('G15', 'I14', 'F11', None), ('D18', 'I14', 'F11', None), ('D18', 

'D18', 'F11', None)] 

• Problem ID: 39709, the path: [('G4', 'G4', 'D0', 'J0'), ('C7', 'G4', None, 'J0'), ('C7', 

'G4', None, 'G4'), ('C7', 'E13', None, None), ('C7', 'E13', 'C7', None), ('C18', 'E13', 

'C7', None), ('C18', 'E13', None, 'E13'), ('C18', 'C18', None, 'E13')] 

• Problem ID: 345039, the path: [('J5', 'J5', 'F0', 'F-1'), ('E6', 'J5', 'F0', 'F-1'), ('E6', 

'F7', 'F0', None), ('A9', 'F7', 'F0', None), ('A9', 'F7', None, 'E6'), ('A9', 'E12', None, 

'E6'), ('A9', 'E12', 'A9', 'E6'), ('A9', 'F13', 'A9', 'E6'), ('E12', 'F13', 'A9', 'E6'), ('E12', 

'I15', 'A9', None), ('E12', 'I15', 'E12', None), ('F13', 'I15', 'E12', None), ('H18', 'I15', 

'E12', None), ('H18', 'H18', 'E12', None)] 

• Problem ID: 292263, the path: [('E6', 'E6', 'B0', 'F0'), ('A9', 'E6', None, 'F0'), ('A9', 

'C9', None, 'F0'), ('A9', 'C9', 'E6', None), ('B15', 'C9', None, None), ('B15', 'C9', 

None, 'C9'), ('B15', 'G18', None, 'C9'), ('G18', 'G18', None, 'C9')] 
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• Problem ID: 118171, the path: [('J2', 'K5', 'F0', 'J0'), ('J8', 'K5', None, 'J0'), ('J8', 

'J8', None, 'J0'), ('J8', 'J8', 'K5', None), ('G14', 'J8', 'K5', None), ('G14', 'J8', None, 

'J8'), ('G14', 'G14', None, 'J8'), ('G14', 'K18', None, 'J8'), ('K18', 'K18', None, 'J8')] 

• Problem ID: 202064, the path: [('C5', 'C5', None, 'D0'), ('C5', 'E9', None, 'D0'), 

('C5', 'F11', None, 'D0'), ('C5', 'F11', 'C5', 'D0'), ('E9', 'F11', 'C5', 'D0'), ('E9', 'H12', 

'C5', None), ('F11', 'H12', 'C5', None), ('G15', 'H12', 'C5', None), ('G15', 'H12', 

None, 'E9'), ('G15', 'I18', None, 'E9'), ('I18', 'I18', None, 'E9')] 

• Problem ID: 48723, the path: [('A5', 'A5', 'B0', 'F0'), ('A5', 'E8', 'B0', None), ('E8', 

'E8', 'B0', None), ('E8', 'E8', None, 'A5'), ('E8', 'G13', None, 'A5'), ('E8', 'G13', 'E9', 

'A5'), ('G13', 'G13', 'E9', None), ('D18', 'G13', 'E9', None), ('D18', 'D18', 'E9', 

None)] 

• Problem ID: 24681, the path: [('I5', 'I5', 'D0', 'J0'), ('H9', 'I5', 'D0', 'J0'), ('H9', 'H14', 

None, None), ('H9', 'H14', 'H9', None), ('H18', 'H14', 'H9', None), ('H18', 'H18', 

'H9', None)] 

• Problem ID: 313875, the path: [('K5', 'K5', 'J0', 'J-1'), ('J8', 'K5', 'J0', 'J-1'), ('J8', 

'J8', 'J0', None), ('J8', 'J8', 'J0', 'K5'), ('G14', 'J8', None, 'K5'), ('G14', 'G14', None, 

None), ('G14', 'G14', 'F11', None), ('G18', 'G14', 'F11', None), ('G18', 'G18', 'F11', 

None)] 

• Problem ID: 50356, the path: [('F5', 'F5', None, 'F0'), ('F5', 'H11', None, 'F0'), ('F5', 

'H11', 'F5', None), ('E15', 'H11', 'F5', None), ('E15', 'H11', None, 'H11'), ('E15', 

'E18', None, 'H11'), ('E18', 'E18', None, 'H11')] 

• Problem ID: 20038, the path: [('I5', 'I5', 'D0', 'J0'), ('H9', 'I5', None, 'J0'), ('H9', 'I12', 

None, None), ('H9', 'I12', 'I5', None), ('F15', 'I12', 'I5', None), ('F15', 'I12', None, 

'H9'), ('F15', 'H18', None, 'H9'), ('H18', 'H18', None, 'H9')] 

• Problem ID: 172010, the path: [('F5', 'F5', 'B0', None), ('A9', 'F5', 'B0', None), 

('A9', 'F5', None, 'F5'), ('A9', 'E7', None, 'F5'), ('A9', 'E12', None, 'F5'), ('A9', 'F14', 

None, None), ('A9', 'F14', 'A9', None), ('F14', 'F14', 'A9', None), ('D18', 'F14', 'A9', 

None), ('D18', 'D18', 'A9', None)] 

• Problem ID: 268943, the path: [('A5', 'D6', None, 'D0'), ('A5', 'E8', None, 'D0'), 

('A5', 'E8', 'A5', 'D0'), ('D6', 'E8', 'A5', 'D0'), ('D10', 'E8', 'A5', 'D0'), ('D10', 'H11', 

'A5', None), ('F14', 'H11', 'A5', None), ('F14', 'H11', None, 'D10'), ('F14', 'G18', 

None, 'D10'), ('G18', 'G18', None, 'D10')] 

• Problem ID:337544, the path: [('J5', 'K5', 'D0', 'F0'), ('G6', 'K5', 'D0', 'F0'), ('G6', 

'G6', 'D0', None), ('E10', 'G6', 'D0', None), ('E12', 'G6', None, None), ('E12', 'G6', 

None, 'G6'), ('E12', 'E10', None, 'G6'), ('E12', 'E15', None, 'G6'), ('E12', 'E15', 'E10', 
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'G6'), ('E15', 'E15', 'E10', 'G6'), ('E15', 'G18', 'E10', None), ('G18', 'G18', 'E10', 

None)] 

• Problem ID:134795, the path: [('F5', 'G2', 'F-1', 'J0'), ('F5', 'G8', 'F-1', None), ('D9', 

'G8', 'F-1', None), ('D9', 'G8', None, 'F5'), ('D9', 'H11', None, 'F5'), ('D9', 'H11', 

'G8', 'F5'), ('D9', 'H14', 'G8', None), ('D12', 'H14', 'G8', None), ('E15', 'H14', 'G8', 

None), ('E18', 'H14', 'G8', None), ('E18', 'E18', 'G8', None)] 

• Problem ID:96879, the path: [('F5', 'F5', 'B0', None), ('C10', 'F5', None, None), 

('C10', 'F5', None, 'F5'), ('C10', 'E8', None, 'F5'), ('C10', 'G14', None, 'F5'), ('C10', 

'G14', 'E8', 'F5'), ('F15', 'G14', 'E8', 'F5'), ('F15', 'G14', None, 'C10'), ('F15', 'I18', 

None, 'C10'), ('I18', 'I18', None, 'C10')] 

• Problem ID:23261, the path: [('F5', 'F5', None, 'H0'), ('F5', 'H10', None, 'H0'), ('F5', 

'H10', 'F5', None), ('D11', 'H10', 'F5', None), ('E15', 'H10', 'F5', None), ('E15', 'H10', 

None, 'H10'), ('E15', 'E15', None, 'H10'), ('E15', 'E18', None, 'H10'), ('E18', 'E18', 

None, 'H10')] 

 

Appendix D.2. The validation results of the planning model 

Table 13: # of Moves Comparison 

Prob

lem 

ID 

# of 

true 

moves 

# of 

pred 

moves 

diff

ere

nce 

# of  hand 

moves in 

true path 

# of  hand 

moves in 

pred path 

diff

ere

nce 

# of foot 

moves in 

true path 

# of foot 

moves in 

pred path 

diff

ere

nce 

822

24 10 7 3 
5 5 

0 5 2 3 

625

75 15 9 6 
6 6 

0 9 3 6 

241

045 21 9 12 
11 6 

5 10 3 7 

231

84 17 12 5 
8 10 

-2 9 2 7 

625

60 13 7 6 
5 5 

0 8 2 6 

350

783 9 9 0 
7 6 

1 2 3 -1 

371

579 10 6 4 
6 4 

2 4 2 2 

445

78 9 8 1 
7 6 

1 2 2 0 

430

10 10 6 4 
5 4 

1 5 2 3 

430

586 11 10 1 
7 6 

1 4 4 0 

452

11 14 9 5 
7 7 

0 7 2 5 
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227

999 11 10 1 
6 8 

-2 5 2 3 

206

98 14 9 5 
6 7 

-1 8 2 6 

489

39 7 8 -1 
5 5 

0 2 3 -1 

397

09 8 7 1 
4 4 

0 4 3 1 

345

039 23 13 10 
8 10 

-2 15 3 12 

292

263 12 7 5 
6 5 

1 6 2 4 

118

171 13 8 5 
7 6 

1 6 2 4 

202

064 14 10 4 
6 8 

-2 8 2 6 

487

23 10 8 2 
6 6 

0 4 2 2 

246

81 12 5 7 
5 4 

1 7 1 6 

313

875 10 8 2 
6 6 

0 4 2 2 

503

56 7 6 1 
4 4 

0 3 2 1 

200

38 10 7 3 
6 5 

1 4 2 2 

232

61 13 9 4 
7 7 

0 6 2 4 

172

010 11 9 2 
5 7 

-2 6 2 4 

268

943 15 11 4 
7 9 

-2 8 2 6 

337

544 17 10 7 
8 8 

0 9 2 7 

134

795 12 9 3 
6 6 

0 6 3 3 

968

79 11 8 3 
6 6 

0 5 2 3 

 

Table 14: Distance Comparison 

Problem ID Total predicted distance Total true distance 

82224 663.95 975.03 

62575 843.55 1520.61 

241045 913.83 1819.83 

23184 987.36 1672.58 

62560 643.36 1187.75 

350783 883.09 1243.12 

371579 638.03 1044.86 

44578 734.06 881.63 
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43010 546.99 1082.39 

430586 907.48 1125.58 

45211 780.22 1067.09 

227999 1029.43 1098.34 

20698 804.53 1227.2 

48939 698.78 664.45 

39709 601.97 734.31 

345039 959.45 1804.58 

292263 675.99 1121.07 

118171 728.94 1436.5 

202064 920.48 1034.77 

48723 757.36 978.37 

24681 586.89 896.7 

313875 734.24 877.04 

50356 569.42 776.21 

20038 706.95 936.69 

23261 682.42 893.72 

172010 782.72 1009.56 

268943 776.09 781.04 

337544 901.22 1355.23 

134795 838.19 1136.68 

96879 767.89 967.85 

 

Table 15: Cost Comparison 

Problem ID 

predicted 

 path cost Suggested path cost 

82224 5.81 9.3 

62575 7.58 16.69 

241045 9.28 18.18 

23184 8.8 16.23 

62560 5.75 13.15 

350783 8.09 11.23 

371579 6.37 9.72 

44578 6.01 7.87 

43010 5.05 11.11 

430586 8.38 10.57 

45211 6.48 10.91 

227999 8.33 10.07 

20698 7.08 12.88 

48939 6.51 6.03 
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39709 6.14 7.34 

345039 9.07 19.93 

292263 5.97 10.75 

118171 6.22 14.19 

202064 7.39 10.81 

48723 5.98 8.7 

24681 5.22 8.86 

313875 6.65 8.58 

50356 5.38 7.66 

20038 5.75 9.47 

23261 5.78 8.59 

172010 6.89 10.06 

268943 6.57 8.32 

337544 7.9 12.54 

134795 7.07 12.03 

96879 6.73 9.8 

 

Table 16: The Node Accuracies 

Problem ID Percentage of true nodes Percentage of true hand nodes Percentage of true foot nodes 

82224 0.57 1 0.33 

62575 0.55 1 0.38 

241045 0.12 0.18 0.07 

23184 0.17 0.25 0.12 

62560 0.25 0.4 0.18 

350783 0.47 0.71 0.3 

371579 0.29 0.17 0.38 

44578 0.67 0.71 0.6 

43010 0.27 0.4 0.2 

430586 0.73 0.71 0.75 

45211 0.5 1 0 

227999 0.31 0.67 0 

20698 0.47 0.83 0.27 

48939 0.5 0.4 0.67 

39709 0.7 1 0.5 

345039 0.28 0.75 0.06 

292263 0.47 0.67 0.33 

118171 0.11 0.14 0.08 

202064 0.33 0.67 0.11 

48723 0.25 0.5 0 
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24681 0.08 0.2 0 

313875 0.33 0.5 0.17 

50356 0.64 1 0.43 

20038 0.53 1 0.3 

23261 0.36 0.33 0.38 

172010 0.44 0.71 0.22 

268943 0.17 0.4 0 

337544 0.24 0.43 0.1 

134795 0.5 1 0.17 

96879 0.56 1 0.3 

Average: 0.36 0.62 0.25 

 


