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ABSTRACT

NEW METHODS FOR DECENTRALISED SENSOR FUSION AND
EXTENDED TARGET TRACKING MODELS

Köksal, Hı̇lal
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Emre Özkan

December 2022, 111 pages

The focus of this thesis is two-fold; the first study investigates the use of student-t dis-

tribution for the decentralised multi-sensor fusion problem. Multi-sensor fusion can

suffer from several artefacts such as low channel capacity, delays in the communica-

tion channels, the correlation in the acquired information and sensor biases. When

combined with these artefacts, the errors in the local sensors’ estimates can result in

conflicting information at the fusion center. Such conflicts may later be resolved by

future observations. Traditional Gaussian fusion can perform poorly in such cases

due to its inherent uni-modal assumption. We propose incorporating student-t distri-

bution while performing multi-sensor fusion, which introduces the ability to represent

the uncertainty due to conflicting sensor information. Another focus of this thesis is

an alternative measurement update framework for Gaussian process-based extended

target tracking models. The proposed method performs variational inference in the

measurement update step to improve the accuracy of the kinematic and extent state

estimates. The performance evaluations of the methods are presented by conducting

various simulations and real data experiments.
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ÖZ

MERKEZİ OLMAYAN SENSÖR FÜZYONU VE GENİŞLETİLMİŞ HEDEF
TAKİBİ MODELLERİ İÇİN YENİ YÖNTEMLER

Köksal, Hı̇lal
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Emre Özkan

Aralık 2022 , 111 sayfa

Bu tezin odak noktası iki türlü olmakla beraber ilk çalışma, merkezi olmayan çoklu

sensör füzyon problemi için student-t dağılımının kullanımına yoğunlaşmaktadır. Çoklu

sensör füzyonunun performansında, sınırlı kapasite, iletişim kanallarındaki gecikme-

ler, elde edilen bilgilerdeki korelasyon veya sensörlerdeki ölçüm hataları gibi sebep-

lerden dolayı bir kayıp gerçekleşebilir. Tüm bu sebepler gözetildiğinde, yerel sen-

sörlerin tahminlerindeki hatalar füzyon merkezinde çelişkili bilgilerle sonuçlanabilir.

Öte yandan, çelişen bilginin sonradan gelen doğru bilgi ile düzeltilebilmesi mümkün

olabilir. Bu bağlamda, geleneksel Gauss füzyonu, tek tepecikli yapısı nedeniyle ya-

nıltıcı sonuçlar doğurabilir. Bu durumun sonucunda, student-t dağılımı çoklu sensör

füzyona adapte edilerek çelişen bilgi durumunda belirsizliğin korunması hedeflen-

mektedir. Bu tez kapsamında odaklanılan bir diğer çalışma Gauss süreci temelli ge-

nişletilmiş hedef takibi yaklaşımına farklı bir ölçüm güncelleme adımı ile alternatif

oluşturabilecek bir yaklaşımı ele almaktadır. Önerilen yöntem, kinematik ve şekil-

sel karakteristik tahminlerinin doğruluğunu iyileştirmek için ölçüm güncelleme adı-

mında varyasyon çıkarımı gerçekleştirmektedir. Belirtilen yaklaşımların performans-
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larının değerlendirilmesi konusunda simülasyon ve gerçek verilerden oluşan testlere

başvurulmaktadır.

Anahtar Kelimeler: çoklu sensör füzyonu, student t-dağılımı, genişletilmiş hedef ta-

kibi, Gauss süreci, varyasyonal Bayes
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Eren Şener, Elvan Ülker and Uğur Uyanık for their constant support and friendship.
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Beyond Graduate Support Program’, organized by the Information and Communica-

tion Technologies Authority of the Republic of Turkey.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . . 9

2.1.3 Unscented Transform . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Unscented Kalman Filter (UKF) . . . . . . . . . . . . . . . . 12

2.2 Student’s t-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Chernoff Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xi



2.5 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 CONFLICT RESOLUTION IN MULTI-SENSOR FUSION WITH STUDENT-
T DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Chernoff Fusion with Student-t Distributions . . . . . . . . . . . . . 29

3.2.1 A Non-Integer Power of a Student-t Distribution . . . . . . . . 30

3.2.2 A Non-Integer Power of a Student-t Mixture . . . . . . . . . . 31

3.2.3 Multiplication of Two Student-t Distributions . . . . . . . . . 34

3.2.4 Merging Student-t Mixtures . . . . . . . . . . . . . . . . . . . 37

3.2.5 Determination of Exponent Factors . . . . . . . . . . . . . . . 42

3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Scenario Definition . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Case 1: Known Sensor Characteristics . . . . . . . . . . . . . 45

3.3.3 Case 2: One Sensor Failure . . . . . . . . . . . . . . . . . . . 49

3.3.4 Investigating Less Frequent Sensor Failure . . . . . . . . . . . 53

3.3.5 Case 3: One Sensor With Bias . . . . . . . . . . . . . . . . . 57

3.3.6 One Dimensional Analysis For CFST . . . . . . . . . . . . . . 60

3.3.7 Discussion: CFST with memory . . . . . . . . . . . . . . . . 65

3.3.7.1 Case 1: Known Sensor Characteristics . . . . . . . . . 65

3.3.7.2 Case 2: One Sensor Failure . . . . . . . . . . . . . . . 67

3.3.7.3 Investigating Less Frequent Sensor Failure . . . . . . . 68

3.3.7.4 Case 3: One Sensor With Bias . . . . . . . . . . . . . . 69

3.3.7.5 One Dimensional Analysis For CFST with memory . . 70

xii



3.4 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.3 Discussion: CFST with memory . . . . . . . . . . . . . . . . 78

3.4.3.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.3.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 VARIATIONAL MEASUREMENT UPDATE FOR EXTENDED OBJECT
TRACKING USING GAUSSIAN PROCESSES . . . . . . . . . . . . . . . 83

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1.1 Process Model . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1.2 Measurement Model . . . . . . . . . . . . . . . . . . . 86

4.2 Measurement Update Based on Variational Inference . . . . . . . . . 88

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 The ideal case . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 The case with the model mismatch . . . . . . . . . . . . . . . 92

4.3.3 The case with the larger sampling time . . . . . . . . . . . . . 95

4.4 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiii



LIST OF TABLES

TABLES

Table 3.1 Average RMSE values of the position and velocity for the Case 1. . 46

Table 3.2 Average RMSE values of the position and velocity for the Case 2. . 50

Table 3.3 Average RMSE values of the position and velocity for investigating

less frequent sensor failure. . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3.4 Average RMSE values of the position and velocity for the Case 3

(10m in each dimension). . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3.5 Average RMSE values of the position and velocity for the Case 1. . 66

Table 3.6 Average RMSE values of the position and velocity for the Case 2. . 67

Table 3.7 Average RMSE values of the position and velocity for for investi-

gating less frequent sensor failure. . . . . . . . . . . . . . . . . . . . . . . 69

Table 3.8 Average RMSE values of the position and velocity for the Case 3

(10m in each dimension). . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 3.9 Average RMSE values of the position and velocity for the Case 1. . 76

Table 3.10 Average RMSE values of the position and velocity for the Case 2. . 78

Table 3.11 Average RMSE values of the position and velocity for the Case 1. . 79

Table 3.12 Average RMSE values of the position and velocity for the Case 2. . 79

Table 4.1 Motion and GP parameters used in the experiments. P1 represents

the motion parameters, and P2 stands for the GP parameters. . . . . . . . . 91

xiv



Table 4.2 Average IOU and RMSE values of the orientation angle over 100

Monte Carlo runs for the ideal case. T1, T2 and T3 stand for rectangle,

triangle and plus, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 4.3 Average IOU and RMSE values of the orientation angle over 100

Monte Carlo runs for the case with the model mismatch. T1, T2 and T3

stand for rectangle, triangle and plus, respectively. . . . . . . . . . . . . . 94

Table 4.4 Average IOU and RMSE values of the orientation angle over 100

Monte Carlo runs for the case with the larger sampling time. T1, T2 and

T3 stand for rectangle, triangle and plus, respectively. . . . . . . . . . . . 95

Table 4.5 Motion and GP parameters used in the real data experiment. P1

represents the motion parameters, and P2 stands for the GP parameters. . . 97

xv



LIST OF FIGURES

FIGURES

Figure 2.1 PDF of Gaussian distribution and student t-distribution with dif-

ferent degrees of freedom. . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.2 (a) displays a set of measurements and the true function. (b)

shows functions obtained by linear interpolation and fitting polynomi-

als with degrees 3 and 5 in addition to the true function and the mea-

surements. (c) illustrates the estimate of the function values with un-

certainty region using the Gaussian process, the true function, and the

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.3 (a), (b) and (c) display the estimates of the function values with

uncertainty region using the recursive Gaussian regression, the true

function, and the measurements in successive time instants. . . . . . . . 21

Figure 3.1 Fusion inputs and outputs in a probabilistic manner. (a) displays

the fusion inputs and outputs under the Gaussian input assumption. (b)

depicts the whole procedure’s inputs and outputs, with the inputs repre-

sented by student-t distribution. . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.2 (a) and (b) display two realizations for the power of a student-t

distribution with the exponent factor of 0.5. The power of the green

student t-distributions with the exponent factor 0.5 outputs the corre-

sponding yellow distributions. . . . . . . . . . . . . . . . . . . . . . . 31

xvi



Figure 3.3 (a-d) display four realizations of the power of a student-t mixture

with the exponent factor of 0.5 for different methods. Red distributions

are the individual components of the mixture. Green, blue and yellow

distributions illustrate the power of a student-t mixture determined by

numerical, Julier’s, and proposed approaches, respectively. . . . . . . . 32

Figure 3.4 Four different realizations of the multiplication of two student-t

distributions. Red distributions are the individual components of the

mixture. The outcomes of multiplication calculated by numerical and

proposed procedures are represented by green and yellow distributions,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.5 (a-d) display four realizations of the merging student-t mixture.

Distributions with different shades of red are the individual compo-

nents of the mixture. The blue distribution illustrates the outcome of

the merging procedure. From the individual component with the dark-

est shade of red to the one with the lightest shade, the weights are as

given: (a)→ α = [0.2975, 0.1761, 0.5264], (b)→ α = [0.2014, 0.4682,

0.3304], (c) → α = [0.4227, 0.1926, 0.3847], (d) → α = [0.5222,

0.3077, 0.1701]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.6 Sample trajectory simulated based on (3.44a) with the sampling

interval ∆T = 1 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.7 (a) and (b) show the realizations of the sensor measurements

and the ground truth. (c) and (d) show the corresponding true velocity

values of the realizations. . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.8 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for Case 1. (b)

(right figure) shows the average velocity RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 1. . . . . . . . . . 46

xvii



Figure 3.9 (a) (top figure) shows the box and whisker plot for average posi-

tion RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 1. (b) (bottom figure) shows the box and whisker plot for

average velocity RMSE of the algorithms at each time instant over 100

Monte Carlo runs for Case 1. . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.10 (a) (left figure) shows the normalized average position RMSE in

the x direction of the algorithms at each time instant over 100 Monte

Carlo runs for Case 1. (b) (right figure) shows the normalized average

position RMSE in the y direction of the algorithms at each time instant

over 100 Monte Carlo runs for Case 1. . . . . . . . . . . . . . . . . . . 48

Figure 3.11 (a) and (b) show the realizations of the sensor measurements

and the ground truth. (c) and (d) show the corresponding true velocity

values of the realizations. . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.12 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for Case 2. (b)

(right figure) shows the average velocity RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 2. . . . . . . . . . 50

Figure 3.13 (a) (top figure) shows the box and whisker plot for average posi-

tion RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 2. (b) (bottom figure) shows the box and whisker plot for

average velocity RMSE of the algorithms at each time instant over 100

Monte Carlo runs for Case 2. . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.14 (a) (left figure) shows the normalized average position RMSE in

the x direction of the algorithms at each time instant over 100 Monte

Carlo runs for Case 2. (b) (right figure) shows the normalized average

position RMSE in the y direction of the algorithms at each time instant

over 100 Monte Carlo runs for Case 2. . . . . . . . . . . . . . . . . . . 52

Figure 3.15 (a) and (b) show the realizations of the sensor measurements

and the ground truth. (c) and (d) show the corresponding true velocity

values of the realizations. . . . . . . . . . . . . . . . . . . . . . . . . . 53

xviii



Figure 3.16 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for investigating

less frequent sensor failure. (b) (right figure) shows the average veloc-

ity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for investigating less frequent sensor failure. . . . . . . . . . . . . 54

Figure 3.17 (a) (top figure) shows the box and whisker plot for average posi-

tion RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for investigating less frequent sensor failure. (b) (bottom figure)

shows the box and whisker plot for average velocity RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for investigating

less frequent sensor failure. . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.18 (a) (left figure) shows the normalized average position RMSE in

the x direction of the algorithms at each time instant over 100 Monte

Carlo runs for investigating less frequent sensor failure. (b) (right fig-

ure) shows the normalized average position RMSE in the y direction

of the algorithms at each time instant over 100 Monte Carlo runs for

investigating less frequent sensor failure. . . . . . . . . . . . . . . . . . 56

Figure 3.19 (a) and (b) show the realizations of the sensor measurements

and the ground truth. (c) and (d) show the corresponding true velocity

values of the realizations. . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.20 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for Case 3. (b)

(right figure) shows the average velocity RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 3. . . . . . . . . . 58

Figure 3.21 (a) (top figure) shows the box and whisker plot for average posi-

tion RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 3. (b) (bottom figure) shows the box and whisker plot for

average velocity RMSE of the algorithms at each time instant over 100

Monte Carlo runs for Case 3. . . . . . . . . . . . . . . . . . . . . . . . 59

xix



Figure 3.22 (a) (left figure) shows the normalized average position RMSE in

the x direction of the algorithms at each time instant over 100 Monte

Carlo runs for Case 3. (b) (right figure) shows the normalized average

position RMSE in the y direction of the algorithms at each time instant

over 100 Monte Carlo runs for Case 3. . . . . . . . . . . . . . . . . . . 60

Figure 3.23 (a) (left figure) shows the numerically calculated Chernoff fu-

sion with student t-distributions outputs. (b) (right figure) shows CFST

outputs for each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.24 (a) (left figure) shows the numerically calculated Chernoff fu-

sion with student t-distributions outputs. (b) (right figure) shows CFST

outputs for each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.25 (a) (left figure) shows the numerically calculated Chernoff fu-

sion with student t-distributions outputs. (b) (right figure) shows CFST

outputs for each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.26 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for Case 1. (b)

(right figure) shows the average velocity RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 1. . . . . . . . . . 66

Figure 3.27 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for Case 2. (b)

(right figure) shows the average velocity RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 2. . . . . . . . . . 67

Figure 3.28 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for investigating

less frequent sensor failure. (b) (right figure) shows the average veloc-

ity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for investigating less frequent sensor failure. . . . . . . . . . . . . 68

xx



Figure 3.29 (a) (left figure) shows the average position RMSE of the algo-

rithms at each time instant over 100 Monte Carlo runs for Case 3. (b)

(right figure) shows the average velocity RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 3. . . . . . . . . . 69

Figure 3.30 (a) (left figure) shows the numerically calculated Chernoff fu-

sion with student t-distributions outputs. (b) (right figure) shows CFST

with memory outputs for each step. . . . . . . . . . . . . . . . . . . . . 71

Figure 3.31 (a) (left figure) shows the numerically calculated Chernoff fu-

sion with student t-distributions outputs. (b) (right figure) shows CFST

with memory outputs for each step. . . . . . . . . . . . . . . . . . . . . 72

Figure 3.32 (a) displays a snapshot of the raw measurements collected from

LiDAR and RADAR, and (b) shows the camera and object detection

output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 3.33 (a) shows the sensor measurements and ground truth. (b) dis-

plays the position RMSE of the algorithms over time. (c) shows the

velocity RMSE of the algorithms over time. . . . . . . . . . . . . . . . 76

Figure 3.34 (a) shows the sensor measurements and ground truth. (b) dis-

plays the position RMSE of the algorithms over time. (c) shows the

velocity RMSE of the algorithms over time. . . . . . . . . . . . . . . . 77

Figure 3.35 (a) shows the sensor measurements and ground truth. (b) dis-

plays the position RMSE of the algorithms over time. (c) shows the

velocity RMSE of the algorithms over time. . . . . . . . . . . . . . . . 78

Figure 3.36 (a) shows the sensor measurements and ground truth. (b) dis-

plays the position RMSE of the algorithms over time. (c) shows the

velocity RMSE of the algorithms over time. . . . . . . . . . . . . . . . 80

Figure 4.1 (a) shows a typical realization of the simulation for the ideal case

with rectangle-shaped object. (b) and (c) display IOU and RMSE for

orientation angles over 100 Monte Carlo runs at each instant, respectively. 92

xxi



Figure 4.2 (a) displays a typical realization of the simulation for the ideal

case with triangle-shaped object. (b) and (c) show IOU and RMSE for

orientation angles over 100 Monte Carlo runs at each instant, respectively. 93

Figure 4.3 (a) displays a typical realization of the simulation for the ideal

case with plus-shaped object. (b) and (c) show IOU and RMSE for

orientation angles over 100 Monte Carlo runs at each instant, respectively. 93

Figure 4.4 (a) displays a typical realization of the simulation for the model

mismatch case with rectangle-shaped object. (b) and (c) show IOU and

RMSE for orientation angles over 100 Monte Carlo runs at each instant,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.5 (a) displays a typical realization of the simulation for the model

mismatch case with triangle-shaped object. (b) and (c) show IOU and

RMSE for orientation angles over 100 Monte Carlo runs at each instant,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.6 (a) displays a typical realization of the simulation for the model

mismatch case with plus-shaped object. (b) and (c) show IOU and

RMSE for orientation angles over 100 Monte Carlo runs at each instant,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.7 (a) displays a typical realization of the simulation for the larger

sampling time case with rectangle-shaped object. (b) and (c) show IOU

and RMSE for orientation angles over 100 Monte Carlo runs at each

instant, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 4.8 (a) displays a typical realization of the simulation for the larger

sampling time case with triangle-shaped object. (b) and (c) show IOU

and RMSE for orientation angles over 100 Monte Carlo runs at each

instant, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xxii



Figure 4.9 (a) displays a typical realization of the simulation for the larger

sampling time case with plus-shaped object. (b) and (c) show IOU and

RMSE for orientation angles over 100 Monte Carlo runs at each instant,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 4.10 (a) and (b) display IOU and RMSE for orientation angles at each

instant for camera data, respectively. . . . . . . . . . . . . . . . . . . . 98

Figure 4.11 The visualization of the outputs for different instants. (a)-(d) re-

fer to the part where the dinghy movement matches the dynamic model

utilized by the algorithms. (e)-(h) display the outputs when there is a

model mismatch between the dinghy movement and the dynamic model

employed by the algorithms. Yellow line and red dashed line represent

the outputs of VB and EKF, respectively. Orange dots stand for mea-

surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xxiii



LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

BC Bar-Shalom/Campo State Vector Combination

BLUE Best Linear Unbiased Estimation

CC Complex Combination

CFST Chernoff Fusion with Student t-Distribution

CI Covariance Intersection

CKF Centralized Kalman Filter

EKF Extended Kalman Filter

GMM Gaussian Mixture Models

GP Gaussian Process

HOT Higher Order Terms

IPM Inverse Perspective Mapping

KF Kalman Filter

KL Kullback-Leibler

LiDAR Light Detection and Ranging

IOU Intersection over Union

PDF Probability Distribution Function

RADAR Radio Detection and Ranging

RMSE Root-Mean-Square Error

UKF Unscented Kalman Filter

xxiv



CHAPTER 1

INTRODUCTION

Multi-sensor fusion is a strategy of merging measurements from various sensors to

create a solid and comprehensive description of surroundings or processes of interest.

The notion of multi-sensor fusion is based on the fact that combining complementary

data from several sensors, which results in better accuracy of solutions to informa-

tion processing issues. This concept is currently being applied in many areas and

continues to gain ground in new ones. As an example, many robotics fields, includ-

ing localization, and environment mapping, find extensive use for multi-sensor data

fusion.

Due to the strengths and weaknesses of each sensor, sensor fusion is required to merge

information from individual sensors into a single shot. As an advantage, the process-

ing and interpretation of the information become more efficient thanks to combining

information from multiple sensors, which results in decision-making more accurately

and quickly. Furthermore, multi-sensor fusion enables us to compensate for the errors

inherent in individual sensors. For instance, if one sensor reports erroneous informa-

tion, the other can provide supplementary data to fix this error.

The main concern of this study in terms of multi-sensor fusion is related to a specific

fusion algorithm, so called Chernoff fusion. A specific and standard version of the

Chernoff fusion is constructed with the Gaussian density assumption as in [1, 2, 3]

since a closed-form solution is available. The Chernoff fusion can also be established

using student-t distributions rather than the Gaussian assumption. In addition to the

particular characteristics similar to Gaussian distribution, insufficient or misleading

data makes student-t distribution a better option to deal with uncertainty. The reason

is that student-t accommodates the occurrence of the values with higher dispersion.
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The greater variability is represented in the distribution with the characteristics such

as lower peak and heavier tails than the Gaussian distribution. The introduction of

heavy-tailed posteriors using student-t distributions allows us to maintain the mul-

tiple hypotheses about the unknown variable as long as possible for the Chernoff

fusion. In this study, we consider the problem of fusing inconsistent sensor informa-

tion where the uncertainty must be preserved until it is resolved by new information.

A traditional approach which relies on Gaussian distributions can fail to do so, as

the information provided by the sensors is summarized by another Gaussian. On the

other hand, a fusion algorithm constructed with student-t distribution enables us to

deal with the performance degradation due to the conflicting sensor information.

Another focus of this thesis is related to the extended object tracking framework.

Some applications, such as autonomous driving, render the point object assumption

invalid due to objects in the sensors’ near field. Thanks to the rapid advances in the

capability of the sensors, the state definition, which involves kinematics, is expanded

with the object’s extent. Although various formulations are available to estimate the

object’s extent in addition to the kinematics, this study concentrates on a specific ap-

proach constructed with the Gaussian process. In early work, [4], Gaussian Process

is employed to learn and track the target’s shape by deriving a state space model to

be used with the Kalman filter. [4] updates extent using predicted state of the kine-

matics. This results in dependency on the compatibility of the process model with

the situation or dependency on the requirement of a small sampling time to have rea-

sonable extent estimates. This work investigates an alternative measurement update

framework for extended object tracking that identifies the extent using the Gaussian

process. Furthermore, the new measurement update framework is built on the vari-

ational Bayes. Variational Bayes, the inference technique to obtain the state vector,

aims to minimize the difference between probability distributions using a concept for

measuring the relative distance in an iterative procedure. Based on this definition,

the variational inference method enables us to use updated estimates for kinematics

rather than predicted ones to update the extent. Further, updating kinematics and ex-

tent in a given order at each time is repeated a predefined number of iteration times.

Improvement in the estimate of extent promotes a better estimate of kinematics. As a

result of enhancing each other, this iteration process makes approximate solutions for
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kinematics and extent closer to their optimal solutions.

This thesis is composed of five chapters. Chapter 1 briefly explains the focus and

the motivation for this study. The rest of the thesis is organized as follows: Chapter

2 gives theoretical background on the principles that serve as the foundation for the

thesis’s two primary subjects: Bayesian filtering, student’s t-distribution, Chernoff

fusion, Gaussian process, and variational inference. Chapter 3 provides the literature

review and a toy example to clarify the motivation for the Chernoff fusion with student

t-distribution. Further, the algorithm’s derivation is given in steps that construct the

building blocks of the method, and the performance evaluation is achieved through

simulations and real data experiments. Chapter 4 presents the literature review and

problem definition of the variational measurement update framework for extended

object tracking using Gaussian process. Moreover, the measurement update equations

are provided together with the simulations and real data experiments for performance

evaluation. Finally, Chapter 5 outlines a brief conclusion.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Bayesian Filtering

Some essential engineering applications such as navigation, target tracking, telecom-

munications, signal processing, and control require an effective way to acquire the

necessary information using noisy measurements. Based on the application, the

state’s definition, which consists of different dynamic variables like position, velocity,

and orientation, encapsulates all the critical information to describe the system. The

main problem of optimal or Bayesian filtering is estimating the dynamic state vari-

ables directly or indirectly through noisy measurements, which introduce a spread

of possible values for the state elements [5]. Furthermore, another source of ambi-

guity in estimating the state variables is the process noise to model the uncertainty

of the dynamic model, which represents the state’s evolution over time. The state-

space model, which describes both the dynamic behavior of the state and the relation

between state and measurement, can be written as follows.

xk = f(xk−1, wk−1), (2.1a)

zk = h(xk, vk), (2.1b)

where xk and zk stand for state and noisy measurement at time k, respectively. Dy-

namic behavior of the state is modeled by the function f(.) whose inputs are the previ-

ous state xk−1 and white process noise wk−1. The function h(.) constructs the relation

between state and measurements with the white measurement noise vk as input. The

measurement model h(.) differs based on the sensor type and state definition. Further-

more, x0, wk and vk are independent from each other for each instant k.

From the Bayesian framework, estimation of state variables through noisy measure-
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ments turns into the computation of the posterior density function of the state p(xk|z0:k),
which makes the probabilistic state-space model more suitable. The following condi-

tional distributions represent the state-space model 2.1 in a probabilistic way

xk ∼ p(xk|xk−1, z1:k−1), (2.2a)

zk ∼ p(zk|xk, z1:k−1), (2.2b)

where

• p(xk|xk−1, z1:k−1), transition density, denotes the dynamic behavior of the state

xk. The Markov property assumption introduces the independence of the cur-

rent state xk from anything before time step k − 1, which can be expressed as

follows

p(xk|x0:k−1, z1:k−1) = p(xk|xk−1). (2.3)

• p(zk|xk, z1:k−1), measurement likelihood, implies the measurement model of

the system. The independence of current measurement zk from previous mea-

surements z1:k−1 and states x0:k−1 is also valid in this case due to Markov model

assumption

p(zk|x0:k, z1:k−1) = p(zk|xk). (2.4)

Given the probabilistic state-space model, the Bayesian filtering recursion is con-

structed with two steps, called prediction and update. The prediction step aims to

calculate the predicted state density p(xk|z1:k−1) based on the Chapman-Kolmogorov

equation as follows

p(xk|z1:k−1) =

∫
p(xk, xk−1|z1:k−1) dxk−1, (2.5a)

=

∫
p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1) dxk−1. (2.5b)

The Chapman-Kolmogorov equation 2.5 can be simplified in the case of the Markov

model 2.3 as follows

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1. (2.6)

The update step involves the new measurement at time step k to the predicted state

density p(xk|z1:k−1). The updated state density or the posterior state density p(xk|z1:k)
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indicates the outcome of the combination based on Bayes’ rule

p(xk|z1:k) =
p(xk, zk, z1:k−1)

p(zk, z1:k−1)
, (2.7a)

=
p(zk|xk, z1:k−1)p(xk, z1:k−1)

p(zk, z1:k−1)
, (2.7b)

=
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)
. (2.7c)

Further simplification of the update equation 2.7c can be achieved thanks to the as-

sumption 2.4 as follows

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (2.8)

The predicted likelihood p(zk|z1:k−1), which corresponds to the normalization con-

stant, enables the following adjustment in the update equation

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1) dxk

. (2.9)

As can be seen, the outputs of the prediction and the update steps are the inputs of

each other, which constructs a recursion starting from the prior distribution p(x0).

Although a closed-form solution is not available for Bayesian filtering in general, a

critical exception is described by the Kalman filter.

2.1.1 Kalman Filter

The Kalman filter [6] is a special case where the system dynamics and measure-

ment models 2.1 are linear with additive Gaussian noise, and the initial prior is also

Gaussian. The following state-space model satisfies the conditions for a closed-form

solution provided by the Kalman filter

xk = Ak−1xk−1 + wk−1, (2.10a)

zk = Hkxk + vk, (2.10b)

where Ak−1 is the transition matrix which defines dynamic behavior of xk, and Hk

is the measurement model matrix which constructs a relation between xk and zk.

wk−1 ∼ N (0, Qk−1) is the process noise with the process noise covariance matrix

Qk−1, and vk ∼ N (0, Rk) is the measurement noise with the measurement noise

covariance matrix Rk.
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The probabilistic version of the state-space model 3.44, considering the assumptions

2.3 and 2.4, can be written as

p(xk|xk−1) ∼ N (Ak−1xk−1, Qk−1), (2.11a)

p(zk|xk) ∼ N (Hkxk, Rk), (2.11b)

p(x0) ∼ N (x0, P0). (2.11c)

The linear and Gaussian model also makes the resulting distributions of the Bayesian

filtering Gaussian. The continuity of the Gaussian form brings about an advantage

related to the sufficiency of mean and covariance to get all the information about the

state. As a result, Kalman filter equations are based on the computation of the mean

and covariance recursively. The whole procedure can be evaluated in a closed form

p(xk|z1:k−1) ∼ N (xk;µk|k−1, Pk|k−1), (2.12a)

p(xk|z1:k) ∼ N (xk;µk|k, Pk|k), (2.12b)

p(zk|z1:k−1) ∼ N (zk;Hkµk|k−1, Sk), (2.12c)

where the sufficient statistics of the distributions are evaluated as

• Prediction step:

µk|k−1 = Ak−1µk−1|k−1, (2.13a)

Pk|k−1 = Ak−1Pk−1|k−1A
⊤
k−1 +Qk−1. (2.13b)

• Update step:

Sk = HkPk|k−1H
⊤
k +Rk, (2.14a)

Kk = Pk|k−1H
⊤
k S

−1
k , (2.14b)

µk|k = µk|k−1 +Kk(zk −Hkµk|k−1), (2.14c)

Pk|k = Pk|k−1 −KkSkK
⊤
k , (2.14d)

where µ and P stand for mean and covariance, respectively. Although the Kalman

filter is the minimum mean squared error estimator for the linear Gaussian systems,

many real-life situations involving nonlinear motion and measurement models can
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not be justified appropriately by the Kalman filter assumptions. Since the output of a

nonlinear function with a Gaussian input is not Gaussian anymore, an approximation

of the non-Gaussian filtering distributions as Gaussian is a solution for the case with

nonlinear models.

2.1.2 Extended Kalman Filter (EKF)

The nonlinear characteristics of the many phenomena in nature reveal the require-

ment of the nonlinear models, which are incompatible with the Kalman filter. On the

other hand, the Taylor series expansion-based extended Kalman filter handles such

situations under the linearization of the nonlinear equations around the best available

information.

The nonlinear Gaussian state-space model with the additive process and measurement

noise assumption can be written as follows.

xk = f(xk−1) + wk, (2.15a)

zk = h(xk) + vk, (2.15b)

where f(.) and h(.) are the nonlinear dynamic and measurement model functions,

whose inputs or outputs are the state xk and the measurement zk. wk−1 ∼ N (0, Qk−1)

and vk ∼ N (0, Rk) stand for process and measurement noise, respectively. Expan-

sion of f(xk−1) in the Taylor series about the best available information µk−1|k−1

enables local linearization, which works well in practice for moderate nonlinearities.

The equivalent action for h(xk) is performed about µk|k−1

f(xk−1) = f(µk−1|k−1) +
∂f

∂x

∣∣∣
x=µk−1|k−1

(xk−1 − µk−1|k−1) +HOT, (2.16a)

h(xk) = h(µk|k−1) +
∂h

∂x

∣∣∣
x=µk|k−1

(xk − µk|k−1) +HOT, (2.16b)

where HOT stands for higher order terms. If higher order terms are omitted, the

state-space model 2.15 can be approximated as

xk ≈ f(µk−1|k−1)− Fk−1µk−1|k−1 + Fk−1xk−1 + wk, (2.17a)

zk ≈ h(µk|k−1)−Hkµk|k−1 +Hkxk + vk, (2.17b)
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where the Jacobians can be written as:

Fk−1 =
∂f

∂x

∣∣∣
x=µk−1|k−1

, (2.18a)

Hk =
∂h

∂x

∣∣∣
x=µk|k−1

. (2.18b)

The approximated state-space model 2.17 meets the requirement of the Kalman fil-

ter related to linearity, which brings the following EKF equations constructed with

Jacobians.

• Prediction step:

µk|k−1 = f(µk−1|k−1), (2.19a)

Pk|k−1 = Fk−1Pk−1|k−1F
⊤
k−1 +Qk−1. (2.19b)

• Update step:

Sk = HkPk|k−1H
⊤
k +Rk, (2.20a)

Kk = Pk|k−1H
⊤
k S

−1
k , (2.20b)

µk|k = µk|k−1 +Kk(zk − h(µk|k−1)), (2.20c)

Pk|k = Pk|k−1 −KkSkK
⊤
k . (2.20d)

An extended Kalman filter, a frequently used method in the nonlinear state-space

models, brings with it some restrictions to ensure adequate performance, such as the

need for differentiable models. Furthermore, the performance is strictly related to the

superiority of the first two terms to the remaining ones in the 2.16. As the higher-

order terms become more dominant, the performance degrades more. Additionally,

computational complexity is another restriction aspect due to calculating Jacobian

matrices with numeric methods when the analytical analysis is not feasible.

2.1.3 Unscented Transform

Unscented transform is based on changing the order of operations to determine the

statistics of a random variable subjected to a nonlinear transformation [7]. Rather
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than approximating arbitrary nonlinear transformation of a probability distribution,

applying the approximation to the probability distribution first and then nonlinear

transformation can be interpreted as the idea of the unscented transform. The relation

between two random variables through a nonlinear transformation can be expressed

as

y = f(x) (2.21)

where x ∈ Rm is a random vector with mean x̄ and covariance Σx. The function f(.)

represents the nonlinear transformation. Another random variable y has mean ȳ and

covariance Σy, and also denotes the nonlinear transformation of the random variable

x. The approximation of the probability distribution is achieved through sigma points

computed in a deterministic way as

sj ≜


x̄, j = 1

x̄+
[√

m
1−W 0Σx

]
:,j−1

, 2 ≤ j ≤ m+ 1

x̄−
[√

m
1−W 0Σx

]
:,j−m−1

, m+ 2 ≤ j ≤ 2m+ 1

W j ≜

 W 0, j = 1

1−W 0

2m
, 2 ≤ j ≤ 2m+ 1

(2.22)

where m is dimension of the random variable x, [·]:,j denotes the j th column of the

matrix argument,
√
· indicates the matrix square root operation. Furthermore, weights

must satisfy the following condition

m∑
j=1

W j = 1. (2.23)

Since sigma points except x̄ are calculated by taking into account the Σx based devia-

tion from x̄ in all dimensions, 2m+ 1 sigma points are available. The propagation of

the each sigma points through nonlinear transformation results in a set of transformed

sigma points as given

yj = f(sj). (2.24)
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The transformed sigma points are used to find out the statistics of the random variable

y as follows

ȳ =
m∑
j=1

W jyj, (2.25)

Σy =
m∑
j=1

W j(yj − ȳ)(yj − ȳ)⊤. (2.26)

Unscented transform enables to compute statistics after nonlinear transformation us-

ing sigma points rather than linearization around the mean as Taylor expansion does

and constructs the basis of the unscented Kalman filter.

2.1.4 Unscented Kalman Filter (UKF)

The unscented Kalman filter, an alternative to the extended Kalman filter to handle the

nonlinear characteristics of many phenomena, extends the concept of the unscented

transform to the recursive estimation [8]. As a result, some drawbacks of extended

Kalman filter, such as the derivation of Jacobians which may lead to implementation

difficulties and unstable performance in case of elusive local linearity, are not valid

for unscented Kalman filter. Such advantages make the UKF a compelling option

compared to the EKF when the Kalman filter is not suitable for the case.

The nonlinear Gaussian state-space model with the additive process and measurement

noise assumption as in the extended Kalman filter section is as given

xk = f(xk−1) + wk, (2.27a)

zk = h(xk) + vk, (2.27b)

where f(.) and h(.) are the nonlinear dynamic and measurement model functions,

whose inputs or outputs are the state xk ∈ Rm and the measurement zk with pro-

cess and measurement noises wk−1 ∼ N (0, Qk−1) and vk ∼ N (0, Rk), respectively.

The statistics of the state distribution at time k-1 are represented by the sigma points

and their weights, which enables us to deal with the nonlinear dynamic function f(.)
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and measurement function h(.) as follows

µjk−1|k−1 ≜


µk−1|k−1, j = 1

µk−1|k−1 +
[√

m
1−W 0Σk−1|k−1

]
:,j−1

, 2 ≤ j ≤ m+ 1

µk−1|k−1 −
[√

m
1−W 0Σk−1|k−1

]
:,j−m−1

, m+ 2 ≤ j ≤ 2m+ 1

W j ≜

 W 0, j = 1

1−W 0

2m
. 2 ≤ j ≤ 2m+ 1

(2.28)

Sigma points and the corresponding weights represent the state distribution, leading

to the following UKF equations to deal with the nonlinearity.

• Prediction step:

The mean and the covariance of the predicted state density are computed using

the weighted average and outer product of the sigma points propagated through

dynamic model function f(.), respectively.

µjk|k−1 = f(µjk−1|k−1), (2.29)

µk|k−1 =
m∑
j=1

W jµjk|k−1, (2.30)

Σk|k−1 =
m∑
j=1

W j(µjk|k−1 − µk|k−1)(µ
j
k|k−1 − µk|k−1)

⊤ +Qk−1. (2.31)

• Update step:

The mean and covariance computation of the posterior state density requires

predicted measurement zk|k−1 and Kalman gain Kk calculated by the innova-

tion covariance Sk and cross-covariance Cxz
k . Transformed sigma points µjk|k−1

of the prediction step are the input of the nonlinear measurement function h(.) to

find out the predicted measurement zk|k−1. As in the prediction step, the inno-

vation covariance Sk and the cross-covariance Cxz
k are computed with weighted
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outer product of the transformed sigma points.

zjk|k−1 = h(µjk|k−1), (2.32)

zk|k−1 =
m∑
j=1

W jzjk|k−1, (2.33)

Sk =
m∑
j=1

W j(zjk|k−1 − zk|k−1)(z
j
k|k−1 − zk|k−1)

⊤ +Rk, (2.34)

Cxz
k =

m∑
j=1

W j(µjk|k−1 − µk|k−1)(z
j
k|k−1 − zk|k−1)

⊤, (2.35)

Kk = Cxz
k S

−1
k , (2.36)

µk|k = µk|k−1 +Kk(zk − zk|k−1), (2.37)

Pk|k = Pk|k−1 −KkSkK
⊤
k . (2.38)

2.2 Student’s t-Distribution

A student’s t-distribution or t-distribution is a probability distribution developed under

the concern for the inference through a small sample size with an unknown popula-

tion variance. The student’s t-distribution and Gaussian distribution share specific

characteristics regarding the bell-shaped curve and symmetry. Still, the student’s t-

distribution has heavier tails and a lower peak, which introduces more uncertainty.

The similarity and difference between Gaussian and student t-distribution can be con-

structed by describing the random variables through sampling based approach. The

random variable which has a standard normal distribution is given as

Z =
X̄ − µ

σ√
N

, (2.39)

where N observations {X1, X2, · · · , XN} are drawn from a normally distributed pop-

ulation N (µ, σ) with the following sample mean and the variance

X̄ =
1

N

N∑
i=1

Xi, (2.40a)

S2 =
1

N − 1

N∑
i=1

(Xi − X̄)2. (2.40b)

Rather than using the unknown variable σ, the sample standard deviation S, which

varies based on the sample, brings in the following random variable, which no longer
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has the standard normal distribution [9],

t =
X̄ − µ

S√
N

, (2.41)

where the random variable t has the student-t distribution with N − 1 degrees of

freedom. Replacement of the population standard deviation with the sample standard

deviation presents a greater variance, which creates a basis for the heavier tails. If

the typical characteristics of the two distributions are required when sufficient data

is unavailable, student t-distribution is a more reasonable option to come up with

meaningful outcomes. The generalized version of the student t-distribution, also valid

for random vectors x ∈ Rn, is described as

tν(x;µ,Σ) ≜
Γ((ν + n)/2)

Γ(ν/2)|πνΣ|1/2
(
1 + (x− µ)⊤(νΣ)−1(x− µ)

)−(ν+n)/2
, (2.42)

where µ and Σ denote mean and scale matrix of random variable x and ν represents

the degrees of freedom. Besides, the covariance of random variable x is defined as

P = ν
ν−2

Σ if ν > 2.

Gaussian distribution can be considered a particular case of student t-distribution

since t-distribution reduces to Gaussian as degrees of freedom go to infinity as shown

in Figure 2.1. As a result, both claim several convenient properties, and the t-distribution

interpretation of these common properties can be listed as follows.

• When an affine transformation is applied to a random vector x ∼ tν(x;µ,Σ),

the form of the distribution remains unaltered with the following statistics

y = Ax+ b, (2.43)

p(y) = tν(y;Aµ+ b, AΣA⊤). (2.44)

• Let x1 ∈ Rn1 and x2 ∈ Rn2 be the jointly t-distributed two random vectors

described as  x1

x2

 ∼ tν

 µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22

 . (2.45)

The two crucial concepts often mentioned with Gaussian distribution, marginal-

ization and conditioning, are also valid for the student t-distribution. The marginal-

ization of x1 is achieved by applying a linear transformation withA =
[
I 0

]
,
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Figure 2.1: PDF of Gaussian distribution and student t-distribution with different

degrees of freedom.

which provides the following result

p(x1) = tν(x1;µ1,Σ11). (2.46)

Further, conditional pdf p(x1|x2) is given by the following statistics.

p(x1|x2) = tν1|2(x1;µ1|2,Σ1|2), (2.47)

ν1|2 = ν + n2, (2.48)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2), (2.49)

Σ1|2 =
ν +∆2

2

ν + n2

(
Σ12Σ

−1
22 Σ

⊤
12

)
, (2.50)

where ∆2 = (x2 − µ2)
⊤(νΣ22)

−1(x2 − µ2).
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2.3 Chernoff Fusion

Fusing information from two different sources is a general scenario to yield an opti-

mal estimation about an unknown variable x ∈ Rn. The estimates of the two sources

are explained in the form of probability density functions px,1(·) and px,2(·), which

share a piece of common information that comes from past fusion results, commu-

nication link failures, process noise, etc. Therefore, identification and removal of

common information are of interest. Otherwise, duplicate information may degrade

the performance due to overconfidence, divergence and bias in estimates. Mathemat-

ically, optimal density fusion can be written as follows

px,f (x) ∝
px,1(x)px,2(x)

px,12(x)
, (2.51)

where px,12(·) stands for density which represents the common information, and

px,f (x) denotes the optimal fusion density. Although the removal of duplicate in-

formation in (2.51) is straightforward in a theoretical sense, some limitations in the

practical systems such as communication between sources and computational power

encourage using suboptimal methods such as Chernoff fusion based on the following

px,cf (x) =
pwx,1(x)p

1−w
x,2 (x)∫

pwx,1(x)p
1−w
x,2 (x)dx

, (2.52)

where px,cf (x) denotes the fused density, and w ∈ [0, 1] is determined using opti-

mization techniques.

The approach in (2.52) is proposed in [10] and [11] as a generalization of CI tech-

nique. CI assumes that states are described with Gaussian density function, which

also results in fused density as Gaussian. Since a closed-form solution is available for

the exponential family of distributions, the Gaussian assumption introduces a closed-

form solution. On the other hand, the form of the two arbitrary density functions

may not remain the same after the Chernoff fusion. Furthermore, an analytical solu-

tion is not accessible for any arbitrary distributions. Assuming px,1(·) and px,2(·) are

Gaussian

px,1(x)
△
=N (x;x1, P1), (2.53a)

px,2(x)
△
=N (x;x2, P2). (2.53b)
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Log-linear combination of px,1(x) and px,2(x) followed by normalization as in (2.52)

makes Chernoff fusion equivalent to CI technique. The mean xCI and the covariance

PCI which describe the fused density are determined as follows

P−1
CI xCI = wP−1

1 x1 + (1− w)P−1
2 x2, (2.54a)

P−1
CI = wP−1

1 + (1− w)P−1
2 . (2.54b)

One of the approaches to determine w ∈ [0, 1] in (2.52) is to use maximization/mini-

mization of a cost function as mentioned in [12]. The determinant/trace of the covari-

ance matrix and Shannon/Renyi entropy can be considered as the possible cost func-

tions. An alternative as stated in [12] is to use divergence metrics such as Kullback-

Leibler divergence for the measure of relative distance between two distributions.

2.4 Gaussian Processes

The Gaussian process, a non-parametric stochastic process, provides a convenient

way to obtain a posterior based on distribution over function using a given data set

and a prior which carries information about a random function. Since its description

is based on probabilistic structure, the Gaussian process represents uncertainty related

to the data set and investigated parts of the function. An example function which

relates state and the measurement can be written as

zk = f(xk) + ek, ek ∼ N (0, R) (2.55)

where zk is noisy observation at time k, xk is the corresponding input to that observa-

tion, f(.) is the function desired to be known and ek is the measurement noise. The aim

is to learn the function f =
[
f(x̄1) · · · f(x̄n)

]⊤
at inputs x̄ =

[
x̄1 · · · x̄n

]⊤
by using a set of noisy measurements z =

[
z1 · · · zm

]⊤
with their inputs x =[

x1 · · · xm

]⊤
. The Gaussian process is based on the assumption that z and f are

jointly Gaussian distributed z

f

 ∼ N
0,

K(x,x) + Im ⊗R K(x, x̄)

K(x̄,x) K(x̄, x̄)

 , (2.56)
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Figure 2.2: (a) displays a set of measurements and the true function. (b) shows func-

tions obtained by linear interpolation and fitting polynomials with degrees 3 and 5 in

addition to the true function and the measurements. (c) illustrates the estimate of the

function values with uncertainty region using the Gaussian process, the true function,

and the measurements.

where

K(x, x̄) =


k (x1, x̄1) . . . k (x1, x̄n)

...
...

k(xm, x̄n) . . . k(xm, x̄n)

 , (2.57)

and k (·, ·) is the kernel or the covariance function which determines the degree of cor-

relation between its inputs. The kernel, which captures the assumptions made about

the function, has a decisive role in the performance of the Gaussian process. Although

several alternatives are available, one popular choice is the squared exponential kernel
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function

k (u, v) = σ2e−
|u−v|2

2l2 , (2.58)

where σ and l are the variance and the length scale, respectively. Moreover, the

squared exponential kernel is a function of |u − v| since the correlation between

two inputs decreases as the distance between them grows, which is quite intuitive.

Another popular alternative is a modified version of the squared exponential kernel in

terms of periodicity

k(u, v) = σ2
fe

−
2 sin2( |u−v|

2 )
l2 , (2.59)

where σ2
f and l stand for prior variance of signal amplitude and length scale of the

function, respectively.

The estimation of the unknown function values is constructed based on conditioning,

which is available in a closed form solution due to the nature of the Gaussian process.

Two jointly Gaussian random vectors establish that conditional distribution for one

vector given the other is also Gaussian as given

p(f |z) ∼ N (Az,K(x̄, x̄)− AKyA
⊤), (2.60)

where

A = K(x̄,x)K−1
y , (2.61)

Kz = K(x,x) + Im ⊗R. (2.62)

An example to the performance of the Gaussian process is demonstrated in Figure 2.2

by a visual comparison with the linear interpolation, fitting a polynomial to estimate

a function. The kernel of the Gaussian process is the periodic function 2.59 due to

the periodic characteristic of the true function with the hyperparameters σf = 3.5 and

l = 1.5. The Gaussian process outperforms the other techniques due to the proper

kernel selection, which encodes assumptions about the function.

Although the batch approach provides both the estimate and the uncertainty, all the

measurements should be available. On the other hand, extended target tracking is

an excellent example of an application that collects measurements sequentially in

time [4]. For such applications, recursive Gaussian regression [13, 14] makes the

whole data requirement invalid, reducing the computational complexity related to the

number of measurements.
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Figure 2.3: (a), (b) and (c) display the estimates of the function values with un-

certainty region using the recursive Gaussian regression, the true function, and the

measurements in successive time instants.

In the light of the assumption that f carries the information comes from past mea-

surements, which makes the recursion of the state available through time k, Gaussian

process assumes that zk and f are jointly Gaussian such that

 zk

f

 ∼ N
0,

k (xk, xk) +R K(xk, x̄)

K(x̄, xk) K(x̄, x̄)

 , (2.63)

where

K(x̄, x̄) =


k (x̄1, x̄1) . . . k (x̄1, x̄n)

...
...

k(x̄n, x̄1) . . . k(x̄n, x̄n)

 . (2.64)
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The measurement likelihood and the initial prior can be written as

p(zk|f) ∼ N (zk;H
f (xk)f , R

f (xk)), (2.65a)

p(f) ∼ N (0, K(x̄, x̄)), (2.65b)

where

H f (xk) = K(xk, x̄)[K(x̄, x̄)]−1, (2.66a)

Rf (xk) = k (xk, xk) +R−K(xk, x̄)[K(x̄, x̄)]−1K(x̄, xk). (2.66b)

The measurement likelihood and the initial prior in 2.65 can be incorporated to a

state-space model for recursive regression. The corresponding state-space model is

constructed as follows

xf
k = F fxf

k−1 + wk, wk ∼ N (0, Qf ), (2.67a)

zk = H f (xk)x
f
k + vfk , vfk ∼ N (0, Rf (xk)), (2.67b)

where xf
k =

[
f(x̄1) · · · f(x̄n)

]⊤
. F f and Qf are the state transition matrix and

the process noise covariance matrix, respectively, and can be described depending

on the system’s requirements. As an example, the same function defined in the 2.2 is

estimated using the recursive Gaussian process regression in Figure 2.3 with the same

kernel function and the hyperparameters.

2.5 Variational Inference

The main purpose of the variational Bayes is to represent a conditional density of

latent variables given observed ones p(z|x) as an approximate density q(z), and the

basic idea is to treat inference as an optimization problem. The objective function

of this optimization problem is provided by the field of information theory, called

Kullback-Leibler (KL) divergence. The KL divergence between the probability dis-

tributions q and p is formulated as

KL(q||p) = −
∑

q(z) log
p(z|x)
q(z)

, (2.68)

where KL divergence measures the similarity between the probability distributions

q(z) and p(z|x), and has the following properties:
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• KL(q||p) ≥ 0.

• KL(q||p) = 0↔ q = p.

• KL(q||p) ̸= KL(p||q), which states that KL divergence is not symmetric.

The KL divergence formula can be manipulated by considering the conditional den-

sity formula p(X, Y ) = p(X|Y )p(Y ) as follows

KL(q(z)||p(z|x))

= −
∑
z

q(z) log
p(x, z)

q(z)p(x)
, (2.69)

= −
∑
z

q(z)

(
log

p(x, z)

q(z)
+ log

1

p(x)

)
, (2.70)

= −
∑
z

q(z) log
p(x, z)

q(z)
+ log p(x)

∑
z

q(z)︸ ︷︷ ︸
1

, (2.71)

= −
∑
z

q(z) log
p(x, z)

q(z)︸ ︷︷ ︸
L

+ log p(x), (2.72)

where L = −KL(q(z)||p(x, z), which stands for lower bound, is always negative due

to the nonnegativity of KL divergence. Furthermore, log p(x), which does not depend

on q, is a constant term. The final expression is given as

KL(q(z)||p(z|x)) + L = const. (2.73)

Based on the relation stated in (2.73), a larger L reduces theKL(q(z)||p(z|x)), which

results in a better approximate density q(z) of p(z|x) in terms of similarity. As a

result, variational inference finds q(z) that maximizes the lower bound L to approxi-

mate p(z|x). At this point, a crucial point is the description of the variational family.

One popular choice is the mean-field variational family, which assumes that latent

variables or vectors are independent and can be factorized as

q(z) =
∏
i

qi(zi). (2.74)

The conventional method for this variational family is to iteratively optimize the lower

bound L over qi while keeping the others fixed on the latest version.
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CHAPTER 3

CONFLICT RESOLUTION IN MULTI-SENSOR FUSION WITH

STUDENT-T DISTRIBUTIONS

Multi-sensor fusion has been a topic of interest for many years, and several algorithms

have been proposed in the literature according to the architecture of the fusion center.

The direct transmission of measurements to the fusion center for processing is the

foundation of the conventional strategy, so called centralized architecture, for fusion.

The centralized architecture is theoretically the best option if the collected measure-

ments are accessible by the fusion center. On the other hand, the transmission of

measurements, a crucial step in centralized fusion, necessitates a large amount of

bandwidth and delay, which is among the disadvantages of the centralized architec-

ture. Another architecture for fusion is decentralised architecture which is constructed

with multiple fusion nodes. Each fusion node fuses its local data with the informa-

tion gathered from different sources. The communication issues of the decentralised

architecture depend on the fusion strategy. For instance, if high number of nodes

communicate with each other, the cost problem brings us scalability problems. As

a further downside, a large amount of bandwidth is also required. Although optimal

performance is the main strength of the centralized architecture, the decentralised ap-

proach can provide comparable results, and further advantages related to flexibility,

robustness, and scalability [15]. In decentralised architecture, any node is not supe-

rior to the others, and their communication depends on the need. Although such fu-

sion is conceptually more complicated, centralized fusion increases the susceptibility

compared to decentralised fusion in case of failure. Furthermore, decentralised archi-

tecture comes up with lower communication and processing load due to its modular

structure. The flexible, modular, and robust nature of the decentralised fusion makes
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it a compelling option [16, 17]. In decentralised fusion, an important source of corre-

lation is the process noise in the dynamic state equation of the targets. Earlier works

assume this noise term to be zero [16, 17]. This assumption ignores the dependency

between the tracks due to common process noise. The method proposed in [18] takes

this dependence into account and computes the covariance between the estimates of

different sensors for two tracks. [19] proposes a formula that combines the local esti-

mates from each sensor and considers the dependence between estimates. [20] states

that the proposed formula only shows optimal performance in terms of maximum-

likelihood sense. Furthermore, [20] compares the performance of the algorithms pro-

posed by [17] and [19]. The results in [20] are constructed with a specific number of

sensors. A generalized version in terms of the number of sensors is presented in [21]

and [22]. [23] also derives an algorithm for an arbitrary number of sensors. More-

over, [23] shows that the performance of decentralised approach degrades more than

the centralized one as the number of sensors increases. On the other hand, this per-

formance degradation is acceptable due to the advantages provided by decentralised

fusion. These theoretical developments in the decentralised fusion introduce the sub-

ject related to the applicability of decentralised fusion to practical systems. Based on

this concern, [24] investigates scalable fusion algorithms. Furthermore, [24] states

that the channel fusion approach [25, 26], Chernoff and Bhattacharyya fusion algo-

rithms perform reasonably well with minimum communication.

Another categorization is based on the inputs as discussed in [27], which reviews

and compares various algorithms. In their work, the authors divide the solution

approaches into different categories such as measurement fusion and track fusion.

In measurement fusion, the sensor measurements are fused to obtain a combined

measurement. [28] compares the two commonly used measurement fusion meth-

ods for Kalman filter based multi-sensor data fusion. These methods are also studied

in [29, 30] and [31]. Complex combination (CC), Bar-Shalom/Campo state vector

combination (BC) [19], the best linear unbiased estimation (BLUE) [32, 33, 34] and

covariance intersection (CI) are some well known methods for track fusion. Covari-

ance intersection technique proposed by [1, 2, 3] provides more robust combination

of local estimates than the linear combination. The weight calculation is an essential

criterion on the performance of the CI approach. [2] and [3] calculate weights by min-
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imizing the determinant of the fused mean-square error matrix, which corresponds

to a costly nonlinear optimization problem. In order to decrease the computational

complexity, fast CI algorithms [35, 36] calculate the weights approximately rather

than the optimization of the nonlinear cost function. [37] considers a set-theoretic in-

terpretation of CI algorithm and obtains a tighter bound on the error covariance. [10]

[11] propose the generalization of CI technique beyond Gaussian distribution. This

generalization leads to the Chernoff fusion of Bernoulli, Poisson and independent

identically decentralised processes in [38]. Similarly, an extension of CI to Gaussian

mixture models (GMM) is provided in [39]. [39] applies CI to each pair of the Gaus-

sian components in the two mixtures. The method suggested in [39] is followed by

another GMM-based approach in [40]. [40] approximates the power of a Gaussian

mixture as a combination of the power of its constituents. In [41], an arbitrary power

of a Gaussian mixture is approximated as an unnormalized Gaussian mixture, whose

weights are the only unknown variables. These weights are calculated by using the

sigma-point approximation of the Gaussian mixture to solve a weighted least squares

problem.

Another essential aspect of multi-sensor fusion is robustness in case of outliers, which

may originate from unreliable sensors. The investigation of alternative noise models

is essential since the Gaussian assumption is insufficient to handle these noise charac-

teristics. The heavy-tailed structure makes student-t distribution an excellent option

to represent noise in filtering and fusion applications. [42] suggests a nonlinear filter

that achieves more reliable performance in the presence of outliers and model mis-

matches by modeling both process and measurement noise as student-t distributions.

[43] employs variational Bayes to create a robust and analytically recursive technique

while representing non-Gaussian measurement noise as a student-t distribution for

data fusion. [44] models the process and measurement noise as student-t distribution

and describes an indicator variable based on Bernoulli prior for outlier rejection. A

student-t hierarchical Gaussian state-space model combined with variational Bayes

is constructed for parameter identification and state estimation in a centralized archi-

tecture. [45] describes a fusion algorithm that estimates state utilizing measurements

sequentially and incorporates the multivariate t-decentralised process and measure-

ment noises.

27



This section focuses on the idea of combining the Chernoff fusion with student t-

distribution. Simulations and real data experiments are conducted to evaluate the

performance.

3.1 Motivation

The motivation behind the use of student-t distributions for multi-sensor fusion can

be illustrated with a toy example in Figure 3.1. In this example, two sensors provide

conflicting information about the unknown variable x, represented by the probability

density functions px,1(x) and px,2(x) at time t = 1, respectively. Another measure-

ment consistent with the first sensor data is received at time t = 2 to resolve the

uncertainty. Two different cases are compared where the underlying distributions are

assumed to be Gaussian and student-t, respectively. In the Gaussian assumption, the

uni-modal structure of the fused density results in an information loss at the end of

the fusion since the conflicting information collapses without solving ambiguity. On

the other hand, the student-t assumption compensates for the second sensor data error

at t = 1 thanks to its multi-modal structure. The fused probability density functions

with Gaussian and student-t cases are given in Figure 3.1(a) and Figure 3.1(a), re-

spectively. In the Gaussian case, the procedure to fuse Gaussian posteriors turns out

to be weighting the means and covariances of the posteriors. Hence, the fused den-

sity at t = 1 can be calculated according to (2.54). This weighting operation ignores

the essential points of the sensor output posteriors. When the new information is pro-

cessed through the fused density at t = 1, the overall result is misleading. Conversely,

the approximation of px,1(x) and px,2(x) as a mixture of student-t distributions at the

end of fusion captures critical information regarding the posteriors, which provides

excellent flexibility to eliminate ambiguity using new data.
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Figure 3.1: Fusion inputs and outputs in a probabilistic manner. (a) displays the

fusion inputs and outputs under the Gaussian input assumption. (b) depicts the whole

procedure’s inputs and outputs, with the inputs represented by student-t distribution.

3.2 Chernoff Fusion with Student-t Distributions

Chernoff fusion enables us to identify and remove common information while fusing

data from two different sensors. Gaussian input probability density functions yield

the same form as the Chernoff fusion inputs, which is not the case for student t-

distribution use. On the other hand, the robustness in the case of student t-distribution

makes adapting student t-distribution to the Chernoff fusion a compelling option.

Performing Chernoff fusion with student t-distribution as inputs involves four main

steps:

• taking a non-integer power of a student-t distribution;

• taking a non-integer power of a student-t mixture;

• multiplying two student-t distributions;

• merging student-t mixtures.

In this section, we investigate each of these tasks in the following subsections and

propose approximations involving sigma-points when necessary.
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3.2.1 A Non-Integer Power of a Student-t Distribution

We start with an arbitrary non-negative power of a student-t distribution, which con-

structs the basis of our assumptions in the following subsections. An arbitrary non-

negative power of a student-t distribution can be written as an unnormalized student-t

distribution as follows

twν (x;µ,Σ)

=

 Γw((ν+n)/2)

Γw(ν/2)|πνΣ|w/2

×
(
1 + (x− µ)T(νΣ)−1(x− µ)

)−w(ν+n)/2
 (3.1)

=

 Γw((ν+n)/2)

Γw(ν/2)|πνΣ|(w−1)/2
1

|πνΣ|1/2

×
(
1 + (x− µ)T(νΣ)−1(x− µ)

)−(wν+(w−1)n+n)/2

 (3.2)

=

 Γw((ν+n)/2)

Γw(ν/2)|πνΣ|(w−1)/2
1

|πν̄ ν
ν̄
Σ|1/2

×
(
1 + (x− µ)T

(
ν̄ ν
ν̄
Σ
)−1

(x− µ)
)−(ν̄+n)/2

 (3.3)

=

 Γw((ν+n)/2)

Γw(ν/2)|πνΣ|(w−1)/2
1

|πν̄Σ|1/2

×
(
1 + (x− µ)T

(
ν̄Σ
)−1

(x− µ)
)−(ν̄+n)/2

 (3.4)

=

 Γw((ν+n)/2)Γ(ν̄/2)

Γw(ν/2)Γ((ν̄+n)/2)|πνΣ|(w−1)/2

Γ((ν̄+n)/2)

Γ(ν̄/2)|πν̄Σ|1/2

×
(
1 + (x− µ)T

(
ν̄Σ
)−1

(x− µ)
)−(ν̄+n)/2


=cν(w,Σ)tν̄(x;µ,Σ), (3.5)

where

ν̄ ≜w(ν + n)− n, (3.6a)

Σ ≜
ν

ν̄
Σ, (3.6b)

cν(w,Σ) ≜
Γw((ν + n)/2)Γ(ν̄/2)

Γw(ν/2)Γ((ν̄ + n)/2)|πνΣ|(w−1)/2
. (3.6c)

Two realizations for the power of a student-t distribution with the exponent factor 0.5

are provided in Figure 3.2.
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Figure 3.2: (a) and (b) display two realizations for the power of a student-t distribution

with the exponent factor of 0.5. The power of the green student t-distributions with

the exponent factor 0.5 outputs the corresponding yellow distributions.

3.2.2 A Non-Integer Power of a Student-t Mixture

A student-t mixture model can be written as the sum of the weighted student-t distri-

butions as follows

p(x) =
N∑
i=1

αitνi(x;µi,Σi). (3.7)

The wth power of the student-t mixture is essential, as shown in the Chernoff fusion

formula (2.52). Although this procedure is straightforward for the student-t distribu-

tion, an approximation is required for the student-t mixture case since a non-integer

power of a student-t mixture is not a student-t mixture in general. Hence we propose

the following approximation based on the non-integer power expressions for a single

student-t distribution given in the previous section

pw(x) ≈ qβ(x) ≜
N∑
i=1

βitν̄i(x;µi,Σi) (3.8)

where βi ≥ 0, 1 ≤ i ≤ N , are some unknown weights and

ν̄i ≜w(νi + n)− n, (3.9a)

Σi ≜
νi
ν̄i
Σi. (3.9b)
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Figure 3.3: (a-d) display four realizations of the power of a student-t mixture with

the exponent factor of 0.5 for different methods. Red distributions are the individual

components of the mixture. Green, blue and yellow distributions illustrate the power

of a student-t mixture determined by numerical, Julier’s, and proposed approaches,

respectively.

We propose to find the unknown weights β = [β1, β2, . . . , βN ] by solving the follow-

ing optimization problem as in [41],

β̂ = argmin
β≥0

∫
(pw(x)− qβ(x))2p(x) dx. (3.10)

Since an analytical approach to determine the pw(x) is not feasible, it is not possible

to evaluate the cost function above without resorting to numerical methods, which

would be too computationally costly. We here use the concept of sigma-points for this

problem as in [41]. Suppose that we have the following sigma-point approximation
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for the ith mixture component tνi(x;µi,Σi) of qβ(x)

tνi(x;µi,Σi) =
L∑
j=1

π
(j)
i δ

s
(j)
i
(x), (3.11)

where {s(j)i }Lj=1, {π(j)
i }Lj=1 are the sigma-points and their weights. Restatement of

the p(·) using the sigma-point approximation in (3.11) gives the following overall

approximation

p(x) =
N∑
i=1

αi

L∑
j=1

π
(j)
i δ

s
(j)
i
(x). (3.12)

After substituting this approximation, the cost function in (3.10) can be modified as∫
(pw(x)− qβ(x))2p(x) dx,

≈
N∑
i=1

L∑
j=1

αiπ
(j)
i

(
pw
(
s
(j)
i

)
− qβ

(
s
(j)
i

))2
, (3.13)

which allows us to rewrite the cost function in a more compact way∫
(pw(x)− qβ(x))2p(x) dx ≈ (Aβ − b)⊤W (Aβ − b), (3.14)

where the elements of the vector b ∈ RNL×1, the matrixA ∈ RNL×N and the diagonal

matrix W ∈ RNL×NL are defined as

[A]L(i−1)+j,m ≜tν̄m
(
s
(j)
i ;µm,Σm

)
, (3.15)

[b]L(i−1)+j,1 ≜p
w(s

(j)
i ), (3.16)

[W ]L(i−1)+j,L(i−1)+j =αiπ
(j)
i , (3.17)

for i,m = 1, . . . , N and j = 1, . . . , L. As a consequence, the optimization in (3.10)

turns into the following

β̂ ≜ argmin
β≥0

(Aβ − b)⊤W (Aβ − b), (3.18)

which is a non-negative weighted least squares problem. The so-called Lawson-

Hanson algorithm can solve this problem, and its modified version is implemented in

the built-in Matlab function as explained in [41]. In order to apply Lawson-Hanson

algorithm, the problem in (3.18) is converted to the equivalent version as follows

β̂ ≜ argmin
β≥0
∥Ãβ − b̃∥22, (3.19a)

Ã
△
=W 1/2A, b̃

△
=W 1/2b. (3.19b)
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The approach in [40] aims to extend CI to Gaussian mixture models. For this pur-

pose, the non-integer power of Gaussian mixture is expressed using the following

approximation (
n∑
i=1

pi(x)

)ω

≈
n∑
i=1

pωi (x). (3.20)

Figure 3.3 provides different realizations of the numerical approach, the method

in [40], and the proposed approach in addition to the individual components of the

mixture. The approximation in (3.20) is used to determine the non-integer power of

the student t-mixture and labeled as Julier’s approach in Figure 3.3. According to

Figure 3.3, the proposed approach is a better approximation than Julier’s approach in

terms of the similarity with the numerical approach.

3.2.3 Multiplication of Two Student-t Distributions

Suppose that we have two student-t distributions, namely, p1(x) ≜ tν1(x, µ1,Σ1)

and p2(x) ≜ tν2(x, µ2,Σ2). Since the multiplication p1(x)p2(x) is not a student-t

distribution in general, we would like to approximate the multiplication as a student-t

mixture as follows

p1(x)p2(x) ≈ qη(x) ≜ η1p1(x) + η2p2(x). (3.21)

Note that the only unknowns in this approximation are the weights η ≜ [η1 , η2]. We

propose to find these unknown weights by using the following optimization problem,

η̂ ≜ argmin
η≥0

∫
(p1(x)p2(x)− qη(x))2(p1(x) + p2(x)) dx. (3.22)

Since p1(x)p2(x) is not available analytically, we consider numerical approach as in

the previous section. On the other hand, evaluating any possible η, which increases

computational load too much, leads to the following sigma-point approximations for

the densities p1(·) and p2(·)

p1(x) ≈
L∑
i=1

π
(i)
1 δs(i)1

(x), (3.23a)

p2(x) ≈
L∑
i=1

π
(i)
2 δs(i)2

(x), (3.23b)
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where {s(i)1 }Li=1, {π
(i)
1 }Li=1 and {s(i)2 }Li=1, {π(i)

2 }Li=1 are the sigma-points and their

weights representing p1(·) and p2(·), respectively. Substituting the approximations

into to the cost function (3.22) gives the following∫
(p1(x)p2(x)− qη(x))2(p1(x) + p2(x)) dx

=

∫
(p1(x)p2(x)− qη(x))2p1(x) dx+

∫
(p1(x)p2(x)− qη(x))2p2(x) dx, (3.24a)

≈
L∑
i=1

π
(i)
1

(
p1
(
s
(i)
1

)
p2
(
s
(i)
1

)
− qη

(
s
(i)
1

))2
+

L∑
i=1

π
(i)
2

(
p1
(
s
(i)
2

)
p2
(
s
(i)
2

)
− qη

(
s
(i)
2

))2
,

(3.24b)

=(A1η − b1)⊤W1(A1η − b1) + (A2η − b2)⊤W2(A2η − b2), (3.24c)

where A1, A2 ∈ RL×2, b1, b2 ∈ RL and W1,W2 ∈ RL×L are defined as follows

[A1]i,j ≜pj
(
s
(i)
1

)
, (3.25a)

[A2]i,j ≜pj
(
s
(i)
2

)
, (3.25b)

[b1]i ≜p1
(
s
(i)
1

)
p2
(
s
(i)
1

)
, (3.25c)

[b2]i ≜p1
(
s
(i)
2

)
p2
(
s
(i)
2

)
, (3.25d)

[W1]i,m ≜

π
(i)
1 , i = m

0, otherwise
, (3.25e)

[W2]i,m ≜

π
(i)
2 , i = m

0, otherwise
, (3.25f)

for i,m = 1, . . . , N , j = 1, . . . , L. Introducing sigma-point approximations lets us

write the cost function in a vector form∫
(p1(x)p2(x)− qη(x))2(p1(x) + p2(x)) dx ≈ (Aη − b)⊤W (Aη − b), (3.26)

where the augmented quantities A ∈ R2L×2, b ∈ R2L and W ∈ R2L×2L are defined

as

A ≜

 A1

A2

 , (3.27a)

b ≜

 b1

b2

 , (3.27b)

W ≜ blkdiag(W1,W2). (3.27c)
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Figure 3.4: Four different realizations of the multiplication of two student-t distribu-

tions. Red distributions are the individual components of the mixture. The outcomes

of multiplication calculated by numerical and proposed procedures are represented

by green and yellow distributions, respectively.

Hence, the optimization in (3.22) can be written as follows

η̂ ≜ argmin
η≥0

(Aη − b)⊤W (Aη − b), (3.28)

which is again a non-negative weighted least squares problem which can be solved as

explained in the previous section. Various realizations of the numerical and proposed

approaches are provided in Figure 3.4, along with the individual components.
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3.2.4 Merging Student-t Mixtures

This section presents a merging strategy to maintain the final form of the Chernoff

fusion procedure as a student-t distribution. Otherwise, a more significant number of

components in the student-t mixture is expected over time, which increases computa-

tional cost. Based on the merging of the components, we would like to approximate

a student-t mixture as in (3.7) with a single student-t distribution defined in (2.42).

Kullback-Leibler (KL) is the preferred method to find the approximation

q̂(·) = arg min
q(x)≜tν(x;µ,Σ)

KL(p(·)||q(·)), (3.29a)

=arg max
q(x)≜tν(x;µ,Σ)

Ep [log q(x)] , (3.29b)

where Ep[·] denotes the expectation operation with respect to the mixture p(·) and

log q(·) is given as

logtν(x;µ,Σ)

+
= log Γ

(
ν + n

2

)
− log Γ

(ν
2

)
− n

2
log ν − 1

2
log |Σ|

− ν + n

2
log
(
1 + (x− µ)T(νΣ)−1(x− µ)

)
, (3.30)

where the sign +
= denotes equality up to an additive constant. The solution of the

optimization problem (3.29b) is based on a joint approach, which starts with equating

the derivatives with respect to the optimized variables ν, µ and Σ to zero.

• Maximizing Ep [log q(x)] with respect to ν:

2
∂

∂ν
Ep [log q(x)] = 0, (3.31a)

ψ

(
ν + n

2

)
− Ep

[
log
(
1 + (x− µ)T(νΣ)−1(x− µ)

)]
+

(
ν + n

ν

)
Ep

[
(x− µ)T(νΣ)−1(x− µ)

1 + (x− µ)T(νΣ)−1(x− µ)

]
− ψ

(ν
2

)
− n

ν
= 0, (3.31b)

whereψ denotes the logarithmic Gamma function defined asψ(x) ≜ d
dx

log Γ(x).

By adjusting the equation (3.31b), we have the following

ν = n
1− Ep

[
(x−µ)T(νΣ)−1(x−µ)

1+(x−µ)T(νΣ)−1(x−µ)

]
 ψ

(
ν+n
2

)
− ψ

(
ν
2

)
+ Ep

[
(x−µ)T(νΣ)−1(x−µ)

1+(x−µ)T(νΣ)−1(x−µ)

]
−Ep

[
log
(
1 + (x− µ)T(νΣ)−1(x− µ)

)]
 . (3.32)
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• Maximizing Ep [log q(x)] with respect to µ:

∂

∂µ
Ep [log q(x)] = 0, (3.33a)

2(ν + n)Ep

[
(νΣ)−1(x− µ)

1 + (x− µ)T(νΣ)−1(x− µ)

]
= 0 , (3.33b)

which can be written as follows

µ =
Ep

[
x

1+(x−µ)T(νΣ)−1(x−µ)

]
Ep

[
1

1+(x−µ)T(νΣ)−1(x−µ)

] . (3.34)

• Maximizing Ep [log q(x)] with respect to Σ: Taking derivative with respect

to Σ or Σ−1 is equivalent for optimization purposes since Σ is assumed to be

invertible. For this purpose, we use the following matrix calculus results

d log |X|
dX

=X−1, (3.35a)

dxTXx

dX
=xxT, (3.35b)

for a symmetric matrix X . Based on the (3.35), we have the following result

2
∂

∂Σ−1
Ep [log q(x)] = 0, (3.36a)

Σ−
(
ν + n

ν

)
Ep

[
(x− µ)(x− µ)T

1 + (x− µ)T(νΣ)−1(x− µ)

]
= 0, (3.36b)

which can be rearranged as follows

Σ =
ν + n

ν
Ep

[
(x− µ)(x− µ)T

1 + (x− µ)T(νΣ)−1(x− µ)

]
. (3.37)
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An analytical solution to these equations is not available, whose drawback is solving

them using the following fixed-point iteration technique

ν [j+1]

=
n
(
1− Ep

[
(x−µ[j])T(ν[j]Σ[j])−1(x−µ[j])

1+(x−µ[j])T(ν[j]Σ[j])−1(x−µ[j])

])


ψ
(
ν[j]+n

2

)
− ψ

(
ν[j]

2

)
−Ep

[
log
(
1 + (x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

)]
+Ep

[
(x−µ[j])T(ν[j]Σ[j])−1(x−µ[j])

1+(x−µ[j])T(ν[j]Σ[j])−1(x−µ[j])

]

, (3.38a)

µ[j+1] =
Ep

[
x

1+(x−µ[j])T(ν[j]Σ[j])−1(x−µ[j])

]
Ep

[
1

1+(x−µ[j])T(ν[j]Σ[j])−1(x−µ[j])

] , (3.38b)

Σ[j+1]

=
ν [j] + n

ν [j]
Ep

[
(x− µ[j])(x− µ[j])T

1 + (x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

]
, (3.38c)

where the superscripts with brackets denote the iteration number and the initial values

of the iteration are selected as follows

ν [0] =
N∑
i=1

αiνi, (3.39a)

µ[0] =
N∑
i=1

αiµi, (3.39b)

Σ[0] =
N∑
i=1

αi

(
νi

νi − 2
Σi + (µi − µ[0])(µi − µ[0])T

)
. (3.39c)

The expectations appearing in the iterations above are proposed to be taken using the

sigma-points generated for each component of p(·) as given in [46, 47]. We generate

sigma points for each component of p(·) as

p(x) ≈
N∑
i=1

αi

L∑
ℓ=1

π
(ℓ)
i δ

x
(ℓ)
i
(x)︸ ︷︷ ︸

≈tνi (x;µi,Σi)

, (3.40)

where {x(ℓ)i }Lℓ=1 and {π(ℓ)
i }Lℓ=1 denote the sigma-points and their weights for the ith

mixture component. Then, the expectations appearing in the iterations above can be
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calculated as follows

Ep

[
log
(
1 + (x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

)]
=

N∑
i=1

αi

L∑
ℓ=1

π
(ℓ)
i log

(
T
(
x
(ℓ)
i , µ

[j], ν [j],Σ[j]
))

, (3.41a)

Ep

[
(x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

1 + (x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

]
=

N∑
i=1

αi

L∑
ℓ=1

π
(ℓ)
i (x

(ℓ)
i − µ[j])T(ν [j]Σ[j])−1(x

(ℓ)
i − µ[j])

1 + (x
(ℓ)
i − µ[j])T(ν [j]Σ[j])−1(x

(ℓ)
i − µ[j])

, (3.41b)

Ep

[
x

1 + (x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

]
=

N∑
i=1

αi

L∑
ℓ=1

π
(ℓ)
i x

(ℓ)
i

1 + (x
(ℓ)
i − µ[j])T(ν [j]Σ[j])−1(x

(ℓ)
i − µ[j])

, (3.41c)

Ep

[
1

1 + (x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

]
=

N∑
i=1

αi

L∑
ℓ=1

π
(ℓ)
i

1 + (x
(ℓ)
i − µ[j])T(ν [j]Σ[j])−1(x

(ℓ)
i − µ[j])

, (3.41d)

Ep

[
(x− µ[j])(x− µ[j])T

1 + (x− µ[j])T(ν [j]Σ[j])−1(x− µ[j])

]
=

N∑
i=1

αi

L∑
ℓ=1

π
(ℓ)
i (x

(ℓ)
i − µ[j])(x

(ℓ)
i − µ[j])T

1 + (x
(ℓ)
i − µ[j])T(ν [j]Σ[j])−1(x

(ℓ)
i − µ[j])

, (3.41e)

where the operator T (·) given in (3.41a) is defined as

T (A,B,C,D) = 1 + (A−B)T(CD)−1(A−B). (3.42)

Various realizations of the proposed approach are provided in Figure 3.5, along with

the individual components.
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Figure 3.5: (a-d) display four realizations of the merging student-t mixture. Distribu-

tions with different shades of red are the individual components of the mixture. The

blue distribution illustrates the outcome of the merging procedure. From the individ-

ual component with the darkest shade of red to the one with the lightest shade, the

weights are as given: (a)→ α = [0.2975, 0.1761, 0.5264], (b)→ α = [0.2014, 0.4682,

0.3304], (c)→ α = [0.4227, 0.1926, 0.3847], (d)→ α = [0.5222, 0.3077, 0.1701].
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3.2.5 Determination of Exponent Factors

For the Chernoff fusion-based methods (CI and CFST), the exponent value w ∈ [0, 1]

is a crucial parameter that considerably impacts the performance. The exponent factor

can be calculated in different ways which boils down to maximization/minimization

of a cost measure. The cost measures include the determinant or the trace of the co-

variance matrix or Shannon entropy [11] as mentioned in [12]. Further, the exponent

factors can be calculated approximately as in [35, 36] rather than the optimization of

the nonlinear cost function in order to decrease the computational complexity. The

divergence measures such as Kullback-Leibler divergence [11] and Rényi divergence

can also be used.

As the exponents of the different sources approach zero or unity, the distinctions be-

tween the methods become less noticeable. As a result, the exponents (w1, w2) = (1
2
, 1
2
)

treats the sensor equally in the first fusion. Similarly, the second fusion accepts the

output of the first fusion as input with the exponents of (wo, w3) = (2
3
, 1
3
), i.e., the

filter outputs of the sensors have equal importance in terms of the exponent factors.

3.3 Simulation Results

In this section, the fusion algorithms’ performance are compared via simulations and

real data experiments. The methods used in the experiments are introduced below

• Kalman filter (KF): Local Kalman filters are run at the sensor nodes to provide

posterior densities to the decentralised fusion algorithms (e.g. CI and CFST).

Furthermore, the RMSE values of the local Kalman filters are reported for the

performance comparison.

• Centralized Kalman filter (CKF): This method processes the measurements

sent to the fusion center to obtain posterior density in a centralized manner. If

the model parameters are perfectly known, centralized Kalman filter provides

theoretically optimal solution. However, scenarios involving parameter mis-

matches will also be simulated.

• Covariance intersection (CI): It is a frequently used method for fusing pos-
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teriors in the context of target tracking. Since the underlying input densities

are assumed to be Gaussion px,1(x)
△
=N (x;x1, P1) and px,2(x)

△
=N (x;x2, P2),

the mean xCI and the covariance PCI which describe the fused density can be

computed according to the following formulas

P−1
CI xCI = wP−1

1 x1 + (1− w)P−1
2 x2, (3.43a)

P−1
CI = wP−1

1 + (1− w)P−1
2 . (3.43b)

• Chernoff fusion with student t-distribution (CFST): It is the proposed al-

gorithm in this thesis, which combines Chernoff fusion with student t-mixture.

CFST algorithm consists of four main steps:

– taking a non-integer power of a student-t distribution;

– taking a non-integer power of a student-t mixture;

– multiplying two student-t distributions;

– merging student-t mixtures.

3.3.1 Scenario Definition

The problem selected for evaluation purposes is based on a single target tracking

scenario, in which a target moves on a path simulated according to (3.44a) with the

sampling interval ∆T = 1 s. A realization of the simulated path is given in Figure 3.6.

Meanwhile, local sensors obtain measurements from the moving target according

to (3.44b).

The state of the target xk = [px,k py,k vx,k vy,k]
T consists of the planar position

and velocity. The state-space model with the additive process and measurement noise

assumption is given as

xk =


1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1

xk−1 +


∆T 2

2
0

0 ∆T 2

2

∆T 0

0 ∆T

wk−1, (3.44a)

zk,m =

1 0 0 0

0 1 0 0

xk,m + vk,m, (3.44b)
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Figure 3.6: Sample trajectory simulated based on (3.44a) with the sampling interval

∆T = 1 s.

where m denotes the mth sensor and wk−1 ∼ N (0, Qk−1) with Qk−1 = diag(σ2
w, σ

2
w)

and σw = 0.5, vk,m ∼ N (0, Rk,m) with Rk,m = diag(σ2
v , σ

2
v).

In order to assess the performance of the algorithms, root mean square error (RMSE)

is used as a performance measure. For M Monte Carlo runs, the average RMSE at

time k (RMSEk) is computed using the following formula

RMSEk =

√√√√ 1

M

M∑
i=1

(ẑik − zik)
⊤
(ẑik − zik), (3.45)

where ẑik and zik represent estimated and true portion of the state such as pik and vik at

time k in run i, respectively. The average RMSE of the whole scenario overM Monte

Carlo runs is calculated as

RMSE =
1

M

M∑
i=1

√√√√ 1

T

T∑
k=1

(ẑik − zik)
⊤
(ẑik − zik). (3.46)

For CFST algorithm, the degrees of freedom ν is another essential parameter. The

non-integer power of a student t-distribution or student t-mixture causes a decrease

in the degrees of freedom, which depends on the exponent value. Further, ν > 2 is a

requirement for the algorithm’s feasibility, which results in preventing the degrees of

freedom ν from falling below a certain value. Through all simulations, initial degrees

of freedom is selected as ν0 = 10.
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In order to demonstrate the performance of the algorithms, three distinct scenarios

are constructed: the case with known sensor characteristics, the case with one sensor

failure, and the last one is the case of one sensor failure with bias.

3.3.2 Case 1: Known Sensor Characteristics
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Figure 3.7: (a) and (b) show the realizations of the sensor measurements and the

ground truth. (c) and (d) show the corresponding true velocity values of the realiza-

tions.

In the first scenario, a single target is tracked by using the measurements of three

sensors. It is assumed that the algorithms precisely know sensor characteristics, i.e.,

the measurement noise variances are known exactly by KF, CKF, CI and CFST al-

gorithms. Further, measurement noise standard deviation is chosen as σv = 1.4 for
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Figure 3.8: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 1. (b) (right figure) shows the

average velocity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 1.

all three sensors. For this case, Figure 3.7(a) and Figure 3.7(b) illustrate the realiza-

tion of the sensor measurements and the ground truth of the target trajectory. Figure

3.7(c) and Figure 3.7(d) are the corresponding true velocity values of the realizations

in Figure 3.7(a) and Figure 3.7(b), respectively.

The average RMSE values of the scenario in Case 1 are given in Table 3.1. The

Table 3.1: Average RMSE values of the position and velocity for the Case 1.

RMSE (m) RMSE (m/s)

CI 0.91 0.59

CKF 0.86 0.57

KF1 1.35 0.66

KF2 1.36 0.66

KF3 1.35 0.64

CFST 1.03 0.61

average (over 100 Monte Carlo runs) position and velocity RMSE values calculated

using (3.45) are depicted in Figure 3.8. Figure 3.9 shows the box and whisker plots

for the average position and velocity RMSE values of the algorithms.
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Figure 3.9: (a) (top figure) shows the box and whisker plot for average position RMSE

of the algorithms at each time instant over 100 Monte Carlo runs for Case 1. (b)

(bottom figure) shows the box and whisker plot for average velocity RMSE of the

algorithms at each time instant over 100 Monte Carlo runs for Case 1.
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The following observations can be extracted according to the results in Table 3.1 and

Figures 3.8 and 3.9.

• The fusion algorithms perform better than local KFs.

• CKF outperforms all algorithms since its optimality condition is satisfied.

• Under the known parameters and valid Gaussian assumptions, CI performs bet-

ter than CFST.

• According to the box and whisker plots, the RMSE value spreads of the algo-

rithms at the same instances are comparable and narrower, which indicates that

the average RMSE values at each instant are accurate depictions of the error

and that there is no algorithmic advantage in terms of the RMSE value spread.
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Figure 3.10: (a) (left figure) shows the normalized average position RMSE in the x

direction of the algorithms at each time instant over 100 Monte Carlo runs for Case

1. (b) (right figure) shows the normalized average position RMSE in the y direction

of the algorithms at each time instant over 100 Monte Carlo runs for Case 1.

Figure 3.10 shows the normalized average position RMSE in x and y direction of

the algorithms at each time instant over 100 Monte Carlo runs for Case 1. RMSE

values at each time instant are normalized by the measurement noise standard devi-

ation σv = 1.4. Figure 3.10 indicates that all methods perform better than using the

measurements directly for the position estimation.
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3.3.3 Case 2: One Sensor Failure

In this case, it is assumed that one of the sensors fails to produce the measurements

with the expected quality due to an unknown failure. The measurement noise standard

deviation of this sensor is chosen as σv = 7 instead of σv = 1.4. Figure 3.11(a) and

Figure 3.11(b) show the realizations of the sensor measurements and the ground truth

of the target trajectory. Figure 3.7(c) and Figure 3.7(d) are the corresponding true

velocity values of the realizations in Figure 3.7(a) and Figure 3.7(b), respectively.
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Figure 3.11: (a) and (b) show the realizations of the sensor measurements and the

ground truth. (c) and (d) show the corresponding true velocity values of the realiza-

tions.
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Figure 3.12: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 2. (b) (right figure) shows the

average velocity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 2.

Table 3.2: Average RMSE values of the position and velocity for the Case 2.

RMSE (m) RMSE (m/s)

CI 2.21 0.83

CKF 2.39 1.03

KF1 1.35 0.66

KF2 6.15 1.87

KF3 1.35 0.65

CFST 1.06 0.61

The average RMSE values of the scenario in Case 2 are given in Table 3.2. The

average (over 100 Monte Carlo runs) position and velocity RMSE values calculated

using (3.45) are depicted in Figure 3.12. Based on the results in Table 3.2 and Figure

3.12, CFST performs better than the other fusion algorithms and KFs. Furthermore,

in such a case, the Gaussian assumption based methods such as CI and CKF fail in

fusion performance. These results can be interpreted as the robustness of CFST algo-

rithm in case of the model parameter mismatches.

Figure 3.13(a) and Figure 3.13(b) show the box and whisker plots for the average

50



1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

)

CI

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

)

CFST

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

)

CKF

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

)

KF1

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

10

20

 R
M

S
E

 (
m

)

KF2

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

)

KF3

(a)

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

/s
)

CI

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

/s
)

CFST

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

/s
)

CKF

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

/s
)

KF1

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

10

 R
M

S
E

 (
m

/s
)

KF2

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

 time (s)

0

5

 R
M

S
E

 (
m

)

KF3

(b)

Figure 3.13: (a) (top figure) shows the box and whisker plot for average position

RMSE of the algorithms at each time instant over 100 Monte Carlo runs for Case 2.

(b) (bottom figure) shows the box and whisker plot for average velocity RMSE of the

algorithms at each time instant over 100 Monte Carlo runs for Case 2.
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position and velocity RMSE values of the algorithms, respectively. According to the

results in Figure 3.13, RMSE value spreads of the algorithms at the same instances

are very similar and narrower, which means that the average RMSE values at each

instant are good representations of the error, and there is no superiority between the

algorithms in terms of the RMSE values spread.
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Figure 3.14: (a) (left figure) shows the normalized average position RMSE in the x

direction of the algorithms at each time instant over 100 Monte Carlo runs for Case

2. (b) (right figure) shows the normalized average position RMSE in the y direction

of the algorithms at each time instant over 100 Monte Carlo runs for Case 2.

Figure 3.14 shows the normalized average position RMSE in x and y direction of the

algorithms at each time instant over 100 Monte Carlo runs for Case 2. RMSE val-

ues at each time instant are normalized by the measurement noise standard deviation

σv = 1.4 (measurement noise standard deviation of the sensor with no failure). Based

on the results in Figure 3.14, CFST and local Kalman filters without sensor failure

perform better than using the measurements directly for the position estimation. On

the other hand, using the measurements of the sensors without failure directly is more

advantageous than CI and CKF in terms of the position RMSE.
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3.3.4 Investigating Less Frequent Sensor Failure

This case aims to observe how the performance of the algorithms in Case 2 changes

as the error production frequency of the sensor with failure decreases. Once per four

successive instants, the measurement noise standard deviation of this sensor is set to

σv = 7 instead of σv = 1.4. Figure 3.15(a) and Figure 3.15(b) show the realizations of

the sensor measurements and the ground truth of the target trajectory. Figure 3.15(c)

and Figure 3.15(d) are the corresponding true velocity values of the realizations in

Figure 3.15(a) and Figure 3.15(b), respectively.
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Figure 3.15: (a) and (b) show the realizations of the sensor measurements and the

ground truth. (c) and (d) show the corresponding true velocity values of the realiza-

tions.
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Figure 3.16: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for investigating less frequent sensor

failure. (b) (right figure) shows the average velocity RMSE of the algorithms at each

time instant over 100 Monte Carlo runs for investigating less frequent sensor failure.

Table 3.3: Average RMSE values of the position and velocity for investigating less

frequent sensor failure.

RMSE (m) RMSE (m/s)

CI 1.32 0.64

CKF 1.35 0.68

KF1 1.35 0.66

KF2 3.12 1.00

KF3 1.35 0.65

CFST 1.06 0.61

The average RMSE values of the scenario for investigating less frequent sensor failure

are given in Table 3.3. The average (over 100 Monte Carlo runs) position and velocity

RMSE values calculated using (3.45) are depicted in Figure 3.16. Based on the results

in Table 3.3 and Figure 3.16, CFST outperforms the other fusion algorithms and KFs.

Compared to the results in Case 2, the performance of CFST is less affected by the

decrease in the sensor’s error production frequency than other fusion algorithms, such

as CI and CKF.
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Figure 3.17: (a) (top figure) shows the box and whisker plot for average position

RMSE of the algorithms at each time instant over 100 Monte Carlo runs for inves-

tigating less frequent sensor failure. (b) (bottom figure) shows the box and whisker

plot for average velocity RMSE of the algorithms at each time instant over 100 Monte

Carlo runs for investigating less frequent sensor failure.
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Figure 3.17(a) and Figure 3.17(b) show the box and whisker plots for the average

position and velocity RMSE values of the algorithms, respectively. According to the

results in Figure 3.13, the algorithms’ RMSE value spreads at the same instances are

highly comparable and small, indicating that the average RMSE values at each instant

are accurate depictions of the error and that no method performs better than another

method in terms of RMSE value spread.
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Figure 3.18: (a) (left figure) shows the normalized average position RMSE in the

x direction of the algorithms at each time instant over 100 Monte Carlo runs for

investigating less frequent sensor failure. (b) (right figure) shows the normalized

average position RMSE in the y direction of the algorithms at each time instant over

100 Monte Carlo runs for investigating less frequent sensor failure.

Figure 3.18 shows the normalized average position RMSE in x and y direction of

the algorithms at each time instant over 100 Monte Carlo runs for investigating less

frequent sensor failure. RMSE values at each time instant are normalized by the mea-

surement noise standard deviation σv = 1.4 (measurement noise standard deviation

of the sensor with no failure). Based on the results in Figure 3.18, CFST and local

Kalman filters without sensor failure is more advantageous than using the measure-

ments directly for the position estimation as in Case 2. On the other hand, using

the sensors’ measurements without failure directly performs better than CI and CKF.

When all sensors produce reasonable measurements, CI and CKF are better than us-

ing the measurements.
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3.3.5 Case 3: One Sensor With Bias

In this case, it is assumed that one of the sensors generate measurements with bias in

each dimension (10m) in addition to the measurement noise standard deviation with

σv = 1.4. For this case, Figure 3.19(a) and Figure 3.19(b) illustrate the realization of

the sensor measurements and the ground truth of the target trajectory. Figure 3.19(c)

and Figure 3.19(d) are the corresponding true velocity values of the realizations in

Figure 3.19(a) and Figure 3.19(b), respectively.
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Figure 3.19: (a) and (b) show the realizations of the sensor measurements and the

ground truth. (c) and (d) show the corresponding true velocity values of the realiza-

tions.

The average RMSE values of the scenario in Case 3 are given in Table 3.4. The aver-

age (over 100 Monte Carlo runs) position and velocity RMSE values calculated using
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Figure 3.20: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 3. (b) (right figure) shows the

average velocity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 3.

Table 3.4: Average RMSE values of the position and velocity for the Case 3 (10m in

each dimension).

RMSE (m) RMSE (m/s)

CI 4.82 0.54

CKF 4.81 0.52

KF1 1.35 0.66

KF2 14.29 0.83

KF3 1.35 0.65

CFST 1.04 0.63

(3.45) are given in Figure 3.20. Based on the results in Table 3.4 and Figure 3.20,

CFST outperforms other fusion algorithms and KFs, which is related to the robust-

ness as in Case 2 although the sensor error is increased.

Figure 3.21(a) and Figure 3.21(b) show the box and whisker plots for the average po-

sition and velocity RMSE values of the algorithms, respectively. Figure 3.21 shows

that the average RMSE values at each instant are good representations of the error,

and there is no superiority between the algorithms in terms of the RMSE value spread,
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Figure 3.21: (a) (top figure) shows the box and whisker plot for average position

RMSE of the algorithms at each time instant over 100 Monte Carlo runs for Case 3.

(b) (bottom figure) shows the box and whisker plot for average velocity RMSE of the

algorithms at each time instant over 100 Monte Carlo runs for Case 3.
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as shown by the algorithms’ extremely similar and shorter RMSE value spreads at the

same instances.

Figure 3.22 shows the normalized average position RMSE in x and y direction of
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Figure 3.22: (a) (left figure) shows the normalized average position RMSE in the x

direction of the algorithms at each time instant over 100 Monte Carlo runs for Case

3. (b) (right figure) shows the normalized average position RMSE in the y direction

of the algorithms at each time instant over 100 Monte Carlo runs for Case 3.

the algorithms at each time instant over 100 Monte Carlo runs for Case 3. RMSE

values at each time instant are normalized by the measurement noise standard devia-

tion σv = 1.4 (measurement noise standard deviation of the sensor with no failure).

Based on the results in Figure 3.22, instead of using the readings directly for position

estimation, CFST and local Kalman filters without sensor failure are preferable as in

Case 3. On the other hand, using the sensors’ measurements without failure directly

performs better than fusion methods based on Gaussian assumption such as CI and

CKF.

3.3.6 One Dimensional Analysis For CFST

In this subsection, the aim is to investigate the steps of CFST algorithm with one

dimensional example. The experiments are conducted for CFST and the numerically

calculated Chernoff fusion with student t-distribution in a lower dimensional state-

space model. The problem considers a stationary object and noisy measurements that
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are collected from three different sensors with the sampling interval ∆T = 1 s. The

state of the target xk = px,k is described only with the one-dimensional position and

the measurement model is as follows

zk,m = xk + vk,m, (3.47)

where m denotes the mth sensor and vk,m ∼ N (0, Rk,m) with Rk,m = diag(σ2
v , σ

2
v).

The actual position of the target is specified as xk = 0 for the simulations. The figures

below illustrate outputs of the three critical steps of CFST as follows

• 1st row of the figures shows inputs distributed with student t-distribution, i.e.,

p1(x) and p2(x).

• 2nd row of the figures shows the non-integer power of student t-distributions,

i.e., p(1−w)1 (x) and pw2 (x).

• 3rd row of the figures shows the multiplication of the distributions in the second

row, i.e., p(1−w)1 (x)pw2 (x).

• 4th row of the figures shows input distributed with student t-distribution, i.e.,

p3(x).

• 5th row of the figures shows the non-integer power of the student t-mixture

in the third row, i.e., (p(1−w)1 (x)pw2 (x))
(1−w) and the non-integer power of the

student t-distribution in the forth row, i.e., pw3 (x)

• 6th row of the figures shows the multiplication of the student t-mixture and

student t-distribution in the fifth row, i.e., (p(1−w)1 (x)pw2 (x))
1−wpw3 (x).

Furthermore, the numerically calculated counterparts of these steps are also available

in the figures. The initial degrees of freedom is accepted as ν = 10 for Figures 3.23

and 3.24. For the results in Figure 3.25, initial degrees of freedom is taken as ν = 3

and the scenario is the same as the one in Figure 3.23. Based on the results in Figures

3.23 and 3.25, the non-integer power of p1(x), p2(x) and p3(x) as a result of CFST

and numerical computation are completely same for Figure 3.23 since there is no ap-

proximation in this step for CFST. On the other hand, when initial degrees of freedom

is taken as ν = 3, the non-integer power of the distributions as a result of CFST and
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Figure 3.23: (a) (left figure) shows the numerically calculated Chernoff fusion with

student t-distributions outputs. (b) (right figure) shows CFST outputs for each step.

numerical computation start to separate. It is caused by preventing the degrees of

freedom from falling below a certain value because covariance is available if ν > 2.

Apart from these, the multiplication of the student t-distributions is the step where

the difference between CFST and the numerical computation is observed the most.

Approximating multiplication as the sum of the student t-distributions highlights the

multi-modal structure comparing numerical computation.
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Figure 3.24: (a) (left figure) shows the numerically calculated Chernoff fusion with

student t-distributions outputs. (b) (right figure) shows CFST outputs for each step.
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Figure 3.25: (a) (left figure) shows the numerically calculated Chernoff fusion with

student t-distributions outputs. (b) (right figure) shows CFST outputs for each step.

64



3.3.7 Discussion: CFST with memory

This part examines the alternative of CFST in terms of additional input. Suppose the

fusion output of the previous time instant is provided to CFST algorithm after the time

update. In that case, the method is called CFST with memory to distinguish the two

approaches. The problem selected for evaluation purposes is the same as in Section

3.3.1. Again, three different experiments with the match and mismatch between the

one sensor’s actual and known measurement noise standard deviation are realized to

compare the algorithms. The pseudo-code of the CFST with memory algorithm for a

specific time instant is provided in Algorithm 1.

Algorithm 1 CFST with memory

Input: {pi(x)}Ni=1 where pi(x) ∼ tνi(x;µi,Σi) with the exponent factor wi and

po(x) with the exponent factor wo

Output: qo(x)

for i = 1 : N do

Compute pwo
o (x) and pwi

i (x)

Compute pwo
o (x)pwi

i (x)

po(x)← Normalize pwo
o (x)pwi

i (x)

end for

po(x)← TimeUpdate(po(x))

qo(x)←Merge(po(x))

3.3.7.1 Case 1: Known Sensor Characteristics

The measurements of three sensors are used to track a single target in this scenario.

It is expected that the algorithms perfectly know sensor characteristics, i.e., the KF,

CKF, CI, and CFST algorithms precisely know measurement noise variances. Fur-

thermore, for all three sensors, the measurement noise standard deviation is set to

σv = 1.4.

The average RMSE values of the scenario in Case 1 are given in Table 3.5. The

average (over 100 Monte Carlo runs) position and velocity RMSE values calculated
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Figure 3.26: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 1. (b) (right figure) shows the

average velocity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 1.

Table 3.5: Average RMSE values of the position and velocity for the Case 1.

RMSE (m) RMSE (m/s)

CI 0.91 0.59

CKF 0.86 0.57

KF1 1.35 0.66

KF2 1.36 0.64

KF3 1.06 0.62

CFST with memory 1.35 2.18

using (3.45) are depicted in Figure 3.26.

According to the results in Table 3.5 and Figure 3.8, the fusion algorithms perform

better than local KFs. Further, the fusion algorithms that assume underlying input

densities as Gaussian perform better than CFST with memory.
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3.3.7.2 Case 2: One Sensor Failure

In this case, one of the sensors fails to produce measurements consistent with the

known measurement noise standard deviation. This sensor’s measurement noise stan-

dard deviation is set to σv = 7 rather than σv = 1.4.
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Figure 3.27: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 2. (b) (right figure) shows the

average velocity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 2.

Table 3.6: Average RMSE values of the position and velocity for the Case 2.

RMSE (m) RMSE (m/s)

CI 2.21 0.83

CKF 2.39 1.03

KF1 1.35 0.66

KF2 6.15 1.87

KF3 1.35 0.65

CFST with memory 1.19 0.64

The average RMSE values of the scenario in Case 2 are given in Table 3.6. The aver-

age (over 100 Monte Carlo runs) position and velocity RMSE values calculated using

(3.45) are depicted in Figure 3.27. According to the results in Table 3.6 and Figure
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3.27, the fusion methods that assumes underlying input densities as Gaussian fail in

fusion performance in case of the model parameter mismatches. On the other hand,

CFST with memory outperforms fusion algorithms and KFs in case of the model pa-

rameter mismatches. This indicates the robustness of CFST with memory algorithm

in case of outlier.

3.3.7.3 Investigating Less Frequent Sensor Failure

This section examines how the algorithms’ performance changes when the sensor’s

error production frequency decreases. The measurement noise standard deviation of

this sensor is set to σv = 7 instead of σv = 1.4 once every four instants. The
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Figure 3.28: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for investigating less frequent sensor

failure. (b) (right figure) shows the average velocity RMSE of the algorithms at each

time instant over 100 Monte Carlo runs for investigating less frequent sensor failure.

average RMSE values of the scenario for investigating less frequent sensor failure are

given in Table 3.7. The average (over 100 Monte Carlo runs) position and velocity

RMSE values calculated using (3.45) are depicted in Figure 3.28. Based on the results

in Table 3.7 and Figure 3.28, CFST performs better than the other fusion algorithms

and KFs despite the decrease in the sensor’s error production frequency. Furthermore,

among the fusion algorithms, CFST with memory is the least affected by the sensor’s

error production frequency.
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Table 3.7: Average RMSE values of the position and velocity for for investigating

less frequent sensor failure.

RMSE (m) RMSE (m/s)

CI 1.32 0.64

CKF 1.35 0.68

KF1 1.35 0.66

KF2 3.12 1.01

KF3 1.35 0.65

CFST with memory 1.14 0.63

3.3.7.4 Case 3: One Sensor With Bias

In this case, it is assumed that one of the sensors generate measurements with bias in

each dimension (10m) in addition to the measurement noise standard deviation with

σv = 1.4.
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Figure 3.29: (a) (left figure) shows the average position RMSE of the algorithms at

each time instant over 100 Monte Carlo runs for Case 3. (b) (right figure) shows the

average velocity RMSE of the algorithms at each time instant over 100 Monte Carlo

runs for Case 3.

The average RMSE values of the scenario in Case 3 are given in Table 3.8. The aver-

age (over 100 Monte Carlo runs) position and velocity RMSE values calculated using
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Table 3.8: Average RMSE values of the position and velocity for the Case 3 (10m in

each dimension).

RMSE (m) RMSE (m/s)

CI 4.82 0.54

CKF 4.81 0.52

KF1 1.35 0.66

KF2 14.29 0.83

KF3 1.35 0.65

CFST with memory 1.17 0.63

(3.45) are given in Figure 3.29. According to the results in Table 3.4 and Figure 3.20,

the performance of CFST with memory is more robust than other fusion algorithms

in case of any outlier for such a case.

3.3.7.5 One Dimensional Analysis For CFST with memory

In this subsection, the aim is to investigate the steps of CFST algorithm with one

dimensional example. The experiments are conducted for CFST and the numerically

calculated Chernoff fusion with student t-distribution in a lower dimensional state-

space model. The problem is the same as in Section 3.3.6. The figures below illustrate

outputs of the three critical steps of CFST with memory as follows

• 1st row of the figures shows the fusion output of the previous time instant after

time update, i.e., po(x) and the input distributed with student t-distribution, i.e.,

p1(x).

• 2nd row of the figures shows the non-integer power of student t-distributions,

i.e., p(1−w)o (x) and pw1 (x).

• 3rd row of the figures shows the multiplication of the distributions in the second

row, i.e., p(1−w)o (x)pw1 (x).

• 4th row of the figures shows input distributed with student t-distribution, i.e.,

p2(x).
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• 5th row of the figures shows the non-integer power of the student t-mixture

in the third row, i.e., (p(1−w)o (x)pw1 (x))
(1−w) and the non-integer power of the

student t-distribution in the forth row, i.e., pw2 (x)

• 6th row of the figures shows the multiplication of the student t-mixture and

student t-distribution in the fifth row, i.e., (p(1−w)o (x)pw1 (x))
1−wpw2 (x).
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Figure 3.30: (a) (left figure) shows the numerically calculated Chernoff fusion with

student t-distributions outputs. (b) (right figure) shows CFST with memory outputs

for each step.

The numerically calculated counterparts of these steps are also available in the fig-

ures. The initial degrees of freedom is accepted as ν = 10 for Figure 3.30 and ν = 3

for Figure 3.31. Based on the results in Figure 3.30, the non-integer power of po(x) as

a result of CFST with memory differs from the one computed numerically since the

degrees of freedom of po(x) is ν = 3. Since preventing the degrees of freedom from
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Figure 3.31: (a) (left figure) shows the numerically calculated Chernoff fusion with

student t-distributions outputs. (b) (right figure) shows CFST with memory outputs

for each step.

falling below a certain value (because covariance is available if ν > 2) and the ap-

proximations in the non-integer power of the student t-mixture po(x), p
(1−w)
o (x) of the

numerical computation and the CFST with memory are different. Together with these

approximations, the approximation in the multiplication of the student t-distributions

introduce the difference between the final output. Based on the results in Figure 3.31,

the non-integer power of the distributions as a result of CFST and numerical com-

putation are different since preventing the degrees of freedom from falling below a

certain value (covariance is available if ν > 2). Furthermore, the situation related to

p
(1−w)
o (x) in Figure 3.30 is also valid in this case. The approximation in the the non-

integer power of the student t-mixture po(x) and preventing the degrees of freedom

from falling below a certain value create the difference between p(1−w)o (x) computed
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by CFST with memory and numerically. The difference introduced in the non-integer

power of student t-distribution and mixture is highlighted more in the final output due

to approximation in the multiplication of the distributions.

3.4 Real Data Experiments

In this section, the performance of the algorithms is illustrated with real data. The

test scenario is carried out in an urban area of Ankara and involves two vehicles, one

for data collection and one for testing and validation. The vehicle for data collection

is equipped with a camera, LiDAR, and RADAR. A snapshot of the measurements

from three different sensors is available in Figure 3.32(a), in which the white and

pink points stand for LiDAR and RADAR measurements, respectively. The camera

output, which displays the vehicle for testing and validation in Figure 3.32(b), is also

accessible.

After collecting raw measurements, each sensor output are processed to extract mean-

ingful information about the vehicle’s 2D position used for testing and validation.

Due to the dense characteristic of the point cloud, LiDAR is a compelling sensor

to solve complex problems such as mapping. Furthermore, the dense point cloud of

LiDAR enables us to capture the critical features of the surrounding objects, which re-

sults in the capability to use object detection and object classification. As a result, the

method for LiDAR point cloud processing is based on an object detection. The center

positions of the object detection outcomes are taken as the LiDAR measurement to

evaluate the performance of the algorithms.

Unlike LiDAR, the RADAR point cloud is excessively sparse. This characteristic

is compensated by using the additional information gathered from the radial speed.

The radar measurements originating from the test vehicle are detected by a clustering

algorithm. The non-clustered points as a result of the clustering algorithm are elimi-

nated. The mean of the remaining RADAR measurements corresponds to the position

measurement of the test vehicle in 2D.

The only sensor that does not provide 2D measurements directly is the camera in the

setup. As a result, the position measurements are extracted from camera image by
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(a)

(b)

Figure 3.32: (a) displays a snapshot of the raw measurements collected from LiDAR

and RADAR, and (b) shows the camera and object detection output.

following two steps called 2D object detection in the camera frame and inverse per-

spective mapping (IPM). The 2D object detection model trained for detecting vehicle

and person classes is used to extract bounding boxes. The working principle of the
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IPM is strictly related to the camera model, which is described by the intrinsic and ex-

trinsic parameters. Extrinsic parameters define the relative position and orientation of

the camera with respect to the world frame. On the other hand, intrinsic parameters,

which describe how the world warped into the camera image, are used to construct

a transformation matrix from the world frame to the image frame. Applying trans-

formation to the road creates a map between the image frame and the road, which

enables us to generate 2D position measurements from camera pixels. The bottom

midpoint of the bounding boxes is given to IPM as input, and the result is the 2D

position measurement of the object of interest.

After processing raw measurements of each sensor, an important step is to transform

measurements from the sensor frame to the world frame. The configuration of the

sensors regarding the world frame is a critical concept. Any oversight between a sen-

sor’s actual and known pose respecting the world frame creates ambiguity if the other

sensors’ pose is determined precisely enough. In order to evaluate the performance

of the algorithms, four sets of measurements are collected, two representing the ideal

case and the others having the ill-formed configuration, which creates ambiguity due

to an intentional discrepancy between the actual and known orientation of the cam-

era. Although outputs of IPM properly reflect the test vehicle’s position in the camera

frame, the wrong configuration prevents a proper connection between the processing

phase and the algorithms like the Kalman filter and SF.

Before proceeding with the algorithms, another essential point is synchronizing the

measurements from different sensors because the camera, RADAR, and LiDAR run

at 30 Hz, 20 Hz, and 10 Hz, respectively. Furthermore, a sensor known as vbox that

is installed on the test vehicle to obtain the actual position and velocity runs at 10

Hz. By computing the sensor readings at vbox timestamps via linear interpolation,

the sensor measurements are synchronized with the vbox for performance evaluation.

The adjusted and synchronized sensor measurements are sent to the Kalman fil-

ter for CI and CFST and transferred directly to SF. The state of the test vehicle

xk = [px,k py,k vx,k vy,k]
T is defined with the planar position and velocity as

in the simulations. The state-space model is the same as the one described in (3.44)

with the process noise variances σ2
x = 25 and σ2

y = 9, and the measurement noise
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variances σ2
x = σ2

y = 1.

The outcomes of the multi-sensor fusion algorithms are illustrated with two distinct

configurations; one is the correct configuration, while the other is erroneous.

3.4.1 Case 1

In this case, all the sensors’ known translations and rotations concerning the world

frame are known precisely enough to collect meaningful measurements from the sur-

roundings. As a result, there is no ambiguity due to measurements, which can be

labeled as a convenient case for fusion. Figure 3.33(a) illustrate the sensor measure-

ments and the ground truth of the target trajectory.

280 300 320 340 360 380 400

 x (m)

910

920

930

940

950

960

970

980

 y
 (

m
)

Ground truth

Camera

Lidar

Radar

370 375 380

968

970

972

974

976

(a)

0 20 40 60 80 100 120 140

 time (s)

0

0.5

1

1.5

2

2.5

3

3.5

 R
M

S
E

 (
m

)

CI

CKF

KF1

KF2

KF3

CFST

(b)

0 20 40 60 80 100 120 140

 time (s)

0

1

2

3

4

5

6

7

8

9

 R
M

S
E

 (
m

/s
)

CI

CKF

KF1

KF2

KF3

CFST

(c)

Figure 3.33: (a) shows the sensor measurements and ground truth. (b) displays the

position RMSE of the algorithms over time. (c) shows the velocity RMSE of the

algorithms over time.

Table 3.9: Average RMSE values of the position and velocity for the Case 1.

RMSE (m) RMSE (m/s)

CI 0.72 1.68

CKF 0.69 1.44

KF1 1.75 1.84

KF2 0.26 1.59

KF3 1.73 1.77

CFST 0.47 1.67
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The average RMSE values of the scenario in Case 1 are given in Table 3.9. The po-

sition and velocity RMSE values calculated using (3.45) are given in Figure 3.33(b)

and Figure 3.33(c). According to the results in Table 3.9 and Figure 3.33, the perfor-

mance of the fusion algorithms are comparable. On the other hand, one of the local

Kalman filters outperforms the fusion methods.

3.4.2 Case 2

Although the pose and orientation of LiDAR and RADAR concerning the world

frame are known precisely enough in this scenario, there is a mismatch between the

camera’s actual and known orientation regarding the world frame. Such a disparity

may cause massive positional mistakes in IPM output, resulting in ambiguity that the

approaches must resolve. Figure 3.34(a) illustrate the sensor measurements and the

ground truth of the target trajectory.
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Figure 3.34: (a) shows the sensor measurements and ground truth. (b) displays the

position RMSE of the algorithms over time. (c) shows the velocity RMSE of the

algorithms over time.

The average RMSE values of the scenario in Case 2 are given in Table 3.10. The

position and velocity RMSE values calculated using (3.45) are given in Figure 3.34(b)

and Figure 3.34(c). According to the results in Table 3.10 and Figure 3.34, CFST

performs better than other fusion algorithms in case of ambiguity. Further, although

one of the local Kalman filters outperforms the fusion methods, the performance of

CFST is comparable with that local Kalman filter performance.
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Table 3.10: Average RMSE values of the position and velocity for the Case 2.

RMSE (m) RMSE (m/s)

CI 4.26 1.54

CKF 4.22 1.30

KF1 12.22 2.07

KF2 0.29 1.35

KF3 0.78 1.40

CFST 0.41 1.35

3.4.3 Discussion: CFST with memory

In this part, the real data experiments are also conducted for the performance evalua-

tion of CFST with memory.

3.4.3.1 Case 1

In this situation, all of the sensors’ known translations and rotations with respect to the

world frame are exact enough to collect useful measurements from the environment.

Figure 3.35(a) illustrate the sensor measurements and the ground truth of the target

trajectory.
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Figure 3.35: (a) shows the sensor measurements and ground truth. (b) displays the

position RMSE of the algorithms over time. (c) shows the velocity RMSE of the

algorithms over time.
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Table 3.11: Average RMSE values of the position and velocity for the Case 1.

RMSE (m) RMSE (m/s)

CI 0.72 1.68

CKF 0.69 1.44

KF1 1.75 1.84

KF2 0.26 1.59

KF3 1.73 1.77

CFST with memory 0.59 1.69

The average RMSE values of the scenario in Case 1 are given in Table 3.11. The

position and velocity RMSE values calculated using (3.45) are given in Figure 3.35(b)

and Figure 3.35(c). According to the results in Table 3.11 and Figure 3.35, although

the performance of the fusion algorithms are comparable, one of the local Kalman

filters outperforms the fusion methods.

3.4.3.2 Case 2

Although the pose and orientation of LiDAR and RADAR concerning the world

frame are known precisely enough in this scenario, there is a mismatch between the

camera’s actual and known orientation regarding the world frame. Such a disparity

may cause massive positional mistakes in IPM output, resulting in ambiguity that the

approaches must resolve.

Table 3.12: Average RMSE values of the position and velocity for the Case 2.

RMSE (m) RMSE (m/s)

CI 4.26 1.54

CKF 4.22 1.30

KF1 12.22 2.07

KF2 0.29 1.35

KF3 0.78 1.40

CFST 0.67 1.39
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Figure 3.36: (a) shows the sensor measurements and ground truth. (b) displays the

position RMSE of the algorithms over time. (c) shows the velocity RMSE of the

algorithms over time.

The average RMSE values of the scenario in Case 2 are given in Table 3.12. The

position and velocity RMSE values calculated using (3.45) are given in Figure 3.36(b)

and Figure 3.36(c). According to the results in Table 3.12 and Figure 3.36, CFST

outperforms other fusion algorithms, but one of the local Kalman filters outperforms

the fusion methods.

3.5 Conclusion

This chapter investigates the collaboration of the Chernoff fusion with the student t-

distribution (CFST). The simulations and real data experiments are conducted to eval-

uate the performance of CFST. The various algorithms, such as covariance intersec-

tion (CI), centralized Kalman filter (CKF), and local Kalman filters, are also included

in the performance evaluation for comparison. According to the simulation results, CI

and CKF outperform CFST if the methods precisely know the sensor characteristics.

On the other hand, in case of a mismatch between the actual and known characteris-

tics of one sensor, CFST performs better than CI, CKF, and local Kalman filters for

conflict resolution. According to the real data experiments, the performance of the

fusion methods are comparable if the sensor characteristics are known by the meth-

ods precisely enough. Moreover, the results of the real data experiments are similar

to the simulations in case of conflict between the known and actual sensor character-

istics. Additionally, there is a CFST substitute in the form of additional input. The
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method is known as CFST with memory if the fusion output of the preceding instant

after time update is sent to the CFST algorithm. According to the simulations, CI and

CKF perform slightly better than CFST with memory in the case of the known sensor

characteristics. Meanwhile, CFST with memory outperforms CI and CKF when there

is a mismatch between the actual and known sensor characteristics. Based on the real

data experiments, the performance of CI, CKF, and CFST with memory are similar

when there is no conflict. In case of sensor failure, CFST with memory outperforms

CI and CKF.
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CHAPTER 4

VARIATIONAL MEASUREMENT UPDATE FOR EXTENDED OBJECT

TRACKING USING GAUSSIAN PROCESSES

Conventional tracking methods assume that sensors are capable of detecting objects

as point sources without extent. As a result, the availability of at most one measure-

ment per scan is a common assumption. Instead of these assumptions, when a sensor

is adequate to get multiple measurements to detect an object, different approaches for

tracking in terms of kinematics and extent are introduced.

The approach described in [48, 49] is based on Bayesian recursion and involves time

update and measurement update with the joint estimation of kinematics and extent.

It models the target extent using positive definite matrices distributed with inverse

Wishart distribution. A random matrix-based model [50] approximates densities us-

ing minimization of Kullback-Leibler divergence for extent and differs from [48, 49]

on the prediction update method. Further, this method allows for taking into account a

target’s potential rotation. Another random matrix-based model is introduced in [51],

describing possible dynamics and extent adjustments using different models. [52, 53]

combine extended target tracking with spatial distribution models. The proposed ap-

proach specifies measurements as samples from the probability distribution related

to the target extent. [54, 55] incorporate set-theoretic and spatial distribution models

to produce a random hypersurface model. The proposed approach can estimate an

arbitrary shape of the target in addition to tracking the kinematics. [56, 57] assign

specific geometric shapes to the extent of the target. [56] employs predicted measure-

ments and corresponding innovation covariances. The proposed approach computes

the appropriate likelihood functions under the assumption that feasible target types

include a rectangle and an ellipse. On the other hand, [57] offers various models con-
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structed by two separate motion models, as well as two different measurement models

based on points and lines. [58] makes use of the variational inference approximation

to achieve the measurement update for the extended targets with random matrices.

[59] models the target extent with multiple ellipses and solves the inference problem

considering the sequential Monte Carlo framework.

This section focuses on an alternative measurement update constructed with the varia-

tional inference for the Gaussian process-based extended target tracking models. The

performance of the alternative measurement update is evaluated by comparison with

[4] through simulations and real data experiments.

4.1 Problem Definition

The fundamental objective is to track the position and extent of a target using noisy

measurements. The two-dimensional position measurements {zk,1 · · · zk,nk
} are gen-

erated from the target contour with additive white noise at each time step k. These

finite numbers of measurements are identically distributed and independent from each

other. We can derive details about the object’s contour thanks to the availability of

multiple measurements. At this point, describing the target extent is achieved using

star-convex shapes as proposed in [54]. This definition facilitates contour represen-

tation with a radial function corresponding to a basis angle such as r = f(θ). Based

on this model, the basis angles and corresponding radial distances describe the target

extent.

In early work, [4], the link between the measurements and the target extent is formed

using the Gaussian process, which models the contour as

f(θ) ∼ GP(r, k(θ, θ̄)), r ∼ N (0, σ2
r), (4.1)

where mean function of Gaussian process, r, is the estimate of the radial function.

Covariance function k(θ, θ̄) determines the correlation level between basis angles θ

and θ̄. Due to the periodic characteristic of the target extent defined via star-convex

shape, the kernel function defined in 2.59 is utilized to make f(θ) and f(θ+2π) per-

fectly correlated. In addition, zero-valued mean function performs well for Gaussian

84



process, which results in the following reformulation

f(θ) ∼ GP(0, k(θ, θ̄) + σ2
r). (4.2)

After constructing the Gaussian process model to represent the extent, derivation of a

state space model is another crucial step in applying Kalman filter-based approaches

to that state space model as in [4].

4.1.1 State Space Model

In this subsection, the complete state space model including process model and mea-

surement model is introduced. Initially, state vector for this model can be written as

xk =
[
(x̄k)

⊤ (fk)
⊤
]⊤
, (4.3a)

where x̄k and fk stand for kinematics and extent of the target. x̄k can be expressed in

more detail as given

x̄k =
[
(xck)

⊤ ψk (xvk)
⊤
]⊤
, (4.3b)

where xck, ψk and xvk represent center position, orientation and state elements related

to velocity and angular velocity, respectively.

4.1.1.1 Process Model

The following describes the process model to explain a version of the position and

extent of the target based on various assumptions at each stage

xk+1 = Fxk + wk, wk ∼ N (0, Qk) (4.4a)

where

F =

Fk 0

0 Ff

 , Q =

Qk 0

0 Qf

 . (4.4b)

The constant velocity model is used to simulate the target’s dynamic behavior. Ap-

plying the constant velocity model requires the following inputs

Fk =

1 ∆T

0 1

⊗ I3, Qk =

∆T 3

3
∆T 2

2

∆T 2

2
∆T

⊗

σ2
c 0 0

0 σ2
c 0

0 0 σ2
ψ

 , (4.5)
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where σc and σψ are standard deviations for center position and orientation, respec-

tively. Moreover, describing dynamics of extent can be accomplished using the fol-

lowing

Ff = I, Qf =
(
α−1 − 1

)
P f
k|k, (4.6)

where α is a factor that scales up the estimated covariance of the extent P f
k|k to com-

pute the predicted covariance of the extent P f
k+1|k.

4.1.1.2 Measurement Model

Depending on the way of describing the target contour with a star-convex shape, the

measurement model to explain the generation of noisy measurements from the target

contour can be expanded as

zk,l = xck + p(θk,l)f(θk,l) + ek,l, (4.7)

where xck is the center of target at time index k; {zk,l}nk
l=1 are the nk measurements

collected at time index k; {θk,l}nk
l=1 represent the angles expressing the source of the

measurements on the target contour; ek,l ∼ N (0, R) denotes the zero mean Gaussian

measurement noise with covariance R; and p(θk,l), orientation vector, is defined as

p(θk,l) =

 cos(θk,l)

sin(θk,l)

 . (4.8)

The association between the kinematics and the extent related parameters such as

measurements is defined in two different coordinate frames. The first is the global

coordinate frame, which includes targets and sensor measurements, and the second is

the local coordinate frame, which is based on how the target is oriented with respect

to the global frame. The relation between measurements {zk,l}nk
l=1 and the center of

target xck is defined in both the global and local target coordinate frames as follows

θGk,l(x
c
k) = ∠(zk,l − xck), (4.9a)

θLk,l(x
c
k, ψk) = θGk,l(x

c
k)− ψk, (4.9b)

where ψk stands for orientation of the target. In the light of these angle definitions,

the measurement model can be written as

zk,l = xck + pk,l(x
c
k)f(θ

L
k,l(x

c
k, ψk)) + ēk,l, (4.10)
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where the extent model f(θLk,l(x
c
k, ψk)) established with respect to the local frame is

transferred to the global frame by multiplying with pk,l(xck) to arrange rotation and

then by adding xck to set translation. Radial function f(θLk,l(x
c
k, ψk)) used to explain

the target extent can be expanded using the Gaussian Process description in 2.65, 2.66

as follows

f(θLk,l(x
c
k, ψk)) = Hf

(
θLk,l(x

c
k, ψk)

)
xfk + efk,l, (4.11)

Furthermore, when these angle definitions are used to clarify measurement model,

the orientation vector p(θk,l) can be reformulated for simplicity

pk,l(x
c
k) = p(θGk,l(x

c
k)) =

zk,l − xck
∥zk,l − xck∥

. (4.12)

These expansions enable us to write measurement equation as in 4.13,

zk,l = xck + pk,l(x
c
k)
[
Hf
(
θLk,l(x

c
k, ψk)

)
xfk + efk,l

]
+ ēk,l,

= hk,l(xk) + ek,l, (4.13a)

hk,l(xk) = xck + H̃f
l (x̄k)x

f
k , (4.13b)

H̃f
l (x̄k) = pk,l(x

c
k)H

f
(
θLk,l(x

c
k, ψk)

)
, (4.13c)

ek,l = pk,l(x
c
k)e

f
k,l + ēk,l, ek,l ∼ N (0, Rk,l), (4.13d)

Rk,l = pk,l(x
c
k)R

f
(
θLk,l (x

c
k, ψk)

)
pk,l(x

c
k)
T . (4.13e)

The model described in 4.13 is expanded with a model in which all the measurements

in one scan is utilized together to update estimate. The corresponding augmented

version of the measurement model can be written as

zk = hk(xk) + ek, ek ∼ N (0, Rk), (4.14)

where

zk =
[
z⊤k,1, · · · , z⊤k,nk

]⊤
, (4.15a)

hk(xk) =
[
hk,1(xk)

⊤, · · · , hk,nk
(xk)

⊤
]⊤
, (4.15b)

Rk = diag[Rk,1, · · · , Rk,nk
]. (4.15c)
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4.2 Measurement Update Based on Variational Inference

The variational inference approaches problem as solving an optimization problem.

We aim to find an approximate solution for the posterior p(x̄k, fk|z1:k) by starting

with the following approximation

p(x̄k, fk|z1:k) ≈ q(x̄k, fk) = qx(x̄k)qf (fk), (4.16)

where the qx(x̄k) and qf (fk) stand for approximate densities for kinematics and ex-

tent, respectively. The concept is founded on minimizing the disparity between the ap-

proximate and actual posteriors. The distance measure is defined with the Kullback-

Leibler divergence, i.e., KL(p(x)||q((x)) =
∫
qlog( q

p
)dx, resulting in the following

optimization problem statement

qx(x̄k), qf (fk) = arg min KL[qx(x̄k)qf (fk)||p(x̄k, xfk |z1:k)]. (4.17)

The solution to (4.17) is based on an iterative procedure. The key aspect is to update

one of the factorized approximate densities while keeping the other one fixed on its

last version. Analytical solutions for the approximate densities are given as

log qx(x̄k) = Eqf [logp(zk, x̄k, fk|z1:k−1)] + c1, (4.18a)

log qf (fk) = Eqx [logp(zk, x̄k, fk|z1:k−1)] + c2. (4.18b)

The joint density p(zk, x̄k, fk|z1:k−1) to compute approximate solutions as mentioned

in (4.18) is factorized as follows

p(zk, x̄k, fk|z1:k−1) = p(zk|x̄k, fk)p(x̄k, fk|z1:k−1), (4.19)

where p(zk|x̄k, fk) and p(x̄k, fk|z1:k−1) stand for the measurement likelihood and the

predicted state density, respectively. The predicted state density can be factorized as

follows

p(x̄k, fk|z1:k−1) = p(x̄k|z1:k−1)p(fk|z1:k−1) (4.20)

, where

p(x̄k|z1:k−1) ∼ N (x̄k;µ
x
k|k−1, P

x
k|k−1), (4.21a)

p(fk|z1:k−1) ∼ N (fk;µ
f
k|k−1, P

f
k|k−1). (4.21b)
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Based on this model, approximate posteriors are also Gaussian since posterior and

prior should be in the same form for the recursion. As a result, approximate posterior

target density can be modeled as

qi+1
x (x̄k) ∼ N (x̄k;µ

i+1
x , P i+1

x ), (4.22a)

qi+1
f (fk) ∼ N (fk;µ

i+1
f , P i+1

f ), (4.22b)

where qi+1
x (x̄k) and qi+1

x (fk) correspond to the estimated densities at the (i + 1)th

iteration for the kinematics and the extent. The nonlinear characteristics of the mea-

surement model defined in 4.14 violate the condition that the posterior is in the same

form as the prior to have a tractable algorithm finally. The selected method to resolve

this issue depends on the computation of which approximate density. The measure-

ment model is approximated by its first-order Taylor series expansion for computing

approximate kinematic density qi+1
x (x̄k). On the other hand, the unscented transform

is used to deal with the nonlinear measurement model to calculate approximate ex-

tent density qi+1
f (fk). The details related to the derivation of the analytical expression

for the approximate kinematics and extent densities are provided in [60]. The mea-

surement update equations for the kinematics’ mean and the covariance at the (i)th

iteration are as follows

µi+1
x = µxk|k−1 +Kx

k (zk − gi − Ai+1
x µxk|k−1 −Bi+1

x µi+1
f ), (4.23a)

P i+1
x = P x

k|k−1 −Kx
kA

i+1
x P x

k|k−1, (4.23b)

where

gi = hk(µ
i
x, µ

i
f )− Aixµix −Bi

xµ
i
f , (4.24a)

Ai+1
x =

∂h

∂x̄k
|x̄k=µix,fk=µif , (4.24b)

Bi+1
x =

∂h

∂fk
|x̄k=µix,fk=µif , (4.24c)

Sxk = Ai+1
x P x

k|k−1(A
i+1
x )⊤ +Rk, (4.24d)

Kx
k = P x

k|k−1(A
i+1
x )⊤(Sxk )

−1. (4.24e)

The measurement update of the extent mean and covariance at the (i)th iteration is

achieved as

µi+1
f =

(
∆+ (P f

k|k−1)
−1
)−1 (

δ + (P f
k|k−1)

−1µfk|k−1

)
, (4.25a)

P i+1
f =

(
∆+ (P f

k|k−1)
−1
)−1

, (4.25b)
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where

∆ ≈
M∑
j=0

πjg1(x̄
j
k), δ ≈

M∑
j=0

πjg2(x̄
j
k), (4.26)

g1(x̄k) = H̃f
l (x̄k)

⊤R−1
k H̃f

l (x̄k), (4.27)

g2(x̄k) = H̃f
l (x̄k)

⊤R−1
k (zk − xck), (4.28)

where {x̄jk}Mj=0 and {πj}Mj=0 stand for the sigma-points and the corresponding weights,

respectively.

4.3 Simulation Results

In this section, the performance of the inference method based on variational infer-

ence is evaluated and compared with the method presented in [4] through simulations.

Three separate experiments are conducted to present various challenges for a tracking

application. In the experiments, a target of various shapes travels along a path that

combines linear and curved motions. The first experiment represents the ideal case

since measurements are collected with a sufficiently small sampling time, and the dy-

namic model can describe the target’s motion. Further, the level of uncertainty about

the target’s motion is as tiny as possible. In the second experiment, the uncertainty

about the target’s motion is much more apparent than in the first experiment, and the

dynamic model is insufficient to describe the target’s motion. The last experiment

is the same as the first one except for having a more considerable sampling time.

Different simulations are performed 100 times to assess the estimation results of the

methods. The algorithms are evaluated using different realizations of measurements

in the Monte Carlo runs. The evaluation of estimation results related to extent is based

on a measure called Intersection-Over-Union (IOU). If the area of the estimated tar-

get and the true target are represented by Â and A0, respectively, IOU is determined

by computing the intersection and union of these two areas and calculating ratio of

intersection and union as follows

IOU(Â, A0) =
area(Â ∩ A0)

area(Â ∪ A0)
. (4.29)

IOU(Â,A0) ∈ [0, 1], where 1 means perfect overlap between estimated and true

object and 0 means no overlap in any case. The evaluation of estimation related to
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target position is achieved using root-mean-square-error (RMSE) defined in (3.45)

and (3.46).

Throughout the simulations, the measurements are originated from the contour of the

moving target whose shape can be rectangular (T1), triangular (T2) and plus (T3).

Further, the number of measurements are Poisson distributed with mean 15, and the

measurement noise standard deviation is set to σv = 0.2. The motion and the GP

parameters used in the experiments are provided in Table 4.1. The ideal case, also

labeled E1, is accepted as a base regarding the motion and GP parameters. In the case

with the model mismatch labeled as E2, the same motion and GP parameters are used

with the ideal case except for the target’s speed. Similarly, the sampling time is the

only parameter difference between the case with the more significant sampling time

labeled as E3 and the ideal case.

Table 4.1: Motion and GP parameters used in the experiments. P1 represents the

motion parameters, and P2 stands for the GP parameters.

P1 P2

∆T σc σψ α v (m/s) σr σf l

E1 1 0.1 0.01 0.99 0.5 0.6 3 π
4

E2 1 0.1 0.01 0.99 2 0.6 3 π
4

E3 4 0.1 0.01 0.99 0.5 0.6 3 π
4

4.3.1 The ideal case

The ideal case corresponds to the filtering with a sufficiently small sampling time and

as little uncertainty as possible about the target’s motion characteristics. Figure 4.1

illustrates the performance of the algorithms for the target whose shape is rectan-

gle. More specifically, Figure 4.1(a) illustrates the realization of the extended target

tracking results obtained by the measurement update based on variational inference

(VB) and extended Kalman filter (EKF). Furthermore, Figure 4.1(b) and Figure 4.1(c)

display the IOU and the RMSE for the orientation angle of the algorithms over 100

Monte Carlo runs for each instant, respectively. The counterparts of the Figure 4.1

for the targets whose shapes are triangle and plus are given in Figure 4.2 and Fig-
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ure 4.3, respectively. The average IOU and RMSE values over 100 Monte Carlo runs

are given in Table 4.2 for each target with various shapes.

Table 4.2: Average IOU and RMSE values of the orientation angle over 100 Monte

Carlo runs for the ideal case. T1, T2 and T3 stand for rectangle, triangle and plus,

respectively.

T1 T2 T3

IOU RMSE (rad) IOU RMSE (rad) IOU RMSE (rad)

EKF 0.933 0.038 0.878 0.037 0.907 0.027

VB 0.934 0.038 0.867 0.037 0.908 0.027

(a)

0 20 40 60 80 100 120

 time (s)

0.8

0.85

0.9

0.95

 I
O

U VB

EKF

(b)

0 20 40 60 80 100 120

 time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 R
M

S
E

 (
ra

d
)

VB

EKF

(c)

Figure 4.1: (a) shows a typical realization of the simulation for the ideal case with

rectangle-shaped object. (b) and (c) display IOU and RMSE for orientation angles

over 100 Monte Carlo runs at each instant, respectively.

Based on the results of Figures 4.1,4.2 and 4.3 and also Table 4.2, the performance of

the both methods are almost the same and successful in terms of the IOU and RMSE

of the orientation angle.

4.3.2 The case with the model mismatch

The mismatch between the actual motion characteristics of the target and the dynamic

model assumption is a common condition in target tracking scenarios. The response

of the algorithms in such a case is examined by setting a higher target speed that the

dynamic model does not justify. The performance of the algorithms for the rectangle-
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Figure 4.2: (a) displays a typical realization of the simulation for the ideal case with

triangle-shaped object. (b) and (c) show IOU and RMSE for orientation angles over

100 Monte Carlo runs at each instant, respectively.
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Figure 4.3: (a) displays a typical realization of the simulation for the ideal case with

plus-shaped object. (b) and (c) show IOU and RMSE for orientation angles over 100

Monte Carlo runs at each instant, respectively.

shaped target is shown in Figure 4.4. In more detail, Figure 4.4(a) shows realizations

of the VB and EKF based algorithms. The IOU and the RMSE for the orientation

angle of the algorithms over 100 Monte Carlo runs for each instant are provided in

Figure 4.4(b) and Figure 4.4(c), respectively. Figure 4.5 and Figure 4.6 show the

performance of the algorithms for the targets whose shapes are triangle and plus.

Table 4.3 presents the average IOU and RMSE values over 100 Monte Carlo runs for

each target with the specified shapes.
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Table 4.3: Average IOU and RMSE values of the orientation angle over 100 Monte

Carlo runs for the case with the model mismatch. T1, T2 and T3 stand for rectangle,

triangle and plus, respectively.

T1 T2 T3

IOU RMSE (rad) IOU RMSE (rad) IOU RMSE (rad)

EKF 0.83 0.27 0.61 0.49 0.54 0.88

VB 0.90 0.08 0.81 0.15 0.86 0.06
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Figure 4.4: (a) displays a typical realization of the simulation for the model mismatch

case with rectangle-shaped object. (b) and (c) show IOU and RMSE for orientation

angles over 100 Monte Carlo runs at each instant, respectively.
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Figure 4.5: (a) displays a typical realization of the simulation for the model mismatch

case with triangle-shaped object. (b) and (c) show IOU and RMSE for orientation

angles over 100 Monte Carlo runs at each instant, respectively.

The measurement update framework based on variational inference outperforms the

one with the extended Kalman filter in estimating the extent and the orientation angle,
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Figure 4.6: (a) displays a typical realization of the simulation for the model mismatch

case with plus-shaped object. (b) and (c) show IOU and RMSE for orientation angles

over 100 Monte Carlo runs at each instant, respectively.

as shown by the findings of Figures 4.4, 4.5, and 4.6, and also Table 4.3.

4.3.3 The case with the larger sampling time

In this case, the performance of the algorithms is investigated by increasing the sam-

pling time with respect to the ideal case. The results for the rectangle-shaped target

is presented in Figure 4.7. Specifically, Figure 4.7(a) shows realization of the VB and

EKF based algorithms. The IOU and the RMSE for the orientation angle of the algo-

rithms over 100 Monte Carlo runs for each instant are provided in Figure 4.7(b) and

Figure 4.7(c), respectively. Figure 4.8 and Figure 4.9 display the performance of the

algorithms for the triangle-shaped and plus-shaped targets. Table 4.4 demonstrates

the average IOU and RMSE values over 100 Monte Carlo runs for each target with

the specified shapes.

Table 4.4: Average IOU and RMSE values of the orientation angle over 100 Monte

Carlo runs for the case with the larger sampling time. T1, T2 and T3 stand for rect-

angle, triangle and plus, respectively.

T1 T2 T3

IOU RMSE (rad) IOU RMSE (rad) IOU RMSE (rad)

EKF 0.90 0.09 0.69 1.10 0.79 0.47

VB 0.91 0.07 0.84 0.14 0.88 0.04
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Figure 4.7: (a) displays a typical realization of the simulation for the larger sampling

time case with rectangle-shaped object. (b) and (c) show IOU and RMSE for orienta-

tion angles over 100 Monte Carlo runs at each instant, respectively.
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Figure 4.8: (a) displays a typical realization of the simulation for the larger sampling

time case with triangle-shaped object. (b) and (c) show IOU and RMSE for orienta-

tion angles over 100 Monte Carlo runs at each instant, respectively.

In light of the findings of Figures 4.7, 4.8, and 4.9, and also Table 4.4, the mea-

surement update framework based on variational inference surpasses the one with the

extended Kalman filter in estimating the extent and the orientation angle.
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Figure 4.9: (a) displays a typical realization of the simulation for the larger sampling

time case with plus-shaped object. (b) and (c) show IOU and RMSE for orientation

angles over 100 Monte Carlo runs at each instant, respectively.

4.4 Real Data Experiments

In this experiment, data collection is achieved by a camera installed on an airborne ve-

hicle hovering over a surveillance area. The experiment occurs at a cove on Turkey’s

western Mediterranean coast, where a dinghy performs agile movements in the scene.

Further, the camera captures an image every second throughout the scenario. Extract-

ing measurements from images is a crucial step. At this point, a feature extraction

algorithm called Harris corner detector [61] enables us to collect measurements from

the object’s contour. After providing measurements, both approaches use the same

set of parameters listed in Table 4.5.

Table 4.5: Motion and GP parameters used in the real data experiment. P1 represents

the motion parameters, and P2 stands for the GP parameters.

P1 P2

∆T σc σψ α σr σf l

EKF 1 4 0.2 0.99 0.6 10 π
6

VB 1 4 0.2 0.99 0.6 10 π
6

Figure 4.11 visualize the outputs of the algorithms for different instants, in which

Figure 4.11(a)-(d) refer to the part where the dinghy movement matches the dy-

namic model utilized by the algorithms. Both methods perform successfully when
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the dinghy moves along a relatively straight line. 4.11(e)-(h), on the other hand, show

how the algorithms perform when there is a model mismatch between the dinghy

movement and the dynamic model employed by the algorithms. As can be observed,

VB performs better in terms of both extent and kinematic estimates once the dinghy

begins to maneuver. Furthermore, IOU and RMSE for the orientation angle of the

algorithms for each instant are presented in Figure 4.10, which illustrates the algo-

rithms’ equivalent performance when the dinghy goes along a relatively straight path

and the superiority of VB once the dinghy begins to maneuver.
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Figure 4.10: (a) and (b) display IOU and RMSE for orientation angles at each instant

for camera data, respectively.
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(c) (d)
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Figure 4.11: The visualization of the outputs for different instants. (a)-(d) refer to

the part where the dinghy movement matches the dynamic model utilized by the al-

gorithms. (e)-(h) display the outputs when there is a model mismatch between the

dinghy movement and the dynamic model employed by the algorithms. Yellow line

and red dashed line represent the outputs of VB and EKF, respectively. Orange dots

stand for measurements.
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4.5 Conclusion

In this chapter, an alternative measurement update for an extended target tracking

framework is investigated. The variational inference-based alternative measurement

update seeks to reduce reliance on the process model’s suitability for the scenario

and the need for a brief sampling period to obtain accurate estimates. In order to

evaluate the performance, simulations and real data experiments are conducted. The

variational inference-based measurement update (VB) is compared with the extended

Kalman filter-based one. In the case of short sampling time and a match between the

scenario and the dynamic model, VB and EKF performances are comparable. On the

other hand, VB outperforms EKF if the dynamic model mismatch with the scenario

occurs or the sampling time is increased.
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CHAPTER 5

CONCLUSION

Multi-sensor fusion combines information from different sensors to enhance knowl-

edge and obtain superior performance. It is a difficult task that requires maintaining

the benefits of individual information sources. The fusion performance may be com-

promised by several challenges, including sensor biases, limited channel capacity,

communication channel delays, and the correlation in the acquired information. An-

other significant challenge is identifying and removing the common information of

the different sources, which may stem from the correlation in the gathered informa-

tion. Otherwise, using the common information more than once in the fusion results

in a double counting problem, which may degrade the performance due to overcon-

fidence. The Chernoff fusion is one method that fuses different information sources

and aims to prevent the double counting problem.

This thesis focuses on the problem of fusing conflicting information from different

sensors. The conventional fusion methods rely on the Gaussian distribution. How-

ever, the Gaussian assumption can be restrictive in many applications. Furthermore,

such methods do not perform well in the case of outliers and model uncertainties.

In this regard, heavy-tailed distributions such as student t-distribution can be a good

alternative to Gaussians. With this motivation, we investigate the idea of combining

the Chernoff fusion method and student t-distributions. The Chernoff fusion method

involves exponentiation and multiplication of the input distributions, which are trivial

to perform for Gaussian distributions. On the contrary, it is difficult to obtain the rel-

evant, intermediate expressions for the student t-distributions. In this thesis study, we

derived the necessary expressions in order to perform Chernoff fusion with student

t-distributions and proposed a novel fusion method. The proposed method obtains
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the relevant expressions exactly or approximately, where the approximations are ob-

tained by solving particular optimization problems. The proposed algorithm is called

Chernoff fusion with student t-distribution. An extension to CFST, called CFST with

memory, is also derived for temporal recursive applications. The difference between

the CFST and CFST with memory is the capability of using the fusion output obtained

at the previous time instant.

The performance evaluation of the algorithms is a critical task. In this thesis study,

we conducted comprehensive experiments to illustrate and test the performance of

the methods. These experiments include real data as well as simulations. Real data is

collected from different sensors in an autonomous driving environment. In particular,

a scenario with a mismatch between one sensor’s actual and known characteristics

is constructed for both simulations and real data experiments. The generated data is

used to compare the performance of the CFST and CFST with memory with vari-

ous algorithms such as covariance intersection, centralized Kalman filter, and local

Kalman filters. The simulations and real data experiments show that the proposed

algorithms outperform the alternative, conventional methods in terms of robustness.

Another focus of this thesis is related to an extended target tracking framework con-

structed with the Gaussian process. This framework’s fundamental objective is to

track a target’s position and extent using noisy measurements from the target contour.

The Gaussian process establishes the connection between the measurements and the

target extent. The suggested inference methods rely on Kalman filter variations when

a nonlinear, implicit measurement model is present. Although such approaches have

been shown to produce an effective tracking framework, they have the well-known

drawbacks of nonlinear Kalman filtering. For instance, poorly predicted state density

and high levels of uncertainty in the model could drastically degrade the estimation

performance. The general adoption of the approach in different tracking applications

may be limited by these constraints. To address these issues, we proposed a varia-

tional approach to improve the estimation performance of the Gaussian process-based

extended target tracking methods. The suggested approach is based on a variational

Bayes technique for analytical measurement update. The resulting algorithm updates

kinematics and extent recursively. It is observed that this recursive filter considerably

enhances tracking performance and is robust against model uncertainties via com-
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prehensive experiments. In particular, the variational inference-based measurement

update performance is compared with the extended Kalman filter-based through simu-

lations and real data experiments. The simulation and real data experiments show that

variational measurement update performance is more robust than extended Kalman

filter based measurement update for the scenarios with moderate or high levels of

uncertainty included in the model.
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