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ABSTRACT

BRAIN-INSPIRED LEARNING FOR FACE ANALYSIS IN ARTIFICIAL NEURAL
NETWORKS: A MULTITASK AND CONTINUAL LEARNING FRAMEWORK

Okcu, Sefa Burak

M.S., Department of Cognitive Science

Supervisor: Prof. Dr. A. Aydın Alatan

Co-Supervisor: Assist. Prof. Dr. Umut Özge

January 2023, 66 pages

The phenomenon known as catastrophic forgetting is common in connectionist models while learn-
ing from a sequence of data from different distributions. On the other hand, the human brain has the
ability to learn from a sequence of experiences continually while retaining old information. Recent
studies utilize different brain-inspired methods such as regularization, parameter isolation, and replay
to alleviate this problem in artificial systems. Following the previous studies, we investigated different
continual learning methods on face analysis tasks involving age estimation, binary gender recognition,
emotion recognition, and face recognition. Neurological findings implicate that there are different spe-
cialized functional and neural areas in the brain for the perception of faces. Similarly, we analyzed
faces in two stages, very common in artificial neural networks: face detection and face attributes anal-
ysis. Firstly, experiments for learning face detection and facial landmark detection were conducted by
studying multitask learning. Secondly, some continual learning methods inspired by biological sys-
tems were leveraged to overcome catastrophic interference in artificial models. In the first experiments,
our proposed model was able to learn both face and facial landmark detection efficiently, along with a
performance boost. In later experiments, we observed that the utilized continual learning methods per-
formed better on task incremental scenarios than class incremental scenarios. Nevertheless, a combi-
nation of two different continual learning methods resulted in remarkable performance improvement in
class incremental scenarios. As a result, the combination of different alternative neuroscience-inspired
methods is required for mitigating forgetting and approaching multitask performance.

Keywords: continual learning, multitask learning, catastrophic forgetting, face detection, face analysis
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ÖZ

YAPAY SİNİR AĞLARINDA YÜZ ANALİZİ İÇİN BEYİNDEN İLHAM ALAN ÖĞRENME:
ÇOK GÖREVLİ VE SÜREKLİ ÖĞRENME SİSTEMİ

Okcu, Sefa Burak

Yüksek Lisans, Bilişsel Bilimler Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Umut Özge

Ocak 2023, 66 sayfa

Bağlantıcı modellerde farklı dağılımlardan gelen veri dizisi üzerinden öğrenme sırasında katastrofik
unutma olayı yaygındır. Diğer yandan, insan beyni eski bilgileri saklarken sürekli olarak deneyimler
dizisinden öğrenme yeteneğine sahiptir. Son çalışmalar, yapay sistemlerde bu sorunu azaltmak için dü-
zenleme, parametre ayrımı ve yeniden oynatma gibi beyinden ilham alan yöntemleri kullanmaktadır.
Önceki çalışmaları takiben yaş tahmini, ikili cinsiyet tanıma, duygu tanıma ve yüz tanıma içeren yüz
analizi görevlerinde farklı sürekli öğrenme yöntemlerini inceledik. Nörolojik bulgular, beyinde yüz al-
gılama için uzmanlaşmış işlevsel ve sinirsel alanların bulunduğunu işaret etmektedir. Benzer şekilde,
biz bu çalışmada yüz analizini yapay sinir ağlarında da sıklıkla görüldüğü gibi iki aşamada inceledik:
yüz tespiti ve yüz özellik analizi. Öncelikle, çoklu görev öğrenimi çalışarak yüz tespiti ve yüz işaret
noktaları tespiti üzerine deneyler gerçekleştirdik. İkinci olarak, biyolojik sistemlerden ilham alan bazı
sürekli öğrenme yöntemlerini kullanarak yapay modellerdeki katastrofik girişimi aşmayı hedefledik.
İlk deneylerimizde, önerdiğimiz model performans artışının yanı sıra yüz ve yüz işaret noktaları tespi-
tini verimli bir şekilde öğrenebildi. Sonraki deneylerimizde, kullanılan sürekli öğrenme yöntemlerinin
görev artımlı senaryoda sınıf artımlı senaryoya göre daha iyi performans gösterdiğini gözlemledik.
Bununla birlikte, iki farklı sürekli öğrenme yönteminin bir kombinasyonu, sınıf artımlı senaryolarda
dikkate değer bir performans artışı sağladı. Sonuç olarak, unutmanın azaltılması ve çoklu görev per-
formansına ulaşılması için farklı alternatif nörobilimden ilham alınan yöntemlerin birleştirilmesi ge-
rekmektedir.

Anahtar Kelimeler: sürekli öğrenme, çok görevli öğrenme, katastrofik unutma, yüz tespiti, yüz analizi
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CHAPTER 1

INTRODUCTION

The human brain has the ability to learn continually, whereas connectionist networks are not capable
of learning new tasks continually without forgetting old tasks, which is called catastrophic forgetting
[7] [8]. In addition, humans can acquire new knowledge when different but related information is
provided together, as well as when learning separately.

In this thesis, the performance of multitask learning and continual learning techniques are evaluated
on Deep Convolutional Neural Networks (DCNNs) for various face analysis tasks, with the goal of
drawing inspiration from the human brain to improve their effectiveness. The focus is on examining
the potential of these techniques to enable DCNNs to learn from multiple tasks simultaneously and
adapt to new tasks without forgetting previously learned knowledge.

1.1 Problem Definition

Current state-of-the-art DCNNs outperformed humans in some specific tasks such as object recognition
[9], translation [10], and game playing [11] [12] while humans are generally good at learning multiple
tasks together. Artificial Neural Networks (ANNs) can also be optimized for multiple related tasks
jointly for better efficiency and generalization capability when labels are provided for multiple tasks
together on the same data. However, data arrives sequentially in nature, and it is not easy to find a
labeled data set for multiple tasks. In addition, joint optimization of ANNs on multitasks sometimes
leads to degradation of the performance of each task due to interference between the tasks. Thus,
multitask learning requires tasks to be related to each other. In addition to task relatedness, there are
different problems; such as how to combine losses from tasks with different weights and how much
information should be shared between tasks, which require extra work in multitask learning literature.

Continual Learning (CL) is another method that mammalian brains exhibit for learning and can be
an alternative for overcoming the problems in Multitask Learning (MTL) described above for training
ANNs. In contrast to biological neural networks, ANNs cannot incrementally learn new tasks and
utilize information gained from one task for faster and better learning of new tasks straightforwardly
without catastrophically forgetting. It occurs when an individual or system struggles to balance the
conflicting demands of plasticity and stability, which is called the stability-plasticity dilemma [13].
This conflict arises because the brain must maintain a certain level of stability in order to support the
retention of learned information while also remaining flexible enough to facilitate the acquisition of
new information and adapt to changing environments. Although different methods are proposed for
overcoming the stability-plasticity dilemma in CL literature, most of the experiments are conducted on

1



Task 1 
(Age Classification)

Task 2 
(Emotion Estimation)

Task 3 
(Gender Classification)

t t + 1 t + 2

Multitask
(Face Detection & Facial Landmark Detection)

Connectionist
Model (A)

Classical
Model (B)

Connectionist
Model (C)

Connectionist
Model (C)

Connectionist
Model (C)

Face Alignment

Figure 1: An overview of our proposed Multitask and Continual Learning framework for face analysis
in Artificial Neural Networks.

classification tasks, and relatively easy and solved datasets such as MNIST [14] and CIFAR100 [15].
In addition, the resolution and the number of images are relatively small compared to the samples used
in other Machine Learning (ML) paradigms.

In order to examine MTL and CL, we utilized face analysis in our experiments. Evidence from be-
havioral, neuropsychological, and neurophysiological studies suggests the face-specificity hypothesis,
which proposes specialized cognitive and neural areas for preferably processing faces [16] [17] [18]
[19]. According to findings of Kanwisher [20] from experiments using functional magnetic resonance
imaging, there is a cortical region specialized for the perception of faces [21], which is called the
fusiform face area. Furthermore, Bruce and Young [22] proposed a cognitive model for face process-
ing, which divides face processing into different functional levels. In their system, Face Detection
(FD) was the essential initial step for processing faces at later levels. Moreover, Farah et al.[23] dis-
covered that prosopagnosics, who lose the ability of face recognition, are better than normal people
in the recognition of inverted faces. In addition to evidence for the separation of face perception in
human brains, Tsao and Livingstone indicated that researchers analyze faces in three stages, which
are detection, measurement, and categorization using computer vision in their review paper [24]. As
a result, we also employed face-related tasks such as face detection, facial landmark extraction, age
estimation, gender recognition, emotion estimation, and face recognition in our MTL and CL experi-
ments. We also followed a similar process that divides face analysis into two specialized neural and
functional modules: one for face detection and Facial Landmark detection (FL), and another one for
age, gender, and emotion recognition or face recognition (Figure 1).
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1.2 Scope of the Thesis

Face analysis requires the detection and analysis of each face in the scene. In the human brain, different
specialized cognitive levels and functions possibly exist for detecting and recognizing faces [19]. The
fusiform face area, which is specialized in the perception of faces, is also activated when other facial
tasks such as age, gender, and emotion recognition are performed in the human brain [25] [21]. In
this thesis, like human brains, we split the face analysis problem in ANNs into two stages, detection
of faces and analysis of each detected face, and propose two connectionist models for each stage. In
the first part, we examine the effects of MTL on face detection and facial landmark detection tasks by
utilizing the Widerface [1] dataset, which has samples from real-world scenarios and labels for both
tasks. We conduct experiments in order to understand the effects of optimization of FD and FL tasks
jointly and separately by utilizing our proposed DCNNs architecture. Furthermore, we extend the
model’s capability by allowing it to learn the second task after the first task is acquired. In the second
part, we employ different CL methods, including a brain-inspired replay method [4] for analyzing their
performance on separate face analysis tasks, which are emotion, gender and age recognition, according
to a task incremental learning scenario. The experiments are performed on CelebFaces Attributes
Dataset (CelebA) [3] dataset after our MTL model is applied to each image to obtain aligned faces.
Additionally, we compare the same CL methods for face recognition by splitting the total number
of identities into several episodes/tasks. Experiments are designed according to both task and class
incremental learning scenarios on VGGFace2 [6] dataset.

1.3 Outline of the Thesis

In this thesis, the related background is presented in Chapter 2. Initially, different machine learning
paradigms are explained briefly. After a description of machine learning paradigms, an overview of
the literature on multitask learning and continual learning is presented. We present past general works
briefly and the methods related to the scope of this thesis are thoroughly explained. We begin by
reviewing comprehensive literature on MTL, then delve into more specific studies focused on face
analysis. Afterward, we introduce different CL methods under three main categories. In Chapter 3,
experimental setups for evaluating the effects of MTL are described in detail. Later, the results of
single and multitask models are presented on face detection and facial landmark detection tasks. In
Chapter 4, different continual learning methods are evaluated on realistic face data sets. The results are
compared on face analysis tasks considering class incremental and task incremental learning scenarios.
Finally, the summary of the thesis and its concluding remarks are presented in Chapter 5.
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CHAPTER 2

RELATED BACKGROUND

In this chapter, different machine learning paradigms and the literature related to the scope of this
thesis are presented. In the first section, some learning paradigms utilized in ML literature are given
briefly. After a brief introduction to different learning paradigms in ML, a general overview of methods
in multitask learning and continual learning literature are presented concisely in the literature survey
section, whereas methods and approaches employed in our experiments or related to our works are
examined comprehensively.

2.1 Learning Paradigms in Machine Learning

This section covers a range of machine learning paradigms, including both traditional and modern
approaches, which are:

• Supervised learning,

• Unsupervised learning,

• Self-supervised learning,

• Reinforcement learning,

• Transfer learning,

• Domain adaptation,

• Knowledge distillation,

• Curriculum learning,

• Meta-learning,

• Multitask learning,

• Continual learning.

The field of machine learning draws inspiration from the human brain’s method of processing informa-
tion and aims to mimic and improve cognitive abilities. Certain machine learning approaches emulate
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the human brain’s ability to learn and adjust to new information. The versatility of these approaches is
vital as it allows them to tackle a wide variety of issues and datasets within machine learning. Famil-
iarizing oneself with the different approaches is crucial for determining the most appropriate algorithm
or method for a particular machine learning task. Therefore, the following subsections present those
approaches briefly.

2.1.1 Supervised Learning

Supervised learning is a machine learning paradigm in which a model is trained on a labeled dataset,
where the correct output is provided for each input sample [26]. The model learns to predict the output
for new, unseen input samples by mapping the input to the correct output through a training process
[27]. Classic examples of supervised learning include a model that is trained to recognize handwritten
digits based on images and their corresponding labels (i.e., the digits 0 through 9) [28], or a model
trained to classify images of dogs and cats. Other common applications of supervised learning include
predicting the price of a house based on a labeled dataset of house prices and their corresponding
features (e.g., number of bedrooms, square footage, location) [29]. Some well-known algorithms for
supervised learning involve support vector machines [30] and neural networks [31].

2.1.2 Unsupervised Learning

Unlike supervised learning, which involves training a model on a labeled dataset, in unsupervised
learning [26], a model is trained on an unlabeled dataset and must discover patterns and relationships
within the data without guidance. This type of learning allows the model to explore the underlying
structure of the data and extract meaningful insights [27]. One example of unsupervised learning is
clustering, in which a model groups similar data points together based on their characteristics [32].
Another example is dimensionality reduction, in which a model reduces the number of features in a
dataset while maintaining as much of the original information as possible [33]. Some well-known
algorithms for unsupervised learning include k-means clustering [34] and principal component analy-
sis [35]. For instance, a model could be trained to group similar customer reviews together based on
their content using clustering [36], or to reduce the dimensionality of a dataset of stock prices using
Principal Component Analysis (PCA) [37].

2.1.3 Self-supervised Learning

High-quality data should be labeled for training in supervised learning, whereas unsupervised learning
enables a model to learn the underlying structure of the data or common representations between
examples. On the other hand, self-supervised learning utilizes some part of the data in order to learn
the other unseen part of the data. Self-supervised learning is also called pretext learning. It turns
unsupervised learning into supervised learning by extracting or generating labels automatically. Self-
supervised learning is usually preferred as an initial step for learning the representation of data, and
then the trained model is trained further for a downstream task. For instance, obtaining a colorful image
from a grayscale image [38], learning representation using geometric transformation [39], predicting
the hidden word from other words in a sentence, and generating images using generative adversarial
networks are some examples in that self-supervised learning is used.
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2.1.4 Reinforcement Learning

Reinforcement learning is a type of machine learning where an agent learns to make decisions by
interacting with its environment to get the best outcome [40]. The agent gets feedback in the form of
rewards or penalties based on its actions and improves its decision-making by experimenting and trying
different options [41]. It has been used to solve a variety of problems such as control systems, games
and natural language processing [33]. Some examples of popular algorithms for reinforcement learning
include Q-learning [42] and State-Action-Reward-State-Action (SARSA) [43]. One application of this
type of learning could be training an agent to play a video game by making choices that increase its
score [44], or to control a self-driving car by taking actions that enhance its safety and performance
[45]. Additionally, reinforcement learning has been used to optimize industrial processes, train robots,
and improve decision-making in financial markets.

2.1.5 Transfer Learning

Transfer learning is a very common technique in which a model trained on one task is fine-tuned for
use on a different but related task [46]. This approach can be especially useful when there is a limited
amount of data available for a specific task. Since it allows the model to leverage its prior knowledge
from the original task to improve its performance on the new task [47]. In addition, transferring old
knowledge also reduces the time required for the model to learn new tasks. Transfer learning has
been involved in many different fields, including natural language processing and computer vision.
For example, a model trained to classify hundreds of different objects could also be used for training
and classifying images of flowers. One very common instance of a transfer learning algorithm is the
convolutional neural network architecture [28], which is commonly used for image classification tasks
and is initially trained on Imagenet [48] dataset and fine-tuned for a new image classification task using
a small amount of labeled data.

2.1.6 Domain Adaptation

Domain adaptation refers to the process of adapting a model trained on one domain (source, e.g.,
a specific dataset or task) for use in a different but related domain (target). This technique is often
employed when there is a significant difference between the training and test distributions, as it allows
the model to generalize better to the new domain. Although both domain adaptation and transfer
learning are utilized for the adaptation of models, transfer learning, which refers to the process of
adapting a pre-trained model for a new task by fine-tuning the model on a new dataset, is often used
when there is a limited amount of labeled data available for the new task. It allows the model to
leverage the knowledge learned from the previous task to improve performance on the new task. On the
other hand, domain adaptation is useful for the same tasks from different distributions. For instance, a
model trained to perform sentiment analysis on reviews of one product could be adapted for sentiment
analysis on reviews of another product [49]. Transfer learning is a related but distinct concept from
domain adaptation, as it involves adapting a model to a new task rather than a new domain.
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2.1.7 Knowledge Distillation

Another machine learning paradigm is knowledge distillation which is used to enhance the perfor-
mance of smaller models. Although the computation power of the devices for running large models in-
creases, the deployed models are usually preferred as being small and efficient. Therefore, knowledge
distillation transfers the existing knowledge from a large model or ensemble of the models, teacher
models, to a smaller, compressed model or a student model. This is achieved by the training of the
student model on the same data set that the larger model was trained on, and the predictions of the large
model are utilized as soft labels for the student model. One generalized method for knowledge distil-
lation is the distillation method introduced by Hinton et al. in 2015 [50]. In the distillation method, the
student model aims to learn the teacher model’s output probabilities by minimizing the distillation loss.
Additionally, the student model also employs its own classification loss in the classification problem,
and both losses are combined with different weights.

2.1.8 Curriculum Learning

Curriculum learning [51] is another machine learning paradigm that is utilized for training a model
using data in a meaningful order instead of a randomly shuffled order. Humans are able to learn more
effectively and efficiently if tasks are supplied according to their difficulty. When the given examples
become harder gradually, humans can accumulate knowledge better. Similarly, curriculum learning
shortens the time that a training process converges during the training of a model. Furthermore, it also
improves the generalization performance of the trained model. One example task is object detection
where curriculum learning is useful in which a model is trained with samples that are visible, large,
and clear for detection, and later difficulty of training data is gradually increased by the addition of
complex, occluded, low-resolution, and small examples.

2.1.9 Meta-Learning

Meta-learning, which is also known as learning to learn, is a machine learning paradigm that facilitates
the learning or adapting of the model to new tasks or environments effectively. In order to achieve it,
the meta-learning algorithm takes metadata as input and optimizes the learning of the main task solver
model by utilizing the performance of the task solver model. It enables the model to adapt to new tasks
and environments without using large training data sets. In addition, meta-learning reduces the number
of experiments for obtaining good performances. The aim of meta-learning is to adapt and acquire new
tasks quickly, similar to people who have the ability to learn from a few samples in addition to faster
adaptation to new environments. Moreover, it has several advantages, such as faster training, higher
performance, etc. One method of meta-learning is Model-Agnostic Meta-Learning (MAML) which is
a task-agnostic algorithm that facilitates the learning of the model faster by small gradient update on a
few samples [52].

2.1.10 Multitask Learning

Multitask learning is a type of machine learning in which a single model is trained to perform multiple
tasks simultaneously [53]. This approach is inspired by the ability of the human brain to perform
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multiple tasks simultaneously and to learn from multiple sources of information. In a similar way,
multitask learning in machine learning involves training a single model to perform multiple tasks
simultaneously and to learn from the shared information among the multiple tasks and environments
more efficiently.

There is some evidence that multitask learning can be more effective than training a separate model for
each task, particularly when the tasks are related and share some common underlying information [53].
This is thought to be because multitask learning allows the model to learn from the shared information
among the tasks effectively and to make use of the commonalities among the tasks to improve its
overall performance, which is also particularly useful when there is a limited amount of labeled data
available for each task, as the model can learn from the larger combined dataset. For example, a single
model could be trained to perform both image classification and object detection using a multitask
loss function that combines the losses for both tasks. Alternatively, a single model could be trained to
perform both sentiment analysis and topic classification on text. Recently, several different multitask
models are developed, such as Pathways Language Model (PaLM) [54] for multiple language tasks
i.e. multilingual tasks and generation, Gato [55] for multiple broad tasks (playing Atari, captioning
images and chatting, etc.), and Robotics Transformer 1 (RT-1) [56] for over 700 different tasks.

2.1.11 Continual Learning

The ability of a machine learning model to adapt and learn new tasks and environments over time,
rather than being trained on a fixed set and then deployed, is known as continual learning (aka. Life-
long learning or incremental learning). This is essential for real-world scenarios, as the model’s tasks
and surroundings may change. Algorithms for continual learning are created to learn new tasks without
forgetting previous ones, a problem known as catastrophic forgetting [57] [58]. One benefit of contin-
ual learning is that the model can improve its performance on new tasks by building on the knowledge
and skills acquired from previous experiences instead of retraining the model from scratch, which
can be both time-consuming and demanding on resources. Continual learning is ideal for dynamic
situations where data is constantly changing, such as streaming data.

The human brain is capable of continually learning and adapting to new information, as evidenced
by our ability to learn new languages, skills, and even physical abilities [59]. This ability is closely
connected to the concept of neural plasticity, which refers to the brain’s ability to change and adapt
in response to new experiences and learning. Similar to multitask learning, continual learning enables
the model to realize multiple tasks. However, continual learning differs from multitask learning, where
a single model is trained to perform multiple tasks simultaneously with the goal of improving perfor-
mance on all tasks by sharing information among them. On the other hand, the focus of continual
learning is on training a model to learn and adapt to new tasks and environments over time without
forgetting previous knowledge. An example of this is how a student can learn multiple subjects in
school but still retain and apply information learned in previous grades.

2.2 Literature Survey of CL and MTL

In this section, a general overview of MTL and CL literature is given. In the first section, differ-
ent multitask learning techniques are presented briefly. MTL methods that are not problem specific
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are introduced. In the second section, CL methods for mitigating catastrophic forgetting are presented.
Although methods are divided into three categories which are regularization-based methods, parameter
isolation-based methods, and replay-based methods; they have no clear boundaries and can overlap to
some extent. While a general overview of MTL and CL strategies is presented in the previous sections,
the techniques and strategies applied specifically to face analysis, including face detection, facial land-
marks detection, age estimation, emotion estimation, gender recognition, and face recognition tasks,
are included in detail in the third section.

2.2.1 Multitask Learning

In this section, MTL techniques for architectural implementation are given briefly without detailed
explanations. The MTL architectures are divided into two categories as hard parameter sharing and
soft parameter sharing (Figure 2).

Hard parameter sharing, which has been around since the early days of Caruana’s work [53], involves
sharing the hidden layers of a model across all tasks but keeping separate output layers for each task.
As in Caruana’s work, Long and Wang [60] proposed a Deep Relationship Network which has shared
convolutional and task-specific fully connected layers with matrix priors in order for the model to
learn the relationship between tasks. Nevertheless, shared convolutional layers were predefined in their
design, which may degrade the performance of some tasks. In contrast to hand-designed architectures,
Lu [61] suggested a method for automatically learning the architecture of a deep neural network for
multiple tasks by using a dynamic branching process. This process makes decisions about which tasks
should share features at each layer of the network, considering both the relatedness of the tasks and
the complexity of the model.

In contrast to supervision from all tasks at the outermost level, Søgaard and Goldberg [62] suggested
that supervision of some low-level tasks in lower levels improves learning of high-level tasks in natural
language processing. Another approach based on different levels of sharing knowledge was "a joint
many-task model" [63]. Authors argued that this approach allows the network to learn more effectively,
as the lower layers can learn features that are more general and applicable to a wide range of tasks,
while the higher layers can specialize in tasks that require more specialized and task-specific features.
Overall, the proposed approach enabled the MTL model to be able to learn a wide range of Natural
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Language Processing (NLP) tasks effectively, with a focus on growing itself dynamically to incorporate
new tasks.

In addition to predefined or learned shared layers, Liu [64] introduced a Multi-Task Attention Network
that consists of a single shared network that learns shared features across all tasks. For each task, rather
than using the shared features directly, the model applied a soft attention mask at each convolution
block in the shared network. This attention mask determines the importance of the shared features
for the specific task and allows the model to learn both shared and task-specific features in an end-to-
end manner. This approach enables the model to learn more expressive combinations of features for
generalization across tasks while still allowing for task-specific features to be learned.

Besides methods utilizing hard parameter sharing, there are different techniques that utilize soft pa-
rameter sharing, which involves sharing certain parts of the model across tasks but allowing each
task to have its own set of parameters as well. This allows each model to learn task-specific fea-
tures without interfering with the learning of other tasks while still being able to benefit from shared
knowledge. In [65], Misra et al. proposed a combination of two separate networks called "cross-
stitch networks", which allows the model to learn task-specific features while also sharing information
between tasks. The authors proposed using a "cross-stitch unit" to combine the features learned by
multiple task-specific subnetworks and allow them to influence each other. The authors also proposed
using a "cross-gate" to control the flow of information between tasks, allowing the model to choose
which features to share between tasks selectively. Thanks to soft parameter sharing, they also showed
that cross-stitch networks could be used to transfer knowledge from a model trained on a large dataset
to a model trained on a smaller dataset, improving the performance of the smaller model.

Like cross-stitch networks, Duong et al. [66] presented a method utilizing soft parameter sharing
between source and target language model for improving the performance of dependency parsers on
low-resource languages (languages with limited available training data). To benefit from cross-lingual
parameter sharing, which involves sharing the parameters of a parser trained on a high-resource lan-
guage with a parser for a low-resource language, the authors introduced a language-independent layer
in the network that is shared across all languages. This layer was trained on a high-resource lan-
guage and then finetuned on the low-resource language. The other layers of the network, which are
language-specific, were trained only on the low-resource language. In this way, the low-resource parser
can "borrow" the knowledge of the high-resource parser, potentially improving its performance.

While previous methods assisted different networks for each of the tasks with sharing knowledge be-
tween each other, Ma et al. [67] propounded a "multi-gate mixture-of-experts" model, which consists
of a group of bottom networks, each of which is called an expert and task-specific tower networks on
top of expert networks. There is also a gating network for each task, which takes the input features and
outputs softmax gates that assemble the experts with different weights. This allows different tasks to
utilize the experts differently. The results of the assembled experts are then passed into task-specific
tower networks. In this way, Multi-gate Mixture-of-Experts (MMoE) model captures the relationships
between tasks by learning different mixture patterns of experts for each task through the gating net-
works. This allows the model to adaptively balance the contribution of each expert network to the
overall prediction based on the input data. As a result, MMoE removes performance drop when task
correlation is low in hard parameter sharing and reduces parameters originating from task-specific
layers in soft parameter sharing.
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In [68], authors utilized MMoE in their multitask ranking system for recommending videos to users.
The system was designed to address the problem of limited available data for individual tasks in the
recommendation system by leveraging information from multiple related tasks through parameter shar-
ing. They proposed adding expert layers on top of a shared layer which encodes and reduces the
dimensionality of the input layer in order to minimize model training and serving costs.

2.2.2 Continual Learning

Biological neural networks have the ability to acquire new knowledge from sequential experiences
while extending and preserving their old knowledge. On the other hand, artificial neural networks
suffer from catastrophic forgetting, which means a significant decline in performance on previously
learned tasks when it is trained on new tasks [7]. This is typically observed in computational models
that are trained sequentially on a series of tasks rather than being trained on all tasks concurrently. Al-
though ANNs are very promising in single tasks coming from independent and identically distributed
data distributions, they update their parameters remarkably wrt. non-stationary data [69], which results
in catastrophic forgetting. On the other hand, continual learning requires a learning system to learn
and adapt over time, as it is exposed to a stream of tasks rather than learning a single task in isolation.

In continual learning, it is important for the learning system to be able to transfer knowledge between
tasks in order to avoid forgetting what it has learned and to improve performance on new tasks, which
are requirements of forward and backward transfer. Backward transfer refers to the ability of a learning
system to transfer knowledge gained from learning a new task to improve performance on a previously
learned task. On the other hand, forward transfer refers to the ability of a learning system to apply
knowledge gained from learning a task to improve performance on a different, new task. Backward
transfer can help to prevent forgetting by reinforcing previously learned knowledge, while forward
transfer can help the learning system to generalize its knowledge and apply it to new situations [70].
Both backward and forward transfer is important for continual learning because they allow the learning
system to build upon its previous experiences and adapt to new tasks more efficiently.

To address the issue of catastrophic forgetting and have the specialty of forward and backward trans-
fer in connectionist networks, various techniques have been proposed that draw inspiration from the
mechanisms of learning and memory in biological systems. These methods are divided into three
main categories such as regularization, parameter isolation, and replay (memory), as seen in Figure
3. Despite the different taxonomies for CL methods such as [71], we followed a similar taxonomy
in [72] for the categorization of CL methods which are not mutually exclusive and might overlap in
some cases. In the next sections, we presented different methods for alleviating catastrophic forgetting
under three main categorizations briefly, whereas CL methods utilized in experiments were discussed
in more detail.

2.2.2.1 Regularization Based Methods

The human brain is able to maintain stable patterns of behavior and thought in order to function ef-
fectively in the world while it is also able to adapt and change in response to new experiences and
environments. This concept in the brain is known as the stability-plasticity dilemma [73]. One way to
conceptualize this dilemma is through using neural network models, which have been used to study the
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relationship between stability and plasticity in the brain. In these models, stability is often associated
with the maintenance of existing neural connections, while plasticity is associated with the formation
of new connections or the modification of existing ones.

The stability-plasticity dilemma has been studied in relation to learning and memory in cognitive
science. For example, research has shown that the balance between stability and plasticity is important
for effectively retaining and updating information in the brain [74]. Stability is necessary for the brain
to maintain previously learned information and to prevent interference from new information. On
the other hand, plasticity is essential for the brain to update and reorganize its neural connections in
response to new experiences and to facilitate learning.

The stability-plasticity dilemma in neuroscience examines the relationship between the development
and function of neural networks in the brain. For example, research has shown that the balance between
stability and plasticity is important for the development of brain circuits during early life and for the
maintenance of these circuits in adulthood [75]. One way that the brain’s plasticity can be modified
is through the process of long-term potentiation (LTP), which is a form of plasticity that involves
an increase in the strength of synapses in response to repetitive or high-frequency stimulation [76].
Metaplasticity [77], a concept that refers to the plasticity of synapses, is believed to regulate the balance
and shape the way the brain adapts and changes in response to various stimuli, such as inducing LTP.

A fundamental principle of neural plasticity was proposed by Hebb [78]. Hebb’s rule states that neu-
rons that fire together will wire together, meaning that the strength of the connection between two
neurons will increase as a result of their repeated co-activation. According to Hebb’s rule, when a neu-
ron is repeatedly activated by another neuron, the connection between them is strengthened, leading to
more efficient communication between them. This process is thought to underlie the formation of new
neural connections during learning and memory formation.

[79] proposed a computational model for memory consolidation that involves the interaction of two dif-
ferent types of memory: fast, labile memory that is stored in the synapses of neurons; and slow, stable
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memory that is stored in the structural changes of neurons. According to the model, during the consol-
idation process, fast memory is gradually transformed into slow memory through the strengthening of
certain synapses and the weakening of others. In conjunction with [79], parameters of connectionist
models are updated to alleviate catastrophic forgetting by restriction coming from extra regularization
terms coming from loss function in regularization-based methods [80].

One of the well-known methods utilizing regularization for alleviating catastrophic forgetting is Learn-
ing without Forgetting [81]. In Learning without Forgetting (LwF), the model was trained by only im-
ages and labels from the current task. Similar to knowledge distillation [50], which is the method for
transferring knowledge from a teacher model to a student model, LwF employed class probabilities of
images from current task obtained by the pre-trained model of previous tasks as soft labels and distills
knowledge to the new model. In the beginning, output probabilities for each class of previous tasks
were obtained from images belonging to new tasks via the original (pre-trained) model. Subsequently,
the distillation of the new network with additional outputs originating from the new tasks encouraged
the probabilities of class predictions for old tasks to close the previous probabilities. Besides knowl-
edge distillation loss, multi-label loss for new tasks was also included in the total loss. Although LwF
has shown promising results when tasks are related, Aljundi et al. [82] suggested that it is sensitive to
tasks coming from different distributions.

Another method similar to LwF is the method in [83], which proposed a method for preserving the
knowledge of previous tasks while learning a new task by utilizing autoencoders. Encoder Based
Lifelong Learning (EBLL) model is composed of three parts which are a feature extractor, shared
layers, and task-specific layers, and additional under-complete autoencoders connected to the feature
extractor. For each task, an autoencoder was trained in order to map high-level features to low-level
features. While LwF employs the distillation of soft labels, EBLL distills knowledge from low-level
features, which enabled the model to become less sensitive to the data distributions.

Apart from the methods taking advantage of data [72], there are also methods employing model param-
eters, one of which is Elastic Weight Consolidation [84], which is a method for addressing catastrophic
forgetting in neural networks by adding a penalty term to the objective function of the model during
training. The penalty term encourages the model to maintain the weights of the network that are im-
portant for the previous tasks while still allowing the model to adapt to the new task. The penalty
term is based on the Fisher information matrix, which is a measure of the amount of information that
is stored in the weights of the network. The Fisher information matrix is calculated using the second
derivatives of the loss function with respect to the weights of the network, and it gives a sense of how
sensitive the loss function is to changes in the weights of the network. Elastic Weight Consolidation
(EWC) works by encouraging the model to maintain the weights that have a high value in the Fisher
information matrix, as these weights are more important for the previous tasks, and changing them
would have a larger impact on the loss function.

Synaptic Intelligence (SI) is another method of making use of regularization. In [85], Zenke et al.
suggested that intelligent synapses gradually accumulate relevant knowledge for a particular task, and
this accumulated knowledge is used to store new information without losing previously learned in-
formation quickly. In other words, SI also penalizes changes in the important weights as in EWC
[84]. However, it computes the importance of weights online, whereas EWC computes them after the
training phase.
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Unlike previous approaches, Aljundi et al. [86] suggested a novel approach for lifelong learning called
Memory Aware Synapses, which does not rely on labeled data or loss functions to determine the
importance of the parameters in a neural network. Instead, it calculates the sensitivity of the output
function to changes in each parameter in an unsupervised and online manner. This allows Memory
Aware Synapses (MAS) to adapt to specific test conditions and continuously update the importance
weights of the network parameters without overwriting important knowledge related to previous tasks.
Authors argued that this approach is necessary for preserving knowledge in the face of limited model
capacity and an unlimited amount of new information to be learned.

2.2.2.2 Parameter Isolation Based Methods

In the brain, there are different processes for acquiring new knowledge and mitigating catastrophic in-
terference. One of them is neurogenesis, the process of generating new neurons in the brain primarily
during development [87]. However, this generation can also occur in certain regions of the adult brain,
such as the hippocampus, which is involved in learning and memory [87]. There is evidence that neu-
rogenesis is associated with learning and memory. For example, physical exercise and environmental
enrichment, which increase neurogenesis in the hippocampus, can improve learning and memory in
animals [88]. In contrast, inhibiting neurogenesis can impair learning and memory, while increasing
neurogenesis can enhance these functions [89]. The exact mechanisms by which neurogenesis con-
tributes to learning and memory are not fully understood, but it is thought that new neurons may play a
role in the formation of new memories and the integration of new information with existing knowledge
[89]. New neurons may also help to preserve old memories by strengthening the connections between
neurons, a process called neuroplasticity [89]. Overall, neurogenesis is an important process that may
contribute to the brain’s ability to acquire new knowledge and preserve old information.

These mechanisms are adapted for connectionist models in association with natural cognitive systems.
Similarly, neurogenesis and neuroplasticity are realized by the isolation of parameters in ANNs. One
group of parameter isolation-based methods overcome catastrophic forgetting by extending the model
if there is no restriction in size. On the contrary, the other group keeps the model size fixed, and it
allocates parameters for different tasks by pruning the models.

The first group of methods promoting parameter isolation is built on dynamic architectures. Rusu et
al. suggested a method called progressive neural networks for training large, deep neural networks
that gradually increase the network’s capacity over time [90]. The main idea behind progressive neural
networks is to start with a small network and gradually increase its capacity by adding a new network
with lateral connections to old networks. In the training stage, all parameters in old networks are
frozen, and only the parameters of the network responsible for the current task are updated. Thanks
to lateral connection, knowledge from old tasks are transferred to new tasks, which satisfies forward
transfer and the retention of old knowledge through frozen networks.

As progressive neural networks have different networks for each task, Aljundi et al. [82] proposed
specialized expert gates for each task. The main idea of the "Expert gate" approach is to divide the
model into a set of "experts", each of which is responsible for learning a subset of the tasks that the
model is expected to perform. These experts are connected through a "gate", an autoencoder, which
determines which expert should be used to solve a given task. The gate module is trained to select the
most appropriate expert for a given task based on the expertise of each expert and the difficulty of the
task. Incorporation of new tasks into the model involves training a new expert to handle the new task
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and updating the gate module to select the appropriate expert for each task. Both progressive neural
networks and expert gate increase model size significantly and in the same amount each time due to
the addition of a new network for each new task instead of a small number of neurons.

On the other hand, Yoon et al. [91] proposed Dynamically Expandable Network (DEN), which grows
with the addition of a variable number of neurons. According to [91], DEN involves three components
which are selective retraining, dynamic network expansion, and network split or duplication, respec-
tively. Firstly, Yoon et al. identified neurons that are relevant to the new task and selectively retrained
the network parameters associated with them. Subsequently, if the selective retraining fails to obtain
the desired loss below a set threshold, the network capacity is expanded in a top-down manner, while
unnecessary neurons are eliminated using group-sparsity regularization. In addition, the authors used
a technique called "network split/duplication" to identify neurons that have drifted too much from their
original values during training and duplicate them to stabilize the weights of the network and prevent
them from changing too much as new tasks are learned.

Similar to DEN, Xu and Zhu [92] suggested a method for expanding a CNN-based task network
with the help of an Long Short Term Memory (LSTM) network which controls the number of filters
and nodes to be added to the task network. Similarly, Learn to Grow (LtG) [93] involved explicitly
separating the learning of model structures and the estimation of model parameters. This means that
the model’s structure (e.g., the number and arrangement of layers and neurons) is optimized for each
task independently of the specific parameter values (e.g., the weights and biases of the connections
between neurons). The structure of the model was found through an architecture search process, which
considers various options, such as reusing previous layers or introducing new ones. Once the optimal
structure has been identified, the model parameters are then estimated based on that structure.

Another method of altering the structure of the model is Packing and Expanding (PAE) [94] that was
built on the approaches used in ProgressiveNet [90] and PackNet [94]. ProgressiveNet avoids catas-
trophic forgetting by reusing the weights learned for previous tasks, but this can result in a redundant
structure. PackNet avoids forgetting by compressing the deep model through weight pruning and re-
training the remaining weights, but it does not allow for the extension of the model architecture. PAE
addresses these limitations by using an iterative pruning procedure to compress the model and selec-
tively expanding the architecture by adding filters. The old-task weights are re-used and remain fixed,
and additional weights are added from the previously saved ones by repeating the iterative pruning
process. If the desired accuracy has not been achieved, the architecture can be further expanded and
the process repeated. Experiments were conducted on face verification, gender recognition, and age
estimation tasks.

Similar to PAE, Hung et al. [95] applied compacting and growing techniques for new tasks. Fur-
thermore, Compacting, Picking, and Growing (CPG) has a picking step that selects useful weights
belonging to old tasks using a learnable mask, whereas PAE makes use of whole weights of old tasks.
In CPG, compacting aims to reduce the size of the model’s parameter space by identifying and re-
moving unnecessary parameters that are not relevant to the current task. This is done by computing
the importance of each parameter based on its contribution to the performance of the current task and
pruning the low-importance parameters. Picking is designed to identify a subset of the most significant
weights from the old tasks and reuse them for the forward transfer of old knowledge. Finally, growing
is intended to expand the model’s capacity when necessary by adding new parameters to the model.
This is done by monitoring the model’s performance on the current task and adding new parameters
when the model’s performance starts to degrade.
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Along with dynamic architectures, there are also methods promoting fixed architectures for mitigating
catastrophic forgetting. However, the performance of the later tasks will degrade due to a lack of
parameter allocation when the number of tasks increases in this type of method. Fernando et al.
suggested a method called PathNet [96], which has different modules for learning tasks. They used a
type of evolutionary computation called "genetic algorithms" to optimize the structure of the network.
They did this by representing the structure of the network as a "genome," which consists of a series
of "paths" through the network. These paths are used to connect the input and output layers of the
network and can be modified during training by the genetic algorithm.

Similarly, Serrà et al. [97] suggested a mechanism called Hard Attention to the Task (HAT), which
is a task-based attention mechanism that allows a model to retain information from previous tasks
while learning a new task. HAT does this by learning almost-binary attention vectors through gated
task embedding and using the attention vectors of previous tasks to create a mask that constrains the
updates of the model’s weights on the current task. The mask is almost binary, meaning that some
weights remain unchanged while the rest are adapted to the new task.

There is also a gating mechanism that allows the creation and destruction of paths across layers that
can be later preserved when learning a new task, similar to the approach used in the PathNet algorithm.
However, unlike PathNet, the paths in HAT are not based on modules but on individual units, allowing
the network to learn and automatically dimension paths for individual units and ultimately affect the
weights of individual layers. Additionally, unlike the PathNet approach, which uses genetic algorithms
to learn paths in a separate stage, HAT learns the paths along with the rest of the network using
backpropagation and stochastic gradient descent.

In contrast to previous methods promoting freezing some parameters from old tasks, Mallya and
Lazebnik [98] proposed a method for adding multiple tasks to a single neural network by iterative
pruning the network after training the entire network. The idea is to, with a pre-trained network that
has been trained on a single task, identify the most important layers for the original task, prune the
non-critical layers by removing some weights and biases, retrain the pruned network on the original
task to ensure performance is not degraded, and repeat this process for each additional task added to
the network.

2.2.2.3 Replay or Memory Based Methods

Memory is a fundamental cognitive function that allows us to encode, store, and retrieve information
about the world around us. Memory is essential for our daily functioning, as it enables us to learn from
our experiences and adapt to new situations. There are many different forms of memory, including
short-term memory, which allows us to hold onto information for brief periods of time, and long-term
memory, which enables us to retain information over longer periods of time.

The brain has a complex and interconnected system for learning and memory, and a significant amount
of research has been devoted to understanding how this system works. One influential theory that has
been proposed to explain the brain’s learning and memory system is the Complementary Learning
Systems (CLS) theory.

The Complementary Learning Systems theory proposes that the brain contains multiple systems for
learning and memory and that these systems work together to support various forms of learning and
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Figure 4: Mapping of addition of replay in ANNs to the human brain. (A) Exact replay which ana-
lyzes the hippocampus as a buffer for storing memories or episodes. (B) Generative replay (pseudo
rehearsal) which analyzes the hippocampus as a separate generative neural model. The figure was
taken from [4].

memory [99]. One key component of the CLS theory is the distinction between the hippocampus,
which is thought to play a critical role in the formation of new memories, and the neocortex, which
is thought to be involved in more permanent forms of learning. According to the CLS theory, the
hippocampus and the neocortex work together to support learning, with the hippocampus providing a
temporary storage system for new information and the neocortex gradually integrating this information
into more permanent memories. The concept of "reactivation" is also an important aspect of the CLS
theory, as it refers to the process by which memories are strengthened and consolidated over time
through retrieval and integration into more permanent networks of neurons in the neocortex.

There is a significant body of research that supports the CLS theory. For example, studies have shown
that the hippocampus is necessary for the formation of new memories and that the neocortex plays a
critical role in the consolidation of these memories over time [100]. Other research has also demon-
strated the importance of reactivation in the consolidation of memories [101]. The CLS theory was
also proposed in part as a response to the limitations of connectionist models of learning and mem-
ory, which have difficulty accounting for the complex patterns of forgetting and remembering that are
observed in humans, and other animals [102].

The case of H.M., a patient who underwent surgery to remove large portions of his hippocampus and
other brain structures in an effort to treat epilepsy, has provided important insights into the role of
the hippocampus in long-term memory formation. H.M.’s surgery resulted in severe impairment in
his ability to form new long-term memories but did not affect his short-term memory or his ability to
remember information from before the surgery. This finding has been interpreted as strong evidence
for the role of the hippocampus in the formation of new long-term memories and has helped to support
the CLS theory [103]. In addition to its importance in the CLS theory, H.M.’s case has also been used
to help identify the neural basis of long-term memory formation and to inform the development of
treatments for memory impairments. Overall, the CLS theory provides a useful framework for under-
standing how the brain supports learning and memory. Deriving from replay in biological networks,
replay(memory) based methods are proposed in connectionist networks.

Replay-based methods can be discussed in two categories: partial replay(rehearsal) and Generative
Replay (GR) (pseudo rehearsal) [104] [72]. Figure 4 visualizes how different replay-based models
take inspiration from the brain, especially the hippocampus. Figure 4A indicates that the hippocampus
is viewed as a memory buffer, and ANNs learn from the replay of the exact samples like humans. On
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the other hand, Figure 4B demonstrates how the hippocampus is viewed as a generative model and
mapped to generative ANNs.

One of the partial replay methods is Incremental Classifier and Representation Learning (iCaRL) [105]
which is a method for incrementally learning a classifier and a compact representation of the data,
allowing it to continuously learn new classes without forgetting the ones it has previously learned.
iCaRL method begins by training a classifier and representation on a set of initial classes. When a new
class is introduced, iCaRL predicts the class of a small number of example images (exemplars ) from
that class using the classifier. Then, the exemplars are used to replay the old classes to the classifier,
strengthening the connections which are used to classify them during training.

In order to update the representation for the new class, iCaRL calculates the mean feature vector of the
exemplars and adds it to the representation. Then, the classifier is updated by using both the exemplars
and the updated representation. When iCaRL classifies a new example image, the feature vector of the
example is computed initially using the updated representation. Then, iCaRL uses a nearest-mean-of-
exemplars classification technique, which involves measuring the distances between the feature vector
and the mean feature vectors of the learned classes, to predict the class.

Another method that focuses on sample selection is [106]. Aljundi et al. presented a method for
improving the performance of continual learning algorithms by using constraint optimization to guide
the selection of training examples. They formulate this selection process as a solid angle minimization
problem and propose a surrogate objective to solve it. To further improve sample selection for large
datasets, the authors propose a greedy algorithm that is efficient and resistant to imbalanced data
streams. Lopez-Paz and Ranzato proposed [107] GEM, which projects the current task gradient into
a feasible region defined by the gradients of previous tasks by solving a constrained optimization
problem. These updates are constrained in such a way that they do not increase the loss of previous
tasks.

Although several other methods concentrated on the selection of samples, such as [108], there are
several more cognitively plausible methods that replay internal(hidden) representations rather than
raw pixels. Hayes et al.[109] proposed the REMIND, a brain-inspired method, which uses tensor
quantization to store and efficiently retrieve hidden representations (such as feature maps) for replay
in order to mitigate forgetting in Convolutional Neural Networks (CNNs). This is achieved through
the use of Product Quantization [110]. Correspondingly, Pellegrini et al. [111] presented a technique
called latent replay that involves storing activations (intermediate outputs) at a specific layer in a neural
network, rather than storing raw data inputs, in order to reduce computation and storage requirements.
To ensure that the representation remains stable and the stored activations are still relevant, authors
suggest slowing down learning at layers below the one where the activations are being stored while
allowing learning to continue for layers above it.

Alternative to partial replay methods, which raise privacy concerns in addition to the storage problem,
methods utilizing generative replay (pseudo rehearsal) are much more biologically plausible due to the
need for storage of raw pixels in biological neural networks. In [112], Shin et al. proposed the Deep
Generative Replay (DGR), which generates samples for old tasks and employs them by combining the
images from the current task in the training of the classification model. Van de Ven and Tolias [113]
advanced GR by the addition of feedback connection. While DGR [112] uses two models, one for GR
and one for the task solver, the Replay-through-Feedback method merges GR into the main task solver
by attaching backward connections. Moreover, the authors suggested knowledge distillation of soft
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labels in training. Despite the different generative models, Lesort et al. [114] concluded that original
GR is better than others in continual learning from their experiments.

Furthermore, there are also more cognitively inspired methods, one of which is FearNet [115], de-
signed to be memory efficient by using a dual-memory system. This system consists of a network for
recent memories inspired by the hippocampus, and a network for long-term storage, inspired by the
medial prefrontal cortex. The model also includes a module inspired by the basolateral amygdala that
determines which memory system to use for recall.

Similarly, van de Ven et al. [4] suggested a method that is inspired by the way the brain processes and
retains information and involves several modifications to the standard approach to continual learning
using generative replay. One modification is the merging of the generator, which is responsible for
generating replay, into the main model by adding generative feedback connections. This allows the
model to correspond more closely to the hierarchical structure of the brain, with the first few layers
corresponding to the early layers of the visual cortex and the top layers corresponding to the hip-
pocampus. Another modification is the use of a Gaussian mixture prior over the latent variables in the
model’s Variational AutoEncoder (VAE), allowing the model to generate specific classes by restricting
the sampling of the latent variables to their corresponding modes. To achieve context-dependent pro-
cessing, the decoder part of the network is conditioned on an internal context representing the specific
task or class to be generated or reconstructed. The model also replays previously learned classes inter-
nally, at the hidden level, rather than all the way to the input level, in order to mimic the way the brain
processes information closely.

2.2.3 Related Work on Face Analysis

Face detection is a computer vision task that involves identifying the presence of human faces in images
or videos. FD is a crucial step in many applications, including security systems, face recognition, and
human-computer interaction. One of the challenges in face detection is that faces can vary significantly
in terms of size, orientation, and appearance due to factors such as lighting, facial expressions, and
facial attributes. To address these challenges, face detection algorithms often incorporate techniques
such as scale invariance, robust feature extraction, and cascade classifiers.

One of the earliest works that studied face detection in a cascaded fashion in order to boost the perfor-
mance of face detection in uncontrolled environments was [116]. Li et al. proposed a CNN cascade,
which consists of six cascaded CNNs including three for binary classification (face or non-face) and
three for calibration of bounding boxes. In their design, an image is scanned using the 12-net at var-
ious scales to eliminate a large number of detection windows quickly. The remaining windows are
processed by the 12-net to adjust their size and location. Non-maximum suppression is then applied
to remove highly overlapped windows. The remaining windows are resized to 24x24 and processed
by the 24-net, which eliminates more windows, then adjusted by the 24-net and subjected to non-
maximum suppression again. The final step involves the 48-net evaluating the remaining detection
windows, which are then calibrated by the 48-net and output as residual detection bounding boxes
after non-maximum suppression was applied using an Intersection-Over-Union threshold.

Like [116], Multitask Cascaded Convolutional Networks [117] utilizes three cascaded convolutional
networks for joint face detection and facial landmark detection. Zhang et al. used the Proposal network
for collecting candidate faces in the first stage. After Non Maximum Suppression (NMS) is applied to
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candidates, the remaining windows are passed through the Refine network and NMS for rejecting false
candidates and calibration of bounding boxes, respectively. In the final stage, the remaining bounding
boxes are fed to the Output network, which produces five facial landmarks’ coordinates, including
the corners of the mouth, the tip of the nose, and the center of the eyes, in addition to bounding
boxes. Zhang and Zhang [118] proposed another method that employs cascaded networks for FD
and FL with an additional task, face pose estimation. They utilized a boosting-based multiview face
detector [118] for obtaining image patches in the first step. After preprocessing image patches with
histogram equalization, linear lighting removal, and intensity normalization, their multitask DCNN
produces predictions for face/nonface, face pose, and facial landmarks. While Multitask Cascaded
Convolutional Neural Networks (MTCNN) trains three networks for leveraging the inherent correlation
between FD and FL, DCNN is applied for filtering predictions from a multiview detector.

As in DCNN, Zhang et al. [119] presented a multitask model called Tasks-Constrained Deep Convolu-
tional Network, which accepts cropped face images for facial landmark detection and pose estimation.
They trained TCDCN to jointly optimize facial landmark detection together with other tasks that are
correlated with facial landmark detection, such as head pose estimation and facial attribute inference
such as gender, smiling, and glasses detection for improving the robustness of facial landmark detec-
tion, especially in the presence of occlusion and pose variation. Zhang et al. also proposed a task-wise
early stopping method to facilitate learning convergence. Another method that employs multitask
learning for face detection, landmarks localization, pose estimation, and gender recognition is Hyper-
Face [120], which consists of three modules. In the first module, Region-based CNN [121] generates
region-proposals via Selective Search algorithm [122] from images and scales them to 227x227 pixels
for the second module. In the second module, an AlexNet [9] based model performs classification
for face detection, localization of 21 landmarks, visibility factor for landmarks, pose estimation(row,
pitch, yaw), and gender recognition by fusing the intermediate layers of the network. The final module
processes predictions for improving the performance of tasks by using Iterative Region Proposals and
Landmarks-based NMS. They also propounded a model based on ResNet-101 [123].

All previous methods followed the same procedure: detecting faces with one network and then ap-
plying another network to detected patches for estimating other tasks. However, multi-stage networks
become inefficient when the number of detected faces in the first stage increases due to the second
stage. There are also methods that predict face bounding boxes and landmark locations together in
single-stage. One of them is RetinaFace [124], which performs face detection, pixel-wise face local-
ization, and pixel-wise 3D shape face information. Deng et al. propounded that joint optimization of
face detection and facial landmark detection boost the performance of hard face detection. They em-
ployed supervised learning for FD and FL branches and self-supervised learning for the mesh decoder
branch for training their Single Shot Detector [125] based multitask model. Anchor boxes were uti-
lized for regressing bounding boxes in Retinaface. Similarly, YOLOv5Face [126] is another method
that predicts both bounding boxes and landmark points in one shot using anchors. In addition to
methods availing anchors, there are also anchor-free methods like Centeface [127]. Authors modified
Centernet [128] in order to make the model faster and more accurate for face detection.

Besides MTL methods utilized for face analysis, there are also methods employing continuous learning
for the analysis of faces. Barros et al. [129] proposed a method called the personalized affective
memory model for understanding person-specific facial expressions. Their proposed model consists of
two sub-modules which are the prior-knowledge learning module and the affective memory module.
The former utilizes an adversarial autoencoder, which encodes information about facial expressions
and generates faces with different expressions for a person. Subsequently, their second module, the
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growing-when-required model, produces representations for generated faces of a person with different
expressions and stores them in the cluster of personalized affective memories. Finally, the emotion of
a person is recognized by the utilization of that cluster. Their method utilizes unsupervised clustering
settings, which facilitates the learning of new person-specific emotions continuously.

Similarly, Churamania and Gunes [130] suggested a method called a Continual Learning Framework
with Imagination for Facial Expression Recognition (CLIFER). They utilized the Growing Dual Mem-
ory, which includes episodic memory and semantic memory modules. As the theory of Complementary
Learning System states, episodic memory is a fast-learning mechanism for non-overlapping represen-
tation, whereas semantic memory accumulates knowledge by overlapping representations slowly. They
also employed an imagination model in order to generate different expressions for a person, which are
used for training the dual-mechanism model.

Additionally, there is a method employing the generation of internal representation instead of raw
images. Mainsant et al. [131] propounded Dream Net that involves two fully connected layers, a
learning net, and a memory net. Their models accept encoded features obtained via a ResNet50 model
trained on a facial expression recognition dataset. The learning net takes the extracted representa-
tion and regenerates the input representation along with classification probabilities. After training the
learning net, its parameters are copied to the memory net, which generates input representations and
classification labels from random noise.

Although previous works focused on the utilization of CL methods for facial expression recognition,
Hung et al. introduced CPG [95], which comprises three steps. The first step prunes the model gradu-
ally after training the model for a task. In the second step, the model and a learnable binary mask for
picking weights belonging to old tasks are trained for the current task. Finally, the model is expanded
if the target performance can not be reached. In their experiments, they tested their model on facial-
informatic tasks (face verification, gender, expression and age recognition) in addition to classification
tasks. The face images were detected and aligned with the help of MTCNN algorithm, and all face
analysis tasks were learned sequentially.
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CHAPTER 3

MULTITASK LEARNING FOR FACE DETECTION AND
FACIAL LANDMARK DETECTION

In multitask learning, a machine learning model is trained to perform multiple tasks simultaneously.
This is inspired by the way that the human brain is able to multitask by performing multiple cognitive
tasks at the same time, such as listening to music while driving a car. In the field of machine learning,
multitask learning is often used to improve the performance of a model on a particular task by training
it on a related set of tasks. For example, a model that is trained to classify images of different animals
may perform better if it is also trained to classify images of plants and objects. This is because the
model can learn shared features and patterns that are useful for both tasks. Overall, the idea of multitask
learning in machine learning is inspired by the way that the human brain is able to multitask and
perform multiple cognitive tasks simultaneously.

In this chapter, we analyzed the effect of multitask learning on two related tasks, which are face
detection and facial landmark detection. Face detection is the process of locating and extracting the
face region from images or videos. Many deep learning-based CNN algorithms, such as [117] [124]
[126], were designed for FD. They generally produce a confidence score which is how probably the
region contains a face and coordinates for face regions like centers, width, and height of faces. On the
other hand, facial landmark detection is the process of automatically identifying and localizing specific
points of interest on the face, such as the corners of the mouth, the center of the eyes, and the tip of
the nose. These landmarks are helpful for tasks such as face recognition, facial expression analysis,
and head pose estimation. Firstly, we introduced our proposed connectionist network for FD and FL.
Later, we continued with our experiments in order to examine how multitask learning influences the
performance of FD while learning another task, FL.

3.1 Proposed Approach

In this section, we presented our multitask model, which is based on YOLOv5 [5] object detector.
YOLO [132] has different versions, each of which boosts the performance of previous models. In
YOLO, authors designed a real-time single-stage object detector that predicts bounding boxes and
class probabilities at the same time. It is actually a multitask network that solves object detection
using regression instead of classification. The key idea behind YOLO is to use a convolutional neural
network to predict the bounding boxes and class probabilities of objects in an image. Given an input
image, the CNN first processes the image through a series of convolutional and max pooling layers
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Backbone Neck Head

Figure 5: General architecture of YOLOv5 [5] model.

to extract features from the image. These features are then passed through a series of fully connected
layers, which predict the bounding boxes and class probabilities of objects in the image.

One of the key advantages of YOLO is its ability to handle multiple object classes and scales. It uses a
grid-based approach, where the input image is divided into a grid of cells, and each cell is responsible
for predicting the bounding boxes and class probabilities of the objects that fall within that cell. This
allows YOLO to accurately detect objects of different sizes and classes in the same image.

Later, the authors improved their design and renamed their new model YOLOv2 [133]. Batch nor-
malization [134] was added to convolutional layers while the backbone was changed to Darknet-19
[133], and the input size of the models was increased from 224x224 to 416x416 pixels. Furthermore,
they used feature maps from different scales and anchor boxes, which were chosen by k-means clus-
tering. In training, the input size of the models was changed to different sizes, and output prediction
for classes was modified according to multi-label prediction.

Following YOLOv2 [133], authors improved their design by replacing Darknet-19 with a new back-
bone Darknet-53 [135] and obtaining predictions from three scales, and they called their new model
YOLOv3 [135].
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Figure 6: Predictions from the head of our proposed architecture.
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Figure 7: Visualization of predictions for bounding boxes and landmarks on 13x13 grids.

On the other hand, YOLOv5 [5] was designed by a different research team. They replaced the back-
bone with Cross Stage Partial Network (CSPNet) [136], added Spatial Pyramid Pooling (SPP) [137]
and PAN [138] for gathering the features, as in [139]. As shown in Figure 5, YOLOv5 is composed
of three parts, which are the backbone, neck, and head. Although all previous YOLO models predict
only classes and bounding boxes, we modified the head of YOLOv5 [5] for the detection of five land-
mark points which are the center of the eyes, the corners of the mouth, and the tip of the nose as in
YOLOv5Face [140]. Figure 6 indicates predictions of the modified model. Landmarks have ten predic-
tions due to two coordinates, x and y, for each of the five landmarks. Although YOLOv5Face [140] has
several modifications in order to improve the performance of FD and FL, we left YOLOv5 [5] archi-
tecture unchanged except for modification of the head for landmark detection. In addition, our model
takes inputs with 416x416 pixels size in contrast to 640x640 pixels in YOLOv5 and YOLOv5Face due
to faster inference.

In Figure 7, predictions for bounding boxes and landmark points are visualized on 13x13 grids.
YOLOv5 produces predictions at three scales, which are the 8th, 16th, and 32th of the input size.
Therefore, output feature maps have grids of sizes 52x52, 26x26, and 13x13 in our design due to the
input sizes of 416x416 pixels. Bounding box coordinates for each face are obtained from Equation 1.
bx and by indicate the coordinates of the center of the bounding boxes while bw and bh refer to the
width and height of faces, respectively. The center of bounding boxes is calculated from the sigmoid of
predictions px and py . First, the results are multiplied by 2, and then 0.5 is subtracted, which produces
offset values between -0.5 and 1.5 in order to obtain 0 and 1 conveniently [5]. Later, grid distance from
the start of grids is added. On the other hand, the width and height of bounding boxes are obtained
from the sigmoid of pw and ph, which are multiplied by 2, and the result is squared, respectively.
Afterward, the results are multiplied by the width and height of predefined anchor boxes.
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bx = (2 ∗ σ(px)− 0.5) + gx

by = (2 ∗ σ(py)− 0.5) + gy

bw = aw ∗ (2 ∗ σ(pw))2

bh = ah ∗ (2 ∗ σ(ph))2
(1)

Similarly, we obtained landmark predictions from Equation 2. Here, i changes between 1 and 5, which
indicates a different landmark. Coordinates of a landmark (lix, liy) are calculated from predictions of
the network, (pilx, pily), by multiplication of width and height of anchor boxes and addition of the grid
distances, (gx, gy), respectively.

lix = (pilx ∗ aw) + gx

liy = (pily ∗ ah) + gy
(2)

In training, we utilized multitask loss in Equation 3. The total loss (Ltotal) includes Binary Cross
Entropy loss for objectness (Lobj) and classification (Lcls), complete intersection over union (IOU)
loss for bounding boxes (Lbbox) and Wing-loss [141] for landmarks (Llands), and λcls,obj,bbox,lands

are employed for adjusting effects of each loss in joint optimization.

Ltotal = λcls ∗ Lcls + λobj ∗ Lobj + λbbox ∗ Lbbox + λlands ∗ Llands (3)

3.2 Experiments

In this section, experiments for comparing single-task and multitask designs on face detection and land-
mark extraction tasks are described. Firstly, we start by introducing our experimental setup. Afterward,
we introduce datasets utilized in training and testing. Finally, experimental results are presented.

3.2.1 Experimental Setup

In experiments, we analyzed the effects of multitask learning on the performance of face detection over
single-task learning. Furthermore, joint optimization of tasks was compared with separate optimization
of tasks. As a result, we designed four experiments which are given below, in order to develop a
multitask YOLOv5 model for FD and FL. All experiments were performed using the same equipment,
listed in Table 1.

Table 1: List of equipment used in experiments

Equipment Version Details

Hardware
Supermicro Computer SYS-7048GR-TR Used for training and testing models

Processor Intel Xeon E5-2687W v4 @ 3.00GHz Processor utilized on the computer
GPU Nvidia Quadro P6000 24 GB GPU utilized on the computer

Software

Operating System (OS) Ubuntu 16.04 LTS OS running on the computer
Nvidia Cuda Toolkit Nvidia Cuda 11.0 Utilized for accelerated training and testing

Programming Language Python 3.6.13 Utilized for designing experiments and calculating results
Machine Learning Framework Pytorch 1.8.1 Utilized for designing and evaluating ANNs
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Figure 8: Experimental setups for analyzing the effects of MTL on FD and FL tasks.

Experiment 1. In the first experiment, we trained a YOLOv5 model for only FD task (Figure 8).
We initialized the parameters of the model randomly. This setup is like a single-task training using
supervised learning despite the fact that both face/non-face classification and bounding box regression
are learned together. In the total loss function, we set λ1 to 0.5, λ2 to 1.0, λ3 to 0.05. In this experiment,
the FL task was not learned and λ4 is not used in the total loss function.

Experiment 2. In the second experiment, we trained our YOLOv5 multitask model for FL task. We
initialized the parameters of the model from the pre-trained YOLOv5 model for FD task from the
first experiment. Figure 8 shows the model with some light parts, which indicates some parameters
initialized from FD model. When optimizing the total loss, λ1−3 were set to 0.0 whereas λ4 was set to
0.005.

Experiment 3. In the third experiment, we trained our YOLOv5 multitask model for FL task as in
the second experiment. On the other hand, we initialized the parameters of the model from the pre-
trained YOLOv5 multitask model for FD task in the first experiment and froze all parameters except
parameters only belonging to FL task as Figure 8 indicates. We used the same lambda values λ1−4 as
in Experiment 2.

Experiment 4. In the fourth experiment, we trained our YOLOv5 multitask model for FD and Fl tasks
jointly (Figure 8). We randomly initialized the parameters of the model and set λ1−3 as in Experiment
1 and λ4 as in Experiments 2 and 3.

In all experiments, we trained the models for 500 epochs using Stochastic Gradient Descent (SGD)
optimizer with a momentum of 0.937 and applied horizontal flip with 0.5 probability, and mosaic [142]
augmentation and hue-saturation-value distortions. Furthermore, blur, median blur, conversion to gray,
jpeg compression, and clahe augmentations were applied from albumentations [143] library. The initial
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Figure 9: Sample images from Widerface [1] dataset. The image is taken from [1].

learning rate started at 0.01 and decayed until about 0.0001 using YOLOv5’s custom learning rate
scheduler.

3.2.2 Utilized Datasets

Widerface Dataset

WiderFace [1] is a large-scale face detection dataset, which consists of 32,203 images and 393,703
annotated faces. The dataset is primarily intended for use in the development of facial detection algo-
rithms and is widely used for benchmarking the performance of these algorithms.

The images in the WiderFace dataset come from Wider [144] dataset and span a wide range of visual
variations, such as different poses, illuminations, and facial expressions (Figure 9). The images are
annotated with bounding boxes that enclose the regions of the face and labels for occlusions, poses,
and event categories. The WiderFace dataset is organized into three subsets: the training set, the
validation set, and the test set. The training set consists of 12,995 images and 171,542 annotated faces,
the validation set consists of 3,000 images and 37,967 annotated faces, and the test set consists of
16,208 images and 183,194 annotated faces. The Widerface dataset is also arranged as easy, medium,
and hard sets, which are based on the detection rate of EdgeBox [145] detector.

While the original Widerface dataset has no labels for facial landmark detection, Denget al. [124] pro-
vided another version of labels with five facial landmarks annotations (center of eyes, mouth corners,
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and tip of nose) for a total of 84.6k faces from the training set and 18.5k faces from the validation set
along with original labels from the dataset.

In experiments, we took advantage of 12,859 images from the training set of the Widerface dataset
for training FD and FL, whereas the validation set of the dataset was employed for measuring the
performance of our trained models for only FD task due to the unavailability of landmarks labels for
the validation set.

Annotated Facial Landmarks in the Wild (AFLW) Dataset

The AFLW dataset is a collection of annotated images of human faces that have been gathered from
the internet. The dataset includes a total of 25,993 faces from around 21,000 images, each of which
has been annotated with up to 21 facial landmarks, including points on the eyes, nose, mouth, and
jawline (Figure 10). These annotations provide a rich source of information that can be used to train
and evaluate machine learning models for tasks such as facial analysis, multi-view face detection, and
head pose estimation.

Figure 10: Sample images from AFLW [2] dataset. The image is taken from [2].

One of the key features of the AFLW [2] dataset is its large size and diversity, which make it well-
suited for training and evaluating models on a wide range of facial appearances and configurations.
The images in the dataset depict a wide range of ethnicities, ages, and genders. The images are also
captured in a variety of lighting conditions and poses, providing a more realistic and challenging
testbed for facial analysis and recognition algorithms.

Overall, the AFLW [2] dataset is a valuable resource for us in order to evaluate our models for FL task.
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Table 2: Comparison of face detection performances of different models on Widerface [1] (easy,
medium, hard) validation subset

Model
AP

Easy Medium Hard
model_base(FD) 0.920 0.888 0.667

model_finetune(FD_FL) 0.860 0.826 0.548
model_freeze(FD_FL) 0.920 0.888 0.667
model_joint(FD_FL) 0.925 0.896 0.672

Table 3: Comparison of facial landmark detection performances of different MTL models on AFLW
[2] dataset

Model NRMSE
model_finetune(FD_FL) 0.154
model_freeze(FD_FL) 0.189
model_joint(FD_FL) 0.041

3.2.3 Experimental Results

In Table 2, face detection performances of four models were measured on easy, medium, and hard
subsets of the Widerface [1] validation dataset. Average precision was used as a performance mea-
surement metric. The highest APs for all three subsets were obtained from the MTL model, which is
model_joint(FD_FL). It outperformed the single-task model, which is model_base(FD), on all three
subsets. Model_freeze(FD_FL), which utilized frozen weights of model_base(FD), had the same APs
with model_base(FD) whereas face detection performance of model_finetune(FD_FL) degraded sub-
stantially due to fine-tuning facial landmark task(task2) despite of starting from weights of task1(FD).

In order to better analyze the face detection performances of the models, predictions for face coordi-
nates were given in Figure 11, 12 and 13. Visual results were obtained on the Widerface validation set,
which includes challenging examples for the face detection task. Although all models performed the
detection of most frontal and medium/large faces, model_joint was generally able to detect occluded
or blurry faces better than other models.

The facial landmark detection performances of MTL models are shown in Table 3. Performances
were measured via root mean squared error by normalizing interocular distance, which is the distance
between the centers of the eyes, as indicated in Equation 4, where li and l̂i are ground truth and
predicted landmark point for the location i; n is the total number of landmarks; l0 and l1 are the
centers of right and left eyes, respectively. The lowest error was produced by model_joint(FD_FL),
MTL model optimized tasks jointly. Model_freeze(FD_FL) performed the worst in the FL task with
0.189 Normalized Root Mean Square Error (NRMSE). On the other hand, model_finetune(FD_FL)
has an error of 0.154, which is between the others.

NRMSE =

√
Σn

i=1(li − l̂i)2

n(l1 − l0)2
(4)
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Figure 11: Qulitative results of model_base and model_joint were given on sample images from the
Widerface [1] validation set. If the IOU of both models’ predicted bounding boxes is greater than 0.5,
bounding boxes are shown in green color. Blue rectangles indicate the predictions made only by the
model_joint, and the bounding boxes predicted only by the model_base are in red.
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Figure 12: Qulitative results of model_freeze and model_joint were given on sample images from the
Widerface [1] validation set. If the IOU of both models’ predicted bounding boxes is greater than 0.5,
bounding boxes are shown in green color. Blue rectangles indicate the predictions made only by the
model_joint, and the bounding boxes predicted only by the model_freeze are in red.
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Figure 13: Qulitative results of model_finetune and model_joint were given on sample images from
the Widerface [1] validation set. If the IOU of both models’ predicted bounding boxes is greater than
0.5, bounding boxes are shown in green color. Blue rectangles indicate the predictions made only by
the model_joint, and the bounding boxes predicted only by the model_finetune are in red.
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Figure 14: Visualization of predicted facial landmarks on the Widerface [1] validation dataset. Faces
were detected by our joint model and were cropped from images. Colors green, blue, and red indicate
the predictions of model_joint, model_freeze, and model_finetune, respectively.

Figure 15: Visualization of predicted facial landmarks on the AFLW [2] test dataset. Faces were
detected by our joint model and were cropped from images. Colors green, blue, and red indicate the
predictions of model_joint, model_freeze, and model_finetune, respectively.
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We also presented qualitative results of compared models in Figure 14 and Figure 15. We visualized
landmark predictions of the models on the Widerface validation and the AFLW test sets. All faces were
detected by our joint model and then cropped square. As the predicted facial landmarks in Figures14
15 are analyzed, the joint model predicted five facial landmarks significantly better than two other
multitask models, model_freeze and model_finetune. Their predictions became worse as faces were
profile or heads tilted to the right or left.

3.3 Discussion

In this chapter, the effects of multitask learning on two related tasks (face detection and facial land-
mark detection) were examined. Firstly, the proposed connectionist model for FD and FL tasks is
proposed. The YOLOv5 [5] model was modified for predicting landmarks along with bounding boxes
and confidence scores. Then, experimental setups and utilized datasets were presented. Finally, the
performance results of the models on two tasks were presented.

The main aim of the experiments was to examine the effect of multitask learning on models’ perfor-
mances for FD and FL tasks. According to experimental results, joint optimization of tasks improved
the performances of both tasks, which produced the highest AP in FD task and the lowest NRMSE
in FL task. Furthermore, freezing the parameters belonging to old tasks in the new model preserved
the performance of old tasks, but the new task could not be learned perfectly. On the contrary, fine-
tuning the old parameters with new tasks degraded the performance of old tasks with the help of better
learning of new tasks.

In Chapter 4, different continual learning methods are compared on face analysis tasks. Our MTL
model was utilized as an initial step in order to prepare (detecting, aligning, and cropping) faces for
face analysis tasks. Thus, we did not focus on the performance of face detection on the hard subset in
our experiments.

In conclusion, two similar tasks, which are both regression problems, were jointly learned, and the
highest performance results were obtained from the joint model in our experiments.
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CHAPTER 4

CONTINUAL LEARNING FOR FACE ANALYSIS

In this chapter, the details of the experiments for the application of different CL methods on face anal-
ysis were presented in order to mitigate catastrophic forgetting. While humans can adapt to changing
environments and are able to learn sequential experiences, artificial systems are not good at learn-
ing from non-stationary data. Although complete forgetting is uncommon in humans, connectionist
networks suffer from catastrophic forgetting. As indicated before, face-related tasks, which are age,
gender, emotion estimation, and face recognition, are leveraged in this chapter to explore the different
CL methods. Firstly, we described the utilized CL approaches in our experiments. Afterward, the
experimental setup, utilized datasets, and results of experiments were presented, respectively. Finally,
experimental results were discussed in the discussion section.

4.1 Utilized Methods

In the experiments, regularization and generative replay-based methods were employed in order to
overcome forgetting. All methods addressed the problem of catastrophic forgetting in neural networks,
which occurs when a network is trained on a new task and forgets how to perform a previously learned
task. Moreover, fine-tuning and joint, which are usually accepted baselines in CL literature, were also
included in comparisons.

All methods were compared on the same model (aka the solver model or the main model), which
is indicated in Figure 16. As in [4], the ANN model was designed by taking inspiration from a VAE
model since it was utilized for generating and replaying new samples in ANNs like in the human brain.
The model consists of 5 or 7 convolutional layers, 4 or 6 of which are followed by Batch Normalization
and ReLU activation layers, respectively. In addition, the architecture also includes 3 Fully Connected
layers, and the number of output nodes is variable in the final layer. The output prediction size of the
model depends on the total number of classes for all tasks in both scenarios. However, all outputs until
the current classes are active in the class incremental learning scenario, whereas only the outputs for
the classes belonging to the current task are only taken into account in the task incremental learning
scenario.

Joint It is actually MTL, which is training a model with all available tasks so far. It is also known as
offline training. This setting generally determines the upper bound in CL if no method has the ability
of forward transfer.
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Conv2d(3, 16, 3, 1, 1) + BatchNorm2d + ReLU

Conv2d(16, 32, 3, 2, 1) + BatchNorm2d + ReLU

Conv2d(32, 64, 3, 2, 1) + BatchNorm2d + ReLU

Conv2d(64, 128, 3, 2, 1) + BatchNorm2d + ReLU

Conv2d(128, 256, 3, 2, 1)

FullyConnected(12544, 2000)

FullyConnected(2000, 2000)

FullyConnected(2000, num_classes)

Input

Output

Figure 16: The design of ANN model architecture utilized for face analysis in the experiments.

Fine-tuning (None) It is standard supervised learning, which trains a network by finetuning for a new
task and possibly results in catastrophic forgetting. Fine-tuning generally improves the performance
of the model for the current task while degrading the performance of the model for the old tasks.

Learning without Forgetting Despite the methods employing weights and change in weights, LwF
[81] employed knowledge distillation, which means that a smaller network (called the "student net-
work") is trained to mimic the behavior of a larger network (called the "teacher network"), in order to
alleviate forgetting in artificial neural networks. LwF stores predictions of current tasks from the pre-
trained model, which is trained with data from previous tasks. Later, it learns new tasks from images
and labels of the current task and maintains the performance of old tasks by distilling responses of the
previous model for the images of the current task. As in MTL, LwF [81] optimizes parameters for both
current and previous tasks using current task data.

Elastic Weight Consolidation EWC [84] addresses this problem by using a quadratic penalty on the
weights that are important for old tasks to prevent them from changing too much during training on a
new task. EWC adds an additional loss which is weighted by λ to the loss of the current task as defined
in Equation 5.

Ltotal = Lcurrent_task + λ ∗ Lregularization (5)

Synaptic Intelligence SI [85] improves upon EWC [84] by introducing an additional term to the
penalty that takes into account the change in the weights over time rather than just the current values
of the weights. In order to accomplish it, they assign an importance factor to each synapse (parameter)
by taking into account the importance of each parameter for reducing loss. This allows SI to preserve
better the knowledge encoded in the weights and prevent catastrophic forgetting.
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Figure 17: Training of both current generator and current solver for the current task by utilizing old
scholar.

In addition to regularization methods, we used methods utilizing generative replay, which generates
new samples instead of storing raw samples in our experiments. It is loosely associated with mental
images in the human brain.

Deep Generative Replay Generative models refer to models that produce (generate) samples from
a distribution. Generative Adversarial Networks and Variational Autoencoders are two well-known
methods of generative models. In DGR [112], generative models are utilized for sampling examples
from old tasks in order to alleviate catastrophic interference. In the experiments, a symmetric VAE
similar to the solver model is chosen as a generative replay model as in [4]. The VAE model maps
input images to the latent variables by encoding, and then the latent variables are decoded in order to
reconstruct samples. Shin et al. [112] called generator and solver together as a scholar and trained
both of them for new tasks(classes), as indicated in Figure 17.

Figure 18: Modifications to the main solver model for the proposed brain-inspired design of [4]. (A)
The generator and the solver are coupled with generative feedback connections. (B) A specific class is
generated by a Gaussian mixture instead of the normal prior. (C) Different neurons are active during
the generative backward pass when classes are learned. (D) The replay occurs through hidden layers
to output. The image is taken from [4].
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Brain-inspired Replay (BIR) In BIR [4], the authors combined generative and task-solver models
into one model by taking inspiration from the human brain. They enriched their design with the
addition of generative feedback, internal context gating, and conditional and internal replay, which
replays compressed and encoded features instead of raw pixels. Modifications proposed by van de Ven
et al. [4] to the main model for BIR are demonstrated in Figure 18. Furthermore, conditional replay
facilitates the generation of samples belonging to specific tasks in contrast to random samples.

Brain-inspired Replay + Synaptic Intelligence In class incremental learning scenarios, we also uti-
lized the combination of a replay-based method and a regularization-based method.

4.2 Experiments

In experiments, we compared the CL methods described in the previous section on face analysis tasks
according to task incremental and class incremental learning scenarios. In the task incremental learning
scenario, the model learns different tasks sequentially and produces outputs only for the specific task.
That is, only output nodes of the model for the current task are active. On the other hand, the class
incremental learning scenario requires all outputs of the model for previous and current tasks to be
utilized in prediction. We utilized the same hardware and software which were introduced in Table 1.

4.2.1 Experimental Setup

We designed 4 different experiments in order to compare mentioned CL methods according to task and
class incremental learning scenarios.

Experiment 1 The first experiment was conducted on age, emotion, and gender estimation tasks ac-
cording to task incremental learning scenarios, in which each task was learned sequentially by the
model, and only one task was predicted at the test time. In order to explore whether the task order
is important or not in task incremental learning scenarios, we changed the task order and trained 6
different models using 6 different combinations of the task order. CelebA [3] dataset was utilized for
training and testing the model. In addition, each task has two different classes; including young and
old for the age dataset, smiling or not smiling for the emotion dataset, and male and female for the
gender dataset. The heights and widths of all inputs were adjusted to 112 pixels. Furthermore, the
cross-entropy loss was used as a loss function due to the classification of inputs between two classes
in the training step. The training ran through 5000 iterations for each task, and the performance results
were measured after the training with each task.

Experiment 2 In the second experiment, VGGFace2 [6] dataset was used for testing and training the
models for both task incremental and class incremental learning scenarios. We took the first 1000
classes(identities) from VGGV2 dataset and split it into 10 tasks which have 100 identities. In class
incremental learning protocol, models are responsible for predicting between all classes seen so far.
For instance, models produce 1000 different scores after training for 10 tasks. On the other hand,
only 100 outputs are always produced in task incremental protocol. Similar to the first experiment,
input images had sizes of 112x112 pixels, and the loss function was cross-entropy. Like the previous
experiment, the models were trained until 2000 iterations.
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Experiment 3 In the third experiment, we utilized 1000 classes of VGGFace2 dataset similar to the
experiment 2. In contrast to previous experiments, we increased the number of convolutional layers
from 5 to 7. By doing so, we wanted to comprehend whether the larger model is able to learn several
tasks better than the smaller model or not. The improved model required inputs with larger sizes due
to the fact that each convolutional layer halves the width and height of inputs. Therefore, we adjusted
input sizes to 128x128 pixels. We compared CL models using the new enhanced model on both task
incremental and class incremental learning scenarios. In addition, we did not change the number of
iterations.

Experiment 4 In the last experiment, we increased the number of iterations to 10000 since the model
has more convolutional layers, which also leads to an increase in the input size, and a more realistic
real-life dataset with several tasks might need to be learned longer wrt. the smaller one with 3 tasks
and less number of samples.

In all experiments, we benefited from experimental settings used for CIFAR100 [146] tasks and used
default algorithm-specific hyper-parameters in [4]. Similarly, we took the same VAE model, which
contains 5 convolutional and 3 fully connected layers, and used a task solver model in experiments 1
and 2. In the third experiment, we employed 7 convolutions and kept the number of fully connected
layers the same. As in [4], we froze pre-trained convolutional layers and replayed only internal rep-
resentations. That is, only fully connected layers were trained with inputs from the last convolution
layer. However, we trained convolutional layers with 100 identities from VGGFace2, which are not
included in the classes used in the second and third experiments, in contrast to [4], which utilized
CIFAR10 [146] datasets for training convolutional layers. In addition, we increased the input sizes
of models to 112x112 pixels (Experiments 1 and 2) and 128x128 pixels (Experiments 3 and 4) from
32x32 pixels and replaced CIFAR100 dataset with more complex and real-world datasets, which are
CelebA [3] and VGGFace2 [6]. In all experiments, the batch size was chosen as 256.

4.2.2 Utilized Datasets

Large-scale CelebFaces Attributes Dataset

CelebA [3] is a large-scale dataset of celebrity faces that includes 202,599 images of 10,177 different
celebrities. Each image in the dataset has been annotated with 40 different binary attributes, such as
"male", "smiling", "wearing glasses", and "young" alongside coordinates of bounding boxes and five
facial landmarks. The dataset is widely used for research in the field of computer vision and machine
learning, particularly for tasks related to facial recognition, face synthesis and attribute prediction.
The images in the dataset are all high-resolution and taken from a variety of sources, including movies,
television shows, and websites. The celebrities included in the dataset come from a variety of countries
and cultures.

Before the CelebA [3] dataset was employed in training for the CL model, we applied some prepro-
cessing to them. First of all, we passed all images through our multitask YOLOv5 face detector and
obtained bounding boxes and five landmark points. Subsequently, predicted bounding boxes were
compared with ground truth boxes, and the box which has the maximum intersection over union with
the ground truth box was selected for aligning and resizing the face to 112x112 pixels. Eventually, we
distributed the same number of faces, which is 22,223, to each class of tasks. In total, we have 133,338
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Figure 19: Sample images from CelebA [3] dataset

Figure 20: Sample images from VGGFace2 [6] dataset

faces for three tasks (emotion, age, and gender) and 6 classes (smiling/not smiling, young/old, male/fe-
male) (Figure 19). In both the training and testing of models for three tasks, we used CelebA dataset.

VGGFace2 Dataset

VGGFace2 dataset is a large-scale face dataset that includes 3.31 million images from 9131 different
subjects. The images were collected from Google search engine and has large variations in pose, age
and ethnicity and illumination. The dataset is widely used in face recognition. Similar to CelebA
dataset, we used our multitask YOLOv5 model in order to detect faces with landmarks and align faces.
After alignment, faces were cropped in 112x112 pixels.

Later, the first 1000 identities were selected, and 10% of them were taken apart for testing while others
were used in training. Similarly, additional 100 identities were selected and divided into training and
test splits for pretraining convolutional layers of models. Sample images from the dataset are shown
in Figure 20.
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4.2.3 Experimental Results

In this section, experimental results were presented. To compare different CL methods, different evalu-
ation metrics are available. Lopez-Paz and Ranzato [107] compared their proposed GEM with different
CL methods on Average Accuracy (ACC) over all tasks, forward transfer, which measures how the pre-
vious task affects the performance of the current task, and Backward Transfer (BWT), which evaluates
how the current task influences the performance of the previous task. In addition to performance met-
rics, measurement of resource consumptions such as utilized or allocated disk space, CPU/GPU, and
memory, along with execution time.

ACC =
1

T

T∑
i=1

RT,i (6)

BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i (7)

Similar to GEM [107], we utilized the ACC (Equation 6) and BWT (Equation 7) for performance
evaluation in our experiments. In order to evaluate performances, we had access to test sets for all
tasks T , which helped us to compute the test classification accuracy Ri,j measured for task tj after
the model was trained on task ti. Additionally, we reported the final accuracies RT,i, where i ≤ T

after being trained on all tasks T and plotted the accuracy of each task tj during training (after each
task ti), where j ≤ i and i, j ≤ T in order to compare how the methods are successful for mitigating
catastrophic forgetting. Positive BWT means that learning new tasks improve the performance of old
tasks, while negative BWT occurs when the model forgets old tasks.

In the first experiment, different CL methods were compared using ACC (%) and BWT (%) for task
incremental protocol. The model, which included 5 convolutional layers, was trained on Age, Emotion
and Gender estimation tasks from CelebA dataset in different sequences. Table 4 indicates average and
task-specific ACC (%) after the models were trained for all tasks. Tasks were supplied to the models
in different orders and the performance results of each CL method were obtained. According to the
results presented in Table 4, all CL methods, including Finetune and Joint performed successfully. In
the experiment, CL methods were compared on only the task incremental learning scenario. Since
we wanted the model to estimate age, emotion and gender from an image simultaneously, the class
incremental learning scenario was not considered in this experiment. In all different task order sce-
narios, LwF method outperformed all other methods according to average ACC (%). Finetune method
exhibited the worst performance in all scenarios. If fine-tuning, which is a baseline method, was not
taken into account, EWC was not able to perform well like other methods in EAG EGA GAE GEA
task orders. Similarly, when tasks were learned in AEG and AGE orders, GR performed worse slightly
wrt. others. In general, BIR enabled the model to produce higher ACC (%) than GR in all scenarios
except GEA scenario.

Additionally, we also compared methods by measuring BWT (%) after training was completed on all
tasks, as shown in Table 5. When BWT (%) results were examined, all CL methods generally caused
negative BWT, meaning that learning new tasks leads to forgetting some old knowledge obtained from
old tasks. The largest negative BWTs (%) were obtained when fine-tuning was applied to the models
in all sequences of tasks. On the other hand, the models learned new tasks with the highest BWT (%)
in all scenarios when LwF method was utilized during training. Additionally, LwF exhibited positive
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Table 4: Comparison of different CL methods using ACC (%) according to task incremental learning
scenario on Age (A), Emotion (E) and Gender (G) estimation tasks from CelebA [3] dataset after the
model with 5 convolutional layers is trained with each task in different orders of tasks. The models
were trained in 5000 iterations for each task.

Method ACC
Task Order

AEG AGE EAG EGA GAE GEA

Joint
Average 89.08 89.56 89.34 89.34 89.78 89.45

A E G 80.84 90.19 96.20 81.39 90.42 96.85 80.66 91.05 96.31 80.45 91.09 96.47 81.65 90.94 96.76 80.70 90.71 96.94

Finetune
Average 84.74 81.81 82.98 82.82 82.99 83.93

A E G 72.06 84.95 97.19 67.81 91.84 85.78 74.81 76.90 97.23 82.59 74.40 91.45 76.02 91.66 81.29 82.59 82.64 86.55

LwF
Average 89.98 89.73 89.92 90.05 90.31 90.50

A E G 81.62 91.54 96.76 81.17 90.80 97.21 81.35 91.70 96.69 81.31 91.70 97.14 82.34 91.23 97.37 82.42 91.61 97.48

SI
Average 88.45 89.08 88.68 88.54 87.37 88.69

A E G 80.16 89.07 96.11 80.93 89.59 96.72 80.25 90.22 95.57 79.35 90.37 95.88 77.60 88.78 95.75 80.59 89.38 96.09

EWC
Average 89.11 89.00 87.69 88.06 83.69 88.27

A E G 80.41 90.55 96.38 80.41 90.89 95.70 76.65 90.06 96.36 80.54 88.73 94.92 74.85 88.69 87.52 80.86 88.44 95.52

GR
Average 85.89 86.77 87.99 88.48 88.29 89.14

A E G 71.68 89.59 96.40 74.94 89.34 96.02 79.22 89.05 95.70 80.21 89.00 96.22 79.19 89.86 95.82 80.84 90.64 95.95

BIR
Average 88.97 88.78 88.74 89.07 88.67 88.82

A E G 79.58 90.69 96.65 79.82 90.04 96.47 79.49 90.55 96.18 80.18 90.62 96.40 79.98 89.88 96.15 79.55 90.71 96.20

Table 5: Comparison of different CL methods using BWT (%) according to task incremental learning
scenario on Age (A), Emotion (E) and Gender (G) estimation tasks from CelebA [3] dataset after the
model with 5 convolutional layers is trained with each task in different orders of tasks. The models
were trained in 5000 iterations for each task.

Method
Task Order

AEG AGE EAG EGA GAE GEA
Joint -0.21 0.48 -0.25 0.01 -0.18 -0.28

Finetune -7.74 -12.26 -10.50 -10.84 -11.16 -9.38
LwF 0.73 0.92 1.16 0.55 -0.10 0.35

SI -0.28 0.18 -0.22 -0.04 -1.28 -0.55
EWC -0.31 -0.84 -2.55 -1.81 -7.80 -1.81
GR -5.07 -3.63 -0.87 -0.90 -1.38 -0.93
BIR -0.25 -0.24 -0.17 0.02 -0.82 -0.21

backward transfer in all task sequences except GAE order. That is, learning new tasks improved the
performance of the old tasks, which is uncommon.

In the second experiment, we compared various continual learning methods using average accuracy
and backward transfer in task incremental and class incremental learning scenarios for 10 tasks on the
VGGFace2 dataset. The model had 5 convolutional layers. Firstly, we calculated the average accuracy
on all tasks seen so far in order to measure how well the model learns new tasks without forgetting old
ones. As shown in Figure 21, all methods except GR and Finetune could learn tasks successfully in
the task incremental learning scenario. Furthermore, the Joint model had the highest accuracy mostly
in both scenarios. According to the results of the class incremental learning scenario, the average
accuracy over tasks decreased gradually as the number of classes to be learned increased. Albeit low
performances of BIR and SI separately, utilization of SI with BIR enhanced ACC (%), and it had the
highest average accuracy as a CL method. Furthermore, ACC and BWT were calculated after the
model was trained on all tasks to compare methods on final average accuracy and backward transfer
after all tasks were learned. In the task incremental learning scenario, 100 out of 1000 output nodes of
the model were active, and they were selected wrt. the current task. The ACC (%) performance of the
model is upper bounded with the joint method, whereas the lower bound is obtained from fine-tuning

44



1 2 3 4 5 6 7 8 9 10
Number of Tasks so far

0

10

20

30

40

50

60

70

80

90
AC

C 
(%

) 
 fo

r A
ll 

Ta
sk

s T
ra

in
ed

 o
n 

so
 fa

r

Task Incremental Learning Scenario

Joint
Finetune
LwF
EWC
SI
GR
BIR

100 200 300 400 500 600 700 800 900 1000
Number of Classes so far

0

10

20

30

40

50

60

70

80

90

AC
C 

 (%
) 

 fo
r A

ll 
Ta

sk
s T

ra
in

ed
 o

n 
so

 fa
r

Class Incremental Learning Scenario
Joint
Finetune
LwF
EWC
SI
GR
BIR
BIR+SI

ACC after Training of the Model (5 Conv Layers) for each Task from VGGFace2 Dataset according to

Figure 21: Comparison of different CL methods using ACC (%) for task incremental learning scenario
(Left) and class incremental learning scenario (Right) for 10 tasks/episodes on VGGFace2 [6] dataset
after training of the model with 5 convolutional layers is completed on all tasks. The models were
trained in 2000 iterations for each task.
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Figure 22: Comparison of different CL methods using ACC (%) (Left) and BWT (%) (Right) accord-
ing to task incremental learning scenario for 10 tasks/episodes on VGGFace2 [6] dataset after training
of the model with 5 convolutional layers is completed on all tasks. The models were trained in 2000
iterations for each task.

(Figure 22 Left). Other methods apart from GR performed similarly. When BWT (%) in Figure 22
(Right) is compared with the results of the first experiment, Finetune and GR forgot old information
ensuing old tasks significantly as new tasks were added to the model. However, Figure 22 (Right)
shows dramatic negative backward transfer in both Finetune and GR methods compared with the first
experiment. On the other hand, BIR, which is a generative replay method, was found to be more
effective at preventing catastrophic forgetting in the model compared to GR, and the joint method had
the best performance with the positive backward transfer.
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Figure 23: Comparison of different CL methods using ACC (%) (Left) and BWT (%) (Right) accord-
ing to class incremental learning scenario for 10 tasks/episodes on VGGFace2 [6] dataset after training
of the model with 5 convolutional layers is completed on all tasks. The models were trained in 2000
iterations for each task.
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Figure 24: Comparison of different CL methods using ACC (%) according to task incremental learning
scenario (Left) and class incremental learning scenario (Right) for 10 tasks/episodes on VGGFace2
[6] dataset after training of the model with 7 convolutional layers is completed on all tasks. The models
were trained in 2000 iterations for each task.

In contrast to the task incremental learning scenario, class incremental protocol resulted in catastrophic
forgetting in all CL methods (except the joint method) (Figure 23). Although LwF had positive BWT,
it performed poorly. Nevertheless, the combination of BIR and SI methods revealed a better alternative
method in order to prevent forgetting in the class incremental learning scenario.

In the third experiment, we increased the number of convolutional layers to 7. The aim of this experi-
ment was whether the model was able to learn tasks better or not if the model had a larger capacity for
learning. When Figure 24 (Left) and Figure 21 (Left) are examined, there was no significant differ-
ence in the performance of the methods when applied to the small and large models in task incremental
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learning scenarios. On the other hand, the performances of BIR and BIR+SI degraded in contrast to
others in class incremental learning scenarios as additional capacity was added to the models (Fig-
ures 24 (Right) and 21 (Right)). Additionally, it is observed from Figure 25 that all CL methods
demonstrated inferior performance as compared with the joint method in the task incremental learning
scenario. Although BWT (%) for LwF, EWC, SI, GR and BIR increased, meaning forgetting was
reduced while learning new tasks, ACC (%) did not improve. In other words, the models could not
learn adequately despite their extra available capacity. This suggests that the number of iterations was
insufficient in order for the models to acquire new knowledge from the current task. On the other hand,
the results presented in Figure 26 show that joint and LwF methods benefitted from extra layers in the
model, whereas others were negatively affected in the class incremental learning scenario. In contrast
to BIR and BIR+SI methods, other continual learning methods reduced the negative effect of learning
new tasks on previously acquired knowledge, which is interpreted from the BWT (%) introduced in
Figure 26.

In the last experiment, the increment in the number of iterations improved the efficiency of the joint
method slightly. On the contrary, Figure 27 (Left) indicates that the performances of the models
regressed dramatically as the new tasks were learned by fine-tuning. Moreover, other methods were
also slightly affected negatively in the task incremental learning scenario. In addition, longer training
iterations enabled the GR method to improve the performance of the model substantially, as shown in
Figure 27 (Right). As we examined the results indicated in Figure 28, ACC (%) got better when only
the joint method was employed, and all other methods resulted in lower average accuracy when the
number of iterations was made 10000 in task incremental learning scenario. Similarly, BWT (%) also
deteriorated in all methods apart from GR. On the other hand, methods except Finetune and LwF took
advantage of longer iterations during training for class incremental learning scenarios as observed in
Figure 29. As training iterations were changed to 10000, all methods resulted in lower BWT (%). In
other words, the negative effects of learning new tasks on the models declined.
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Figure 25: Comparison of different CL methods using ACC (%) (Left) and BWT (%) (Right) accord-
ing to task incremental learning scenario for 10 tasks/episodes on VGGFace2 [6] dataset after training
of the model with 7 convolutional layers is completed on all tasks. The models were trained in 2000
iterations for each task.
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Figure 26: Comparison of different CL methods using ACC (%) (Left) and BWT (%) (Right) for
the class incremental learning scenario for 10 tasks/episodes on VGGFace2 [6] dataset after training
of the model with 7 convolutional layers is completed on all tasks. The models were trained in 2000
iterations for each task.
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Figure 27: Comparison of different CL methods using ACC (%) according to task incremental learning
scenario (Left) and class incremental learning scenario (Right) for 10 tasks/episodes on VGGFace2
[6] dataset after training of the model with 7 convolutional layers is completed on all tasks. The models
were trained in 10000 iterations for each task.

While training the task solver model by employing generative replay, we also trained the generator,
which was the VAE model, including 5 or 7 convolutional and 3 fully connected layers. Since gen-
erative replay-based methods do not store raw images, images are generated during the training of
the task solver model. Figure 30 shows randomly generated sample faces after finishing the training
of both generator and task solver models, which were used in the GR method. The sample images
were added to the input batches along with images from the current task in order to train the solver
model for age, emotion, and gender estimation tasks. Furthermore, Figure 31 presents random face
samples generated by the VAE with 5 convolutional layers for face recognition tasks. As shown in
the figure, some faces lack facial details, which might degrade the discriminative performance of the
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Figure 28: Comparison of different CL methods using ACC (%) (Left) and BWT (%) (Right) for
the task incremental learning scenario for 10 tasks/episodes on VGGFace2 [6] dataset after training of
the model with 7 convolutional layers is completed on all tasks. The models were trained in 10000
iterations for each task.
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Figure 29: Comparison of different CL methods using ACC (%) (Left) and BWT (%) (Right) for the
class incremental learning scenario for 10 tasks/episodes on VGGFace2 [6] dataset after training of
the model with 7 convolutional layers is completed on all tasks. The models were trained in 10000
iterations for each task.

solver model. In contrast, the VAE models with 7 convolutional layers generated more detailed and
higher-quality face images, which is presented in Figure 32 and Figure 33 compared to its counterpart
with 5 convolutional layers. Upon comparison of the backward transfer of the GR method in the third
experiment with that of the second experiment, the former demonstrated a higher percentage of BWT.
This is attributed to the higher-quality input data generated during training. Additionally, longer train-
ing of the VAE model also enhanced the quality of the generated images in both task incremental and
class incremental learning scenarios.
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Figure 30: Sample images generated for the training of Age, Emotion and Gender estimation tasks by
the VAE with 5 convolutional layers. The VAE model was trained on CelebA dataset according to the
task incremental learning scenario in 5000 iterations.
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(a) Task Incremental Learning Scenario (b) Class Incremental Learning Scenario

Figure 31: Sample images generated for the training of face recognition tasks by the VAE with 5
convolutional layers. The VAE model was trained on VGGFace2 dataset for task incremental (a) and
class incremental (b) learning scenarios in 2000 iterations.

(a) Task Incremental Learning Scenario (b) Class Incremental Learning Scenario

Figure 32: Sample images generated for the training of face recognition tasks by the VAE with 7
convolutional layers. The VAE model was trained on VGGFace2 dataset for task incremental (a) and
class incremental (b) learning scenarios in 2000 iterations.
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(a) Task Incremental Learning Scenario (b) Class Incremental Learning Scenario

Figure 33: Sample images generated for the training of face recognition tasks by the VAE with 7
convolutional layers. The VAE model was trained on VGGFace2 dataset for task incremental (a) and
class incremental (b) learning scenarios in 10000 iterations.

4.3 Discussion

In this chapter, different CL methods were analyzed for age estimation, emotion recognition, and
gender classification according to task incremental learning scenario on a custom CelebA dataset.
Furthermore, we further examined the methods for split face recognition tasks according to both task
and class incremental learning protocols on VGGFace2 dataset. Firstly, utilized regularization-based
and replay-based CL methods and datasets were presented. Later, experimental results were presented.

The first experimental results indicated that all five CL methods mitigate catastrophic forgetting and
learn new tasks successfully in the task incremental learning scenario. Also, LwF [81] outperformed
the other four methods on three tasks (age, emotion and gender recognition). According to experimen-
tal findings on split face recognition tasks, all methods except Finetune and GR were able to alleviate
catastrophic forgetting while learning 10 tasks according to the task incremental learning scenario.
Unfortunately, all investigated CL methods could not prevent both VAE models with 5 and 7 convo-
lutional layers from forgetting during the class incremental learning protocol. Nevertheless, the larger
VAE model facilitated the generation of high-quality faces, which helped GR methods to perform
slightly better in both task and class incremental learning scenarios. Furthermore, the utilization of
BIR, along with SI resulted in the remarkable improvement of ACC (%). In addition, increasing the
number of training iterations enabled the methods apart from Finetune and LwF to improve the ACC
(%) of the models along with higher backward transfer in class incremental learning considerably.

In conclusion, more work is needed in order to alleviate catastrophic forgetting together with increasing
backward transfer in class incremental learning scenarios, and a combination of different CL methods
might be a solution to accomplish it.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

In this thesis, two brain-inspired machine learning paradigms, multitask and continual learning ap-
proaches, were investigated for face analysis tasks including face detection, landmark extraction, age
estimation, emotion recognition, gender classification, and face recognition. In the proposed two-stage
framework, face and landmark detection were performed in the first stage. Later, age, emotion, and
gender analysis or face recognition were accomplished on detected faces in the second stage.

In Section 2.1, different machine learning paradigms such as supervised learning, transfer learning,
domain adaptation, curriculum learning, etc., which take inspiration from the way the human brain
processes information, were introduced. Subsequently, previous studies related to multitask learning
were given in a general overview briefly in Section 2.2.1. The studies were categorized into two:
hard and soft parameter sharing methods. Furthermore, Section 2.2.2 presented the recent studies in
continual learning literature within three groups, which are regularization-based, parameter isolation-
based, and replay-based methods. Finally, MTL and CL approaches dedicated to face analysis tasks
face detection, landmark extraction, gender recognition, and age estimation were introduced in Section
2.2.3.

In Chapter 3, details of the proposed MTL approach that unified detection and landmark extraction
tasks, and enabled simultaneous processing were presented. After introducing the datasets and exper-
imental setups for these tasks, we provided in-depth analyses for singletask and multitask models as
well as the addition of an auxiliary task (facial landmark extraction) to the initial main face detection
task. Additionally, we conducted experiments to train our previously optimized face detection model
to also perform facial landmark extraction. This was achieved either by freezing the parameters used
for the face detection task or by fine-tuning all parameters for a new task. Finally, we presented and
interpreted our experimental results.

In Chapter 4, different CL methods were compared on age estimation, emotion recognition, and gen-
der recognition according to task incremental learning scenarios. Additionally, experiments on task
order were conducted by shuffling the tasks to observe the effect of different combinations on per-
formances during the training stage. Custom CelebA dataset was prepared for the experiments by
cropping and aligning faces with bounding boxes and landmark points obtained from our MTL model.
Later, CelebA dataset was divided into three different tasks, and the performance of the models was
measured on them. In order to examine the performances of CL methods, we increased the num-
ber of tasks by employing VGGFace2 dataset for split face recognition tasks. Furthermore, both task
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and class incremental learning scenarios were carried out in the experiments. Finally, experimental
findings were presented using average accuracy and backward transfer metrics.

5.2 Conclusions

The problem of face analysis is investigated in two main steps. In the first step, face detection and
facial landmark detection tasks are analyzed via multitask settings. Experimental results indicate that
the joint MTL model, which is optimized for both face detection and landmark extraction at the same
time, outperforms the single-task model on the face detection task. One interpretation is that MTL
leveraged the performance of tasks that are similar and related, and have the same type of loss function
definitions.

We also utilize the methods of weight freezing and weight fine-tuning when facial landmarks detection
is incorporated with face detection. As we examine the experimental results, joint optimization of tasks
also outstrips freezing and fine-tuning methods in both detection and landmark detection tasks. In
other words, the training of multiple tasks together exposes the intrinsic information contained in each
task, and the MTL model benefits from information coming from both tasks. The fine-tuning method
outperforms the freezing method on the facial landmark detection task since it has more parameters to
be learned. However, the error between predicted and ground truth landmarks is higher compared to
the error produced by the jointly optimized model. Although multitask learning is an optimum solution
for learning and inferring multiple tasks, obtaining datasets with labels for all tasks is very compelling,
and methods for learning new tasks are needed to catch the performance of MTL.

Moreover, we compare different CL methods on CelebA and VGGFace2 datasets in the second stage.
The models are trained using age estimation, emotion recognition, and gender classification tasks
according to task incremental learning scenarios. When humans learn new concepts, they first learn
basic concepts before moving on to more complex topics. As a similar approach, we alter the order
of tasks and train 6 different models in order to analyze whether the order of tasks is important in our
experiments. However, experimental results indicate that the ACC (%) performances are generally
close to each other, and the order of age, emotion, and gender recognition tasks is not important.
According to both ACC (%) and BWT (%) performances, LwF method outperforms its counterparts
in all task order scenarios. Additionally, LwF method enables the model to improve the performance
for previously learned tasks with positive backward transfer in all task orders except the GAE order.
The largest forgetting occurs during acquiring new tasks when fine-tuning method is utilized. Unlike
fine-tuning, all methods reduce forgetting on CelebA for task incremental scenarios. In addition, BIR
performs better than GR in backward transfer along with higher ACC for task incremental scenarios.

Later, CL methods are benchmarked by increasing the number of tasks from 3 to 10, which are obtained
by splitting 1000 identities into 10 episodes from VGGFace2 dataset. In task incremental learning
scenarios, all methods except fine-tuning and GR mitigate catastrophic forgetting successfully. When
the number of convolutional layers in the VAE model is increased from 5 to 7 along with additional
8k training iterations, the joint (MTL) method increases the ACC (%) whereas the performances of all
other methods are degraded significantly. The BWT (%) results show that information acquired from
old tasks is forgotten dramatically in the fine-tuning method. On the other hand, GR increases the
backward transfer of new knowledge faintly.
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When methods are compared according to class incremental learning scenarios, all methods apart
from the joint method underperform compared to performances in task incremental learning scenarios.
Despite the low performances of BIR and SI separately, the utilization of BIR, along with SI results
in the remarkable improvement of ACC (%). Moreover, more iterations improve the average accuracy
along with higher backward transfer in class incremental learning protocols, excluding Finetune and
LwF.

Finally, all investigated CL algorithms reduce forgetting especially in task incremental learning sce-
narios. LwF, which distills knowledge with soft labels obtained from the current data via the pretrained
model to the current model, outperforms all single methods in both scenarios. The joint method, which
is actually MTL, is accepted as upper bound performance and is the most suitable solution when at-
taining new tasks in ANNs. However, data is non-stationary and does not have available labels for
all tasks at the same time. Therefore, partial replay-based methods emulate MTL by utilizing some
samples from old tasks together with current task data. Similarly, generative replay methods follow a
similar approach while solving the privacy concern of storing old samples in partial replay methods.
In the experiments, GR usually underperforms particularly in backward transfer, but the larger VAE
improves GR methods for both task and class incremental scenarios. That is, the effectiveness of GR
can be boosted by utilizing more advanced architecture such as Generative Adversarial Networks or
Stable Diffusion models. Although generative replay-based methods are biologically more plausible,
regularization-based methods are sufficient for task incremental learning protocols principally.

In conclusion, the class incremental learning scenario requires new studies for mitigating forgetting in
connectionist networks while learning tasks from more realistic data. In order to accomplish the per-
formance of task incremental learning scenario in a class incremental learning scenario, combinations
of more brain-inspired continual learning methods are needed.
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