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ABSTRACT 

 

EVOLUTIONARY TOPOLOGY OPTIMIZATION OF A FOLDING 
MISSILE WING FOR STIFFNESS AND FREQUENCY 

 
 
 
 

Ürün, Ata 
Master of Science, Aerospace Engineering 
Supervisor: Assoc. Prof. Dr. Melin Şahin 

Co-Supervisor: Assoc. Prof. Dr. Ercan Gürses 
 
 

January 2023, 123 pages 

 

 

This thesis presents a study on the topology optimization of a folding wing structure 

for a cruise missile with the aim of minimizing the weight of the wing while 

maximizing its stiffness and/or maximizing the selected natural frequency values. 

The weight of the folding wing has a significant impact on the performance of the 

opening mechanism and the overall dynamic behavior of the missile. The Bi-

directional Evolutionary Structural Optimization (BESO) method, a widely-used 

topology optimization technique, is employed in conjunction with the MSC 

NASTRAN finite element solver and MATLAB to optimize the wing topology. The 

proposed algorithm is first validated on benchmark cases and then applied to the 

folding wing structure to obtain the optimized designs. 

The wing structure studied in this work is composed of two parts and two design 

volumes. In order to minimize its weight, several optimization studies are performed 

with different objectives. The first objective is to maximize stiffness and the design 

space is optimized for this purpose under the aerodynamic load. The second 
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objective is to maximize the first natural frequency which may be necessary if there 

are excitation sources (such as the missile's engine or the aircraft that carries it) at 

that frequency. Shifting the natural frequency of the structure away from the 

frequency of the excitation can be useful for many aerospace-related problems. At 

the same time, increasing the natural frequencies results in modes of lower 

amplitudes and this precaution can prevent structural damage and decrease the flutter 

risk. Lastly, a multi-objective study on wing structure by considering its stiffness and 

natural frequencies is shown. By using topology optimization, it is possible to tailor 

the structure to shift the natural frequencies in the desired direction and reduce its 

weight simultaneously.  

The algorithm used in this thesis obtains several novel wing structures which are 

suitable for manufacturing using conventional chip removal methods and have 

efficient material distribution around the design volume. These structures are 

compared with each other, and conclusions are drawn about their effectiveness. 

Results show that the topology optimization algorithm used in this thesis is able to 

generate highly efficient topologies with improved stiffness and natural frequency 

values. Furthermore, the impact of different parameters of the Bi-directional 

Evolutionary Structural Optimization (BESO) method on the resulting structures is 

demonstrated in this thesis. Overall, this thesis illustrates the capabilities of the used 

topology optimization method in aerospace engineering by providing examples of 

folding wing structures and contributes a novelty to the literature by operating in 

multi-design domains simultaneously due to multiple components of the folding 

wing, while most of the studies on topology optimization only focus on single design 

space. 

 

Keywords: Finite Element Method, Structural Optimization, Topology 

Optimization, Frequency Optimization, Bi-directional Evolutionary Structural 

Optimization (BESO), Folding-Wing 
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ÖZ 

 

KATLANIR BİR FÜZE KANADININ DİRENGENLİK VE FREKANS İÇİN 
EVRİMSEL TOPOLOJİ OPTİMİZASYONU 

 
 
 

Ürün, Ata 
Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Doçent. Dr. Melin Şahin 
Ortak Tez Yöneticisi: Doçent. Dr. Ercan Gürses 

 

 

Ocak 2023, 123 sayfa 

 

Bu tez, bir seyir füzesinin katlanabilir kanat yapısının topoloji optimizasyonu üzerine 

bir çalışma sunmaktadır. Amaç, kanadın ağırlığını en aza indirirken, direngenliğini 

ya da seçilen doğal frekans değerini mümkün olan en yüksek seviyede tutmaktır. 

Katlanabilir kanadın ağırlığı, açılma mekanizmasının performansında ve füzenin 

genel dinamik davranışında önemli bir etkiye sahiptir. Yaygın olarak kullanılan bir 

topoloji optimizasyon tekniği olan Çift-yönlü Evrimsel Yapısal Optimizasyon 

(BESO) yöntemi, MSC NASTRAN sonlu eleman çözücüsü ve MATLAB ile 

oluşturulan ortamda kanat topolojisini optimize etmektedir. Önerilen algoritma önce 

referans çalışmalarla doğrulanmakta ve daha sonra katlanabilir kanat yapısını 

optimize etmek için uygulanmaktadır.  

Bu çalışmada incelenen kanat yapısı, iki parçadan ve iki tasarım hacminden 

oluşmaktadır. Ağırlığını en aza indirmek için, farklı amaçlarla çeşitli optimizasyon 

çalışmaları yapılmıştır. İlk amaç, direngenliği maksimize etmektir ve tasarım alanı, 

aerodinamik yük altında bu amaçla optimize edilmektedir. İkinci hedef, ilk doğal 

frekansı maksimize etmektir ve bu durum, roket motoru veya taşıyan platform gibi 

titreşim kaynaklarının ilgili frekansa yakın yayın yapması halinde gerekli 
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olabilmektedir. Yapının doğal frekans değerlerinin, tahrik kaynağının frekansından 

uzağa kaydırılması birçok havacılık probleminde faydalı olabilmektedir. Aynı 

zamanda, doğal frekans değerlerinin artırılması, daha düşük deplasmanlara sahip 

modlara sahip olunması ile sonuçlanmaktadır ve bu önlem yapıyı hasardan 

korumakta ve çırpınma riskini de azaltmaktadır. Son olarak, bu tezde kanadın 

direngenliğinin ve doğal frekans değerlerinin gözetildiği çok amaçlı bir çalışma da 

paylaşılmıştır. Topoloji optimizasyonu kullanılarak, yapının doğal frekansının daha 

yüksek değerlere kaydırılarak aynı anda ağırlığının da azaltılması mümkün 

olmaktadır.  

Oluşturulan algoritma, konvansiyonel talaşlı imalat yöntemleriyle üretilebilen ve 

verimli materyal dağılımına sahip olan çeşitli yeni kanat yapılarını ortaya koymuştur. 

Bu yapılar birbirleriyle karşılaştırılmakta ve etkinlikleri hakkında sonuçlar 

çıkarılmaktadır. Sonuçlar, kullanılan algoritmanın iyileştirilmiş direngenlik ve doğal 

frekans değerlerine sahip oldukça verimli topolojiler elde etme kapasitesine sahip 

olduğunu göstermiştir. Ayrıca, Çift-yönlü Evrimsel Yapısal Optimizasyon (BESO)  

metodunun farklı parametrelerinin sonuçlanan yapılara etkisi bu tezde 

gösterilmektedir. Bu tez, kullanılan optimizasyon metodunun havacılık 

mühendisliğindeki kabiliyetlerini katlanan kanat yapısından örnekler vererek 

sunmaktadır. Ayrıca, tek tasarım hacmine odaklanan diğer topoloji optimizasyon 

çalışmalarının çoğunun aksine çoklu tasarım hacminde çalışarak literatüre yenilikçi 

bir katkıda da bulunmaktadır. 

 

Anahtar Kelimeler: Sonlu Elemanlar Methodu, Yapısal Optimizasyon, Topoloji 

Optimizasyonu, Frekans Optimizasyonu, Çift-Yönlü Evrimsel Yapısal 

Optimizasyon (BESO), Katlanabilir-Kanat
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CHAPTER 1  

1 INTRODUCTION 

Weight is the most critical parameter for most aerostructures. Aircraft should have 

lightweight structures like feathers and hollow bones of birds to increase the 

efficiency and duration of the flight. However, being lightweight is not enough for 

many times. The structure should be stiff enough to endure loads and be away from 

resonance and excessive deformation. To lighten aero structures, many methods 

have been proposed and applied throughout aviation history and among those, 

material selection is one of the most common methods. The Wright brothers used 

framed wing structures made of ash wood material for their first vehicle. Lately, the 

Airbus A380 has been made of mostly aluminum-based alloys due to its low density 

compared with steel. Composite materials are also quite popular in these times while 

building an aircraft and as an example, the composite material content of the Boeing 

787 Dreamliner is nearly more than half of its weight where the fuselage structure is 

made of carbon-based composites while there is fiberglass material to support wing-

fuselage connections. 

Structural optimization is another way to reduce the weight of the system. There are 

several optimization methods naming as size, shape, and topology. Although 

topology optimization is the most challenging one among them due to its complexity, 

this method comes with many benefits. It ensures optimal material distribution over 

the design space while satisfying various objectives such as stiffness, stress, natural 

frequency, etc. 

In this study, an aluminum missile folding wing of a cruise missile is optimized by 

using the Bi-directional Evolutionary Structural Optimization (BESO) method for 
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stiffness and natural frequency criteria. The aim is to reduce the weight of the wing 

while evolving the structure for improved stiffness and natural frequency values. 

Stiffness is critical for wing structures because it directly affects the displacement of 

the wing under the aerodynamic load. Improving the natural frequencies of the wing 

is also crucial to prevent dynamic instabilities and the phenomenon of flutter. 

Topology optimization is able to change the natural frequencies of the structure by 

changing its topology in the desired direction and reducing the weight of the wing 

simultaneously.  

1.1 Background and Motivation of the Study 

Missile systems could take different forms depending on their launching platforms. 

A missile system could be launched by a plane, an open-top launcher, or a sheltered 

canister platform. Missiles launched from canisters usually have folding wing 

structures to occupy less volume and get into the canister easily. Figure 1-1 shows 

the Roketsan Atmaca Cruise Missile whose launching platform is a canister and it 

has eight folding wings [1].  

 

 

Figure 1-1 Roketsan Atmaca Cruise Missile [1] 
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Folding wing structures are activated by torsional springs after launching. These 

torsional springs could be loaded and ready to launch for up to fifteen years in the 

canister. At the end of this period, relaxation of the torsional spring occurs and the 

torque value decreases [2]. Folding wing structures should be as light as possible to 

be opened up robustly and fast after fifteen years, even with this decreased torque 

value. In addition to this, aiming for a lightweight design is quite essential for every 

aerospace structure. Because of these reasons, the folding wing should be optimized 

to have a lighter design while satisfying necessary structural properties such as 

stiffness and natural frequency. The outer dimensions of the wing are constant due 

to aerodynamic performance requirements, and this situation leads to topology 

optimization on the inner volume of the wing without changing any exterior 

dimension. Besides this obligation, topology optimization is favorable because it 

promises better performance in comparison with other optimization types. There are 

several topology optimization methods, and they are mainly divided into gradient-

based and gradient-free methods. While gradient-based methods use gradient 

information to determine the direction of the optimization, gradient-free methods do 

not need any gradient information. In this study, the weight of the folding wing and 

the weight of the entire missile system are reduced by optimizing the folding wing 

with one of the most known gradient-based methods, “Bi-directional Evolutionary 

Structural Optimization (BESO)”. This iterative method leads the topology of the 

structure to evolve until the given constraint is satisfied, and the resulting structures 

in this thesis show that this method provides well-optimized structures with 

improved mechanical performance.  

To implement BESO on the wing structure, an algorithm is constructed in the 

MATLAB environment that uses MSC NASTRAN as a finite element solver. This 

algorithm works autonomously after the initial inputs are given, and it is terminated 

when the given constraint is satisfied. A new contribution to the literature is made 

by working in the field of multi-component optimization with this algorithm. This 

algorithm optimizes two different parts of the folding wing at the same time, while 

most studies in this area focus on single-component optimization. The wing design 



 

 
 4 
 

obtained at the end of the optimization process would be novel and must be 

manufacturable by conventional chip removal methods to have a convenient 

production cycle. Final structures should have uncomplicated topologies without any 

inner cavities and be suitable for machining with widespread chip removal tools. 

1.2 Objectives of the Study 

The main objective of this thesis is to design a folding wing with decreased weight 

and superior structural properties by using BESO. 

The followings are the objectives of this thesis: 

 Creating a successful algorithm in MATLAB using MSC NASTRAN finite 

element solver to perform a topology optimization. 

 Verifying developed algorithm through case studies from the literature. 

 Optimizing baseline wing structure using the created algorithm in MATLAB 

to have a lighter structure with objectives of stiffness and natural frequency. 

 Investigating the contribution of BESO parameters by comparing different 

topologies. 

 Evaluating all possible designs according to mechanical properties of 

stiffness and natural frequencies. 

 Comparing the manufacturability of the final structures by checking the 

complexity of their topologies  

 

1.3 Limitations of the Study 

The folding wing mechanism has inner and outer parts connected with a torsional 

spring. Following its launch, torsional springs are then activated and they rotate the 

inner and outer wing parts. Finally, spring-loaded pins lock the system and the wing 
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gets its final stable shape. Due to its complexity, some assumptions are bringing the 

following limitations into this thesis study: 

 This thesis focuses on the shape of the wing after launching, and therefore, 

torsional springs are not modeled. 

 Spring-loaded pins lock wing parts together after the launching. These 

elements are neglected and wing parts are assumed as one to make a simpler 

finite element model. 

 Outer skin structures are connected to the wing body by rivets. These rivets 

are neglected and connections between parts are assumed as a whole. 

 Only the first three modes of the folding wing are considered and any mode 

switching is not taken into account. 

 Maneuver loads are out of the scope of this thesis. 

 Buckling failure and maximum von Mises stress values are not checked in 

this thesis. 

 Flutter analysis is beyond the scope of this thesis. 

1.4 Outline of the Thesis 

This thesis primarily consists of six chapters and the organization is as follows. 

In Chapter 2, types of structural optimization methods are explained. Topology 

optimization is selected for this study; thus, the most known topology optimization 

methods are explained considering their differences, advantages, and disadvantages. 

The implications of these optimization methods on several aerospace cases are 

shown to provide insight. The selection of BESO as the main optimizer method is 

detailed with reasons. 

Chapter 3 focuses on BESO by providing the main idea behind it and the formulation 

of the method. An advanced filter system to avoid the checkerboard pattern problem, 

which is a well-known problem to indicate the shape of the elements’ formation, is 

examined. The working principles of the created algorithm in the MATLAB 
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environment are introduced in this chapter. This algorithm uses MSC NASTRAN as 

a finite element solver and MATLAB as an environment to create a cycle to iterate 

every topology. Several reference studies are tested to investigate the efficiency of 

this created algorithm and they are all presented in the related appendices. 

In Chapter 4, the folding wing structure is introduced with its specifications, 

dimensions and properties. Finite element modeling of the baseline structure is 

demonstrated with its element types and numbers. Besides the model, boundary 

conditions and loads are also assigned prior to the analyses. After constructing the 

model, static and modal analyses are performed to obtain the stiffness and the natural 

frequencies of the baseline wing structure. 

Chapter 5 is all about optimizing the folding wing structure. The created and tested 

MATLAB algorithm works on the main structure, which is modeled and ready for 

optimization. Different optimization studies on this wing structure are done and 

explained. The first objective is to obtain the maximum stiffness under the 

aerodynamic loads, and the second is to obtain the maximum selected natural 

frequency. Both objectives have a volume constraint, and the optimization goes until 

this constraint is satisfied. Additionally, a multi-objective study on stiffness and 

separation of natural frequencies is shared. Several topologies are obtained here due 

to different objectives and varying parameters of BESO.  

In Chapter 6, final conclusions are presented and recommendations for future studies 

are given. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Introduction 

Dictionary meaning of “optimization” is the act of making something as “good” as 

possible. This “good” can be several things if the topic is structural optimization. 

Therefore, structural optimization is the term to describe all efforts throughout 

finding an optimum structure in terms of stiffness, weight, natural frequency, and so 

on. There are various methods to optimize structures with different variables and 

goals in several different areas. One of the main application areas is aerospace, where 

there is a strong need for optimum structures having lightweight but sufficient 

designs. After computational developments and improvements in performance of 

algorithms with time, these optimization methods become more essential in the 

aerospace industry. There are countless examples of optimizations on aerospace 

structures in the literature and some of them related to this particular research area 

are also presented in this chapter. 

2.2 Structural Optimization Methods 

The origins of mathematical optimization can be traced back to the 17th century, to 

the days of Pierre de Fermat. In the same century, Newton proposed an iterative 

method to find the optimum, which laid the foundation for today’s optimization 

methods. The first traceable study on structural optimization is assumed to be from 

Maxwell in 1869 [3]. However, the most known primitive example of structure 

optimization was given by Michell in 1904 on the economy of material in truss 

structures [4]. This work is a significant initial step to structural optimization with 

an objective of weight, and the frame structure studied (Figure 2-1) is used in many 
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subsequent studies as a reference structure. This type of structure is also investigated 

as a case study in this thesis, and the results are shown in Appendix A. 

 

 

The era of modern structural optimization started when Schmit first integrated finite 

element analysis into structural optimization by using an IBM 653 computer in 1960 

[5]. Schmit showed that the lightest design does not always mean that it is fully 

stressed using a simple three-bar truss (Figure 2-2), two load cases, and a computer 

program. It comes as no surprise that structural optimization and mathematical 

programming were merged at that time because of the strong competition for space 

Figure 2-1 Famous Michell Type Structure [4] 

Figure 2-2 Three-bar Truss [5] 
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and the need for lightweight structures. Research funds were substantial to develop 

new methods, and digital computers started to be common. Vanderplaats defines that 

time as “The Magnificent ’60s” due to numerous discussions and progresses on 

structural optimization [6]. 

After the “Magnificent ’60s”, developed methods have become diversified due to 

different needs and different approaches. These methods can be categorized in 

several ways, and the most accepted categorization is sizing, shape, and topology 

optimization. All of these optimization methods iteratively adjust the size, shape, or 

topology of a design until the structure demonstrates maximum utility, subject to 

performance restrictions. Figure 2-3 demonstrates the general aspects of these 

categories [7]. 

Being the simplest of these three optimization categories, sizing optimization works 

by changing the dimensions of the design while keeping shape and topology 

constant. Therefore, the optimum is sought by varying dimensions of the design.  As 

an example, these dimensions can be the span, chord, or thickness of the aircraft 

wing. In the literature, this method is generally used to determine the dimensions of 

truss structures. 

Shape Optimization changes the locations of the nodes through the cross-section 

shape of the design to find an optimum shape. This optimization generally involves 

sizing optimization, which means a higher computational cost. This method is 

commonly used to design the cross-sectional shapes of structural elements, such as 

beams and columns, to be as lightweight as possible while meeting requirements. 

Topology Optimization is the most complex one of these three categories. The 

complexity of this process is due to the large number of design variables, which refer 

to the various characteristics of the elements in the design space; and density is the 

most commonly used one. If the density of the element is 0, this means that the 

element does not exist anymore.  In this way, holes are obtained in the structure, the 

topology differs, and material distribution over the design is arranged as efficiently 

as possible. A higher number of elements means a higher number of combinations 
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while processing for the optimum topology. This search takes considerable 

computational time but results in structures close to the global optimum and hence, 

better results for the objective under the constraints. This makes topology 

optimization the most popular structural optimization category in seeking the best. 

 

 

Because of the computational complexity and the high computational time of 

topology optimization, researchers strived to find the most efficient way to apply 

topology optimization to structures, and thus new mechanisms sprouted. These 

mechanisms are explained briefly in this chapter with examples. 

  

Figure 2-3 Recap of Optimization Categories [7] 
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2.2.1 Solid Isotropic Material with Penalization (SIMP) 

The best-known topology optimization method is Solid Isotropic Material with 

Penalization (SIMP), developed simultaneously by Bendsøe in 1989 [8] and Zhou 

and Rozvany in 1991 [9]. The term SIMP was first introduced by Rozvany in 1992 

[10]. This revolutionary method extended the field of topology optimization and 

made topology optimization applicable to different engineering topics with diverse 

objectives. Even though it was one of the early methods, nowadays many 

commercial optimization software still uses this method for calculations.  

Finite elements in the design space initially have discrete densities of 0 or 1. Direct 

search methods could be computationally expensive because of the discrete black/ 

white or solid/void topologies. To use continuous variable formulation, there should 

be some elements with intermediate densities. During the optimization of SIMP, 

some elements gained densities between 0 and 1. These virtual densities affect the 

elastic modulus of the elements. The relationship between density and elastic 

modulus is related to the penalty factor (p), which is exponential and generally 

selected as 3. The elements with intermediate densities form “grey areas” in the 

design space, and hence, efficient continuous function between elements is provided. 

Difficulties of discrete design space with discontinuous objective function are 

eliminated in this way because the objective function is now continuous and its 

sensitivity is differentiable. 

There are several examples of using SIMP to optimize structures in aerospace. One 

of them was conducted by Luo et al. in 2006 to optimize the topology of the full 

missile body with compliance and eigenfrequency-related objectives [11]. This 

multi-objective study aims to find the optimum topology for minimum compliance 

and maximum fundamental frequency while performing static and dynamic analyses 

in a sequence. A multilevel sequence algorithm is employed to do multi-objective 

optimization with different levels of importance. Level 1 is selected as the maximum 

fundamental frequency problem, and Level 2 is selected as the compliance problem. 

First, single objective optimization for frequency is conducted. After receiving the 
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optimum frequency result from this run, Level 2 is started with the constraint of the 

optimum frequency value from Level 1. Figure 2-4 shows the resulting topology of 

this study. 

 

 

At the end of this successful study, 1107 kg of mass is removed from the structure 

while the fundamental eigenfrequency is increased to 176% of its initial value. These 

results show that topology optimization contributes to the design in a drastic way 

and guides the mechanical designer of the structure to the optimum. Additionally, 

the authors indicate that the manufacturability of this topology is out of scope and 

there would be some design changes if prototyping is the case. 

In 2009, Eves et al. published a paper on the topology optimization of a UAV Wing 

[12]. The main aim is to determine the optimum structural layout of the wing with 

optimum locations of ribs and spars. Minimum compliance is the objective, and there 

are constraints on local buckling and deflection. Two different topologies are 

obtained due to different approaches and are shown in Figure 2-5. 

 

Figure 2-4 Finite Element Model of the Missile, (b) End Model of the Missile 
[11] 



 

 
 13 

 

 

Oktay et al. conducted research on 3-D structural topology optimization of an aerial 

vehicle in 2014 [13]. They used the homogenization method, which is the 

predecessor of SIMP and was suggested by Bendsøe and Kikuchi in 1988 [14]. 

Topology optimization is completed with CFD analysis and minimum compliance is 

aimed. In the end, the structure in Figure 2-6 is obtained and it is 2.19 times stiffer 

than the conventional design with the same volume. 

 

Figure 2-5 (a) UAV, (b) Two Different Final Topologies [12] 

Figure 2-6 Final Topology of the Wing [13] 
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One of the most important aerospace related problems is flutter, the unwanted 

phenomenon that occurs when there is a coupling of modes during the flight. This 

coupling causes self-excited oscillation on the wing where energy is extracted from 

the flow. Munk and his colleagues worked on a representative aircraft wing to avoid 

from flutter by changing the topology of the wing in 2017 [15]. The most common 

dynamic optimization objectives on wing structures are maximizing the fundamental 

frequency and separating it from the neighboring frequencies. Munk et al. aimed to 

maximize the difference between the second and the third modes of the wing by 

decreasing the second mode and holding the third mode the same. The first try ended 

up with a 42% reduced fundamental frequency, which is undesired due to the 

tendency of divergence. Therefore, frequency constraint was implemented for the 

first mode and the analysis was rerun again. Even though frequency separation is 

less for the last result, it is more convenient because of the higher fundamental 

natural frequency. Despite the weight is dropped by 15%, the flutter speed is 

increased with the topology of Figure 2-7 (c). This work shows how capable of 

topology optimization is for dynamic objectives. 

Figure 2-7 (a) Representative Wing, (b) Topology of the First Run, (c) Topology of 
the Second Run [15] 
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2.2.2 Evolutionary Structural Optimization (ESO) 

Evolutionary Structural Optimization (ESO) was first introduced by Xie and Steven 

in 1993 [16]. This method promises continuously evolving designs by every iteration 

as its name suggests. The topology of the design part is slowly improved during the 

optimization until it reaches the optimum. This method became popular because it is 

easy to implement and use with any finite element solver. The main idea is quite 

simple as; noncontributing and inefficient elements are removed from the structure 

step by step. To determine which element is contributing, the sensitivity number of 

every element should be calculated. According to objectives, the sensitivity number 

could be selected as von Mises stress value, strain energy value, or such. During 

calculating the sensitivity numbers, finite element solvers have an essential role. 

After removing noncontributing elements from the structure, the next iteration is 

started with the new topology and this cycle goes on until the objective volume is 

reached. Even though this method is simple and useful, it does not guarantee that 

optimum topology is obtained every time. The main reason is that the mechanical 

links could be broken by removing elements and this situation introduces mechanical 

instability to the system, where there is no comeback because elements are removed 

and can not be recovered back. 

ESO method was first used for dynamic problems in 1994 by Xie and Steven [17]. 

This study suggests new sensitivity number calculations to maximize or minimize 

the natural frequencies of the structure. The authors demonstrated more dynamic 

problems in 1996 [18] by maximizing selected frequencies, maximizing the gap 

between two frequencies and optimizing multiple frequencies at the same time. This 

study showed the capabilities of evolutionary methods on dynamic problems. 

In 2011, Das and Jones presented a study on topology optimization of a bulkhead 

component of a F/A-18 aircraft by ESO [19]. This aircraft is prominent by its 

maneuverability capability and speed; hence the weight of the aircraft has an 

important role on the performance of the aircraft and this is the main aim of this 
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study. The criterion for sensitivity number is selected as von Mises stress and Figure 

2-8 shows the initial and final topology of the bulkhead. 

 

The algorithm converged after 86 iterations and the volume decreased to 75% of the 

initial volume. Converging histories of the analysis are demonstrated in Figure 2-9. 

Since there are several bulkheads in the aircraft, this weight reduction may affect the 

dynamics of the aircraft drastically.  

Unrecoverable elements limit the scope of the application of ESO and it creates a 

need for a superior methodology. Querin came up with an improved ESO method 

which allows recovering removed elements from previous iterations and named this 

method as Bi-Directional Evolutionary Structural Optimization (BESO) in 1998 

[20].  

Figure 2-8 (a) A set of  F/A-18 bulkheads (b) Initial Topology (c) Final Topology 
[19] 

Figure 2-9 Converging Histories of (a) Max. Stress (b) Volume Fraction [19] 
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2.2.3 Bi-directional Evolutionary Structural Optimization (BESO) 

BESO is the methodology that works in both ways, removing and adding elements. 

Removed elements are excluded from the topology but they are not totally removed 

from the calculations. The sensitivity numbers of void elements are still calculated 

by using an advanced filter scheme that utilizes the sensitivity numbers of adjacent 

elements. After all sensitivity numbers are calculated, solid elements with lower 

sensitivity numbers are removed from the topology and void elements with higher 

sensitivity numbers are recovered back to solid again. Although this filter adds 

complexity to the calculations, it comes with the benefit of results much closer to the 

optimum one. 

BESO has two main versions, namely; hard-kill BESO and soft-kill BESO. The 

mechanical properties of void elements in hard-kill BESO are stated as zero. So, they 

do not contribute to the static or dynamic analysis by any chance but they have again 

sensitivity numbers by the filter scheme. In every iteration, some elements are 

removed from the topology and computation time for every step gets lower due to 

fewer elements involved in the analysis. This is one of the biggest advantages of the 

hard-kill BESO. On the other hand, the mechanical properties of void elements are 

not zero but weakened in soft-kill BESO. This means that the mechanical properties 

of void elements are specified as quite small numbers but they are not completely 

removed from the topology and still occupy a place in the finite element analysis at 

every step. Therefore, the computation time of iterations does not decrease with each 

step, and this creates a major disadvantage for soft-kill BESO. However, this method 

offers better performance for natural frequency-based optimization than hard-kill 

BESO could [21]. 

The initial research for stiffness optimization by BESO was conducted by Yang in 

1999 [22]. The improvements were made on this method by Huang and Xie in 2007 

by involving historical sensitivity numbers of the elements in the calculations [23]. 

This upgrade increased the accuracy and reliability of the method in a significant 
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way. Soft-kill BESO method was detailed in 2010 by Huang and Xie with a 

comprehensive study [21]. 

One of the greatest examples of using BESO for an aircraft structure was presented 

by Munk in 2018 [24]. In this study, Munk showed many topology optimization 

related problems with different constraints such as buckling, stress and frequency. In 

the end, the author shared the final study about topology optimization of a wing-box 

of large transport aircraft under stress and buckling constraints. The aluminum outer 

skin structure, which is excluded from the optimization to preserve the continuity of 

the aerodynamic surface, is subjected to the flight conditions listed in Table 2-1. For 

simplicity, the aerodynamic load is not changed during the optimization with 

evolving topologies. 

 

Table 2-1 Flight Conditions of the Wing-Box [24]  

Altitude (m) Mach Number The angle of Attack (°) 

10000 0.85 2 

 

The finite element model of the wing box with eight-node polyhedron solid elements 

is shown in Figure 2-10. 

The analysis is done according to the buckling and stress constraints to minimize the 

weight. The final topology without outer skins is shown in Figure 2-11. This 

Figure 2-10 Finite Element Model of Wing Box [24] 
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topology has a volume that is 35% of the initial design, which means that a 65% 

reduction in mass is present. 

 

This example demonstrates the strong capabilities of BESO in handling multiple 

constraints and its usefulness in the aerospace industry, where weight minimization 

is often a key objective while facing numerous constraints. 

Munk and his colleagues again published a study about BESO on aircraft 

components in 2019 [25]. This study presents two different design problems to 

illustrate the effectiveness and benefits of topology optimization compared to 

traditional engineering design approaches. The first case is the aircraft landing gear 

of a Jabiru J160 and the second case is the engine mount design of a Jabiru 2200cc. 

For both cases, successful topologies are developed by BESO, and results are 

discussed. There are two constraints for the landing gear design. The first constraint 

is the stress because this landing gear should resist load cases of level landing and 

one-wheel landing. The second constraint is displacement because the landing gear 

should not exceed 1-inch displacement vertical to guarantee that there is no contact 

between the landing gear and wing strut. With these two constraints, analysis was 

conducted to minimize mass, and a successful topology was obtained after 97 

iterations. At the same time, different part is designed for the landing gear by using 

engineering design principles, hand calculations, and CAD tools. Both designs are 

shown in Figure 2-12 after rendering. For three of four load cases, the stress level is 

Figure 2-11 Final Topology of the Wing Box  [24] 
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closer to the maximum limit for the topologically optimized structure, and this shows 

that material distribution is extremely efficient. Additionally, it is 3.5 kg lighter than 

the one obtained through engineering principles design. This study is a good example 

of the benefits of topology optimization over traditionally engineering-based 

designs. 

 

For the second case, an engine mount design of a Jabiru 2200cc engine is 

investigated. This engine mount should resist all loads and buckling of thin members 

should be avoided during minimum mass optimization. After 98 iterations, topology 

in Figure 2-13 is obtained, and volume is decreased to 4.35% of the initial volume.  

Figure 2-12 Two Different Landing Gear Designs (a) Engineering Principles, (b) 
Topologically Optimized [25] 

Figure 2-13 Final Topology of the Engine Mount [25] 
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In 2019, Teimouri and Asgari conducted research on multi-objective BESO topology 

optimization [26]. They aimed to find different 2-D structures which are obtained by 

varying weighted coefficients of the objectives, namely; stiffness and natural 

frequency for this study. These objectives are also used in this thesis, and therefore 

the findings of this study have great importance.  

The objectives are minimizing the compliance and maximizing the fundamental 

frequency while decreasing the volume to half of the initial volume. There are 

different cases with different weighted coefficients and they are indicated in Table 

2-2. Weighted coefficients are multiplied by the sensitivity numbers of each 

objective, then they are added together and combined sensitivity numbers are 

obtained. These new sensitivity numbers are used to determine added or removed 

elements. When coefficients are 1 and 0, the case is a single-objective case. Table 

2-2 also shows the final objective values of compliance and fundamental frequencies 

of each case. It is clear that the weighted coefficients have a great impact on the 

objective values. Topologies of each case can also be seen in Figure 2-14.  

 

Table 2-2 Weighted Coefficients and Objective Results [26] 

Case 𝐰𝒄 (Weighted 

Coefficient of 

Compliance) 

𝐰 (Weighted 

Coefficient of 

Natural Frequency) 

C [Nmm] 

(Mean 

Compliance) 

𝟏 [rad/sec] 

(Fundamental 

Frequency) 

a 0 1 35 170 

b 0.1 0.9 29 167 

c 0.3 0.7 22.8 165 

d 0.5 0.5 12.4 158 

e 0.7 0.3 11 152 

f 0.9 0.1 9.8 150 

g 1 0 9.8 147 
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As it can be seen from Figure 2-14, topologies differ with weighted coefficients. 

When the weighted coefficient of compliance is higher, the mechanical links in the 

middle take a specific shape that effectively minimizes compliance in the system. 

 

Optimization of minimum weight for an aero structure usually requires consideration 

of both compliance and natural frequency, as structures may be vulnerable to 

resonance or excessive displacement without proper attention to these factors. Thus, 

topology optimization methods which work simultaneously for multi-objectives are 

quite beneficial in the aerospace industry. Results obtained by this study using BESO 

for multi-objective topology optimization are reasonably successful and promise 

confidence for future works. 

  

Figure 2-14 Topologies of Different Cases (a) w = 0 , w =1 (b) w = 0.1 , w 
=0.9 (c) w = 0.3 , w =0.7 (d) w = 0.5 , w =0.5  (e) w = 0.7 , w =0.3 (f) 

w = 0.9 , w =0.1 (g) w = 1 , w =0 [26] 
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2.2.4 Level Set Topology Optimization 

Sethian et al. implemented the level set approach for the first time to topology 

optimization in 2000, capturing the free border of a structure in linear elasticity [27]. 

Boundaries in the level set method are represented as the zero-level curve of a scalar 

function which is the level set function. Optimization conditions and controlling the 

dynamics of the level set function according to the physical problem change the 

contour of the geometric boundary. The majority of the level-set formulations are 

dependent on finite elements, hence boundaries are determined by the discrete mesh 

elements. 

2.2.5 Metaheuristic Methods 

Metaheuristic methods are stochastic and do not need any gradient information, 

which makes them unique. There are numerous metaheuristic methods because each 

of them mimics different features of nature. While Grey Wolf Optimizer tries to 

assimilate and apply the behavior of a wolf pack [28], Crow Search Algorithm 

investigates the intelligent behavior of sneaky crows, which search for excess food 

hiding places of other crows [29]. The best-known meta-heuristic optimization 

methods are Particle Swarm Optimization (PSO) [30], Genetic Algorithm (GA) [31] 

and Ant Colony Optimization (ACO) [32]. All these nature-based methods have 

similar searching techniques: exploration and exploitation. Randomly new designs 

are generated to find the optimum in a huge design space with the guidance of these 

methods. These methods are straightforward, highly adaptable, and do not rely on 

derivative information, making them applicable to a wide range of engineering 

problems and valuable in situations where derivative information is costly to obtain. 

Most importantly, the ability of these methods to avoid local optimum is better than 

the gradient-based methods. 

In 2010, Luh investigated a metaheuristic method of binary particle swarm 

optimization on topologies [33]. Several cases of minimum compliance and 
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minimum weight are shown in this study. Jaafer et al. showed the capabilities of the 

Binary Bat Algorithm on topology optimization in 2020 [34]. They investigated new 

filtering and penalty algorithm on well-known topology problems and discussed the 

results. These two studies show that metaheuristics methods can work well with 

topology optimization as well as they work with shape and size optimization. 

2.3 Comparison of the Topology Optimization Methods 

SIMP method is one of the prior and most-known topology optimization methods. It 

is a comparatively simple method and can be applied to many different engineering 

topics with variable loads and boundary conditions. This is the main reason why 

most topology optimization software uses this method for calculations. In the 

literature, there are numerous studies about this method, and one of them is from 

Rozvany in 2009 [35]. He investigated the SIMP method in a detailed way and 

compared it with ESO. Even though he generally mentioned about advantages of 

SIMP, he also stated several defects of SIMP. The most important defect of SIMP is 

having difficulties with complex non-convex problems. As the other gradient-based 

methods do, SIMP does not guarantee global optimum when the structure is highly 

non-convex, and there are many local optimums. This methodology tends to stick 

with one of the local minimums because of its gradient background, and this 

sometimes leads to the wrong solution. One other disadvantage of SIMP is having 

grey areas, where densities of elements are between 0 and 1. These areas are essential 

for SIMP mechanism, but they lead to the manufacturability problem of the final 

topology. Rozvany states that these areas can be removed by some new studies on 

SIMP, but even these studies do not promise to remove all of these grey areas. This 

is an important problem if the final topology should be manufactured.  

Contrary to SIMP, the geometry of the structure is defined by discrete elements in 

the level set topology methods. These methods are promising for the future 

developments of topology optimization with a strong mathematical background and 

the ability to handle highly complicated shapes and topologies. In 2013, Sigmund 
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and Maute conducted deep research on nearly all topology optimization methods by 

comparing them with advantages and disadvantages [36]. One of the biggest 

drawbacks of level-set methods is the dependency on the initial guess of the 

topology. This stems from the Hamilton-Jacobi equation, which updates level set 

functions. This equation does not allow forming of new holes in the topology. To 

integrate new holes, there should be an additional step that can be costly and effects 

the convergence of this method. 

Metaheuristics methods are fascinating algorithms that show how nature and 

engineering can be similar and work together. Besides their attractive backgrounds, 

they can present nice solutions to structural optimization problems. These methods 

are not just common for structural optimization; they are also used for computational 

software-based problems. In 2011, Sigmund criticized metaheuristic methods 

heavily and stated that these methods are useless if the subject is topology 

optimization [37]. The main idea of this criticism stems from the possible number of 

combinations. Elements in the design can be solid or void and there can be more than 

100,000 elements in the topology optimization problem easily. This creates 10 to the 

power of 30100 different combinations. Certainly, metaheuristics methodologies 

decrease the number of combinations with search algorithms, but again the size of 

the design space is intimidating. This makes these methods incredibly expensive for 

the sense of computation if the problem is to design the topology of any structure.          

Sigmund commented in the same study as graduate students should not spend any 

year researching these methods, which are definitely inferior to existing topology 

optimization methods. However, it should not be forgotten that metaheuristic 

methods are the best match for parallel computing with supercomputers by their 

nature. There is a still chance for these methods to be popular and efficient with the 

developed, cheaper, and more common supercomputers in the future on topology 

optimization. 

BESO is one of the most advanced heuristic methods and it is investigated by many 

authors in different studies. All these studies show that implementing BESO to any 

topology related engineering problem is quite simple and not cumbersome. This 
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method ranks the sensitivity numbers of the elements and determines added or 

removed elements. This feature provides flexibility to use this method with any 

commercial finite element solvers. Sensitivity numbers of all elements can be 

calculated by finite element solvers and values can be implemented into BESO 

calculations. In addition, it can work with different objectives and constraints while 

eliminating the mesh dependency by the filter scheme. Rozvany criticizes this 

method in 2009 as being computationally ineffective due to its fully heuristic 

structure [35]. Even though it is correct, this method is more prone to avoid local 

optimums than other gradient-based methods because of its heuristic structure. This 

makes this method more applicable for highly complex non-convex structures, such 

as the main topic of this thesis. Huang and Xie discussed Rozvany’s criticism in 

2010, and they emphasized the advantages of BESO with its application areas [21]. 

Soft-kill BESO is highly recommended for natural frequency-orientated topology 

optimization in this study because local artificial modes can be avoided, and effective 

results are found by this method.  

2.4 Conclusion 

This chapter focuses on structural optimization methods, with a particular emphasis 

on topology optimization techniques and their applications in the aerospace industry. 

It is demonstrated that topology optimization is a game changer approach to achieve 

highly effective structures with minimal weight. In addition to weight, there may be 

other constraints of stress, stiffness and natural frequency. After comparing different 

topology optimization methodologies, soft-kill BESO is selected for this thesis study 

due to its compatibility with finite element solvers and its ability to generate 

satisfactory results for non-convex geometries. 
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CHAPTER 3  

3 OPTIMIZATION METHODOLOGY 

3.1 Introduction 

To optimize structures, there should be a tool to implement a rigid strategy according 

to objectives and constraints. This strategy is about selecting legitimate constraints 

and objectives which are beneficial in the related engineering area. Stiffness, stress 

and natural frequency are the main examples of objectives in aerospace optimization 

studies. In this thesis, three main strategies are selected to optimize the folding wing 

structure. The first strategy is decreasing the weight of the wing while keeping its 

stiffness at the maximum level and minimum compliance is selected as the objective 

to accomplish it. Compliance simply means the product of applied load and 

displacement and minimizing it results in maximizing stiffness. The change of the 

mean compliance of the topology is equal to the strain energy value of added or 

removed element. The second strategy is maximizing the selected natural frequency 

value of the wing while decreasing its weight. Optimizing natural frequencies have 

great importance for many engineering areas and it is possible to implement it with 

topology optimization. This type of optimization is more cumbersome than 

compliance optimization, but it can be more beneficial for some special cases. The 

last strategy is a multi-objective optimization with the objectives of stiffness and 

natural frequency at the same time. Topologies evolve according to two different 

objectives with the constraint of weight and this advanced multi-objective approach 

can present results that are feasible for stiffness and frequency criteria 

simultaneously. 
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Generally, commercial software tools are used for topology optimization studies. In 

this study, an in-house generated code in MATLAB environment with MSC 

NASTRAN finite element solver is used. The central objectives of constructing an 

algorithm in this thesis include the ability to customize and control the design. The 

resulting algorithm is adaptable, reliable and provides the user a greater control. 

Additionally, the creation of such an algorithm affords the opportunity for 

intellectual property protection. Intellectual property has significant importance in 

the aerospace and defense industry and the protection of it can prevent potential 

issues in the face of global crises. This difficult situation is always avoided and 

prevented by having genuine and independent engineering tools and facilities. Even 

though the constructed algorithm in this study uses MSC NASTRAN as a finite 

elemental solver, there is no future risk for intellectual property problems because 

every finite element solver can be implemented easily into this algorithm which turns 

out to be one of the best aspects of it.  

In this chapter, applied strategies and the constructed algorithm are explained in 

detail. ESO and BESO are used as solver optimization methods, and they are both 

implemented into the generated algorithm. Although they are similar, there are main 

differences such as filter scheme, addition of elements and selection of input 

parameters. The formulations of these optimization methods in the algorithm are 

provided in this chapter. Reference studies to investigate the accuracy of the 

constructed algorithm are also shown in the related appendices. 

3.2 Calculations of Evolutionary Structural Optimization (ESO) Method 

ESO is a simple yet effective topology optimization method that has gained 

popularity due to its simplicity. While it may not always provide the optimal 

solution, it is a useful tool for having ideas about optimized structures. ESO method 

involves gradually removing elements from the structure, leading the structure to 

evolve and eventually reach its final topology through this process of element 

removal. Finite element analysis is used to identify elements for removal, 
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specifically targeting those with lower stress or strain energy values in order to 

increase the structure's efficiency where the stress or strain values of all elements 

should be within a narrow, safe range. In this study, ESO is chosen for testing the 

constructed algorithm due to its simplicity and speed in producing results. Von Mises 

stress is used as the criterion and a related reference study is shared in Appendix A. 

There are two main parameters of ESO, namely, rejection ratio (𝑅𝑅) and 

evolutionary rate (𝐸𝑅). After performing the finite element analysis, von Mises stress 

of every element is divided by the maximum von Mises stress value of the whole 

structure individually and the ratio found is compared with RR. This comparison 

determines whether an element is removed or not, as shown in Equation (3-1). 

 

 𝛼

𝛼
< 𝑅𝑅  (3-1) 

 

𝛼  is the von Mises stress of the element and 𝛼  is the maximum von Mises stress. 

𝑅𝑅  is the rejection ratio of 𝑖   iteration, because it is updated every iteration by 𝐸𝑅. 

This is shown in Equation (3-2). 

 

 𝑅𝑅 = 𝑅𝑅 + 𝐸𝑅 (3-2) 

 

The elements are removed according to Equation (3-1), then, 𝑅𝑅 is updated by 

Equation (3-2) and a new iteration is started with this 𝑅𝑅 value. The process of 

removing inefficient elements according to von Mises stress values in each iteration 

continues until the optimal structure is obtained. Steps of the whole procedure are 

listed as follows: 

1. Dividing the structure into finite elements 

2. Conducting finite element analysis to find out stress or strain energy level 
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3. Removing elements according to Equation (3-1) 

4. Updating 𝑅𝑅 according to Equation (3-2) 

5. Repeating steps between 2 and 4 until the optimum solution is obtained 

3.3 Calculations of Bi-directional Evolutionary Structural Optimization 

(BESO) Method 

BESO is the superior method with adding/removing capabilities and a filter scheme. 

Elements are gradually removed and added to the topology until the optimum is 

reached. Filter scheme ensures mesh-independency andsolves checkerboard problem 

whichis detailed in this chapter. BESO promises more successful results which are 

closer to the optimum topology than ESO [20]. However, it is computationally more 

expensive and more complicated than ESO due to the filter scheme. The first and the 

second steps are again discretizing the structure to finite elements and conducting 

finite element analysis. After performing a finite element analysis, the sensitivity 

numbers of every element are calculated. These sensitivity numbers are then used to 

determine the added or removed elements, and calculations differ from objective to 

objective. In this study, sensitivity number calculations of stiffness and natural 

frequency are presented. 

Stiffness is one of the major aspects of nearly all aerospace structures. Inversion of 

the stiffness is compliance and mean compliance of the structure can be expressed 

by the total strain energy value under external loads. It is calculated as below: 

 

 
𝐶 =

1

2
𝑓 𝑢 

(3-3) 

 

where f is the external load vector, and u is the displacement vector. When the 𝑖  

element is removed from the structure, the mean compliance, C, is changed as 
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𝛼 = ∆𝐶 =

1

2
𝑓 ∆𝑢 = −

1

2
𝑓 𝐾 ∆𝐾𝑢 =

1

2
𝑢 𝐾 𝑢  

(3-4) 

   

   

where 𝑢  is the displacement vector of 𝑖   element, 𝐾 is the global stiffness matrix, 

and ∆𝐾 is the change of stiffness matrix after removal of 𝑖   element, which equals 

to 𝐾 , the stiffness matrix of the 𝑖   element. This change in mean compliance is 

stated as an “elemental sensitivity number” and it is shown as 𝛼 . This equation 

indicates that the change in mean compliance after removing the 𝑖   element equals 

the elemental strain energy of the 𝑖   element. In that way, the most inefficient 

elements are the ones with low strain energies, and they should be eliminated to 

minimize compliance or maximize the stiffness, which are the same. 

For most BESO applications, the aim is  minimizing compliance given in Equation 

(3-5), while decreasing volume according to Equation (3-6).  

 

 
Minimize 𝐶 =

1

2
𝑓 𝑢 

(3-5) 

  

Subject to 𝑉∗ − 𝑉 𝑥 = 0 

 

(3-6) 

 𝑥 = 0  or  1 (3-7) 

 

𝑉∗ and 𝑉   are prescribed total volume and total volume of the 𝑖   element. 𝑁  

indicates the total number of elements in the design space. Equation (3-7) shows the 

binary design variable of 𝑥  and it means whether element is solid or void. When the 

element is void, it is removed from the structure and analysis goes on. This is valid 

only for the hard-kill BESO and this binary design variable is different for soft-kill 

BESO, which distinguishes the main difference between the two methods. 
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Volume constraint in Equation (3-6) is expressed as equality in the BESO 

calculations [21], while volume constraint is less than or equal to zero for SIMP 

calculations as exemplified in the study of Luo [11]. Therefore, most of the BESO 

studies start from unfeasible full-design domain, and analysis continues until the 

volume constraint and convergence criterion in Equation (3-8) are satisfied. 

 

convergence criterion =
∑ 𝐶 − ∑ 𝐶

∑ 𝐶
≤ 𝜏 

(3-8) 

 

Where 𝜏 is allowable convergence tolerance, 𝑁 is the integer number which is 

generally selected as 5 [21] and k is the current iteration number. This equation is 

satisfied when the change in the mean compliance over the selected number of 

iterations is acceptably small. 

Directly removing elements from the structure creates difficulties in topology 

optimization. The most common problem is having irrational topologies with 

discontinuities. To overcome this problem, soft-kill BESO utilizing the material 

interpolation scheme was suggested by Huang and Xie [38]. 

Equations (3-5) and (3-6) are still valid for soft-kill BESO but there is a need for a 

new design variable set in order to define weak mechanical properties of the soft 

elements and this variable set can be stated as  

 

 𝑥 = 𝑥   or  1 (3-9) 

 

where 𝑥  is quite a small number, in most of cases it is 0.001 [21]. This equation 

shows that elements with lower sensitivity numbers are not removed from the 

structure totally. Instead, their mechanical properties are weakened by the material 

interpolation scheme through penalization, which was first proposed by Bendsøe to 
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have nearly solid-void designs of SIMP in 1989 [8]. Young’s modulus of the 

elements which are selected to be weakened should be interpolated as, 

 

 𝐸(𝑥 ) = 𝐸 𝑥  (3-10) 

 

where 𝐸  is the Young’s modulus of solid elements and 𝑝 is the penalty component, 

which is generally selected as 3 [21]. In this way, elements with lower sensitivity 

numbers are not removed from the structure but they do not contribute to the 

structure in a mechanical sense anymore.   

After some derivations and using the material interpolation scheme, Huang and Xie 

[21] calculated the sensitivity number of solid or soft elements such as 

 

 

𝛼 = −
1

𝑝
 
∂𝐶

∂𝑥
=

1

2
𝑢 𝐾 𝑢 , if  𝑥 = 1

1

2
𝑥 𝑢 𝐾 𝑢 , if  𝑥 = 𝑥

 

(3-11) 

 

where 𝐾  is the elemental stiffness matrix of the solid element. It is clear that the 

sensitivity numbers of soft elements depend on the penalty component. When the 

penalty component diverges to infinity, this sensitivity number becomes zero, which 

is basically the same as hard-kill BESO. This shows that soft-kill BESO is a sub-

type of hard-kill BESO.  

When the design variable is zero, it is not included in the finite element analysis, and 

it saves a lot of computational time. This is why hard-kill BESO is the most preferred 

and the fastest BESO method among the others. However, the risk of having 

permanent damage in the topology is higher with this method [21]. In addition, there 

are some special material interpolation schemes of soft elements to avoid from 

localized vibration modes in the soft-kill BESO method. This benefit can be very 
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crucial if the objective is selected as maximizing any natural frequency of the 

structure. Because of all these reasons, soft-kill BESO is selected as the main method 

to use in this thesis, and it is aimed to be implemented into the algorithm 

successfully. 

Apart from stiffness, natural frequency of a structure is also one of the most popular 

objectives in aerospace. The primary objectives of this type of topology optimization 

method include maximizing the selected natural frequency or the gap between two 

natural frequencies. Huang provided how to calculate sensitivity numbers for 

frequency optimization with soft-kill BESO in 2009 [38]. He explained a new way 

of finding the sensitivity numbers of the elements and suggested a new alternative 

material interpolation scheme to avoid from artificial localized vibration modes in 

soft zones. This new scheme aims to solve the extremely high ratio between mass 

and stiffness in soft regions. To keep this ratio at a reasonable level, density and 

Young’s modulus should be penalized as 

 

 𝜌(𝑥 ) = 𝑥 𝜌  

𝐸(𝑥 ) = 𝑥 𝐸  

(3-12) 

   

where 𝜌  and 𝐸  are the density and Young’s modulus of the solid material, 

respectively.After some derivations and implementing a new material interpolation 

scheme into elemental sensitivity number calculations as Huang and Xie stated [21], 

the sensitivity number for maximizing  𝑗  natural frequency can be found as 

 

 𝛼 =
1

𝑝
 
∂𝜔

∂𝑥
=

⎩
⎪
⎨

⎪
⎧

1

2𝜔
𝑢 (

1 − 𝑥

1 − 𝑥
𝐾 −

𝜔

𝑝
𝑀 )𝑢 , if  𝑥 = 1

1

2𝜔
𝑢 (

𝑥 − 𝑥

1 − 𝑥
𝐾 −

𝜔

𝑝
𝑀 )𝑢 , if  𝑥 = 𝑥

 (3-13) 
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where 𝑀  and 𝐾  are mass and stiffness matrices of the 𝑖   solid element. 𝜔   is the 

𝑗   natural frequency and 𝑢  is the eigenvector of 𝑗   natural frequency. 

Until now, three different sensitivity number calculations are shown. Equations (3-

4) and (3-11) are the ones with the objective of maximizing stiffness and they are for 

hard-kill BESO and soft-kill BESO, respectively. Equation (3-13) is to maximize 𝜔  

by using the soft-kill BESO method. After calculating the sensitivity numbers, the 

remaining sequences to evolve for optimal structure are the same for all approaches. 

The next important step is implementation of the filter scheme into the algorithm. 

3.4 Filter Scheme 

Inclusion of filter scheme is one of the biggest differences between ESO and BESO. 

The main aims of this scheme are solving the checkerboard problem, calculating the 

sensitivity numbers of void/soft elements and creating mesh-independent solutions. 

When the structure is discretized using low-order bilinear or trilinear finite elements, 

optimization by ESO method may result in a checkerboard pattern due to 

discontinuities along element boundaries. This unwanted pattern shown in Figure 3-

1 decreases the manufacturability of the structure which is an important problem for 

many industrial engineering problems. The second important problem of ESO is the 

mesh-dependency. This method is highly dependent on the initial meshing hence 

different topologies can be achieved by changing initial mesh sizes or types. This 

variation decreases the trustworthiness of ESO method and it is undesired. The filter 

scheme prevents dependency on the initial mesh and ensures mesh-independent 

solutions. One final benefit of the filter scheme is its ability to calculate sensitivity 

numbers of void or soft elements. Because these elements are typically removed 

from the structure or weakened through penalization, their sensitivity numbers are 

usually quite low or zero. This causes them to fall behind in the ranking and be unable 

to be recovered through the BESO adding scheme. However, with the filter scheme, 

the sensitivity numbers of void or soft elements are calculated by including the 
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surrounding elements. This means that if the sensitivity numbers of neighboring 

elements are increased, the sensitivity number of void/soft elements will also 

increase, allowing them to rise in the ranking. As a result, void/soft elements can be 

recovered back and contribute to the structure by taking on some of the mechanical 

burden of the neighboring elements. 

 

 

Several filter schemes are offered during the development of BESO and the 

investigated scheme in this thesis was offered by Huang and Xie in 2010 [21]. Before 

implementing the filter scheme, elemental sensitivity numbers should be distributed 

to nodes by using weight factors and it is shown as, 

 

 
𝛼 = 𝜔 𝛼  

(3-14) 

 

where 𝛼  and 𝛼  are sensitivity numbers of the 𝑗  node and 𝑖  element, 

respectively. 𝑀  is the total number of nodes which are connected to the 𝑖  element. 

𝜔  is the weight factor of the 𝑖   element and can be calculated as, 

Figure 3-1 Checkerboard Pattern in ESO [21] 
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𝜔 =

1

𝑀 − 1
(1 −

𝑟

∑ 𝑟
) 

(3-15) 

 

where 𝑟  is the distance between the center of the 𝑖  element and the 𝑗   node. 

Therefore, if a node is near to the center of the element, it has more nodal sensitivity 

number. After distributing the sensitivity number of elements to nodes, new 

elemental sensitivity numbers should be calculated using self and neighbor nodes. 

Minimum filter radius, 𝑟  , is introduced for this purpose and it is shown in Figure 

3-2. In 2D problems, the circle from the center of the 𝑖   element is created with the 

radius of 𝑟 . This circle would be a sphere for 3D problems. For both cases, the 

inner area of the circle or inner volume of the sphere is called as sub-domain 𝛺  and 

all nodes in this domain are included in the sensitivity number calculation of the 𝑖   

element as, 

 
𝛼 =

∑ 𝜔 𝑟 ∗ 𝛼

∑ 𝜔 𝑟
 

(3-16) 

   

where  𝐾 is the total number of nodes in the sub-domain and 𝜔 𝑟  is the linear 

weight factor calculated as  

 

                                     𝜔 𝑟 = 𝑟 − 𝑟        (𝑗 = 1,2, … … . , 𝐾) (3-17) 

   

It is clearly seen that the above filter scheme smoothens the topology and adds the 

capability of calculating sensitivity numbers of void/soft elements. If the nodes in 

the sub-domain 𝛺  have great sensitivity numbers, it affects the sensitivity number 
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of the 𝑖  element even though it is void/soft. It is ranked with this newly calculated 

value and this process makes BESO method works smoothly. 

 

 

Besides the filter scheme, Huang and Xie offered an extra step for smoother topology 

and prevented chaotic oscillations by using historical sensitivity numbers in 2007 

[23]. They suggested to average sensitivity numbers of elements with the previous 

iteration. This simple averaging scheme contributes effectively to increase the 

chance of converging. This scheme does not affect the final topology in a significant 

way, but it helps optimization to converge. 

After calculating the sensitivity number for the desired objective by using a filter and 

averaging scheme to smooth topology, elements should be ranked with their 

sensitivity numbers to determine which one is to add or remove from the structure.  

Before adding or removing elements, the target volume for the next iteration should 

be calculated as,  

 

Figure 3-2 Minimum Filter Radius and Sub-domain 𝛺  [21] 
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                          𝑉 = 𝑉 (1 ± 𝐸𝑅)      (𝑘 = 1,2, … … … ) (3-18) 

 

where 𝑉  is the target volume of the next iteration, 𝑉  is the current volume of the 

structure and 𝑘 is the iteration number. Evolutionary Rate, 𝐸𝑅, helps to decrease or 

increase the target volume until the final volume is reached. It affects directly the 

number of total iterations and therefore the whole computational time. If 𝐸𝑅 is 

selected as too small, the number of iterations becomes unnecessarily high. 

Similarly, the structure can not be converged to the optimum if 𝐸𝑅 is selected as a 

quite big number. Target volume calculations with 𝐸𝑅 continues until the 

predetermined final volume is reached. Even the final volume is reached, 

optimization may continue until the objective values become stable. 

There are two main comparison equations to add or remove elements and they are 

indicated as, 

 

 𝛼 ≤ 𝛼  (3-19) 

 𝛼 > 𝛼  (3-20) 

 

where 𝛼  and 𝛼  are threshold sensitivity numbers for adding and removing, 

where 𝛼  is always bigger than or equal to 𝛼 . If the sensitivity number of a solid 

element satisfies Equation (3-19), it becomes void/soft. Similarly, if any void/soft 

element has a sensitivity number bigger than 𝛼 , it transforms to a solid element. 

An important point here is determining these threshold sensitivity numbers. There 

are some basic selection rules for these numbers: 

1. The number of elements corresponding to the next targeted volume is 

calculated. For example, if there are 1000 elements and the next target 

volume is 0.5, then 500 elements correspond to this volume (assuming all 

elements are identical). All elements are then sorted based on their sensitivity 
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numbers. The sensitivity number of the 500th element is assigned as 𝛼  and 

threshold numbers are considered as 𝛼 = 𝛼 = 𝛼 . 

2. The number of elements added in the iteration is proportional to the total 

number of elements and this ratio is called as the volume addition ratio (𝐴𝑅). 

If this ratio is less than the predetermined 𝐴𝑅  , the third step is ignored. 

If it is larger, the third step must be executed. 

3. The 𝛼  value is calculated as the ratio of the number of added elements to 

the total number of elements that should be present according to 𝐴𝑅 . This 

adding threshold value should be just slightly below the sensitivity value of 

the last added element. 𝛼  is found by adding the volume of the added 

elements to the current volume and subtracting the volume required by the 

next iteration from the last answer. 

The term 𝐴𝑅  is introduced in these steps. Its goal is to ensure that an excessive 

number of void/soft elements are not transformed into solid elements, as this can 

adversely affect the structure's integrity. 

To sum up the whole BESO procedure in steps: 

1. Discretizing the structure with finite elements and assigning mechanical 

properties of the material to elements. 

2. Conducting finite element analysis, obtaining necessary values such as strain 

energy or von Mises stress to calculate sensitivity number according to the 

objective of the study. Equation (3-4) is for minimum compliance by hard-

kill BESO,  Equation (3-11) is for minimum compliance by soft-kill BESO 

and finally, Equation (3-13) is for maximizing the first frequency by soft-kill 

BESO. 

3. Applying the filter scheme to distribute sensitivity numbers to nodes and 

collecting them again to elements with minimum filter radius by using 

Equations (3-14), (3-15), (3-16), and (3-17). 

4. Averaging sensitivity numbers with historical data. 

5. Selecting target volume for next iteration by Equation (3-18). 
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6. Adding or removing elements according to Equations (3-19) and (3-20). 

7. Repeating steps between 2 and 6 until the volume constraint  

(Equation (3-6)) and the convergence criterion (Equation (3-8))  are satisfied, 

which happens when difference between objective values of the last 

iterations becomes less than the allowable convergence tolerance value. 

 

 

3.5 Constructed Algorithm in MATLAB 

To optimize the folding wing structure for natural frequency and/or stiffness, there 

is a need for an optimization tool. In this study, an algorithm is constructed in 

MATLAB environment to optimize structures by using ESO or BESO with the 

objectives of stiffness and/or natural frequency. This algorithm uses MSC 

NASTRAN as a finite element solver. 

Firstly, finite element modeling software is used to discretize the structure with finite 

elements. This is a non-recurring step because there is no need to model the structure 

during the optimization process. Any finite element modeling and analysis software 

can be used for this purpose and MSC PATRAN is selected in this study. Finite 

elements, boundary conditions and loads should be documented in the Bulk Data 

Format (BDF) file for the algorithm interface. Then, a finite element solver should 

be executed to find necessary information such as strain energy or von Mises stress 

value. These values are written in the result text file of “f06” by MSC NASTRAN 

and stored for future sensitivity number calculations. MATLAB reads the f06 file 

and takes all necessary information. Then, the algorithm evaluates all the values and 

calculates sensitivity numbers according to the selected objective. Filter scheme and 

averaging are applied to smoothen the desired topology. Elements to be added or 

removed are determined by ranking elements according to their sensitivity numbers. 

The material properties of removed elements are weakened by the material 

interpolation scheme and new information about elements is written to a new BDF 
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file. After this step, MSC NASTRAN analyzes the structure again and these 

iterations continue until the target volume is reached. This algorithm works 

automatically until it reaches to the final topology, but it needs some initial inputs 

such as the first finite element model of the structure, evolutionary rate (𝐸𝑅), 

maximum volume addition ratio (𝐴𝑅 ), minimum filter radius (𝑟 ), penalty 

component (p) and the final target volume. The whole process is detailed and shown 

in Figure 3-3 and reference studies of this algorithm using BESO are demonstrated 

in Appendix A. 
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3.6 Conclusion 

In this chapter, BESO and ESO formulations have been described in detail, as they 

serve as the foundation for the algorithm created in this thesis. Details about this 

algorithm which is constructed in order to optimize the folding wing structure have 

been shared. It has been determined that the competence of the algorithm in 

optimizing the folding wing structure is evident as it consistently produces final 

topologies that are comparable and nearly equivalent to the final reference topologies 

which are presented in Appendix A. 
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CHAPTER 4  

4 STRUCTURAL FINITE ELEMENT MODELLING AND PRELIMINARY 

ANALYSES OF THE FOLDING WING 

4.1 Introduction 

Before starting the topology optimization, the folding wing structure should be 

discretized with finite elements. The type and size of the elements have great 

importance in static and dynamic analysis. Because evolutionary optimization 

methods are iterative methods to find optimum structure by evolving, the 

computational time of every single iteration is crucial. Besides the computational 

time, the mesh is important for the performance of the analysis and the success of 

the final topology. Even though BESO promises mesh-independent solutions, the 

study in Appendix B shows that it is not “fully” mesh-independent for 3D structures 

and using finer mesh may provide better objective results and better insight into the 

topology with more details. In addition to mesh, boundary conditions and loads are 

also critical considerations in topology optimization. Therefore, boundary conditions 

and loads should be specified carefully before topology optimization takes place. In 

this chapter, the general characteristics of the folding wing structure, its finite 

element model, boundary conditions, and loads are demonstrated. Results of 

preliminarily static and modal analyses on the folding wing are also shown. 

4.2 Mechanical Specifications of the Folding Wing Structure 

Most of the mechanical properties of the folding wing structure are certain and 

known. This wing is made of aluminum 7075-T6, which is quite popular in the 
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aerospace industry due to its high strength and good corrosion resistance. The 

mechanical properties of this material are shown in Table 4-1 . 

Table 4-1 Mechanical Properties of AL 7075-T6 

Density 2.81 g/cm3 

Elastic Modulus 71.7 GPa 

Ultimate Tensile Strength (UTS) 572 MPa 

Yield Tensile Strength 503 MPa 

 

The cruise missile system is equipped with four foldable wings on its middle section, 

which are used to provide lift and stability during flight. The folding wing structure 

(Figure 4-1) consists of several parts: the inner wing, the outer wing, the inner spring, 

the outer spring, skin structures, and mechanical fasteners. Springs and mechanical 

fasteners are excluded from the optimization because their effects in static and modal 

analyses are neglected. The custom-machined torsional springs generate torque to 

launch the wings into position, and spring-loaded pins lock the mechanical parts in 

place after deployment. The inner spring is between the whole folding wing structure 

and the missile fuselage, while the outer one is between the outer and inner wing 

structures. In addition to springs, skin structures are also excluded from the design 

space of optimization, but they are in the structural finite element model due to their 

mechanical support to the wing. The aim of these skin structures is to close the 

wing’s outer surfaces and provide a continuous aerodynamic surface. They are 

attached to wing structures by rivets, which are also excluded in the optimization. 

The primary objective of this thesis is to optimize the inner and outer wing structures 

while certain regions on these wings are excluded from the design space due to their 

role in the aerodynamic performance of the wings. The internal volume of the wing 

structures are optimized through the use of the constructed algorithm. It is worth 

noting that the excluded regions of the wings and skin structures should still be 

present in both static and dynamic analyses as they contribute significantly to the 

overall mechanical performance of the wing.  
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There should be some assumptions on the folding wing structure to facilitate the 

optimization process. Firstly, the springs are removed because the system is locked 

after they function. After this step, springs do not significantly contribute to the 

structure, and this study aims to find the optimum topology after wings are launched. 

Secondly, mechanical fasteners are removed, and parts are treated as a whole to 

decrease the complexity of the mesh. Every additional fastener to structure comes 

with a computational cost. Lastly, distorted and ineffective surfaces on the wing are 

corrected in a proper way. The quality of the mesh is particularly important in the 

design space. With these assumptions, a new model is created, which is shown in 

Figure 4-2. The skin structures indicated in this figure are sheet metal covers, and 

they prevent the wing from the aerodynamic effects of changing topologies. 

  
Figure 4-1 The Folding Wing Structure 
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The finite element model of the folding wing has a great impact on the computational 

time, so it should be determined wisely. In this study, design spaces are modelled 

with a fine mesh, while excluded regions are modelled with a coarse mesh to 

decrease the size of the model and the computational time. One other aspect of 

meshing is the filter scheme in BESO calculations. During this filter scheme, virtual 

spheres around element centers are formed to select neighbor nodes, and these nodes 

are included in sensitivity number calculations. Due to this step, using isoparametric 

elements in the design space eases the algorithm in a significant way and decreases 

the computational complexity. Therefore, all elements in the design space are 

selected as 8-noded isoparametric hexahedron brick elements (HEX8). 4-noded 

tetrahedron brick elements (TET4) are selected for the remaining non-design areas 

because this type of element is a suitable choice for convenience if the quality of the 

mesh is not the priority. Figure 4-3 exhibits the finite element model of the structure 

with two different element types. In addition, used element types are given in Table 

4-2 with the number of elements and nodes. 

 

Figure 4-2 Simplified Wing and Skin Structures 
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Table 4-2 Mesh Information 

Type Number of elements Number of nodes 

HEX8 74825 93126 

TET4 179764 20912 

 

4.3 Boundary Conditions and Loads on the Folding Wing Structure 

After creating the finite element model of the folding missile wing, the next step is 

to determine the boundary conditions and loads that will be used in static and 

dynamic analyses. Once the missile has been launched, the folding wings are locked 

together by spring-loaded pins, causing the wings to act as a single unit. As a result, 

the wings are treated as a cantilever beam during the topology optimization process. 

They are fixed at the bottom surface and free at the other end.  

 

 

Figure 4-3 Finite Element Model of the Folding Wing 
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There are several load cases for this wing and its operation. Because there are four 

folding wings on the missile, loads differ from wing to wing. The worst load 

condition is considered during the optimization, and it is named Load 1. The 

aerodynamic pressure is distributed along the surfaces of the inner and outer wings. 

These outward surfaces are non-design areas, so they do not change with iterations 

and transmit these loads to internal design spaces. Besides these distributed loads, 

there is also a hinge moment on the combined wing. Table 4-3 shows the loads used 

in the optimization. This table expresses distributed loads with their resultant forces 

and locations. Because the surface area of the inner wing is bigger than the surface 

area of the outer wing, the resultant force of the inner wing is much higher than the 

resultant force of the outer wing. Figure 4-4 shows the boundary conditions and load 

distribution on the wing with a given coordinate system. 

 

Table 4-3 Loads on the Folding Wing 

Load 

Cases 

Outer Wing Inner Wing Hinge 

Moment 

 Resultant 

Force (N) 

X 

(mm) 

Z 

(mm) 

Resultant 

Force (N) 

X 

(mm) 

Z 

(mm) 

Mz 

(Nmm) 

Load 1 2400 -116 673 5200 -231 263 105000 

Load 2 2400 -116 673 5200 -231 263 - 

Load 3 - - - - - - 105000 

 

 

There are also different load cases named as Load 2 and Load 3. They are not actual 

load cases but they are performed during the topology optimization to see what is 

the effect of the hinge moment on the final topology and results are shared in 

Appendix D. 
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4.4 Preliminary Static Analysis of the Folding Wing Structure 

Before starting the topology optimization process, it is sensible to conduct 

preliminary analyses to establish a baseline for the full design space and empty 

design space. The full design space refers to the structure which has all design 

elements, while the empty design space represents the wing in its lightest possible 

condition with all elements removed. These analyses provide a reference point for 

comparing the performance of the topology optimization. Furthermore, these 

analyses reveal the initial mechanical performance of the folding wing before any 

topology optimization is applied.  

Three different load cases are used for static analysis, and results of mean compliance 

and maximum displacement in the y direction are obtained. Mean compliance equals 

the total strain energy of all elements in the structure and minimizing it means 

maximizing the stiffness, which is one of the main objectives of this thesis. 

Therefore, it is important to have this value to compare structures with each other to 

Figure 4-4 Boundary Conditions and Loads on the Folding Wing Structure 
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see performance differences. All of the obtained results are shown in Table 4-4. 

Figure 4-5 depicts the static displacement of Load Case 1.  

 

Table 4-4 Mean Compliance and Maximum y Displacement Values of Three 
Different Load Cases 

 Mean Compliance (Nmm) 

 Load 1 Load 2 Load 3 

Full Design 

Space 

3.065 × 10  3.083 × 10  3.438 × 10  

Empty Design 

Space 

4.853 × 10  4.899 × 10  4.463 × 10  

 Maximum Displacement in y Direction (mm) 

Structures Load 1 Load 2 Load 3 

Full Design 

Space 

30.110 30.430 1.240 

Empty Design 

Space 

43.438 46.850 1.640 

 

 

As expected, the compliance values for the full design space are lower than those for 

the empty design space because the full design structure has greater stiffness. This 

basic finding is also reflected in the maximum displacements in the y direction. It is 

anticipated that structures after topology optimization will have mean compliance 

values that fall between those of the full and empty designs. The aim is to create a 

structure with a lighter weight, more efficient material distribution and adequate 

stiffness, but the mean compliance of the final topology cannot be as low as that of 

the full design structure. Additionally, it is clear that Load 3 has little effect on the 

maximum y displacement. 
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4.5 Preliminary Modal Analysis of the Folding Wing Structure 

Dynamic characteristics of the wing shall be investigated by preliminary modal 

analysis because one of the objectives of the algorithm in this thesis is to maximize 

selected natural frequencies of the folding wing structure. Therefore, there is a need 

for preliminary modal analyses of both full and empty design spaces similar to static 

analyses. The first three natural frequencies (𝜔 , 𝜔 , 𝜔 ) are reported in Table 4-5, 

and mode shapes corresponding to the full design space are demonstrated in Figure 

4-6, Figure 4-7, and Figure 4-8. 

 

Table 4-5 First Three Natural Frequency Values of the Folding Wing Structure 

 Natural Frequencies (Hz) 

 𝝎𝟏 𝝎𝟐 𝝎𝟑 

Full Design Space 30.37 138.33 185.24 

Empty Design Space 31.11 137.22 165.44 

 

Figure 4-5 Maximum y- Displacement of the Full Design Space Folding Wing by 
Load 1 
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Figure 4-6 The First Bending Mode for Full Design Space (𝜔 =30.37 Hz) 

Figure 4-7 The Second Bending Mode for Full Design Space (𝜔 =138.33 Hz) 
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As  already demonstrates, there is not any remarkable difference between the first 

and second natural frequencies of the full and empty design spaces. There are several 

reasons behind this outcome. Firstly, there is a wing frame (Figure 4-2), which is a 

non-design area and it contributes to the structure in a significant way. Even when 

the design space is empty of material, this frame provides primary structural stability. 

Secondly, the natural frequency is basically the square root of stiffness divided by 

mass. Both of these variables decrease at the same time when a material is removed 

from the structure. Therefore, it is understandable that there are no important 

differences between the first two natural frequencies. However, the difference for 

the third natural frequency is noteworthy. It means that material in the design space 

dramatically contributes to the torsional mode and the removal of material results in 

a more serious reduction in torsional stiffness.  

One of the major objectives of this thesis is to alter the natural frequencies of a 

system through changes to its topology. This can be accomplished through the 

Figure 4-8 The First Torsional Mode for Full Design Space (𝜔 =185.24 Hz) 
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application of the topology optimization technique, which can be used to minimize 

or maximize natural frequencies, or to maximize the difference between two natural 

frequencies. These kinds of objectives can be necessary for the design of the 

aerospace structure and some studies on these objectives are shared in the next 

chapter. 

4.6 Conclusion 

This chapter presents the initial static and modal analyses conducted on the structure 

in two configurations: one with the full design space and one with the empty design 

space. These analyses provide an initial understanding of the mechanical 

performance of the folding wing before starting the topology optimization process 

and they showed that there is a significant compliance change between the full and 

empty designs, as expected. Furthermore, it is found that the natural frequencies of 

the full and empty design spaces do not significantly differ, except for the torsional 

mode. This is due to the fact that materials within the design space significantly 

contribute to torsional stiffness and the lack of them causes 10.8% decrease for the 

third natural frequency. This value can be manipulated by the contribution of the 

topology optimization and the related study is shared in Chapter 5. 
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CHAPTER 5  

5 TOPOLOGY OPTIMIZATION OF THE FOLDING WING STRUCTURE 

5.1 Introduction 

This chapter is about the topology optimization process of the folding wing structure 

which is introduced in Chapter 4 with all of its mechanical properties, finite element 

model, boundary conditions and application of loads. The constructed algorithm 

detailed in Chapter 3 is used to optimize this wing structure. This algorithm proves 

its effectiveness with benchmark problems and it has the capability to do successful 

topology optimization on complex 3D structures. The primary aims of the study are 

to optimize the stiffness of the structure under applied loads and/or to maximize the 

chosen natural frequency. Both single-objective and multi-objective analyses are 

conducted to address these objectives and successful final topologies are obtained. 

5.2 Design Variables 

The constructed algorithm is based on BESO method, which has several parameters 

that must be specified prior to initiating the topology optimization process. Some of 

these variables only influence the convergence of the optimization while others can 

also affect the final topology. Therefore, it is crucial to properly select these variables 

in order to obtain succeeded final topologies. 

One of the most important variables is 𝑟 , minimum filter radius (Figure 3-2) and 

it eliminates the mesh-dependency and checkerboard pattern by determining the 

number of nodes to calculate the sensitivity numbers of each element. Increasing this 

parameter involves more nodes in the calculations resulting in a smoother transition 

of sensitivity values between elements. For 2D problems, circles, and for 3D 

problems, spheres with this radius are formed around the element centers. The radius 
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of these circles/spheres must be chosen such that they enclose more than one 

element. As a case study, several 𝑟  values are selected as 4 mm, 6 mm, 8 mm for 

the stiffness objective, and different topologies are found with changing 𝑟  values. 

The main finding of this study is that lower values of 𝑟  result in more optimally 

designed topologies but they are too complex to use conventional chip removal 

manufacturing methods while higher values of 𝑟  yield smoother, more easily 

manufactural topologies with lower stiffness values. As a result, 6 mm radius is 

selected for all optimization processes because the obtained topology with 6 mm 

radius promises smaller compliance than the topology with 8 mm radius. Although 

topologies with 4 mm radius have the minimum compliance, these topologies have 

many checkerboard pattern zones and these zones cannot be manufactured. This 

selection is detailed in Appendix C. 

Another variable is the final volume constraint which determines the ratio of the final 

volume to the initial volume of the design space. When the topology reaches the final 

volume, optimization continues until the converging criterion is satisfied and then it 

stops. Determining this value is up to the designer and the requirements of the study. 

In this thesis, this ratio is selected as 30% to have quite a light structure without 

significant loss of mechanical properties. 

The evolutionary volume ratio, 𝐸𝑅, is the common variable of ESO and BESO. It 

determines the volume difference between adjacent iterations. A larger 𝐸𝑅 value 

results in a greater volume being removed from the structure between iterations 

which reduces the total number of iterations and the computational time required. 

However, it is important to note that excessive values of 𝐸𝑅 may lead to convergence 

issues. Huang and Xie presented several works on BESO with different structures 

and 𝐸𝑅 was selected as 1%, 2%, 3% and 5% for most of them [21]. For the 3D 

cantilever beam which is symmetric and a much simpler structure compared to the 

folding wing structure, 3% was selected. Therefore, 𝐸𝑅 is selected as 2% for this 

thesis and in the end, all topologies are converged, and it shows that the selected 𝐸𝑅 

value is sufficient.  
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Maximum volume addition ratio, 𝐴𝑅 , is a variable to prevent the structure from 

adding excessive numbers of elements in one iteration because it can affect the 

convergence of the optimization. Huang and Xie selected 𝐴𝑅  as 50% for the 3D 

cantilever beam problem and they suggested large 𝐴𝑅  for 3D structures [21]. At 

the same time, they used 𝐴𝑅 = 2% for four different natural frequency studies. 

As a result, this variable is selected as 5% in this thesis as the folding wing structure 

is a 3D structure while natural frequency is one of the main objectives. All topologies 

are converged and it shows that the selected 𝐴𝑅  is a proper one. 

While using the soft-kill BESO method, there are two parameters, 𝑥  and 𝑝, which 

are the relative density of the soft element and penalty exponent, respectively. These 

parameters determine the contribution of the soft elements to the main structure. 

Huang and Xie stated that the penalty exponent has almost no effect if it is selected 

greater than 1.5. They also used 𝑥  values of 10  for static cases and 10  for 

dynamic cases. Because of these selections, 𝑥  is selected as 10  and 𝑝 is selected 

as 3 during the optimization processes of this thesis. 

5.3 Optimization for Stiffness Criteria 

The folding wing structure should be optimized to be lightweight while still able to 

withstand aerodynamic loads. Therefore, the stiffness value of the wing has 

significant importance. Three different loads are introduced in Chapter 4 and 

different topologies are found for every different load case using the BESO 

algorithm. Results of Load 2 (only bending load) and Load 3 (only hinge moment) 

are shown in Appendix D. Load 1 represents the worst-case load, and the primary 

focus of stiffness optimization is on this load. Mean compliance and maximum tip 

deflection in the y direction of every iteration are shown to provide insight about the 

optimization direction. Maximum tip deflection is the product of mean compliance 

and the load but it is shared because it directly represents the visual mechanical effect 

of the load on the structure. 𝐸𝑅 = 2%, 𝑟 = 6 𝑚𝑚, 𝐴𝑅 = 5%, 𝑝 = 3 and 

𝑥 = 10  are selected as the main parameters. Iterations steps and the optimized 
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structure are shown in Figure 5-1 and Figure 5-2, respectively. Although outer skin 

structures are not shown in these figures, they are included in the analysis. 

Optimization took a total of 59 iterations and 1.6 hours by the computer with 16 GB 

RAM. Mean compliance and maximum tip displacement in the y direction are then 

presented in Figure 5-3 and Figure 5-4. This optimization is started from the full 

design space and different initial guess design studies are investigated in Appendix 

E and F. 

 

 

 

(a) (b) 

(c) (d) 

Figure 5-1 Iteration Steps for Load 1 (a) Iter. 15 (b) Iter. 30 (c) Iter. 45 (d) 
Iter. 59 
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Figure 5-2 Details of the Final Topology at Iteration 59 
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Figure 5-3 Evolution Histories of Mean Compliance and Corresponding Volume 
Fraction 

Figure 5-4 Evolution Histories of Maximum Tip Displacement and Corresponding 
Volume Fraction 
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Mean compliance and maximum tip displacement values are increased by every 

iteration as expected because it is not possible to have the stiffness of the wing with 

full design space while removing materials. However, these values are kept at 

minimum during the optimization by the algorithm and the volume of the design 

space is decreased to 30% of its initial volume. Here are the main remarks from the 

optimized structure: 

 The final topology indicates that the strain energy values in the inner regions 

(which are closer to the missile fuselage) of the outer and inner wings are 

greater than those in the outer regions. 

 Under the load, the outside surface elements of the wings experience higher 

displacement and thus have higher strain energy values compared to the 

internal elements. As a result, most of the elements in the middle layer (which 

is the farthest from the aerodynamic surface) are removed due to their lower 

strain energy values. 

 As it can be seen from Figure 5-3 and Figure 5-4, the analysis does not stop 

when the final volume ratio is achieved and it continues in the same volume 

ratio until the convergence criterion in Equation 3-8 is satisfied. This criterion 

is the main reason of the horizontal lines at the end of those iterations. 

5.4 Optimization for Natural Frequency Criteria 

Several investigations are done in this study on the objective of natural frequency. 

𝐸𝑅 =2%,  
 
𝑟 = 6 mm, 𝐴𝑅 = 5%, 𝑝 = 3, and 𝑥 = 10  are selected as the 

main parameters for all frequency related cases. The first case involves maximizing 

the first natural frequency (𝜔 ), which may lead to a reduction in vibration 

amplitudes and potentially prevent divergence. The second case involves 

maximizing the third frequency (𝜔 ) corresponding to the first torsional mode. 

Preliminary analyses in Chapter 4 demonstrates that this frequency is significantly 

impacted by the removal of material within the design space. The third case is 

maximizing the gap between the second and the third natural frequencies 
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(𝜔 , 𝜔 ) because as materials are removed from the structure, these natural 

frequencies may become close to each other. When these modes interact with each 

other, the wing can start to oscillate which may lead to flutter. Maximizing the gap 

between the modes may help to reduce the likelihood of flutter, as the modes are less 

likely to interact with each other. However, it is important to note that the gap 

between the static wind-off modes is just one factor that can affect the likelihood of 

flutter and other factors can be listed as structural damping of the wing and the 

airspeed. Therefore, one must perform a detailed flutter analysis to detect modes 

causing the instability and this is beyond the scope of this thesis. 

5.4.1 Maximizing The First Natural Frequency 

This study aims to maximize the first natural frequency of the folding wing while its 

volume is decreasing to 30% of the initial volume. Iteration steps and the optimized 

structure are shown in Figure 5-5 and Figure 5-6, respectively. Optimization took a 

(a) (b) 

(c) (d) 

Figure 5-5 Iteration Steps for 𝜔  (a) Iter. 15 (b) Iter. 30 (c) Iter. 45 (d) Iter. 59 
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total of 59 iterations and 3.1 hours to complete. The first natural frequency history is 

shown in Figure 5-7. The second and the third natural frequencies are also calculated 

and given in Figure 5-8 and Figure 5-9. 

 

 

 

Figure 5-6 Details of the Final Topology at Iteration 59 



 

 
 66 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5-7 Evolution Histories of the First Natural Frequency and 
Corresponding Volume Fraction 

Figure 5-8 Evolution Histories of the Second Natural Frequency and 
Corresponding Volume Fraction 
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The results of this study indicate that the application of BESO has a significant 

impact on the natural frequencies of the system. Specifically, the first natural 

frequency is increased by 11% as aimed while the second natural frequency is 

increased by 2.5%, and the third natural frequency is decreased by 6%. The 

maximum first natural frequency is observed at iteration 41 with a volume fraction 

of 0.45 and it represents an increase of 11.5% over the full design space frequency. 

These findings reveal that BESO enhances the first natural frequency remarkably by 

also offering the advantage of a lighter weight design. 

  

Figure 5-9 Evolution Histories of the Third Natural Frequency and 
Corresponding Volume Fraction 
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5.4.2 Maximizing the Third Natural Frequency 

The third natural frequency is 185 Hz for the full design space structure, and it 

becomes 165.5 Hz when all elements in the design space are removed from the 

structure. This decrease of 10,8% shows that the elements in the design space 

contribute to the torsional stiffness significantly and in order to eliminate this critical 

drop, BESO is applied to the folding wing structure. Iteration steps and the optimized 

structure are shown in Figure 5-10 and Figure 5-11, respectively. Optimization took 

a total of 59 iterations and 3.1 hours. 

 

(a) (b) 

(c) (d) 

Figure 5-10 Iteration Steps for 𝜔  (a) Iter. 15 (b) Iter. 30 (c) Iter. 45 (d) Iter. 59 
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It should be reminded that outside skin structures are not shown in the figures. The 

element islets on the outer wing shown in Figure 5-11 are to connect two skin 

structures. The third natural frequency history is shown in Figure 5-12 while the first 

and the second natural frequencies which are also calculated for this optimization are 

given in Figure 5-13 and Figure 5-14. 

Figure 5-11 Details of the Final Topology at Iteration 59 
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Figure 5-12 Evolution Histories of the Third Natural Frequency and 
Corresponding Volume Fraction 

Figure 5-13 Evolution Histories of the First Natural Frequency and 
Corresponding Volume Fraction 
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Although the aim of this study is to maximize the third natural frequency through 

BESO, there is a 1.7% decrease in the third natural frequency between the full design 

structure and final structure with a volume fraction of 0.3. However, this decrease 

does not represent any failure of the algorithm as the third frequency at the end is the 

highest that can be achieved with a volume fraction of 0.3. This achievement is more 

evident when a 1.7% decrease is compared with the drop of 10,8% in the third natural 

frequencies of the full and the empty design space structures. The maximum third 

natural frequency is observed at iteration 19 with a volume fraction of 0.7 and it 

represents an increase of 1.7% over the full design space frequency. As a result, the 

structure is modified in a way to lose 70% of the elements in the design space and 

has the highest possible third natural frequency. At the same time, the first natural 

frequency is increased by 7% and the second natural frequency has the relatively 

same value. 

Figure 5-14 Evolution Histories of the Second Natural Frequency and 
Corresponding Volume Fraction 
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5.4.3 Separation of the Second and the Third Natural Frequencies 

Previous studies show that the third frequency tends to decrease and the second 

frequency to stay the same or increase during the topology optimization with 

different objectives. This leads these natural frequencies to come closer and it is 

generally an unwanted situation due to the coupling of modes. To prevent this, a new 

objective of separating these natural frequencies is identified in this thesis. Iteration 

steps and the optimized structure are shown in Figure 5-15 and Figure 5-16, 

respectively. Optimization took a total of 62 iterations and 3.2 hours. 

 

(c) (d) 

(a) (b) 

Figure 5-15 Iteration Steps for 𝜔 − 𝜔  (a) Iter.15 (b) Iter.30 (c) Iter.45 (d) Iter. 62 
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Similar to the final structure the one before, this topology also has element islets, and 

these islets connect two skin structures to each other. Evolving histories of the first, 

second, and third natural frequencies are presented in Figure 5-17, Figure 5-18, and 

Figure 5-19, respectively. There is an additional plot, Figure 5-20, which shows the 

frequency separation between the third and the second natural frequencies.  

 

Figure 5-16 Details of the Final Topology at Iteration 62 
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Figure 5-17 Evolution Histories of the First Natural Frequency and 
Corresponding Volume Fraction 

Figure 5-18 Evolution Histories of the Second Natural Frequency and 
Corresponding Volume Fraction 
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Figure 5-20 Evolution Histories of Frequency Separation and 
Corresponding Volume Fraction 

Figure 5-19 Evolution Histories of the Third Natural Frequency and 
Corresponding Volume Fraction 
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This study aims to maximize 𝜔  while decreasing 𝜔  in order to maximize the gap 

between these frequencies. As desired, 𝜔  is decreased by 10% but 𝜔  is not 

increased and in fact, it is also decreased by 5%. Since the decreasing rate of 𝜔  is 

slower than that of 𝜔 , the gap between them is increased as shown in Figure 5-20 

by 12%. One drawback of this study is the decrease of 2% in the first natural 

frequency which is undesired due to the divergence problem. To prevent this, an 

extra frequency constraint may be defined in the optimization, or a multi-objective 

study may then be conducted. 

In order to compare the results of all dynamic analyses, including results of 

maximizing the first natural frequency (Max. (𝜔 )), maximizing the third natural 

frequency (Max. (𝜔 )) and maximizing the separation between the third and the 

second natural frequencies (Max. (𝜔 − 𝜔 )), all natural frequencies and the 

frequency separation are shared in Figure 5-21, Figure 5-22, Figure 5-23, and Figure 

5-24.  

 

 

 

 

 

 

 

 

 

 

Figure 5-21 Evolution Histories of the First Natural Frequency and 
Corresponding Volume Fraction 
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Figure 5-22 Evolution Histories of the Second Frequency and Corresponding Volume 
Fraction 

Figure 5-23 Evolution Histories of the Third Frequency and Corresponding Volume 
Fraction 
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All of these figures reveal the fact that every case is comparably successful to achieve 

their objectives by proving that BESO has the effective capability to change the 

dynamic characteristics of the structure while decreasing its weight. Main remarks 

from these optimized structures and their converging histories are as follows: 

 Similar to the stiffness optimization, the final structures obtained by natural 

frequency objectives have less number of elements in the middle layer. This 

trend suggests that elements in the central region contribute less to the 

calculation of the sensitivity number for all natural frequency objectives and 

rib-like structures are formed on outer layers as shown in Figure 5-6, Figure 

5-11 and Figure 5-16. 

 There are some element islets on the outer wing connecting the skin 

structures (as shown in Figure 5-11 and Figure 5-16) and their presence 

demonstrates that there is a need for these kinds of connections between skin 

Figure 5-24 Evolution Histories of Frequency Separation and Corresponding 
Volume Fraction 
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structures for the structural integrity. Besides, these islets may provide 

convenient mechanical interfaces for the attachment of skin structures 

through fasteners such as bolts or rivets. 

 Figure 5-21, Figure 5-22, Figure 5-23 and Figure 5-24 show that Case Max. 

(𝜔 ) yield the most favorable results for the first and the second frequencies 

with the values of 𝜔 = 33.8 Hz and 𝜔 = 141.7 Hz, while providing 

comparably lower results for the third natural frequency and the frequency 

separation. 

 On the other hand, Case Max. (𝜔 ) presents relatively stable performance 

because there is not any drastic decrease in any frequencies including the 

frequency separation case.  

 Case Max. (𝜔 -𝜔 ) produces the lowest natural frequency values of 

𝜔 =29.8 Hz,  𝜔 = 124.9 Hz and 𝜔 =176.4 Hz. This situation indicates 

that this objective shall be selected wisely and all the potential frequency 

decreases shall be considered. 

 When the only aim is maximizing any selected natural frequency or the 

separation, the given volume fraction constraint shall be considered because 

final topologies do not provide any maximum objective values. The 

topologies that provide maximum objective values often require more 

material than the volume fraction of 0.3 allowed as is clearly seen in Figure 

5-21, Figure 5-22, Figure 5-23 and Figure 5-24.  

5.5 Multi-objective Study with Stiffness and Separation of Natural 

Frequencies 

In engineering, it is often necessary to consider multiple objectives in the design 

process and aircraft structures which must be lightweight and able to withstand 

aerodynamic loads or mechanical components of supersonic missile systems which 

must withstand manoeuvre loads while minimizing heat transfer, are not the 

exceptions. In order to address these multi-objective design challenges, multi-
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objective topology optimization has emerged as a powerful tool for simultaneously 

satisfying multiple objectives. This thesis also presents a study of multi-objective 

optimization with the objectives of maximizing stiffness under Load 1 (the exact 

worst case) and maximizing the separation between the third and the second natural 

frequencies. 

Teimouri and Asgari presented an informatory study on multi-objective topology 

optimization for stiffness and frequency with BESO in 2019 which has been already 

shared in Chapter 2 [26]. They conducted both static and dynamic analyses on the 

case structure and calculated sensitivity numbers for both objectives separately. 

Then, they combined these numbers to calculate the total sensitivity number as: 

 

              𝛼 = 𝑐 ∗ 𝛼 + 𝑐 ∗ 𝛼  (5-1) 

 

where 𝛼  is the combined total sensitivity number of the 𝑖  element, 𝛼  and 𝛼  are 

sensitivity numbers of stiffness and natural frequency of the 𝑖  element, 

respectively. 

It is important to note that these single sensitivity numbers should be normalized 

before combining together due to the magnitude differences between sensitivity 

numbers of different objectives.  𝑐  and 𝑐  are the weighted coefficients for the 

stiffness and natural frequency of a system respectively and the sum of these 

coefficients is equal to 1. When one of these coefficients becomes 1 and the other 

one becomes 0, the optimization reduces to single-objective. The several topologies 

with varying coefficients are shared in Figure 2-14 and the same methodology is 

used in this thesis to find optimum topologies of the folding wing with the stiffness 

and the natural frequency objectives. Single-objective sensitivity numbers are 

normalized between 0 and 1 by MATLAB function before calculating the total 

sensitivity number. 𝐸𝑅 =2%,  
 
𝑟 = 6 mm, 𝐴𝑅 = 5%, 𝑝 = 3, and 𝑥 = 10  

are selected as the main parameters. Optimization took a total of 65 iterations and 7 



 

 
 81 

 

hours. The main reason for the excessive optimization time stems from dualistic 

analyses of static and dynamic for every iteration. Five different final topologies are 

found by changing the values of the weighted coefficient from 0 to 1 with a step size 

of 0.25. All final results are demonstrated in Figure 5-25.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evolution histories for mean compliance, maximum tip displacement in the y 

direction and the frequency separation of all cases are shown in Figure 5-26, Figure 

5-27 and Figure 5-28. 

Figure 5-25 Five Different Multi-objective Topology Optimization Cases with 
Iterations of 15, 30, 45 and 65 
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Figure 5-26 Evolution Histories of Mean Compliances and Corresponding Volume 
Fraction 

Figure 5-27 Evolution Histories of Maximum Tip Displacements and 
Corresponding Volume Fraction 
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Mean compliance and the maximum displacement values are resulted as expected. 

Single-objective stiffness case (Case E) has the minimum compliance (3.57 × 10  

Nmm) while the single-objective frequency case (Case A) provides 19% higher 

mean compliance value (4.25 × 10  N.mm), which is also the maximum mean 

compliance value compared to other cases. The remaining ones are ordered in the 

rank of their stiffness coefficients. Similarly, the natural frequencies of all cases are 

sorted in order except Case B. This case surprisingly provides results which are 

almost as good as the results of the single-objective frequency case. In addition to 

these basic outcomes, these figures present rewarding other outcomes such as; 

 Case C at the iteration 30 with a volume fraction of 0.56 has superior 

performance regarding both mean compliance and the natural frequency. Its 

frequency separation value is just 1.7% below the value of the single-

objective frequency case (Case A). At the same time, its compliance is higher 

than that of the single-objective stiffness case (Case E), by 3.9% percent, 

Figure 5-28 Evolution Histories of Frequency Separation and Corresponding 
Volume Fraction 
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which is a relatively small number compared with the differences between 

other cases in that particular iteration. 

 While all of the cases move in a monotonous way without many fluctuations, 

Case C has a trend that fluctuates more because it has equal weighted 

coefficients and these coefficients make this case unstable, unlike the other 

cases. 

 As indicated before, Case A and Case B have almost the same frequency 

separation at the end (a difference of 0.2%) while the mean compliance of 

the final topology of Case B is 1.2 % smaller than that of Case A, which 

means that final topology of Case B has higher stiffness. Figure 5-25 also 

states that the final topologies of these cases are nearly the same and the 

difference stems from the inside elements and their orientation. 

 Figure 5-29 distinctly exhibits that every final topology except Case E has 

elements near the tip of the outer wing. Therefore, it is evident that putting 

material on the tip of the wing increases frequency separation. 

 

 

 

To conclude, multi-objective topology optimization presents multiple solutions that 

can effectively address objectives such as stiffness and frequency concurrently, 

making it a valuable tool for many engineering challenges aiming for a reduction on 

the weight of the structures. While the total computation time for multi-objective 

(a) (b) (c) (d) 

Figure 5-29 Four Different Final Topologies and Elements Near to Tip of the Wing 
for (a) Case A, (b) Case B, (c) Case C, (d) Case D 
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optimization may be excessive, the resulting topologies can guide mechanical 

designers toward optimal design solutions. The versatility of this approach is further 

enhanced by the ability to adjust the weighted coefficients of sensitivity numbers 

according to the designer's specific design needs. 

5.6 Comparison of All Final Topologies 

At the end of this thesis, there are 7 different final topologies with different 

objectives or different weighted coefficients. Every topology is unique and has its 

own characteristic, advantages and disadvantages. To compare the mechanical 

performance of the final topologies, initial full design space structure, empty design 

space structure, and all the final topologies with natural frequencies and mean 

compliance values are shown in Table 5-1. 
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Table 5-1 Summary of All Final Results with Natural Frequency and Mean 
Compliance Values 

 𝝎𝟏 

(Hz) 

𝝎𝟐 

(Hz) 

𝝎𝟑 

(Hz) 

𝝎𝟑 − 𝝎𝟐 

(𝐇𝐳) 

Mean 

Compliance 

(N.mm) 

Mass 

(kg) 

Full 

Design 

Space 

30.4 138.3 185.2 46.9 3.07 × 10  12,5 

Case A 29.8 124.9 176.4 51.6 4.25 × 10  8,8 

Case B 30.0 125.6 177.1 51.5 4.20 × 10  8,8 

Case C 31.2 129.7 178.3 48.6 3.80 × 10  8,8 

Case D 32.1 135.6 177.0 41.4 3.62 × 10  8,8 

Case E 33.7 143.8 174.8 31.0 3.57 × 10  8,8 

Case Max. 

𝝎𝟏 

33.8 141.7 174.6 32.9 3.61 × 10  8,8 

Case Max.  

𝝎𝟑 

32.5 137.7 182.1 44.4 3.96 × 10  8,8 

Empty 

Design 

Space 

31.1 137.2 165.4 28.2 4.85 × 10  7,2 

 

There are several conclusions to be drawn from this table. Firstly, it is clear that 𝜔  

decreases for all cases, even with the objective of maximum 𝜔 . This means that this 

particular natural frequency is significantly affected by the removal of the materials. 

The second remark is about the first natural frequencies of Case E and Case Max. 

𝜔  as the values are almost the same. Case E is optimized under Load 1 and static 

deflection under this load closely resembles the first mode shape. This is the main 

reason for nearly the same first natural frequency values. The last remark is about 

Case A which is a single-objective case focused on maximizing the gap between the 

third and the second natural frequencies. It has the highest mean compliance among 
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all optimization results aside from the empty design space case and this means that 

the stiffness of Case A is the lowest among all optimization results.  

5.7 Conclusion 

This chapter presents mainly three different sub-studies which are maximizing the 

stiffness, manipulating natural frequencies and combining both objectives with a 

multi-objective topology optimization. In the end, 7 different novel topologies 

having superior mechanical properties and lightweight designs are achieved. These 

final results demonstrate that it is possible to have structures which perform 

effectively under more than one objective. The findings of the multi-objective study 

contribute to the literature in an important way that there has been a lack of 

investigation on the 3D structures with several design spaces.  
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CHAPTER 6  

6 CONCLUSION 

6.1 General Conclusions 

The main objective of this thesis is to construct an algorithm for topology 

optimization of a missile folding wing and to demonstrate that the improved 

mechanical performance of the wing can be achieved through the use of the 

optimization technique of BESO. The results indicate that the constructed BESO 

algorithm is able to generate optimized wing designs that exhibit improved structural 

efficiency compared to the initial topology in the sense of stiffness and natural 

frequency. As a result, efficient material distributions are obtained by the 

optimization process, then final topologies are compared with each other via their 

mechanical performances, and final conclusions concerning the effectiveness of 

every single optimization study in this thesis are made. 

One of the most important achievements of this thesis is to show the potential of 

BESO for future topology optimization studies in the aerospace industry by 

demonstrating the effectiveness of this algorithm through the optimization of a 

folding wing having single and/or multi-objectives. This research is open to other 

future research on topology optimization of aerospace components in the areas of 

flutter and advanced topology optimization methods with additional constraints. One 

of the other contributions of this thesis is to provide results in the area of multi-

component design spaces by BESO. The constructed algorithm in this thesis would 

allow simultaneous optimization of different design spaces such as topologies of 

inner and outer wing parts. This contribution could represent a significant 

advancement over existing BESO studies typically focusing on the optimization of 

single design space. 
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The accomplishments achieved in this thesis are; 

 increasing the first natural frequency of the wing by 11% while the volume 

of the design space is reduced to 30% of its initial volume, 

 increasing the gap between the third and the second natural frequencies by 

12% while the volume of the design space is reduced to 30% of its initial 

volume, and 

 presenting a multi-objective study with the objectives of stiffness and natural 

frequency resulting to several topologies which perform efficiently for both 

objectives simultaneously. 

6.2 Recommendations for Future Work 

This thesis provides a valuable insight about the full potential of BESO method and 

offers promising directions for future work in this particular area. These possible 

further studies can be listed as: 

 Performing flutter analysis: Static frequency separation can be done by 

BESO and it can be beneficial to avoid flutter. The current constructed 

algorithm by BESO can be upgraded to a new version including flutter 

analysis in every iteration and the final topology with the highest flutter speed 

can also be achieved. 

 Including von Mises stress and buckling failure: To ensure the suitability of 

the structures for use in various aerospace applications, it is crucial to 

consider both von Mises stress and buckling failure. This study, however, 

does not take these parameters into account. Future research may include 

these factors as constraints to seek more realistic outcomes. 

 Adopting different mesh types: The current algorithm just works with 

structured hex-type elements. This algorithm can be upgraded to work with 
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different mesh types such as unstructured or tetrahedron in order to make the 

optimization process more versatile. 

 Creating complex geometries: The wing structure in this thesis is a simplified 

version of the real wing by removing springs and mechanical fasteners. They 

can be implemented to the structure to have more complex but realistic 

results. 

 Introducing different load cases: The folding wing can be studied during the 

first opening sequence before locking by the spring-loaded pins or with 

different manoeuvre loads of the missile. This work can increase the 

reliability of this folding wing since it would be optimized for many load 

cases and conditions. 

 Utilizing additive manufacturing techniques: One of the constraints of this 

thesis is manufacturability by conventional methods. This restricts the 

manufacturing of complex topologies with higher mechanical properties. 

Recently developed many additive manufacturing methods promise to 

produce complex geometries by using metals and additive layers. Although 

constructed BESO algorithm is able to generate complex topologies with 

higher mechanical performance, they are all neglected during this thesis due 

to manufacturability constraints. These neglected topologies can be used in 

different studies by using any additive manufacturing methods. 
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18 APPENDICES 

A. Reference Studies 

Several benchmark studies are conducted in order to test the constructed algorithm 

in this thesis. 

A.1 Michell Type Structure 

Xie and Steven used Michell Type Structure to exemplify the capability of ESO 

Method in 1993 [16]. They modeled the structure in Figure 8-1 by 50 x 25 four node 

elements, Young’s Modulus and Poisson’s ratio are given as 100GPa and 0.3, 

respectively. This structure is supported by two simple supports and its thickness is 

10 mm. The initial rejection ratio (RR) is selected as 1% and the evolutionary rate 

(ER) is selected as 0.5%. 1000 N is applied from the middle and the structure is 

stressed. Elements are ranked according to their von Mises stress values. The aim of 

this study is to optimize this structure under the specified load until it reaches RRs 

of 5%, 10%, 15%, 20% and 25%, which means the ratio of the stress value of any 

element to maximum stress in the structure. When RR is higher, the stress values of 

elements are close to the maximum level, which provides more efficient topologies. 

Figure 8-1 Simple Structure with Two Simple Supports [16] 
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Table 8-1 shows the comparison between the resulting topologies of Xie and 

Steven’s study and the constructed algorithm used in this thesis. It clearly indicates 

that this algorithm performs efficiently on 2D structures with ESO method. The 

whole optimization process took 171 iterations and 43 minutes.  

Table 8-1 Comparison between reference study [16] and constructed algorithm for 

ESO 

 

RR Xie and Steven [16] Algorithm used in this thesis 
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A.2 2D Cantilever Beam 

Huang and Xie conducted a BESO analysis on a cantilever beam which is fixed from 

one end (Figure 8-2) and 100 N downward force is applied on the center of the other 

end [21]. The aim is decreasing the volume of the structure to half of the initial 

volume while preserving its stiffness as much as possible using strain energy values 

of the elements. The structure is discretized to 160 x 100 four node stress elements 

and its thickness is 1 mm. BESO parameters are selected as 

 ER = 1%, p = 3, 𝑟 = 3 𝑚𝑚 and 𝐴𝑅 = 5%. Young’s modulus and 

Poisson’s ratio are 100 GPa and 0.3, respectively. 

 

 

Figure 8-2 Cantilever Beam [21] 
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Table 8-2 Comparison between reference study [21] and constructed algorithm for 
BESO 

Iter. No. Huang and Xie [21] Algorithm in this thesis 
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Table 8-2 shows the results from both the mentioned study and the algorithm used 

in this thesis. The main differences are iteration numbers and evolving histories. The 

reason for these differences is that Huang and Xie used hard-kill BESO while the 

constructed algorithm used soft-kill BESO. In the end, the final topologies are the 

same with the same mean compliance of 1.87 N.mm. The total iteration number is 

102 and the total computational time is 1.5 hours. This case study demonstrates that 

the algorithm provides results that are the same with the literature using soft-kill 

BESO for stiffness optimization. 

A.3 3D Cantilever Beam 

The algorithm must be tested on 3D structures as the target structure in this thesis is 

designed and optimized as a 3D. However, optimizing 3D structures can be more 

challenging due to constructing a proper filter scheme by creating a sphere with a 

radius of 𝑟 . To test the 3D optimizing capability of the algorithm, the structure in 

Figure 8-3 is optimized until its final volume is 10% of the initial volume while 

minimizing its compliance. The material properties are given as E=10 GPa and 

𝜈=0.3. The half of the structure is modeled solely by using 40000 eight node 

elements since it is a symmetric structure and computational time is less by this way. 

BESO parameters are determined as ER = 3%, p = 3, 𝑟 = 3 𝑚𝑚 and 𝐴𝑅 =

50%. 

Figure 8-3 3D Cantilever Beam [21] 
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Table 8-3 Comparison between reference study [21] and constructed algorithm for 
3D BESO 

Iter. No. Huang and Xie [21] Algorithm used in this thesis 
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Table 8-3 demonstrates the same outcome with the 2D cantilever beam study. Those 

final topologies are almost the same but evolving histories are different due to soft-

kill and hard-kill BESO differences. Since the final topologies are close enough, this 

case study proves that the constructed algorithm in this thesis can find well optimized 

topologies by BESO even for 3D structures. It took 100 iterations and 3.2 hours to 

optimize this 3D structure by this algorithm. 

B. 3D Cantilever Beam Mesh-independency Study 

BESO method is characterized by its mesh-independence which denotes the 

capability of the method to perform the optimization process without the need for a 

specific discretization of the design. This feature allows more flexibility in the design 

process, enables the efficient handling of highly complex geometries and makes 

BESO a versatile tool for structural optimization. Huang and Xie shared a mesh 

independence study to prove BESO is mesh-independent [23]. The related study is 

shared in Figure 8-4. In this thesis, mesh-independency of BESO is investigated by 

using the 3D Cantilever Beam Structure in Appendix A.3. Three different meshing 

are used and results are shared in Table 8-4. Exact meshing is from Appendix A.3 

and there are additional coarse and fine mesh cases. 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 8-4 Mesh-independent Solutions of (a) 32x20, (b) 80x50, (c) 160x100, (d) 
240x150 [23] 
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Table 8-4 Mesh-independency Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results clearly state that BESO is not “fully” mesh-independent. The final topologies 

of coarse and fine mesh are not the same. Even though differences between final 

topologies are minor, selecting a finer mesh provides better and smoother results 

which provide more details about the design. However, it is always important to 

consider the computational time since topology optimization requires static or 

dynamic finite element analysis for every iteration. Selecting overly fine mesh may 

lead to excessive computational time, which is an undesired situation for most 

engineering problems. 

 



 

 
 107 

 

C. Minimum Filter Radius Selection 

Investigation for minimum filter radius (𝑟 ) is done and results of 4 mm, 6 mm, 8 

mm are shared in Figure 8-5, Figure 8-6 and Figure 8-7. Figure 8-8 and Figure 8-9 

shows the evolution histories of mean compliance and maximum displacement 

values of these three cases. 𝐸𝑅 =1%,  𝐴𝑅 = 5%, 𝑝 = 3, and 𝑥 = 10  are 

the other common parameters. 

 

(a) (b) 

(c) (d) 

Figure 8-5 Iteration Steps for 𝑟 = 8 𝑚𝑚 (a) Iter. 30 (b) Iter. 60 (c) Iter. 90 (d) 
Iter. 120 
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(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 

Figure 8-6 Iteration Steps for 𝑟 = 6 𝑚𝑚 (a) Iter. 30 (b) Iter. 60 (c) Iter. 90 (d) Iter. 
120 

Figure 8-7 Iteration Steps for 𝑟 = 4 𝑚𝑚 (a) Iter. 30 (b) Iter. 60 (c) Iter. 90 (d) Iter. 
120 
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Figure 8-8 Evolution Histories of Mean Compliance and Corresponding Volume 
Fraction 

Figure 8-9 Evolution Histories of Maximum Tip Displacement and Corresponding 
Volume Fraction 
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Figure 8-8 and Figure 8-9 clearly demonstrate that mean compliance is minimum for 

𝑟 = 4 𝑚𝑚 Case, which means that the final topology of this case has the 

maximum stiffness. However, this topology has some areas (Figure 8-10) which are 

complex and not suitable for conventional chip removal manufacturing methods. 

 

  

 

Although 𝑟 = 8 𝑚𝑚 Case provides smooth and easy-to-manufacture topology, it 

has the worst stiffness value among all cases. Therefore, 𝑟 = 6 𝑚𝑚 is selected 

for all studies in this thesis since the final topology with this value has medium 

compliance and does not have any non-manufacturable zones. A similar study is 

done by Ürün, Şahin and Gürses in 2022 and it is presented in UHUK [39]. 

 

 

 

Figure 8-10 Complex Areas of 𝑟 = 4 𝑚𝑚 Case 
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D. Stiffness Optimization for Load 2 and Load 3 

Final topologies of stiffness optimization with Load 2 (only bending load) and Load 

3 (only hinge moment) are shared in Figure 8-11 and Figure 8-12. 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 8-11 Iteration Steps for Load 2 (a) Iter. 30 (b) Iter. 60 (c) Iter. 90 (d) Iter. 120 
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(a) (b) 

(c) (d) 

Figure 8-12 Iteration Steps for Load 3 a) Iter. 30 (b) Iter. 60 (c) Iter. 90 (d) Iter. 120 
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E. Effect of Initial Guess on Optimization of 2D Cantilever Beam 

BESO has the capability to do topology optimization by using different initial guess 

designs that are feasible in addition to the full design. This approach may decrease 

the total number of iterations and the total computational time. In this sub-study, two 

different initial guess designs of the 2D Cantilever Beam presented in Appendix A.2 

are optimized. Initial guess designs have a volume fraction of 0.5, which is the 

targeted final volume fraction at the same time. Figure 8-13 and Figure 8-14 show 

the first initial guess design and iteration steps while Figure 8-15 shows the evolution 

of the mean compliance and the corresponding volume fraction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-13 The First Initial Guess Design of 2D Cantilever Beam 



 

 
 114 

 

 

 

 

 

 

  

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 8-14 Iteration Steps for the First Initial Guess Design (a) Iter. 5 (b) 
Iter. 10 (c) Iter. 15 (d) Iter. 20 

Figure 8-15 Evolution Histories of Mean Compliance and Corresponding 
Volume Fraction 
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The whole analysis took 50 iterations and 35 minutes. The final topology is 

demonstrated in Figure 8-16 and the mean compliance is 1.88 Nmm.  

 

 

 

 

 

 

 

 

Figure 8-17 and Figure 8-18 show the second initial guess design and iteration steps 

while Figure 8-19 shows the evolution of the mean compliance and the 

corresponding volume fraction. 

 

 

 

Figure 8-16 The Final Topology of 2D Cantilever Beam at Iteration 50 

Figure 8-17 The Second Initial Guess Design of 2D Cantilever Beam 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 8-18 Iteration Steps for the Second Initial Guess Design (a) Iter. 5 
(b) Iter. 10 (c) Iter. 15 (d) Iter. 20 (e) Iter. 25 (f) Iter. 80 
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The whole analysis took 95 iterations and 1.2 hours. The final topology is 

demonstrated in Figure 8-20. The mean compliance of the final topology is 1.87 

Nmm, which is the same value of full design space optimization at the same time. 
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Figure 8-19 Evolution Histories of Mean Compliance and Corresponding 
Volume Fraction 
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These two sub-studies with different initial topologies demonstrate that BESO is able 

to find similar final optimized designs for the problem considered and this outcome 

is shown in Figure 8-21. Furthermore, it is important to note that both final designs 

have very similar mean compliance values. The most important advantage of having 

an initial feasible guess design is the computational time. The first initial guess 

design converges in 50 iterations, and it finds a slightly worse topology compared to 

the second initial guess. The second initial guess design converges in 95 iterations, 

and it gives a slightly better design. Even though the optimum design is achieved 

with the almost same number of iterations of the full design case, it is possible to 

have slightly worse structures with less number of iterations by using larger 

convergence tolerance. For example, the topology at iteration 25 has a mean 

compliance of 1.9 Nmm, which is just 1.6% higher than the mean compliance of the 

final topology. In this way, the computational time of the optimization could be 

shortened in exchange for the efficiency of the final topology. 

 

 

 

Figure 8-20 The Final Topology of 2D Cantilever Beam at Iteration 95 
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Full Design Space 

(Mean 

Compliance=1.87 

Nmm) 

 

The First Initial Guess 

Design 

(Mean 

Compliance=1.88 

Nmm) 

 

The Second Initial 

Guess Design 

(Mean 

Compliance=1.87 

Nmm) 

 

Figure 8-21 Final Topologies of 2D Cantilever Beam According to Initial Guesses 
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F. Initial Guess Design for the Folding Wing 

In this sub-study, the folding wing structure is optimized by using the initial guess 

design with the volume fraction of 0.3 under Load 1 with the stiffness criteria. The 

initial guess in Figure 8-22 is generated randomly and analysis goes until the 

convergence criterion is satisfied. Iteration steps are demonstrated in Figure 8-23 

while Figure 8-24 shows the evolution of the mean compliance and the 

corresponding volume fraction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-22 The Initial Guess Design of the Folding Wing with the Volume 
Fraction of 0.3 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 8-23 Iteration Steps for the Folding Wing Initial Guess Design (a) 
Iter. 1 (b) Iter. 15 (c) Iter. 30 (d) Iter. 45 (e) Iter. 60 (f) Iter. 75 (g) Iter. 90 

(h) Iter. 105 
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Optimization took a total of 160 iterations and 5.2 hours. Figure 8-24 shows that the 

mean compliance value decreases with iterations and stiffness increases. The final 

topology (Figure 8-25 (a)) at iteration 160 has the mean compliance value of 3.68 ×

10  Nmm, which is 3% greater than the mean compliance of the full design space 

study. This indicates that the optimized topology in this sub-study is not successful 

as the final topology of the full design space study, which is detailed in Section 5.3. 

In addition to objective values, this sub-study took almost two times more than the 

full design space study. To conclude, BESO has the capability to start from different 

initial points, but the optimized design could be worse than the case where the full 

domain is used as the start point. 

Figure 8-24 Evolution Histories of Mean Compliance and Corresponding Volume 
Fraction 
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(a) Mean Compliance 

3.68 × 10  Nmm 

Figure 8-25 Final Topologies for (a) Initial Guess Design (b) Full Design 

(b) Mean Compliance 

3.57 × 10  Nmm 


