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ABSTRACT 

 

A STUDY ON UNCERTAINTY-BASED FLOOD ANALYSIS 

 

Akpınar, Mustafa Berkay 

Master of Science, Civil Engineering 

Supervisor: Prof. Dr. S. Zuhal Akyürek 

Co-Supervisor: Prof. Dr. A. Melih Yanmaz 

 

 

January 2023, 93 pages 

 

 

A hydraulic model is a collection of mathematical equations that give a simple 

representation of reality with the inputs obtained from hydrological assessments to 

estimate flow, flow depth and velocity in channels. Basically, hydraulic models 

require digital elevation models, Intensity-Duration-Frequency curves, maximum 

flows from hydrographs, and roughness coefficients from field studies and/or 

satellite images. Inherently, these major inputs have uncertainties due to the complex 

nature of the evaluation processes of inputs and boundary conditions. In recent years, 

researches have shown that roughness coefficients and evaluated maximum flows 

may have error margins of 5% to 15%; this may result in underestimation for 

expected flow depths compared to evaluated ones. In this study, convenient 

probability distributions in the nature of uncertainties in peak discharge of the input 

hydrograph and Manning’s roughness value have been investigated separately and 

in combined manner in flood modelling.  The study was conducted and modelled 

with an automated Monte Carlo-based method of HEC-RAS and Visual Basic 

Applications software in the catchment of Yılanlı Dere, in Samsun. 1-D hydraulic 

model was used. The results show that the maximum flows and roughness values 

may cause uncertainties in flow depths up to 10% of the total capacity of cros-
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sections without overflow in this region. Moreover, distances of the cross-sections 

to the hydraulic structures existing along the river and topographic conditions can 

also directly affect these uncertainties. It is obtained that the distributions of the flow 

depth at the cross-sections were changed.  

 

Keywords: Hydraulic Models, Uncertainties, Probabilistic Flood Modelling  
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ÖZ 

 

BELİRSİZLİK TABANLI TAŞKIN ANALİZİ ÜZERİNE BİR ÇALIŞMA 
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Tez Yöneticisi: Prof. Dr. S. Zuhal Akyürek 

Ortak Tez Yöneticisi: Prof. Dr. A. Melih Yanmaz 

 

 

Ocak 2023, 93 sayfa 

 

Hidrolik modeller, nehir kanallarındaki akışı, su seviyesini ve hızı tahmin etmek için 

hidrolojik hesaplamalar ile elde edilen girdilerle gerçeğin temel bir temsilini veren 

matematiksel denklemler bütünüdür. Temel olarak, hidrolik modeller, sayısal 

yükseklik modelleri, hidrograflar, Şiddet-Süre-Dönüş Aralığı eğrileri ile maksimum 

akımları, saha çalışmalarından ve/veya uydu görüntülerinden elde edilen pürüzlülük 

katsayılarını gerektirir. Doğası gereği, bu temel girdiler, girdilerin ve sınır 

koşullarının elde edilme süreçlerinin karmaşık doğasından dolayı belirsizliklere 

sahiptir. Son yıllarda yapılan araştırmalar, pürüzlülük katsayılarının ve hesaplanan 

maksimum akışların %5 ile %15'lik bir hata payına sahip olabileceğini göstermiştir; 

bu da, olması gereken seviyelere kıyasla elde edilen su seviyelerinin olduğundan 

daha düşük tahmin edilmesine neden olabilmektedir. Bu çalışmada, girdi hidrografın 

maksimum debisindeki ve Manning pürüzlülük katsayısındaki belirsizliklerin 

doğadaki uygun istatistiksel dağılımları ayrı ayrı ve birleşik şekillerde ele alınarak 

modellenmiştir. Çalışma, Samsun ili Yılanlı Dere havzasında Monte Carlo tabanlı 

otomatize edilmiş bir yöntem kullanılarak HEC-RAS ve Visual Basic Applications 

yazılımlarının entegrasyonu ile yürütülmüş ve modellenmiştir. Sonuçlar, su 

seviyelerinin, maksimum akım ve pürüzlülük katsayıları belirsizliklerinden kaynaklı 
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olarak bu bölgedeki kesitlerin taşkın durumu olmadan taşıyabilecekleri 

kapasitelerinin %10’unu kadar belirsizlik yaratabildiğini göstermektedir. Ayrıca en 

kesitlerin nehir boyunca mevcut olan hidrolik yapılara uzaklıkları ve topoğrafik 

koşullar da bu belirsizlikleri doğrudan etkileyebilmektedir. Bu en kesitlerdeki su 

seviyesi çıktı dağılımlarının değiştiği belirlenmiştir. 

 

Anahtar Kelimeler: Hidrolik Model, Belirsizlikler, Olasılıksal Taşkın Modellemesi. 
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CHAPTER 1  

1 INTRODUCTION  

Floods are defined as overflow of large amount of water submerging the lands 

beyond its normal limits. Floods are generally induced by heavy flash floods or long-

lasting rain. On the other hand, tropical cyclones, monsoon rains and torrential rains 

also cause flood events (Coon, 1995; Douben, 2006). Floods cause enormous loss of 

life and property every year.  Although, there are many flooding events in developing 

countries, flooding and consequent problems are also experienced in the developed 

countries (Douben, 2006). It has been estimated that floods gave rise to 6.8 million 

deaths throughout 20th century (Kousky, 2014) and billions of people affected by the 

consequences of the floods (Jonkman et al., 2008).  

Generation of river floods are affected by variety of complex atmospheric processes, 

catchment characteristics, type of precipitation, soil type, topography, land cover, 

etc. Additionally, the damage factors caused by these complex systems are increased 

or decreased depending on the population growth, early warning system, indirect 

impacts like supply chains. The key processes which can give rise to flood or prevent 

disaster from river floods are depicted in Figure 1.1. 
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Figure 1.1. Main factors affecting the floods and relevant damages                     

(Merz et al., 2021). 

Climate change is also another important issue to consider flood risk and flood 

mitigation for authorities. Climate change affects factors of flooding, such as 

duration and intensity of precipitation, soil abstraction due to the extreme 

temperatures, snow melt, etc. Authorities must observe the outputs of climate models 

for future projections to take necessary precautions. Recent studies indicate that 

changes in 100-year flood frequencies for large parts of the world are around plus or 

minus 20% (Arnell & Gosling, 2016; Tabari, 2020). Therefore, due to consistent 

outputs of climate models, a decrease is possible in flood magnitude around the 

central Europe, central America, and southwest Africa. On the contrary, there is a 

likelihood that flood frequencies could increase across the high latitude Asia and 

North America, South America, east and south Asia and tropical Africa (Arnell & 

Gosling, 2016). 

Flood risk assessments are carried out by the help of hydrological and hydraulic 

models. Briefly, a hydraulic model is a collection of mathematical equations to assess 

the impact of flooding on a river or flood plain. The output observations from 
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hydraulic models are crucial for planning and designing hydraulic and civil 

structures. 

Since these models have so many inputs and parameters to carry out mathematical 

process behind the model, uncertainties are inevitable in most of the scenarios for 

both hydrological (Moges et al., 2021)  and hydraulic models (Beven et al., 2018). 

Although models have uncertainties for flood modelling, there are several techniques 

to eliminate or decrease the uncertainties with their resources. One of the applicable 

methods to see all flood extents with determined uncertainty intervals is probabilistic 

flood modelling approaches. These models allow researchers to observe all different 

output water surface elevations of simulations across different cross-sections. These 

observations are crucial especially in the locations where there are contractions in 

water way due to hydraulic structures, such as bridges. Output water surface 

distribution types are also important to understand the effect of uncertainty 

throughout the channels where hydraulic structures and regular cross-sections exist. 

In this study, uncertainties in determination and estimation of peak flow and 

Manning’s roughness coefficient for hydraulic models are discussed. A fully 

probabilistic (Monte Carlo based) 1-D hydraulic model is created in HEC-RAS 

(Brunner, 2021) to manipulate the hydraulic model via Visual Basic Application 

codes in fully automated manner. All of the possible flow depths and their relevant 

fluctuations are then observed with a case study in Samsun/Yılanlıdere sub-basin. 

The hydraulic model has different type of bridges (i.e., vehicular, pedestrian) and 

there are many cross-sections to introduce different flow behavior due to slope, 

length of channel bed, sudden contractions, and flood-prone regions. At the end, all 

of the probabilistic simulations, which are obtained by the help of the methodology 

mentioned throughout the study are compiled as tabulated probabilistic results. 

Therefore, the effects of uncertainties coming from different sources are presented 

so that it can be seen how flow depths and flood extents are sensitive to the 

determined uncertainties in hydraulic modelling. The thesis starts with Chapter 1, 

where the goal of the study is presented. Chapter 2 reviews the recent and relevant 

literature. The materials and methods those are used in this study are given in detail 
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in Chapter 3. In Chapter 4 the analyses are represented. The results are given in 

Chapter 5. Finally, Chapter 5 concludes the thesis, summarizes the work that has 

been utilized with potential future directions and prospects.  
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CHAPTER 2  

2 LITERATURE REVIEW 

Hydraulic models require some inputs and boundary conditions. Mainly, these 

requirements are digital elevation models (DEM), hydrographs/peak flows from 

hydrological studies, soil/land types determined from field studies for hydraulic 

equation parameters like Manning’s roughness coefficient. Briefly, DEMs are used 

to define topographic information of the study area. They construct the 3-

Dimensional shape of hydraulic models. The accuracy of the DEM can affect the 

flood hydraulics and resultant inundation extent of floods simulated with hydraulic 

models (Horritt & Bates, 2001) as exemplified in Figure 2.1 

 

Figure 2.1. Results of flood inundation of different digital elevation models in the 

same region and same return period (Xu et al., 2021). 
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Misleading information especially on river floodplains may cause important errors 

for the outputs of hydraulic models (Bates & De Roo, 2000). Additionally, different 

topographic information sources including ‘Light Detection and Ranging’ (LIDAR) 

and ‘Global Positioning System’ (GPS) systems with relevant bathymetries directly 

affect the water surface elevations and discharges (Casas et al., 2006). Hydrographs 

and relevant peak flows are also very important inputs to simulate flood through a 

model. Shape of hydrographs of basins are very sensitive to basin characteristics (Li 

& Sivapalan, 2011). Characteristics of basin like average slope, maximum channel 

length, the shapes and contribution of subbasins and other hydraulic structures and 

hydraulic components cause changes in hydrograph shape, time to peak and peak 

flows. Additionally, duration of precipitation affects the hydrograph shape and 

behavior of flood, as exemplified in Figure 2.2 

 

Figure 2.2. Observed hourly discharge data for the Piquiri River (a) a common 

streamflow hydrograph for a small flood caused faster rising limb and positive 

skewness. (b) Large flood caused a negative skewness (Fleischmann et al., 2016). 
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Therefore, determining the hydrographs and resulting peak flows are very complex 

inherently. Researchers should consider that there are so many factors to construct a 

design hydrograph. Peak flow estimation and relevant duration have always been an 

important topic for hydrology. Starting from 20th century, so many methods have 

been developed like distribution fitting procedures (Gumble, 1941; Singh, 1987) to 

represent the behavior of rainfall distribution for different return periods, enhanced 

methods of fitting procedure with convenient unit hydrographs (Aron & White, 

1982) and recent artificial intelligence methods for obtaining hydrographs and peak 

flows (Chen et al., 2013; Güçlü & Şen, 2016; Tayfur et al., 2018). 

Manning’s roughness coefficient is the other fundamental input to be determined in 

hydraulic modelling process. Any changes in the value of roughness coefficients 

cause significant differences in flow depths’ elevations. There are so many studies 

to estimate the Manning’s roughness coefficient for natural streams, vegetated banks 

and floodplains (Azamathulla & Jarrett, 2013; Coon, 1995) and dynamic coefficients 

for modelling (Ye et al., 2018). However, these values include some uncertainties 

(Wohl, 1998) and it is inherent to have the uncertainties inevitably for both peak 

flows and roughness parameters and researchers have to develop methods to 

eliminate or at least decrease the uncertainties in an acceptable range (Apel et al., 

2004; Domeneghetti et al., 2013; Hall & Solomatine, 2008).  

The uncertainties coming from different sources are also important problems for 

flood risk assessments as well.  Flood hazard can be defined due to the exceedance 

probability of flood damages for some period of time and area (Scawthorn et al., 

2006). Inevitably, these estimations are affected by the hydrologic and topographic 

uncertainties resulted from both models and data observations. Although, the source 

of uncertainties may be caused from empirical methods for peak discharge 

calculations, unit hydrograph estimations, distribution fittings, etc., and the 

uncertainties for roughness coefficients like insufficient field studies, inadequate 

land/soil information and underestimation of hydraulic terms (Bates et al., 2014), the 

uncertainties also resulted from observation devices like water-level measurements 

and stream gauges  (Bales & Wagner, 2009). 
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For most of the cases, the inputs and outputs of hydraulic models refer to a 

deterministic prediction for both flood area and water stages. Although the 

aforementioned developed and developing methods in literature can estimate 

required input precisely, these deterministic methods may underestimate or 

overestimate the water surface levels, flood extent and peak flows (Beven et al., 

2018; Papaioannou et al., 2017). In the literature, the roughness-based uncertainties 

(Aronica et al., 2002; Bates et al., 2014; Bozzi et al., 2015; Papaioannou et al., 2017; 

Pappenberger et al., 2005; Vatanchi & Maghrebi, 2019) and hydrological 

uncertainties (Sharafati et al., 2020; Walega & Ksiazek, 2016) have been studied and 

it is found out that the uncertainties from the hydraulic/hydrologic sources obtained 

by both empirical and observational ways cannot be neglected for most of the time. 

Although most of the current techniques for flood modelling are generally based on 

the application of deterministic methods, probabilistic methods have started to 

prevail in the evaluation of flood risks and relevant outputs (Di Baldassarre et al., 

2010) and visualization of flood extent maps. In literature, Monte Carlo based 

probabilistic approaches have been utilizing for different inputs so that all extents of 

uncertainties can be obtained. These studies include roughness parameters, 

hydrographs and peak flows, storm duration for design purposes and their 

frequencies, and some hydraulic model boundary conditions (Cooper, 2010; Garrote 

et al., 2021; Loveridge et al., 2013; Merwade et al., 2008; Wang et al., 2022) which 

are quite helpful to see possible extent of water depth and relevant inundation extents 

in a probabilistic manner. A brief informative table for deterministic and 

probabilistic method, is presented in Table 2.1. 
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Table 2.1. Brief information on deterministic and probabilistic models 

(Oberndorfer et al., 2020) 

 Deterministic Method Probabilistic Method 

Input A single numerical value of 

the result as explanatory 

statement with conservative 

assumptions 

At least one numerical or 

full probabilistic modeling 

using PDF is required for 

multiple impact values, 

including probability of 

occurrence and 

uncertainty. 

Result A simple mathematical 

summation gives the 

aggregate result of all risks 

and the expected result of 

the aggregated risk, but it 

cannot adequately represent 

the range of results. 

Calculations can be 

supplemented with upper 

and lower bounds indicating 

sensitivity that are also 

deterministic calculations. 

Simulation methods e.g., 

Monte Carlo simulation 

generate a set of 

aggregated natural hazards 

as probability distributions 

based on a large number of 

random but realistic 

scenarios. This method 

allows you to explicitly 

account for and handle all 

kinds of reducible 

uncertainty. 

Qualification Results are displayed as a 

single sharp number. 

Results are displayed 

using probability 

distributions which allow 

interpretation of value-at-

risk. 
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Additionally, inundation maps can also be obtained with both deterministic and 

probabilistic approaches. Techniques of deterministic inundation mapping have been 

increasing and advanced methods, such as physically-based fully 2D hydraulic 

models are used for the process (Di Baldassarre et al., 2010) and results are quite 

convenient for most of the situations. However, so many complex coefficients, 

especially for flood extent, may lead to misleading hazard evaluation (Bates et al., 

2004). Probabilistic mapping exhibits all possible extents with occurrence 

probability of flood in consecutive simulations with different confidence interval for 

peak flows presented by Garrote et al. (2021) and an example is presented in Figure 

2.3.  

 

Figure 2.3. An example probabilistic flood mapping with relevant confidence 

interval (Garrote et al., 2021). 
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CHAPTER 3  

3 STUDY AREA AND METHODOLOGY 

3.1 Study Area 

Probabilistic flood modeling and relevant observations are conducted for a sub-basin 

in Samsun province, Turkey. The city is in the Black Sea region of Turkey. 

According to the General Directorate of Meteorology, climate is rainy in nearly all 

seasons with average annual total rainfall amount of 717.9 mm for the period of 1929 

– 2021. Although the region is prone to flash floods especially in spring and summer 

(Bahadır, 2014), the seasonal distribution of precipitation has a pattern of regular 

distribution. Study area includes the Yılanlıdere River of which outlet is very close 

to the urbanized city center. Elevations change between 0 – 563 meters with a median 

value of 177 meters in the region. Location of the study area is presented in Figure 

3.1. 
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Figure 3.1. Location and digital elevation model of the study area. 

Yılanlıdere faced with extreme flood events in the past. Lastly, flood event with 

casualties was observed in 2012 with the observed average precipitation of 50 

mm/day (Akyürek & Karaman, 2021). 12 people lost their lives in this flooding 

event.  

High resolution of Digital Elevation Model is compiled for the region with 

bathymetric information. When the past flood events were observed in the area, 

flooding to the urban area is mainly started from the sections of bridges because of 

the contraction around them. There are 7 bridges along the river (3 pedestrian and 4 

vehicular) presented in Figure 3.2. The geometric details of the bridges are obtained 

from the bridge cross-sectional drawings, and they are inserted into the hydraulic 

model properly to see flow depths fluctuations around the bridges (1 to 3 meters just 

after and just before). The locations of the bridges and the drawings of the bridge 

selected as critical one (it is named as critical because of the flood prone behavior 

observed in the past flood in 2012) can be seen in Figure 3.3. 
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Figure 3.2. Locations of the bridges in the study area (‘ symbol indicates end of 

bridges for junctions while ‘‘ indicates the start of junctions). 

B1 

B2’’ B3 

B4 

B5 

B6’’ 

B7 

B2’ 

B6’ 
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Figure 3.3. Location (A), closer view (B) and the cross-sectional drawing of the 

bridge (C) picked as critical one (vehicular junction). 

Types of the bridges also vary in the region. There are vehicular, pedestrian, 

vehicular-junction types of bridges in the study area. The length of these bridges and 

their maximum possible flow depths without flooding is tabulated in Table 3.1 

Table 3.1. Types of bridges, lengths and relevant maximum possible flow depths 

without flooding. 

Bridge Type and Code Length (m) 
Maximum Possible Flow 

Depth Without Flooding (m) 

Vehicular (B2) 11 4.10 

Pedestrian (B3) 10 5.20 

Vehicular (Junction) (B6) 10 4.30 

Pedestrian (B7) 10 4.45 
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Mainly, bridges are located in the downstream part of the Yılanlıdere River, which 

discharges to Mert River.  Land cover of the study area is obtained from the datasets 

of European Space Agency (ESA) as shown in Figure 3.4. The land cover is different 

in downstream compared to upstream parts. While trees and shrublands dominate the 

upstream parts, built-up regions exit at the downstream parts. Although a complex 

land information exists in the area, there is no specific field study carried out for the 

morphology to detect possible extents of roughness coefficients. Commonly used 

hydraulic roughness values had been used in previous studies.  
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Figure 3.4. Land cover of the region obtained from ESA for 2020 
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3.2 Methodology 

Hydraulic models can be one dimensional (1D), two dimensional (2D) or combined 

1D-2D coupled models. These models have advantages and disadvantages (Mino et 

al., 2006; Vozinaki et al., 2017) depending on the flood area, characteristics of flood 

plain and the type of floods. Researchers should select the type of model and the 

software by considering the necessary conditions for a stable output from the model. 

Common software platforms for hydraulic modeling are given in Table 3.2.  

Table 3.2. Common hydraulic software platforms (Teng et al., 2017). 

1D Flood Modellers 2D Flood Modellers 1D-2D Flood Modellers 

• ESTRY 

• HEC-RAS 

• InfoWorks ICM 

• MIKE FLOOD 

• Flood Modeller 

• SOBEK Suite 

• SIPSON 

• FASTER 

• HYDRO River 

• TUFLOW 

• HEC-RAS 

• InfoWorks ICM 

• MIKE FLOOD 

• JFlow 

• Flood Modeller 

Pro 

• DIVAST 

• TELEMAC 2D 

• JFLOW 

• TRENT 

• FINEL 2D 

• UIM 

• XP2D 

• TUFLOW Classic 

• HEC-RAS 

• InfoWorks 

• MIKE FLOOD 

• JFlow 

• Flood Modeller 

Pro 

• XPSWMM 

• LISFLOOD-FP 

• TRENT 

• XPSTORM 

 

HEC-RAS (Brunner & CEIWR-HEC, 2016) is one of the most popular hydraulic 

modelling software, which has the capabilities of modelling 1-Dimensional, 2-

Dimensional and integration of 1-D and 2-D flood modelling calculations 

considering all relevant structures and land information, such as 



 

 

18 

overbank/floodplains, levees, structures, channels, culverts, etc. HEC-RAS software 

is freely available and updated regularly with new features and relevant 

documentations. Steady flow, unsteady flow, sediment transport, and water quality 

modeling options are available for users. It allows user to interact the software 

through a graphical interface for all options. The data created by user are saved by 

different extensions so that it can be manipulated separately in different projects or 

in other softwares. 

Main reason to choose HEC-RAS for this study is that the user can manipulate all 

data with some codes and applications. After the versions of HEC 5.0.x, the owners 

started to create some libraries through Visual Basic Application, so that users can 

manipulate the HEC-RAS with some automated processes like editing geometries, 

editing flows, changing dam breach parameters and implementing different 

Manning’s roughness coefficients (Goodell, 2014).  

After some design processes, HEC-RAS comes with installed Visual Basic library 

called ‘HECRASController’ in default mode. Now, this library has more than a 

hundred functions to manipulate hydraulic model with some codes. Additionally, 

researchers have been trying to adapt these Visual Basic Applications functions to 

other programming languages, such as MATLAB (Leon & Goodell, 2016) and 

Python (Dysarz, 2018). A snapshot of the overview of the library can be seen in 

Figure 3.5. 
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Figure 3.5. Functions of ‘HECRASController’ library in Visual Basic Application. 

Manipulations of HEC-RAS are carried out by the developer panel of Excel Visual 

Basic Application in this study. All codes are compiled to manipulate flow values 

and roughness parameters with defined number of simulations. Codes can change 

the peak flow values and Manning’s roughness parameters throughout the 

simulations and export the results in both tabulated form and/or rasterized tiff 

extensions. However, R programming language is utilized for statistical operations. 

Monte Carlo based input generation might lead to inappropriate results in Excel. 

Especially, different probability distributions like triangular cannot be generated 

with the help of default functions. R enables users to define upper and lower limits, 

standard deviations and statistical tests to check whether distributed inputs are 

properly generated. 
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Briefly, manipulation of HEC-RAS has following steps: 

• Generation of probabilistic inputs with relevant statistical parameters via R 

programming language. 

• Importing these distributions to the Visual Basic Applications. 

• Running Visual Basic codes to manipulate HEC-RAS with distributed inputs. 

• Saving results of all simulations in a tabulated form (flow depths for cross-

sections with their flow and Manning’s values at that moment). 

• Exporting all individual simulation results as .tiff extensions 

• Merging these individual tiff results to obtain a probabilistic flood inundation 

map 

There are so many cross-sections and bridges which are used to create the 1-D 

hydraulic model, only 9 cross-sections with 4 bridges (Figure 3.7) are chosen to 

observe the flow depth changes and corresponding statistical quantities (i.e., 

skewness, coefficient of variation and standard deviation) as output. The reason to 

use these bridges is that there is little information on some of the drafts for others. 

However, these 4 bridges have the proper drafts obtained by Water State Hydraulics. 

Cross-section around bridges (named as just before and just after the bridges 

throughout the study) are few meters away from the defined bridges (i.e., 1-3 

meters). The selection is made out for all possible slopes (i.e., higher slopes in the 

upstream part and lower slopes in the city center) and cross-section types (i.e., 

irregular, and wider channels in some parts and regular with narrow channels in other 

locations) although slopes do not vary in the downstream parts. All cross-sections 

with zoomed views can be seen in Appendix A. Flow depth differences due to some 

quantiles, standard deviations, coefficient of variations and skewness values of 

selected cross-sections are presented in Chapter 4. However, due to the critical 

overflow behavior of the vehicular junction bridge (B6) (Figure 3.3) in the past flood 

event, the results are shown separately for the nearby cross-sections of the mentioned 

bridge. 
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Schematic overview performed in this study is depicted in . 

 

Figure 3.6. Steps of HEC-RAS manipulations and simulations. 
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Figure 3.7. Chosen cross-sections and bridges to observe outputs throughout the 

study (bridge codes and the cross-section names are given automatically in HEC-

RAS). 

B2 

B3 

B6 

B7 
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CHAPTER 4  

4 FLOOD MODELLING 

4.1 Number of Simulations 

Determining the proper number of simulations in Monte Carlo approach is an 

important concept. It is a worth-stressing situation that what should be the necessary 

number of simulations so that all statistical parameters can be utilized properly. 

There are some statistical and mathematical approaches for this determination 

process. Some researchers (Beard et al., 1984) mentioned empirical methods within 

the identified confidence intervals. Convergence studies are also quite popular and 

utilizable by computing the variance of the simulations for different number of trials 

till the similar errors or relevant coefficient of variances are obtained (Jaeckel, 2002, 

Sobol, 1975). They help to understand behavior of distributions and find the point 

which should be the lowest number to obtain properly distributed inputs. The main 

idea is to obtain nearly the same value of variations of distributions in order to say it 

is unnecessary to generate new data to fit in defined distributions. 

Similarly, some trials are conducted till similar coefficient of variations are seen in 

order to determine the required number of simulations for Monte Carlo approaches. 

Normally distributed flows (Q) with a constant Manning’s roughness coefficient (n) 

are utilized for determination of proper number of simulations. The coefficient of 

variation (y) is the ratio of the standard deviation (y) to the mean (y). The formula 

of the coefficient of variation is shown in Equation 4.1. 

y =
y


y

                                                              (4. 1) 
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For this purpose, some random cross-sections (totally random from all cross-sections 

for both statistical results and hydraulic stability) are chosen carefully such that all 

behaviors (i.e., contractions around bridges, high slopes that rarely exist and regular 

channels) and calculations of coefficient of variations are conducted for each section. 

These cross-sections are presented in Figure 4.1. It is observed that resultant 

coefficient of variations for flow depths do not change significantly after 5000 

number of simulations in this study as shown with logarithmic plots of these 

observations in Figure 4.2. From these trials, ‘5000’ number of simulations are 

accepted to be used in all scenarios for the probabilistic flood modelling scenarios of 

the study including all types of uncertainties with separate observations and 

combined ones. As seen, there is no significant decrease in coefficient of variation 

coming from the statistical errors of distributions after 5000 simulations in different 

cross-sections. 

 

Figure 4.1. Randomly selected cross-sections for determination process of proper 

number of simulations. 
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Figure 4.2. Simulation number versus coefficient of variation for randomly selected 

cross-sections. 

4.2 Hydraulic Simulations 

After determining the convenient number for simulations, three main types of 

simulations are carried out to see the ranges of uncertainties for the flow depth of 

channels. These are ‘simulations of changing flows with constant Manning’s 

roughness coefficient, ‘simulations of changing Manning’s roughness coefficient 

with constant flow’ and ‘simulations with both changing flow and changing 

Manning’s roughness coefficient’. Firstly, simulations are implemented in a separate 

manner so that effects of defined uncertainties can be seen one by one at different 

cross-sections. After this, combined simulations that allow hydraulic model to run 

the coincidences of extreme inputs of defined uncertainties are run. 
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4.2.1 Simulations with Changing Flows and Constant Manning’s 

Roughness Coefficient 

Since the selected distribution types and parameters depict the behavior of variable 

in nature, statistical properties of defined uncertainties must be built on delicately. 

There have been numerous developed methods in the literature since early 20th 

century for rainfall-runoff processes. Starting from distribution fitting examples with 

local data (Gumble, 1941; Singh, 1987) and derivations of unit hydrographs (Rosso, 

1984; Singh et al., 1985), so many developments have been existed in hydrology like 

derivation of unit hydrographs with distribution fitting application (Aron & White, 

1982), very popular and recent artificial intelligent techniques for both hydrograph 

and their peak flows prediction (Chen et al., 2013; Güçlü & Şen, 2016; Tayfur et al., 

2018) are available to use for designers and researchers as well. Although these 

methods and other techniques in the literature are quite successful, uncertainties are 

probable and these deterministic methods might lead underestimate and overestimate 

peak flows especially in the regions where calibration of model is not possible as 

mentioned. Uncertainties coming from peak flow determination is investigated in 

this section with constant Manning’s roughness coefficient to see the extent of 

difference in flow depths and their relevant distributions due to the locations like in 

front of the bridges, just before the bridges and away from the bridges for peak flow 

uncertainties. There are lots of perspectives affecting the flow uncertainties including 

the shape of channels, topography, hydrology, etc. (Bessar et al., 2020).  

Accordingly, the errors and uncertainties are mostly based on empirical approaches 

for hydrographs which means the behavior of the flow uncertainties are appropriate 

with a normal distribution. Additionally, considering these mentioned wide ranges 

on techniques and the literature, it is seen that the uncertainties can vary between 10 

-20%. Therefore, the variations in flow values (i.e., peak flows) must be within a 

convenient range (Di Baldassarre et al., 2010; Xu et al., 2017). For this reason, 

coefficient of variation of 16.6% is chosen to be implemented for peak flow 

uncertainties so that proper deterministic peak flow value to distribute can be found 
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in a probabilistic manner without flooding. Some peak flow values are implemented 

not to cause overflow in main channel, and it is seen that peak flow of deterministic 

input can be 60 m3/s without overflow and representing all of the flow depths which 

are not affected from overflow case. The peak flow caused the flood in 2012 was 

around 720 m3/s. The river can convey 100-110 m3/s without causing any flooding. 

Contemplating the extent of normal distribution away from the mean for 99.73%, 

mean peak flow was selected as 60 m3/s with a standard deviation of 10 m3/s with a 

coefficient of variation of 16.6% throughout Monte Carlo simulations. Manning’s 

roughness coefficient which is constant throughout the simulations is chosen as 0.05 

considering the previous studies for the area and all types of possible extents of 

Manning’s roughness coefficient over the study channel with relevant calculations 

(Arcement & Schneider, 1989). Distributed peak flow values can be seen in Figure 

4.3 

 

Figure 4.3. Histogram of peak flows obtained with Monte Carlo approach. 
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4.2.2 Simulations with Changing Manning’s Roughness Coefficients and 

Constant Flow 

Determination of the appropriate distribution of Manning’s roughness coefficient 

and relevant statistical parameters are another crucial step to progress studiously 

since flow depths can be very sensitive for the Manning’s roughness coefficient due 

to the uncertainty (Kim et al., 2010). There are detailed and comprehensive studies 

to determine an adequate constant Manning’s  roughness coefficient for channels and 

flood plains including vegetated banks (Coon, 1995), grass-lined channels (Abood 

et al., 2006), vegetated furrows for irrigation purposes (Kamali et al., 2018) and even 

the dynamical coefficients for basin-scaled models (Ye et al., 2018) to determine a 

proper deterministic roughness parameter. Since roughness parameters have quite 

complex natures both inside the channels and in the floodplains (Engman, 1986), the 

randomness is the inherent part of Manning’s roughness parameter. Accordingly, 

triangular distribution is quite suitable to employ in many cases. It can be used in 

different research areas like character classifications (Yoo, 2019), risk analysis (Joo 

& Casella, 2001) or uncertainties like Manning’s roughness coefficient (Bozzi et al., 

2015). For this reason, triangular distribution may result in more logical behaviors 

when the randomness is especially important (Subirana et al., 2017). Therefore, 

triangular distribution of Manning’s roughness coefficients is used in the Monte 

Carlo simulations. Some studies proved that roughness parameters may include 

uncertainty up to 15% (Bozzi et al., 2015; Yanmaz, 2000). 

The triangular distribution needs three main parameters to properly fit in a model. 

They are represented as: 

• the lower limit: ‘xl’, lowest value of all probable Manning’s roughness 

coefficients. 

• the upper limit ‘xu’, the highest values of all probable Manning’s roughness 

coefficients. 

• the mode ‘xm’, the mode (also mean if the distribution is selected as not 

skewed) of all probable Manning’s roughness coefficients. 
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In accordance with literature, coefficient of variation for the triangular distribution 

is selected as 12.5% for these simulations. If mode (or mean if there is no skewness) 

value of triangular distribution and the relevant coefficient of variation are 

determined, lower limit and upper limit can be obtained by using following 

equations. 

𝑥𝑚 =
1

2
(

𝑥𝑙

𝑥𝑢
)                                                          (4.2) 

𝐶. 𝑜. 𝑉 =  y =
1

√6

(𝑥𝑢 − 𝑥𝑙)

𝑥𝑢 + 𝑥𝑙
                                           (4.3) 

µ𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 =
1

2
(𝑥𝑙 + 𝑥𝑢)                                               (4.4) 

  

Using the information of decided parameters as xm = 0.05 and C.o.V = 12.5%, lower 

limit of the triangular distribution becomes ‘0.0354’ and upper limit of the 

distribution becomes ‘0.0646’. Using these data and relevant functions, the input 

histogram of triangular distribution for Manning’s roughness coefficient is presented 

in Figure 4.4. An example of these determination process of values is presented in 

Appendix E. 

 



 

 

30 

 

Figure 4.4. Histogram of Manning’s roughness coefficient obtained from Monte 

Carlo approach. 

 

4.2.3 Simulations with Changing Flows and Changing Manning’s 

Roughness Coefficients 

In the combined case, peak flows and Manning’s roughness coefficients are 

manipulated via Monte Carlo simulations simultaneously. The relevant parameters 

and distributions are the same as the cases where the simulations are carried out 

separately. Triangularly distributed Manning’s roughness coefficients with the mean 

value of 0.05 and lower and upper bounds are selected as 0.0354 and 0.0646. Just 

like roughness coefficients, peak flows are simulated by using the same distribution 

and statistical parameters where normal distribution with 60 m3/s of mean flow and 

standard deviation of 10 m3/s is used (Figure 4.5). The values produced from 

distributions were selected totally randomly, and it is confirmed that all possible 
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extends (i.e., minimum roughness coefficient with minimum flow or vice versa) are 

implemented to see the whole extent of output water surface levels in cross-sections 

and around bridges. Monte Carlo based selections with possible trials are 

implemented and hydraulic model is simulated. 

 

Figure 4.5. Applied combination of Manning’s roughness parameters and peak 

flows. 

It is worth to mention that main goal of the combined case is to see what happens 

when extreme cases of uncertainties (i.e, extreme values of roughness and peak 

flows) coincide throughout channel and relevant cross-sections. 

Since the hydraulic model includes different type of cross-sections including bridges 

and their sudden contractions, the output flow depths resulted from the merged 

uncertainties is vital to analyze especially at flood-prone sections. As can be seen in  
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Figure 4.5, all possibilities within the determined variations of uncertainties are 

expected to give underestimation and overestimation in flow depths. 
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CHAPTER 5  

5 RESULTS 

5.1 Flow Uncertainties with Constant Manning’s Roughness Coefficient 

Normally distributed flows (with defined mean value and standard deviation) with a 

constant Manning’s roughness coefficient are observed at different cross-sections 

around bridges and regular waterways close to both downstream and upstream of the 

river. It is ensured that all types of sections (including wide, narrow, around the 

bridge, having high slope, having low slope, etc.) are considered for studies as 

mentioned. In this scenario, Manning’s roughness coefficient is assumed as 0.05 

(mean value) throughout the simulations.  

 

Figure 5.1. View of the bridge (B6) selected as critical one due to past flood events 

with modelled cross-section numbers (i.e, 1277 and 1538 cross-sections after and 

before the bridge). 
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Marginal distributions of flow depths and peak flow values for the critical vehicular 

junction bridge are depicted in Figure 5.2. Output flow depth distributions are 

convenient with the normal distributions with a wide range. In the extreme cases, 

fluctuations are quite sensitive due to the capacity of bridge section (maximum flow 

depth is 4.30 meters as seen in Figure 3.3). 

 

Figure 5.2. Histograms of simulated peak flows and flow depths for a) before the 

critical bridge (named as 1538) and b) after the critical Bridge (named as 1277). 

As it is seen in Figure 5.2, flow depths do not reach the maximum level (i.e, 4 meters 

(Appendix A)) which means there is no overflow as expected. However, flow depths 

have quite wide range and they are quite sensitive to the defined uncertainty 

variations at the cross-section of  this bridge. When wider cross-sections on the 

upstream part is selected (i.e, cross-section number is 3019), range is decreased 

(Figure 5.3).  
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Figure 5.3. Histograms of simulated peak flow and flow depths for cross-section 

3019. 

Although, slopes are similar at the cross-sections, channel width is quite changeable, 

which directly affects the flow depth uncertainties at the cross-section. All of the 

marginal distributions of cross-sections of flow uncertainties are given in Appendix 

B. 

In order to see the effects of flow uncertainties visibly at the critical bridge, quantiles 

of  5% and 95% for simulated flows are taken and flow depth outputs due to these 

quantiles are shown at the cross-sections just before and after the bridge (Figure 5.4) 

which have the flow depth differences of 93 cm and 75 cm, respectively.  

Cross-Section No: 3019 
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Figure 5.4. Flow depths due to 5% and 95% quantiles of simulated flows 1 meter 

(section 1538) and 1.5 meters after (section 1277) the most critical bridges. 

 

In order to see all extent of results, standard deviations, coefficient of variations and 

skewness values of cross-sections are observed for all selected bridges. First 

Cross-Section No: 1538 

Cross-Section No: 1277 
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observations are about the standard deviations which are considerably high around 

bridges compared to the other cross-sections. They reach around 0.28 meters in the 

contraction parts of the bridges (Figure 5.5). 

 

 

Figure 5.5. Standard deviations for flow uncertainties at different cross-sections. 

As seen in Figure 5.5, standard deviations are consistently higher just before the 

bridges. These higher results are directly affected by the sudden contraction of the 

flow path due to bridges. Although standard deviations are lower for the cross-

sections away from bridges, they have still valued around 0.15 meters which can be 

risky for a flood warning system in this region where floodplain is considerably 

limited. 

No: 1673 

No: 1277 

No: 398 

No: 2151 

No: 3019 

No: 6477 

No: 684 

No: 1703 

No: 1538 
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When the coefficient of variation (C.o.V) values are observed, flow depths have 

tendencies to behave similarly without depending on locations, which concludes that 

differences in standard deviations were indicators of the effects for flow uncertainties 

on contraction parts in the main channels. Since the possible wetted perimeters 

decrease because of the contraction and the discharge directly affects the flow depth 

in subcritical flow, output flow depth distributions had wider intervals with 

negligible change in coefficient of variation (Figure 5.6). The contraction and 

decrease in wetted perimeter changes due to the type of bridges, i.e., characteristics 

of bridge infrastructural elements and utilization factors (pedestrian, vehicular) 

increased the flow uncertainties. 

 

 

Figure 5.6. Coefficient of variation for flow uncertainties at different cross-

sections. 

Additionally, distributions of output flow depths and their corresponding skewness 

are another important statistical parameters for uncertainty estimation (Bozzi et al., 

No: 1673 

No: 1277 

No: 398 

No: 2151 

No: 3019 

No: 6477 

No: 684 

No: 1703 
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2015). Throughout the simulations for flow uncertainties with constant Manning’s 

roughness value, it is observed that output flow depths are mostly normally 

distributed with slightly negative skewness values up to -0.30 (Figure 5.7) occurred 

at all cross-sections regardless of location, structures and channel width differences, 

especially in downstream parts. When the average differences for average flow depth 

and 75%-95% quantiles of output flow depths are observed, values have the interval 

starting from 0.09 meters to 0.43 meters for flow uncertainties. 

Table 5.1. Average differences (m) between mean flow depth (m) and quantiles 

(75% and 95%) for flow uncertainties. 

Uncertainty Location Differences(m) (75% -95%) 

Only Flow Before Bridges 0.18 – 0.43 

Only Flow After Bridges 0.14 – 0.33 

Only Flow Away From Bridges 0.09 – 0.23 

 

 

Figure 5.7. Skewness values for flow uncertainties at different cross-sections. 
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5.2 Manning’s Roughness Uncertainties with Constant Flow 

Pre-defined triangularly distributed Manning’s roughness coefficients are simulated 

with constant flow value to see all flow depth fluctuations for different cross-sections 

by questioning whether the uncertainties behave the same as in the normally 

distributed flow values. Constant flow value (which is Q = 60 m3/s) is selected so 

that there cannot be overflow that directly affects the output distribution types and 

fluctuations. The most critical bridge is observed again for the Manning’s roughness 

uncertainty in detail (Figure 5.8) for the output flow depth distributions. 

 

Figure 5.8. Histograms of simulated Manning’s roughness parameter and flow 

depths for A) before the critical bridge (as named 1538) and B) after the critical 

bridge (as named 1277). 

As seen, uncertainty in Manning’s roughness coefficient tends to have smaller results 

compared to flow uncertainties. However, the ranges are still important especially 

for flood warning system in the critical bridge. Flow depth differences can reach up 

to 50 cm which is quite important for this kind of bridge that have contractions. 

Additionally, effects of flow depth change due to Manning’s roughness coefficient 

do have non-linearities. Another example is presented for output flow depth of wider 

and irregular cross-section (i.e., named as 3019) is shown in Figure 5.9. 
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Figure 5.9. Histograms of simulated manning’s roughness coefficient and output 

flow depths for cross-section 3019. 

Interestingly, flow depths are not affected up to a certain low limit of Manning’s 

roughness coefficient for this wider upstream channel (see Figure 3.7 for the location 

of cross-section). This is important to mention that Manning roughness uncertainties 

for lower thresholds (i.e., smaller than 0.042 for this case) do not affect these cross-

sections. However, it still has 40 cm flow depth uncertainties although it is a wide 

cross-section. All output flow depth distributions for cross-sections are given in 

Appendix C. 

When all cross-sections are observed, in this scenario, standard deviations decreased 

considerably up to 75% (Figure 5.10) due to the characteristics of roughness 

parameters on flow depths and due to the lower coefficient of variations in inputs of 

Manning’s roughness values. As seen, standard deviations are higher in the locations 

of regular cross-sections which are quite away from bridges and hydraulic structures. 

Values vary between 0.02 to 0.13 meters throughout the simulations. Due to the 
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structural behavior of roughness parameters at the bridge sections, it is seen that flow 

depth fluctuations are not affected from Manning’s roughness uncertainties as much 

as flow uncertainties in most of the cross-sections. 

 

Figure 5.10. Standard deviations for Manning’s roughness uncertainties at different 

cross-sections. 

On the other hand, except some of the cross-sections, heavily positive skewness 

values are observed due to the convergence in the lower percentiles of output flow 

depths. Output flow depths tend to not to change till extreme Manning’s roughness 

values are simulated (Figure 5.11). Therefore, standard deviations are affected due 

to these results. Although standard deviations are not high in critical sections, regular 

cross-sections away from bridges have important fluctuations compared to their 

quantiles (Table 5.2). Flow depths reach to 0.21 meters away from the bridges and 

0.16 meters after the bridges when 95% quantile input is simulated. 
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Table 5.2. Average differences (m) between mean flow depths and quantiles (75% 

and 95%) for roughness uncertainties. 

Uncertainty Location Differences(m) (75% -95%) 

Only N Before Bridges 0.03 – 0.09 

Only N After Bridges 0.06 – 0.16 

Only N Away From Bridges 0.09 – 0.21 

 

 

Figure 5.11. Skewness values for Manning’s roughness uncertainties at different 

cross-sections. 

Coefficient of variations tend to result in smaller values compared to flow 

uncertainties (Figure 5.12). Variations have values between 0.01 to 0.09 meters. 

However, the cross-sections away from bridges ended up with higher results which 

is caused by the distribution types of output flow depths and relevant skewness 

values. Skewness intervals of the cross-sections away from the bridges are more 
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stabilized and smaller which means the uncertainties of roughness coefficients 

around the contraction parts of the main channels gave output flow depths changing 

slowly at first but after a threshold, flow depths change considerably. This is not the 

case at all times. In some cross-sections just before and just after the bridges, 

roughness values have even negatively skewness values. This might be explained by 

the topography and relevant sudden changes, velocity of water, changes in channel 

sizes, and the sudden contraction of flow due to bridges. 

 

Figure 5.12. Coefficient of variation for Manning’s roughness uncertainties at 

different cross-sections 

 

 

No: 1673 

No: 1277 

No: 398 

No: 2151 

No: 3019 

No: 6477 

No: 684 

No: 1703 

No: 1538 



 

 

45 

5.3 Combined Flow and Manning’s Roughness Uncertainties 

5.3.1 Combined Flow and Manning’s Roughness Uncertainties Without 

Overflow 

Combined case is considered to cover all possible uncertainties caused by flow and 

roughness coefficients. All probable extreme cases also simulated by taking into 

consideration that there are no overflows from the main channel and neighboring 

structures so that the effects of overtopping can be eliminated and observed with the 

Monte Carlo simulations. In this scenario, codes automatically integrate the 

distributed peak flow values with distributed roughness coefficients randomly. 

Therefore, all combinations like maximum peak flow with minimum roughness 

value or maximum roughness value with maximum flow are utilized. 

Firstly, the critical cross-sections before and after the critical bridge (Figure 5.1) are 

observed separately. One of the most important observations to check is that whether 

all simulated peak flows and Manning’s roughness coefficients are utilized or not. In 

order to achieve this, 3-Dimensional perspective plot is obtained as in Figure 5.13. 

It is seen that HEC-RAS and Visual Basic codes combined all possible uncertainties 

for Manning’s roughness coefficient and peak flows for cross-sections. This is quite 

important to mention for dependable results. 
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Figure 5.13. Number of observations (simulated values) for peak flows (m3/s) and 

Manning’s roughness coefficient with flow depth (m) values for cross-section A) 

after the critical bridge - 1277 and B) before the critical bridge - 1538. 

When output flow depths of cross-section 1277 and cross-section 1538 are observed, 

it is seen that flow depths change up to 1 meter due to 5% and 95% quantiles (Figure 

5.14) which is quite important for this bridge opening since it has a maximum 

A) 

B) 
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capacity of 4.3 meters (Figure 3.3). Additionally, the output flow depths tend to have 

normal distribution although Manning’s uncertainties are triangularly distributed. 

All output flow depth histograms are given in Appendix D with 5% and 95% 

quantiles. 

 

Figure 5.14. Histogram of output flow depths with 5% and 95% quantiles (blue 

lines) for cross-sections of combined uncertainties 1277 (after the critical bridge) 

(A) and 1538 (before the critical bridge) (B). 

Briefly, if all cross-sections are observed in this combined uncertainties, standard 

deviations before and after the bridges do not increase significantly as expected. 

Results estimate that standard deviations vary between 0.13 meters to 0.31 meters 

after the bridges and 0.25 meters to 0.29 meters before the bridges. However, cross-

sections away from the bridges gave significant increase although the sections are 

quite wide. Flow depths reach to 0.20 meters away from the bridges (Figure 5.15). 

So, their flow depth values are changed up to 40% compared to the only peak flow 

and only Manning’s roughness uncertainties cases. 
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Figure 5.15. Standard deviations for combined uncertainties at different cross-

sections. 

Additionally, some of the output flow depth distributions end up with normal 

distribution (for 90% of confidence interval), even though input roughness 

uncertainties are distributed triangularly. When the skewness values are observed, 

it’s seen that there are no extremes in values which vary between -0.2 to 0.2. The 

skewness values around bridges (both before and after) are slightly negative. Vice 

versa, values are slightly positive in the cross-sections away from the bridges (Figure 

5.16). 
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Figure 5.16. Skewness values for combined uncertainties at different cross-

sections. 

Coefficient of variations for output flow depths increase in this scenario up to 0.15 

meters. Again, main increases are observed away from the bridges (up to 30% 

compared to other scenarios). Values vary between 0.09 m to 0.15 m after bridges 

and 0.10 m to 0.12 m before bridges and 0.09 m to 0.15 m away from the bridges 

(Figure 5.17), which show the importance of the combined uncertainties in the 

regular cross-sections. 

Lastly, average differences (m) between mean flow depths and quantiles (75% and 

95%) for combined uncertainties are shown in Table 5.3. The results reveal that 

combined uncertainties with predefined inputs may lead to differences in flow depths 

up to 0.45 meters around bridges. This can be considered as quite crucial difference 

especially for flood warning system in the main channel. Additionally, cross-sections 

away from the bridges become most sensitive sections in flow depths when 

uncertainties are combined. 
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Figure 5.17. Coefficient of variation for combined uncertainties at different cross-

sections. 

Table 5.3. Average differences (m) between mean flow depths and quantiles (75% 

and 95%) for combined uncertainties. 

Uncertainty Location Differences(m) (75% -95%) 

Combined Flow and N Before Bridges 0.19 – 0.45 

Combined Flow and N After Bridges 0.15 – 0.36 

Combined Flow and N Away From Bridges 0.13 – 0.33 
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CHAPTER 6  

6 DISCUSSIONS AND CONCLUSIONS 

6.1 Discussion of the results 

Briefly, it is inevitable not to have uncertainties for the simulated hydraulic models 

with convenient inputs especially in the regions where calibration is not possible due 

to the lack of historical data. Different sources of uncertainties and different types of 

inputs have their own statistical distribution to present their natural behaviors. Peak 

flow uncertainties come from empirical reasons which mean normal distribution is 

quite successful to represent their variations. Vice versa, Manning’s roughness 

coefficients’ uncertainties arise from very complex behavior of this parameter in 

both main channel and flood areas. It is so dynamic and depends on so many complex 

parameters including flow depth, flood extent, type of flow, land cover, and moisture 

content of soil. 

Results have shown that uncertainties and differences in flow depths due to these 

uncertainties are quite important and cannot be underestimated in hydraulic models. 

The capacity of main channels may not be sufficient if these uncertainties are not 

considered carefully. Especially in the contraction regions due to bridges, flow 

depths can change up to 10% in the extreme scenarios of the inputs. For flow 

uncertainties with constant Manning’s roughness coefficient, normally distributed 

5000 peak flows with 16.6% coefficient of variation caused standard deviations up 

to 0.28 meters. The output flow depths of cross-sections around bridges show the 

higher standard deviations especially before the bridges. Skewness values are 

slightly negative for the output flow depth distributions. Their distributions are quite 

convenient with normal distributions as well. Maximum of 0.43 meter of flow depth 

difference is observed with simulated mean (deterministic) input and extreme 

quantile (95%) of peak flows. Coefficient of variations reach up to 0.14 meters. 
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Although it is expected to have greater coefficient of variations around bridges, the 

regular cross-sections away from the structures have also important values of 

variations for flow uncertainties. 

In the second scenario, Manning’s roughness coefficients are simulated with 

constant peak flow. Since the main uncertainty source of Manning’s roughness 

coefficients are randomness and complexity, triangular distribution is accepted as 

appropriate distribution. Triangularly distributed 5000 Manning’s roughness 

coefficient is distributed with lower limit of 0.0354 and upper limit of 0.0646. Mean 

(and median in this case also) of the roughness coefficient becomes 0.05. These 

inputs resulted to obtain standard deviations up to 0.13 meters. Unexpectedly, cross-

sections away from the bridges tend to have more sensitive behavior for Manning’s 

uncertainties. Same as standard deviations, coefficient of variations for the sections 

away from the bridges have the highest values. The variations reach up to 0.09 meters 

due to roughness uncertainties. The skewness values are heavily positive. Output 

flow depths caused by roughness uncertainties tend to accumulate in a closer region. 

In the last scenario, all possible peak flow and Manning’s roughness coefficient 

values are simulated simultaneously, and it has been ensured that all extremities (i.e, 

coinciding the maximums and minimums of both uncertainties) are simulated. Flow 

depth differences reach up to 0.45 meters (which is 10% percent of maximum 

capacity of critical bridge section) due to mean (deterministic) input and extreme 

coincides (95% quantiles) of both uncertainties. Output flow depth distributions tend 

to behave as normally distributed.  Skewness values are around or close to the zero 

for most of the cross-sections. Coefficient of variations reach up to 0.15 meters 

including the cross-sections away from the bridges. For the probabilistic mapping, 

mean peak flow is increased (Qp = 90 m3/s) so that extreme scenarios can initiate 

overflow. This is a quite important reminder to consider the uncertainties for flood 

risk maps. 

Additionally, the characteristics of the cross-sections and relevant flow 

characteristics (i.e., velocities) affect the flow depth distributions. It is observed that 
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cross-sectional capacities are one of the most fundamental differences affecting flow 

depth differences. Although they take place both just before or just after any bridges 

(i.e, sections 684 and 1538), they may have quite different skewness intervals and 

standard deviations. 

These flow depth differences, standard deviations and variations are crucially 

hazardous for the design purposes and long-term residential plannings. Additionally, 

design parameters of early warning systems for floods may also be affected from 

these flow depth differences. 

Lastly, it is seen that after setting the 1D hydraulic model, this methodology quite 

easy to be implemented for various study area. After compiling the codes once, user 

requires to change some small variables in the scripts such as project name, total 

number of simulations, river/reach names and total number of cross-sections from 

the HECRAS software. All the procedure can be repeated automatically using the 

codes. 

6.2 Conclusions 

This study assesses the uncertainties in 1-D hydraulic modelling for peak flow 

estimations and Manning’s roughness coefficients. Distributions of convenient 

inputs and relevant uncertainties for peak flows and Manning roughness coefficients 

are observed with respect to inherent sources of uncertainties. The required number 

of simulations to represent natural behavior of these inputs are determined. Relevant 

softwares are integrated and codes are compiled to obtain a fully automated 

probabilistic 1-D hydraulic model. All combinations of uncertainties are modelled 

separately and at a time properly. Hydraulic model is set up in Yılanlıdere River in 

Samsun Province. Model includes high resolution digital elevation model with 

bathymetric information of main channel. HEC-RAS software is utilized for the 

hydraulic model. Study area has been facing with flood events for a long time. There 

are bridges for different purposes along the main channel, which are integrated to the 
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model. The bridges cause some flood problems in the downstream part of the river 

due to their contraction parts. A fully probabilistic model that can simulate and 

manipulate hydraulic model automatically with Visual Basic Application and Python 

codes is created so that the effects of all ranges of inputs due to uncertainties in peak 

discharge and roughness value can be represented in separate and combined way. 

Normal distribution is used for peak discharge and triangular distribution is used for 

roughness value. The maximum number of simulations in Monte Carlo runs is 

determined by considering the significant decrease in coefficient of variation coming 

from the statistical errors of distributions in different cross-sections. 5000 number of 

simulations are accepted to be used in all scenarios for the probabilistic flood 

modelling scenarios of the study including all types of uncertainties with separate 

observations and combined ones. The results show that the maximum flows and 

roughness values may cause uncertainties in flow depths up to 50 cm at the cross-

sections close to the bridges. In addition to the conveyance property of the cross-

sections’ the contraction at the cross-sections due to the bridges increases the 

uncertainty in the flow depth. The steady state results suggest that the probability of 

underestimating flow depths (up to 50 cm) is far from being negligible, especially 

when both discharge and roughness are subject to uncertainty. These results are 

undoubtedly associated with the study site. 

It should be mentioned that due to the natural concept of HEC-RAS and the relevant 

library in the Visual Basic Applications, it is not possible to manipulate a 2-D 

hydraulic model for Monte Carlo approaches with existing functions which is one of 

the main limitations. Since HEC-RAS stores the 2-D model data as ‘.hdf5’ format, 

another library or functions must be compiled to propagate Monte Carlo simulations.  

Lastly, Uncertainties are integral parts of hydraulic models. Although their degrees 

of effects are different, their sources and types are numerous. Therefore, 

recommended future studies may include: 
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• Effects of other uncertainties like digital elevation models, boundary 

conditions, rating curves etc. can be considered. 

• Trying different uncertainties in 2-D hydraulic models including different 

mesh sizes and mesh types can be used. 

• Merging mentioned other uncertainties attentively so that all possible flow 

depth extents can be seen. 

• Unsteady flow uncertainties with different durations, i.e., time to peaks and 

base time probabilistically can be utilized. 

• Effect of uncertainties on damage to bridges, such as bridge scouring must 

be studied. 
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APPENDICES 

A. CROSS-SECTIONS IN HYDRAULIC MODEL. 

 

Figure A.1. Cross-Section 398. 
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Figure A.2. Cross-Section 684. 
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Figure A.3. Cross-Section 1277. 
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Figure A.4. Cross-Section 1538. 

 

Figure A.5. Cross-Section 1673. 
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Figure A.6. Cross-Section 1703. 

 

Figure A.7. Cross-Section 2151. 
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Figure A.8. Cross-Section 3019. 
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Figure A.9. Cross-Section 6477. 
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B. MARGINAL DISTRIBUTIONS OF OUTPUT FLOW DEPTHS FOR 

FLOW UNCERTAINTIES 

 

Figure B.1. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 398. 
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Figure B.2. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 684. 

 

Figure B.3. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 1277. 
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Figure B.4. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 1538. 

 

Figure B.5. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 1673. 
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Figure B.6. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 1703. 

 

Figure B.7. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 2151. 
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Figure B.8. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 3019. 

 

Figure B.9. Marginal Distribution of Output Flow Depth (m) vs Peak Flows (m3/s) 

for Cross-Section 6477. 
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C. MARGINAL DISTRIBUTIONS OF OUTPUT FLOW DEPTHS FOR 

MANNING’S ROUGHNESS COEFFICIENT UNCERTAINTIES 

 

Figure C.1. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 398. 
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Figure C.2. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 684. 

 

Figure C.3. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 1277. 
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Figure C.4. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 1538. 

 

Figure C.5. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 1673. 
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Figure C.6. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 1703. 

 

Figure C.7. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 2151. 
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Figure C.8. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 3019. 

 

Figure C.9. Marginal Distribution of Output Flow Depth (m) vs Manning’s 

Roughness Coefficient for Cross-Section 6477. 
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D. HISTOGRAMS OF OUTPUT FLOW DEPTHS AT CROSS-SECTIONS 

FOR COMBINED UNCERTAINTIES 

 

Figure D.1. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 398. 
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Figure D. 2. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 684. 
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Figure D.3. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 1277. 



 

 

87 

 

Figure D.4. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 1538. 
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Figure D.5. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 1673. 



 

 

89 

 

Figure D.6. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 1703. 
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Figure D.7. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 2151. 
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Figure D.8. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 3019. 
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Figure D.9. Histogram of Combined Uncertainties Output Flow Depth (m) for 

Cross-Section 6477. 
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E. TRIANGULAR MANNING’S ROUGHNESS COEFFICIENT 

DISTRIBUTION DETERMINATION 

After convenient coefficient of variation is selected (12.5% as explained in this 

study), mean value of Manning’s roughness coefficient should be determined 

accordingly. This value has to be evaluated with the proper methods or fields studies 

for the study area/basin. In this study, mean value of the Manning’s roughness 

coefficient is determined as 0.05 from the field study. Next step is to determine the 

lower and upper limits of these Manning’s roughness coefficients by using Equation 

4.3 and 4.4 as depicted below. 

 𝐶. 𝑜. 𝑉 =  y =
1

√6

(𝑥𝑢 − 𝑥𝑙)

𝑥𝑢 + 𝑥𝑙
 → 0.125 ∗ √6 =  

(𝑥𝑢 − 𝑥𝑙)

𝑥𝑢 + 𝑥𝑙
= 0.306 

1

2
(𝑥𝑙 + 𝑥𝑢)   = 0.05 

When these two equations are solved, 𝑥𝑙 = 0.036 and 𝑥𝑢 = 0.064 are concluded. 


