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ABSTRACT

FEM APPROXIMATION OF MAXWELL EQUATIONS: THE SOURCE
PROBLEM, EIGENPROBLEM, AND ELECTROMAGNETIC WAVES

Dağlı, Tugay

M.S., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Önder Türk

January 2023, 139 pages

In this thesis, edge-based finite element method (FEM) approximations of Maxwell’s
equations describing the relationship between the space variables and sources along
the electromagnetic field are considered. In particular, the lowest-order Nédélec ba-
sis functions are implemented to construct the FEM model of the Maxwell source
problem, Maxwell eigenvalue problem (EVP), and electromagnetic wave propaga-
tion problem. A computational model is constructed to conduct all these problems in
the same framework of an approximation formalism.

The convergence properties of the Maxwell EVP formulation are analyzed by apply-
ing the spectral theory with those of the associated boundary value source problem.
Therefore, the analyses for both of these problems are given together with the corre-
sponding numerical results validating the theoretical features. Moreover, a compari-
son between the two convergent FEM approximations of the Maxwell EVP that uti-
lizes the lowest-order Nédélec and the linear Lagrange basis functions is performed.
This comparison is done by using a special triangulation, namely, a Powell-Sabin
type, of the domain that contains a strong singularity.

The electromagnetic wave propagation problem is also considered using two different
approaches, namely, a direct time-domain approximation method and a modal analy-
sis technique. For both approaches, a FEM model of the wave propagation problem
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is obtained by discretizing the spatial domain using the lowest-order Nédélec basis
functions. The time domain approximation of this problem is obtained by employing
a finite difference (FD) scheme to approximate the second-order temporal derivative
in the obtained FEM model. On the other hand, the frequency domain approxima-
tion is acquired by truncating the modal expansion solution. Here, it is set forth that
the solution to the electromagnetic wave propagation problem can be represented by
an expansion of the approximate eigenmodes that are obtained from the associated
Maxwell EVP. As a consequence, it is shown by exploiting the numerical test case
of the inhomogeneous wave propagation problem that both methodologies lead to
accurate approximations which agree well with each other.

Keywords: Maxwell’s equations, Maxwell source problem, Maxwell eigenvalue prob-
lem, Electromagnetic wave propagation problem, Finite elements, Edge elements,
Modal analysis
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ÖZ

MAXWELL DENKLEMLERİNİN SONLU ELEMANLAR YÖNTEMİ
YAKLAŞIMI: KAYNAK PROBLEMİ, ÖZDEĞER PROBLEMİ VE

ELEKTROMANYETİK DALGALAR

Dağlı, Tugay

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Önder Türk

Ocak 2023, 139 sayfa

Bu tezde, uzay değişkenleri ile elektromanyetik alan boyunca kaynaklar arasındaki
ilişkiyi açıklayan Maxwell denklemlerinin kenar tabanlı sonlu elemanlar yöntemi
(SEY) yaklaşımları ele alınmıştır. Özel olarak, Maxwell kaynak probleminin, Ma-
xwell özdeğer probleminin (ÖDP) ve elektromanyetik dalga yayılım probleminin
SEY modelini oluşturmak için en düşük dereceli Nédélec temel fonksiyonları uy-
gulanmıştır. Tüm bu problemleri aynı yaklaşım yöntemi çerçevesinde yürütmek için
bir hesaplama modeli oluşturulmuştur.

Maxwell ÖDP formülasyonunun yakınsama özellikleri, ilgili sınır değer kaynak prob-
lemininkilerle spektral teori uygulanarak analiz edilmiştir. Bu nedenle, bu problem-
lerin her ikisi için analizler, teorik özellikleri doğrulayan sayısal sonuçlarla birlikte
verilmiştir. Ayrıca, en düşük dereceli Nédélec ve birinci dereceli Lagrange baz fonksi-
yonlarını kullanan Maxwell ÖDP’nin iki yakınsak FEM yaklaşımı arasında bir karşı-
laştırma yapılmıştır. Bu karşılaştırma, güçlü bir tekillik içeren bölgenin Powell-Sabin
adında özel bir üçgenlemesi kullanılarak yapılmıştır.

Elektromanyetik dalga yayılımı problemi de doğrudan zaman-bölgesi yaklaşım yön-
temi ve modal analiz tekniği olmak üzere iki farklı yaklaşım kullanılarak ele alınmış-
tır. Her iki yaklaşım için de, dalga yayılma probleminin bir SEY modeli, en düşük
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dereceli Nédélec temel fonksiyonlarını kullanarak uzaysal alanı ayrıklaştırarak elde
edilmiştir. Bu problemin zaman alanı yaklaşımı, elde edilen SEY modelinde ikinci
dereceden zamansal türevi yaklaşık olarak bulmak için bir sonlu farklar yaklaşımı
kullanılarak elde edilmiştir. Öte yandan, frekans alanı yaklaşımı, modal açılım çözü-
münün kesilmesiyle elde edilmiştir. Burada, elektromanyetik dalga yayılım problemi-
nin çözümünün, ilgili Maxwell ÖDP’den elde edilen yaklaşık özmodların açılımıyla
temsil edilebileceği ortaya konmuştur. Sonuç olarak, homojen olmayan dalga yayı-
lımı probleminin sayısal testlerinden yararlanarak, her iki metodolojinin de birbiriyle
iyi uyum sağlayan doğru yaklaşımlarla sonuçlandığı gösterilmiştir.

Anahtar Kelimeler: Maxwell denklemleri, Maxwell kaynak problemi, Maxwell öz-
değer problemi, Elektromanyetik dalga yayılım problemi, Sonlu elemanlar, Kenar
elemanları, Modal analiz
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CHAPTER 1

INTRODUCTION

Partial differential equations (PDEs) are utilized in many fields of industry and sci-

ence. In general, exact solutions of PDEs are either too challenging or impossible

to obtain. For this reason, numerical approximations of PDEs must be considered

by employing numerical techniques such as finite element, finite volume, boundary

element, finite difference, and spectral element methods. The goal of using numerical

methods is to approximate the exact solution or, if the exact solution does not exist for

a particular case, to produce results that are consistent with the experimental results

of the relevant case accurately and efficiently. To this end, finite element methods

are widely used as approximating methods to obtain accurate and efficient results for

PDEs that are mostly related to the natural sciences and engineering.

Finite element methods (FEM) can be characterized as a class of methodologies to

approximate functions at a discrete level, which include standard, mixed, conform-

ing, non-conforming, and discontinuous Galerkin methods. These methods perform

in a way that utilizes the discretized domain using a set of a finite number of points,

edges, faces, elements, and the related basis functions defined on them. Therefore,

finite element methods are broadly studied by many researchers because of their abil-

ity to produce efficient approximations on geometrically complex domains. Another

essential benefit is the feature that differential equations are converted into a system

of algebraic equations that can be structured locally over each element using the finite

element method.

A set of coupled PDEs known as Maxwell’s equations serves as the basis for electro-

magnetism, optics, and electric circuits. The equations employ a mathematical rep-
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resentation of optical, electric, and radio technologies, including radar, lenses, wire-

less communication, electric motors, and power generation (see, e.g., [77, 101, 104]).

Maxwell’s equations explain how currents, charges, and changes in the fields produce

electric and magnetic fields. Furthermore, the Maxwell eigenvalue problem (EVP) is

the problem arising from finding cavity resonators that are important in microwave

and optical systems. They are being used as filters or tools to improve physical in-

teractions, radiation antennas, or electromagnetic sources like magnetrons and lasers.

They can also be employed to enhance sensor sensitivity (see, e.g., [45, 72, 87]). Ad-

ditionally, Maxwell’s equations describe the propagation of electromagnetic waves

in free space or through a medium. The electromagnetic wave propagation problem

that is derived from Maxwell’s equations simulates physical phenomena such as radio

waves, microwaves, X-rays, radars, etc.

In this thesis, the three formulations of Maxwell’s equations, which are the source

problem, the eigenvalue problem, and the electromagnetic wave propagation problem,

are considered. The source and eigenvalue problems are derived in a time-harmonic

setting, and the electromagnetic wave propagation problem is obtained in the time do-

main. The edge-based FEM using the lowest-order Nédélec basis functions is studied

to approximate the three formulations of Maxwell’s equations. The main reason is

that Nédélec basis functions are consistent with the physics of the systems that are

modeled by Maxwell equations [88]. Lastly, a modal analysis and FEM in space/fi-

nite difference (FD) in time approaches are considered to approximate the electro-

magnetic wave propagation problem.

1.1 Literature Survey

As Maxwell’s equations form the basis of numerous phenomena, researchers fo-

cused on approximating Maxwell’s equations in both boundary value and eigenvalue

problems and the electromagnetic wave propagation problems using various meth-

ods throughout the years. Moreover, the modal analysis of the electromagnetic wave

propagation problem is performed with the help of the modes obtained by using ap-

proximate methodologies.
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Problems involving Maxwell’s equations are being extensively considered using var-

ious methods such as the finite element method, boundary element method [51, 64,

67, 73, 100, 102], finite volume method [2, 3, 92], reduced basis method [54], multi-

grid methods [103, 106], spectral element method [70], and uncertainty quantification

[49]. However, the finite element methods are widely preferred by many researchers

in the study of Maxwell’s equations and EVP.

A literature survey about the finite element methods for Maxwell’s equations and

modal analysis of the electromagnetic wave propagation problems is presented below.

1.1.1 FEM for the Maxwell Equations and Eigenvalue Problems

In finite element methods using nodal basis functions for a non-convex polyhedral

domain, nodal elements might lead to spurious eigenvalues [23, 63], which may be

fixed with the constructions introduced in [19, 30, 36, 37, 38]. Bossavit focused

on both edge and node-based finite element approximations of Maxwell’s equations

and presented that the node-based finite elements cause spurious solutions, and using

edge elements prevents the unphysical, the so-called "spurious modes" in [23]. In

[63], Konrad proposed a nodal finite element method for approximating Maxwell’s

equations in 3D that reduces the number of spurious solutions but could not be fully

eliminated. In [30], Caorsi, Fernandes, and Raffetto explained the reason and the be-

havior of spurious solutions in Galerkin finite element approximations of Maxwell

EVP. Furthermore, the convergence of Galerkin finite element approximations of

electromagnetic eigenproblems is investigated in this paper using two slightly differ-

ent definitions of convergence, the second of which clarifies the intuitive concept of

the "spurious-free method." While both definitions include necessary and sufficient

conditions, only the newly proposed one proves that whether or not an approxima-

tion converges for a given family of finite element triangulations is unaffected by the

properties of the materials in the cavity. In addition, they showed that the lowest-order

edge elements fulfill discrete compactness and allow convergent approximations even

in the eigenproblem, including anisotropic, inhomogeneous, and discontinuous ma-

terial properties. In [37], Costabel and Dauge proposed a method for approximat-

ing time-harmonic Maxwell’s equations on 2D and 3D polyhedral domains using
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nodal finite elements. They regularized the divergence part of the problem to prevent

spurious solutions in the presence of reentrant corners or edges by introducing spe-

cial weights inside the divergence integral. They proved that the presented method

produces accurate approximations. In [38], Costabel and Dauge focused on the ap-

proximation of Maxwell eigenvalues with perfectly conducting boundary conditions

on polyhedral cavities using the nodal finite element method. They used nodal ele-

ments since the bilinear form corresponding to the curl-curl operator is regularized

to eliminate the gradient fields. In addition, to avoid the bilinear form correspond-

ing to the divergence operator from converging to a wrong solution in the domain

with reentrant edges or corners, they modified it using the method of addition of

singular functions and the method of regularization with weight. In [8], Badia and

Codina proposed the nodal FEM to approximate Maxwell’s problem using a newly

introduced formulation of the continuous problem and a stabilization. They demon-

strated the suggested approach’s convergent characteristics for singular and smooth

solutions. In [44], Duan, Tan, Yang, and You presented the nodal FEM with La-

grange linear elements, with one element bubble per element. The proposed method

produced accurate results for the general Maxwell’s eigenvalue and source problems

with the discontinuous and nonhomogeneous medium. In addition, in some examples

given in the study, it is shown that the method is suitable for singular solutions. In

[42], Duan, Du, Liu, and Zhang approximated both Maxwell source and eigenvalue

problems using mixed elements that are inf-sup stable. They used nodal Lagrange el-

ements for the discretization of the electric field and discontinuous piecewise constant

elements for the Lagrange multiplier. The suggested method gives spectral-correct,

spurious-free approximations when applied to the eigenvalue problem, as shown in

a theory together with the numerical experiments that verify the findings. In [43],

Duan, Liu, Ma, Tan, and Zhang studied the Lagrange basis functions for the FEM

solution of Maxwell’s equations. They obtained optimally convergent results for both

singular and smooth solutions using the Lagrange elements of order greater than or

equal to two on barycentric refinements. In [19], the spurious-free approximations of

Maxwell EVP in two-dimensional domains using Lagrange elements are considered.

Specifically, the convergence analysis of FEM that employs the linear Lagrange basis

functions on Powell-Sabin triangulation, the quadratic Lagrange basis functions on

Clough-Tocher triangulation, and the quartic (or higher) Lagrange basis functions on
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general shape-regular triangulations for Maxwell EVP in two dimensions are demon-

strated by Boffi, Guzmán, and Neilan.

Many researchers studying Maxwell’s equations use the Discontinuous Galerkin ap-

proximation as an alternative to the Galerkin approximation due to its ability to pro-

vide spurious free results. In [28], Buffa and Perugia presented necessary and suf-

ficient conditions for the Discontinuous Galerkin spurious-free approximation of the

Maxwell source problem with discontinuous material parameters and suitable bound-

ary conditions. In [26], Buffa, Houston, and Perugia proposed several numerical

experiments that both support the theory presented in [28] and provided more in-

sight into discontinuous Galerkin methods. They demonstrated, in particular, that the

DG techniques do not yield arbitrary spurious solutions on conformal meshes. In

[55], Hestheaven and Warburton approximated the Maxwell EVP using a high-order

nodal discontinuous Galerkin (DG) method. For 2D problems, the straightforward

application of the DG method was efficiently performed since it did not support any

spurious modes, even for the singular problems. However, a modification was needed

to control spurious solutions in 3D cases to achieve an efficient approximation. The

results show that the high-order nodal DG method is an accurate, efficient alternative

to the classical Galerkin method. In [29], Buffa, Perugia, and Warburton obtained

spurious-free approximations on general irregular meshes in the two-dimensional do-

main by using a projection-based penalization at non-conforming interfaces, which

is a mortar-type method. They used a mortar-type method to prevent the possibility

of spurious solutions on general irregular meshes and proved that the proposed DG

method is spectrally correct. They provided numerical examples of both convex and

non-convex problem domains to demonstrate the theoretical results with regular and

discontinuous material coefficients. In [79], the numerical solution of time-harmonic

Maxwell’s equation using two hybridizable discontinuous Galerkin (HDG) methods

was proposed by Nguyen, Peraire, and Cockburn. The mixed curl-curl formulation is

approximated by the first HDG method, and the vector wave formulation is approxi-

mated by the second HDG method. The presented HDG methods provided the results

of standard DG approximation for the time-harmonic Maxwell’s equation with some

additional advantages. In particular, the HDG methods have less number of globally

coupled unknowns in comparison with the standard DG methods, and this leads to
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an advantage in terms of both computational and memory costs. Also, for smooth

solutions, the numerical solution can be post-processed at the element level, and for

singular solutions, in order to improve accuracy, local post-processing is effective.

The mixed FEMs are studied to resolve the divergence-free condition to prevent nu-

merical schemes from producing spurious solutions. In [75], the Maxwell equations

on a domain that smooth and bounded are approximated using a semidiscrete mixed

finite element and analyzed by Monk. He proved a convergence for mixed method-

ologies and showed that it could be useful in the proof of estimates when Nedelec’s

elements are used. In [21], Bonito and Guermond also approximated Maxwell’s EVP

using the mixed method with the nodal-based finite element discretization and the

control of divergence-free condition in a fractional Sobolev space. In [57], Jiang, N.

Liu, Tang, and Q. H. Liu approximated Maxwell’s EVP by using mixed FEM with the

introduction of the Lagrangian multiplier. They make use of the lowest-order edge-

based basis functions to interpolate the field whereas first-order nodal basis functions

for the Lagrangian to prevent spurious solutions. In [85], Qiao, Yao, and Jia pro-

posed a nonconforming mixed finite element approximation of 3D the time-harmonic

Maxwell equation with superconvergence and extrapolation analysis. They concluded

that this mixed finite element possesses super-close characteristics. In addition, a

post-process operator achieved global superconvergence, implying it can enhance the

order of approximation from 1 to 2 with the perfectly conducting boundary condition.

In [27], Buffa, Ciarlet Jr., and Jamelot approximated the Maxwell EVP. They used

mixed FEM with the discretization of an electric field using the weighted method of

Costabel and Dauge [37] and the discretization of the Lagrange multiplier employing

the Zero Near Singularity finite element pair of Ciarlet Jr. and Hechme [82].

The following works compared the finite element methods using nodal and edge ele-

ments. In [88], Reddy, Deshpande, Cockrell, and Beck applied nodal-based and edge-

based FEM to Maxwell’s eigenvalue problem (EVP). Implementation of nodal-based

finite elements resulted in spurious solutions. The implementation of edge-based fi-

nite elements eliminated spurious solutions because of the properties of edge-based

basis functions and their consistency with the physical properties of Maxwell’s EVP.

In [14], Boffi, Farina, and Gastaldi compared some finite element method approxi-

mations (nodal and edge finite elements) based on two variational formulations (un-

6



constrained and penalized formulations) of Maxwell EVP on different domains. In

addition, to deal with the penalized formulation in the presence of reentrant corners,

they presented a new non-standard finite element method: a biquadratic element with

a suitable projection. They concluded that the edge finite element approximation is

generally well suited for the problem. The best choice for the problem in a convex

domain is using nodal elements for the penalized formulation. However, nodal finite

element approximation should not be considered when the domain has a reentrant

corner. In particular, no conforming nodal finite element approximation of the pe-

nalized formulation can produce satisfactory results. Terminally, the presented new

non-standard finite element method performed well with the difficulty of imposing

boundary conditions in the vertices of reentrant corners.

The studies that compared nodal and edge finite elements showed that edge finite ele-

ments produce spurious-free, convergent approximations for Maxwell EVP, and edge

elements are consistent with the physical properties of Maxwell EVP. In [80], for the

spatial discretization of Maxwell’s equations in R3, Nédélec proposed a finite element

method. The method, which uses his unusual curl- and divergence-conforming ele-

ments, simultaneously discretize the electric and magnetic fields. One advantage of

this approach is that the discrete divergence-free magnetic displacement can be pro-

duced if the proper initial data is used. A second benefit is that the approach transpar-

ently manages discontinuous material features. In [74], Monk proved optimal-order

convergence estimates by analyzing the generalization of Nédélec’s scheme studied

in [80]. He further showed that when the material is dielectric, and the electromag-

netic field is in vacuum or free space, the Nédélec method can be superconvergent.

In [15], Boffi, Fernandes, Gastaldi, and Perugia proposed a criterion to investigate

if the edge FEM is convenient for the eigensolution of Maxwell’s system. In [16],

Boffi and Gastaldi used edge element spaces and imposed the divergence condition.

Known properties of edge elements are reviewed, and uniform convergence in the

L2-norm is proved. In [20], Boffi, Kukichi, and Schoberl analyzed a modification

of standard edge elements that restores the optimality of the convergence based on

a projection technique since Nedelec edge elements do not perform acceptable ap-

proximation on quadrilateral meshes as proved in the study. In [18], Boffi, Gastaldi,

Rodríguez, and Šebestová proved the reliability and efficiency of the residual error
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indicator, which they introduced in the study for the Nedelec finite element approx-

imation with the usage of mixed formulation of Maxwell’s eigenproblem. In [76],

Monk approximated the time-harmonic Maxwell equations on a bounded domain us-

ing Nèdèlec edge FEM. A complication arises in the zero electric conductivity case

since the bilinear form is no longer coercive. This complication was obviated us-

ing a discrete Helmholtz decomposition. In [17], Boffi and Gastaldi focused on the

adaptive Nèdèlec edge finite element approximation of the Maxwell EVP in three di-

mensions with a standard residual-based error indicator and proved the optimal con-

vergence. In [52], for Maxwell EVP in 2D, a linear nonconforming finite element was

proposed by Hansbo and Rylander. In proposed element shape functions, degrees of

freedom (DOF) are related to the midpoints of the element’s edges. The tangential

field is continuous at each edge’s midpoint, while it is permitted to have a discontinu-

ous normal component, offering an approximation to the Crouziex–Raviart element.

The suggested element is devoid of spurious solutions, and the eigenfrequencies re-

lated to well-resolved eigenmodes are recreated with the suitable multiplicity for cav-

ity eigenvalue problems. In [78], Monk and Demkowicz proved h-convergence of

the edge-based FEM for the approximation of Maxwell source and eigenvalue prob-

lems using theory of collectively compact operators. In addition, they expanded the

work of Kikuchi [59] that proves the convergence of the lowest-order edge element

approximation for Maxwell EVP, which is based on the discrete compactness prop-

erty, by showing that edge elements of all orders have this property. In [105], optimal

error estimates for Nédélec edge element approximation of time-harmonic Maxwell’s

equations on a general Lipschitz domain in both L2-norm and H(curl)-norm is ob-

tained by Zhong, Shu, Wittum, and Xu. They also presented an optimal convergence

estimate for Nédélec’s second-type elements.

1.1.2 Finite Elements for the Electromagnetic Wave Propagation Problem

Many researchers focused on approximating the electromagnetic wave propagation

problem using various finite element methods such as FEM using nodal elements

[62, 84], a hybrid method that combines the finite element method and high-frequency

technique [32], discontinues Galerkin methods [41, 99], and FEM using edge ele-

ments [5, 11, 56, 68, 89]. Also, various methods of approximating the electromag-
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netic wave propagation problems are compared in [66].

The finite element methods using nodal basis functions are presented in the follow-

ing. In [62], Konrad represented electromagnetic waves in anisotropic media using

high-order polynomial triangular finite elements in which the components of vector

variational formulation associated with them. Konrad indicated that the formulation

is suitable for electromagnetic waves in isotropic and anisotropic lossless mediums.

The finite element model is highly accurate when it has adequate degrees of freedom.

However, as a drawback, the material property tensors are required to be independent

of the frequency, and they must not exhibit spatial change inside the triangles. It is

challenging to model curving borders with triangles that have straight edges. In [84],

Pinello, Lee, and Cangellaris interpreted electromagnetic wave interactions in two-

dimensional dielectric structures using the one-dimensional finite element method by

linear interpolating functions. The two-dimensional boundary value problem is con-

verted into a system of coupled ordinary differential equations that is solved using

one-dimensional finite elements thanks to the usage of Floquet’s theory and the pe-

riodic permittivity function’s Fourier series expansions. The suggested numerical

method’s accuracy and effectiveness are shown by comparing outcomes from com-

peting approaches.

Moreover, there are some hybrid techniques for the approximation of electromag-

netic wave propagation problems that are presented in the following. In [32], Garcia-

Castillo, Gomez-Revuelto, Saez de Adana, and Salazar-Palma introduced a hybrid

FEM and high-frequency techniques for the study of electromagnetic waves in com-

plex systems. This method uses linear triangular elements to discretize the electric or

magnetic field on the polarization. The analysis of the electrically big objects of the

structure is done using a high-frequency approach. In contrast, the study of the areas

with small and complex characteristics is done using FEM, considering contacts be-

tween the FEM domains and the objects evaluated using high-frequency techniques.

In [41], Davies, Morgan, and Hassan studied the approximation of the electromag-

netic wave scattering problem using the high-order discontinuous Galerkin method

as well as a continuous Galerkin spectral element method for spatial approximation.

The time is discretized using a fourth-order Runge-Kutta technique. The method was

tested against an exact analytical solution for a circular scatterer before being used for
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the simulation of several particular cases in a predictive setting. The results demon-

strated the computational advantages of mesh convergence achieved by increasing

the order of approximation rather than reducing element size. Additionally, in [99],

the electromagnetic wave propagation problem in three dimensions was studied by

Tian, Shi, and Chan using the interior penalty discontinuous Galerkin time domain

approach. In order to build the relevant system in local elements, they devised the

internal penalty fluxes corresponding to various forms of boundary conditions that

are frequently employed in electromagnetic modeling. They conducted an analytical

study and numerical demonstration of the method’s stability. They showed that the

suggested method offers a competitive performance in terms of computing time and

memory use by contrasting it with the FEM time domain and DG time domain.

The comparison of different finite element methods for the approximation of electro-

magnetic wave propagation problem is performed in [66] by J. Lee, R. Lee, and Can-

gellaris. The presented study compared the time-domain point-matched nodal finite

element method, nodal finite element method with integral lumping, edge-based finite

element method, and finite different time-domain method to approximate the electro-

magnetic wave propagation problem. In this comparison, the results have shown that

the edge-based finite element method gave more accurate results.

The finite element methods using edge basis functions are discussed in subsequent

studies. In [11], the electromagnetic wave propagation problem is approximated us-

ing the finite element method using the lowest-order Nédeléc edge elements in space

and an unconditionally stable finite difference method scheme in time. Also, they

introduced the lumping approach to stabilize the numerical scheme to obtain faster

convergence. In [56], Hill, Farle, and Dyczij-Edlinger suggested a multilevel solution

that uses a partly gauged scheme for the iterative manner and a tree-gauged formula-

tion on the coarsest mesh. Additionally, they have extended the idea of hanging nodes

to higher order H(curl)-conforming tetrahedral elements. The proposed method al-

lowed a lot of flexibility in the degree of freedom allocation in a hp-adaptive setting.

In [89], Ren, Kalscheuer, Greenhalgh, and Maurer applied the adaptive finite element

method using Nédélec edge elements. They tested their methodology with two exact

solutions and one benchmark for the specific settings and concluded that the proposed

approach produces accurate and robust performance. In [68], a finite element time do-
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main solution to the electromagnetic wave propagation problem with complex-shaped

loop sources was put out by Li, Lu, Farquharson, and Hu. They employed backward

Euler for the temporal discretization, local refinement, and vector finite elements for

the space with unstructured tetrahedral grids. The numerical results are compared and

agreed well with the ones obtained using a frequency-domain finite element solver. In

[5], Anees and Angermann introduced an edge-based Nédeléc curl-conforming and

Raviart Thomas div-conforming finite elements for the electric and magnetic fields,

respectively, and that used backward Euler for the temporal discretization in order to

study the approximation of time-dependent Maxwell’s equations where it is claimed

that the methodology has the benefit of being significantly more powerful and accu-

rate than finite-difference time domain or other existing methods about error estimates

and numerical experiments.

1.1.3 Modal Analysis of the Electromagnetic Wave Propagation Problem

The modal analysis technique is employed in the context of electromagnetic wave

propagation problem using the pseudospectral modal method [96], spectral element

method [69], discontinuous Galerkin method [4], finite difference method [39, 98],

and finite element methods [10, 48, 81, 94, 104].

The modal analysis of the electromagnetic wave propagation problem using the finite

difference method is presented in the following. In [98], Thomas, Sewell, and Ben-

son used a full-vectorial higher-order finite-difference method to estimate the elec-

tromagnetic wave propagation problem for rectangular dielectric waveguides. The

approach is semi-analytical in design and employs unique difference equations for

the homogeneous, interface, and corner types of mesh points. Their method achieved

significantly higher order convergence than other high-order finite difference systems

that are already in use, according to a number of test problems. In [39], a general-

ized modal expansion theory in the context of the physics of wave-matter interaction

in bounded and unbounded two-dimensional electromagnetic problems was proposed

by Dai, Chew, Lo, Liu, and Jiang. They examined the field response under reduced

modal representation. They concluded that a limited number of trapped and radiation

modes could approximately describe the fields where the modes are approximated
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using the Yee-grid-based finite difference method.

In [96], the pseudospectral modal method, which was introduced by Song and Lu

introduced, is a method for electromagnetic wave propagation problems to evaluate

leaky waveguide modes. The suggested method excelled the introduced mode match-

ing method with its numerical variations based on Fourier series and finite differences

because of its accuracy. Xiaoyu, Cai, Chen, N. Liu, and H. Liu approximated the

Maxwell EVP using the mixed spectral element method to obtain eigenmodes for the

modal analysis of electromagnetic wave propagation problem in [69]. In [4], the ap-

proach proposed by Fonseca and Figueroa is based on a discretization of the vector

wave propagation problem using an interior penalty discontinuous Galerkin for the

approximation of modes. The approach is spurious-free and accurate by using the ap-

propriate penalty function. The modal analysis of problem in rectangular microwave

waveguides, rib waveguides, strip waveguides (leaky mode), and dielectric-loaded

surface plasmon-polariton waveguides is perfomed to show the method’s accuracy.

The finite element methods for the modal analysis of electromagnetic wave propaga-

tion problems are presented in the following. Zghal, Bahloul, Chatta, Attia, Pagnoux,

and others applied the modal analysis using the vectorial finite element method and

simulated microstructured optical fibers [104]. The modal properties of the simula-

tion with various pitches and hole dimensions have been found over a broad spectral

spectrum. They showed that single-mode propagation occurs throughout a wide spec-

tral range. Finally, in [81], when studying modal analysis of photonic waveguides,

Orlandini, Figueroa, Devloo, and Oliveira used adaptive high-order edge elements to

obtain modes using mixed finite element formulation. The suggested approach was

applied to the rib waveguide and compared with those from [4] and [96] to show the

efficacy of this study. In [94], Habib and Kordi studied a modal analysis of multi-

conductor cables on a two-dimensional domain using the finite element method to

approximate the resulting EVP to obtain propagation constants and the correspond-

ing distribution of the electromagnetic fields. They demonstrated various numerical

experiments to show the method’s accuracy in comparing the approximated modes

with the reference and analytical results. A modal analysis of the electromagnetic

wave propagation problem in anisotropic diffused-channel waveguides is presented

by Franco, Passaro, Neto, Cardoso, and Machado [48]. The modes are approxi-
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mated by FEM using first-order triangular Lagrange elements. The modal analysis

is performed utilizing the obtained approximate eigenvalues in consideration of the

refractive index model. In [10], Benbouzid, Reyne, Dérou, and Foggia modeled a

synchronous machine using FEM to investigate vibration behavior. They explored

this through the resonant frequencies, mode spaces, and electromagnetic force distri-

bution. These considerations are handled using FEM to approximate related EVP and

electric and magnetic fields to analyze force distribution.

1.2 Plan of the Thesis

The introduction of Maxwell’s equations and the derivation of the three forms, which

are the Maxwell source problem, Maxwell EVP, and the electromagnetic wave prop-

agation problem, are presented in Chapter 2. The basics of FEM, the introduction of

related spaces, their traces, variational forms, and Nédélec basis functions are given

in Chapter 3. The edge-based FEM approximation of Maxwell source and eigenvalue

problems, including convergence analysis and numerical results are studied in Chap-

ter 4. Chapter 5 presents a modal analysis of the electromagnetic wave propagation

problem using edge-based FEM and FEM in space and FD in time approximation of

the electromagnetic wave propagation problem. Finally, Chapter 6 includes a sum-

mary of the studies carried out in the thesis.

1.3 Contributions in the Thesis

In this thesis, FEM using the lowest-order Nédélec basis functions is considered to

approximate Maxwell’s equations in mainly three different configurations: the source

problem, the EVP, and the electromagnetic wave propagation problem. As presented

in Section 1.1, the edge-based finite element methods are widely employed by many

researchers to approximate various configurations of Maxwell’s equations because of

their well-agreement with the physical characteristics governed by the Maxwell sys-

tem. Also, it is known that there are available open-source finite element libraries

to perform FEM computations using edge elements such as FEniCS [1], FreeFEM

[53], and NGSolve [93]. In addition, an introductory material that presents finite el-
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ement programming for the electromagnetic problems in MATLAB is given [107].

In the present study, a computational model that performs the edge-based FEM ap-

proximations of three different configurations is constructed through programs writ-

ten in MATLAB in a unified framework. The computational model is established by

exploiting MATLAB’s linear system solvers, generalized matrix eigenvalue solvers,

PDE Toolbox (for mesh generation and visualization), and the library consisting of

the construction of Nédélec finite element matrices presented in [6].

As already mentioned, there are ongoing research and development goals in the area

of approximating the solutions to the Maxwell equations. Especially, approximating

the singular solutions on non-smooth domains is a challenging task. In this thesis,

two FEM approximations of the Maxwell EVP are compared in a novel way on the

same Powell-Sabin triangulation of a two-dimensional domain that contains a slit and

hence with a solution exhibiting a strong singularity. The lowest-order Nédélec basis

functions are used for the edge-element solution, whereas the linear Lagrange basis

functions with specific properties on the Powell-Sabin triangulations are implemented

to obtain the nodal solution. As presented in Section 1.1.1, the convergence properties

of the nodal FEM rely on the results established in [19].

Approximating the solution to the electromagnetic wave propagation problem is widely

performed using two approaches; the direct time-domain approach, and the modal

analysis approach, as detailed in Section 1.1.2 and Section 1.1.3. This thesis also

considers the two mentioned methodologies to approximate the wave propagation

problem for an electric field derived from Maxwell’s equations in the time domain.

The two approximations for the electric wave propagation problem are conducted by

adopting the approaches used in [33] for a modal analysis technique as well as the

FEM in space-FD in time approach in incompressible elastic solids.

In this thesis, the FEM model of the electromagnetic wave propagation problem is

obtained by considering the spatial discretization using the lowest-order Nédélec ba-

sis functions. Then, it is shown that the solution to the FEM model can be expressed

by an expansion with the use of the approximate eigenmodes obtained from the asso-

ciated Maxwell EVP. The direct time approximation is performed by approximating

the second-order temporal derivative using the second-order accurate backward dif-
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ference scheme in the FEM model. The modal approximation is obtained by truncat-

ing the provided solution given as an expansion of eigenfunctions. These numerical

approximations are performed on the wave propagation problem for an electric field.

Compared with the provided analytical solution, it is demonstrated that both methods

are accurate and agree well with each other.
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CHAPTER 2

MAXWELL’S EQUATIONS

2.1 Maxwell’s Equations

In [71], James Clark Maxwell modified Ampere’s Law for stationary currents, and he

combined the following four equations that are given in (2.1) together to formulate a

consistent theory to explain electromagnetic phenomena (see, e.g., [60]). Maxwell’s

equations describe the relationship between the space variables and sources along the

electromagnetic field. The electromagnetic field produced by the sources is expressed

by the scalar charge density function ρ and the vector current density function J , and

is described with field variables electric field intensity, magnetic field intensity, elec-

tric displacement, and magnetic induction and denoted by E , H, D, B, respectively.

The Maxwell equations are given as

∂B
∂t

+∇× E = 0, (2.1a)

∇ · D = ρ, (2.1b)

∂D
∂t

−∇×H = −J , (2.1c)

∇ · B = 0. (2.1d)

Faraday’s law, given in equation (2.1a), states the influence of a magnetic field that

varies in time on the electric field. Gauss’s electric law gives the charge density’s

impact on electric displacement (2.1b). The third Maxwell’s equation (2.1c) is Am-

père’s circuital law modified by Maxwell and points out how time-varying electric

field and current density function affect the magnetic field. Finally, Gauss’s magnetic
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law is stated in the equation (2.1d).

Using the fact that ∇ · (∇ × Z) = 0 for any vector Z, the divergence condition in

(2.1d) becomes a direct result of (2.1a).

The charge conservation holds, if ρ and J are related by the following

∂ρ

∂t
+∇ · J = 0. (2.2)

Hence, the divergence condition in (2.1b) is a direct result of (2.1c), provided that

charge conservation holds [77].

2.1.1 Constitutive Relations

It is needed to perform reductions in the equations given in (2.1) since there are more

unknowns than equations. For this reason, constitutive relations should be considered

so that E is correlated to D, and H is associated with B. These relations are based on

the characteristics of the matter in the electromagnetic field’s domain and will be ap-

plied to equations (2.1) to be able to focus on the less number of dependent variables.

The characteristics of the matter are complicated because they usually are affected

not only by the molecular properties of the matter but also by macroscopic aspects

such as density and temperature. In addition, there are cases where the characteris-

tics of the material are time-dependent [60]. As the mentioned complications are not

the focus of this study, the following constructions are followed from [60] and [77]

because it is compatible with the literature that is related to Maxwell’s system aimed

to analyze using finite elements (see, e.g., [13], [27], [57], [88]).

For the cases where ferroelectric and ferromagnetic materials are disregarded, and the

fields are small enough, the constitutive relations are presented in the form of linear

equations

D = ϵE and B = µH, (2.3)

where ϵ and µ are the permittivity and permeability parameters of the material. In

this case, the medium (material through which electromagnetic waves propagate) is

called linear.

In practice, the prevailing circumstance is that several materials (e.g., copper, air)
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fill the electromagnetic field’s domain called inhomogeneous material. In isotropic

materials, the material properties are independent of the directions; Equation (2.3)

is modeled with scalar functions ϵ, µ : R3 → R. If the parameters of the material

depend on the directions, this case is called anisotropic. In the case of anisotropic

materials, ϵ : R3 → R3×3 and µ : R3 → R3×3 are called the permittivity tensor and

permeability tensor, respectively.

Furthermore, the current density J can also depend on the material and the fields.

Thus, an additional relation is required. The electric field generates a current (flow of

electric charges) in a conducting material, and Ohm’s law describes this as

J = σE + Ja, (2.4)

where Ja is the applied current density. The function σ : R3 → R is called the

conductivity for an isotropic material. The material is called a conductor if σ > 0 and

is said to be a nonconducting if σ = 0. In addition, the conductivity of anisotropic

material σ is also matrix-valued. In vacuum or free space, σ = 0 and ϵ = ϵ0 =

8.854× 10−12Fm−1, µ = µ0 = 4π × 10−7Hm−1 in the standard SI units [77].

Next, the following Maxwell’s equations are obtained by substituting the constitutive

relations (2.3) and Ohm’s law (2.4) to Equation (2.1) and stated as

∂(µH)

∂t
+∇× E = 0, (2.5a)

∇ · (ϵE) = ρ, (2.5b)

∂(ϵE)
∂t

−∇×H = −(σE + Ja), (2.5c)

∇ · (µH) = 0. (2.5d)

Note that the problems are considered in linear, isotropic mediums where ϵ, µ in (2.3),

and σ in (2.4) are scalar functions.

To work with the less number of dependent variables, H or E can be eliminated from

the first-order system given (2.5). If E is eliminated by considering the derivative

of (2.5a) with respect to time t and using (2.5c), then the second-order PDE in H is
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obtained that

∂2(µH)

∂t2
+ σ

∂(µH)

∂t
+∇× (ϵ−1∇×H) = −∇× Ja,

∇ · (µH) = 0.

(2.6)

In this study, the focus is on a second-order PDE in E , which is obtained by taking

the derivative of (2.5c) with respect to time t that is resulted as

∂2(ϵE)
∂t2

+
∂(σE)
∂t

−∇× ∂H
∂t

= −∂Ja

∂t
,

and using (2.5a), the second-order PDE in E is given by

∂2(ϵE)
∂t2

+
∂(σE)
∂t

+∇× (µ−1∇× E) = −∂Ja

∂t
,

∇ · (ϵE) = ρ.

(2.7)

Moreover, the three configurations of Maxwell’s equations are considered on the do-

mains that have perfect electric conductor (PEC) boundaries. The PEC boundary

condition is introduced in the following section.

2.2 Perfect Electric Conductor Boundary Condition

Maxwell’s equations only hold for the electromagnetic field if the domain has smooth

parameter functions ϵ, µ, and σ [60]. When a surface denoted by S splits two homo-

geneous media, the parameters are piecewise continuous with finite jumps on the

surface S. The finite jumps suggest that the fields meet specific requirements on S,

where Maxwell’s equations hold on both sides. This section contains the particular

case, but other conditions on the surface S can be found in [60, 77]. Before deriving

the PEC boundary condition, consider Figure 2.1 and let Em denote the limiting values

of the electric fields as S is approached from region m, where the index m ∈ {1, 2}.

The electric field’s tangential component must be continuous across S for ∇ × E to

be well defined. Thus, the following is obtained.

n× (E1 − E2) = 0 on S, (2.8)

where n denotes the unit normal pointing from Region 2 to Region 1.
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Figure 2.1: Two homogeneous media separated by a surface.

To arrive at the perfect conducting boundary condition, suppose that Region 2 in

Figure 2.1 is the perfect conductor. Then, it follows from Ohm’s law given in (2.4)

that if the current density remains bounded and the conductivity σ → ∞, then E2 → 0

in (2.8). Therefore, the perfect conducting boundary condition for E1 is stated as

n× E1 = 0 on S. (2.9)

2.3 The Wave Propagation Problem For an Electric Field

The propagation of electromagnetic waves can be described by Equations (2.6) and

(2.7), which follow from Maxwell’s equations in the time domain. As mentioned ear-

lier, the second-order PDE in E given in (2.7) is studied in this thesis. Let Ω ⊂ R{2,3}

be a bounded, simply connected, Lipschitz, polyhedral domain with PEC boundary

∂Ω, and time t ∈ [0, T ). Then, the wave propagation problem for an electric field can

be stated as follows:

∂2(ϵE)
∂t2

+
∂(σE)
∂t

+∇× (µ−1∇× E) = −∂Ja

∂t
in Ω, for t ∈ (0, T ),

∇ · (ϵE) = ρ in Ω, for t ∈ (0, T ),

n× E = 0 on ∂Ω, for t ∈ (0, T ),

E(x, 0) = E0 in Ω,

∂E(x, 0)
∂t

= Ė0 in Ω,

(2.10)

where E0 and Ė0 are given initial conditions.
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2.4 Time-Harmonic Maxwell’s Equations

The time-harmonic Maxwell system is obtained from the time-dependent problem

under the assumptions that the Fourier transforms in time are allowed by the fields

and the temporal frequency ω > 0. Hence, for all the variables, the following is

considered.

V = R
(
exp (−iωt)V̂(x)

)
, (2.11)

in which V ∈ {E , D, H, B, J , Ja, ρ}, and V̂ ∈ {Ê, D̂, Ĥ, B̂, Ĵ, Ĵa, ρ̂} is

the corresponding variable that only has spatial dependence. Also, i =
√
−1 is the

complex unit, and R(·) denotes the real part of the argument. Note that R(·) exists in

(2.11) because the fields V̂ are complex-valued [60], that is V̂ : R3 → C3.

Then, time-harmonic Maxwell’s equations are derived by substituting (2.11) into (2.5)

as

−iωµĤ+∇× Ê = 0, (2.12a)

∇ · (ϵÊ) = ρ̂, (2.12b)

−iωϵÊ+ σÊ−∇× Ĥ = −Ĵa, (2.12c)

∇ · (µĤ) = 0, (2.12d)

where the time-harmonic charge density ρ̂ in (2.12b) can be eliminated using the

relation (2.2) together with Ohm’s law given in (2.4), and it follows that

ρ̂ =
1

iω
∇ · (σÊ+ Ĵa). (2.13)

For simplicity, it is suitable to work with the following new variables and the relative

parameter values followed from [35] given as

E = ϵ
1/2
0 Ê and H = µ

1/2
0 Ĥ, (2.14a)

Now, considering Equations (2.12) and the definitions given in (2.14a), relative per-

mittivity and permeability are defined in the following.

ϵr =
1

ϵ0

(
ϵ+

iσ

ω

)
, and µr =

µ

µ0

. (2.14b)

It is important to emphasize that the focus is on the cases where ϵ, µ are scalars and

σ = 0 throughout the study. In these cases, the relative parameters given in (2.14b)
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can be restated as follows:

ϵr =
ϵ

ϵ0
, and µr =

µ

µ0

, (2.14c)

where ϵ0 and µ0 are the vacuum parameters, as introduced earlier. For instance, if

the given domain Ω is considered as vacuum (ϵ = ϵ0, µ = µ0, and σ = 0), then the

relative parameters are ϵr = µr = 1. Also, on the dielectric region, the permittivity

value is greater than the permittivity of vacuum, that is, ϵ > ϵ0 [31]. Therefore, the

relative permittivity value given in (2.14c) can be considered ϵr ≥ 1.

Next, substituting Equations (2.14) into the equations given in (2.12), the following

system is obtained:

−iκµrH+∇× E = 0, (2.15a)

−iκϵrE−∇×H = − 1

iκ
F, (2.15b)

∇ · (ϵrE) = − 1

κ2
∇ · F, (2.15c)

∇ · (µrH) = 0, (2.15d)

where κ = ω
√
ϵ0µ0 is the wave number, and F = iκµ1/2Ĵa.

In the case of the time-harmonic Maxwell’s equations, the system of equations given

in (2.15) can also be reduced to one unknown E or H by eliminating one of the

variables, as it happened in the time-domain. Firstly, E is eliminated by applying curl

(∇×) operator to (2.15b) and using (2.15a) to obtain PDE in H given as

∇× (ϵ−1
r ∇×H)− κ2µrH = ∇× ((iκϵr)

−1F) in Ω, (2.16a)

∇ · (µrH) = 0 in Ω. (2.16b)

Next, H is eliminated by solving (2.15a) for H and substituting into (2.15b) to obtain

the following second-order PDE given as

∇× (µ−1
r ∇× E)− κ2ϵrE = F in Ω, (2.17a)

∇ · (ϵrE) = − 1

κ2
∇ · F in Ω. (2.17b)

Equations (2.16) and (2.17) are commonly used in the applications of electromagnetic

wave propagation. For instance, some of these applications are scattering from an
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object inside a parallel-plate or rectangular waveguide, radiation from a line-source

in a parallel-place waveguide, and 3D waveguides with uniform cross-sections [107].

This thesis considers time-harmonic Maxwell’s equations in a perfectly conducting

cavity to find cavity resonances and corresponding non-zero electric fields, which

leads to the Maxwell EVP. Also, the associated source problem called Maxwell’s

source problem is considered. For these problems Equations (2.17) in E are studied.

Before introducing these problems, note that the PEC boundary condition given in

(2.9) also holds for the time-harmonic electric field E [77], which is given in the

form:

n× E = 0 on ∂Ω, (2.18)

where n is the unit outward normal on the boundary ∂Ω of the given domain Ω.

2.4.1 Time-Harmonic Maxwell’s Equations in a Perfectly Conducting Cavity

Time-harmonic Maxwell’s equations in a perfectly conducting cavity will be the fo-

cused problem in this study. Before continuing to the problem definition, it is im-

portant to note that the cavity Ω ∈ Rd (d = 2, 3) is a bounded region isolated from

an electromagnetic perspective from the outer region with the PEC boundary denoted

by ∂Ω. From the second-order Maxwell’s system given in (2.17) with a perfectly

conducting cavity domain, the problem is to find the time-harmonic electric field E

corresponding to a given source function F by solving the following system:

∇× (µ−1
r ∇× E)− κ2ϵrE = F in Ω, (2.19a)

∇ · (ϵrE) = − 1

κ2
∇ · F in Ω, (2.19b)

n× E = 0 on ∂Ω. (2.19c)

There are values of κ such that (2.19a) fails to have a unique solution which is called

cavity resonances or Maxwell eigenvalues of Ω [77, 97]. Cavity resonators play an

essential role in the microwave and optical systems. They function by causing con-

structive and destructive wave interference in a confined area. Moreover, they are

being used as filters or tools to improve physical interactions, radiation antennas, or

electromagnetic sources like magnetrons or lasers. They can also be employed to

enhance sensor sensitivity (see, e.g., [45, 72, 87]).
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The problem of finding cavity resonances in a perfectly conducting cavity can be

written as follows: find cavity resonances κ and non-trivial time-harmonic electric

fields E that satisfies Equation (2.19) with F = 0, such that

∇× (µ−1
r ∇× E) = κ2ϵrE in Ω, (2.20a)

∇ · (ϵrE) = 0 in Ω, (2.20b)

n× E = 0 on ∂Ω. (2.20c)

Before considering the Maxwell eigenvalue problem and the source problem, con-

sider a given bounded, simply connected, Lipschitz, polyhedral domain Ω ∈ Rd,

d = 2, 3. The assumptions on the domain are needed conditions for the finite element

analysis of the following problems, which will be discussed in Chapter 4.

Naturally, the problem of finding cavity resonances gives rise to the Maxwell eigen-

value problem that can be written as follows: find the eigenvalue λ ∈ R and the

eigenfunction u ̸= 0 such that

∇× (µ−1
r ∇× u) = λ(ϵru) in Ω, (2.21a)

∇ · (ϵru) = 0 in Ω, (2.21b)

n× u = 0 on ∂Ω. (2.21c)

Here, the time-harmonic electric field E is denoted by u.

Finally, a problem which consists of Equations (2.19) is called Maxwell’s source

problem if κ2 is not a Maxwell eigenvalue in Ω [77, 78]. The source problem is

finding E corresponding to a given a constant κ2 and F such that ∇ · F = 0. Thus,

the source problem is considered as follows:

∇× (µ−1
r ∇× E)− κ2ϵrE = F in Ω, (2.22a)

∇ · (ϵrE) = 0 in Ω, (2.22b)

n× E = 0 on ∂Ω. (2.22c)

It is important to note that, following from (2.19b), if ∇ · F = 0, then ∇ · (ϵrE) = 0.

The condition of the given source being divergence-free is important to have in the

source problem for the unique solution, which will be discussed in Chapter 4.
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CHAPTER 3

THE EDGE BASED FINITE ELEMENT METHOD

In this chapter, some background information is provided on the finite element method

(FEM), the function spaces, the traces, the variational formulation, Galerkin method,

affine transformation, and numerical quadrature that are mainly given in [65, 97].

Specifically, the function space H(curl) where the solutions are sought and the trace

of functions in H(curl) are introduced by following [77]. Next, the standard and

mixed variational (weak) formulations are presented for the following configurations

of Maxwell’s equations: the source problem, EVP, and the electric wave propagation

problem. The mixed weak formulations of the source and eigenvalue problems are

followed from [15, 16, 58]. Moreover, following [6, 24, 77, 80], the lowest-order

Nédélec edge elements that are H(curl) conforming are introduced. Furthermore,

the Piola mappings are presented as an appropriate mapping for the introduced edge

elements because of their continuity-preserving property for the space H(curl).

3.1 The Finite Element Method

The FEM is a widely used numerical method for approximating partial differential

equations (PDEs) in engineering and mathematics. The common research areas are

fluid flow, analysis of structures, heat transfer, mass transport, and electromagnetic

potential.

In general, the FEM follows the following path to approximate PDEs:

i) The variational form of the problem is obtained.
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ii) The variational form is discretized by implementing piecewise polynomials as

trial functions.

iii) The approximate solution is obtained from the solution of an algebraic form

that is followed by the discrete problem.

The formal definition of a finite element is given in the following [97]:

A finite element is a triple (K,P ,N ) such that

1. K ⊂ Rn is a geometric domain (e.g., triangle, tetrahedron),

2. P is a space of functions (e.g. polynomials) on K,

3. N = {N1, . . . , Ns} is a set of linear functionals on P , called degrees of free-

dom.

The finite element (K, P , N ) is unisolvent if the degrees of freedom of N uniquely

determine a function in P . Depending on whether the spatial dimension n is 1, 2, or

3, the polygon K is of a different kind. Lines, triangles, quadrilaterals, tetrahedrons,

and bricks are the most popular polygons. Each polygon is derived from the domain

mesh. For domains with curved bounds, triangles and tetrahedrons work well, while

quadrilateral and brick polygons are simple in programming. Prisms are most com-

monly utilized in domains having cylindrical symmetry, such as pipes [65].

3.2 Function Spaces

The regularity of a PDE’s solution affects how effectively it may be approximated

numerically. Lebesque integrability and differentiability describe regularity. Function

spaces are a collection of functions that have specific differentiability and integrability

features that are introduced in the following.

3.2.1 Real Normed and Inner Product Vector Spaces

A real vector space V equipped with a norm is called a real normed vector space.

A norm on a vector space V is a mapping || · || : V → R that has the following
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properties:

• ||u+ v|| ≤ ||u||+ ||v||

• ||au|| = |a| ||u||

• ||u|| ≥ 0, u = 0 ⇐⇒ ||u|| = 0

for all u, v ∈ V and a ∈ R. Additionally, a semi-norm | · | : V → R has the properties

of a norm with one exception, which is |u| = 0 does not need to imply u = 0.

On a vector space V , a linear form L(·) : V → R satisfies:

• L(u+ v) = L(u) + L(v)

• L(au) = aL(u)

for all u, v ∈ V and a ∈ R. L(·) is said to be bounded, if the following is satisfied:

|L(v)| ≤ C||v||, ∀v ∈ V, (3.1)

where C is a constant. Also, the norm of L(·) is given by

||L|| = sup
v∈V

|L(v)|
||v||

, ∀v ̸= 0. (3.2)

The dual space of V is the set of all continuous functionals on V and is denoted

by V ∗. It can be shown that the dual space V ∗ is a linear vector space under the

addition and scalar multiplication operations of V . The dual space V ∗ can be normed

by setting ||L||V ∗ = ||L||.

A bilinear form on a real vector space V is a mapping a(·, ·) : V × V → R such that

• a(u+ v, w) = a(u,w) + a(v, w)

• a(a, v + w) = a(u, v) + a(u,w)

• a(ζu, v) = ζ a(u, v)

• a(u, ζv) = ζ a(u, v)
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for all u, v, w ∈ V and ζ is a scalar. The symmetric bilinear form fulfills the following

equality, which is given as

a(u, v) = a(v, u) (3.3)

for all u, v ∈ V . Next, the bilinear form is said to be bounded (continuous), if C is a

constant such that

|a(u, v)| ≤ C||u||||v||, ∀u, v ∈ V. (3.4)

A real vector space equipped with an inner product is called an inner product space.

An inner product is a symmetric bilinear form which satisfies the following:

• a(u, u) ≥ 0, a(u, u) = 0 ⇐⇒ u = 0

for all u ∈ V . Inner products are denoted by (·, ·) and are given as

||u||2 = (u, u). (3.5)

Also, inner products define a norm by Equation (3.5) on V . In addition, a bilinear

form a(·, ·) defines the so called energy norm |||u|||2 = a(u, u).

3.2.2 Banach and Hilbert Spaces

Before defining Banach and Hilbert spaces, the concept of completeness must be

defined.

Let {vm}∞m=1 of elements vm ∈ V be a sequence in a normed vector space V, such

that for all ϵ > 0, there exists τ ∈ Z+ that satisfies

||vm − vn|| ≤ ϵ, for m,n ≥ τ, (3.6)

then, the sequence {vm}∞m=1 is called a Cauchy sequence.

A sequence {vm}∞m=1 is convergent if there exists v ∈ V such that for all ϵ > 0, there

exists τ ∈ Z+ such that

||v − vm|| ≤ ϵ, for m ≥ τ. (3.7)

It can be concluded that a convergent sequence is also a Cauchy sequence. If every

Cauchy sequence in a vector space is convergent, then a vector space is said to be
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complete. Now, a complete normed vector space is called a Banach space, and a

complete inner product vector space is said to be a Hilbert space.

3.2.3 Lp Spaces

The most significant Banach and Hilbert spaces in finite element analysis are vector

spaces of functions that come from the spaces Lp.

The function spaces Lp(Ω) are given by

Lp(Ω) = {v : Ω → R : ||v||Lp(Ω) <∞}, (3.8)

where

||v||Lp(Ω) =

(∫
Ω

|v|pdx

)1/p

, 1 ≤ p <∞, (3.9)

and

||v||L∞(Ω) = sup
x∈Ω

|v(x)|. (3.10)

The integral, in this case, is a so-called Lebesgue integral, which permits the inte-

gration of a wider range of functions than the conventional Riemann integral. In

practice, well-defined point values are not required for these functions. In addition,

the function spaces Lp(Ω) are Banach spaces for all 1 ≤ p <∞.

3.2.4 Weak Derivatives

The phrase "weak derivative" refers to a definition of the derivative in an average

meaning since functions in Hilbert spaces are rarely regular enough for the original

understanding of the derivative.

Let Ck(Ω) be the space of all k < ∞ times continuously differentiable functions in

Ω and D(Ω) be the space of all infinitely differentiable functions that vanish on the

boundary of the domain Ω which is called the space of test functions.

Let

Dαφ =
d∏

i=1

( ∂

∂xi

)αi

φ, φ ∈ D(Ω) (3.11)
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denote the classical partial derivative, where α = (α1, α2, . . . , αd) is a multi-index.

Using the partial integration and the fact that boundary terms vanish, the following is

obtained: ∫
Ω

∂u

∂xi
φdx = −

∫
Ω

u
∂φ

∂xi
dx, ∀φ ∈ D(Ω), (3.12)

for any u ∈ C1(Ω). Repeating this formula α times, the following is obtained:∫
Ω

(Dαu)φdx = (−1)|α|
∫
Ω

u(Dαφ)dx, ∀φ ∈ D(Ω), (3.13)

for any u ∈ C |α|(Ω), where |α| =
∑d

i=1 αi. Note that the right-hand side requires the

strong regularity u ∈ C |α|(Ω). Therefore, the space of locally integrable functions

is introduced below. When the function is integrable on every compact subset of

its domain, then it is called locally integrable, and the space of locally integrable

functions are defined as

Lloc(Ω) = {v : v ∈ L1(K), for all compact K ⊂ Ω}. (3.14)

Let u ∈ Lloc(Ω). If there is a function g ∈ Lloc(Ω) such that∫
Ω

gφdx = (−1)|α|
∫
Ω

u(Dαφ)dx, ∀φ ∈ D(Ω), (3.15)

then the function g is the weak derivative Dαu of the function u.

3.2.5 Sobolev Spaces

In finite element analysis, Sobolev spaces are crucial because they give the norms for

dealing with PDE solutions and measuring approximation errors. Let u ∈ Lloc(Ω) and

assume that all weak derivatives Dαu with |α| ≤ k exist, where k is a non-negative

integer. The Sobolev norm of u is defined by

||u||W p
k (Ω) =

( ∑
|α|≤k

||Dαu||pLp(Ω)

)1/p

, 1 ≤ p <∞, (3.16)

and

||u||W p
k (Ω) = max

|α|≤k
||Dαu||L∞(Ω), p = ∞. (3.17)

Then, the Sobolev space W p
k (Ω) is the space of Lp(Ω) functions u, whose weak

derivatives also lies in Lp(Ω) and defined by

W p
k (Ω) = {u ∈ Lloc(Ω) : ||u||W p

k (Ω) <∞}. (3.18)
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The Sobolev spaces are Banach spaces for all 1 ≤ p. However, for p = 2W 2
k (Ω), is

also a Hilbert space which is the most common in finite element analysis. The Hilbert

space W 2
k (Ω) has inner product and norm as:

(u, v)W 2
k (Ω) =

∑
|α|≤k

(Dαu,Dαu)L2(Ω), (3.19)

||u||W 2
k (Ω) =

∑
|α≤k

||Dαu||2L2(Ω). (3.20)

Also, note that the notation Hk(Ω) = W 2
k (Ω) is used to emphasize the Hilbert space

property in which Hk(Ω) denotes the space of functions that kth derivatives and are

square-integrable in L2(Ω) and is defined as

Hk(Ω) = {u ∈ L2(Ω) : Dku ∈ L2(Ω)}. (3.21)

Thus, with k = 1, consider the following

H1(Ω) = {u ∈ L2(Ω) : D1u ∈ L2(Ω)}, (3.22)

where it is induced by an inner product and norm given in the following:

(u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω), (3.23)

||u||2H1(Ω) = ||u||2L2(Ω) + ||∇u||L2(Ω). (3.24)

Next, the space H1(Ω) with homogeneous Dirichlet boundary condition is defined as

H1
0 (Ω) = {u ∈ H1(Ω) | u = 0 on ∂Ω}. (3.25)

The functional space for Maxwell’s equations is defined as follows:

H(curl; Ω) = {u ∈ L2(Ω) : ∇× u ∈ L2(Ω)}, (3.26)

with the inner product defined as

(u,v)H(curl;Ω) = (u,v) + (∇× u,∇× v), u,v ∈ H(curl; Ω), (3.27)

which induces a norm || · ||H(curl;Ω) on H(curl; Ω). Next, the defined functional space

with homogeneous Dirichlet boundary condition is described as

H0(curl; Ω) = {u ∈ H(curl; Ω) | n× u = 0 on ∂Ω}. (3.28)
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Moreover, the following spaces will be helpful in the convergence analysis in the

finite element approximation:

H(div; Ω) = {u ∈ L2(Ω) | ∇ · u ∈ L2(Ω)}, (3.29a)

H0(div; Ω) = {u ∈ H(div; Ω) | n · u = 0 on ∂Ω}, (3.29b)

H(div0; Ω) = {u ∈ H(div; Ω) | ∇ · u = 0 in Ω}. (3.29c)

3.2.6 Traces

It is important to consider features of functions in Sobolev spaces on the boundary ∂Ω

since the Lebesgue integral only defines such functions up to a set of measure zero.

If the function is continuous, it can be evaluated directly on the boundary. However,

developing an idea for a general Sobolev function is necessary. Trace of the function

is a process of making a smooth approximation within the domain and then evaluating

this approximation on the border for a general Sobolev function. For instance, any

a ∈ W 1
p (Ω) can be restricted to b ∈ Lp(∂Ω), and conversely, any b ∈ Lp(∂Ω) can

be extended to a ∈ W p
1 (Ω) [65]. Furthermore, assume that ∂Ω is sufficiently regular,

and let tr denote the trace operator

tr : W p
1 (Ω) → Lp(∂Ω) (3.30)

which is well-defined and satisfying the following Trace inequality

||tr(b)||Lp(∂Ω) ≤M ||b||
1−p
p

Lp(Ω) ||a||
1
p

W p
1 (Ω)

, (3.31)

where M is a constant.

Now, the trace properties of functions in H(curl; Ω) are examined following from

[77]. Maxwell’s equations require the tangential trace of the electric field to be well-

defined in a physical sense. For this reason, it must be verified that the functions in

H(curl; Ω) should have a well-defined tangential trace. With this aim, two traces are

defined in the following for a smooth function v ∈ C∞(Ω) that are given as

trt(v) = v|∂Ω × n, (3.32)

trT (v) = (v|∂Ω × n)× n, (3.33)
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where n is the unit outward normal to Ω.

Next, consider the following Banach space X(∂Ω) that is stated as:

X(∂Ω) =

{
f ∈ H−1/2(∂Ω) | ∃v ∈ H(curl; Ω) with tr(v) = f

}
, (3.34)

with norm

||f ||X(∂Ω) = inf
v∈H(curl;Ω), tr(v)=f

||v||H(curl;Ω). (3.35)

Finally, consider the following theorem that shows the well-defined tangential trace

for the space H(curl; Ω), which will be used in deriving the variational formulations

of Maxwell’s equations.

Theorem 3.2.1 (Theorem 3.31, [77]). The space X(∂Ω) is a Hilbert space. The

trace mapping trt : H(curl; Ω) → X(∂Ω) is surjective. The trace mapping trT :

H(curl; Ω) → X(∂Ω)′ is well-defined. Moreover, for any u,v ∈ H(curl; Ω) the

following holds:

(∇× u,v)− (u,∇× v) = ⟨trt(u), trT (v)⟩∂Ω. (3.36)

Therefore, the space H0(curl; Ω) can be defined as

H0(curl; Ω) = {u ∈ H(curl; Ω) | trt(u) = 0}. (3.37)

More details on H(curl) space and the trace of functions in H(curl) can be found in

[25, 77].

3.3 Variational Formulation

Variational or weak formulations of boundary value problems are used in finite el-

ement methods. A well defined variational formulation must be established before

discretizing the Maxwell system. The existence and uniqueness of the solution to a

variational problem must be considered before proceeding to approximate the relevant

problem. Before that, consider the following definitions of continuity and coercivity

of a bilinear form and continuity of a linear form.
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Definition 3.3.1 (Continuity and Coercivity of a Bilinear Form). Let H be a Hilbert

space with inner product (·, ·), and a : H ×H → R be a bilinear form. If there exists

a positive constant c such that

|a(u, v)| ≤ c||u||H ||v||H , ∀u, v ∈ H, (3.38)

then the bilinear form is said to be continuous. If there exists a positivte constant c∗

such that

a(u, u) ≥ c∗||u||2H , ∀u ∈ H, (3.39)

then the bilinear form is said to be coercive on H.

Definition 3.3.2 (Continuity of a Linear Form). Let l(·) : H → R be a linear form.

If there exists a constant c such that

l(v) ≤ c||v||H , ∀v ∈ H, (3.40)

then the linear form is said to be continuous or bounded.

Theorem 3.3.1 (Lax-Milgram Lemma). Let H be a Hilbert space with inner product

(·, ·), and a : H ×H → R be a bilinear form, which is continuous (or bounded) and

coercive on H, and l(·) be a continuous (or bounded) linear form on H. Subsequently,

there exists a unique solution u ∈ H to the following abstract variational problem:

find u ∈ H such that

a(u, v) = l(v), ∀v ∈ H. (3.41)

The proof of Lax-Milgram Lemma can be found in a standard FEM textbook, e.g., in

[65].

3.3.1 Variational Formulations of Maxwell’s Equations

The variational (or weak) formulations of the already introduced Maxwell’s equa-

tions, which are the source problem, EVP, and the electromagnetic wave propagation

problem, are presented in this section. These problems are considered in a polyhedral

domain Ω ⊂ R{2,3} that is bounded, simply connected, and Lipschitz. The stan-

dard and mixed weak formulations for three configurations of Maxwell’s equations

are given. The standard formulation is followed for the computational purposes of
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Maxwell’s systems, and the mixed formulations are presented for the aim of con-

vergence analysis of FEM using the lowest-order Nédélec edge basis functions. The

mixed formulations and the standard formulations are equivalent for both continuous

and discrete levels, as stated in [13, 15, 16].

3.3.1.1 Variational Formulations for Maxwell’s Source Problem

The standard variational formulation of Maxwell’s source problem is obtained by

multiplying Equation (2.22a) with the test function v ∈ H0(curl; Ω) and using Theo-

rem 3.2.1. Moreover, the equivalent mixed weak formulation is given where it takes

its place in the convergence analysis of FEM that is presented in [16].

The variational formulations of Maxwell’s source problem (2.22) with the given

divergence-free source function F ∈ H(div0; Ω) and κ2 ∈ R are stated in the fol-

lowing.

1. The standard formulation:

Find E ∈ H0(curl; Ω) such that

(µ−1
r ∇× E,∇× v)− κ2(ϵrE,v) = (F,v), ∀v ∈ H0(curl; Ω). (3.42)

2. The mixed formulation:

Find (E, p) ∈ H0(curl; Ω)×H1
0 (Ω) such that

(µ−1
r ∇× E,∇× v)− κ2(ϵrE,v) + (v,∇p) = (F,v), ∀v ∈ H0(curl; Ω),

(3.43)

(E,∇q) = 0, ∀q ∈ H1
0 (Ω),

where (·, ·) denotes the L2(Ω) inner product and κ2 is not a Maxwell eigenvalue [77,

97], and these eigenvalues are obtained by solving the Maxwell eigenvalue problem

introduced in (2.21).

37



3.3.1.2 Variational Formulations for the Maxwell Eigenvalue Problem

The standard and two different mixed variational formulations are presented where

these formulations are equivalent on both continuous and discrete levels [13]. The

standard variational formulation of Maxwell EVP is obtained as it was performed in

the case of the source problem. Next, the equivalent mixed formulation introduced

in [58] is presented, which is associated with the source problem’s mixed variational

formulation. Moreover, another equivalent mixed formulation that is utilized in the

convergence analysis of FEM is given following [15].

The variational formulations of Maxwell EVP given in (2.21) are presented in the

following.

(1) The standard formulation:

Find λ ∈ R and E ∈ H0(curl; Ω) with E ̸= 0 such that

(µ−1
r ∇× E,∇× v) = λ(ϵrE,v), ∀v ∈ H0(curl; Ω). (3.44)

(2) The mixed formulation introduced in [58]:

Find λ ∈ R and E ∈ H0(curl; Ω) with E ̸= 0, such that for p ∈ H1
0 (Ω),

(µ−1
r ∇× E,∇× v) + (v,∇p) = λ(ϵrE,v), ∀v ∈ H0(curl; Ω),

(E,∇q) = 0, ∀q ∈ H1
0 (Ω).

(3.45)

(3) The mixed formulation introduced in [15]:

Find λ ∈ R and E ∈ H0(curl; Ω) with E ̸= 0, such that for s ∈ H0(div0; Ω;µ
1/2
r )

with s ̸= 0,

(ϵrE,v)− (µ−1/2
r ∇× v, s) = 0, ∀v ∈ H0(curl; Ω),

(µ−1/2
r ∇× E, t) = λ(s, t), ∀t ∈ H0(div0; Ω;µ1/2

r ),
(3.46)

where the space H0(div0; Ω;µ
1/2
r ) is defined as

H0(div0; Ω;µ1/2
r ) = {u ∈ L2(Ω) | ∇ · (µ1/2

r u) = 0, and (µ1/2
r u) · n|∂Ω = 0}.
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3.3.1.3 Variational Formulation for the Electric Wave Propagation Problem

Consider the electric wave propagation problem (2.10) with the assumption on the

charge density as ρ = 0 for unity since the interest is on divergence-free fields in this

study. Also, considering the relation given in (2.2) and Ohm’s law given in (2.4), this

assumption leads to the following equation

∇ · (σE + Ja) = 0, (3.47)

where Ja is the given applied current density function, and the conductivity σ is

a scalar function since the isotropic cases are considered in this study. Also, note

that Equation (3.47) leads to divergence-free condition on the given applied current

density (∇ · Ja = 0) when non-conducting material (σ = 0) is considered. Then, the

variational formulation of this problem is obtained by multiplying the first equation

in (2.10) with the test function v ∈ H0(curl; Ω) and using Theorem 3.2.1. Also, the

given initial conditions are projected ontoH0(curl; Ω), and the variational formulation

of the electric wave propagation problem is stated in the following:

Find E ∈ H0(curl; Ω)× (0, T ) for all v ∈ H0(curl; Ω) such that

(∂2(ϵE)
∂t2

,v
)
+
(∂(σE)

∂t
,v
)
+ (µ−1∇× E ,∇× v) =

(
− ∂Ja

∂t
,v
)
, for t ∈ (0, T ),

(E(x, 0),v)H0(curl;Ω) = (E0,v)H0(curl;Ω),(∂E(x, 0)
∂t

,v
)
H0(curl;Ω)

= (Ė0,v)H0(curl;Ω),

(3.48)

where E0 and Ė0 are given initial conditions.

3.4 The Galerkin Method

The Galerkin method is the process of converting the variational formulation (contin-

uous operator problem) of the given boundary value problem into a discrete problem.

If it is known that the variational form (3.41) has a unique solution u ∈ H by Lax-

Milgram Lemma, the space Hh can be considered, which is a finite-dimensional sub-

space of H with the basis {Υ1,Υ2, . . . ,Υn} such that Hh = span{Υ1,Υ2, . . . ,Υn}.
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Then, uh ∈ Hh can be represented as

uh =
n∑

i=1

αiΥi, for i = 1, 2, . . . , n, (3.49)

where αi for i = 1, 2, . . . , n, are the unknown coefficients to be found using the

discrete system obtained by the Galerkin method. Consider the following variational

form

b(u, v) = l(v), ∀v ∈ H, (3.50)

where b(·, ·) is a bilinear form on the Hilbert space H , and l is a bounded (continu-

ous) linear functional on H . On the discrete subspace Hh of H , the variational form

becomes

b(uh, vh) = l(vh), ∀vh ∈ Hh. (3.51)

Using the representation of uh ∈ Hh given in (3.49), and considering vh = Υi,

for i = 1, 2, . . . , n since span{Υ1,Υ2, . . . ,Υn} is basis for Hh; the variational form

becomes
n∑

i=1

αib(Υi,Υj) = l(Υj), j = 1, 2, . . . , n. (3.52)

This constructs a system of n linear algebraic equations to find the unknown coeffi-

cients αi, for i = 1, 2, . . . , n.

3.4.1 Galerkin Orthogonality

It is known that the unique solution u ∈ H satisfies

b(u, v) = l(v), ∀v ∈ H, (3.53)

and in particular,

b(u, vh) = l(vh), ∀vh ∈ Hh, (3.54)

since vh ∈ Hh ⊂ H . Also, the Galerkin approximation uh ∈ Hh satisfies Equation

(3.51). Then, the following is obtained by subtracting (3.51) from (3.54):

b(u− uh, vh) = 0, ∀vh ∈ Hh, (3.55)

which means that the error e = u− uh is orthogonal to the discrete space Hh.

Cea’s lemma is an abstract "best approximation" result derived from Galerkin orthog-

onality, and its proof can be found, for instance, in [97].
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Theorem 3.4.1 (Cea’s Lemma). Let uh ∈ Hh be the solution of the discrete system

for a given Hh ⊂ H , and u ∈ H be the continuous solution. Then;

||u− uh||H ≤ c∗

c
inf

vh∈Hh

||u− vh||H , (3.56)

where c∗ is the continuity constant and c is the coercivity constant.

3.5 Affine Transformation and Numerical Quadrature

In some cases, such as using first-order nodal Lagrange basis functions for H1 pro-

vides a straightforward calculation of stiffness, mass matrices, and load vector. How-

ever, this can not be generalized for higher-order nodal basis functions and some

other basis functions, such as edge/face-based basis functions. This prevents the ben-

efit of the FEM’s ability to work with more complex geometries. To be able to take

the advantage of this ability, affine transformation, and numerical quadrature must be

considered. Combining these two concepts enables a straightforward and consistent

approach to the elemental assembly process.

To understand the transformation as given in [65], consider the nodal basis function

for triangular elements. Suppose that, a triangle K is given with nodes (x(i), y(i)), i =

1, 2, . . . , N . Refer toK as a global element, and K̂ as a reference (local) element. The

aim is to use the basis functions Zj on K̂ to define the global element K following

the given formulas:

x(r, s) =
N∑
i=1

x(i)Zi(r, s), (3.57a)

y(r, s) =
N∑
i=1

y(i)Zi(r, s), (3.57b)

where (r, s) is a given point in K̂. It should be noted that the given formulas provide a

mapping between the points (r, s) and corresponding global points (x, y) inK, where

global points are parametrized by the local ones.

Furthermore, it is known that a function ϑ on K can be expressed as

ϑi(r, s) =
N∑
i=1

ϑiZi(r, s), (3.58)
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where ϑi = ϑ((x(i), y(i))).

The chain rule to differentiate ϑ with respect to r and s is given in the following and

is needed for the construction of stiffness matrix.

∂ϑ

∂x
=
∂ϑ

∂r

∂r

∂x
+
∂ϑ

∂s

∂s

∂x
, (3.59a)

∂ϑ

∂y
=
∂ϑ

∂r

∂r

∂y
+
∂ϑ

∂s

∂s

∂y
. (3.59b)

Also, this can be shown in the matrix form as∂ϑ
∂x

∂ϑ
∂y

 = J−1

∂ϑ
∂r

∂ϑ
∂s

 , (3.60)

where J denotes the Jacobian matrix, which is defined as

J =

∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

 . (3.61)

It is also known that the existence of the inverse of Jacobian depends on the global

element’s quality, and if there exists an inverse, then the mapping is bijective.

Since integration over the global element K is needed for the calculation of finite

element matrices and load vector, the process using the change of variables is repre-

sented as follows:∫
K

f(x, y)dxdy =

∫
K̂

f(r, s)| det(J(r, s))|drds. (3.62)

Now, this is where the numerical quadrature takes its place. The integral can be

calculated numerically, for example, using Gauss quadrature weights (wp) and points

(rp, sp) on the local element K̂ which is stated as

∫
K̂

f(r, s)| det(J(r, s))|drds =
Np∑
p=1

f(rp, sp)| det(J(rp, sp))|, (3.63)

where Np is the number of quadrature points.

In this study, Piola mapping is considered because of the continuity-preserving prop-

erty for the space H(curl) [24, 77, 91], which followed from the works related to the

mappings of edge-based vector basis functions [6, 24, 80, 86, 90, 91].
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Vectors between Eulerian and Lagrangian coordinates are mapped by the Piola map-

ping. The Piola mapping that preserves tangential components is called covariant.

The covariant Piola mapping is defined in the following.

Definition 3.5.1 (Piola Mapping). Consider a nondegenerate mapping P : S̈ → S =

P(S̈) with Jacobian J = J(X), where X ∈ S̈ ⊂ RN . Then, the mapping P is defined

by

P(ξ) = ξ(P−1), for ξ ∈ Hk(S̈). (3.64)

The covariant Piola mapping Pcurl is defined as

Pcurl(ξ) = J−T ξ(P−1), for ξ ∈ L2(S̈). (3.65)

Further details on the Piola mapping related to the preferredH(curl) conforming basis

functions will be discussed in the following section.

3.6 H(curl) Conforming Linear Edge Elements of Nédélec

As mentioned earlier in Section 1.1, the accuracy and efficiency of Nédélec edge ele-

ments for the finite element approximation of Maxwell’s equations have been shown

by many studies because of their consistency with the physical properties of the prob-

lem and ability to produce spurious-free, convergent approximations.

In the construction of H(curl) conforming finite element spaces, local finite elements

should be patched together while making a proper matching of degrees of freedom

over shared element facets (edge of a triangle or a face or edge of a tetrahedron).

More specifically, degrees of freedom that correspond to tangential traces must match

the H(curl) conforming discretizations [90]. In this thesis, Maxwell’s equations are

discretized using H(curl) conforming linear edge elements of Nédélec and will be

introduced in the following with the help of the relevant studies [6, 80, 86, 91].

Before the introduction of the linear edge elements of Nédélec, let Ω ⊂ Rd, d = 2, 3,

be an open, bounded, and connected Lipschitz domain. Also, recall the definition of

H(curl) that is given as

H(curl;Ω) = {u ∈ L2(Ω) | ∇ × u ∈ L2(Ω)}, (3.66)

43



where L2(Ω) is the space of square-integrable functions. The domainΩ is discretized

using triangular elements for two-dimensional and tetrahedral elements for three-

dimensional problem and the related meshes called T, where the basis functions in

finite elements space Vh ⊂ H(curl;T) are chosen as linear Nédélec elements.

The global Nédélec basis functions and the global spatial variables are denoted by

Υ(x⃗) and x⃗ = (x, y, z)T , respectively. The unit triangle (2D) and the unit tetrahedron

(3D) are considered as reference elements, and the reference basis functions with the

spatial variables are denoted as; Υ̂(x⃗) and ˆ⃗x = (x̂, ŷ, ẑ)T . Also, the ith edge and the

tangential unit vector of the related edge of the reference elements are denoted by L̂i

and t̂L̂i
. Moreover, the degrees of freedom for the reference elements are related to

the edges, which is 3 for the unit triangle and 6 for the unit tetrahedron, which can

be seen in Figure 3.1 with their numberings. Additionally, the discrete divergence-

free condition in Maxwell’s equations are automatically satisfied using these basis

functions [77]. Since the introductory parts are given related to the linear Nédélec

elements, Nédélec basis functions will be introduced in the following.

Figure 3.1: Reference elements: unit triangle and unit tetrahedron with their tangen-
tial unit vectors of the numbered edges.

3.6.1 Nédélec Basis Functions on the Reference Triangle

The related finite element (K̂, P̂ , N̂ ) is defined as follows [6, 80, 91]:

1. K̂ ⊂ R2 is a unit triangle.

2. A space of functions P̂ on K̂ is spanned by:

1

0

 ,

0

1

 ,

 ŷ

−x̂

.

3. A set of linear functionals N̂ = {N̂1, N̂2, N̂3} on P̂ , called degrees of freedom
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related to each edge of the unit triangle are defined as follows:

N̂i(ˆ⃗v) =

∫
L̂i

t̂L̂i
· ˆ⃗vds, i = 1, 2, 3. (3.67)

The basis functions on the reference triangle are obtained by the relation N̂i(Υ̂j) =

δij , where δij is the Kronecker delta, resulting in

Υ̂1(ˆ⃗x) =

−ŷ
x̂

 , (3.68a)

Υ̂2(ˆ⃗x) =

 −ŷ
x̂− 1

 , (3.68b)

Υ̂3(ˆ⃗x) =

1− ŷ

x̂

 . (3.68c)

As mentioned earlier, Piola mapping is used to preserve tangential continuity, and

the mapping between global and basis functions on the reference element is stated as

follows:

Υ(x⃗)|K = J−T Υ̂(P−1(x⃗)), (3.69a)

∇×Υ(x⃗)|K =
1

det(J)
∇× Υ̂(P−1(x⃗)). (3.69b)

3.6.2 Nédélec Basis Functions on the Reference Tetrahedron

The related finite element (K̂, P̂ , N̂ ) is defined as follows [6, 80, 91]:

1. K̂ ⊂ R3 is a unit tetrahedron.

2. A space of functions P̂ on K̂ is spanned by:
1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


0

ẑ

ŷ

 ,


ẑ

0

x̂

 ,


ŷ

x̂

0

 .

3. A set of linear functionals N̂ = {N̂1, . . . , N̂6} on P̂ , called degrees of freedom

related to the each edge of unit tetrahedron are defined as follows:

N̂i(ˆ⃗v) =

∫
L̂i

t̂L̂i
· ˆ⃗vds, i = 1, . . . , 6. (3.70)
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Again, the reference basis functions are obtained by the relation N̂i(Υ̂j) = δij , and

are stated as:

Υ̂1(ˆ⃗x) =


1− ẑ − ŷ

x̂

x̂

 , Υ̂2(ˆ⃗x) =


ŷ

1− ẑ − x̂

ŷ

 , (3.71a)

Υ̂3(ˆ⃗x) =


ẑ

ẑ

1− ŷ − x̂

 , Υ̂4(ˆ⃗x) =


−ŷ
x̂

0

 , (3.71b)

Υ̂5(ˆ⃗x) =


0

−ẑ
ŷ,

 , Υ̂6(ˆ⃗x) =


ẑ

0

−x̂

 . (3.71c)

Then, the mapping between global and basis functions on the reference tetrahedrons

is given as:

Υ(x⃗)|K = J−T Υ̂(P−1(x⃗)), (3.72a)

∇×Υ(x⃗)|K =
J

det(J)
∇× Υ̂(P−1(x⃗)). (3.72b)

Consider the covariant Piola mappings P(ˆ⃗x) : Rd → Rd, d = 2, 3, which can be

stated as follows:

P(ˆ⃗x) = B ˆ⃗x+ c, (3.73)

where the Jacobian of mapping is J = B.

In this case, the vectors defining the triangles or tetrahedrons are the column vectors

of J [6], which are denoted as ti.

Figure 3.2: The vectors defining the triangle and tetrahedron.
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In Figure 3.2, Ai, i = 0, 1, 2 or i = 0, 1, 2, 3 are the vertices of element in the mesh.

Then, the vectors defining triangles or tetrahedrons ti are obtained as

ti = Ai − A0,

where i = 1, 2 in 2D, and i = 1, 2, 3 in 3D. Additionally, vector c in (3.73) is given

as

c = A0.

Hence, the covariant Piola mappings can be represented as:

P(ˆ⃗x) =
[
t1, t2

]x̂
ŷ

+

x0
y0

 , (2D),

P(ˆ⃗x) =
[
t1, t2, t3

]
x̂

ŷ

ẑ

+


x0

y0

z0

 , (3D).

3.6.3 Global Nédélec Basis Functions

Some components still have to be included in order to acquire the global basis func-

tions. A global basis function has connections to several elements. The local orien-

tation of the degrees of freedom (3.67) is not guaranteed to be the same in different

elements. The Nédélec basis functions’ orientation must be in the same order to con-

struct functions whose tangential components are continuous at element interfaces

[6]. To visualize this situation, consider Figure 3.3, where Kk and Kl are two trian-

gular elements that share an edge in the mesh and let Υ be the global basis function

related to that edge.

Figure 3.3: Signs of edges of two different triangles that are shared in the mesh (thick
line indicates the positive direction that is defined by the user).
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To obtain the global basis function Υ on the shared edge, there will be two basis

functions Υ̂k, Υ̂l that will be transformed from K̂ to Kk, Kl. One can see that in

(3.67), unit tangential vectors related to each edge are used to compute the local basis

functions. When the transformations given in (3.69) and (3.72) are performed, the

tangential components at the edge might be opposite of each other, where it is depen-

dent on the mappings. In particular, if det(JKk
) < 0, and det(JKl

) > 0, then the

mapping for Kl sustains the counter-clockwise orientation of the reference element,

and the mapping for Kk is oriented clockwise in which on the shared edge the orien-

tation is in the same direction and the transformations given in (3.69) and (3.72) are

enough for both elements. Otherwise, one of the transformations must be multiplied

by −1, since the orientation on the shared edge will be opposite [6]. Therefore, the

transformations for the global basis functions are demonstrated as follows:

The two and three-dimensional cases:

Υ(x⃗)|K = [signm
K ]J

−T
K Υ̂i(P−1

K (x⃗)), (3.74a)

The two-dimensional case:

∇×Υ(x⃗)|K = [signm
K ]

1

det(JK)
∇× Υ̂i(P−1

K (x⃗)), (3.74b)

The three-dimensional case:

∇×Υ(x⃗)|K = [signm
K ]

1

det(JK)
JK ∇× Υ̂j(P−1

K (x⃗)), (3.74c)

where the sign datas are related to the two elements as:

[
signm

Kk

]
= +1,

[
signn

Kl

]
= +1, if det(JKk

) > 0, and det(JKl
) < 0,[

signm
Kk

]
= +1,

[
signn

Kl

]
= −1, if det(JKk

) > 0, and det(JKl
) > 0,[

signm
Kk

]
= −1,

[
signn

Kl

]
= +1, if det(JKk

) < 0, and det(JKl
) < 0,[

signm
Kk

]
= −1,

[
signn

Kl

]
= −1, if det(JKk

) < 0, and det(JKl
) > 0.

Note that, m,n are edge indexes for the elements indexed with k, l.
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3.6.4 Assembly of Stiffness and Mass Matrices

The stiffness matrix denoted by K is constructed using the introduced Nédélec basis

functions as

Kij =

∫
Ω

(∇×Υi) · (∇×Υj) dx, (3.75)

where i, j are the global numbering of the edges (degrees of freedom) of a mesh.

Moreover, using the introduced Piola transformation, the local matrices using the ref-

erence element are assembled. By using the transformations above, the local stiffness

matrices related to the global stiffness matrixK are calculated on each element K ∈ T

as follows:

The two-dimensional case:

KK
mn =

1

det(JK)

∫
K̂
([signm

K ]∇× Υ̂m(P−1
K (x⃗))([signn

K]∇× Υ̂n(P−1
K (x⃗))dˆ⃗x, (3.76)

where m,n ∈ {1, 2, 3} in 2D.

The three-dimensional case:

KK
mn =

1

det(JK)

∫
K̂
([signm

K ]JK∇× Υ̂m(P−1
K (x⃗)) · ([signn

K]JK∇× Υ̂n(P−1
K (x⃗))dˆ⃗x,

(3.77)

where m,n ∈ {1, 2, 3, 4, 5, 6} in 3D.

On the other hand, the mass matrix denoted by M is constructed as

Mij =

∫
Ω

Υi ·Υj dx, (3.78)

where i, j are the global numbering of the edges (degrees of freedom) of a mesh.

Then, the global mass matrices MK are calculated using the introduced Piola map-

pings as follows:

The two and three-dimensional cases:

MK
mn = | det(JK)|

∫
K̂
([signm

K ]J
−T
K Υ̂m(P−1

K (x⃗))) · ([signn
K]J

−T
K Υ̂n(P−1

K (x⃗)))dˆ⃗x,

(3.79)

where m,n ∈ {1, 2, 3} in 2D, and m,n ∈ {1, 2, 3, 4, 5, 6} in 3D.

Lastly, a load vector where it might be needed in source problems, and electromag-

netic wave propagation problems with given source function f , denoted by b, is cal-

culated on each element K ∈ T as follows:
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The two and three-dimensional cases:

bKm = | det(JK)|
∫
K̂
f · ([signm

K ]J
−T
K Υ̂m(P−1

K (x⃗)))dˆ⃗x, (3.80)

where m ∈ {1, 2, 3} in 2D, and m ∈ {1, 2, 3, 4, 5, 6} in 3D.

3.6.5 Convergence Analysis of FEM

It is known that FEM approximation provides the best approximation in energy norm

to the exact solution from Cea’s Lemma, where it is already shown that there exists

a unique solution of the related variational formulation from Lax-Milgram Lemma.

However, it might not be the case when the operator is not elliptic. In that case, the

existence and uniqueness of the related weak form’s solution can not be shown by

Lax-Milgram Lemma. Therefore, the convergence of FEM approximation can not be

proved using Cea’s Lemma, where it is the case for convergence analysis of FEM for

the Maxwell source problem and EVP.

The convergence analyses of edge-based FEM using the lowest-order Nédélec basis

functions for the Maxwell source problem and Maxwell EVP are given in the follow-

ing chapter. The convergence analysis for the case of the source problem is presented

by following the study [16] that depends on an approach which uses an abstract set-

ting defining the solutions of the Maxwell source problem and its FEM formulation

implicitly via appropriate nonlinear equation. Moreover, the convergence analysis

of the FEM approximation of Maxwell EVP is presented following [15], where it

follows a similar strategy to the case of the source problem.
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CHAPTER 4

FEM APPROXIMATION OF TIME-HARMONIC MAXWELL’S

EQUATIONS USING NÉDÉLEC ELEMENTS

This chapter presents the finite element approximations of the Maxwell source prob-

lem and Maxwell EVP using the lowest-order Nédélec basis functions. The related

convergence analyses are presented following the studies [15, 16]. Some numerical

tests will be given to validate the theoretical convergence properties of FEM approx-

imations in Section 4.1.3 and Section 4.2.3.

4.1 Maxwell’s Source Problem

This section deals with Maxwell’s source problem (2.22) on a bounded, simply con-

nected, Lipschitz, and polyhedral domain Ω ⊂ R{2,3} that is stated as a problem of

finding the electric field E such that

∇× (µ−1
r ∇× E)− κ2ϵrE = F in Ω,

∇ · (ϵrE) = 0 in Ω,

n× E = 0 on ∂Ω,

where F ∈ H(div0; Ω) is the given source function, and κ2 is the given constant

where it is not a Maxwell eigenvalue in Ω.
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4.1.1 Finite Element Formulations

The standard and mixed finite element formulations of Maxwell’s source problem are

obtained by considering the finite-dimensional subspaces Uh ⊂ H0(curl; Ω), Wh ⊂
H1

0 (Ω). The corresponding variational formulations of Maxwell’s source problem

given in (3.42) and (3.43) are as follows:

1. The standard formulation:

Find Eh ∈ Uh such that

(µ−1
r ∇× Eh,∇× vh)− κ2(ϵrEh,vh) = (F,vh), ∀vh ∈ Uh. (4.1)

2. The mixed formulation:

Find (Eh, ph) ∈ Uh ×Wh such that

(µ−1
r ∇× Eh,∇× vh)− κ2(ϵrEh,vh) + (vh,∇ph) = (F,vh), ∀vh ∈ Uh,

(4.2)

(Eh,∇qh) = 0, ∀q ∈ Wh.

It is important to note that, in this study, the standard formulation is used for com-

putational purposes. The divergence-free condition is automatically satisfied using

the presented Nédélec basis functions in Chapter 3 to construct the finite-dimensional

subspace Uh. The mixed formulation is introduced to conduct the convergence anal-

ysis of the approximation following from [16] since, as already stated, both formula-

tions are equivalent at the discrete and continuous levels [13].

4.1.2 Convergence Analysis of the Source Problem

The Maxwell source problem is presented with the relative parameters ϵr, µr that are

already introduced as:

ϵr =
1

ϵ0

(
ϵ+

iσ

ω

)
and µr =

µ

µ0

.

The convergence analysis of Maxwell’s source problem can be performed in two

cases. If the conductivity parameter σ > 0, then the source problem has unique
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solution for any κ2 > 0 and F ∈ L2(Ω). In this case, the bilinear form of the source

problem is coercive on H0(curl; Ω) and can be analyzed using Cea’s Lemma [76].

In this thesis, the values of the conductivity parameter are considered as σ = 0. In

these cases, the problem becomes more complicated since Maxwell’s source prob-

lem might not have a solution for any value of κ2. Specifically, if κ2 is a Maxwell

eigenvalue, then the source problem is not well-posed.

The convergence analysis of Maxwell’s source problem with σ = 0 is presented

following from [16]. The convergence analysis strategy depends on an approach that

utilizes an abstract setting that will define the solutions to the continuous problems

and discrete problems implicitly by appropriate nonlinear equations.

Before moving on to the convergence analysis, assume that the given domain Ω ⊂
R{2,3}, is an open, bounded, Lipschitz, and the relative parameters ϵr, µr are not dis-

continuous. Furthermore, assume that the given source function is divergence-free,

i.e., f ∈ H(div0; Ω).

The linear operator T : L2(Ω) → L2(Ω) that is associated to Maxwell’s source

problem is defined in the following.

Consider the problem of finding (E, p) ∈ H0(curl; Ω)×H1
0 (Ω) such that

(∇× E,∇× v) + (v,∇p) = (f,v), ∀v ∈ H0(curl; Ω),

(4.3)

(E,∇q) = 0, ∀q ∈ H1
0 (Ω).

Then, the linear operator is defined as T f = E ∈ L2(Ω), for all f ∈ L2(Ω), where E

is the first component of the solution to problem (4.3).

Lemma 4.1.1 ((Lemma 1) [16]). The linear operator T is compact and self-adjoint.

Next, the regularity assumption where Ω, µr, ϵr are assumed and the space that con-

tains the solutions E to the problem (4.3) is

U ⊆ Hs(Ω), (4.4)

for some s > 1
2
. This constructs the assumptions on the domain and the material

properties, which are satisfied with the above assumptions.
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For introducing the discrete operator associated with the discretized source problem,

the finite-dimensional subspaces Uh ⊂ H0(curl; Ω) and Wh ⊂ H1
0 (Ω) are considered.

Let Th be triangulation of Ω, and K an element. Let k ≥ 1 be a fixed integer, and

Uh = {v ∈ H0(curl; Ω) : v|K ∈ Ek(K), ∀K ∈ Th},

Wh = {q ∈ H1
0 (Ω) : q|K ∈ Pk(K), ∀K ∈ Th},

where Pk(K) is the set of polynomials of degree less than or equal to k on K. The

elements of Ek(K) have the vector valued form. Specifically, these elements are

Nédélec elements of the first type.

Then, the discrete operator Th : L2(Ω) → Uh is defined as follows.

Consider the discrete counterpart of Problem (4.3), which is the problem of finding

(Eh, ph) ∈ Uh ×Wh such that

(∇× Eh,∇× vh) + (vh,∇ph) = (f,vh), ∀vh ∈ Uh,

(4.6)

(Eh,∇qh) = 0, ∀qh ∈ Wh,

where the discrete operator is defined as Thf = Eh ∈ Uh, for all f ∈ L2(Ω), where

Eh is the first component of the solution to problem (4.6).

The error estimate for the solutions to Problems (4.3) and (4.6) is given in the follow-

ing proposition.

Proposition 4.1.2 ((Proposition 2) [16]). Assume that (4.4) is fulfilled and that f ∈
H(div0; Ω). Let E ∈ H0(curl; Ω) and Eh ∈ Uh be the first components of the solu-

tions of (4.3) and (4.6), respectively. Then

||E− Eh||0 ≤ Chs||f ||0,

where ||.||0 denotes the L2(Ω) norm.

Moreover, the uniform convergence of the discrete operator Th to T follows from

the convergence of eigenmodes of Th to eigenmodes of T , since T is compact and

self-adjoint [16]. Then, the the uniform convergence of Th to T is obtained, which is

lim
h→0

||T − Th||0 = 0. (4.7)
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Now the appropriate nonlinear equation that defines the solution to Maxwell’s source

problem is given as

E+ TM(κ2,E) = 0, (4.8)

where Γ ⊂ R is a compact interval, and a C1 mapping M : Γ × L2(Ω) → L2(Ω) is

M(ν, u) = −νu− f.

Then, the discretization of (4.8) is

Eh + ThM(κ2,Eh) = 0. (4.9)

Finally, for the convergence of FEM approximation, the theorem given in the follow-

ing provides the conclusion carried out in [16].

Theorem 4.1.3 ((Theorem 2) [16]). Suppose that regularity assumption (4.4) is sat-

isfied and let Γ be a closed interval contained in the resolvent set of T . Then for h

small enough, there exists a unique C1 mapping κ2 7−→ Eh(κ
2) from Γ to Uh such

that ∀κ2 ∈ Γ

Eh(κ
2) + ThM(κ2,Eh(κ

2)) = 0. (4.10)

In particular, ∀κ2 ∈ Γ , there exists a unique solution Eh of (4.2) with the following

error estimate

||E(κ2)− Eh(κ
2)||0 ≤ Chs. (4.11)

4.1.3 Numerical Results of Maxwell’s Source Problem

The numerical results are presented in this section for Maxwell’s source problem

using the finite element method with the lowest order Nédélec basis functions in a

square domain Ω = [0, π]2 with ϵr = µr = 1. Consider the Maxwell source problem

introduced at (2.22) and stated as follows:

∇× (∇× E)− κ2E = F in Ω,

∇ · (E) = 0 in Ω,

n× E = 0 on ∂Ω,

where F = −(2 sin(y), 2 sin(x))T ∈ H(div0; Ω) is the given source function. The

constant κ2 is given as κ2 = 3, which is not a Maxwell eigenvalue, as will be shown
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in Section 4.2.3.1. Then, the exact solution denoted by Eexact is introduced as Eexact =

(sin(y), sin(x))T .

The standard finite element formulation for the presented source problem is stated as

follows:

Find Eh ∈ Uh such that

(∇× Eh,∇× vh)− 3(Eh,vh) = (F,vh), ∀vh ∈ Uh, (4.12)

where Eh =
∑ne

i=1 uiΥi, and Υi are the global Nédélec basis functions that are re-

lated to the edge i with the degrees of freedom ne after imposing Dirichlet boundary

condition. Then, the finite element formulation leads to solving the following linear

system for u, which contains the coefficients that control the tangential field over the

related edge.

(K− 3M)u = b. (4.13)

Here K is the stiffness matrix introduced in (3.76), M is the mass matrix introduced

in (3.79), and b is the load vector introduced in (3.80).

The mentioned calculations are performed using the given exact solution together

with the approximated ones on a sequence of uniform, unstructured, and criss-cross

meshes that are presented in Figure 4.1.

(a) level 1 (b) level 1 (c) level 1

Figure 4.1: Uniform, criss-cross, and unstructured meshes of the square domain.

A comparison of the exact solution and the numerical solution is provided in Table 4.1
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in terms of the errors defined as:

L2 − Error :=
(∫

Ω

(Eexact − Eh)
2dx
)1/2

.

H(curl)− Error :=
(∫

Ω

((∇× Eexact)− (∇× Eh))
2dx
)1/2

+
(∫

Ω

(Eexact − Eh)
2dx
)1/2

.

H(curl)− Seminorm Error :=
(∫

Ω

((∇× Eexact)− (∇× Eh))
2dx
)1/2

.

Also, the convergence rates CRi are calculated as

CRi =
ln ei−1 − ln ei
ln hi−1 − ln hi

, i = 2, 3, 4,

where i is the index of mesh refinement levels, ei is the error between the approximate

and exact solution when the mesh’s maximum edge length is hi.

Table 4.1: Errors and convergence rates in the L2-norm, H(curl)-norm, and H(curl)-
seminorm for different meshes in square domain [0, π]2.

Mesh level DOF L2-Error H(curl)-Error H(curl)-Seminorm Error

Uniform

1
2
3
4

176
736

3008
12160

0.354136 -
0.177813 (0.99)
0.089002 (1.00)
0.044513 (1.00)

0.420298 -
0.210351 (1.00)
0.105205 (1.00)
0.052606 (1.00)

0.226359 -
0.112384 (1.01)
0.056094 (1.00)
0.028035 (1.00)

Criss-Cross

1
2
3
4

368
1504
6080

24448

0.178125 -
0.089041 (1.00)
0.044518 (1.00)
0.022259 (1.00)

0.271904 -
0.135990 (1.00)
0.068000 (1.00)
0.034000 (1.00)

0.205435 -
0.102785 (1.00)
0.051401 (1.00)
0.025702 (1.00)

Unstructured

1
2
3
4

159
799

2889
11832

0.301497 -
0.135968 (1.03)
0.073262 (1.01)
0.036166 (1.02)

0.425932 -
0.194824 (1.01)
0.102786 (1.04)
0.051041 (1.01)

0.300862 -
0.139532 (0.99)
0.072094 (1.08)
0.036016 (1.00)

As presented in the convergence analysis (see Theorem 4.1.3), the expected conver-

gence rate is uniform, matching with the numerical results presented in Table 4.1.

The plots of approximated and exact solutions are presented in Figure 4.2 and Fig-

ure 4.3, where the approximated solution is obtained on the criss-cross mesh (level

4).
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Figure 4.2: Quiver plots of FEM and Exact solutions.

In Figure 4.2, the approximated and exact electric fields are shown using the quiver

plot that shows the vector lines as arrows. From this figure it can be easily seen that

the vectors directions of the approximate and exact solutions agree well with each

other. Moreover, the contours of each component of the electric fields are presented

in Figure 4.3, from which a well agreement is also observed.

(a) Ehx
(b) Eexactx

(c) Ehy
(d) Eexacty

Figure 4.3: Contours of FEM and Exact solutions.
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4.2 The Maxwell EVP

This section presents the results concerning the Maxwell EVP (2.21) on a bounded,

simply connected, Lipschitz, and polyhedral domain Ω ⊂ R{2,3} that is stated as a

problem of finding λ ∈ R and u ̸= 0 such that

∇× (µ−1
r ∇× u) = λ(ϵru) in Ω,

∇ · (ϵru) = 0 in Ω,

n× u = 0 on ∂Ω.

As mentioned earlier, standard formulations are preferred to be employed in the com-

putation of approximations. The reason and the results of choosing the standard for-

mulation for the approximation of Maxwell EVP are presented in the following.

Consider the following variational formulation of Maxwell EVP for finding λ ∈ R

and u ∈ H0(curl; Ω) ∩H(div0; Ω) such that u ̸= 0,

(µ−1
r ∇× u,∇× v) = λ(ϵru,v), ∀v ∈ H0(curl; Ω) ∩H(div0; Ω). (4.15)

A countable set of real and positive eigenvalues are admissible in the problem (4.15),

and each eigenspace is finite-dimensional. It is because of the fact that the bilin-

ear form (µ−1
r ∇ × u,∇ × v) is continuous, symmetric, and coercive on the space

H0(curl; Ω) ∩ H(div0; Ω) (see, e.g., [46, 50]) and to the compact embedding of

H0(curl; Ω) ∩H(div0; Ω) in L2(Ω), also the operator associated with problem (4.15)

is compact and self-adjoint [15].

Furthermore, assume that λ = 0, then taking v = u in (4.15) implies (µ−1
r ∇ ×

u,∇ × u) = 0, that is ∇ × u = 0. Moreover, since u ∈ H0(curl; Ω) ∩ H(div0; Ω)

and Ω is simply connected, ∇ × u = 0 implies u = 0. Thus, λ = 0 is not an

eigenvalue of (4.15). Moreover, considering the case λ ̸= 0, then (2.21b) becomes

a consequence of (2.21a). For this reason, the constraint (2.21b) can be dropped,

and, equivalently, it is possible to seek u ∈ H0(curl; Ω) in problem (4.15). However,

by doing this, λ = 0 is included to the operator’s spectrum, and the corresponding

space is infinite-dimensional coinciding with H0(curl0; Ω) = ∇H1
0 (Ω) [13]. In ad-

dition, the operator’s compactness and the related eigensolution’s physical meaning
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are lost. However, the eigensolutions associated with λ ̸= 0 remain unchanged. For

this reason, the standard formulation is preferred in the computation of the Maxwell

eigenvalue problem since it is easy to ignore the zero eigenvalues, and associated

eigenvectors. Also, the numerical treatment of the constraint (2.21b) and the con-

struction of the finite element space for H0(curl; Ω) ∩H(div0; Ω) are difficult.

4.2.1 The Finite Element Formulations

The standard and mixed finite element formulations of the Maxwell EVP are ob-

tained by considering the finite-dimensional subspaces Uh ⊂ H0(curl; Ω), Σh ⊂
H0(div0; Ω;µ

1/2
r ), and the corresponding variational formulations of Maxwell EVP

problem that are stated in (3.44) and (3.46).

(1) The standard formulation: find λh ∈ R and uh ∈ Uh ⊂ H0(curl; Ω) with

uh ̸= 0 such that

(µ−1
r ∇× uh,∇× vh) = λh(ϵruh,vh), ∀vh ∈ Uh, (4.16)

(2) The mixed formulation introduced in [15]: find λh ∈ R and uh ∈ Uh ⊂
H0(curl; Ω) with uh ̸= 0, such that for sh ∈ Σh ⊂ H0(div0; Ω;µ

1/2
r ),

(ϵruh,vh)− (µ−1/2
r ∇× vh, sh) = 0, ∀vh ∈ Uh,

(4.17)

(µ−1/2
r ∇× uh, th) = λh(sh, th), ∀th ∈ Σh,

4.2.2 Convergence Analysis of the Maxwell EVP

The convergence analysis of the mixed Maxwell EVP formulation given in (4.17) is

presented. In [15], the discrete equivalence of the mixed formulation (4.17) and the

standard formulation (4.16) is shown, and the convergence properties are analyzed by

utilizing the spectral theory with the associated source problem.

The discrete equivalence between the finite element formulations (4.16) and (4.17) is

followed from Theorem 4.2.1.
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Theorem 4.2.1 ((Theorem 2.1) [15]). If (λh,uh) ∈ R × Uh, with λh ̸= 0 is an

eigensolution of the problem (4.16), then there exists sh ∈ Σh such that (λh,uh, sh)

is an eigensolution of problem (4.17). Also, the converse holds.

Next, the abstract setting on bilinear forms and operators are given in the following.

These will be useful to prove the convergence of FEM employed in this study.

Let A,B be Hilbert spaces and a(·, ·) : A× A → R, b(·, ·) : A× B → R be bilinear

forms, which are continuous. Assume that the symmetric bilinear form a(·, ·) satisfies

a(v,v) ≥ 0 ∀v ∈ A,

a(v,v) ≥ α||v||2A ∀v ∈ A,
(4.18)

where A = {v ∈ A : b(v, t) = 0 ∀t ∈ B}. Following the given bilinear forms,

the eigenvalue problem is stated in the following: Find λ ∈ C, and non-zero (u, s) ∈
A×B:

a(u,v) + b(v, s) = 0, ∀v ∈ A,

b(u, t) = −λ(s, t)B, ∀t ∈ B.
(4.19)

The source problem that associates with the eigenvalue problem (4.19) can be intro-

duced as follows:
a(u,v) + b(v, T f) = 0, ∀v ∈ A,

b(u, t) = −(f, t)B, ∀t ∈ B,
(4.20)

where T : B → B is a self-adjoint and compact operator, which associates with

every f ∈ B and T f ∈ B is the solution to the problem (4.20).

In particular, it is assumed that (4.20) has a unique solution for all f ∈ B. In this

case, the estimate stated in the following holds:

||(u, T f)||A×B ≤ C||f ||B. (4.21)

If the construction and assumptions on a(·, ·) are considered, then all eigenvalues of

(4.19) are positive and real. Additionally, noting the compactness of T , consequently,

the problem (4.19) leads to a countable set of eigenvalues with multiplicitymi on each

of them, which can be ordered as

0 < λ1 < λ2 < · · · < λn < . . . . (4.22)

After the continuous framework, to move on to the discrete case, considering the

finite-dimensional subspaces Ah ⊆ A and Bh ⊆ B, the finite element discretization
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of the problem (4.19) is derived as:

Find λh ∈ R, and (uh, sh) ̸= 0 ∈ Ah ×Bh such that

a(uh,vh) + b(vh, sh) = 0, ∀vh ∈ Ah,

b(uh, th) = −λ(sh, th)B, ∀th ∈ Bh.
(4.23)

Note that the eigenvalues of problem (4.23) are denoted by 0 < λh,1 < λh,2 < · · · <
λh,N < . . . , and N is the dimension of Bh.

Then, the source problem associated with (4.23) is:

a(uh,vh) + b(vh, Thf) = 0, ∀vh ∈ Ah,

b(uh, th) = −(f, th)B, ∀th ∈ B,

(4.24)

where Th : B → Bh ⊂ B is the discrete operator such that Thf is the solution to the

problem (4.24).

Problem (4.24) can be solved uniquely if the followings are satisfied:

a(uh,uh) ≥ αh||uh||2A, ∀uh ∈ Ah, (4.25)

inf
th∈Bh

sup
vh∈Ah

|b(vh, th)|
||th||B||vh||A

≥ βh > 0, (4.26)

where Ah = {vh ∈ Ah : b(vh, th) = 0 ∀th ∈ Bh}.

Additionally, from [24], if

αh ≥ α0 > 0, (4.27)

βh ≥ β0 > 0, (4.28)

uniformly in h, and if

lim
h→0

(
inf

vh∈Ah

||u− vh||A + inf
th∈Bh

||s− th||B
)
= 0, ∀u ∈ A, ∀s ∈ B, (4.29)

then the solution obtained from the problem (4.24) converges to the solution to the

problem (4.20).

As the main goal to obtain convergence of the eigensolutions, assume that the uniform

convergence of discrete operator Th to the continuous operator is obtained, which can

be stated as

||T − Th||B → 0 for h→ 0. (4.30)
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To be specific, consider the following setting about the spaces, and the bilinear forms

as follows:
A = H0(curl; Ω),

B = H0(div0; Ω;µ1/2
r ),

a(u,v) = (ϵru,v),

b(u, s) = −(µ−1/2
r ∇× u, s),

(4.31)

and the assumptions needed for regularity on the domain and on the coefficients:

i) The domain Ω ⊂ R3 is a convex polyhedron,

ii) µr and ϵr are scalar valued Lipschitz continuous functions.
(4.32)

Following the introduced settings (4.31) and (4.32), L2−norm becomes the natural

norm of B. Also, the seminorm related with a(·, ·) is identical to the L2−norm since

the assumption on the relative permittivity and the relative permeability is scalar-

valued Lipschitz continuous functions. Moreover, Problem (4.20) is well-posed and

the operator T associated with the problem (4.20) is continuous from B to

H0(div0; Ω;µ
1/2
r ) ∩H(curl; Ω;µ−1/2

r ).

The operator T is compact, since the space satisfies:

H0(div0; Ω;µ1/2
r ) ∩H(curl; Ω;µ−1/2

r ) ⊂ H1(Ω),

where it follows from the assumption on Ω.

The discrete counterpart follows from the "edge" and "face" element spaces of or-

der k ≥ 0 that approximate H0(curl; Ω) and H0(div; Ω), respectively. These element

spaces are defined in the following where Th is a given regular family of triangula-

tions of Ω. Also, let K be a tetrahedron of Th, and define:

Ek = {u ∈ H0(curl; Ω) : u|K ∈ Ek(K) ∀K in Th},

Fk = {u ∈ H0(div; Ω) : u|K ∈ Fk(K) ∀K in Th},
(4.33)

where
Ek(K) = [Pk(K)]3 ⊕ x×

[
P̃k(K)

]3
,

Fk(K) = [Pk(K)]3 ⊕ P̃k(K)x.
(4.34)

In equations (4.34), Pk(K) is the space of polynomials with degree ≤ k onK, P̃k(K)

is the polynomial space in Pk(K), which are homogeneous. Note that the elements
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of Fk have a normal component, and the elements of Ek have a tangential component

that are continuous across the interelement boundaries.

Considering the given settings associated with the case in this thesis, the following

theorem is presented, whose proof can be found in [12].

Theorem 4.2.2 ((Theorem 4.3) [15]). Let Ω be a convex polyhedron, and µr, ϵr be

Lipschitz continuous scalar valued functions, for every v ∈ H0(curl; Ω)∩H(div0; Ω; ϵr)

there exists Ihv ∈ Ah such that

(µ−1/2
r ∇× (v − Ihv), th) = 0, ∀th ∈ Bh,

||Ihv||A ≤ C||v||A0 .
(4.35)

Moreover, there exists ϱ2(h) tending to zero as h goes to zero such that

||v − Ihv||0 ≤ ϱ2(h)||v||A0 , (4.36)

where Ih : H0(curl; Ω) ∩H(div0; Ω; ϵr) → Ah is Fortin operator [47].

Now, consider the following theorem that combines the results obtained in [15] with

those of [7].

Theorem 4.2.3 ((Theorem 4.4) [15]). Let mi be the multiplicity of λi, where λi is an

eigenvalue of problem (4.19), and Θi be the associated eigenspace. Then exactly, mi

eigenvalues of problem (4.23) λh,ij converge to λi. Denoting by Θh,i the direct sum

of the eigenspaces corresponding to λh,ij , it follows that there exists h0 such that for

0 < h < h0 the following inequalities hold:

|λi − λh,ij | ≤ C(ϱ2(h) + h)2, ∀j = 1, . . . ,mi,

ϖ(Θi, Θh,i) ≤ C((ϱ2(h) + h)),
(4.37)

whereC is a constant, which is not dependent of. Also,ϖ(Θi, Θh,i) is the gap between

Θi and Θh,i.

Lastly, consider the operator associated with the problem (4.19) and its real compact

subset of the resolvent set denoted by R. Accordingly, all the nonzero eigenvalues of

(4.23) remain outside of R, whenever 0 < h < h0.

Finally, it is important to consider also the two-dimensional case, where Theorem 4.2.3

is more precise. To be specific, the operator is a Fortin operator, where the assump-
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tions are always satisfied since A0 is compactly embedded in [L2(Ω)2]. In addition,

ϱ2(h) has an order of s if A0 is a subset of Hs(Ω) [15].

4.2.3 Numerical Results of the Maxwell Eigenvalue Problem

This section presents the numerical results obtained by using standard FEM formu-

lation given in (4.16) with the lowest-order first kind Nédélec basis functions. The

Maxwell EVP is considered on the following domains with provided material prop-

erties that are presented as

• Square domain Ω1 = [0, π]2 with µr = ϵr = 1.

• L-shape domain Ω2 = [−1, 1]2 \ ([0, 1]× [0,−1]) with µr = ϵr = 1.

• Cracked square domain Ω3 = [−1, 1]2 with µr = ϵr = 1 and crack on a line

between the points (0, 0) and (1, 0).

• Square domain with two different materials Ω4 = [−1, 1]2 with µr1 = µr2 =

ϵr2 = 1 and ϵr1 = 0.5, 0.1.

• Rectangular domain with two different materials Ω5 = [0, 1] × [0, 0.6] with

µr1 = µr2 = ϵr1 = 1 and ϵr2 = 6.

• Cube domain Ω6 = [0, π]3 with µr = ϵr = 1.

• Thick L-shape domain Ω7 = Ω2 × [0, 1] with µr = ϵr = 1.

• Fichera corner domain Ω8 = [−1, 1]3 \ [−1, 0]3 with µr = ϵr = 1.

The square domain Ω1 and the cube domain Ω5 are considered for validation since the

exact solutions are known. The L-shape and cracked square domains are considered

for testing the numerical method on singular solutions. The square domain with two

different materials Ω4 is chosen to validate that the method well approximates the

singularity coming from material properties. The numerical results are obtained for

Ω4 using artificial relative permittivity values so that the validation can be presented

by comparing the results with the ones presented in benchmarks [34, 40]. Next, the

rectangular domain with two different materials Ω5 is considered for the problem

65



of finding cutoff wavenumbers and TE modes for the dielectric-loaded waveguide,

which involves solving the Maxwell EVP. This case is also considered to validate the

same situation encountered in the previous domain with physically possible parameter

values. Finally, tests on 3D domains are included to verify that the constructed frame

can handle extension to the third dimension.

The numerical tests are performed on several meshes for the presented domains. Uni-

form, criss-cross, and unstructured meshes are used for the numerical tests on Ω1,Ω2,

Ω4, and Ω5. Uniform and criss-cross meshes are used for Ω3. Lastly, uniform and

unstructured meshes are tested for all three-dimensional domains Ω6,Ω7,Ω8.

Moreover, based on the results in [19] that present the convergence of first-order

Lagrange basis functions satisfying certain attributes on Powell-Sabin triangulations,

a comparison is performed on Ω3. The FEM approximations using the edge elements

and a sort of nodal elements introduced in [19] for the cracked square domain.

The convergence behavior of the FEM approximation of eigenvalues to the exact

eigenvalues is investigated in the square and cube domains. The reference eigen-

values from the benchmark presented in [40] are followed for other cases, and the

convergence rates of the approximations to these reference eigenvalues are examined.

Furthermore, the plots of approximate eigenfunctions are compared with the bench-

mark presented in [34].

4.2.3.1 Numerical Results of 2D Domains

The numerical results of finite element approximation of Maxwell EVP using Nédélec

basis functions in two-dimensional domains are presented. The standard finite el-

ement formulation is used since Nédélec basis functions are discretely divergence-

free. The approximated eigenvalues are compared with the exact and reference ones,

and the convergence rate of the approximation is discussed in consideration of the

theoretical results presented previously. Also, as expected, the number of zero eigen-

values equals the number of internal nodes. The standard finite element formulation

introduced in (4.16) is used for the following numerical experiments and again given

in the following.
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Find λh ∈ R, λh ̸= 0 and uh ∈ Uh with uh ̸= 0 such that

(µ−1
r ∇× uh,∇× vh) = λh(uh,vh) ∀vh ∈ Uh,

where Uh is the finite-dimensional subspace ofH0(curl; Ω) constructed using Nédélec

edge elements. It is known that uh ∈ Uh is expressed as uh =
∑ne

m=1 umΥm, where

Υm are the global Nédélec basis functions that are related to the edge m with the

degrees of freedom ne after imposing Dirichlet boundary condition, and um are the

coefficients to be found that control the tangential field over the edge m. This leads

to the following generalized eigenvalue problem of finding λ ∈ R, and corresponding

eigenvector u that is stated as

Ku = λMu, (4.38)

where K is the stiffness matrix, M is the mass matrix.

After obtaining the approximate nonzero eigenvalues λh and corresponding eigenvec-

tors uh of Problem (4.38), the visualization of eigenfunctions is performed as

un
h =

ne∑
m=1

unh,m
||unh,m||

Υm, (4.39)

where unh,m is the n-th eigenvector obtained from the approximation of the EVP where

each element of the n-th eigenvector corresponds to the m-th edge. Additionally, Υm

is the global Nédélec basis function related to the edge m; each is computed at the

centroid of the triangles (elements) in the mesh.

Also, the convergence rates CRi of approximate eigenvalues are calculated as

CRi =
ln ei−1 − ln ei
ln hi−1 − ln hi

, i = 2, 3, 4, 5, (4.40)

where ei is the error between the approximate and exact (or reference) eigenvalue at

i-th FEM approximation with the maximum edge length hi in the mesh.
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4.2.3.1.1 Square Domain Maxwell’s EVP on Ω1 = [0, π]2 with ϵr = µr = 1

is approximated with the lowest-order first kind Nédélec elements on the uniform,

criss-cross and unstructured meshes.

The exact eigenvalues with the corresponding eigenvectors are given as [19]

λm,n = m2 + n2,

um,n = (−m sin(my) cos(nx), n sin(nx) cos(my))T ,
(4.41)

where m,n = 0, 1, 2, . . . , m+ n ̸= 0.

(a) N = 8 (b) N = 8 (c) hmax = 0.331

Figure 4.4: Uniform, criss-cross, and unstructured meshes of the square domain.

The results of first ten approximate eigenvalues on uniform and criss-cross meshes are

given in Table 4.2 and Table 4.3 after eliminating the zero eigenvalues. It is important

to note that the results provided in Table 4.2 obtained by the present scheme agree

very well with those reported in [13].

Table 4.2: The first ten exact and approximated eigenvalues on a sequence of uniform
meshes with the convergence rates.

Exact N = 4 N = 8 N = 16 N = 32 N = 64
1
1
2
4
4
5
5
8
9
9

0.9702 0.9923(2.0) 0.9981(2.0) 0.9995(2.0) 0.9999(2.0)
0.9960 0.9991(2.2) 0.9998(2.1) 0.9999(2.0) 1.0000(2.0)
2.0288 2.0082(1.8) 2.0021(2.0) 2.0005(2.0) 2.0001(2.0)
3.7227 3.9316(2.0) 3.9829(2.0) 3.9957(2.0) 3.9989(2.0)
3.7339 3.9325(2.0) 3.9829(2.0) 3.9957(2.0) 3.9989(2.0)
4.7339 4.9312(2.0) 4.9826(2.0) 4.9956(2.0) 4.9989(2.0)
5.1702 5.0576(1.6) 5.0151(1.9) 5.0038(2.0) 5.0010(2.0)
7.4306 8.1016(2.5) 8.0322(1.7) 8.0084(1.9) 8.0021(2.0)
7.5231 8.6292(2.0) 8.9061(2.0) 8.9764(2.0) 8.9941(2.0)
7.9586 8.6824(1.7) 8.9211(2.0) 8.9803(2.0) 8.9951(2.0)

zeros 9 49 225 961 3969
DOF 40 176 736 3008 12160
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Table 4.3: The first ten exact and approximated eigenvalues on a sequence of criss-
cross meshes with the convergence rates.

Exact N = 4 N = 8 N = 16 N = 32 N = 64
1
1
2
4
4
5
5
8
9
9

1.0042 1.0011(2.0) 1.0003(2.0) 1.0001(2.0) 1.0000(2.0)
1.0042 1.0011(2.0) 1.0003(2.0) 1.0001(2.0) 1.0000(2.0)
1.9655 1.9914(2.0) 1.9979(2.0) 1.9995(2.0) 1.9999(2.0)
4.0602 4.0167(1.9) 4.0043(2.0) 4.0011(2.0) 4.0003(2.0)
4.0602 4.0167(1.9) 4.0043(2.0) 4.0011(2.0) 4.0003(2.0)
4.8929 4.9749(2.1) 4.9938(2.0) 4.9985(2.0) 4.9996(2.0)
4.8929 4.9749(2.1) 4.9938(2.0) 4.9985(2.0) 4.9996(2.0)
7.4306 7.8619(2.0) 7.9657(2.0) 7.9914(2.0) 7.9979(2.0)
9.2283 9.0811(1.5) 9.0213(1.9) 9.0054(2.0) 9.0014(2.0)
9.2283 9.0811(1.5) 9.0213(1.9) 9.0054(2.0) 9.0014(2.0)

zeros 25 113 481 1985 8065
DOF 88 368 1504 6080 24448

It is seen from Table 4.2 and Table 4.3 that the convergence rates of the FEM ap-

proximation in uniform and criss-cross meshes are quadratic, as demonstrated in the

theoretical results. Moreover, the results of approximations in unstructured meshes

are presented in Table 4.4 from which it is observed that the convergence rates vary

and are mostly higher than degree 2 for the unstructured mesh.

Table 4.4: The first ten exact and approximated eigenvalues on a sequence of unstruc-
tured meshes with the convergence rates.
Exact hmax = 0.7 hmax = 0.331 hmax = 0.1628 hmax = 0.0814 hmax = 0.0407

1
1
2
4
4
5
5
8
9
9

0.9961 1.0007(2.4) 0.9999(3.2) 1.0000(1.0) 1.0000(3.6)
0.9961 1.0009(2.0) 1.0001(2.6) 1.0000(2.7) 1.0000(3.9)
2.0320 1.9957(2.7) 1.9998(4.2) 2.0001(0.6) 2.0000(3.9)
3.7601 3.9926(4.6) 3.9982(2.0) 3.9993(1.4) 3.9999(3.4)
4.1918 3.9938(4.6) 4.0007(3.1) 3.9999(3.6) 4.0000(0.3)
5.0896 4.9871(2.6) 4.9995(4.5) 5.0002(1.4) 5.0000(2.1)
5.0896 4.9927(3.3) 5.0044(0.7) 5.0005(3.1) 5.0001(3.2)
8.6577 7.9793(4.6) 7.9995(5.3) 8.0021(2.1) 8.0002(3.2)
8.6577 8.9611(2.9) 8.9935(2.5) 8.9961(0.8) 8.9996(3.3)
8.7057 9.0020(6.6) 8.9958(1.0) 8.9973(0.6) 8.9998(3.9)

zeros 9 49 226 988 4006
DOF 36 172 727 3061 12215

Considering the theoretical convergence properties of approximate eigenvalues, quad-

ratic convergence rates are expected if the triangulation of the convex domain is regu-

lar. Therefore, varying convergence rates are also expected in the case of an unstruc-
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tured mesh.

As seen from the numerical results, the approximate eigenvalues converge to the exact

ones in uniform, criss-cross, and unstructured meshes. Also, as expected, the number

of zero eigenvalues equals the number of internal vertices.

Furthermore, the plots of the approximated first five eigenfunctions are presented as

contours of each component in Figure 4.5. In these figures, the behaviors of eigen-

functions associated with the same eigenvalues with multiplicity 2 are similar. Also,

the approximate eigenfunctions agree well with the exact ones given in (4.41). Addi-

tionally, the quiver plots of divergence-free eigenfunctions with zero tangential com-

ponents on the boundary are presented in Figure 4.6.

(a) u1
hx

(b) u1
hy

(c) u2
hx

(d) u2
hy

Figure 4.5: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24448 DOF on Ω1.

70



(e) u3
hx

(f) u3
hy

(g) u4
hx

(h) u4
hy

(i) u5
hx

(j) u5
hy

Figure 4.5: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24448 DOF on Ω1. (cont.)
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Figure 4.6: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 24448 DOF on Ω1.
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4.2.3.1.2 L-Shape Domain Maxwell’s EVP on Ω2 = [−1, 1]2 \ ([0, 1]× [0,−1])

with ϵr = µr = 1 is approximated on the uniform, criss-cross, and unstructured

meshes given in Figure 4.7.

(a) N = 8 (b) N = 8 (c) hmax = 0.062

Figure 4.7: Uniform, criss-cross, and unstructured meshes of the L-shape domain.

The results of the first five approximate eigenvalues after eliminating the zero eigen-

values on a sequence of three different meshes are presented in Table 4.5, Table 4.6,

and Table 4.7. The reference eigenvalues are followed from the benchmark presented

in [40].

Table 4.5: The first five reference and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates.

Reference
Eigenvalues

N =4 N = 8 N = 16 N = 32 N = 64

1.4756
3.5340
9.8696
9.8696
11.3894

1.3227 1.4165(1.4) 1.4527(1.4) 1.4667(1.4) 1.4721(1.4)
3.5181 3.5281(1.4) 3.5322(1.6) 3.5335(1.8) 3.5339(1.9)
8.8082 9.5751(1.8) 9.7938(2.0) 9.8505(2.0) 9.8648(2.0)
9.5999 9.8306(2.8) 9.8612(2.2) 9.8676(2.1) 9.8691(2.0)

11.3299 11.4011(2.4) 11.3932(1.7) 11.3904(2.0) 11.3897(2.1)
zeros 5 33 161 705 2945
DOF 28 128 544 2240 9088

The numerical results in uniform and criss-cross meshes show that the rates of con-

vergence are quadratic except for the first and second approximate eigenvalues since

the L-shape domain contains a singularity at the point (0, 0).

Table 4.6: The first five reference and approximated eigenvalues on a sequence of
criss-cross meshes with the convergence rates.

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

1.4756
3.5340
9.8696
9.8696
11.3894

1.3992 1.4439(1.3) 1.4626(1.3) 1.4704(1.3) 1.4735(1.3)
3.5423 3.5349(3.2) 3.5341(4.7) 3.5340(0.7) 3.5340(1.1)

10.0182 9.9107(1.9) 9.8801(2.0) 9.8722(2.0) 9.8703(2.0)
10.0182 9.9107(1.9) 9.8801(2.0) 9.8722(2.0) 9.8703(2.0)
11.2985 11.3687(2.1) 11.3842(2.0) 11.3881(2.0) 11.3891(2.0)

zeros 17 81 353 1473 6017
DOF 64 272 1120 4544 18304
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Table 4.7: The first five reference and approximated eigenvalues on a sequence of
unstructured meshes with the convergence rates.

Reference
Eigenvalues

Hmax=0.62 Hmax=0.32 Hmax=0.1614 Hmax = 0.0811 Hmax = 0.0412

1.4756
3.5340
9.8696
9.8696
11.3894

1.3427 1.4227(1.4) 1.4567(1.5) 1.4679(1.3) 1.4727(1.4)
3.5247 3.5312(1.8) 3.5351(1.4) 3.5341(5.6) 3.5340(0.5)
9.4193 9.8186(3.3) 9.8680(5.1) 9.8682(0.1) 9.8694(3.0)
9.7364 9.8341(2.0) 9.8737(3.2) 9.8689(2.5) 9.8695(3.6)

11.2400 11.3698(3.1) 11.3952(1.8) 11.3892(4.4) 11.3894(2.8)
zeros 5 33 164 713 2963
DOF 28 128 545 2240 9086

Moreover, it is seen that the convergence rates vary in the unstructured meshes even

for the approximate eigenvalues with quadratic convergence rates in uniform and

criss-cross meshes, as in the case of Ω1.

Considering the numerical results in three different meshes, it is confirmed that the

approximate eigenvalues converge to the reference eigenvalues for this domain with

a singular point. Furthermore, the contours of the first five approximated eigenfunc-

tions’ components are presented in Figure 4.8, where these figures agree well with the

benchmark contours of eigenfunctions presented in [34]. The presence of singularity

in the first eigenfunction can be seen from these figures. Also, the third and the fourth

eigenfunctions’ behaviors are similar since they correspond to the same eigenvalue

with multiplicity 2. Lastly, the quiver plots that present the divergence-free vector

fields of eigenfunctions with zero tangential components on the boundary are given

in Figure 4.9.

(a) u1
hx

(b) u1
hy

Figure 4.8: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 18304 DOF on Ω2.
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(c) u2
hx

(d) u2
hy

(e) u3
hx

(f) u3
hy

(g) u4
hx

(h) u4
hy

(i) u5
hx

(j) u5
hy

Figure 4.8: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 18304 DOF on Ω2. (cont.)
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Figure 4.9: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 18304 DOF on Ω2.
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4.2.3.1.3 Cracked Square Domain The Maxwell EVP on the cracked square do-

main Ω3 = [−1, 1]2 that contains a crack on a line between the points (0, 0) and (1, 0)

with µr = ϵr = 1 is approximated on the uniform, and criss-cross meshes given in

Figure 4.10.

(a) N = 8 (b) N = 8

Figure 4.10: Uniform and criss-cross meshes of the cracked square domain where the
red part indicates the boundary.

Table 4.8 and Table 4.9 present the first ten approximate eigenvalues on uniform and

criss-cross meshes, respectively. Note that the zero eigenvalues are eliminated where

their number equals the number of internal vertices. Also, in the followed benchmark

presented in [40], the reference values are obtained using locally refined mesh around

the points (0, 0) and polynomials of degree 10.

This domain contains a strong singularity. Therefore, it is expected to observe that

some approximate eigenvalues will not converge with order 2.

Table 4.8: The first ten reference and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates.

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

1.0341
2.4674
4.0469
9.8696
9.8696
10.8448
12.2648
12.3370
19.7392
21.2441

0.8116 0.9198(1.0) 0.9761(1.0) 1.0049(1.0) 1.0194(1.0)
2.4248 2.4568(2.0) 2.4648(2.0) 2.4667(2.0) 2.4672(2.0)
4.0601 4.0474(4.9) 4.0467(0.8) 4.0468(1.2) 4.0469(1.7)
9.1384 9.6956(2.1) 9.8270(2.0) 9.8590(2.0) 9.8670(2.0)
9.1960 9.7018(2.0) 9.8274(2.0) 9.8590(2.0) 9.8670(2.0)

10.3745 10.7444(2.2) 10.8197(2.0) 10.8385(2.0) 10.8433(2.0)
10.7093 11.6717(1.4) 12.0087(1.2) 12.1451(1.1) 12.2068(1.0)
12.3677 12.3514(1.1) 12.3377(4.4) 12.3367(1.1) 12.3369(1.2)
17.8267 19.9690(3.1) 19.8185(1.5) 19.7600(1.9) 19.7445(2.0)
18.7588 20.1235(1.1) 20.7501(1.2) 21.0172(1.1) 21.1363(1.1)

zeros 7 45 217 945 3937
DOF 38 172 728 2992 12128
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Table 4.9: The first ten reference and approximated eigenvalues on a sequence of
criss-cross meshes with the convergence rates.

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

1.0341
2.4674
4.0469
9.8696
9.8696
10.8448
12.2648
12.3370
19.7392
21.2441

0.8860 0.9557(0.9) 0.9937(1.0) 1.0136(1.0) 1.0238(1.0)
2.4777 2.4700(2.0) 2.4681(2.0) 2.4676(2.0) 2.4674(2.0)
4.0326 4.0423(1.6) 4.0456(1.8) 4.0466(1.9) 4.0468(2.0)

10.0182 9.9107(1.9) 9.8801(2.0) 9.8722(2.0) 9.8703(2.0)
10.0182 9.9107(1.9) 9.8801(2.0) 9.8722(2.0) 9.8703(2.0)
10.8387 10.8456(3.1) 10.8451(1.9) 10.8449(2.5) 10.8449(2.5)
11.5398 11.9253(1.1) 12.0997(1.0) 12.1835(1.0) 12.2245(1.0)
12.0727 12.2750(2.1) 12.3217(2.0) 12.3332(2.0) 12.3361(2.0)
18.3344 19.3985(2.0) 19.6545(2.0) 19.7181(2.0) 19.7339(2.0)
19.4186 20.6098(1.5) 20.9520(1.1) 21.1003(1.0) 21.1724(1.0)

zeros 23 109 473 1969 8033
DOF 86 364 1496 6064 24416

As expected, the approximation converges with the quadratic rate of convergence

except for some eigenvalues. For example, the first eigenvalue is approximated with

order 1 because this eigenvalue corresponds to an eigenvector with low regularity. The

others that approximate with quadratic convergence rates correspond to eigenvectors

in H1 [19].

The plots of the first five eigenfunctions are presented as contours of each component

in Figure 4.11, and as vector fields in Figure 4.12. The contours are in good agreement

with the benchmark [34]. Figure 4.11 shows the singularity of the first eigenfunction.

Also, u2
hx

can be neglected since it is approximately zero. Lastly, the fourth and fifth

eigenfunctions that correspond to the same eigenvalue value with multiplicity 2 show

the same behavior, as observed in the previous cases.

(a) u1
hx

(b) u1
hy

Figure 4.11: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω3.
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(c) u2
hx

(d) u2
hy

(e) u3
hx

(f) u3
hy

(g) u4
hx

(h) u4
hy

(i) u5
hx

(j) u5
hy

Figure 4.11: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω3. (cont.)
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Figure 4.12: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω3.
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4.2.3.1.4 Cracked Domain with Powell-Sabin Triangulation The Maxwell EVP

on the cracked square domain Ω3 = [−1, 1]2 that contains a crack on a line between

the points (0, 0) and (1, 0) with µr = ϵr = 1 is approximated using Nédélec edge

elements and linear Lagrange basis functions satisfying specific properties on Powell-

Sabin triangulations, which are shown in Figure 4.13.

(a) N = 4 (b) N = 8

Figure 4.13: Powell-Sabin triangulation of the cracked square domain where the
boundary is indicated in red.

Powell-Sabin triangulations are obtained by employing a refinement procedure on

the uniform triangulations. Firstly, consider an element K in uniform triangulation

Th (see, Figure 4.10a), where the incenter and midpoints of each edge of K ∈ Th are

determined. It follows that the incenter is connected to each vertex of K. Lastly, the

midpoints of edges are connected to the incenter. This way, Powell-Sabin triangula-

tion Tps
h is obtained (see, Figure 4.13b), where each element K ∈ Th is split into six

triangles.

The convergence of FEM using linear Lagrange basis functions satisfying special

properties on Powell-Sabin triangulations is presented in [19] by using the same

equivalent mixed formulations (3.46) and (4.17) of the Maxwell EVP. In the anal-

yses, the similar structure studied in [15] is used, which is also presented in Section

4.2.2. In order to prove the convergence of discrete eigenvalues to the correct ones,

the uniform convergence of the associated discrete source problem is shown with

the help of the modified Scott-Zhang interpolant at the corners of Ω. The modified

Scott-Zhang interpolant can be found in [22].
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The two convergent FEM approximations of the Maxwell EVP utilizing edge ele-

ments and nodal elements on Powell-Sabin triangulations are compared. The approx-

imate eigenvalues that are obtained by employing FEM using edge elements together

with the convergence rates are given in Table 4.10.

Table 4.10: The first ten reference and approximated eigenvalues using edge elements
on a sequence of Powell-Sabin meshes with the convergence rates.

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

1.03407
2.46740
4.04693
9.86960
9.86960

10.84485
12.26490
12.33701
19.73921
21.24411

0.92707
2.46619
4.03756
9.83673
9.83911

10.77217
11.68279
12.23001
19.19342
20.07198

0.97912 (1.0)
2.46743 (5.6)
4.04446 (1.9)
9.86881 (5.4)
9.86936 (6.9)
10.83281 (2.6)
12.02106 (1.3)
12.31106 (2.0)
19.62068 (2.2)
20.79632 (1.4)

1.00617 (1.0)
2.46745 (-1.0)
4.04630 (2.0)
9.87029 (0.2)
9.87037 (-1.6)
10.84257 (2.4)
12.15073 (1.1)
12.33062 (2.0)
19.71082 (2.1)
21.03868 (1.1)

1.02001 (1.0)
2.46742 (1.5)
4.04677 (2.0)
9.86988 (1.3)
9.86990 (1.4)

10.84437 (2.2)
12.20923 (1.0)
12.33543 (2.0)
19.73219 (2.0)
21.14429 (1.0)

1.02701 (1.0)
2.46741 (1.8)
4.04689 (2.0)
9.86969 (1.7)
9.86969 (1.8)

10.84475 (2.1)
12.23736 (1.0)
12.33662 (2.0)
19.73746 (2.0)
21.19472 (1.0)

zeros 77 345 1457 5985 24257
DOF 268 1112 4528 18272 73408

The results in Table 4.10 show the expected convergence behaviors as in the criss-

cross mesh case shown in the previous subsection.

Next, based on the study [19], the standard finite element formulation (4.16) is consid-

ered with the finite-dimensional subspace Uh = P1(T
ps
h )∩H0(curl; Ω) where P1(T

ps
h )

is the vector-valued space of first-order Lagrange basis functions defined on Powell-

Sabin triangulations. It is important to emphasize that the degrees of freedom are

related to the vertices of the mesh, and the homogeneous Dirichlet boundary condi-

tions are imposed, including the tip of the crack, where the nodes on the crack are

doubled to allow discontinuity. The results of nonzero approximate eigenvalues with

the convergence rates obtained from the nodal FEM are given in Table 4.11.

Considering Table 4.10 and Table 4.11, the results of both approximations are con-

vergent and validate the related theories. The convergence rates of nodal-based ap-

proximations are quadratic after the mesh is fine enough, except for some eigenvalues

discussed above. However, the convergence rates of edge-based approximations vary
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Table 4.11: The first ten reference and approximated eigenvalues using nodal ele-
ments on a sequence of Powell-Sabin meshes with the convergence rates.

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

1.03407
2.46740
4.04693
9.86960
9.86960

10.84485
12.26490
12.33701
19.73921
21.24411

0.74638
2.36898
4.08067

10.15882
10.17006
11.15079
11.28987
12.42849
20.13388
20.56615

0.87712 (0.9)
2.44378 (2.1)
4.05810 (1.6)
9.94696 (1.9)
9.94745 (1.9)

10.93483 (1.8)
11.70011 (0.8)
12.39541 (0.6)
20.03430 (0.4)
20.41823 (-0.3)

0.95194 (0.9)
2.46158 (2.0)
4.04999 (1.9)
9.88917 (2.0)
9.88920 (2.0)

10.86812 (2.0)
11.95953 (0.9)
12.35338 (1.8)
19.81674 (1.9)
20.74111 (0.7)

0.99204 (1.0)
2.46595 (2.0)
4.04772 (1.9)
9.87451 (2.0)
9.87451 (2.0)

10.85073 (2.0)
12.10596 (0.9)
12.34118 (2.0)
19.75879 (2.0)
20.96971 (0.9)

1.01281 (1.0)
2.46704 (2.0)
4.04713 (2.0)
9.87083 (2.0)
9.87083 (2.0)

10.84633 (2.0)
12.18380 (1.0)
12.33805 (2.0)
19.74411 (2.0)
21.10120 (0.9)

zeros 34 168 724 2988 12124
DOF 187 763 3067 12283 49147

and produce more accurate results than the nodal-based approximation on the same

mesh. On the other hand, more degrees of freedom are involved in the edge FEM ap-

proximation than the nodal one. Even though both approximations have advantages

and disadvantages, these approaches provide accurate results on the two-dimensional

domain containing a strong singularity.
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4.2.3.1.5 Square Domain with Two Different Materials The Maxwell EVP is

approximated on domain Ω4 = [−1, 1]2 having a non-homogeneous material property

(see, Figure 4.14). The material properties are denoted by ϵrm , µrm , m = 1, 2 for

each material. Numerical results are presented for two cases using uniform, criss-

cross, and unstructured meshes that are shown in Figure 4.4.

Material 1

Material 1

Material 2

Material 2

Figure 4.14: Square domain with two different materials.

The numerical tests on domain Ω4 consist of three cases, which are:

• Case I: µr1 = µr2 = ϵr2 = 1, and ϵr1 = 0.5.

• Case II: µr1 = µr2 = ϵr2 = 1, and ϵr1 = 0.1.

In these cases, the relative permittivity values are artificial and they are taken so that

the method’s efficacy can be validated in the case of a singularity coming from ma-

terial properties. The reference eigenvalues presented in the benchmark [40] and the

benchmark contours of eigenfunctions given in [34] are considered to validate.

Case I: µr1 = µr2 = ϵr2 = 1 and ϵr1 = 0.5.

The results of first ten approximate eigenvalues on uniform, criss-cross, and unstruc-

tured meshes are given in Table 4.12, Table 4.13, and Table 4.14, respectively.
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Table 4.12: The first ten reference and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates (ϵr1 = 0.5).

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

3.3175
3.3663
6.1864
13.9263
15.0829
15.7789
18.6433
25.7975
29.8524
30.5379

3.2462 3.2978(1.9) 3.3122(1.9) 3.3161(2.0) 3.3171(2.1)
3.2578 3.3269(1.5) 3.3521(1.5) 3.3613(1.5) 3.3646(1.5)
6.1823 6.1893(0.5) 6.1874(1.6) 6.1866(2.0) 6.1865(2.2)

12.8589 13.6778(2.1) 13.8649(2.0) 13.9109(2.0) 13.9225(2.0)
14.0947 14.8544(2.1) 15.0251(2.0) 15.0684(2.0) 15.0793(2.0)
14.4520 15.4372(2.0) 15.6910(2.0) 15.7565(2.0) 15.7732(2.0)
17.8104 18.6213(5.2) 18.6448(3.9) 18.6437(2.0) 18.6433(3.5)
23.3400 25.2141(2.1) 25.6619(2.1) 25.7643(2.0) 25.7893(2.0)
27.3159 29.1609(1.9) 29.6734(1.9) 29.8067(2.0) 29.8409(2.0)
28.0668 29.7940(1.7) 30.3201(1.8) 30.4733(1.8) 30.5185(1.7)

zeros 9 48 225 961 3969
DOF 40 176 736 3008 12160

In this case, the convergence rates of approximate eigenvalues are not quadratic for

all, even when uniform and criss-cross meshes are used in a convex domain, as can be

seen in Table 4.12 and Table 4.13. This behavior of approximate eigenvalues results

from the formed singularity in a domain because of the parameters.

Table 4.13: The first ten reference and approximated eigenvalues on a sequence of
criss-cross meshes with the convergence rates (ϵr1 = 0.5).

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

3.3175
3.3663
6.1864
13.9263
15.0829
15.7789
18.6433
25.7975
29.8524
30.5379

3.3126 3.3169(2.9) 3.3172(1.2) 3.3174(2.2) 3.3175(1.9)
3.3181 3.3457(1.2) 3.3587(1.4) 3.3636(1.5) 3.3654(1.5)
6.1046 6.1662(2.0) 6.1814(2.0) 6.1851(2.0) 6.1861(2.0)

13.9785 13.9516(1.0) 13.9333(1.9) 13.9281(2.0) 13.9268(1.9)
15.1648 15.1089(1.7) 15.0896(2.0) 15.0846(1.9) 15.0834(1.8)
15.4880 15.7168(2.2) 15.7633(2.0) 15.7749(2.0) 15.7778(1.9)
18.0223 18.5116(2.2) 18.6109(2.0) 18.6350(2.0) 18.6411(1.9)
24.1154 25.4240(2.2) 25.7071(2.0) 25.7751(2.0) 25.7919(2.0)
30.6613 30.0687(1.9) 29.9080(2.0) 29.8662(2.0) 29.8558(2.0)
31.2220 30.6223(3.0) 30.5448(3.6) 30.5342(0.9) 30.5351(0.4)

zeros 25 113 481 1985 8065
DOF 88 368 1504 6080 24448

Also, looking at Table 4.14, in the unstructured mesh, accurate approximate eigenval-

ues are obtained with varying convergence rates as usual.
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Table 4.14: The first ten reference and approximated eigenvalues on a sequence of
unstructured meshes with the convergence rates (ϵr1 = 0.5).

Reference
Eigenvalues

hmax = 0.7 hmax = 0.331 hmax = 0.1628 hmax = 0.0814 hmax = 0.0407

3.3175
3.3663
6.1864
13.9263
15.0829
15.7789
18.6433
25.7975
29.8524
30.5379

3.1628 3.3615(1.7) 3.3199(4.1) 3.3146(-0.3) 3.3173(4.1)
3.4241 3.4098(0.4) 3.3802(1.6) 3.3577(0.7) 3.3643(2.1)
6.3847 6.2570(1.4) 6.1921(3.6) 6.1896(0.8) 6.1887(0.5)

12.8595 13.8978(4.8) 13.8938(-0.2) 13.9061(0.7) 13.9197(1.6)
15.6584 15.0666(4.8) 15.0413(-1.3) 15.0541(0.5) 15.0746(1.8)
16.5203 15.8322(3.5) 15.7923(2.0) 15.7617(-0.4) 15.7731(1.6)
18.2280 18.6489(5.8) 18.6338(-0.8) 18.6433(8.7) 18.6461(-6.9)
29.4615 25.7844(7.5) 25.7529(-1.7) 25.7438(-0.3) 25.7807(1.7)
29.6292 29.9476(1.1) 29.8569(4.3) 29.8115(-3.2) 29.8428(2.1)
30.4979 30.6021(-0.6) 30.6711(-1.0) 30.5053(2.0) 30.5350(3.5)

zeros 9 49 226 988 4006
DOF 36 172 727 3061 12215

The numerical results show that the method provides accurate approximations in a

domain that contains a singularity coming from the parameters.

For the first case, the contours of the approximated eigenfunctions are presented in

Figure 4.15. As seen these figures, the second eigenfunction has a singularity around

the point (0, 0), and this leads to lower than quadratic convergence rate for the second

approximate eigenvalue, which can be seen in Table 4.12 and Table 4.13. Besides

this, the rest of the first five eigenfunctions are regular, and their corresponding ap-

proximate eigenvalues converge with a quadratic convergence rate.

(a) u1
hx

(b) u1
hy

Figure 4.15: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω4 (ϵr1 = 0.5).
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(c) u2
hx

(d) u2
hy

(e) u3
hx

(f) u3
hy

(g) u4
hx

(h) u4
hy

(i) u5
hx

(j) u5
hy

Figure 4.15: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω4 (ϵr1 = 0.5). (cont.)
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Moreover, the vector fields of eigenfunctions are presented in Figure 4.16. In these

figures, the eigenfunctions are partially similar to the eigenfunctions of the square do-

main with homogeneous material property, which are given in Figure 4.6. However,

the effect of the inhomogeneous material property dramatically changes some of the

eigenfunctions, for instance, the second and the fifth ones.
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Figure 4.16: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω4 (ϵr1 = 0.5).
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Case II: µr1 = µr2 = ϵr2 = 1 and ϵr1 = 0.1.

In this case, it is expected that the regularity of eigenfunctions that had low regularity

in the first case will be decreased even more with the decreasing value of ϵr1 , since

the singularity around the point (0, 0) becomes stronger.

Table 4.15, Table 4.16, and Table 4.17 present the approximate eigenvalues after elim-

inating the zero eigenvalues on a sequence of three different meshes in the following.

Table 4.15: The first ten reference and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates (ϵr1 = 0.1).

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

4.5339
6.2503
7.0371
22.3419
22.6792
26.0952
26.5090
40.4878
42.6507
55.8823

4.4923 4.5245(2.1) 4.5314(1.9) 4.5332(1.9) 4.5337(1.7)
4.5787 5.1161(0.6) 5.5283(0.7) 5.8093(0.7) 5.9870(0.7)
7.0697 7.0487(1.5) 7.0401(1.9) 7.0378(2.0) 7.0373(2.2)

18.8850 21.7271(2.5) 22.2613(2.9) 22.3226(2.1) 22.3372(2.0)
19.7049 21.9615(2.1) 22.4347(1.6) 22.6174(2.0) 22.6637(2.0)
23.1896 25.6683(2.8) 25.9461(1.5) 26.0229(1.0) 26.0559(0.9)
23.2312 25.6698(2.0) 26.2926(2.0) 26.4544(2.0) 26.4953(2.0)
37.9470 40.9432(2.5) 40.6636(1.4) 40.5354(1.9) 40.500(2.0)
38.9771 43.3365(2.4) 42.9157(1.4) 42.7215(1.9) 42.6686(2.0)
66.6656 50.5431(1.0) 54.6522(2.1) 55.5787(2.0) 55.8066(2.0)

zeros 9 48 225 961 3969
DOF 40 176 736 3008 12160

Table 4.16: The first ten reference and approximated eigenvalues on a sequence of
criss-cross meshes with the convergence rates (ϵr1 = 0.1).

Reference
Eigenvalues

N = 4 N = 8 N = 16 N = 32 N = 64

4.5339
6.2503
7.0371
22.3419
22.6792
26.0952
26.5090
40.4878
42.6507
55.8823

4.4721 4.5178(1.9) 4.5298(2.0) 4.5328(1.9) 4.5336(1.8)
4.7451 5.3032(0.7) 5.6742(0.7) 5.9064(0.7) 6.0472(0.8)
6.9892 7.0252(2.0) 7.0341(2.0) 7.0363(2.0) 7.0369(1.9)

21.7969 22.2655(2.8) 22.3254(2.2) 22.3380(2.1) 22.3410(2.1)
22.1042 22.5928(2.7) 22.6595(2.1) 22.6743(2.0) 22.6780(2.0)
26.0953 26.0309(-9.7) 26.0338(0.1) 26.0522(0.5) 26.0681(0.7)
26.5843 26.5521(0.8) 26.5217(1.8) 26.5123(1.9) 26.5098(2.0)
34.5312 39.0211(2.0) 40.1198(2.0) 40.3957(2.0) 40.4648(2.0)
35.9017 41.0912(2.1) 42.2618(2.0) 42.5533(2.0) 42.6263(2.0)
54.7233 55.7952(3.7) 55.9229(1.1) 55.8956(1.6) 55.8858(1.9)

zeros 25 113 481 1985 8065
DOF 88 368 1504 6080 24448
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As seen from Table 4.15 and Table 4.16, the convergence rates are quadratic for most

of the eigenvalues when the uniform and criss-cross meshes are used. However, it

is observed that the convergence rates decrease dramatically for the second and sixth

eigenvalues when the value of ϵr1 decreases compared with the first case. The reason

is the occurrence of singularity in the asymptotics of the corresponding eigenfunction

at (0, 0) [40].

Table 4.17: The first ten reference and approximated eigenvalues on a sequence of
unstructured meshes with the convergence rates (ϵr1 = 0.1).

Reference
Eigenvalues

hmax = 0.7 hmax = 0.331 hmax = 0.1628 hmax = 0.0814 hmax = 0.0407

4.5339
6.2503
7.0371
22.3419
22.6792
26.0952
26.5090
40.4878
42.6507
55.8823

4.2499 4.6907(0.8) 4.5482(3.4) 4.5380(1.8) 4.5399(-0.6)
4.9032 5.5221(0.8) 5.8785(0.9) 5.8522(-0.1) 6.0989(1.4)
7.5563 7.2602(1.1) 7.0652(2.9) 7.0480(1.4) 7.0454(0.4)

20.4167 22.4779(3.5) 22.3405(6.5) 22.3328(-2.7) 22.3656(-1.4)
23.1155 23.1195(0.0) 22.6778(8.1) 22.6554(-4.0) 22.6961(0.5)
32.0775 27.1655(2.3) 26.1705(3.7) 26.1071(2.7) 26.1224(-1.2)
36.3014 27.3017(3.4) 26.5827(3.3) 26.5400(2.7) 26.5460(-1.2)
44.9938 40.3531(4.7) 40.3385(-0.1) 40.2887(-0.4) 40.4330(1.9)
46.7377 43.9648(1.5) 42.7355(3.9) 42.6031(0.8) 42.6478(4.0)
60.9993 53.7116(1.1) 55.5082(2.5) 55.7289(1.3) 55.8835(6.9)

zeros 9 49 226 988 4006
DOF 36 172 727 3061 12215

On the other hand, in the sequence of unstructured meshes, the approximate eigenval-

ues are closer to the reference ones for the second and sixth eigenvalues, even though

the convergence rates vary, as seen in Table 4.17.

The contours of the first five approximated eigenfunctions are presented in Figure 4.17

for the second case. The approximate eigenfunctions presented in this figure agree

with the benchmark contours given in [34]. It can also be observed that the singu-

larity of the second eigenfunction becomes stronger compared with the first case, as

expected. Next, the vector fields of eigenfunctions given in Figure 4.18 are consid-

ered. The dramatic change in the first five eigenfunctions is observed compared with

the first case, and it can be seen mainly in the second and the fifth eigenfunctions, as

it was already distinguished in the first case.
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Figure 4.17: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω4 (ϵr1 = 0.1).
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Figure 4.17: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω4 (ϵr1 = 0.1). (cont.)
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Figure 4.18: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω4 (ϵr1 = 0.1).
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Figure 4.18: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω4 (ϵr1 = 0.1).
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4.2.3.1.6 Rectangular Domain with Two Different Materials The Maxwell EVP

is approximated on domain Ω5 = [0, 1] × [0, 0.6] having a non-homogeneous ma-

terial property. The material properties are denoted by ϵrm , µrm , m = 1, 2 for

each material that are located as given in Figure 4.19. The material parameters are

ϵr1 = µr1 = µr2 = 1, and ϵr2 = 6.

Material 2

Material 1

1

0.4

0.6

Figure 4.19: Rectangle domain with two different materials.

This example is used as a test case for dielectric-loaded waveguides in the literature,

which involves the Maxwell EVP for finding cutoff wavenumbers and modes [61,

83]. In Table 4.18, the first five approximate cutoff wavenumbers (square root of

eigenvalues) are presented to compare them with the analytical ones provided in [61].

Table 4.18: The first five analytical and approximated cutoff wavenumbers on the
uniform, criss-cross, and unstructured meshes.

Analytical
N = 64

Uniform
N = 64

Criss-Cross
hmax = 0.0407

Unstructured
1.7666 1.7597 1.7631 1.7654
2.3053 2.2980 2.3035 2.3054
2.9548 2.9495 2.9528 2.9549
3.2987 3.2885 3.2913 3.2948
4.1380 4.1343 4.1370 4.1387
zeros 3969 8065 3526
DOF 12160 2448 12215

As can be seen in Table 4.18, the approximations are accurate when compared with

the analytical ones. The results of unstructured mesh are closer to the analytical cutoff

wavenumbers in this case.

Next, the squares of analytical cutoff wavenumbers are obtained to consider approx-

imate eigenvalues and corresponding convergence rates on a sequence of different

triangulations. Therefore, Table 4.19 and Table 4.20 present the approximate eigen-

values on a sequence of uniform and criss-cross meshes, respectively.
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Table 4.19: The first five analytical and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates.

Analytical N = 4 N = 8 N = 16 N = 32 N = 64
3.1209 2.7579 2.9104 (0.8) 3.0252 (1.1) 3.0692 (0.9) 3.0966 (1.1)
5.3144 4.7265 5.1210 (1.6) 5.1777 (0.5) 5.2772 (1.9) 5.2810 (0.2)
8.7308 8.3530 8.5753 (1.3) 8.6165 (0.4) 8.6840 (1.3) 8.6993 (0.6)
10.8814 9.5137 9.9905 (0.6) 10.5971 (1.6) 10.6717 (0.4) 10.8142 (1.6)
17.1230 16.3340 17.0519 (3.5) 17.0282 (-0.4) 17.0856 (1.3) 17.0923 (0.3)

zeros 9 48 225 961 3969
DOF 40 176 736 3008 12160

Table 4.20: The first five analytical and approximated eigenvalues on a sequence of
criss-cross meshes with the convergence rates.

Analytical N = 4 N = 8 N = 16 N = 32 N = 64
3.1209 2.9415 3.1373 (3.5) 3.0727 (-1.6) 3.1244 (3.8) 3.1086 (-1.8)
5.3144 5.1714 5.3759 (1.2) 5.2804 (0.9) 5.3306 (1.1) 5.3060 (0.9)
8.7308 8.6136 8.7884 (1.0) 8.6866 (0.4) 8.7430 (1.9) 8.7193 (0.1)
10.8814 9.9261 10.7882 (3.4) 10.6770 (-1.1) 10.8666 (3.8) 10.8325(-1.7)
17.1230 17.5148 17.3297 (0.9) 17.1173 (5.2) 17.1469 (-2.1) 17.1148 (1.5)

zeros 25 113 481 1985 8065
DOF 88 368 1504 6080 24448

It is observed from Table 4.19 and Table 4.20 that the convergence rates are not

quadratic in uniform triangulations of the convex domain. As already mentioned

in the previous cases, this results from a singularity in the domain coming from the

material parameters. Moreover, the numerical results on a sequence of unstructured

meshes are shown in Table 4.21.

Table 4.21: The first five analytical and approximated eigenvalues on a sequence of
unstructured meshes with the convergence rates.

Analytical hmax = 0.7 hmax = 0.331 hmax = 0.1628 hmax = 0.0814 hmax = 0.0407

3.1209 3.0949 3.1254 (2.5) 3.1142 (-0.6) 3.1095 (-0.8) 3.1168 (1.5)
5.3144 5.2460 5.3379 (1.5) 5.3152 (4.9) 5.3171 (-1.8) 5.3149 (2.6)
8.7308 8.7923 8.7262 (3.7) 8.7448 (-1.6) 8.7265 (1.7) 8.7314 (3.0)
10.8814 10.3743 10.9355 (3.2) 10.8156 (-0.3) 10.8032 (-0.2) 10.8556 (1.6)
17.1230 20.4894 17.2934 (4.3) 17.1700 (1.9) 17.1403 (1.4) 17.1289 (1.6)

zeros 9 49 229 988 3526
DOF 36 172 736 3061 12215

Table 4.21 shows that the unstructured triangulation of Ω5 provides the best approxi-

mations compared to the results of the other two triangulations for this case.

The contours of each component for the first five eigenfunctions are presented in

Figure 4.20. In the considered studies for this case, there are no visuals of eigenfunc-
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tions. Therefore, the contours are presented without comparison since the validation

is confirmed by comparing the approximate and analytical cutoff wavenumbers.

(a) u1
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(b) u1
hy

(c) u2
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(d) u2
hy

(e) u3
hx

(f) u3
hy

Figure 4.20: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω5.
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(i) u5
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hy

Figure 4.20: Contours of the first five approximated eigenfunctions using criss-cross
mesh with 24448 DOF on Ω5. (cont.)

Additionally, the vector fields of these eigenfunctions are given in Figure 4.21, where

these fields are divergence-free and have zero tangential components on the boundary.
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Figure 4.21: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω5.
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Figure 4.21: Quivers of the first five approximated eigenfunctions using criss-cross
mesh with 24416 DOF on Ω5. (cont.)
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4.2.3.2 Numerical Results of 3D Domains

The numerical results of finite element approximation of Maxwell EVP introduced

in (2.21) using Nédélec basis functions in three-dimensional domains are presented.

In the numerical experiments, procedures made for two-dimensional domains are fol-

lowed similarly, with modifications to the visualization process.

The visualization of eigenfunctions is performed in two steps. Firstly, eigenfunctions

(un
h) are obtained following the same steps given in (4.39), where the global basis

functions are computed at the centroid of tetrahedrons (elements) in the mesh. Next,

to visualize the eigenfunctions in MATLAB, the nodal values are extrapolated from

the RBF interpolation functions. These interpolation functions are computed follow-

ing the idea studied in [95].

As mentioned earlier, for the validation of the constructed frame that can handle ex-

tension to the third dimension, tests on 3D domains are included. Numerical tests in

3D domains consist of cube domain Ω6, thick L-shape domain Ω7, and Fichera corner

domain Ω8. In all these numerical experiments, relative parameters ϵr = µr = 1 are

considered. The cube domain is considered for the validation since the exact eigen-

pairs are known. Additionally, it is considered to validate the presented theory of

convergence properties, where it is expected to have quadratic convergence rates for

the approximate eigenvalues in uniform meshes of the 3D convex domain. Moreover,

the other two domains that contain strong singularities are considered to show the

method’s efficacy in 3D, as it was performed in 2D cases. For the last two cases,

the reference values are considered, which are provided in [40], and the approximate

eigenfunctions’ slice contours are presented for the comparison with the benchmark

contours presented in [34].
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4.2.3.2.1 Cube The Maxwell EVP on Ω5 = [0, π]3 with ϵr = µr = 1 is approxi-

mated on the uniform and unstructured meshes given in Figure 4.22.

(a) N = 8 (b) hmax = 0.1335

Figure 4.22: Uniform and unstructured meshes of the cube domain.

The exact eigenfunctions denoted by ucube are presented in [9] and stated as

ucube =


d1 cos(ax1) sin(bx2) sin(cx3)

d2 sin(ax1) cos(bx2) sin(cx3)

d3 cos(ax1) sin(bx2) cos(cx3)

 , ∀


d1

d2

d3

 ·


a

b

c

 = 0, (4.42)

where {a, b, c} ⊂ N0 where two of the indices are not allowed to vanish at the

same time with the exact eigenvalues λ =
√
a2 + b2 + c2. Here the multiplicity

of the eigenvalues with respect to this consideration is determined by the vector

(d1, d2, d3)
T .

The results of first ten approximate eigenvalues on uniform and unstructured meshes

are given in Table 4.22, and Table 4.23.

Table 4.22: The first eleven exact and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates.

Exact N = 2 N = 4 N = 8 N = 16 N = 32
2
2
2
3
3
5
5
5
5
5
5

1.4254 1.8490(1.9) 1.9629(2.0) 1.9906(2.0) 1.9976(2.0)
1.4677 1.8889(2.3) 1.9657(1.7) 1.9907(1.9) 1.9977(2.0)
1.8841 1.9862(3.1) 1.9978(2.6) 1.9995(2.0) 1.9999(1.9)
2.6767 2.6035(-0.3) 2.8798(1.7) 2.9677(1.9) 2.9917(2.0)
2.9874 2.9015(-3.0) 2.9847(2.7) 2.9965(2.1) 2.9991(2.0)
3.8996 3.9539(0.1) 4.7147(1.9) 4.9238(1.9) 4.9802(1.9)
4.7327 3.9672(-1.9) 4.7284(1.9) 4.9260(1.9) 4.9813(2.0)
6.2997 4.2261(0.7) 4.7727(1.8) 4.9448(2.0) 4.9855(1.9)
7.2686 4.2307(1.6) 4.7989(1.9) 4.9463(1.9) 4.9868(2.0)
7.8402 4.5673(2.7) 4.9043(2.2) 4.9768(2.0) 4.9941(2.0)
7.9701 4.7757(3.7) 4.9154(1.4) 4.9799(2.1) 4.9952(2.1)

zeros 1 27 343 3375 29791
DOF 26 316 3032 26416 220256
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Table 4.23: The first eleven exact and approximated eigenvalues on a sequence of
unstructured meshes with the convergence rates.
Exact hmax = 0.4 hmax = 0.27 hmax = 0.1335 hmax = 0.072 hmax = 0.035

2
2
2
3
3
5
5
5
5
5
5

1.8289 1.9557(3.4) 1.9936(2.7) 1.9991(3.2) 1.9999(3.4)
1.9020 1.9653(2.6) 1.9951(2.8) 1.9992(2.9) 1.9999(3.6)
1.9288 1.9701(2.2) 1.9967(3.1) 1.9993(2.5) 1.9999(3.5)
2.6280 2.8965(3.3) 2.9926(3.7) 2.9991(3.5) 3.0000(6.7)
2.8474 2.9292(2.0) 2.9959(4.0) 2.9997(4.4) 3.0000(3.9)
3.8351 4.7025(3.5) 4.9498(2.5) 4.9923(3.0) 4.9987(2.5)
3.9377 4.7462(3.6) 4.9544(2.4) 4.9930(3.0) 4.9989(2.5)
4.0426 4.7793(3.7) 4.9599(2.4) 4.9934(2.9) 4.9989(2.5)
4.3500 4.7904(2.9) 4.9685(2.7) 4.9940(2.7) 4.9993(2.9)
4.7077 4.8613(1.9) 4.9795(2.7) 4.9947(2.2) 4.9993(2.8)
4.8328 4.9373(2.5) 4.9829(1.8) 4.9954(2.1) 4.9993(2.7)

zeros 5 26 378 3002 29330
DOF 111 354 3366 23453 215470

The numerical results in Table 4.22 validate the theory, showing that the convergence

rates are getting quadratic after the fine enough uniform mesh. On the other hand,

seeing in Table 4.23, the convergence rates in a sequence of unstructured meshes are

mostly higher than the quadratic, which results in better approximations of eigenval-

ues when compared with the uniform mesh.

The slice contours of approximate eigenfunctions’ components are given in Fig-

ure 4.23 using the slices on the domain Ω5 and the extrapolated nodal values from

RBF interpolation. It should be noted that the RBF interpolation is constructed us-

ing the results of approximation at uniform mesh with N = 16 (DOF = 26416).

From these figures, it is observed that the approximate eigenfunctions are in good

agreement with the exact eigenfunctions denoted by ucube given in (4.42).
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Figure 4.23: Contours of the first nine approximate eigenfunctions on Ω6.
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Figure 4.23: Contours of the first nine approximate eigenfunctions on Ω6. (cont.)
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4.2.3.2.2 Thick L Shape The Maxwell EVP on Ω6 = Ω2 × [0, 1] with µr =

ϵr = 1 is approximated on the uniform and unstructured meshes, which are given in

Figure 4.24.

(a) N = 8 (b) hmax = 0.2175

Figure 4.24: Uniform and unstructured meshes of the thick L-shape domain.

The results of the first nine approximate eigenvalues on the uniform and unstructured

meshes are given in Table 4.24 and Table 4.25.

Table 4.24: The first nine reference and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates.

Reference N = 2 N = 4 N = 8 N = 16 N = 32
9.6397 11.9572 10.1694(2.1) 9.7992(1.7) 9.6964(1.5) 9.6615(1.4)

11.3452 13.5661 11.1938(3.9) 11.2399(0.5) 11.3001(1.2) 11.3279(1.4)
13.4036 14.3921 13.6787(1.8) 13.4398(2.9) 13.4071(3.4) 13.4037(5.7)
15.1973 16.2610 15.3134(3.2) 15.1967(7.7) 15.1927(-3.0) 15.1954(1.3)
19.5093 17.8734 19.2597(2.7) 19.5901(1.6) 19.5540(0.9) 19.5245(1.6)
19.7392 18.0777 19.5328(3.0) 19.6999(2.4) 19.7135(0.6) 19.7310(1.6)
19.7392 18.9114 19.8908(2.4) 19.7441(5.0) 19.7308(-0.8) 19.7355(1.2)
19.7392 20.1286 20.5434(-1.0) 19.9029(2.3) 19.7684(2.5) 19.7451(2.3)
21.2591 20.7522 21.9943(-0.5) 21.3445(3.1) 21.2656(3.7) 21.2584(3.2)

zeros 3 29 291 2663 22683
DOF 26 262 2372 20200 166736

The benchmark [40] is considered to provide the reference eigenvalues. In Table 4.24,

the convergence rates are not quadratic even in a sequence of uniform mesh, as ex-

pected, since the geometry contains singular corners and edges. Also, Table 4.25

presents the varying convergence rates in unstructured mesh, as usual. However, it

can be observed from these numerical results that the computed eigenvalues approxi-

mate the reference ones in both meshes.
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Table 4.25: The first nine reference and approximated eigenvalues on a sequence of
unstructured meshes with the convergence rates.

Reference hmax = 0.7000 hmax = 0.4100 hmax = 0.2175 hmax = 0.1100 hmax = 0.0550

9.6397 9.1280 9.7582(2.1) 9.7225(0.5) 9.6946(0.6) 9.6622(1.3)
11.3452 10.3504 10.6814(0.6) 11.1337(1.6) 11.2920(2.0) 11.3245(1.4)
13.4036 12.9617 13.0840(0.5) 13.3434(2.4) 13.3968(3.1) 13.3988(0.5)
15.1973 13.5410 14.4701(1.2) 15.0016(1.9) 15.1765(3.2) 15.1923(2.1)
19.5093 14.3975 17.8428(1.6) 19.4303(4.4) 19.5566(0.7) 19.5247(1.6)
19.7392 17.3634 18.7517(1.3) 19.5825(2.7) 19.7103(2.4) 19.7336(2.4)
19.7392 17.5969 18.8138(1.2) 19.5992(2.7) 19.7116(2.3) 19.7349(2.7)
19.7392 18.5868 19.2807(1.3) 19.6198(1.9) 19.7156(2.3) 19.7361(2.9)
21.2591 20.5063 19.8974(-0.9) 21.0768(2.9) 21.2374(3.1) 21.2541(2.1)

zeros 2 15 224 2302 21641
DOF 77 238 2182 18400 161032

The plots of approximate eigenfunctions are given in Figure 4.25 as the contours of

each component using the slices on the domain Ω6 using the extrapolated nodal values

from RBF interpolation. Here, the RBF interpolation is obtained using the results of

approximation at uniform mesh with N = 16 (DOF = 20200). These approximate

eigenfunctions agree with the benchmarks presented in [34].
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Figure 4.25: Contours of the first eight approximate eigenfunctions on Ω7.
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Figure 4.25: Contours of the first eight approximate eigenfunctions on Ω7. (cont.)
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4.2.3.2.3 Fichera Corner The Maxwell EVP on Ω7 = [−1, 1]3 \ [−1, 0]3 with

µr = ϵr = 1 is approximated using uniform and unstructured meshes, which are

shown in Figure 4.26. Also, note that all the visualizations are presented using the

reversed Z−direction to provide a better understanding of the domain and the ap-

proximate eigenfunctions.

(a) N = 8 (b) hmax = 0.2175

Figure 4.26: Uniform and unstructured meshes of the fichera corner domain.

The reference eigenvalues from the benchmark [40] are considered. Note that a good

accuracy could not be achieved using locally refined mesh and polynomials of degree

5 even in the benchmark. However, it is indicated that at least the first four digits are

reliable for all reference eigenvalues.

Considering these reference eigenvalues and the convergence of approximate eigen-

values to them, the numerical results on a sequence of uniform and unstructured

meshes are presented in Table 4.26 and Table 4.27, respectively.

Table 4.26: The first eight reference and approximated eigenvalues on a sequence of
uniform meshes with the convergence rates.

Reference N = 2 N = 4 N = 8 N = 16 N = 32
3.2199 2.1768 2.6485(0.9) 2.9322(1.0) 3.0923(1.2) 3.1675(1.3)
5.8804 6.1011 5.5825(-0.4) 5.7406(1.1) 5.8331(1.6) 5.8659(1.7)
5.8804 7.7757 6.1040(3.1) 5.8765(5.9) 5.8650(-2.0) 5.8745(1.4)

10.6855 13.3375 8.6072(0.4) 10.2922(2.4) 10.5645(1.7) 10.6513(1.8)
10.6938 14.6571 9.7542(2.1) 10.4012(1.7) 10.6219(2.0) 10.6839(2.9)
10.6938 14.9805 9.94817(2.5) 10.5898(2.8) 10.6732(2.3) 10.6967(2.8)
12.3165 15.5559 10.2204(0.6) 11.1250(0.8) 11.8986(1.5) 12.1857(1.7)
12.3165 16.2068 10.5009(1.1) 11.7960(1.8) 12.1661(1.8) 12.2707(1.7)

zeros 0 19 279 2863 25695
DOF 19 260 2584 22832 191584

107



Table 4.27: The first eight reference and approximated eigenvalues on a sequence of
unstructured meshes with the convergence rates.

Reference hmax = 1 hmax = 0.55 hmax = 0.2700 hmax = 0.1415 hmax = 0.0700

3.2199 1.9362 2.5970(1.2) 3.0429(1.8) 3.1491(1.4) 3.1929(1.4)
5.8804 5.5170 5.6866(1.1) 5.8508(2.6) 5.8782(4.0) 5.8803(3.7)
5.8804 5.7297 5.8050(1.2) 5.8610(1.9) 5.8790(4.0) 5.8804(7.9)

10.6855 9.7939 10.3241(1.5) 10.6662(4.1) 10.7051(0.0) 10.6962(0.9)
10.6938 10.6384 10.4949(-2.1) 10.7694(1.4) 10.7474(0.5) 10.7187(1.1)
10.6938 10.8054 10.5319(-0.6) 10.7928(0.7) 10.7504(0.9) 10.7198(1.1)
12.3165 11.0556 11.2619(0.3) 12.0720(2.1) 12.2628(2.3) 12.2977(1.5)
12.3165 11.2021 11.4382(0.4) 12.1082(2.0) 12.2677(2.2) 12.2997(1.5)

zeros 0 18 271 2635 25058
DOF 61 290 2544 20903 185705

As observed in the convergence rates of approximate eigenvalues in the thick L-shape

domain, the convergence rates are not quadratic and vary in both meshes, as presented

in Table 4.26 and Table 4.27. It is because both of the domains contain singular

corners and edges. However, it can be observed from the results that all of the ap-

proximate eigenvalues converge to the reference ones. Additionally, the approximate

eigenvalues are closer to the reference ones in the unstructured mesh.

RBF interpolation is constructed using the numerical results of uniform mesh (N =

16) is considered to visualize the eigenfunctions. Then, using the extrapolated nodal

values from the RBF interpolation, the slice contours of each component are given in

Figure 4.27 on the domain Ω7. The approximate eigenfunctions in these figures are

well with the benchmarks given in [34].
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Figure 4.27: Contours of the first five approximate eigenfunctions on Ω8.
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CHAPTER 5

MODAL ANALYSIS OF THE ELECTROMAGNETIC WAVE

PROPAGATION PROBLEM USING EDGE-BASED FEM

This chapter presents two methods to approximate the electric wave propagation

problem introduced in Section 2.3. First, the given problem is approximated by apply-

ing the finite element method using the lowest-order Nédélec basis functions in space

and finite difference in time. Then, a modal analysis approach is followed using the

eigenmodes obtained from the finite element method using the lowest-order Nédélec

basis functions approximation of the related eigenvalue problem that is Maxwell EVP

applied to the same problem.

In this aim, the mentioned methods are discussed and presented following the study

[33] that applies a modal analysis approach to describe the vibrations of an incom-

pressible linearly elastic solid.

The outline of this chapter is constructed as follows. In the first section, the electric

wave propagation problem and modal analysis at a continuous level are provided

under the assumptions that the Fourier transform in time is allowed by the fields and

the positive temporal frequency, as discussed in Section 2.4. The variational and finite

element formulations for the introduced wave propagation problem and eigenvalue

problem are presented in the second section. In the section after that, the discussed

modal analysis is considered at a discrete level. Lastly, numerical results are presented

in the last section of this chapter.
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5.1 The electric wave propagation problem and modal analysis at continuous

level

Consider the wave propagation problem for an electric field given in (2.10) with the

assumption on the charge density as ρ = 0 for unity since the interest is on divergence-

free fields in this study. Also, let the given source −∂Ja

∂t
be denoted by f as f = −∂Ja

∂t
.

The following problem of finding electric field E : Ω× [0, T ) → R2 is considered to

be a boundary and initial value problem and defined on bounded, simply connected,

Lipschitz, polygonal domain Ω ⊂ R{2,3} with boundary ∂Ω, and time t ∈ [0, T ):

∂2(ϵE)
∂t2

+
∂(σE)
∂t

+∇× (µ−1∇× E) = f in Ω, t ∈ (0, T ),

∇ · E = 0 in Ω, t ∈ (0, T ),

n× E = 0 on ∂Ω, t ∈ (0, T ),

E(x, 0) = E0 in Ω,

∂E(x, 0)
∂t

= Ė0 in Ω,

(5.1)

where E0 and Ė0 denote the given initial electric field and the given initial velocity,

respectively. Also, n denotes the unit outward normal to the boundary ∂Ω.

In this chapter, the material of domain Ω is considered as non-conducting material

(σ = 0) together with the scalar permittivity ϵ and scalar permeability µ values. Also,

the assumption on charge density being zero leads to divergence-free condition on the

given source function that is ∇ · Ja = 0 from the relation (2.2), and Ohm’s law (2.4)

together with the zero conductivity σ = 0 (see, Section 3.3.1.3).

First, consider this problem with zero source function (f = 0) in order to investigate

the modal solution at the continuous level since it expresses the solution in terms of

the modes obtained from the solution to the homogeneous problem.

Next, consider the solution EH to the homogeneous problem in the form

EH(x, t) =
∞∑

m=0

e−iωmtΦm(x). (5.2)

If it is assumed that the modes Φm are linearly independent, then the amplitudes of

modes Φm and the frequencies ωm should be the solution of the following EVP that
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is stated as
∇× (µ−1∇× Φm) = ω2

mϵΦm in Ω,

∇ · Φm = 0 in Ω,

n× Φm = 0, on ∂Ω,

(5.3)

for m = 1, 2, . . . . Equivalently, this EVP can be considered as the Maxwell EVP

(see, Chapter 2) that is stated as

∇× (µ−1
r ∇× Φm) = κ2mϵrΦm in Ω,

∇ · Φm = 0 in Ω,

n× Φm = 0, on ∂Ω,

(5.4)

where κm = ωm
√
ϵ0µ0 is the wave number. The relative parameters ϵr, µr are already

given as

ϵr =
1

ϵ0

(
ϵ+

iσ

ω

)
, µr =

µ

µ0

,

where the conductivity parameter is taken as σ = 0. Also, ϵ0 = 8.854× 10−12Fm−1,

and µ0 = 4π × 10−7Hm−1 are vacuum parameters.

The eigenvalues of the Maxwell EVP are all real and non-negative. If κ2 = 0,

then its corresponding eigenfunctions are associated with the infinite-dimensional

eigenspace. On the other hand, for the real and positive eigenvalues κ2 ∈ R+, there is

a complete set of eigenvectors and corresponding eigenvalues, which can be arranged

as

{Φ1(x), . . . ,Φm(x), . . . }, 0 < κ21 ≤ · · · ≤ κ2m ≤ . . . . (5.5)

The eigenpairs (κ2m,Φm) that are stated in (5.5) are the non-trivial solutions of (5.4)

and these eigenvectors are L2(Ω)-orthogonal [13].

5.2 Finite element approximation of the wave propagation problem and the

EVP

The variational formulations of the electric wave propagation problem and the EVP

are considered before moving to the finite element approximations of these problems.

Firstly, consider the variational formulation of the electric wave propagation problem

(5.1) that is the problem of finding E : (0, T ) → H0(curl; Ω) for all v ∈ H0(curl; Ω)
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that can be written as follows:(∂2(ϵE)
∂t2

,v
)
+ (µ−1∇× E ,∇× v) = (f ,v), for t ∈ (0, T ),

(E(x, 0),v)H0(curl;Ω) = (E0,v)H0(curl;Ω),(∂E(x, 0)
∂t

,v
)
H0(curl;Ω)

= (Ė0,v)H0(curl;Ω).

(5.6)

Next, consider the variational formulation of the related eigenvalue problem (5.4) that

is the problem of finding non-trivial Φ ∈ H0(curl; Ω) and κ2 ∈ R+ can be written as

follows:

(µ−1
r ∇× Φ,∇× v) = κ2(ϵrΦ,v), ∀v ∈ H0(curl; Ω). (5.7)

Then, finite element formulations of the wave propagation problem and the eigen-

value problem are obtained by considering the variational formulations of the related

problems with the finite-dimensional subspace Vh ⊂ H0(curl; Ω) that is constructed

using the lowest-order Nédélec basis functions introduced in Section 3.6. The finite

element formulation of the electric wave propagation problem considering its varia-

tional formulation (5.6) and the finite-dimensional subspace Vh can be considered in

the following as the problem of finding Eh : (0, T ) → Vh for all vh ∈ Vh, which is

stated as(∂2(ϵEh)
∂t2

,vh

)
+ (µ−1∇× Eh,∇× vh) = (f ,vh), for t ∈ (0, T ), (5.8)

(Eh(x, 0),vh)H0(curl;Ω) = (E0,vh)H0(curl;Ω), (5.9)(∂Eh(x, 0)
∂t

,vh

)
H0(curl;Ω)

= (Ė0,vh)H0(curl;Ω). (5.10)

where Eh is the finite element approximation to E that is stated as

E(x, t) ≈ Eh(x, t) =
ne∑
s=1

Υs(x)Es(t), (5.11)

where Υs(x⃗) is the global Nédélec basis function, which is related to the edge s,Es(t)

is the coefficient that controls the tangential field on edge s at time t, and ne is the

number of internal edges (degrees of freedom) when the Dirichlet boundary condition

is imposed.

Moreover, the finite element formulation of the eigenvalue problem considering its

variational formulation (5.7) and the finite-dimensional subspace Vh can be consid-

ered in the following as the problem of finding non-trivial Φh ∈ Vh and κ2 ∈ R+,
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which is stated as

(µ−1
r ∇× Φh,∇× vh) = κ2h(ϵrΦh,vh), ∀vh ∈ Vh. (5.12)

Finally, algebraic forms of the finite element formulations of the wave propagation

problem and the eigenvalue problem are considered. Let E(t) be the array that con-

tains Es(t), i = 1, 2, . . . , ne from Equation (5.11). Also, let E0 and Ė0 be the initial

conditions obtained from equations (5.9)-(5.10). Note that the time derivative of E(t)

is denoted by Ė(t). Then, the algebraic form of Equations (5.8)-(5.10) can be stated

as

ϵ0MË + µ−1
0 KE = b, t ∈ (0, T ), (5.13)

E = E0 at t = 0, (5.14)

Ė = Ė0 at t = 0, (5.15)

where K,M,b denote the stiffness matrix that is introduced in (3.76), the mass matrix

that is introduced in (3.79), and the load vector that is presented in (3.80), respectively.

Note that the relative parameters ϵr, µr are included in the computations of M and K,

where the parameters can be expressed as ϵ = ϵrϵ0 since σ = 0, and µ = µrµ0.

Let ψ ∈ Rne be the array that contains the coefficient that controls the tangential field

on the related edge. Then, the algebraic form of Equation (5.12) can be stated as

Kψ = κ2hMψ. (5.16)

If the mass matrix M is full rank, System (5.16) produces ne solutions. Hence, the

discrete eigenvectors and eigenvalues can be stated as

{ψ1, . . . , ψne}, 0 < κ2h,1 ≤ · · · ≤ κ2h,ne
.

5.3 The discrete modal analysis

In this section, the solution of the electric wave propagation problem at the discrete

level presented in Equations (5.13)-(5.15) in terms of the eigenpairs (κ2h,j, ψj) ob-

tained from the eigenvalue problem at the discrete level and presented in Equation
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(5.16) is derived. It will be shown that the solution to Problem (5.13)-(5.15) can be

expressed in the form

E(t) =
ne∑
j=1

cj(t)ψj, (5.17)

with suitable scalar functions cj, j = 1, 2, . . . , ne to be determined.

Let

Ψ =
[
ψ1 . . . ψne

]
∈ Rne , C(t) =


c1(t)

...

cne(t)

 ∈ Rne , (5.18)

which follows

E(t) = ΨC(t). (5.19)

Substituting (5.19) into (5.13), and multiplying from the left by ΨT the following is

obtained:

ϵ0Ψ
TMΨC̈(t) + µ−1

0 ΨTKΨC(t) = ΨTb. (5.20)

Then, the expanded form of Equation (5.20) can expressed as

ϵ0ψ
T
m

ne∑
n=1

Mψnc̈n + µ−1
0 ψT

m

ne∑
m=1

Kψncn = ψT
mb, m = 1, . . . , ne. (5.21)

Also, the L2(Ω)-orthogonality at discrete level is stated as

ψT
mMψn = δmn, ψT

mKψn = κ2h,nδmn, m, n = 1, . . . , ne. (5.22)

Thus, using (5.22) Equation (5.21) becomes

ϵ0c̈m + µ−1
0 κ2h,mcm = ψT

mb, m = 1, . . . , ne. (5.23)

Since κ2h,m = ω2
h,mϵ0µ0, Equation (5.23) is equivalently expressed as

c̈m + ω2
h,mcm = Fm, m = 1, . . . , ne, (5.24)

where Fm := ϵ−1
0 ψT

mb.

The solution for the differential equation given in (5.24) can be stated as

cm(t) = cm,h(t) + cm,p(t), m = 1, . . . , ne, (5.25)

where cm,p is a particular solution, and cm,h is the general solution for the homoge-

neous equation corresponding to Equation (5.24).
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Then, the solution to Problem (5.13)-(5.15) is stated in the following.

E(t) =
ne∑

m=1

(Ameiωh,mt +Bme−iωh,mt + cm,p(t))ψm, (5.26)

where Am, Bm, m = 1, . . . , ne are the coefficients to be determined using the fol-

lowing:

E(0) =
ne∑

m=1

(Am +Bm + cm,p(0))ψm =
ne∑

m=1

(ψT
mME0)ψm, (5.27)

Ė(0) =
ne∑

m=1

(iωh,mAm − iωh,mBm + ċm,p(0))ψm =
ne∑

m=1

(ψT
mMĖ0)ψm, (5.28)

where the right-hand-sides of (5.27) and (5.28) correspond to the initial conditions

projected onto the subspace generated by the modes. Then, from these equations, the

following is obtained:

Am+Bm+cm,p(0) = ψT
mME0, iωh,mAm−iωh,mBm+ċm,p(0) = ψT

mMĖ0, (5.29)

for m = 1, 2, . . . , ne. Therefore, the solution for the electric wave propagation prob-

lem at the discrete level given in (5.13)-(5.15) can be written as described in the

equation (5.17), since the solution Am, Bm is unique where it is trivially examined.

Note that the modal analysis is considered as the approximate method where only a

few modes denoted by nm are used in the expansion (5.17). The solution is approxi-

mated using the following

E(t) =
ne∑
j=1

cj(t)ψj ≈ Enm(t) =
nm∑
j=1

cj(t)ψj, (5.30)

with nm ≤ ne.

Moreover, consider the following norm introduced in [33], which will be useful in

consideration of errors in numerical tests and is stated as:

||Z||A := (ZTAZ)1/2, (5.31)

where A is a k × k symmetric and positive definite or positive semi-definite matrix,

and Z is an array of size k.
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5.4 Numerical Results

In this section, numerical results are presented for the approximations of the inho-

mogeneous electric wave propagation problem (5.1) in the domain Ω := [0, π]2. The

lowest-order Nédélec basis functions are used in the numerical experiments of the

finite element approximations in space using the uniform mesh (N = 64,DOF =

12160). The second-order accurate backward difference scheme is stated as follows:

Ë(ti) ≈ (−E(ti−3) + 4E(ti−2)− 5E(ti−1) + 2E(ti))/(∆t)
2, (5.32)

for i = 3, 4, . . . , nT , where, ∆t is a time step and the discrete time set ti = i∆t, is

used for the approximation of the second-order time derivative.

Moreover, the modal analysis is applied to the given problems using the eigenmodes

obtained from the finite element approximation of Maxwell EVP in square domain

(see, Section 4.2.3.1.1).

The results of the finite element in space, the finite difference in time scheme, and

the modal analysis are compared with the exact solution in the following section.

Additionally, two approaches are compared in terms of CPU times and errors.

5.4.1 An Inhomogeneous Wave Propagation Problem

Consider the equations given in (5.1) with the settings:

• The material properties are ϵ = ϵ0 = 8.854 × 10−12Fm−1, µ = µ0 = 4π ×
10−7Hm−1, σ = 0 (vacuum). This leads to ϵr = µr = 1.

• Ω = [0, π]2.

• T = 10π nanoseconds.

• f = cos(3× 108t) 1
µ0

−2 cos(x2) + x2 sin(x2)(1− ϵ0µ09× 1016)

−2 cos(x1) + x1 sin(x1)(1− ϵ0µ09× 1016)

.

• E0 =

x2 sin(x2)
x1 sin(x1)

, Ė0 =

0
0

.
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The exact solution for this problem is given as

Eexact = cos(3× 108t)

x2 sin(x2)
x1 sin(x1)

 . (5.33)

Now, consider the finite element formulation for this inhomogeneous wave propaga-

tion problem given in (5.8)-(5.10) with the settings that are introduced above.(∂2ϵ0Eh
∂t2

,vh

)
+ (µ−1

0 ∇× Eh,∇× vh) = (f ,vh), t ∈ (0, 10π), (5.34)

(Eh(x, 0),vh)H(curl;Ω) = (E0,vh)H(curl;Ω), (5.35)(∂Eh(x, 0)
∂t

,vh

)
H(curl;Ω)

= (Ė0,vh)H(curl;Ω) (5.36)

Next, considering the algebraic version introduced in (5.13) - (5.15), Problem (5.34)-

(5.36) in an algebraic form is stated in the following as a problem of finding the array

E(t) containing the coefficients that control the tangential field on the related edge at

time t.

ϵ0MË + µ−1
0 KE = b, t ∈ (0, 10π), (5.37)

E = E0 at t = 0, (5.38)

Ė = Ė0 at t = 0. (5.39)

Note that, hereE0 and Ė0 corresponds to the projections of the given initial conditions

that are obtained from the Equations (5.35) and (5.36).

The finite element in space finite-difference in time scheme is stated in the following

using the finite-difference approximation of the second time derivative given in (5.32):(
2C

(∆t)2
M+K

)
Ei =

(
C

(∆t)2

)
M(Ei−3 − 4Ei−2 + 5Ei−1) + µ0bi, (5.40)

where C = ϵ0µ0, i = 3, . . . , (10π/(∆t)) and Ei, i = 0, 1, 2 are obtained from the

given initial conditions. Following the setting presented in (5.40), the finite element

in space and finite-difference in time approximation results are obtained. Also, the

projection of the spatial part of the exact solution given in (5.33) and denoted by PEexact

onto H(curl; Ω) space is obtained by

(PEexact ,vh)H(curl;Ω) = ((x2 sin(x2), x1 sin(x1))
T ,vh)H(curl;Ω) ∀vh ∈ Vh. (5.41)
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Then, the projection at a discrete time ti is obtained by

PEexact
i = cos(3× 108ti)PEexact , i = 0, 1, 2, . . . , (10π/(∆t)). (5.42)

Next, the coefficients that correspond to the same edge from the FEM in space FD

in time approximation denoted by Ei and the projection of exact solution PEexact
i are

compared over the discrete time ti, i = 0, 1, 2, . . . , (10π/(∆t)). The edge is chosen

to be the one closest to the point (π/2, π/2) since the largest fluctuations occur at this

point. The comparison is presented in Figure 5.1, and it is observed that the method

is accurate for both ∆t (ns) values since the provided FD scheme is unconditionally

stable. However, the decreasing value of the time step does not lead to better ap-

proximations for this case. This can be achieved with much smaller values of ∆t,

increasing the computational time enormously.

0 5 10 15 20 25 30

t (ns)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15 Exact

FD time ( t=0.0167)

FD time ( t=0.0017)

Figure 5.1: Coefficients that control the tangential field on the selected edge.

Then, consider the approximation of the algebraic form of the inhomogeneous wave

propagation problem stated in (5.37)-(5.39) using the eigenmodes obtained by the

solution of the eigenvalue problem (5.16) that are given in Section 4.2.3.1 with the

expansion presented in (5.17). Following Section 5.3 and considering the case for this

numerical experiment, the coefficients cm, m = 1, 2, . . . , ne, are determined from the
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equation

c̈m(t) + ω2
h,mcm(t) = ψT

m(ϵ
−1
0 cos(3× 108t)P f ), m = 1, 2, . . . , ne, (5.43)

where P f is the projection of the spatial part of the given source function f that is

results of

(P f ,vh)H(curl;Ω) = (f ,vh)H(curl;Ω), ∀vh ∈ Vh. (5.44)

If the equation (5.43) is considered with the solution of the form cm(t) = ψT
mym(t), m =

1, 2, . . . , ne, then the problem of finding ym(t) is derived as

y′′m + ω2
h,mym = ϵ−1

0 cos(3× 108t)P f . (5.45)

Solution to Problem (5.45) can be stated as

ym = yh,m + yp,m,

ym = Am cos(ωh,mt) +Bm sin(ωh,mt) + yp,m,
(5.46)

where yh,m = Am cos(ωh,mt)+Bm sin(ωh,mt) is the general solution of homogeneous

problem, and yp,m is the particular solution.

Then, the equation to obtain the particular solution to Problem (5.45) is given as

follows:

y′′p,m + ω2
h,myp,m = ϵ−1

0 cos(3× 108t)P f . (5.47)

The particular solution is obtained by considering the two cases, where ωh,m = 3 ×
108, and ωh,m ̸= 3× 108.

If ωh,m = 3× 108, then the particular solution and its second derivative can be stated

as
yp,m = t(Cm cos(3× 108t) +Dm sin(3× 108t)),

y′′p,m = (−6× 108Cm − 9× 1016tDm) sin(3× 108t)

+ (6× 108Dm − 9× 1016tCm) cos(3× 108t).

(5.48)

Substituting (5.48) into (5.47) yields:

−6×108Cm sin(3×108t)+6×108Dm cos(3×108t) = ϵ−1
0 cos(3×108t)P f , (5.49)

where Equation (5.49) leads to Cm = 0, and Dm = P f

ϵ06×108
.

So, the particular solution is given by

yp,m =
P f

ϵ06× 108
t sin(3× 108t), when ωh,m = 3× 108.
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Next, the unknown coefficients Am and Bm of the solution to the homogeneous prob-

lem determined from the equations

ym = Am cos(3× 108t) +Bm sin(3× 108t) + t sin(3× 108t)
P f

ϵ06× 108
,

y′m = −3× 108Am sin(3× 108t) + 3× 108Bm cos(3× 108t)

+ (sin 3× 108t) + t cos(3× 108t))
P f

ϵ06× 108
.

(5.50)

Using the relations given in (5.29), it is obtained that

Am = ME0, Bm = 0.

Hence, the solution cm(t) to Problem (5.43) is presented as

cm = ψT
m((ME0) cos(3× 108t) +

P f

ϵ06× 108
t sin(3× 108t)), for ωh,m = 3× 108.

(5.51)

If ωh,m ̸= 3× 108, then the particular solution for the second case can be stated as

yp,m = Cm cos(3× 108t) +Dm sin(3× 108t). (5.52)

Following the same steps performed for the first case, the solution cm(t) to Problem

(5.43) is presented as

cm = ψT
m((ME0 +

P f

ϵ0(9× 1016 − ω2
h,m)

) cos(ωh,mt)

− P f

ϵ0(9× 1016 − ω2
h,m)

cos(3× 108t),

(5.53)

when ωh,m ̸= 3× 108.

The approximation to the considered inhomogeneous wave propagation problem us-

ing the eigenmodes from (5.16) and cm(t) from (5.51) and (5.53) is obtained as

E(t) =
ne∑
j=1

cj(t)ψj. (5.54)

Now, truncating the solution with the number of modes denoted by nm, it can be

written that

E(t) =
ne∑
j=1

cj(t)ψj ≈ Enm(t) =
nm∑
j=1

cj(t)ψj, (5.55)
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where Enm(t) denote the truncation solution so that nm ≤ ne.

The results obtained by the truncated modal solutions are compared with the projec-

tion of the exact solution. In this way, to investigate the effect of adding the next

mode to the modal expansion, the error ||PEexact − Emn||M normalized by ||PEexact||K
is examined with the corresponding eigenvalues ω2

h,nm+1 for nm ≤ 300 at a fixed time

t∗ ≈ 20.94 in Figure 5.2. The fixed time t∗ is chosen to be 20.94 ≈ 6.67π where

the coefficients arrive at a local maximum, which can be seen Figure 5.3. However,

results are alike at all time levels, which are not included for brevity.

As can be seen in Figure 5.2, the error decreases between the approximation using

the truncated modal solution and the exact solution when more modes are included

in the expansion. However, adding more modes to the expansion has relatively small

effect on decreasing the error after using the first 12 modes. Also, there is a sufficient

decrease in the error between the truncated modal solution using 4 modes.

10
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m
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2
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10
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10
-1

Figure 5.2: Variation of the error at fixed time t∗.

Therefore, the coefficients corresponding to the fixed edge obtained by truncated

modal solutions using 12 modes and 300 modes are compared with the projected

exact solution over the time t ∈ [0, 10π] (ns) in Figure 5.3. Both truncated modal so-

lutions are close to the exact solution, as expected from Figure 5.2. Also, Figure 5.3

validates the relatively poor effects of the modes after 12-th mode.
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Figure 5.3: Coefficients that control the tangential field on the selected edge.

The approximations of two approaches that are based on the FEM model of the

wave propagation problem are shown to be accurate. Next, the comparison be-

tween these two methodologies is performed in terms of computational time and error.

The approximate solution resulted from the FEM in space/FD in time scheme when

∆t = 0.0167 (ns) is considered for the comparison. On the other hand, the truncated

modal expansion is considered with the first 12 modes. The CPU times are calculated

by the average of ten runs for both methods. Also, for each case, the normalized

error between the approximate solution and the exact solution is calculated using the

following:

Error :=
(
∫ T

0
(u− uh)

2dt)1/2

(
∫ T

0
u2dt)1/2

,

where u is the exact solution, and uh is the one of the approximate solutions.

The CPU times and the errors are presented in Table 5.1, where it can be seen that

the modal solution outperforms the FD scheme with a considerable time difference.

Additionally, the error is smaller between the modal approximation and the exact

solution when compared with the error of the approximation obtained by FD in time.
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Table 5.1: Comparison between the two approaches in terms of CPU times and Errors.
Methods CPU Time Error

FD in time (∆t = 0.0167) 41.1831 0.0262
Modal (12 modes) 6.9423 0.0219

In this chapter, the wave propagation problem for an electric field is approximated us-

ing two methods. Both methods are conducted based on the FEM model of the wave

propagation problem. Firstly, the second-order temporal derivative in the FEM model

is approximated using an unconditionally stable backward-difference scheme. Next,

the modal analysis is applied considering the FEM model, showing that the FEM

model’s solution can be expressed as an expansion employing approximate eigen-

modes obtained from associated Maxwell EVP. For the validation of approaches, an

inhomogeneous wave propagation problem is presented with its corresponding exact

solution. Comparisons between the two approximation techniques and the exact solu-

tion are performed. It is shown that both approaches produce accurate results. Also,

the comparison is performed between the two methods, where it is shown that the

modal expansion outperforms the direct time domain approach.

125



126



CHAPTER 6

CONCLUSION

In this thesis, edge-based FEM approximations of Maxwell’s equations are studied in

three formulations: the source problem, the EVP, and the electromagnetic wave prop-

agation problem. The source and eigenvalue problems are obtained from Maxwell’s

equations in consideration of time-harmonic behavior. The electromagnetic wave

propagation problem is derived directly from Maxwell’s equations in the time do-

main. The numerical approximations of the three forms are conducted by applying

edge-based FEM using the lowest-order Nédélec basis functions due to their con-

formity with the physical properties of the Maxwell system. The electromagnetic

wave propagation problem is approximated by employing two approaches that are

the edge-based FEM in space/finite difference in time and a modal analysis.

The study on the Maxwell source problem contains the derivation of variational

and finite element formulations using the related spaces H(curl; Ω) and its finite-

dimensional subspace constructed by the lowest-order Nédélec basis functions. The

convergence analysis of FEM approximation is presented where the approximation

converges uniformly in L2-norm. A numerical test is performed on a two-dimensional

domain with the exact solution using uniform, criss-cross, and unstructured meshes.

The numerical results approve the presented theory where the approximate solution

uniformly converges to the exact solution in all introduced meshes and in L2-norm,

H(curl)-norm, and H(curl)-seminorm.

The variational and finite element formulations of Maxwell EVP are derived using

the H(curl; Ω) and its finite-dimensional subspace constructed by the lowest-order

Nédélec basis functions. The convergence analysis of the FEM approximation of
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Maxwell EVP is presented by following the spectral theory with the corresponding

source problem. Numerical tests that validate the theory are performed in two- and

three-dimensional domains. The convergence rates of approximate eigenvalues to the

exact or reference eigenvalues have been examined. The quadratic convergence rates

are observed on the uniform meshes of convex polygons/polyhedra. Moreover, the

convergence of approximate eigenvalues is presented on the unstructured meshes of

convex polygons/polyhedra and on the domains that contain singularity with varying

convergence rates. On the other hand, a solution of FEM utilizing the first-order

Lagrange basis functions on Powell-Sabin triangulations for Maxwell EVP in 2D

is considered. A comparison is conducted on the Powell-Sabin triangulation of the

cracked square domain between the FEM approximations of Maxwell EVP using the

Nédélec elements and the admissible nodal elements. The numerical results of both

approaches put forward that the FEM using Nédélec elements provides more accurate

approximations on the same mesh; however, more degrees of freedom are involved.

The latter issue leads to larger matrices in the generalized eigenvalue problem to be

solved, and importantly, a larger number of zeros is introduced in the edge-based

solution in comparison with the nodal solution.

Finally, two approximations of the electromagnetic wave propagation problem are

demonstrated, following the approximation strategies in a recent study that simulate

the vibrations of incompressible elastic solids. The edge-based FEM in space-FD in

time and modal analysis are employed to approximate the wave propagation prob-

lem for an electric field derived from Maxwell’s equations in the time domain. It is

shown that a solution to the FEM model can be represented as an expansion utilizing

the eigenmodes obtained from the Maxwell EVP. The approximations of the elec-

tric wave propagation problem are obtained by the truncation of the provided modal

expansion and by the direct time approach, where the second-order time derivative

is approximated using the second-order accurate backward difference scheme in the

FEM model. For the validation of the two numerical approaches, the wave propaga-

tion problem for an electric field is provided with the exact solution. The outcomes

of the numerical tests demonstrate that both methods yield accurate results and that

when additional modes are introduced to the modal expansion, the error between

the exact and truncated solutions reduces. However, it is important to emphasize
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that adding more modes to the expansion increases the computational cost and does

not sufficiently decrease the error with a given tolerance after a certain mode in the

considered configuration. Lastly, the CPU times and errors of the two methods are

compared, where the results indicate that the modal expansion outperforms the direct

time domain approach.

129



130



REFERENCES

[1] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS project
version 1.5, Archive of Numerical Software, 3(100), pp. 9–23, 2015.

[2] A. Alvarez Laguna, A. Lani, H. Deconinck, N. Mansour, and S. Poedts,
A fully-implicit finite-volume method for multi-fluid reactive and colli-
sional magnetized plasmas on unstructured meshes, Journal of Computational
Physics, 318, pp. 252–276, 2016.

[3] A. Alvarez Laguna, N. Ozak, A. Lani, H. Deconinck, and S. Poedts, Fully-
implicit finite volume method for the ideal two-fluid plasma model, Computer
Physics Communications, 231, pp. 31–44, 2018.

[4] L. Andrade-Fonseca and H. E. Hernandez-Figueroa, Full-wave interior penalty
discontinuous Galerkin method for waveguide analysis, Journal of Lightwave
Technology, 36(22), pp. 5168–5176, 2018.

[5] A. Anees and L. Angermann, Time domain finite element method for
Maxwell’s equations, IEEE Access, 7, pp. 63852–63867, 2019.

[6] I. Anjam and J. Valdman., Fast MATLAB assembly of FEM matrices in 2D and
3D: Edge elements, Applied Mathematics and Computation, 267, pp. 252–263,
2015.

[7] I. Babuska and J. Osborn, Eigenvalue problems, in H. of Numerical Analy-
sis volume II., editor, P.G. Ciarlet, and J.L. Lions, pp. 641–787.

[8] S. Badia and R. Codina, A nodal-based finite element approximation of the
Maxwell problem suitable for singular solutions, SIAM Journal on Numerical
Analysis, 50(2), pp. 398–417, 2012.

[9] G. R. Barrenechea, L. Boulton, and N. Boussaid, Eigenvalue enclosures and
applications to the Maxwell operator, https://arxiv.org/abs/1306.
5354, 2013.

[10] M. Benbouzid, G. Reyne, S. Derou, and A. Foggia, Finite element modeling
of a synchronous machine: electromagnetic forces and mode shapes, IEEE
Transactions on Magnetics, 29(2), pp. 2014–2018, 1993.

131

https://arxiv.org/abs/1306.5354
https://arxiv.org/abs/1306.5354


[11] S. Benhassine, L. Pichon, and W. Tabbara, An efficient finite-element time-
domain method for the analysis of the coupling between wave and shielded
enclosure, IEEE Transactions on Magnetics, 38(2), pp. 709–712, 2002.

[12] D. Boffi, Fortin operator and discrete compactness for edge elements, Nu-
merische Mathematik, 87, pp. 229–246, 2000.

[13] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer-
ica, 19, pp. 1–120, 2010.

[14] D. Boffi, M. Farina, and L. Gastaldi., On the approximation of Maxwell’s
eigenproblem in general 2D domains, Computers and Structures, 79, pp.
1089–1096, 2001.

[15] D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia., Computational models of
electromagnetic resonators: Analysis of edge element approximation, Journal
on Numerical Analysis, 36(4), pp. 1264–1290, 1999.

[16] D. Boffi and L. Gastaldi., Edge finite element for the approximation of
Maxwell resolvent operator, Mathematical Modelling and Numerical Analy-
sis, 36(2), pp. 293–305, 2002.

[17] D. Boffi and L. Gastaldi, Adaptive finite element method for the Maxwell
eigenvalue problem, SIAM Journal on Numerical Analysis, 57(1), pp.
478–494, 2019.

[18] D. Boffi, L. Gastaldi, R. Rodríguez, and I. Šebestová., A posteriori error esti-
mates for Maxwell’s eigenvalue problem, Journal of Scientific Computing, 78,
pp. 1250–1271, 2019.

[19] D. Boffi, J. Guzmán, and M. Neilan, Convergence of Lagrange finite elements
for the Maxwell eigenvalue problem in two dimensions, IMA Journal of Nu-
merical Analysis, pp. 1–29, 2022.

[20] D. Boffi, F. Kukichi, and J. Schoberl., Edge element computation of Maxwell’s
eigenvalues on general quadrilateral meshes, Mathematical Models and Meth-
ods in Applied Sciences, 16(2), pp. 265–273, 2006.

[21] A. Bonito and J.-L. Guermond., Approximation of the eigenvalue problem for
the time harmonic Maxwell system by continuous Lagrange elements, Mathe-
matics of Computation, 80(276), pp. 1887–1910, 2011.

[22] A. Bonito and J.-L. Guermond, Approximation of the eigenvalue problem for
the time harmonic Maxwell system by continuous Lagrange finite elements,
Math. Comput., 80, pp. 1887–1910, 10 2011.

[23] A. Bossavit, Solving Maxwell equations in a closed cavity, and the question of
’spurious modes’, IEEE Transactions on Magnetics, 26(2), pp. 702–705, 1990.

132



[24] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer
Series in Computational Mathematics, New York, 15 edition, 1991.

[25] A. Buffa, M. Costabel, and D. Sheen, On traces forH(curl,Ω) in Lipschitz do-
mains, Journal of Mathematical Analysis and Applications, 276, pp. 845–867,
2002.

[26] A. Buffa, P. Houston, and I. Perugia, Discontinuous Galerkin computation of
the Maxwell eigenvalues on simplicial meshes, Journal of Computational and
Applied Mathematics, 204, pp. 317–333, 2007.

[27] A. Buffa, P. C. Jr., and E. Jamelot., Solving electromagnetic eigenvalue prob-
lems in polyhedral domains with nodal finite elements, Numerische Mathe-
matik, 113, pp. 497–518, 2009.

[28] A. Buffa and I. Perugia., Discontinous Galerkin approximation of the Maxwell
eigenproblem, SIAM Journal on Numerical Analysis, 44(5), pp. 2198–2226,
2006.

[29] A. Buffa, I. Perugia, and T. Warburton., The mortar-discontinuous Galerkin
method for the 2D Maxwell eigenproblem, Journal of Scientific Computing,
40(0), pp. 86–114, 2009.

[30] S. Caorsi, P. Fernandes, and M. Raffetto, On the convergence of Galerkin finite
element approximations of electromagnetic eigenproblems, SIAM Journal on
Numerical Analysis, 38(2), pp. 580–607, 2001.

[31] J. R. Cardoso, Electromagnetics Through the Finite Element Method: A Sim-
plified Approach Using Maxwell’s Equations, 2016, ISBN 9781315366777.

[32] L. E. Castillo, I. G. Revuelto, F. S. Adana, and M. S. Palma, A finite element
method for the analysis of radiation and scattering of electromagnetic waves
on complex environments, Computer Methods in Applied Mechanics and En-
gineering, 194, pp. 637–655, 2005.

[33] R. Codina and Ö. Türk, Modal analysis of elastic vibrations of incompressible
materials using a pressure-stabilized finite element method, Finite Elements in
Analysis and Design, 206, 2022.

[34] G. Cohen and M. Durufle, Benchmark computations for Maxwell equa-
tions for the approximation of highly singular solutions, results from
inria rocquencourt, computed with montjoie, https://www.math.
u-bordeaux.fr/~durufle/eigenvalue.php#1, [Online; last ac-
cessed 22-December-2022].

[35] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wi-
ley, New York, 1983.

133

https://www.math.u-bordeaux.fr/~durufle/eigenvalue.php#1
https://www.math.u-bordeaux.fr/~durufle/eigenvalue.php#1


[36] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhe-
dral domains, Archive for Rational Mechanics and Analysis, 151, pp. 221–276,
2000.

[37] M. Costabel and M. Dauge., Weighted regularization of Maxwell equations in
polyhedral domains, Numerische Mathematik, 93, pp. 239–277, 2002.

[38] M. Costabel and M. Dauge, Computation of resonance frequencies for
Maxwell equations in non-smooth domains, pp. 125–161, Springer Berlin Hei-
delberg, 2003, ISBN 978-3-642-55483-4.

[39] Q. I. Dai, W. C. Chew, Y. H. Lo, Y. G. Liu, and L. J. Jiang, Generalized modal
expansion of electromagnetic field in 2D bounded and unbounded media, IEEE
Antennas and Wireless Propagation Letters, 11, pp. 1052–1055, 2012.

[40] M. Dauge, Benchmark computations for Maxwell equations for the approxi-
mation of highly singular solutions, https://perso.univ-rennes1.
fr/monique.dauge/benchmax.html, [Online; last accessed 22-
December-2022].

[41] R. W. Davies, K. Morgan, and O. Hassan, A high order hybrid finite element
method applied to the solution of electromagnetic wave scattering problems in
the time domain, Computational Mechanics, 44, pp. 321–331, 2009.

[42] H. Duan, Z. Du, W. Liu, and S. Zhang, New mixed elements for Maxwell
equations, SIAM Journal on Numerical Analysis, 57(1), pp. 320–354, 2019.

[43] H. Duan, Z. Du, W. Liu, S. Zhang, and J. Ma, A family of optimal Lagrange el-
ements for Maxwell’s equations, Journal of Computational and Applied Math-
ematics, 358, pp. 241–265, 2019.

[44] H. Duan, R. Tan, S. Yang, and C. You, Computation of Maxwell singular so-
lution by nodal-continuous elements, Journal of Computational Physics, 268,
pp. 63–83, 2014.

[45] Y. El-Batawy, F. Mohammedy, and M. Deen, Resonant cavity enhanced pho-
todetectors: Theory, design and modeling, pp. 415–470, 10 2015, ISBN
9781782424451.

[46] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in in-
homogeneous anisotropic media with irregular boundary and mixed boundary
conditions, Mathematical Models and Methods in Applied Sciences, 07(07),
pp. 957–991, 1997.

[47] M. Fortin, An analysis of the convergence of mixed finite element methods,
ESAIM: Mathematical Modeling and Numerical Analysis - Modeling Mathe-
matical and Numerical Analysis, 11(4), pp. 341–354, 1977.

134

https://perso.univ-rennes1.fr/monique.dauge/benchmax.html
https://perso.univ-rennes1.fr/monique.dauge/benchmax.html


[48] M. Franco, A. Passaro, F. Neto, J. Cardoso, and J. Machado, Modal analysis
of anisotropic diffused-channel waveguide by a scalar finite element method,
IEEE Transactions on Magnetics, 34(5), pp. 2783–2786, 1998.

[49] N. Georg, W. Ackermann, J. Corno, and S. Schöps, Uncertainty quantifica-
tion for Maxwell’s eigenproblem based on isogeometric analysis and mode
tracking, Computer Methods in Applied Mechanics and Engineering, 350, pp.
228–244, 2019.

[50] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations,
Theory and Algorithms, Springer-Verlag, Berlin, 1986.

[51] M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak
t-coercivity and t-compatibility, Numerische Mathematik, 148, pp. 387–407,
2021.

[52] P. Hansbo and T. Rylander, A linear nonconforming finite element method for
Maxwell’s equations in two dimensions. Part i: Frequency domain, Journal of
Computational Physics, 229, pp. 6534–6547, 2019.

[53] F. Hecht, New development in FreeFem++, Journal of numerical mathematics,
20(3-4), pp. 251–266, 2012.

[54] M. W. Hess and P. Benner, Fast evaluation of time–harmonic Maxwell’s equa-
tions using the reduced basis method, IEEE Transactions on Microwave The-
ory and Techniques, 61(6), 2013.

[55] J. S. Hesthaven and T. Warburton, High-order nodal discontinuous Galerkin
methods for the Maxwell eigenvalue problem, Philosophical Transactions of
The Royal Society A: Mathematical, Physical and Engineering Sciences, 362,
pp. 493–524, 2004.

[56] V. Hill, O. Farle, and R. Dyczij-Edlinger, A stabilized multilevel vector finite-
element solver for time-harmonic electromagnetic waves, IEEE Transactions
on Magnetics, 39(3), 2003.

[57] W. Jiang, N. Liu, Y. Tang, and Q. H. Liu., Mixed finite element method for
2D vector Maxwell’s eigenvalue problem in anisotropic media, Progress In
Electromagnetics Research, 148, pp. 159–170, 2014.

[58] F. Kikuchi, Mixed and penalty formulations for finite element analysis of an
eigenvalue problem in electromagnetism, Computer Methods in Applied Me-
chanics and Engineering, 64, pp. 509–521, 1987.

[59] F. Kikuchi, On a discrete compactness property for the Nédélec finite elements,
Journal of the Faculty of Science, University of Tokyo, 36, pp. 479–490, 1989.

[60] A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic
Maxwell’s Equations, Springer, 2014, ISBN 978-3-319-11085-1.

135



[61] A. J. Kobelansky and J. P. Webb, Eliminating spurious modes in finite-element
waveguide problems by using divergence-free fields, Electronics Letters, 22,
pp. 569–570, 1986.

[62] A. Konrad, High-order triangular finite elements for electromagnetic waves in
anisotropic media, IEEE Transactions on Microwave Theory and Techniques,
MTT-25, pp. 353–360, 1977.

[63] A. Konrad, On the reduction of the number of spurious modes in the vectorial
finite-element solution of three-dimensional cavities and waveguides, IEEE
Transactions on Microwave Theory and Techniques, 34(2), pp. 224–227, 1986.

[64] S. Kurz, S. Schöps, G. Unger, and F. Wolf, Solving Maxwell’s eigenvalue
problem via isogeometric boundary elements and a contour integral method,
Mathematical Methods in the Applied Sciences, 44, 2020.

[65] M. G. Larson and F. Bengzon, The Finite Element Method: Theory, Implemen-
tation, and Applications, Springer, 2013.

[66] J. Lee, R. Lee, and A. Cangellaris, Time-domain finite-element methods, IEEE
Transactions on Antennas and Propagation, 45(3), 1997.

[67] F. Li, Y. Wang, C. Zhang, and G. Yu, Boundary element method for band gap
calculations of two-dimensional solid phononiccrystals, Engineering Analysis
with Boundary Elements, 37, pp. 225–235, 2013.

[68] J. Li, X. Lu, C. G. Farquharson, and X. Hu, A finite-element time-domain for-
ward solver for electromagnetic methods with complex-shaped loop sources,
Geophysics, 83(3), pp. E117–E132, 2018.

[69] X. Lin, G. Cai, H. Chen, N. Liu, and Q. H. Liu, Modal analysis of 2D material-
based plasmonic waveguides by mixed spectral element method with equiva-
lent boundary condition, Journal of Lightwave Technology, 38(14), pp. 3677–
3686, 2020.

[70] N. Liu, L. E. Tobon, Y. Zhao, Y. Tang, and Q. H. Liu, Mixed spectral-element
method for 3D Maxwell’s eigenvalue problem, IEEE Transactions on Mi-
crowave Theory and Techniques, 63(2), 2015.

[71] J. C. Maxwell, Treatise on Electricity and Magnetism, Clareonden Press Series,
1873.

[72] M. Mehdizadeh, Fundamentals of Field Applicators and Probes at RF and
Microwave Frequencies, pp. 35–66, 12 2010, ISBN 9780815515920.

[73] R. Misawa, K. Niino, and N. Nishimura, Boundary integral equations for cal-
culating complex eigenvalues of transmission problems, SIAM Journal on Ap-
plied Mathematics, 77(2), pp. 770–788, 2017.

136



[74] P. Monk, An analysis of Nédélec’s method for the spatial discretization of
Maxwell’s equations, Journal of Computational and Applied Mathematics, 47,
pp. 101–121.

[75] P. Monk, A mixed method for approximating Maxwell’s equations, SIAM
Journal on Numerical Analysis, 28(6), pp. 1610–1634.

[76] P. Monk, A finite element method for approximating the time-harmonic
Maxwell equations, Numerische Matematik, 63, pp. 243–261, 1992.

[77] P. Monk, Finite Element Methods for Maxwell’s Equations, Clarendon Press,
Newark, 2003.

[78] P. Monk and L. Demkowicz, Discrete compactness and the approximation
of Maxwell’s equations in R3, Mathematics of Computation, 70(234), pp.
507–523, 2000.

[79] N. Nguyen, J. Peraire, and B. Cockburn, Hybridizable discontinuous Galerkin
methods for the time-harmonic Maxwell’s equations, Journal of Computational
Physics, 230, pp. 7151–7175, 2011.

[80] J. C. Nédélec, Mixed finite elements in R3, Numerische Mathematik, 35, pp.
315–341.

[81] F. T. Orlandini, P. R. B. Devloo, H. E. Hernandez-Figueroa, and L. P.
de Oliveira, A high-precision FEM scheme for modal analysis of photonic
waveguides using high-order edge elements, in 2019 International Conference
on Optical MEMS and Nanophotonics (OMN), pp. 160–161, 2019.

[82] J. Patrick Ciarlet and G. Hechme., Mixed, augmented variational formulations
for Maxwell’s equations:numerical analysis via the macroelement technique,
Numerische Mathematik (submitted), 2007.

[83] L. Pichon, A. Bourhattas, and A. Razek, An efficient solution for dielectric-
loaded or ridged waveguides problems, Electronics Letters, 11, pp. 17–20,
1992.

[84] W. Pinello, R. Lee, and A. C. Cangellaris, Finite element modeling of electro-
magnetic wave interactions with periodic dielectric structures, IEEE Transac-
tions on Microwave Theory and Techniques, 42(12), 1994.

[85] Z. Qiao., C. Yao, and S. Jia, Superconvergence and extrapolation analysis
of a nonconforming mixed finite element approximation for time-harmonic
Maxwell’s equations, Journal of Scientific Computing, 46, pp. 1–19.

[86] P. A. Raviart and J. M. Thomas, A mixed finite element for second order elliptic
problems, in I. Galligani and E. Magenes, editors, Mathematical Aspects of
Finite Element Methods, pp. 292–315, 1977.

137



[87] J. F. Ready, Laser components and accessories, in J. F. Ready, editor, Indus-
trial Applications of Lasers, pp. 144–192, Academic Press, San Diego, second
edition, 1997.

[88] C. J. Reddy, M. D. Deshpande, C. R. Cockrell, and F. B. Beck., Finite element
method for eigenvalue problems in electromagnetics, NASA Technical Paper,
3485, 1994.

[89] Z. Ren, T. Kalscheuer, S. Greenhalgh, and H. Maurer, A goal-oriented adaptive
finite-element approach for plane wave 3D electromagnetic modelling, Geo-
physical Journal International, 194, pp. 700–718, 2013.

[90] M. E. Rognes, R. C. Kirby, and A. Logg, Efficient assembly of H(div) and
H(curl) conforming finite elements, SIAM Journal on Scientific Computing,
31(6), pp. 4130–4151, 2009.

[91] A. Schneebeli, AnH(curl; Ω) FEM: Nédélec’s elements of first type, Technical
Report, 2003.

[92] S. Schnepp, E. Gjonaj, and T. Weiland, A hybrid finite integration–finite vol-
ume scheme, Journal of Computational Physics, 229(11), pp. 4075–4096,
2010.

[93] J. Schöberl, C++ 11 implementation of finite elements in NGSolve, Institute
for analysis and scientific computing, Vienna University of Technology, 30,
2014.

[94] H. Shahnoor and K. Behzad, Calculation of multiconductor underground ca-
bles high-frequency per-unit-length parameters using electromagnetic modal
analysis, IEEE Transactions on Power Delivery, 28(1), pp. 276–284, 2013.

[95] M. Smolik and V. Skala, Vector field interpolation with radial basis functions,
in Linköping Electronic Conference Proceedings, volume 127, pp. 161–174,
2016.

[96] D. Song and Y. Lu, Analyzing leaky waveguide modes by pseudospectral
modal method, Photonics Technology Letters, Ieee, 27, pp. 955–958, 05 2015.

[97] J. Sun and A. Zhou, Finite Element Methods for Maxwell’s Equations, CRC
Press, 2017.

[98] N. Thomas, P. Sewell, and T. M. Benson, A new full-vectorial higher order
finite-difference scheme for the modal analysis of rectangular dielectric waveg-
uides, Journal of Lightwave Technology, 25(9), pp. 2563–2570, 2007.

[99] C. Y. Tian, Y. Shi, and C. H. Chan, Interior penalty discontinuous Galerkin
time domain method based on wave equation for 3D electromagnetic model-
ing, IEEE Transactions on Antennas and Propagation, 65(12), pp. 7174–7184,
2009.

138



[100] G. Unger, Convergence analysis of a Galerkin boundary element method for
electromagnetic resonance problems, Partial Differential Equations and Appli-
cations, 2(39), 2021.

[101] J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method Electro-
magnetics: Antennas, Microwave Circuits, and Scattering Applications, 1998.

[102] C. Wieners and J. Xin, Boundary element approximation for Maxwell’s
eigenvalue problem, Mathematical Methods in the Applied Sciences, 36, pp.
2524–2539, 2013.

[103] Y. Yang, H. Bi, J. Han, and Y. Yu, The shifted-inverse iteration based on the
multigrid discretizations for eigenvalue problems, SIAM Journal on Scientific
Computing, 37(6), pp. A2583–A2606, 2015.

[104] M. Zghal, F. Bahloul, R. Chatta, R. Attia, D. Pagnoux, P. Roy, G. Melin, and
L. Gasca, Full vector modal analysis of microstructured optical fiber propa-
gation characteristics, in Novel Optical Systems Design and Optimization VII,
volume 5524, pp. 313 – 322, SPIE, 2004.

[105] L. Zhong, S. Shu, G. Wittum, and J. Xu, Optimal error estimates for Nédélec
edge elements for time-harmonic Maxwell’s equations, Journal of Computa-
tional Mathematics, 27(5), pp. 563–572, 2009.

[106] J. Zhou, X. Hu, S. Shu, and L. Chen, Two-grid methods for Maxwell eigen-
value problems, SIAM Journal on Numerical Analysis, 52(4), pp. 2027–2047,
2014.
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