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ABSTRACT 

 

RAPID LIFT AND DRAG PREDICTION TOOL WITH MULTI-LAYER 

PERCEPTRON MODEL FOR SUPERCRITICAL AIRFOILS 

 

Atlı, Caner 

Master of Science, Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Özgür Uğraş Baran 

Co-Supervisor: Assoc. Prof. Dr. Hande Alemdar  

 

 

January 2023, 74 pages 

 

In the early stages of aircraft design, selecting the shape of parts such as wings and 

tails can be time-consuming. Typically, tools that can provide rapid predictions of 

aerodynamic coefficients are used in these stages to reduce the duration of the 

preliminary design phase. However, available tools and research cannot provide 

accurate and reliable solutions in transonic and fully turbulent flows. A new tool is 

developed to provide aerodynamic properties such as drag, lift, maximum lift, and 

drag divergence Mach number by utilizing machine learning methodologies. The 

tool consist of a reliable shape descriptor for airfoil shape based on Class Shape 

Function Transformation. Then a Multilayer Perceptron machine learning method is 

developed using high-accuracy CFD solution database and airfoil shape descriptions. 

Then, new airfoil shapes and aerodynamic data is produced consistently and 

accurately in the transonic and turbulent flow regime. In the end, we have achieved 

a solution accuracy with an R2 score of 0.9935 for validation set lift coefficient using 

the new tool. Predicted aerodynamic coefficients are drag coefficient, lift coefficient 

and drag divergence Mach number. The tool provides solutions for 27000 cases 

within seconds or angle of attack range of -2° to 8°. 

Keywords: Deep Learning, Rapid Predictions, Drag Divergence, Preliminary Design  
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ÖZ 

 

ÇOK KATMANLI ALGILAYICI İLE EĞİTİLMİŞ SÜPERKRİTİK 

KANATLAR İÇİN HIZLI TASARIM ARACI 

 

 

Atlı, Caner 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Asst. Prof. Dr. Özgür Uğraş Baran 

Ortak Tez Yöneticisi: Asst. Prof. Dr. Hande Alemdar 

 

 

Ocak 2023, 74 sayfa 

 

Uçak tasarımının ilk aşamalarında, kanat ve kuyruk gibi parçaların şeklini seçmek 

zaman alıcı olabilir. Tipik olarak, ön tasarım aşamasının süresini azaltmak için bu 

aşamalarda aerodinamik katsayıların hızlı tahminlerini sağlayabilen araçlar 

kullanılır. Ancak mevcut araçlar ve araştırmalar, transonik ve tamamen türbülanslı 

akışlarda doğru ve güvenilir çözümler sağlayamaz. Makine öğrenimi metodolojileri 

kullanılarak sürükleme, kaldırma, maksimum kaldırma ve ıraksama Mach sayısı  

gibi aerodinamik katsayıları sağlamak için yeni bir araç geliştirildi. Bu araç, Sınıf 

Şekil Fonksiyon Dönüşümüne dayalı olarak kanat kesit şekli için güvenilir bir şekil 

tanımlayıcısından oluşur. Daha sonra, yüksek doğruluklu CFD çözüm veritabanı ve 

kanat şekli dönüşümleri kullanılarak bir Çok Katmanlı Perceptron makine öğrenimi 

yöntemi geliştirildi. Ardından, transonik ve türbülanslı akış rejiminde tutarlı ve 

doğru bir şekilde yeni kanat kesit şekilleri ve aerodinamik veriler üretildi. Sonunda, 

bu aracı kullanarak R^2 puanı 0,9935 olan bir çözüm doğruluğu elde ettik. 

Öngörülen aerodinamik katsayılar, sürükleme katsayısı, kaldırma katsayısı ve 

ıraksama Mach sayısıdır. Araç, saniyeler içinde 27000 vaka sunabilir ve -2° ila 8° 

hücum açısı aralığında çözümler sunabilir.  
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CHAPTER 1  

CHAPTER 1 INTRODUCTION 

The airfoil is a critical element in aerodynamics, as it is the defining shape for many 

vital aircraft components. These include wings, which are responsible for providing 

lift and enabling flight, and control surfaces, such as flaps and ailerons, allowing the 

pilot to control the aircraft's roll, pitch, and yaw [1]. An example of a wing cross 

section can be seen in Figure 1.1. The airfoil also plays a role in shaping engine 

intakes, which must be designed to efficiently channel airflow into the engine and 

propeller blades, which generate thrust through their motion through the air. 

Given the importance of the airfoil in determining an aircraft's aerodynamic 

properties, selecting airfoils are crucial in aircraft design. This is especially true for 

wings, which are the primary source of lift and drag forces on an aircraft. Accurate 

prediction of wing aerodynamics is essential for designing aircraft that are capable 

of stable, efficient flight. The design of other airfoil-shaped components, such as 

control surfaces and engine intakes, is also essential for optimizing an aircraft's 

performance. Overall, the airfoil plays a vital role in the design and performance of 

aircraft and is an important area of study in the field of aerodynamics. 
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Figure 1.1 Wing cross-section of a generic airliner 

The preliminary design phase of an aircraft is an important stage in the aircraft design 

process, where initial concepts are developed and refined into a more detailed design 

[2]. During this phase, a wide range of design considerations are taken into account, 

including the aircraft's mission, performance requirements, structural layout, weight 

and balance, systems integration, and manufacturing considerations.  

During the preliminary design phase, the aircraft's overall configuration is 

established, and the general layout of its major components, such as the wings, 

fuselage, tail, and engines, is determined. The designers consider the aircraft's 

aerodynamic characteristics, including lift, drag, and stability, as well as its 

propulsion system and power requirements. 

This phase also includes a trade-off study where different configurations, materials, 

and systems are evaluated to obtain the best balance of performance, cost, and risk. 

Aircraft specifications are also defined at this phase, including weight, size, range, 

speed, and other performance metrics. This design phase is iterative and requires 

aerodynamic calculations for many different design alternatives.  

Typically, wind tunnel tests or CFD analyses are used in later design phases to obtain 

aerodynamic data of the design. However, these methods are not feasible for the 
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preliminary design phase since many conceptual designs should be tested, and hence 

it would be costly in time and money. Thus, the need for a tool that can provide 

aerodynamic information rapidly arises in the preliminary design phase. 

Low-accuracy methods with rapid predictions exist in the literature, but they mainly 

fall short on providing reliable solutions for fully turbulent and transonic flows. A 

review of these methods is presented in Chapter 4. These methods offer successful 

enough results in subsonic and low speeds, but their accuracy deteriorate at higher 

speeds. This shortcoming is especially prominent in modern aircraft design. For 

example, typical airliners cruise at transonic speeds where these tools do not provide 

accurate results. A tool that can provide rapid predictions in the transonic and fully 

turbulent regime is needed. 

. The shape of an airfoil, which includes its camber, thickness, and curvature, directly 

affects the flow of air over the surface of the airfoil and the resulting forces and 

moments (e.g., drag, lift, and pitching moment). In addition, the cruise speed of 

transonic airliners which resides near drag-divergence, is also dictated largely by 

airfoil shape. Moreover, small variations in airfoil shape may result in the transonic 

behavior of airfoils. Therefore, it is crucial to describe airfoil shapes accurately when 

evaluating their aerodynamic performance. A detailed investigation of the 

relationship between airfoil shape and performance will be provided in Chapter 2. 

1.1 Aim and scope of this study 

In this study, we aimed to develop an accurate enough tool that can provide 

predictions of aerodynamic coefficients (lift, drag, and drag-divergence Mach 

number) in transonic and fully turbulent flow. The flow conditions should include 

post-stall conditions, too. Also the tool should provide estimations rapidly, and 

should be coupled with a robust and complete shape descriptor. Our scope is to use 

this tool in predictions of supercritical airfoils primarily to be used, but not limited 

to, for designing commercial airliners. This tool can generate the many required 
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aerodynamic evaluations of the iterated aircraft geometry in preliminary design. 

Also, by predicting the drag-divergence Mach number, the need for expensive RANS 

calculations will be eliminated for the preliminary design phase. Provided 

estimations will pick a good starting point for the detailed design phase. Such a tool 

is not available in existing research nor commercially. To achieve this goal, we need 

a proper shape descriptor, a prediction methodology, and an accurate and consistent 

aerodynamic database to develop this tool.  

1.2 Contents of this study 

An investigation of airfoil’s aerodynamic performance and how it relates to flow 

conditions and shape is presented in Chapter 2. In Chapter 3, a review of standard 

methods for parametrizing the airfoil shape is given. Chapter 4 contains reviews of 

tools, either presented in literature or commercial, that can provide rapid predictions 

of airfoil performance and their advantages/disadvantages. Chapter 5 contains 

studies regarding neural network construction on already existing data. This chapter 

provides proof of concept in using multi-layer perceptron to create our prediction 

tool. Chapter 6 contains information about how the data used in this study was 

gathered and studies regarding the data validation. Finally, Chapter 7 contains the 

final neural network model that can provide predictions in transonic and turbulent 

regimes. 
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CHAPTER 2  

CHAPTER 2 REQUIREMENTS FOR ACCURATE AIRFOIL PERFORMANCE 

ESTIMATIONS  

2.1 Flow and shape parameters that affect airfoil performance 

The aerodynamic performance of an airfoil is primarily determined by three flow 

parameters: the angle of attack, the Mach number, and the Reynolds number. The 

angle of attack, as seen in Figure 2.1, is the angle between the chord line and the 

relative wind. Mach number is the dimensionless number that describes the 

compressibility of a flow, which is described as the ratio of relative wind speed to 

the speed of sound. The Reynolds number represents the ratio of inertial and viscous 

forces. 

 

Figure 2.1 Angle of attack definition 

Drag and lift are two of the most critical aerodynamic forces on an airfoil. Drag force 

is the resultant force aligned with the relative wind and can be considered the wind 

resistance against a moving aircraft. Lift force is the component of the resultant force 

perpendicular to the relative wind. The dimensionless drag and lift coefficients are 

defined by dividing the respective force by the dynamic pressure and reference area. 
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 𝐶𝑑 =
𝐷

0.5𝜌𝑉2𝑆𝑟𝑒𝑓
 2.1 

 

 𝐶𝑙 =
𝐿

0.5𝜌𝑉2𝑆𝑟𝑒𝑓
 2.2 

The airfoil produces lift by moving the fluid around it so that the lower side has more 

pressure than the upper side. This difference in pressure results in a force that lifts 

the airfoil perpendicular to the wind. A typical pressure distribution for an airfoil can 

be seen in Figure 2.2. 

 

 

Figure 2.2 A typical pressure distribution over the airfoil 

2.2 Common Airfoil Shape Representations 

The airfoil is a 2D curve that can be represented in various methods. A couple of 

formats in literature have been used to represent them. The Selig format is a file 
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format used to represent the geometry of an airfoil as an ordered point list. The 

format was developed by Michael Selig, a researcher at the University of Illinois at 

Urbana-Champaign, and is commonly adopted by the aerodynamics community [3] 

In the Selig format, the coordinates of an airfoil's upper and lower surfaces are 

represented by a set point with (𝑥, 𝑦) coordinates. The 𝑥 coordinate represents the 

position along the airfoil's chord, and the 𝑦 coordinate represents the distance from 

the chord. The coordinates are typically represented in a text file, with one 𝑥 𝑎𝑛𝑑 𝑦 

pair per line. The file typically starts with the upper surface trailing edge coordinate 

and then lists the coordinates for the upper surface of the airfoil, followed by the 

coordinates for the lower surface of the airfoil, and finishes with the lower surface 

trailing edge coordinates. An excerpt of a Selig format airfoil can be seen in Table 

2.1. 

The Selig format is widely used due to its simple use and can be easily read by most 

airfoil analysis software. The format is also supported by many airfoil design tools, 

which makes it easy to import airfoil geometry into these tools. Also, the format 

allows easy modification or the generation of new airfoils by using the coordinates. 

Table 2.1 An example Selig format airfoil 

bac1.dat 

1 0.00106 

0.99 0.00283 

0.98 0.00461 

0.97 0.00639 

… 

0.0005 0.00242 

0 0 

… 

0.99 -0.0003 

1 -0.00096 
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Other formats are used to store airfoil coordinates, such as the NACA format and 

Lednicer format. Selig format, however, is widely used in the research community 

and industry, and large data sets are freely available, like the UIUC database [4]. 

While the Selig format is widely used in the industry, the number of segments given 

in format files for each airfoil varies greatly. Moreover, the exclusion of curvature 

information leads to incomplete airfoil shape definition. For example, we may need 

more than 1000 points in both the upper and lower surfaces of the airfoil in CFD, 

which is rarely the resolution presented in the airfoil databases. An accurate, reusable 

and extensible shape parametrization method is required that can extract principal 

information from the airfoil coordinates and accurately represent the airfoil as a 

continuous function. A detailed survey of common parametrization methods is given 

in Chapter 3. 

2.3 Transonic Flow around the Airfoils 

The Mach number, the ratio of an aircraft's speed to the speed of sound, is a crucial 

factor in the design and operation of transonic aircraft such as commercial airliners. 

As the Mach number approaches unity, wave drag, a form of drag caused by the 

formation of shock waves, begins to increase significantly. The Drag Divergence 

Mach Number (𝑀𝑎𝐷𝐷 ) is particularly relevant in the transonic flow regime. This 

number denotes the Mach number at which the drag coefficient starts to increase 

rapidly with increasing flow speed. Commercial airliners typically design their wings 

to cruise near this Mach number to optimize performance and fuel efficiency. Speeds 

above MaDD require a significant increase in thrust, which is not desirable. The drag 

rise after the MaDD for a typical transonic airfoil can be seen in Figure 2.3 marked 

with a red circle. 
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Figure 2.3 Drag vs. Mach graph of SC2-0714 airfoil 

2.3.1 Drag Divergence Definition 

One of the earliest definitions of drag divergence was given in a NASA Technical 

Note  [5] as “Mach number at which slope of the curve of drag coefficient versus 

Mach number attains a value of 0.10”. Components of the drag coefficient are 

usually categorized into two: the base drag (CD0
) and the induced drag (due to lift) 

(KCL
2), as represented in Equation 2.3.  

 Cd = Cd0
+ KCl

2 2.3 

The increase in wave drag due to increasing Mach number builds up an increase in 

the base drag, CD0
 component, which is independent of lift, is called drag rise. To 

isolate the effect of Mach number, the definition of drag divergence Mach number 

used in this thesis is given in 2.4. 
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dCd

dMa
|
Cl=constant

= 0.05 @ MaDD 2.4 

Equation 2.4 reveals that drag divergence Mach Number, MaDD, is different at each 

lift coefficient. CFD results for the airfoils consist of discrete points, meaning they 

are not analytical functions, so numerical methods are required to calculate MaDD 

with the help of numerical derivatives.  

With the use of numerical methods, the angle of attack that corresponds to the 

constant lift coefficient is found for each Mach number. The drag coefficient 

corresponding to that angle of attack is then calculated. After this is repeated for each 

Mach number, the derivative in Equation 2.4 can be calculated. One should keep in 

mind that applying this method to CFD results can introduce numerical errors. 

2.4 Physical parameters that affect airfoil performance 

The airfoil shape is one of the most critical factors that define aerodynamic 

performance. The physical parameters like maximum thickness, maximum camber, 

leading-edge radius, boat-tail angle, and others have various effects on the 

aerodynamic performance of airfoils. For example, in Raymer's textbook for aircraft 

design [6], the maximum thickness percentage has been shown to affect drag and 

maximum lift coefficients. For instance, the maximum thickness for airfoils from 

NACA 4-digit family is reported [6] to increase the drag coefficient, as seen in Figure 

2.4. The maximum thickness also affects the maximum lift coefficient, and this effect 

is different for every airfoil family, as seen in Figure 2.5.  

In a study published in 2015 by Birajdar and Kale  [7], the authors investigated the 

effects of leading-edge radius. By taking NACA4412 as the baseline airfoil, they 

tried different airfoils by tweaking the leading edge and examining the results. It was 

shown that the changes in leading-edge radius change the L/D drastically.  

Another study investigating the effect of the airfoil shape on rotorcraft performance 

[8] showed that parameters that define the shape, like camber, leading-edge radius, 
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thickness, and boat tail angle, significantly affect the overall performance of the 

rotor. The shape must be adequately defined to evaluate the airfoil's performance 

correctly. 

 

Figure 2.4 Effect of maximum thickness on drag, taken from [6] 

 

Figure 2.5 Effect of maximum thickness on the maximum lift, taken from [6] 
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CHAPTER 3  

CHAPTER 3 COMMON SHAPE PARAMETRIZATION METHODS 

Most of the airfoils in the literature are presented as 2D coordinates. While some of 

these airfoils can have as many as 200 points, some have as few as 40 points. 

Representing these airfoils as analytic curves instead of a discrete set of points is 

needed in most applications that use airfoils, e.g., CAD software, CFD applications, 

machine learning applications, etc. 

Many methods are present in the literature that tackles this problem. These methods 

have their strengths and weakness for each application which we will investigate in 

this chapter. The accuracy of these methods will be judged by their absolute errors, 

e.g., the vertical distance between legacy points and the parametrized curve and not 

the orthogonal distance.  

3.1 Interpolation 

Using interpolating curves to describe an airfoil is one of the first methods that come 

to mind because of its simplicity. However, interpolation is not straightforward for 

some applications. For example, in the flows above or near the sound of speed, the 

changes in slope and curvature play a significant role. A high-order interpolation is 

required to reach acceptable accuracy. However, high-order interpolation will 

introduce fluctuations in curvature graphs, which is not desired in transonic and 

supersonic flows. These fluctuations can be seen in Figure 3.1. Sudden changes in 

curvature will result in various expansion and shock waves across the airfoil surface, 

which will diminish the performance of CFD and wind tunnel tests. These waves can 

be seen in Figure 3.2, which is the CFD result of an interpolated airfoil in transonic 

flow.  
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Figure 3.1 Curvature graph of an interpolated airfoil 

 

Figure 3.2 Series of expansion and compression waves across an interpolated airfoil 

surface 



 

 

15 

Another interpolation method is using splines. While using splines solve the 

fluctuation problem with polynomial interpolation, they require a lot of parameters 

to represent an airfoil within acceptable accuracy. For example, to represent the 

upper surface of RAE2822, a supercritical airfoil, we used 20 degrees of freedom.  

This trial yielded a maximum error of 8.358e-04, which is not ideal. This shows that 

the spline interpolation is an inferior shape descriptor for machine learning because 

the parameters are too many compared to the methods described in the following 

sections. 

3.2 Beziér Curves 

Beziér curves are readily available in most CAD packages, and it is easy to control 

the shape by manipulating the control points. They are constructed by multiplying 

Bernstein polynomials with each corresponding control point [9]. A Beziér curve of 

order 𝑛 can be represented as in Equation 3.1. 

 𝐁(t) = ∑(
n
i
)

n

i=0

(1 − t)n−iti𝐏i 3.1 

Where, (
n
i
) is the binomial coefficient, 𝐏i vector is the control point vector (𝑥𝑖, 𝑦𝑖), 

and  (
n
i
) (1 − t)n−iti term is the Bernstein polynomial [10]. These multiplications 

result in 𝒙(𝒕) and 𝒚(𝒕) curves (𝑩(𝑡) = [𝒙(𝑡)   𝒚(𝑡)]) dependent on the parameter t ∈

[0,1]. However, the relationship between the control points and the shape is not 

easily realizable. The Bernstein polynomials are multiplied with both the 𝑥 and 𝑦 

coordinate of the control point, which couples the contribution of 𝑥𝑖 and 𝑦𝑖 

parameters. This coupling increases the difficulty of the underlying relationship 

between the aerodynamic coefficients and the input parameters. Moreover, the 

contribution of a single control point is dependent on other control points, and they 

are not independent of each other. Finally, representing legacy airfoils with Bezier 
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curves requires significant effort since the 𝐭 vector is nonlinear. A sample legacy 

airfoil transformation is presented in Figure 3.3.  

 

Figure 3.3 Beziér curve representation of NACA 64-012a airfoil 
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apparent in the shape functions. How the shape function affects these parameters is 

highlighted in Figure 3.4 presented in the original study. 

 

Figure 3.4 Fig.2 of reference  

 

y(x, 𝐯, zTE) = xN2(1 − x)N1 ∑ vr C(
n
r
) xr(1 − x)n−r

norder

r=0

+zTex

Class function Shape functions Trailing edge term

 3.2 

Each of the Bernstein polynomials constructing the shape function is multiplied with 

the corresponding CST coefficient and added together. Since the Bernstein 

polynomials are linearly independent, we can see that each coefficient's contribution 

to the parametrization is independent of each other as well. 

Transformation of legacy airfoils is also easily implemented using an ordinary least 

squares method which will be covered in the next section. 

3.3.1 Legacy Airfoil Representation with CST 

To transform an airfoil given in Selig, we would first need to represent lower and 

upper surfaces separately, so we split the airfoil data. Equation 3.2 is valid only for 

the upper or lower surface of the airfoil. This representation would greatly reduce 
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the data dimension and would enable interpolation between intermediate points in 

the Selig format.  

 𝐱𝑢 = [1 0.99 0.98 … 0.01 0.005 0.002 0]𝑇 3.3 

 𝐳𝑢 + zTE𝐱𝑢 = [−0.0095 −0.0063 −0.0032 … 0.01658 0.01077 0]𝑇 3.4 

where 𝑧𝑇𝐸 = −0.0095 in this case. The vector given as 𝐳u + zTE𝐱u is the 𝑧 

coordinate of the airfoil given in legacy format. We subtract zTE𝐱u from the 𝑧 

coordinates to isolate 𝐳𝐮 vector in Equation 3.4. If we can represent this 

transformation in the form of 𝐁u𝐯u = 𝐳u, the coefficient vector, 𝐯𝐮, can be 

calculated using Moore–Penrose inverse with the relation in Equation 3.5: 

 𝐯u = (𝐁𝐮𝐓𝐁𝐮)
−1

𝐁𝐮𝐓𝐳𝐮 3.5 

For example, the B matrix for a 5th-order transformation can be constructed with the 

following relations: 

 Fi0
= √xi(1 − xi)C (

5
0
) x0(1 − x)5  

3.6 

 Fi1
= √xi(1 − xi)C (

5
1
) x1(1 − x)4 

 Fi2
= √xi(1 − xi)C (

5
2
) x2(1 − x)3 

 Fi3
= √xi(1 − xi)C (

5
3
) x3(1 − x)2 

 Fi4
= √xi(1 − xi)C (

5
4
) x4(1 − x)1 

 Fi5
= √xi(1 − xi)C (

5
5
) x5(1 − x)0 

 Fi6
= xi√1 − xi(1 − x)5 

 

where 𝑖 ∈ 1,2,3, … , 𝑛 denotes each x coordinate of the legacy airfoil. 
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Figure 3.5 Contribution of each shape function to the transformation of SC2-0714 

airfoil 
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Figure 3.6 7th order transformation of the SC2-0714 legacy airfoil 

 
 
Figure 3.7 Error plot for CST of SC2-0714 airfoil 
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Figure 3.6 and Figure 3.7 show an example CST of SC2-0714 legacy airfoil. 

Curves in Figure 3.5 correspond to each shape function multiplied by the class 

function. The sum of each of these components completes the transformation, as 

seen in Figure 3.6. The transformation is completed by solving Equation 3.5. The 

original airfoil representation in Selig format consists of 205 points. In the end, 

we reduced the airfoil to 20 parameters with a maximum error of 0.06 mm for a 

meter-long chord. It is noted that this error is below typical tolerances for wind 

tunnel models, which means that this transformation describes this airfoil 

precisely. The airfoil in question has a complicated shape to parametrize, 

especially towards the leading edge, which requires increased complexity in most 

methods to represent correctly. For example, if Beziér curves are used, we would 

need a 6th-order or higher curve to represent RAE2822 within the same error 

band, which would result in 28 parameters. That would result in more predictors 

than CST, which might diminish model performance. To obtain the same error 

band, we would need the following: 

◦ Spline interpolation:  40 degrees of freedom 

◦ Beziér curves:  26 control points 

◦ CST method:  20 points 

A neural network model constructed with both CST and Beziér curves will be 

compared in Chapter 5. 

 

  



 

 

22 

  



 

 

23 

CHAPTER 4  

CHAPTER 4 RAPID PREDICTION TOOLS IN AIRFOIL PREDICTIONS 

This chapter gives brief reviews of rapid prediction tools that exist in literature or 

that are commercially available. The advantages and disadvantages of each tool and 

their application to transonic and fully-turbulent regimes are also discussed. 

Moreover, existing studies in the literature regarding neural networks and rapid 

predictions are discussed in 4.2. A summary of these studies is presented at the end 

of the chapter. 

4.1 Low-Fidelity Commercial Tools 

4.1.1 DATCOM 

USAF DATCOM is a software released in 1976 to help with aircraft design, 

specifically for stability and control [12]. It can generate static coefficients for 3D 

geometries, so it is possible to evaluate a complete aircraft. However, in the scope of 

this paper, we will focus on the airfoil section module. This software accepts airfoil 

coordinates, camber and thickness distribution, or common shapes as inputs. After 

the airfoil shape is described, it uses inviscid formulations to calculate aerodynamic 

coefficients and later applies a viscous correction to the lift coefficient.  

While this program can generate results rapidly and accurately in some cases, it falls 

short in many others. It is noted in the DATCOM description page [13] that the 

program will have difficulties when the Mach number is near drag divergence or 

when the maximum camber exceeds 6%. The user will not get accurate results for 

high-camber airfoils. It is also noted that airfoils exceeding %12 thickness or 
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supercritical airfoils will have limited accuracy. The accuracy of DATCOM 

solutions also diminishes with increasing the angle of attack. 

4.1.2 XFOIL 

XFOIL is a program developed at MIT to be used to design and analyze subsonic 

airfoils. It is based on a high-order panel formulation coupled with various 

corrections [14]. XFOIL offers airfoil solutions for variable Reynolds numbers and 

Mach numbers, an inverse design feature, and an airfoil redesign feature. It provides 

accurate results for low Reynolds numbers and inviscid flows but is only available 

for partially turbulent and subsonic flows. The flow regime in the scope of this study 

is fully turbulent and transonic, in which XFOIL has trouble with convergence and 

provides questionable results.  

4.1.3 Vortex Lattice Method 

Vortex Lattice Method [15] is a low-order numerical method used to obtain 

computational fluid dynamics. It uses the assumption that the flow is inviscid, 

incompressible, and irrotational. For thin wings below the stall angle of attack, it can 

provide an idea about the aircraft's performance. The stability and control derivatives 

can be derived from the aerodynamic coefficients, which can provide some ideas in 

the early stages of design. However, this method falls short of providing meaningful 

calculations for thicker wings and post-stall conditions. Since supercritical airfoils 

are usually thicker and highly cambered, this method is not feasible in this regime. 

4.2 Neural Network Methods 

Numerous studies have been conducted to generate rapid solutions for airfoils. These 

studies consist of empirical relations, low-order approximations of fluid equations 

such as panel methods and inviscid flows, surrogate models such as neural networks 
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or decision trees, and many more. Many methods for airfoil performance predictions 

have been proposed on the topic of neural networks, e.g., multi-layer perceptrons, 

convolutional neural networks, and others. Most of these methods have advantages 

and disadvantages and limits to their applications. The following sections present a 

detailed analysis of some of these studies. A summary of the reviews can be seen in 

Table 4.1. 

4.2.1 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a type of machine learning model that are 

inspired by the structure and function of biological neural networks. They consist of 

layers of interconnected “neurons” that process and transmit information. They have 

been used in numerous areas, such as image recognition, language processing, and 

many more. Their ability to learn the nonlinear nature of data has made them very 

popular for providing rapid predictions. However, a way to represent airfoils, an 

airfoil parametrization method, is needed to provide input to the ANN algorithm 

instead of discrete airfoil points, like in Selig format.  

Suresh et al. [16] employed recurrent neural networks to estimate the dynamic stall 

effect in rotor blades on various pitch angles. This study was conducted to predict a 

single airfoil and is one of the earlier applications of neural networks for airfoil 

prediction. In the end, the authors reported an R2 score of around 0.99 for various 

pitch angles.  

Santos et al. [17] parametrized the airfoils using Sobieczky's generic airfoils method. 

They employed XFOIL to generate results in subsonic conditions and used an 

inviscid CFD code in the transonic region. The inputs to Sobieczky's method, angle 

of attack, and Mach number were chosen as the input layer to a Multi-Layer 

Perceptron algorithm. The machine learning model was trained to learn the airfoils' 

drag and lift coefficients. One thing to note is that the data in this study does not 

include the post-stall region, nor does it include the near-drag-divergence region. In 
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the end, the authors achieved an R2 score of 0.991 for the lift coefficient, which can 

be considered successful. 

In another study, Balla et al. [18] employed a proper orthogonal decomposition 

(POD) to reduce pressure coefficient graphs to POD coefficients. They used non-

uniform rational B-Splines (NURBS) to parametrize the airfoils, resulting in 25 

independent geometric parameters. Then, they trained a model that can construct the 

relation between the POD coefficients and the NURBS parameters. Flow solutions 

for aerodynamic database construction were obtained with CFD, using inviscid 

models in a wide Mach number range (0.3-0.9). After the model construction was 

completed, the generated pressure coefficient graphs were used to calculate 

aerodynamic coefficients. While this study presented excellent results in predicting 

lift coefficient, the flow conditions or shape parameters were limited for each model. 

Xiaosong et al. [19] employed Multi-Layer Perceptron (MLPs) to generate a 

surrogate model before an optimization problem. They used CFD to generate 

solutions with a modified B-Spline parametrization and obtained an RMSE of 2.77 ∗

10−4 for the drag coefficient and 12.90 ∗ 10−4 for lift coefficient. These errors are 

considerably small but only up to 0.7 Mach number.  

4.2.2 Convolutional Neural Networks 

Convolutional networks have also been used to recognize airfoil shapes and train for 

aerodynamic coefficients. CNN is handy for image recognition applications. The 

method works best when the input is highly nonlinear and has a spatial correlation. 

CNN methods mainly utilize image-like grid data structures as input variables and 

can be trained for various outputs. While these networks can have a broader scope, 

such that they can predict the flow field around the airfoil, pixelating the airfoil 

decreases details in the airfoil shape on a reasonable resolution.  

In the study by Jin et al. [20], they employed CNN to study flow past a cylinder at 

low Reynolds numbers. They used an incompressible Navier-Stokes solver to 
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generate data. They represented the velocity fields as grid-like images to the CNN 

algorithm and trained them to minimize velocity errors. In the end, they obtained 

scores above 0.995 for both u∗ and v∗. 

The method proposed by Chen et al. [21] employs Hicks-Henne bump functions on 

top of the NACA0012 geometry to parametrize the airfoil shape. They used 

convolution to incorporate the angle of attack and Mach number into the airfoil 

image to be used as input to the CNN model. The aerodynamic database used in the 

study was defined between 0.1-0.6 Mach number and 2-15 degrees of angle of attack. 

Their study results in an RMSE of 0.0273 for the lift coefficient. While the error they 

achieved is significantly low considering the high AoA range, it does not include the 

transonic regime.  

In the study by Duru et al. [22] [23], the authors constructed a CNN model to predict 

the flow field around airfoils. Their dataset consists of a wide angle of attack range 

(-10° to 20°) at a transonic Mach number of 0.7 with various kinds of airfoil shapes 

and families. This data contains shock-induced separation cases and post-stall cases. 

The airfoil shape was given to the model as a distance map, and the output is the 

flow variables around the airfoil. This study's scope is broader than predicting lift 

and drag coefficient and can provide helpful information regarding lift and drag. The 

pressure prediction around the airfoil was used to calculate the lift and drag 

coefficient by integrating it around the airfoil. The lift coefficient and drag polar 

presented for NACA 66(3)-218 airfoil are in good accordance with the CFD results. 

Zhang et al. [24]used CNN to decode airfoil shapes from images of the airfoil into 

discrete, ordered vector representations and used these representations to train for 

the aerodynamic coefficients such as drag coefficient and lift coefficient. The first 

algorithm they tried provided the flow conditions as additional inputs to the airfoil 

representations, meaning a concatenated vector of decoded airfoil parameters and 

flow conditions, giving an output of lift coefficient. This algorithm did not provide 

promising results, so they chose another algorithm. In this algorithm, they provided 

the angle of attack by tilting the airfoil upwards and using that image as a separate 
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input. The part corresponding to the airfoil's inner section in these images is entirely 

black. The airfoil surface is given with some transition to the freestream, which is 

entirely white to light gray. They used non-dimensionalization to adjust for various 

Mach numbers, the maximum Mach number being entirely white, and as it gets 

smaller, the color darkens. 

The authors chose XFOIL to obtain aerodynamic coefficients of the training airfoils 

at various angles of attack, Reynolds numbers, and Mach numbers. They chose to 

implement predictions for only the lift coefficient. Negative angles of attack of the 

airfoils were provided by flipping the sign on both the angle of attack and the lift 

coefficient to extend the training samples. 

They have observed that the CNN approach works significantly faster than the MLP 

approach with the same amount of epochs at the cost of increased computational time 

for a single epoch. It was shown that a CNN approach for predicting the lift 

coefficient is a good approach with some corrections. It was seen that this algorithm 

could predict unseen airfoil shapes with considerable accuracy. 

4.3 Conclusion 

After examining the literature, we have decided that an MLP-type neural network 

coupled with CST would be best suited for this study. CNN-type neural networks 

provide excellent results when predicting flow fields, but ANNs are more suitable 

for coefficient predictions since they do not lose accuracy while pixelating airfoil 

surfaces, especially when coupled with a suitable parametrization method. As 

discussed in Chapter 3, CST parametrization provides accurate airfoil representation 

with fewer parameters which makes it more suitable for neural network studies. 

 

  



 

 

29 

Table 4.1 Review summary of some studies in the literature 

Author Data source Flow regime Shape 

parametrizatio

n method 

Learnin

g 

method 

Output 

Suresh 

et al. 

Semi-

empirical 

data 

Various 

pitch angles 

Single airfoil RNN 𝐶𝑧 

Santos 

et al. 

XFOIL & 

inviscid 

CFD 

Subsonic 

(XFOIL), 

Transonic 

(Inviscid) 

Sobieczky’s MLP 𝐶𝑑, 𝐶𝑙 

Balla et 

al. 

Inviscid 

CFD 

Ma: 0.3 to 

0.9 

NURBS, POD 

for Cp 

ANN 𝐶𝑝 graphs 

Xiaoso

ng et 

al. 

Viscous 

CFD 

Ma : 0.6 to 

0.7 

Various Re 

modified B-

Splines 

MLP 𝐶𝑑,𝐶𝑙, 𝐶𝑝 

graphs 

Chen et 

al. 

RANS Subsonic,  

AoA 2°-15° 

Hicks-Henne 

bump functions 

CNN 𝐶𝑑, 𝐶𝑙 

Duru et 

al. 

RANS Transonic,  

AoA -10° to 

20° 

Distance map CNN Flow field 

Zhang 

et al. 

XFOIL Re: 30,000 

to 6,500,000  

Ma: 0.3 to 

0.8 

AoA: -10° 

to 30° 

Convolution CNN 𝐶𝑙  

Jin et 

al. 

Laminar 

CFD 

Low Re Convolution CNN Velocity 

field 
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CHAPTER 5  

CHAPTER 5 NEURAL NETWORK STUDIES FOR THE PREDICTION MODEL 

We mentioned that we need a prediction methodology in Chapter 1. Various types 

of machine learning algorithms were used in preliminary studies, like random 

forests, best subset selection, and neural networks. The results from these studies and 

results presented in the literature indicate that neural networks are the most suitable 

of all the methods we researched. In this chapter, neural network studies conducted 

in this study are presented.  

5.1 Problem definition 

In this section, we will present the results of an MLP model constructed with the 

already existing data used in [23]. This data set was generated using an in-house CFD 

solver employing Reynolds-Averaged Navier Stokes equations with Spalart-

Allmaras [25] turbulence model. The Mach number was fixed to 0.7, and the angle 

of attack ranged from -10° to 20°. 204 airfoils from the UIUC database of different 

shapes, airfoil families (laminar, high lift, highly cambered, supercritical, etc.), and 

usage areas were solved while generating the database. This was done to increase the 

robustness of the model while predicting new sets of airfoils. However, this also 

means that the solution database is highly nonlinear since it includes a post-stall 

region and is in a transonic regime. In the end, 6324 CFD runs were completed. CST 

parameters of the airfoils in the dataset are calculated using ordinary least squares, 

the method presented in section 3.3.1. 

While separating the training and testing sets, airfoils were exclusively selected to 

include all kinds of airfoils; thick, thin, highly cambered, etc., and dissimilar to the 

training set. This selection aims to test the model’s robustness for unseen airfoil types 
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and monitor if overfit occurs. Therefore, we can better judge the model while 

examining the validation set.  

The data was split 10%-90% as the validation set and training set. A set of new and 

arbitrary airfoils were generated with the CST parametrization method and were 

solved in the same flow conditions to be used as the test set. The arbitrary numbers 

are generated using a weighted linear combination of existing airfoils and tweaking 

the resultant airfoils. This step ensures that a realizable airfoil shape is generated 

while maintaining arbitrariness. Visualizations of test set airfoils are given in the 

result comparison section. 

The validation set was chosen manually to include airfoil shapes of all kinds 

(laminar, thick, thin, highly cambered, inverse design, etc.) to evaluate the model’s 

performance for a wider portfolio. The validation set consist of following airfoils: 

[e396, e544, fx75141, goe493, mh94, naca63012a, mrc20, naca1412, naca2421, 

naca63206, naca63412, naca64008a, naca64108, naca64209, naca642215, 

rae5214, raf69, rc510].  

Some data pre-processing is needed to be used as an input layer to the MLP 

algorithm. The input layer is prepared as a matrix where each row corresponds to a 

data point, and each column corresponds to the values of the predictors. The 

predictors, in this case, are the CST parameters and the angle of attack. The output 

layer is the selected aerodynamic coefficient to be trained. 

Table 5.1 An except from the dataset 

vU0 vU1 ... vL4 vLEl zLEl AOA CL CD Airfoil 

0.2099 0.1215 ... -0.0298 0.0863 -0.0009 -10 0.1049 0.0989 ah93w215 

0.2099 0.1215 ... -0.0298 0.0863 -0.0009 -9 0.1072 0.0861 ah93w215 
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5.2 Multilayer Perceptron 

The type of network used in this study is called Multi-layer Perceptron (MLP). Its 

structure was inspired by the firing of synapses of biological neurons. It is a 

feedforward neural network with at least three layers: the input layer, at least one 

hidden layer consisting of neurons, and an output layer. The neurons in the context 

of MLP use a nonlinear function called the activation function that maps the 

weighted inputs into the neuron to the output. The output is then multiplied by weight 

before being fed to the next layer. The learning is conducted with a backpropagation 

method that updates the weights at each epoch. A visualization is presented in Figure 

5.1. 

 

Figure 5.1 MLP visualization 

Many readily available packages exist for setting up an MLP, and it is an ever-

growing community. This study was conducted using the Keras package from the 

Tensorflow module (version 2.9.1). This package is easily adaptable in Python and 

easy to use.  
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A normalization layer is present between the input layer and the first layer of 

neurons. The normalization is done by centering the data around the mean and 

dividing by the standard deviation, as seen in Equation 5.1. This step scales the input 

layer as a distribution centered around 0 with a standard deviation of 1. This step is 

instrumental if the scales of the inputs vary significantly, as is the case with CST 

parameters compared to the angle of attack or Mach number. It is also a good idea 

to scale the output by a couple of magnitudes since some of the coefficients are small. 

This will help with reducing floating point errors and increase learning performance. 

 𝑥𝑛𝑒𝑤 =
𝑥 − 𝜇

𝜎
 5.1 

A typical MLP model with four hidden layers constructed with Keras can be seen in 

the excerpt in Table 5.2: 

Table 5.2 MLP construction excerpt 

model = tf.keras.models.Sequential() 

model.add(tf.keras.layers.Normalization()) 

model.add(tf.keras.layers.Dense(units = 1000, activation = 

'relu')) 

model.add(tf.keras.layers.Dense(units = 500, activation = 

'relu')) 

model.add(tf.keras.layers.Dense(units = 250,  activation = 

'relu')) 

model.add(tf.keras.layers.Dense(units = 125,  activation = 

'relu')) 

model.add(tf.keras.layers.Dense(units = 1)) 

model.compile(optimizer = 'adam', loss = 'mae') 

history = model.fit(np.array(X_train), y_train, epochs = 500 

,validation_data=(X_val,y_val)) 
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The X_train array is the data in Table 5.1 up to, and including the AOA column, 

the y_train array is CL column. The validation dataset is given with X_val and 

y_val arrays in the same format. The epoch number should be selected carefully. 

Typically, the training should be stopped when the validation losses increase because 

the model starts to overfit. An example of this phenomenon can be seen in Figure 

5.2. The number of epochs corresponding to that point highly depends on the number 

of neurons, the number of data points, the nature, and the learning rate. It is a good 

idea to save the model frequently, inspect when overfit occurs, and prevent it by 

loading a version before the overfit. 

 

Figure 5.2 Typical overfit graph 

A learning rate scheduler is given to the Adam optimizer in this study. The learning 

rate specifies how much of the update to the weights is used in each iteration. It is an 

excellent idea to decrease the learning rate near convergence since a bigger learning 

rate might cause zigzagging around the minimum and stall convergence. An 

exaggerated version of a learning rate scheduler can be seen in Figure 5.3. 
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Figure 5.3 Learning rate scheduler effect on training 

 

Table 5.3 Learning rate with Keras excerpt 

lr_schedule = 
tf.keras.optimizers.schedules.ExponentialDecay( 
    initial_learning_rate=1e-1, 
    decay_steps=1000000, 
    decay_rate=0.99) 

adam = tf.keras.optimizers.Adam(learning_rate = lr_schedule) 

model.compile(optimizer = adam, loss = 'mae') 

 

With the excerpt in Table 5.3, learning rate scheduler with an exponential decay can 

be incorporated to the learning process. The 3 parameters’ effect on the learning 

process; initial learning rate, decay steps, and decay rate is highly dependent on the 

data and the user should tune them to their application.  
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5.3 Prediction model structure 

The training model is a multi-layer perceptron created with the Keras package in 

Tensorflow. The model consists of 4 hidden layers with the rectified linear unit as 

the activation function. The number of neurons is halved after each hidden layer 

which can be seen in Figure 5.4. 

 

 

Figure 5.4 Structure of the MLP network 

We employed Adam [26] as the optimizer to compute weights on the model. This 

optimizer provides fast convergence without sacrificing robustness. A sample of the 

training history can be seen on Figure 5.5. 

  

Figure 5.5 Training history of lift coefficient model 

In this study, two parameters were fine-tuned to study model performance: model 

complexity and transformation complexity. The lift coefficient is seen as the more 

challenging to predict due to stall and shock location variations in the dataset. 

Therefore, the models studied with different parameters are presented in Table 5.4 

with the lift coefficient metrics. 
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Table 5.4 Performance metrics for different model complexities and transformation 

complexities 

  
# of 

Neurons 

# of CST 

parameters    
MSE  MSE_val  R2 val_R2 

Model1 1875 15 88.66 182.16 0.9994 0.9951 

Model2 937 15 97.77 187.06 0.9993 0.9924 

Model3 467 15 108.94 201.97 0.9991 0.9919 

Model4 232 15 145.87 209.03 0.9980 0.9940 

Model5 1875 17 87.39 199.32 0.9995 0.9917 

Model6 1875 19 78.38 208.75 0.9996 0.9908 

Model7 1875 21 85.91 216.20 0.9995 0.9842 

Model8 937 21 101.55 239.96 0.9992 0.9828 

Model9 467 21 106.84 199.87 0.9991 0.9904 

 

While increasing the number of neurons in the model increases training R2 and 

decreases the loss function further, it does not always translate to the test set. After 

evaluating different models, we can find the optimum number of CST parameters 

and neurons. 

While examining Figure 5.6 and Figure 5.7, we can see that the model performance 

seems to decrease as transformation complexity increases. Intuitively, we would 

expect higher-order transformations to yield better results since such transformations 

will describe the airfoil more completely. However, this is not the case. It is possible 

that increasing the shape transformation complexity requires more data to perform 

at the same level.  

Going forward with the 15-parameter model, we can study the effect of the number 

of neurons on the model performance. 
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Figure 5.6 Loss vs. transformation complexity 

 

Figure 5.7 R2 score vs. transformation complexity 

After examining Figure 5.8 and Figure 5.9, Model1 from Table 5.4, with 15 

parameters and 1875 neurons, is chosen as the baseline model. It provided the highest 
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shows that we achieve overfit. Remember that the number of neurons gets close to 

the number of data points at the overfit point, which is not a recommended practice 

for most applications. Examining the test airfoil data, we can see that the model 

provides a good correlation between CFD output and model output even though it 

did not train for these airfoils. Correlation plots of this model can be seen in Figure 

5.10. 

 

Figure 5.8 Loss vs. model complexity 
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Figure 5.9 R2 score vs. model complexity 

 

Figure 5.10 Correlation plots of the MLP model 
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Figure 5.10 Correlation plots of the MLP model 

 

The correlation plots show good agreement between the predictions and the CFD 

results. This model can be deemed successful for the validation set. 

The same model structure is again tried with Bezier coefficients to compare the two 

shape parametrization methods. 24 Bezier coefficients and angle of attack are given 

to the ML model as inputs for the lift coefficient and drag coefficient outputs. The 

comparison is given below in Table 5.5. 

Table 5.5 Parametrization method comparison for lift coefficient 

 val_R2 - CL MSE - CL 

Bezier model 0.9879 435.94 

CST model 0.9978 182.16 
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After closely examining the above plots, we can see that the CST model provides 

accurate results for the validation set with an R2 score of 0.9978.  

This model is used to predict test set to judge its performance in a final dataset. These 

predictions achieved a mean absolute error of 0.047 and root mean squared error of 

0.033 for Cl predictions. Given the fact that the wide angle of attack range increases 

the lift coefficient considerably, the test prediction errors are small. The results can 

be seen in Figure 5.11 and Figure 5.12. The test results are in agreement with the 

CFD for various airfoil shapes and families and lift changes with respect to the angle 

of attack are similar, with slight skewness after stall occurs. By the metrics used in 

this paper, we can conclude that this prediction model provides successful results. 

 

Figure 5.11 Correlation plot for test set lift coefficient 
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Figure 5.12 Lift coefficient comparison between prediction and CFD for randomly 

selected test airfoils 

 

Figure 5.12 Lift coefficient comparison between prediction and CFD for randomly 

selected test airfoils 
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Figure 5.12 Lift coefficient comparison between prediction and CFD for randomly 

selected test airfoils 
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CHAPTER 6  

CHAPTER 6 DATA GENERATION 

This chapter presents data generation methodology for neural network training for 

predicting transonic regime and validation studies regarding it. Flowpsi is used as 

the RANS solver with HLLC [27] flux splitting scheme. This scheme is used to 

capture shocks accurately while not sacrificing the solution’s robustness. The k-ω-

SST [28] turbulence model is employed in the solutions with a wall first layer height 

small enough that wall 𝑦+ values lie between 0.1 and 1.  

6.1 Mesh independence  

In this study, and for the rest of the document, two-dimensional structured grids were 

employed. For the mesh independence study, we used NACA4412 validation study 

presented on the NASA turbulence model validation website [29]. This study was 

selected since it has a high angle of attack and has various results for different 

turbulence models. Flow conditions are given below. 

Table 6.1 Flow conditions for mesh independence 

Mach number 0.09 

Reynolds number 1,520,000 

Angle of attack 13.87° 
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Figure 6.1 Mach number contour of mesh independence solutions 

The results of the airfoil surface grid independence study can be seen in Figure 6.2. 

The study was conducted by increasing the surface resolution of the airfoil while 

keeping the farfield radius and first layer height constant. Drag count refers to the 

drag coefficient multiplied by 10,000. With the result of this study, we selected the 

surface resolution of 2012 points per airfoil. 

 

Figure 6.2 Grid dependence results.  
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Another study is used to decide on the farfield radius. Keeping the first layer heights, 

surface resolution, and mesh growth rate constant and varying the farfield radius, we 

can examine the effects of the farfield radius. 

 

Figure 6.3 Farfield radius study results 

After examining the results, with the surface resolution of 2012 points, presented in 

Figure 6.3, we decided on the farfield radius of 1000 per airfoil chord. The final mesh 

resolution is 2012x103. A close-up of the volume mesh is presented in Figure 6.6. A 

comparison of the NASA website results and Flowpsi can be seen in Figure 6.4. 

  

Figure 6.4 Comparison of the NASA website (left) and Flowpsi (right) 
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6.2 Validation study 

For validation of the solver and its settings, RAE2822 airfoil solution comparison 

with the corrected experimental data is used [30]. It is a well-known benchmark case 

for transonic turbulent flow over an airfoil. For this case, the experiment flow 

conditions are given in Table 6.2. 

Table 6.2 Validation experiment conditions 

Mach number 0.729 

Reynolds number 6,500,000 

Angle of attack 2.92° 

 

Comparison of two CFD solutions obtained with Flowpsi and StarCCM+ and 

experimental data is given in Figure 6.5. The pressure coefficient distributions are in 

agreement with the CFD and the experimental data. The solution methods and the 

mesh parameters used in this comparison is accurate enough for generating airfoil 

solutions in transonic flow regime with good shock accuracy. This ensures that the 

data used in the neural network studies is robust, accurate and consistent. 
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Figure 6.5. Pressure coefficient graphs of two solvers and experiment results 

In the end, the final parameters used in solutions are presented in Table 6.3. 

Table 6.3 Solution parameters used in this study 

Parameter Value 

Chord length 1 

Farfield radius 1000 

Mesh type Structured 

Turbulence model SST k-w 

Grid size 2012x103 
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Figure 6.6 Close up view of the final mesh 
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CHAPTER 7  

CHAPTER 7 NEURAL NETWORK MODEL FOR COEFFICIENT PREDICTIONS IN 

TRANSONIC REGIME 

In this chapter, the studies regarding the construction of the model that can predict 

airfoil aerodynamic coefficients are presented. This model was constructed to predict 

lift and drag coefficients in a variable Mach number regime. After the success of the 

first model in the fixed Mach number regime, the same structure is tested with 

varying Mach numbers as an additional input. The variable Mach number enables us 

to calculate MaDD which can be used as the operation point of a supercritical airfoil. 

7.1 Dataset definition 

The dataset was obtained on 49 legacy supercritical airfoils and some arbitrarily 

generated ones with the CST method. 15% of the legacy airfoils were separated as 

the validation set. The remaining 85% of the legacy airfoils are the training set, and 

finally, arbitrarily generated airfoils were used as the test set. The angle of attack is 

distributed between -2° and 8°, which is a typical angle of attack range for an airliner. 

The Mach number is selected between 0.64 and 0.84, which most drag divergence 

Mach numbers lie between for supercritical airfoils. We chose the Reynolds number 

as 6,000,000 for all CFD runs. 9473 CFD runs in total were completed. 

The CFD analyses were conducted with 14000 iterations. This is a big number of 

iterations since most cases converge much earlier. This was done to ensure the 

convergence of each case and keep the number of iterations constant for each case. 

After the analyses were completed, a convergence check on the aerodynamic 

coefficients was completed. The results were discarded if the drag coefficient or lift 

coefficient oscillated more than 5%. 
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Table 7.1 Flow conditions for supercritical CFD runs 

Angle of attack [-2°, -1°, 0°, 1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°] 

Mach number [0.64, 0.68, 0.7, 0.72, 0.74, 0.76, 0.77, 0.78, 0.8, 0.82, 0.84] 

Legacy airfoils [bac1, cast10-2, cast7, cessna_mod, dfvlr, naca63a210, 

naca64a010, naca64a210, naca64a410, naca651213, nlr-

7301, npl9510, rae100, rae101, rae102, rae103, rae104, 

rae2822, rae5212, rae5213, rae5214, rae5215, sc1012r8, 

sc1094r8, sc1095, sc1095r8, sc20010, sc20012, sc20402, 

sc20403, sc20404, sc20406, sc20410, sc20412, sc20414, 

sc20503, sc20518, sc20606, sc20610, sc20612, sc20614, 

sc20706, sc20710, sc20712, sc20714, sc21006, sc21010, 

sc2110, sc3-0712, ta11] 

 

 

Figure 7.1 RAE2822 CFD solutions 
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Figure 7.1 RAE2822 CFD solutions 

As we can see in  Figure 7.1, the data is highly nonlinear and difficult to predict with 

conventional reduced-order models. Every airfoil behaves differently in the same 

conditions since they all have different shapes. The airfoil shape dictates all these 

nonlinearities, and using CST is especially useful in this regime since details of the 

shape are inherent in the transformation. A contour plot of one of the nonlinear points 

is given in Figure 7.2. 
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Figure 7.2 Mach number contour of RAE2822, 0.84 Mach and 0° angle of attack 

freestream 

7.2 Model construction and results 

After the data is collected and ordered in a way that can be used in neural networks, 

the model was constructed.  

 

 

Figure 7.3 Drag coefficient training graphs 
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Figure 7.4 Lift coefficient training graphs 

After tuning the hyperparameters of the neural network model, R2 scores of 0.9975 

for the drag coefficient and 0.9935 for the lift coefficient were obtained in the 

validation set. The rest of the metrics can be seen in Table 7.2, and training histories 

can be seen in Figure 7.3 and Figure 7.4. The effects of the learning rate scheduler 

that is used in this study can be easily seen in these figures. The learning rate is 

decreased near the end, and the training is stopped before overfit occurs. Correlation 

plots of the validation set can also be seen in Figure 7.5Error! Reference source 

not found.. The results are in good agreement except for some region in the lift 

coefficient. However, these fluctuations are not seen in the test set, whose results 

will be presented later in this section, in Figure 7.8. 

 

Table 7.2 Validation set metrics 

Metric\Coefficient CD CL 

R2 0.9975 0.9935 

Mean absolute error 12.13E-4 16.40E-3 

Root mean squared error 23.06E-4 27.27E-3 
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Figure 7.5 Correlation plots of the validation set 

 

Figure 7.5 Correlation plots of the validation set 
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Figure 7.6 MaDD comparison for a validation airfoil 

In the end, the model predictions capture the drag divergence Mach number 

sufficiently, even though it is a derived number from predictions. The drag 

divergence Mach number can be used as an output when constructing the model, but 

the risk of inconsistency arises between MaDD and drag coefficient predictions since 

they would be independent of each other. Comparisons for an airfoil from the 

validation set can be seen on Figure 7.7. The predictions and the CFD results are in 

good agreement. 
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Figure 7.7 Predictions for a validation set airfoil 

 

Figure 7.7 Predictions for a validation set airfoil 
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The model’s performance is needed to be tested with the test set to evaluate its 

performance truly. Test airfoils were created arbitrarily within the design space 

defined by the legacy airfoils. These arbitrary airfoils were analyzed using CFD with 

the same parameters, same Mach number, and angle of attack range as the training 

airfoils. The results were compared with the predictions generated from the neural 

network model. 

 

Figure 7.8 Test set correlation plots 
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Figure 7.8 Test set correlation plots 
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Figure 7.9 Test set results for MaDD 

 

Figure 7.9 Test set results for MaDD 
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Figure 7.9 Test set results for MaDD 

The test set results for MaDD are in agreement with the CFD results. The average 

error between the prediction and true set is around 0.01-0.02. We should keep in 

mind that the CFD results contain numerical errors and are not the absolute truth. 

The ranges in MaDD graphs change for every airfoil as their aerodynamic 

performance is different from each other. However, the trends between the lift 

coefficient and MaDD seem similar, with some shifts in both axes. CFD results and 

prediction results are also in agreement with the trend of these graphs. 
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Figure 7.10 Comparison plot with experimental results [31] 

A prediction comparison of the SC2-0714 airfoil with experimental results can be 

seen in Figure 7.10. This experiment is conducted at 6,000,000 Reynolds number 

and 0.7 Mach number but transition from laminar to turbulent is fixed at 28% of the 

chord while the CFD results are obtained fully turbulent. The results are similar to a 

shift in the prediction model. The reasons for this can be the 28% laminar flow, 3D 

effects of the wind tunnel, and wall effects of the experiment results.   

Another comparison can be seen in Figure 7.11. The results are of the airfoil CAST-

7, which is another supercritical airfoil and also present in the training set. The 

experiment was conducted conducted at 6,000,000 Reynolds number, 0.76 Mach 

number with transition at 6% of the chord. The results are in good agreement with 

slight differences. These differences can be attributed to various things, like 

transition at 6% or 3D effects present in the wind tunnel but overall, we can say that 

the results are good. 
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Figure 7.11 Comparison plot with experimental results [32] 
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CHAPTER 8  

CHAPTER 8 CONCLUSION AND FUTURE WORKS 

In this study, we used CST to for parametric description of airfoils, that are often 

provided as a list of discrete points. CST proved an excellent shape parametrization 

method for extracting critical information from the airfoils with few parameters. 

These parameters and flow conditions were supplied to an MLP algorithm as the 

input layer, and drag and lift coefficients were selected as the output. After the 

parameters of the MLP algorithm were trained and hyperparameters were tuned, the 

model we obtained provided excellent results in predicting aerodynamic force 

coefficients and drag divergence Mach number, MaDD. Our results indicate that 

utilization of CST method allow us to obtain higher accuracy compared to other 

studies.  

Only 2.62 seconds elapse with a 4.0 GHz processor to obtain 27000 drag and lift 

coefficients solutions in a range of -2° to 8 ° with the neural network trained in this 

study. To compare, this results in a 47x speed-up compared to XFOIL, although a 

speed-up over XFOIL is not the scope of this study. Also, note that accuracy of our 

solutions are higher than existing methods and can provide predictions in fully 

turbulent and transonic regime. 

This study can be extended to a wider Mach number range and a more 

comprehensive range of airfoil shapes. The scope could be widened to include all 

airfoil families within a wider Mach number and angle of attack range. 

To conclude, the neural network model presented in this study can be used as a low-

fidelity tool that can generate results for supercritical airfoils, especially near drag 

divergence Mach number. The tool we obtained is faster with better accuracy, better 

range whereas other tools present in the literature lack performance.  
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For future works, a neural network model that can also predict the pitching moment 

coefficient, 𝐶𝑚, is planned. Also, a model that can predict all airfoil families and a 

wider Mach number range, from 0 to 1.5, is planned. Reynolds number correction 

for the coefficients with semi-empirical relations can be added to this study to expand 

the Reynolds number regime is also planned.   
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CHAPTER 9 APPENDICES 

A. Model Usage 

The model takes 3 inputs: the airfoil in Selig format, angle of attack list, and Mach 

number list.  

The output of the model consist of 4 columns: Mach number, angle of attack, drag 

coefficient and lift coefficient. An example can be seen on Table 9.1. 

Table 9.1 Example output of the model 

Ma AoA CD CL 

0.64 -2 0.00858 -0.11599 

0.64 e 0.00863 -0.09722 

0.64 -1.6 0.00858 -0.05758 

0.64 -1.4 0.00852 -0.02684 

... ... ... ... 

 

An additional output for drag divergence Mach number can also be chosen. It returns 

an array of lift coefficient vs MaDD. 

Table 9.2 Model output example 

CL 𝐌𝐚𝐃𝐃 

-0.100 0.776 

-0.058 0.785 

-0.016 0.789 

0.026 0.794 

... ... 
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B. CST Script with Python 

Table 9.3 Python script for CST parametrization 

import numpy as np 

from numpy import math 

fact = math.factorial 

from numpy.linalg import inv 

 

def CSTOLS(upper_true, order, zTe): 
    zU = upper_true[:,1] - upper_true[:,0]*zTe       
    Bp = np.zeros((order+2, len(zU))) 
    x = upper_true[:,0] 
    for k in range(order+1): 
        C = (fact(order)/fact(k)/fact(order-k)) 
        Bp[k,:] = np.sqrt(x)*(1-x)*C*(x**k)*((1-x)**(order-k)) 
         
    Bp[order+1,:] = x*np.sqrt(1-x)*(1-x)**order 
     
    Bp = Bp.T 
     
    Bu_plus = np.matmul((inv(np.matmul(Bp.T,Bp))),Bp.T) 
    vU = np.matmul(Bu_plus,zU) 
    return vU 

# Inputs: 2D x&y array, CST order, trailing edge thickness 

# Output: CST parameters 

 


