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ABSTRACT

ROUTING ALGORITHMS AS AN APPLICATION OF GRAPH THEORY

Yıldırım, Gökberk
M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

January 2023, 45 pages

This paper examines routing algorithms that are generally used in various network
types, such as Internet Protocol in graph-based models, to find the shortest routing
path or minimum cost. The fundamental approach for calculating the shortest path
between one point to another is searching a given graph, starting at the source node,
and traversing adjacent nodes until the destination node is reached. The aim is to iden-
tify the shortest routing path to the destination node. This paper searches well-known
routing algorithms, namely Bellman-Ford and Dijkstra’s single source shortest path
algorithms, and their application areas like network communication protocols, a cryp-
tocurrency exchange in arbitrage, and vertex-weighted directed graphs in robotics.
The paper aims to decrease the number of blocked path requests and improve overall
usage, especially in cryptographic tools. The routing algorithms are analyzed and
defined with uncertainty arising from various factors, such as weather conditions and
road capacity at specific times. The main challenges in the Shortest Path Algorithms
(SPP) are identifying which edges to add and comparing the distances between dif-
ferent paths based on their edge lengths.

Keywords: Bellman-Ford, Dijkstra, shortest path, routing algorithms, communication
networks, directed graphs, minimum cycle path
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ÖZ

GRAFİK TEORİSİNİN BİR UYGULAMASI OLARAK YÖNLENDİRME
ALGORİTMALARI

Yıldırım, Gökberk
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ocak 2023, 45 sayfa

Bu makale, en kısa yönlendirme yolunu veya minimum maliyeti bulmak için grafik
tabanlı modellerde İnternet Protokolü gibi genellikle çeşitli ağ türlerinde kullanılan
yönlendirme algoritmalarını incelemektedir. Bir noktadan diğerine en kısa yolu he-
saplamak için temel yaklaşım, kaynak düğümden başlayarak belirli bir grafiği aramak
ve hedef düğüme ulaşılana kadar bitişik düğümleri katetmek. Amaç, hedef düğüme
giden en kısa yönlendirme yolunu belirlemektir. Bu makale, iyi bilinen yönlendirme
algoritmalarını, yani Bellman-Ford ve Dijkstra’nın tek kaynaklı en kısa yol algoritma-
larını ve ağ iletişim protokolleri, arbitrajda bir kripto para birimi değişimi ve robotikte
köşe ağırlıklı yönlendirilmiş grafikler gibi uygulama alanlarını araştırmaktadır. Ra-
por, engellenen yol isteklerinin sayısını azaltmayı ve özellikle kriptografik araçlarda
genel kullanımı iyileştirmeyi amaçlıyor. Yönlendirme algoritmaları, belirli zaman-
larda hava koşulları ve yol kapasitesi gibi çeşitli faktörlerden kaynaklanan belirsizlik-
lerle analiz edilir ve tanımlanır. En Kısa Yol Algoritmalarındaki (SPP) ana zorluklar,
hangi kenarların ekleneceğini belirlemek ve farklı yollar arasındaki mesafeleri kenar
uzunluklarına göre karşılaştırmaktır.

Anahtar Kelimeler: Bellman-Ford, Dijkstra, en kısa yol, yönlendirme algoritmaları,
iletişim ağları, yönlendirilmiş grafikler, minimum döngü yolu
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CHAPTER 1

INTRODUCTION

Graph theory is a mathematical discipline that studies the properties of graphs, which

are used to model a variety of different systems in science and engineering. In the

field of computer networks, graph theory is used to represent and analyze the connec-

tivity of a network. Routing algorithms are a crucial application of graph theory in

networking, as they use graph-based models to determine the best path for transmit-

ting data between devices in a network. A graph is constructed by vertices (or nodes)

that are connected by edges. The edges of a graph can be directed (e.g., one-way

streets in a city map) or undirected (e.g., two-way streets in a city map). The vertices

and edges of a graph can also have weights associated with them, which represent the

cost or distance of traversing the edge.

Routing algorithms use graph-based models to represent the connectivity of a net-

work and determine the shortest path between two nodes. Many routing algorithms,

such as Dijkstra’s algorithm and Bellman-Ford’s algorithm, are based on graph the-

ory principles and use techniques from graph theory to find the shortest path. The

Bellman-Ford algorithm, first proposed by Bellman in 1958, is a popular routing al-

gorithm that has been widely adopted in both network routing [17]. The Dijkstra al-

gorithm, first proposed by Dijkstra in 1959, is another widely-used routing algorithm

that has been shown to be effective in a variety of settings, both in network routing

and cryptography, see [4]. In addition to finding the shortest path between two nodes,

routing algorithms also need to consider other factors, such as network congestion,

link reliability, and security. These factors can be incorporated into the graph-based

model used by the routing algorithm and used to determine the most optimal path.
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For example, in a congested network, a routing algorithm may choose a path with

fewer hops (i.e., fewer edges in the graph) even if it has a higher cost or distance,

as this path may be less congested and provide better performance. Similarly, in

a network with unreliable links, a routing algorithm may choose a path with more

reliable connections even if it has a higher cost or distance.

Security is another important factor that needs to be considered in routing algorithms.

Cryptography can be used to secure the communication of routing information be-

tween devices and prevent spoofing attacks, in which an attacker impersonates a

legitimate device in order to gain access to the network or manipulate routing in-

formation. According to Jones [9] in 2020, routing algorithms play a crucial role in

modern cryptography, as they help to secure the transmission of data across networks.

Thus, both the Bellman-Ford and Dijkstra algorithms can be enhanced with the use

of cryptography to ensure the confidentiality and integrity of routing information.

In summary, routing algorithms are a vital application of graph theory in network-

ing, as they use graph-based models to determine the best path for transmitting data

between devices in a network. Routing algorithms need to consider various factors,

such as network congestion and link reliability, in order to find the most optimal path.

In addition, the use of cryptography in routing algorithms helps to protect the confi-

dentiality and integrity of routing information and ensure the secure operation of the

network.

1.1 Motivation and Problem Definition

Shortest path algorithms in computer networks are widely used in many areas, such

as communication networks, social networks, and genetics. In this thesis, shortest-

path algorithms will be applied to communication networks to find the optimal paths

between source and destination nodes by minimizing costs. In this chapter, we will

prepare a base for the shortest-path algorithms since we will focus on the communi-

cation network and other technical terms because when it comes to building routing

protocols, shortest-path algorithms are ubiquitous. Even though there are different

classes of routing algorithms to solve different kinds of problems, only the shortest
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path routing will be the leading interest for our purpose.

Figure 1.1: A six node network

In most cases, the building blocks of a communication network are nodes and links.

The names of the network and nodes may vary due to the usage of different network

types. For the Internet Protocol (IP) network, a node is denoted by a router, whereas

the same node is called the central office or toll switch in the telephone network [21].

An optical or electro-optical switch is a link node in a network that uses light as its

medium. IP trunk or IP link refer to a connection between two sites, in this case, two

routers in an IP network. The endpoint of this connection as it exits a router is known

as an interface. A communication network allows for smooth data flow between the

origin and destination nodes. In a nutshell, we call the node where traffic first appears

the source node and the one where it finally arrives at the destination node. Look at

the diagram of a network with six nodes shown in Figure 1.1. In this network, it is

supposed to be that we have traffic flow that starts from node x1 to node x2. This flow

is not only the flow that can be defined. For instance, another traffic can be described

from node x2 to node x5; in this case, the source node would be node x2, and the

destination node would be node x5. These are the two sample flows. Apart from

these, there can be derivatized much more traffic between nodes.
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The direct traffic must flow from the source node to the destination node in a com-

munication network. Additionally, a path or route defined between nodes can be

constructed manually and called a static route. On the contrary, routing algorithms

are being used to determine a route quickly and conveniently because routing algo-

rithms take care of any communication network’s requirements and any additional

objectives that a service provider wishes to set for itself.

In general, communication networks have different types because objectives may dif-

fer. These types can be examined under two broad categories such as network-focused

and user-focused. That is, the user-focused network has to deliver outstanding service

for the clients or end users to let traffic flow from the source node to the destination

node quickly for each user. On the other hand, this means that the actions taken

should not negatively impact the experience of other users or disrupt connections

between other source and destination nodes within the communication network. In

network-focused communication networks, most users have efficient and equitable

routing, and the provisioned services undoubtedly provide exceptional routing func-

tionalities. This type of network is essential because the resources, such as capacity,

are limited [21].

Next, we consider two essential algorithms that profoundly impact data networks,

especially routing on the Internet. These algorithms are famously referred to as the

Bellman-Ford algorithm and Dijkstra’s algorithm. They can be categorized as user-

focused, as per the broader categories discussed earlier. The thesis describes two

routing algorithms that are called shortest path algorithms. These algorithms aim

to find the most efficient path between two nodes, the source and the destination.

The concept of the shortest path can be understood by using the example of a road

network, where the shortest path is the one with the least distance. However, the

concept of the shortest path can also be applied in other ways, such as finding the

quickest route between two points in terms of time. The distance between nodes does

not need to be physical; it can be measured in different ways, such as coefficients,

scores, meters, and time. The primary consideration is that these efficient algorithms

should be able to measure units by generically applying them to a given network

because algorithms are responsible for handling each link between nodes.
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The term ’distance cost’, ’link metric’, ’cost’, or ’link cost’ is a generic terms used in

communication networks to guide a measuring distance without specifying its units.

For example, in Figure 1.1, a value is assigned to each link, such as link x2 − x6

having the value of 20, and this value is referred to as the link cost, distance cost,

or link metric of link x2 − x6. No specific measurement rule is taken into account

for computing the units in the network, and the popularly used ones are miles, kilo-

meters, or minutes. Upon examination, it is readily apparent that the optimal path

between nodes x1 and x6 is the sequence of x1 − x2 − x4 − x3 − x6, with a minimum

cost of 4. Notably, this path does not include the link between x2 and x6, although,

from the perspective of the number of visited nodes, it may seem as though the path of

x1−x2−x6 is the shortest. This would apply if the cost of the link was determined by

the number of nodes visited or the number of intermediate connections. To elaborate,

if the number of intermediate connections is a crucial factor in determining distance

within a particular network, then the network in Figure 1.1 can be evaluated by as-

signing a cost of one to each link instead of the number indicated in the figure. An

algorithm that can operate without relying on the specific cost assigned to each link

is advantageous; this is where the Bellman-Ford algorithm and Dijkstra’s algorithm

come in handy. There is another approach to calculating the shortest path, thanks to

the linear programming approach.

In the computation of the shortest path, it is common to utilize the additive property

to determine the overall distance of a path by summing the cost of each link along

the path. Therefore, we will begin by assuming this property for shortest path routing

when discussing the Bellman-Ford algorithm and Dijkstra’s algorithm and their varia-

tions. To identify the most optimal path, one can determine the distance cost between

two nodes using non-additive concave properties. To put it simply, algorithms that

employ a non-additive concave property are commonly referred to as the widest path

routing algorithms [21]. However, in this thesis, we will not be exploring this type of

algorithm.

To end this section, it is crucial to understand the connection between a network and

a graph. Due to the close relationship between graph and network, networks can be

thought of as a graph by connecting every node to a particular edge with links. Links

mean an edge connecting nodes or vertices to each other in a network and can have
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more weights, such as bandwidth, convenience coefficient, delay, and cost. As an

example, Figure 1.1 illustrates a network graph that contains six nodes and ten links.

The links in the figure are also assigned to costs or weight.

1.2 The Outline of the Thesis

The structure of the thesis work is as follows:

• Chapter 2 covers the necessary background information by providing defini-

tions and fundamental concepts of graph theory, with a focus on understanding

the characteristics of communication networks that are relevant to the thesis.

• Chapter 3 relates the Bellman-Ford algorithm and the distance vector approach

to compute the shortest path between node i to node j in terms of two different

views namely centralized and distributed.

• Chapter 4 describes Dijkstra’s algorithm for finding the shortest path from

the source node to the destination node by evaluating both centralized and dis-

tributed approaches.

• Chapter 5 analyzes the differences between Bellman-Ford and Dijkstra’s algo-

rithms based on their nature, performance, and complexity.

• Chapter 6 examines other application areas of routing algorithms that are used

in the thesis such as vertex-weighted directed graphs and minimum cycle de-

tection (or hamiltonian path) for arbitrage in a directed graph. Additionally, it

investigates the complexities of these two algorithms on different graph struc-

tures.

• Chapter 7 concludes the paper thanks to comprehensive information about ex-

isting routing algorithms and gives a brief overview of possible future work.
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CHAPTER 2

PRELIMINARY TO THE SUBJECT

2.1 Notions of Graphs

This paragraph explains that the definition of a graph can vary depending on the field

of study, but it will provide a common definition to clarify the concepts of graph

theory. It also notes that for any two elements, u and v, in a set V , the unordered pair

⟨u, v⟩ is used to represent the relationship between them. Pair of u and v need not

be distinct and the order in which they appear in the unordered pair does not matter.

Unordered pairs ⟨u, v⟩ where u, v ∈ V is defined by (V × V )
′ .

Definition 2.1.1. A graph (network), denoted by G, can be defined as a collection of

vertices (nodes), represented by the set V , and a set of edges, represented by E that is

G = (V,E), such that the edges are a subset of all possible connections between the

vertices, represented by (V × V )
′
. The number of vertices in the graph G is known

as the order of the graph, and it is often referred to as a graph on the set V .

Barnes [3] in 1969 highlighted that the order of a graph can be infinite which means

the graph has infinitely many nodes or vertices. In practice, we will primarily con-

sider finite graphs, which have a limited number of vertices. Infinite graphs can have

theoretical significance, but we will concentrate on networks that exist in the real

world and they have a finite number of vertices. It is important to note that unless

otherwise stated, all the graphs we discuss will be assumed to be finite.
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x1

x2x3

Figure 2.1: A sample undirected graph representation

Example 2.1.2. Consider a set of vertices V = {x1, x2, x3}. The set of all pos-

sible connections between these vertices, represented by V × V , and E should be

a subset of this set, where the connections are symmetric. For example, if we take

E = {⟨x1, x1⟩, ⟨x1, x2⟩, ⟨x2, x3⟩}, To depict the graph, we label and identify individ-

ual vertices, and draw lines to connect them if an edge exists, as illustrated below:

Definition 2.1.3. Let G be a graph composed of vertices V and the set of edges E,

represented by G = (V,E). A connection of the form ⟨v, v⟩ ∈ E is referred to as a

loop. If the graph G does not contain any loops, it is known as a simple graph.

We can create a simple graph from any given graph by removing all loops. For ex-

ample, the previous graph can be transformed into a simple graph by eliminating all

loops present in it.

E = {⟨1, 2⟩, ⟨2, 3⟩}

Note that we will assume all the graphs are simple unless otherwise specified.

An unordered pair ⟨u, v⟩ is nothing but a simple set {u, v}, which is a subset of V

of size 2. Except for the simple graphs, others might have loops connecting a node

itself, and it is defined as {v, v} = {v} with size 1. Therefore, the choice of angle

brackets can be replaced with curly braces in order to represent a set of edges like

below:

E = {{1, 2}, {2, 3}}

Many graphs that we encounter in real-world situations are not naturally symmetric,
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or undirected, as seen in the works of [6]. For example, when constructing a graph

of webpages, a directed link is drawn from one webpage to another if there is a hy-

perlink present, and in relationship graphs, a directed link is created from relation

X to relation Y if relation X has a friendship with relation Y. These types of graphs

necessitate us to consider links as ordered pairs (u, v), as opposed to unordered pairs

u, v, resulting in a specific definition for them [20].

Definition 2.1.4. A graph is said to be directed, denoted by G = (V,E) if it consists

of vertices V and edges E where the edges are a subset of V × V . The edges in E

are referred to as directed edges or links. If the graph G does not have any loops, we

refer to it as a simple directed graph.

Suppose an edge e is directed edge and connecting u and v starting at u and ending at

v, denoted by e = (u, v) ∈ E. u is the initial vertex of e, and v is the final vertex of e.

Example 2.1.5. Let V = {x1, x2, x3} and E = {⟨x1, x3⟩, ⟨x3, x1⟩, ⟨x3, x2⟩}, we can

use pair (u, v) in E if (v, u) ∈ E for representation of the directed graph and an edge

will be drawn from node u to node v with an arrow pointing towards v. If both (u, v)

and (v, u) are in E, nodes can be represented as two distinct edges with arrows at

both ends.

x1

x2x3

x1

x2x3

Figure 2.2: A sample directed graph in two different representations

Due to the fact that edges in directed graphs are conceived of as having direction,

this digraph contains three edges rather than two, despite what the illustration on

the left might lead one to expect. Note that we can convert an undirected graph

into a directed graph by replacing an edge between nodes with two directed edges

in opposite directions. For instance, if G = (V,E) is undirected graph, an directed

graph G′ = (V,E ′) can be constructed with the same set of vertices V , but with an

edge set E ′ that includes two directed edges for every edge in E, one in each direction.

9



E ′ = {(u, v), (v, u) : ⟨u, v⟩ ∈ E} (2.1)

To transform undirected graph G into a directed graph G′, (u, v) and (v, u) edges

must include for any edge ⟨u, v⟩ ∈ G as in the Eq. 2.1. In the case of non-simple

graphs, there is a loop ⟨v, v⟩ that can also be transformed into (v, v). For instance,

the set of edge looks like E ′ = {(x1, x1), (x1, x2), (x2, x1), (x2, x3), (x3, x2)}. The

directed graph equivalent to the undirected graph can then be illustrated in the fol-

lowing manner.

x1

x2x3

x1

x2x3

Figure 2.3: A sample directed graph with loops in two different representations

In simpler terms, undirected graphs can be viewed as a specific type of directed graph

where the edges in the set E are symmetric, meaning that if an edge (u, v) is present in

the set E, then the edge (v, u) is also present. This is due to the fact that in undirected

graphs, edges are represented as unordered pairs of elements of set V , which is a

symmetric subset of the set V × V of ordered pairs hence the notation (V × V )
′ .

The main difference between undirected and directed graphs is that in counting the

edges, the directed graph will have twice as many edges as the undirected graph when

considering simple graphs as an example. This perspective is useful as it allows us to

examine both directed and undirected graphs using a consistent approach. As a result,

it is common to use the notation of ordered pairs (u, v) for edges in an undirected

graph in this context. Additionally, the edge set can be represented as a symmetric

subset of V × V , meaning that (u, v) ∈ E and (v, u) ∈ E are equivalent.
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CHAPTER 3

BELLMAN-FORD ALGORITHM AND THE DISTANCE

VECTOR APPROACH

The Bellman-Ford algorithm is a method for finding the optimum or shortest path

between a source node and a destination node in a network. According to a study

by Smith [5] in 2010, the Bellman-Ford algorithm is highly effective at solving the

shortest path problem with a single source. In a distributed setting, a distance vector

approach represents the shortest paths. It is highly recommended to see this book [8]

in order to obtain more detailed information about the Bellman-Ford algorithm the-

oretically. In this chapter, we Bellman-Ford’s centralized and distributed approaches

will be discussed.

3.1 CENTRALIZED VIEW OF BELLMAN-FORD ALGORITHM

Two specific nodes, labeled i and j, will be utilized in a network including N nodes

for the centralized Bellman-Ford algorithm. These nodes may be directly linked

through connections x1-x6 with destination nodes x2 and x6 as shown in Figure 1.1.

The Bellman-Ford algorithm is used to find the shortest path between two nodes in

a network, even if they are not directly connected. In Figure 1.1, for instance, nodes

x1 and x6 are not directly connected. This leads to an important concept. Hence,

regardless of whether nodes are connected directly, nodes should be considered with

the cost of the links. We introduce two necessary notations for this concept:
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dij := Cost of the link between node i and node j

Dij := Minimum cost of the path computed from node i to node j

Various notations are used to distinguish between calculations of different types of

algorithms, such as hats, over-bars, and underscores. For example, in the Bellman-

Ford algorithm, overbars are used for distance computations and variations. All the

notations used in all the chapters are explained on the abbreviations page.

When two nodes have a direct connection, the cost of the link dij between them is

considered to be a finite number. In Figure 1.1, node x2 and node x6 are connected

directly with a link cost of 20. That is, link cost of node x2 and node x6 can be written

dx2x6 = 20. However, node x1 and node x6 are not connected directly, so the link cost

is dx1x6 = ∞. Now, the difference between dij and Dij will be considered. From the

nodes x2 and x6, it can be seen that the minimum cost is essentially 3, and the path

for that cost is x2-x4-x3-x6; that is, Dx2x6 = 3 while dx2x6 = 20. For nodes x1 and

x6, we find that Dx1x6 = 5 while dx1x6 = ∞. This result implies that two nodes in a

network can have a minimum path cost even when they are not directly connected.

That means it is impossible to say that one of the end nodes is totally different and

isolated from the other nodes in the network.

The shortest-path algorithms are the leading actor in calculating the minimum cost

between two nodes. From the six-node network example, intermediary nodes are es-

sential, and they should be considered for finding the shortest path in a given network

to understand such an algorithm. Suppose that node k is directly connected to one of

the destination nodes in the network; the distance between node k and j has a finite

number represented as dkj . For this reason, any inquiry regarding Bellman-Ford’s

equations must be answered by the shortest path between node i and node j.

Dii = 0, for all i

Dij = min
k ̸=j

{Dik + dkj}, for i ̸= j (3.1)
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Figure 3.1: Centralized Bellman–Ford Algorithm with direct links in solid lines and
distances in dashed lines.

Eq. 3.1 emphasizes that for a pair of nodes i and j. It also explains the minimum

cost from node i to intermediate node k and their distance link k − j cost dkj where

those are directly connected. All the cost computation is represented in Figure 3.1.

It is possible to see that multiple intermediary nodes k might be directly tied to the

destination node j marked as k, k2, k3, and k4 in Figure 3.1 where k = i is concerned.

Thus, all the ks falling into this category have minimum costs and can be computed.

Additionally, a node k, which is not connected to j directly, has distance dkj is equal

to ∞. For such, ks must be considered as a part of the solution. As a result, the

minimum cost of the path computation remains the same. According to Eq. 3.1,

from node i to intermediary node k has the minimum cost, which is Dik. As a result,

the minimum cost after repeating the process for the number of hops h thanks to a

variation of Eq. 3.1 needs to be defined as follows:

D
(h)

ij := Minimum cost of the path computed from node i to node j when h hops have been considered

The Bellman-Ford algorithm is an iterative process that iterates the number of hops

given in Algorithm 1 taken from the book [21].
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Table 3.1: Minimum cost of node x1 to other nodes using Algorithm

1

The Bellman-Ford algorithm is applied to the six-node network as visualized in Fig-

ure 1.1 to find all the minimum costs from node x1 to all the other nodes and exempli-

fied in Table 3.1. An excellent way to understand the basis of the hop-based iteration

of the Bellman-Ford approach is to see an example. If we calculate the shortest path

between node x1 and node x6 while the number of hops increases, computed shortest

paths will change. Consider h = 1; the minimum cost is D(1)
x1x6 = ∞ due to the fact

that there is no direct link between x1 and x6. For h = 2, the only possible path

seems to be x1 − x2 − x6, which is two hopped link path. In other words, it uses two

connections, one between x1 and x2, and another between x2 and x6, resulting in a

minimum cost of 21, as represented by D
(2)

x1x6
. At h = 3, there are two possible paths

to reach node x6 where dkx6 < ∞ for only k that are shown below:
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k = 3, D
(2)

x1x3
+ dx3x6 = 4 + 1 = 5

k = 5, D
(2)

x1x5
+ dx5x6 = 5 + 1 = 6

Finally, for h = 4, Bellman-Ford step as follows where dkx6 < ∞:

k = 3, D
(3)

x1x3
+ dx3x6 = 3 + 1 = 4

k = 5, D
(3)

x1x5
+ dx5x6 = 4 + 1 = 5

k = 2, D
(3)

x1x2
+ dx2x6 = 1 + 20 = 21

For this scenario, we select the first one since the minimum cost from node x1 to node

x6 is 4, i.e., D
(4)

x1x6
= 4 with the shortest path x1 − x2 − x4 − x3 − x6. Note that the

computation of the minimum cost is the only thing the Bellman-Ford algorithm can

do; it does not keep a record of the most efficient route, but one can refer to Table

3.1 to understand the algorithm’s operation as it displays the most direct route. In

most networking environments, knowing the entire path is optional. The thing is that

the next node k with minimum cost suffices. The next node can be readily identified

using the Eq 3.8.

i

k

j

dik

Dkj

i k

j

i2

Dkj

dik

di2k

Figure 3.2: Distance vector view for calculating the shortest path

3.2 DISTRIBUTED VIEW OF A DISTANCE VECTOR APPROACH

For real-life situations, the nodes in the distributed view must determine the shortest

path between nodes, especially to a destination node. According to the centralized

view mentioned above, before reaching the destination node, the source node must
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have knowledge about the cost of the shortest path to other nodes. That means the

minimum cost of the destination D
(h)

ik should be calculated by using Eq 3.8 where

ik communicates through Figure 3.1. There needs to be more than this approach for

the centralized view of the Bellman-Ford algorithm to be used in a distributed view.

Therefore, some minor modifications to minimize the cost of the computation should

be initiated. Consider the change in Eq 3.7 and use this for the following step to find

the minimum distance as follows:

Dij = min
k ̸=i

{Dkj + dik}, for i ̸= j (3.2)

At first look, there seems not to be a difference between Eq. 3.8 and Eq. 3.2. How-

ever, we start by examining all the outgoing links from node i to node k where node i

is directly connected with a link cost dik. Besides, the minimum cost Dkj from k to

j having no information of how k arrived at this value should be kept in mind. All the

nodes directly connected to node i are known as neighbors of node i represented as

Ni. The idea is that node i can use information from its neighbors about the cost of the

minimum path to a destination to determine its own cost to that destination by adding

the cost of the link from i to that neighbor dik. ARPANET initially introduced this

approach and used it in their original internal routing as a distance-vector approach

[21]. The advantage of Eq. 3.2 is that it can be used in a distributed environment

where the computation takes place on multiple machines.

We will use Figure 3.2 to illustrate the benefits of using a time-based approach for

the computation of the shortest path in a distributed environment. The minimum

cost information Dkj(t) that contains the minimum cost to reach node j is received

periodically by node i from its neighbor node k. This approach allows node i to use

the most up-to-date information to determine its own cost to reach node j. However,

if node k updates the cost of reaching node j and shares this information with another

source node, such as i2, but not with node i. This scenario shows that the time-based

approach can lead to slight variations in the shortest path computed by different nodes

in the network. The source node i perceives the minimum cost value as the last cost

received by node i.

The correct notation for denoting the minimum cost from node k to node j as per-
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ceived by source node i at time t is D
i

kj(t). This can also be written as D
i2
kj(t) for

other nodes. Furthermore, the cost of the direct link dik between node i and node k

may vary over time because of changes in traffic or load in a dynamic network. With

that in mind, the cost of the direct link can be generalized as dik(t) to point out the

connection with time t. The distributed distance vector approach algorithm considers

this in Algorithm 2, see [21].

Table 3.2: Distributed distance vector approach computation from node x1 to x6 at
time t based on

We will now demonstrate the distributed variation of the algorithm. For the sake of
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simplicity, suppose that node k, which is directly connected to node j, sends Dkji(t)

to another node like node i, which is again directly connected at the same time. Ad-

ditionally, the direct link cost would be constant over time, meaning dik(t) does not

change.

To demonstrate this concept, we will utilize the same six-node network example and

determine the minimum cost path from node x1 to node x6 (as seen in Table 3.2).

We will evaluate the cost based on the number of "hops" that occur within specific

time intervals. For instance, when t = 0, it represents the cost from node x4 to

node x6 when they are directly connected. When t = 1, it signifies the cost from

node x4 to node x6 when node x6 receives the information from node x4 through

one intermediate node, and so on. Node x1 receives cost information from its direct

neighbors, node x2 and node x4, in the form of Dx2x6
1(t), the minimum cost from

node x2 to node x6, and Dx4x6
1(t), the minimum cost from node x4 to node x6,

respectively.

This approach is based on the idea that a node uses the known cost from its neighbor-

ing nodes to determine its best path, as stated by (Medhi & Ramasamy, 2018). The

key concept behind the distributed Bellman-Ford algorithm is that it uses periodic

computations and receives information from neighboring nodes. In the distance vec-

tor approach, a node, such as i, receives the cost from its neighboring node, such as

k, to reach a destination, represented by j, represented by Dkj(t). This information

considers the time t when the node i receives it. It is different from the centralized

Bellman-Ford algorithm, as it considers the computation order and the links differ-

ently to find the shortest path.

18



CHAPTER 4

DIJKSTRA’S ALGORITHM

Mitchell [22] in 2002 highlighted that the Dijkstra algorithm is a popular method for

finding the shortest path in routing applications, known for its efficiency and ease of

use. Dijkstra’s algorithm operates differently from the Bellman-Ford and distance

vector methods, using a set of potential neighboring nodes and the source’s calcu-

lations to find the shortest path to a destination. One of the key benefits of using

the Dijkstra algorithm is its ability to determine the shortest route from one specific

point to all other points in the graph rather than only a specific destination, making it

useful in communication networks where a node must determine the shortest path to

multiple destinations, see [7, 8].

4.1 CENTRALIZED APPROACH

Imagine we are located at node i in a network of N nodes and our objective is to

determine the shortest path to each of the other nodes. To accomplish this, we will

use a set of all nodes represented by N = {1, 2, ..., N} and a specific destination

node represented by j, where j is different from i. The process involves using the

following two equations:

dij := Cost of the link between node i and node j

Dij := Minimum cost of the path computed from node i and node j

To clearly distinguish the calculation method used in Dijkstra’s algorithm, the path’s
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cost between node i and node j will be used, denoted by Dij . This is different from

the Bellman-Ford algorithm or the distance vector approach, which uses different no-

tations. There are two groups where Dijkstra’s algorithm divides the list of nodes N .

The first group, the permanent set S, includes evaluated nodes, and the second group

consists of a tentative set S ′ , including the nodes which have not been evaluated. As

the algorithm runs, the set S grows with new nodes being added, while set S ′ de-

creases as nodes are removed from it. The algorithm stops when the set S ′ is empty.

Initially, the set S contains only the starting node i, and S
′ contains all the other nodes

in N except node i.
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Using Dijkstra’s algorithm, it is possible to discover which paths in a graph are the

shortest. It involves maintaining a list of "candidate" nodes and iteratively expanding

this list S by choosing the node with the least cost path from the source. The algorithm

also examines the neighboring nodes of the chosen node to see if the minimum cost to

them has changed. This process is repeated until the shortest paths to all nodes have

been found. The algorithm is known for its simplicity and efficiency and is often used

in communication networks, see [19].

Let’s examine a practical illustration of the operation of Dijkstra’s algorithm using

the network shown in Figure 1.1. Assume that node x1 desires to find the most ef-

ficient routes to all other nodes in the network. To start, we initiate the permanent

list S = {x1} and the tentative list S ′ = {x2, x3, x4, x5, x6}, and it’s straightforward

to determine the shortest paths to all nodes that are immediately linked to node x1,

while the remaining nodes’ costs are set to ∞, i.e.,

Dx1x2
= 1, Dx1x4

= 3, Dx1x3
= Dx1x5

= Dx1x6
= ∞

Moving to the next step where we observed node x1 has two immediate neighbors

connecting to it directly: node x2 and node x4 with a cost of dx1x2 = 1 and dx1x4 = 3,

respectively. As for the other nodes that are not directly connected to node x1, their

direct cost to reach them remains at a maximum value of ∞. Since node x2 has

the most cost-efficient path, we select it as the intermediary node k. As a result, we

update our lists to S = {x1, x2}, and S ′ becomes {x3, x4, x5, x6}. Next, we ask node

x2 for the cost to reach its direct neighbors that still need to be in set S. Looking at

Figure 1.1, we can see that node x2’s neighbors are node x3, node x4, and node x6.

As a result, we evaluate and calculate the expense of reaching these three nodes from

node x1 and investigate if there is any possible enhancement:

Dx1x3
= min{Dx1x3

, Dx1x2
+ dx2x3} = min{∞, 1 + 3} = 4

Dx1x4
= min{Dx1x4

, Dx1x2
+ dx2x4} = min{3, 1 + 1} = 2

Dx1x6
= min{Dx1x6

, Dx1x2
+ dx2x6} = min{∞, 1 + 20} = 21
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According to the results, there is a decrease in the cost to reach node x4. Therefore, we

found an improvement in cost to node x4. The cost is decreased by 1. We now have

a shortest path x1-x2-x3, x1-x2-x4 and x1-x2-x6 for nodes x4, x3 and x6 respectively.

The cost remains at ∞ for the remaining nodes and the iteration is completed. As a

next step, we will proceed to the following step and find that the node x4 is the next

intermediary node, and the procedure is repeated until we reach to destination node

x6. In table 4.1, We summarize all the steps until all the nodes are included in the list

S, and for better clarity, in Figure 4.1, we demonstrate how the algorithm gradually

includes new intermediary k to the confirmed list S. The progressive steps of the

centralized version of Dijkstra’s algorithm are presented in Algorithm 3.

Table 4.1: Dijkstra’s algorithm with iterative steps

4.2 DISTRIBUTED APPROACH

The distributed version of Dijkstra’s algorithm has a similar structure as its centralized

version. The primary difference is that the minimum cost of a link determined by

one node may be different from the minimum cost of the same link determined by

another node in the network because all the information which have been distributed

through the network happens asynchronously. The minimum cost of the connection

between node k and m received by node i at time t is denoted by dikm(t). Likewise,

the shortest path from node i to node j differs due to the time represented by Dij(t).

The algorithm we use for calculating the shortest distance in a distributed network is

shown in [21]. As in the centralized version of Dijkstra’s algorithm, the steps that are

applied to the decentralized version are pretty similar. That is, the algorithm takes the

cost of the link information while communicating with the other nodes. All the steps

can be visible in Table 4.1. The only change is time increment during the iterative
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Figure 4.1: First four iterative steps of Dijkstra’s algorithm

process so that the node gets information on various links and costs in the network.

In many communication networks, it is important to determine the next hop, which

refers to the next node that is directly connected and would be on the optimal path

for the source node i to reach the destination node j. Algorithm 5 presents a standard

version of Dijkstra’s algorithm that includes an additional identifier Hij to track the

next hop from i to the destination node j. The goal is to clearly present the logical

criteria for the reader’s understanding. In certain situations, determining the shortest

path to a particular destination node j instead of all destinations may be sufficient.

This can be done by exiting the while loop once the destination node j is reached.
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CHAPTER 5

COMPARISON OF THE BELLMAN–FORD AND DIJKSTRA’S

ALGORITHMS

Now is the right time to compare Dijkstra’s 3 and Bellman-Ford’s 1 algorithms. The

Bellman-Ford algorithm finds the shortest path to one specific destination point, while

Dijkstra’s algorithm calculates the shortest paths to all the destination nodes [21].

According to Harsha et al., [14] in 2010, the performance of routing algorithms can

be evaluated using various metrics, such as convergence time, routing table size, and

network throughput. For instance, when assessing the calculation of the minimal

cost for both algorithms, such as between Eq. 3.1 and Eq. 4.4, they may be similar.

Despite the similarities, there are some subtle distinctions between the Bellman-Ford

algorithm and Dijkstra’s algorithm. Both algorithms involve an intermediary node k.

In contrast, the Bellman-Ford algorithm uses a comparison of node k against all other

nodes to identify the optimal next step towards reaching node j. On the contrary,

Dijkstra’s algorithm uses a predetermined and fixed intermediary node k, and then

the shortest path calculation is performed for all remaining destinations j. Table 3.1

and Table 4.1 can assist in understanding the contrast between Dijkstra’s algorithm

and the Bellman-Ford algorithm.

As there are many cost operations in an algorithm, the algorithm’s computational

complexity that is explained in Appendix A should be kept in mind. Big O notation is

used to compare the computational complexity of different algorithms. For example,

assuming we have N as the total number of nodes and L as the total number of links,

the Bellman-Ford algorithm has a computational complexity of O(LN). In contrast,

Dijkstra’s algorithm has a complexity of O(N2).

25



26



By implementing certain enhancements to Dijkstra’s algorithm, the computational

complexity can be enhanced to O(L + N logN) as a result of the utilization of op-

timized data structures. The complete pseudo-code of the algorithm is available in

5 that is taken from [21]. If the given network is fully connected, then the number

of links that are bidirectional would be N (N−1)
2

. In this case, the complexity of the

bidirectional links is L = O(N2). Eventually, if we calculate the complexity of a

fully connected or almost fully-connected network for the Bellman-Ford algorithm is

O(N3). However, Dijkstra’s algorithm O(N2). Once some improvements are applied

to Dijkstra’s algorithm by changing the network, such as Internet service provider’s

network, square, or ring networks, the time complexity will reduce to O(NlogN).

Figure 5.1: All the determined paths from node x1 to x6 with costs

Table 5.1: Cost of paths identified from node 1 to node 6

27



Johnson [16] in 1977 states that the Dijkstra algorithm is generally faster and more

efficient for graphs with non-negative edge weights, while the Bellman-Ford algo-

rithm is more versatile and can handle negative weights. In light of Bellman-Ford

and Dijkstra’s algorithms, many popular routing algorithms were constructed, such

as state and distance vector protocols.
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CHAPTER 6

OTHER APPLICATION AREAS OF ROUTING ALGORITHMS

In recent years, the use of routing algorithms to solve complex problems has become

increasingly widespread. From telecommunications to transportation, logistics to fi-

nance, routing algorithms play a crucial role in helping organizations and individuals

make informed decisions and optimize their operations. In this chapter, we will ex-

plore two critical application areas apart from the main consideration in the thesis:

the application of Dijkstra’s algorithm in vertex-weighted directed graphs consider-

ing its complexity, and the use of the Bellman-Ford algorithm in arbitrage detection

by utilizing the minimum cycle in a given directed graph where negative weights

exist.

6.1 Dijkstra’s Algorithm On Weighted Vertices Graphs And Complexity

In mathematics, most problems can be reduced to finding the path with minimum cost

by using weighted graphs. The general idea is to calculate the minimum cost based

on a given cost function defined over the edges of a graph. Many studies use the cost

function approach, but one of the research is slightly different and more important

than existing approaches considering the usage of vertices in a graph. This approach

is naturally be designed by anyone by introducing a cost function defined on not

only edges but vertices as well. As initially thought, this seems to be the additional

complexity that has been added to the top of the existing weight computation. Still,

sometimes we might need to design such graphs to solve some robotics problems.

For example, in robotics applications, there is an issue of finding a path within the
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connectivity graph of a specific segment of the robot’s configuration space [2]. In this

problem, each vertex represents a specific area in the space where the robot moves,

and every edge symbolizes a smooth transition from one area to another, separated

by a tiny boundary. Therefore, a minimum cost function can be defined over the set

of vertices instead of a set of edges. However, this definition is more limited than the

commonly used definition. This is because there can be up to N(N−1)
2

edges in a graph,

where N represents the number of vertices. However, it can be proven that any cost

function for vertices can be expressed as a cost function for edges. The cost function

for vertices m(v) > 0 can be converted to a cost function for edges n(u, v) > 0 by

taking the average of the cost of the vertices connected by the edge. The function n

can be defined as m(u)+m(v)
2

. This means that both functions will give the same result

when finding the minimum cost between any two vertices. In addition, the minimum

cost of the edge on a path will be less than the cost of vertices, with a difference equal

to the average cost of the starting and ending vertices on that path.

6.1.1 Sketch of Proof and Complexity Analysis

Barbehenn [2] in 1998 outlines the following proof:

Consider a path p from the source vertex sv to vertex dv. The cost of path p using the

function m is represented by c(p), and the cost of the same path using the function n

is represented by d(p). Then c(p) =
∑

dvi∈p
m(dvi) and

d(p) =
∑

(dvi ,dvi+1 )∈p

n(dvi , dvi+1
) =

∑
(dvi ,dvi+1 )∈p

(m(dvi),m(dvi+1
))/2 (6.1)

=
∑
dvi∈p

m(dvi)− (m(dsv) +m(ddv))/2 = c(p)− (m(dsv) +m(ddv))/2

So, suppose p′ is the minimum cost path from sv to dv using m. Without loss of

generality, c(p′) < c(p). Hence, c(p′) − (m(dsv) +m(ddv))/2 < c(p) − (m(dsv) +

m(ddv))/2 which is d(p′) < d(p).

In general, complexity analysis, pseudocode, and correctness of Dijkstra’s algorithm

can be seen in many resources. Barbehenn [2] in 1998 examined the algorithm’s

complexity using priority queue implementation. The priority queue is supposed to
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be implemented via a binary heap tree, and the priority of a vertex is based on the

cost of its best current path. The complexity of the algorithm takes O(|V |) time to

create the initial priority queue with |V | vertices given by [13]. According to binary

heap implementation, operation for every subsequent queue takes O(log n) where n

is the size of the current priority queue. After finding the minimum cost from the

source vertex, each vertex v should be deleted from the queue. Once v is deleted, the

neighbor u of v needs to be evaluated whether there is a path passing through v and

having a lower cost than the current path. This evaluation happens O(|E|) where E

represents edge. If the worst-case scenario is thought, the time complexity would be

O(log |V |) for updating the priority of vertices for each evaluation. As a result, the

algorithm takes O(|E| log |V |) times.

If the cost function is vertex-based, the evaluation for improving the cost of a path suc-

ceeds only once for each vertex when the minimum cost from the source is deleted

from the priority queue. By using the definition in Eq. 6.1, once a vertex gets the cost

of a path, it also brings its minimum cost of that path. Formally, only O(|V |) eval-

uation is required for updating the vertex’s priority in a given queue, while O(|E|)
is considered for the minimum cost path. Finally, the total cost of the algorithm

used with vertex-based function for costs is O(|E| + |V | log |V |) thanks to the pri-

ority queue implementation of the binary heap tree. In light of this implementation,

Barbehenn (1998) states that implementing Fibonacci heaps is comparably hard to

implement, and it has high execution times compared to binary heap trees implemen-

tation.

6.2 Arbitrage Detection in Cryptocurrency Exchange with Bellman-Ford Al-

gorithm

A type of digital currency, cryptocurrency utilizes cryptographic techniques to se-

cure transactions and regulate the generation of additional units. Cryptocurrency

exchanges allow users to buy, sell, and trade cryptocurrencies. To facilitate these

transactions, cryptocurrency exchanges must have an efficient way to determine the

exchange rate between different cryptocurrencies.
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The Bellman-Ford algorithm is beneficial for finding the possible minimum path in

graphs containing negative edge weights. In a cryptocurrency exchange, the Bellman-

Ford algorithm can calculate the exchange rate between various cryptocurrencies.

The algorithm treats each cryptocurrency as a node in a graph and the exchange rate

between two cryptocurrencies as the edge weight between those nodes. The source

node is set to the base cryptocurrency, and the destination node is set to the target

cryptocurrency.

Since the emergence of Bitcoin thanks to Nakamoto’s whitepaper [23], cryptocur-

rency has become so popular due to the contributions of the Bitcoin community.

They increased the recognition of Bitcoin as an application of Blockchain technol-

ogy. In this manner, other developers in the world designed their alternative cryp-

tocurrencies based on blockchain-inspired Bitcoin infrastructure. Eventually, a lot of

new blockchain projects appeared and entered the cryptocurrency market with their

cryptocurrencies (altcoins). The basic idea behind these alternative currencies was

to come up with a different solution for transferring and sharing value between par-

ties without having intermediaries like banks. They also adapted privacy, currency

exchange, and programmable chains to provide one additional layer of security, pri-

vacy, and easy exchange for currencies.

With the growing popularity and large markets of cryptocurrencies, it is crucial to

research their viability and potential for improvement. Choosing the right cryptocur-

rency to invest in is a common challenge in the market, as each coin has different

goals, and its value depends on what people believe it to be [12]. This leaves cryp-

tocurrencies susceptible to speculation and significant price fluctuations, making cur-

rency exchange based on them a potentially profitable opportunity. For example,

when exchange rates are not aligned, arbitrage - a risk-free exchange of multiple cur-

rencies that generates profit - occurs due to discrepancies between currencies.

6.2.1 Background of Arbitrage Investigation

Grone et al. [12] in 2021 investigated the possibility of arbitrage in different mar-

kets by using the existing currency rates. They focused on buying assets from one

market and selling them in different markets by utilizing currency differences be-
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cause so many iterations on these markets mean that it will result in a reasonable

profit if exchanges happened at the same time or without delays. For this reason,

they redesigned the cryptocurrency arbitrage problem as the negative cycle detection

problem applied to directed graphs. They experimented with the Bellman-Ford algo-

rithm to detect possible arbitrage in three cryptocurrency exchange markets, namely

Gemini, Coinbase, and Kraken, respectively. Besides, Grone et al. [12] in 2021 using

a technique that is the minimum cycle mean in [18] to identify the negative cycles in

a given directed graph quickly.

Figure 6.1: An arbitrage sample

Suppose that there are three different markets, namely U, E, and B. Besides, Mike

has 10.000 USD, 50 ETH, and 5 BTC. The question is how could Mike get maximum

profit by exchanging his assets in different markets, or is there any way to find a

possible arbitrage opportunity in these markets? For the sake of simplicity, Market

E will be evaluated as an intermediary that supports interoperability between two

cryptocurrencies for exchange. Market U and Market B offer 248.26 USD for 1

ETH and 3956.92 USD for 1 BTC, respectively. In Market C, Mike can exchange

Ether and Bitcoin at a rate of 0.072275BTC
1ETH

. In figure 6.1, all the exchanges have been

simulated, starting from 10.000 USD to 10.045 USD. After these three exchanges

happened at the same time, Mike guaranteed that he would earn almost 46 USD

profit for his effort. It is important to note that these three operations between markets
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should be done at the same time due to the high fluidity of assets. If any asset value,

exchange rates, and fees are changed, then this arbitrage effort might end up with a

loss. Furthermore, Mike should hold at least the minimum assets greater than and

equal to exchanging assets before transactions happen. This is another condition that

Mike can perform exchange operations to take advantage of an arbitrage opportunity.

6.2.2 Arbitrage Detection Approach

Let C be the set of the cryptocurrencies denoted as C = {m1,m2, · · · ,mi} where

i ∈ {1, 2, · · · , n} and exchange rate pij of the cryptocurrency mi to the mj for

∀i, j ∈ {1, 2, · · · , n}. That is said, any unit of cryptocurrency mi needs pij units

of the cryptocurrency mj . If a sequence of n cryptocurrency arbitrage opportunity

is represented by ⟨m1,m2, · · · ,mn⟩. If there is a profit for exchanging m1 with mi

for mi+1 where i ∈ {1, 2, · · · , n − 1} and finally exchanging mn with m1 can be

formulated below:

pn1.
n−1∏
i=1

pi(i+1) > 1 (6.2)

All the possible cryptocurrency exchange markets can be considered an application

of directed graph G where each vertex indicates one cryptocurrency mi and each edge

eij means the exchange between mi and mj . In this directed graph, the cost or weight

function can be defined as u : E −→ R such that u(eij) = log2(pij). Equation 6.2

becomes, after taking the logarithm of both sides:

u(ek1) +
n−1∑
i=1

u(ei(i+1)) > 0

G is an important graph showing any negative cycle correlates to a positive cycle

means that u(eij) = −u(eji). According to equation 2, any possible sequence of n

cryptocurrency arbitrage possibility can be found by calculating the minimum n-cycle

in graph G with either negative or positive total weight.
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The most profitable n-cycle consisting of n vertices must have a minimum or max-

imum weight in the graph. Finding an n-cycle in a graph is very popular and is

regarded as a traveling salesman problem, a particular and famous problem in Math-

ematics. This problem is ordinarily NP-hard, but in the n-cryptocurrency arbitrage

cycle, the main interest is to find the possible negative cycles in graph so that anyone

can get the most profit from the arbitrage. The Bellman-Ford is a particular algorithm

that can quickly compute the shortest path considering the negative costs where no

negative cycles in graph G.

The complexity of the algorithm for finding a negative cycle in G is O(mn). Grone

et al. [12] in 2021 state that their cycle detection algorithm applies Bellman-Ford n

times for the worst-case scenario. Therefore, total time complexity becomes O(mn2).

They also underlined that the negative cycle detection algorithm could not identify

the number of negative cycles and the weightiest cycle in G. Their investigation only

checks if arbitrage opportunity exists in graph G.

In conclusion, Grone et al. [12] in 2021 experimented with historical data obtained

from three well-known cryptocurrency exchange markets: Kraken, Gemini, and Coin-

base. They observed that there are arbitrage opportunities in these markets given the

period of time in case all the transactions happened simultaneously. They also found
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a negative relationship between arbitrage in markets and their exchange fees. Future

investigations should be continued concerning the improvement in interoperability

and decentralized exchange schemes since these three markets are not fully decen-

tralized.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The correlation between routing algorithms such as Bellman-Ford and Dijkstra and

Cryptography will continue to be an active area of the field of computer science in

research and development. These algorithms have traditionally been used for net-

working and communication. The increasing importance of security in these areas

has led to a greater focus on integrating Cryptographic techniques.

One possible direction for future research is using Cryptographic techniques to en-

hance the security of routing protocols. This could involve using Cryptographic

signatures to verify the authenticity of routing information or encryption to protect

routing data from eavesdropping or tampering. A few recent studies in the literature

are being studied in the field of Cryptography. For instance, one recent paper ex-

plores using secure multiparty computation (SMC) techniques to solve network flow

problems. In this paper, Aly [1] discusses the background and motivation for this

approach, including the challenges of preserving the privacy and security of network

data in a distributed computing environment. The author also describes the mathe-

matical framework for network flow problems and how it can be applied to SMC.

The paper presents a new SMC protocol for solving a specific network flow prob-

lem called the minimum cost flow problem. Compared to existing algorithms, the

proposed protocol is shown to be more efficient in terms of communication and com-

putation overhead [1].

For instance, one potential application of Dijkstra is implementing SMC for network

flow problems, including routing, traffic engineering, and resource allocation. Yue,

Y. [25] in 1999 emphasizes that Dijkstra’s algorithm could determine the most effi-
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cient route thanks to efficient implementation. It can safely transmit encrypted data

between two parties to minimize the risk of interception or tampering. Jian, L. I.

[15] in 2009 also supports that some aspects of the conservation of storage space and

operational efficiency can improve Dijkstra’s algorithm.

Another potential area of research is the use of routing algorithms to facilitate se-

cure data exchange. It is possible to use a routing algorithm such as Bellman-Ford to

establish a secure communication channel between two parties, allowing them to se-

curely exchange keys and other sensitive information. Combinatorial designs, error-

correcting codes, and cryptography were investigated deeper [24]. In the article, they

focus on designing and analyzing cryptographic algorithms for secure communication

over untrusted networks. They specifically discuss a new algorithm called "masked

arithmetic" that aims to enhance the security of existing cryptographic algorithms by

protecting them from side-channel attacks. This security breach exploits unintended

information leakage during computation. Furthermore, the paper where they pub-

lished describes the design and implementation of the masked arithmetic algorithm

and provides a theoretical analysis of its security properties. It also includes experi-

mental results to demonstrate the practical performance of the algorithm. They intend

to contribute to the broader literature on cryptography and secure communication.

In addition to the above research studies, the two closest research areas are being

investigated and studied. Firstly, Larhoven [11] in 2020 proposes an improved algo-

rithm for solving the Convex Vector Packing Problem (CVPP), a fundamental prob-

lem in combinatorial optimization. The paper introduces a new approach called the

"randomized slicer" that solves the CVPP by partitioning the problem into smaller

subproblems and solving them iteratively. The new algorithm is more efficient than

previous approaches, allowing for sharper and faster solutions and the ability to han-

dle more significant problem instances. The paper also provides experimental results

that demonstrate the effectiveness of the randomized slicer approach. The proposed

algorithm is compared with existing algorithms on benchmark instances. The results

show that the randomized slicer consistently outperforms the other algorithms regard-

ing solution quality and running time. Secondly, Ducas and Woerden [10] presents a

new algorithm for solving the closest vector problem (CVP) in tensored root lattices

of type A and their duals. The article describes the algorithm and its recursive par-

38



titioning approach to construct short vectors in the lattices. The article proves that

the proposed algorithm has a polynomial time complexity. The authors also conduct

experiments comparing the new algorithm with existing algorithms on benchmark

instances. The results demonstrate that the proposed algorithm outperforms exist-

ing algorithms regarding solution quality and running time. The article contributes

significantly to the study of the computational complexity of the CVP in lattices. It

presents a tailored algorithm for a specific class of lattices and proves that it has a

polynomial time complexity. The experimental results demonstrate the proposed al-

gorithm’s effectiveness and superiority over existing algorithms.

Hence, some studies and research showed that the Bellman-Ford and Dijkstra al-

gorithms are closely related to the field of cryptography. Dijkstra, like Bellman-

Ford, is a popular algorithm for determining the shortest path between two nodes in a

graph. However, unlike Bellman-Ford, a dynamic programming algorithm, Dijkstra

is a greedy algorithm that works by iteratively relaxing the shortest path estimates of

vertices until it finds the shortest path.

In conclusion, both Bellman-Ford and Dijkstra are important routing algorithms that

have the potential to be used in conjunction with cryptographic techniques to improve

the security and efficiency of communication and networking systems. Improving the

security and reliability of communication and networking systems is likely to see

continued development and innovation in this area in the coming years.
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APPENDIX A

COMPUTATIONAL COMPLEXITY

The algorithmic solutions primarily used in this chapter consist of broad categories

that can be divided into two types. One is generally defined by a finite number on

the given input; the other is that they focus on numeric precision. For instance, the

former is Dijkstra’s algorithm for finding the shortest path in the network, and the

latter is the fixed-point algorithm. The complexity of the algorithms based on the

input with length n is known as big-Oh such as O(logn) and O(n2). For the latter,

the performance of an algorithm can be evaluated based on its convergence rate, such

as quadratic, linear, or super-linear. To illustrate, some numerical methods, like New-

ton’s method, have quadratic convergence and are typically used to find the root of

the given equation.

We will consider the class of algorithms with a finite number of operations for an

input size n. Even if the finite number of operations seems to be a small set of

points, this is not the case. Suppose that an algorithm runs with the number of 2n

operations to complete its process or find a solution that converges to a finite number

but might be huge because it increases exponentially. To be more concrete, Medhi

and Ramasamy [21] in 2018 highlighted that if each operation takes 1 microsecond

(= 10−6sec), then for n = 50, 2n operations would take 36 years to complete! Let us

look at a different algorithm that solves the same problem in n3 operations. However,

this algorithm is relatively faster than the previous one because solving the problem

takes almost 0.24 sec for n = 100. Therefore, computing the number of operations

done by an algorithm is crucial. Still, it is enough to compute a rough estimation that

deviates by a fixed multiplier for most cases instead of computing the exact number

of operations. This type of estimation can be expressed by a function with input size
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n. When the new algorithm comes into the picture and requires 5×n3 operations, the

total time would be 1.2 sec. Nonetheless, this new approach to solving that problem

still performs better than the algorithm with 2n operations. In short, big-Oh notation

gives us an estimate of the time measured in operations required for an algorithm to

solve a problem.

To be more specific, Let’s think about two functions f and g in the set of natural

numbers {1, 2, 3, 4, . . .}. We say that function f(n) is "on the same level as g(n)" or

"big-Oh of g(n)" and it is denoted as:

f(n) = O(g(n)),

if there is a constant C and a positive number k that exist such that

|f(n)| ≤ C|g(n)|,

where n > k.

The positive number k mentioned above is substantial because we are curious about

the input size n, which has at least of size k. Consider the previous example; if we

compare cost operations 2n and n3, we see that 2n is more minor than n3 where n is 3.

This comparison leads us to estimate incorrectly that the algorithm with 2n operations

is more performant than the algorithm with n3 operations. That is, the size of n is not

only the factor we need to consider. We must consider the growth rate of n while n is

increasing.

In the above equation, we have f(n) and g(n) apart from the k. The function f(n)

determines an algorithm’s number of operations for input size n. The function g(n)

is an indicator that shows the boundary of commonly used functions such as logn,

n2, and n. In big-Oh notation, base 2 is a general assumption in this sense for the

logarithmic calculations. Some of the functions have been plotted in Figure A.1 to

visualize the growth rates concerning a gradual increase in n. The constant operation

is also shown in the figure so that we can see the operations costs remain the same as

n increases, represented by O(1). In other words, the growth rate of the function is

not dependent on the input size of n [21].
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Figure A.1: Growth of some functions in terms of Big-O notation

When evaluating the performance of an algorithm, it is also crucial to take into ac-

count space complexity. Sometimes, an algorithm may have a favorable time com-

plexity, but it needs a substantial amount of storage to perform the operations. For

instance, even if the given algorithm has less complexity in terms of time, say O(n),

it may require colossal space complexity, say O(n5). At the point of implementation,

it is not feasible to integrate such an algorithm whether it is efficient. The trade-off

between time and space is a crucial consideration when choosing lookup and classi-

fication algorithms.
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