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The existence of light rings in a spacetime is closely related to the existence of black hole horizons and
observables such as the ringdown and the shadow. Black holes, compared to nonvacuum ultracompact
objects, have rather unique environments. To this aim, recently [P. V. P. Cunha and C. A. R. Herdeiro, Phys.
Rev. Lett. 124, 181101 (2020)] topological arguments, independent of the underlying gravity theory, were
developed to prove the existence of unstable light rings outside the Killing horizon of four dimensional
asymptotically flat, stationary, axisymmetric, nonextremal black holes. Here we extend these arguments to
five-dimensional stationary black holes. Generically in five dimensions, there are two possible conserved
angular momenta, hence the four-dimensional discussion does not extend verbatim to five dimensions;
nevertheless, we prove that there is a light ring for each rotation sense for a stationary black hole. We give
the static and the Myers-Perry rotating black holes as examples. We also show that when the horizon of the
black hole disappears and the singularity becomes naked, only one of the light rings survives; a similar
phenomenon also occurs in four dimensions which might allow testing the cosmic censorship hypothesis.

DOI: 10.1103/PhysRevD.107.024016

I. INTRODUCTION

Once considered as highly exotic objects that may not
even exist, black holes have entered into the realm of direct
observations in various ways: as sources of gravitational
waves produced by their merger with each other [1,2]
(or with other compact objects such as neutron stars [3]); or
via the image of their environment [4]. In both types of these
observations, it is clear that the observables associated with
the black holes are quite subtle: for the merger of binary
black holes, the gravitational wave that hits the detector has
a specific amplitude and frequency variation over the time
of observation which match the combined analytical and
numerical predictions of general relativity (in the inspiral,
merger and ringdown phases of the event). These allow one
to determine the properties of the individual black holes
(such as their masses) that take part in the merger; and
the luminosity distance at which the event took place. For
the image of the supermassive black holes taken by the
Event Horizon Telescope, one relies on the light rings,
which are special bound null unstable geodesics around the
black hole: basically a photon can orbit around a black hole
at a constant radius along the equatorial plane like a planet
rotating around a central body. But there could in principle
be ultracompact objects without horizons, made of some
form of matter, that can mimic black holes. The question is

to understand the differences in the environment of the
horizonless ultracompact objects and black holes.
A black hole in a vacuum, without a nontrivial environ-

ment, is hard to detect: to be clear, it certainly has a very
unique gravitational skeleton (i.e., all its multipole moments
are related to each other as it has no additional hair beside
its mass, angular momentum, and electric charge) which can
be compared to a neutron star with all different multipole
moments. But, it is clear that the observables we can
practically measure about a black hole are not the gravi-
tational multipole moments. Hence one must resort to the
environment of a black hole which seems to have rather
unique properties (just like the mentioned unique properties
of the vacuum black hole itself), such as the light rings;
and these are related to the observables such as the
ringdown and the shadow of the black hole. From this
vantage point, the result of [5] becomes quite remarkable:
under certain assumptions of symmetry and regularity, the
existence of an unstable light ring (for each rotation sense)
is related to the existence of null Killing horizons. On the
other hand, ultracompact objects without horizons have a
different environment as far as the light ring structure is
concerned [6]. Hence one can detect a black hole, by
observing its environment, and in particular its light ring
structure and the substructure. For generic photon orbits (not
just the light rings) around the Kerr black hole [7], see [8]
and [9] for the discussions and the references therein.
In the current work, we extend the topological arguments

of [5] (which essentially boils down to defining a vector
field that vanishes only at the location of the light ring) to
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generic five-dimensional stationary black holes. To under-
stand the light ring structure around these black holes, as it
will be clear, the effective potential for the light has to be
chosen carefully since there are two conserved angular
momenta in five dimensions, and the impact parameters
of light enter into the effective potential functions. To
properly set the stage, in Sec. II, we start with the static
five-dimensional spacetime and give the Schwarzschild-
Tangherlini black hole as an example. In Sec. III, we
introduce the topological techniques and apply them to the
static black hole. In Sec. IV, a generic stationary black hole
is studied: first we discuss the degenerate angular momenta
case and then move on to the distinct angular momenta
case. As an example, we also study the Myers-Perry
rotating solution. Section V is devoted to a brief study
of the case when the event horizon disappears and one is
left with a rotating, massive naked singularity. We show
that in this case, in four and five dimensions, there is a
single light ring.

II. FIVE DIMENSIONAL STATIC SPACETIMES

In the coordinates ðt; r; θ;ϕ1;ϕ2Þ [10], with the ranges,

t ∈ ð−∞;∞Þ; r ∈ ½rH;∞Þ;

θ ∈
�
0;
π

2

�
; φ1 ∈ ½0; 2π�; φ2 ∈ ½0; 2π�; ð1Þ

the metric of the 4þ 1 dimensional static black hole
spacetime can be written as

ds2 ¼ ξ2dt2 þ grrðr; θÞdr2 þ gθθðr; θÞdθ2
þ η21dϕ

2
1 þ η22dϕ

2
2; ð2Þ

where the timelike Killing vector field reads as ξ ≔ ∂

∂t with
the norm ξ2 ¼ gttðr; θÞ, and the rotation Killing vectors
read as η1 ≔ ∂

∂ϕ1
and η2 ≔ ∂

∂ϕ2
with the obvious norms η21 ¼

gϕ1ϕ1
ðr; θÞ etc. So ðt;ϕ1;ϕ2Þ are Killing coordinates, and

ðr; θÞ are essential coordinates. We assume that there is a
Killing horizon rH > 0 at which ξ2ðrHÞ ¼ 0 and for all
r > rH, we have ξ2ðrÞ < 0. We also assume asymptotic
flatness and causality ξ2ðr → ∞Þ → −1 and η1;2 are
spacelike.
In this background, we are interested in the existence of

bound null geodesics, and in particular light rings. One way
to do is to study the null Hamiltonian condition for a
photon, which states that

H ¼ 1

2
gμνpμpν ¼ 0; ð3Þ

where pμ ¼ dxμ
dλ represents the momentum of the photon

where λ is an affine parameter. The Killing symmetries,
dictate the following conserved quantities

pt ¼ hξ; pi≕ −E;

pϕ1
¼ hη1; pi≕Φ1;

pϕ2
¼ hη2; pi≕Φ2; ð4Þ

where E, Φ1, and Φ2 represent the energy and angular
momenta of the photon at spatial infinity, respectively.
We can split the Hamiltonian into a kinetic and a

potential part as

K ¼ grrp2
r þ gθθp2

θ;

V ¼ gttE2 þ gϕ1ϕ1Φ2
1 þ gϕ2ϕ2Φ2

2: ð5Þ

If we restrict to the light ring, we have

pr ¼ pθ ¼ _pμ ¼ 0; ð6Þ

which implies that K ¼ 0 and therefore V ¼ 0. This is the
first light ring condition. The second light ring condition
follows from the Hamilton’s equations which state that

_pμ ¼ −∂μ
�
1

2
gαβpαpβ

�

¼ −
1

2
ð∂μgrrp2

r þ ∂μgθθp2
θ þ ∂μVÞ: ð7Þ

The Eq. (7) together with (6) implies that ∂μV ¼ 0 which is
the second light ring condition.
The crux of the above argument is this: one can study the

light rings by just looking at the potential term only. But
the drawback this potential is that it directly depends on the
parameters of the photon, E, Φ1, and Φ2. We would like
to separate the properties of the photon from the properties
of the background spacetime. In order to get rid of this
dependence, it is useful to write the potential in the
following form: first let us define

D ≔ −ξ2η21η22 ð8Þ

and multiply it with the potential

−V ×D ¼ η21η
2
2E

2 þ ξ2η22Φ2
1 þ ξ2η21Φ2

2: ð9Þ

At this stage, to better understand the problem, let us take
the angular momenta to be equal (a simplification which
we shall remove in the spinning black hole case). Then
Φ1 ¼ Φ2 ≔ Φ. Furthermore, due to the equivalence prin-
ciple, there is no gravitational rainbow (photons with
different energies can circle the same geodesic), therefore
we can eliminate the energy of the photon by using the
inverse impact parameter as usual1

1Here, we assume that the photon is sufficiently energetic so
that its wavelength is small compared to the variations in the
gravitational field, hence the ray optics approximation works.
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σ ≔
E
Φ
; ð10Þ

with the help of which, the effective potential factors as

V ¼ Φ2

ξ2
ðσ − σ−Þðσ − σþÞ; ð11Þ

where the effective potential functions are independent of
the properties of the light and are determined by the
geometry alone:

σ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ξ2

�
1

η21
þ 1

η22

�s
: ð12Þ

Now, the first light ring condition (V ¼ 0) states that σ is
either equal to σ− or σþ, and this only determines the
impact parameter in terms of the geometry. But, the second
light ring condition, that is the flatness of the potential in
all directions ∂μV ¼ 0, carries a great deal more informa-
tion which we shall explore now.
In order to understand the “gradient flows” associated

with the second light ring condition, it is best to define a
two dimensional vector field as [6]

vr ≔
∂rσ�ffiffiffiffiffiffi
grr

p ; vθ ≔
∂θσ�ffiffiffiffiffiffi
gθθ

p ; ð13Þ

which was normalized as above to yield ∂
μσ�∂μσ� ¼ v2r þ

v2θ ≕ v2 Hence the second light ring condition dictates that
v⃗ ¼ 0. Furthermore, defining the angle Ω as vr ¼ v cosΩ
and vθ ¼ v sinΩ, one can see that the integral

H
C dΩ over a

closed curve C in the ðr; θÞ space should yield 2πw with w
being the winding number taking values in integers. Hence
as shown in [5], w is a well-defined topological number that
one can assign to light rings:

w ¼ 1

2π

I
C
dΩðr; θÞ; ð14Þ

where C can be deformed to any other contour as long as a
light ring is not crossed. The sign of w is just a convention:
for a counterclockwise C, negative winding corresponds to
a standard light ring.
At this stage, let us consider the simplest case: the five

dimensional Schwarzschild-Tangherlini black hole with the
metric functions given as

gtt ¼ −
�
1 −

μ

r2

�
; grr ¼

�
1 −

μ

r2

�
−1

gθθ ¼ r2; gϕ1ϕ1
¼ r2 sin2 θ;

gϕ2ϕ2
¼ r2 cos2; θ

D ¼ ðr2 − μÞr2 sin2 θ cos2 θ; ð15Þ

where μ is related to the mass of the black hole via

μ ¼ 8GM
3π

: ð16Þ

Hence, the effective potential functions become

σ� ¼ �1

r2 sin θ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − μ

q
: ð17Þ

The vector field components can be calculated as

vr ¼ � 1

r4 sin θ cos θ
ð2μ − r2Þ; ð18Þ

and

vθ ¼ ∓ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − μ

p
r3

�
cos 2θ
sin2 2θ

�
: ð19Þ

As stated above, the light ring corresponds to the
particular point in the vector field which has the
property

v2r þ v2θ ¼ 0 → v ¼ 0: ð20Þ

Therefore, we can conclude that the light ring is located
at r ¼ ffiffiffiffiffi

2μ
p

and θ ¼ π
4
. In other words, we have a

standard light ring outside the horizon for a five dimen-
sional static black hole. Now, we can confirm this by
using the topological charge and the winding number
concepts.

III. CONTOUR ANALYSIS AND THE WINDING
NUMBER FOR THE STATIC BLACK HOLE

IN 5 DIMENSIONS

Let us assume, we have a contour outside the horizon
which can be described as in Fig. 1 with the following line
segments

I1∶ r ¼ R; δ ≤ θ ≤
π

2
− δ;

I2∶ θ ¼ π

2
− δ; r0 ≤ r ≤ R;

I3∶ r ¼ r0; δ ≤ θ ≤
π

2
− δ;

I4∶ θ ¼ δ; r0 ≤ r ≤ R.

Now, we would like to investigate how the vector field v⃗
changes along this contour. But we must cover all the
exterior region to the black hole which means at the end, our
contour should be extended to all the ðr; θÞ plane outside the
horizon. Hence we must take the limits δ → 0, r0 → rH and
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R → ∞. The order of the limits is important [5]. Let us
study each line segment separately.

A. Line segment I4
From (18) and (19), one observes that as δ → 0 and

therefore θ → 0 along the line segment I4: the components
of the vector field become

vr ∝ � 1

sin θ
ð21Þ

and

vθ ∝ ∓ 1

sin2 2θ
: ð22Þ

Hence, vθ is the dominant component of the vector field
and we have

Ω ¼ arcsin

�
vθ
v

�����
0

→ ∓ π=2 for θ → 0 ð23Þ

along I4.

B. Line segment I2
Similarly, as δ → 0 and therefore θ → π

2
along the line

segment I2

vr ∝ � 1

cos θ
ð24Þ

and

vθ ∝ ∓ 1

sin2 2θ
: ð25Þ

Hence, vθ is the dominant component of the vector field
and

Ω ¼ arcsin

�
vθ
v

�����
π
2

→ �π=2 for θ →
π

2
ð26Þ

along I2.

C. Line segment I3
The event horizon for the five dimensional static black

hole in the given coordinates is located at rH ¼ ffiffiffi
μ

p
.

While approaching the horizon, the r component of the
vector field (18) does not change sign along I3. The term
in the parenthesis is always positive while approaching
the event horizon and r4 sin θ cos θ ¼ r4

2
sin 2θ is always

positive for θ ∈ ½0; π
2
�. Therefore, for

σ ¼ σþ; vr → þ ð27Þ

and for

σ ¼ σ−; vr → −: ð28Þ

Yet, the θ component of the vector field changes (19)
sign along I3, because it has cos 2θ, which is negative
for θ ∈ ½π

4
; π
2
� and is positive for θ ∈ ½0; π

4
�. This con-

stitutes the half of the winding as can be seen in (1).

D. Line segment I1
The same argument with the line segment I3 can be

used here. The vr does not change sign along I1 and
points opposite to I3. The vθ component of the vector
field changes sign because for a counterclockwise rota-
tion, it starts at a negative direction and ends in the
positive direction for the positive rotation sense and this
constitutes the other half of the winding (1).
To summarize, in order to evaluate (14), we decom-

posed the contour into four lines, and investigated each
lines separately. In other words, we wrote the winding
number as (where the proper limits are to be understood)

ω ≔ ωI1 þ ωI2 þ ωI3 þ ωI4 ; ð29Þ

where

ωIi ≔
1

2π

Z
Ii

dΩðr; θÞ; i ∈ ð1; 2; 3; 4Þ: ð30Þ

We showed that there is no contribution to the winding
number along the lines I2 and I4, in other words, ωI2 ¼ 0

and ωI4 ¼ 0. We also showed that there are two negative
half windings along the lines I1 and I3, and hence ωI1 ¼
− 1

2
and ωI3 ¼ − 1

2
. In conclusion, we obtained ω ¼ −1,

FIG. 1. The representation of the results found in the contour
analysis. The vector field, v⃗, obtained by using the effective
potential of the positive rotation sense can be seen along the
contour. The full negative winding is apparent.
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which implies that we had a standard light ring inside the
contour.
The general behavior of the vector field around the light

ring is plotted in Figs. 2 and 3.

IV. SPINNING BLACK HOLES
IN 5 DIMENSIONS

Let us now consider three Killing vectors to be non-
orthogonal to each other, such that in the coordinates
ðt; r; θ;ϕ1;ϕ2Þ the metric of the five dimensional stationary
black hole reads as

ds2 ¼ ξ2dt2 þ grrðr; θÞdr2 þ gθθðr; θÞdθ2
þ η21dϕ

2
1 þ η22dϕ

2
2 þ 2ðξ; η2Þdtdϕ2

þ 2ðη1; η2Þdϕ1dϕ2 þ 2ðξ; η1Þdtdϕ1; ð31Þ

where ðη1; η2Þ ¼ gϕ1ϕ2
ðr; θÞ etc. As in the static case, the

Hamiltonian can be split into the kinetic and potential parts.
The kinetic part is the same as the static case,

K ¼ grrp2
r þ gθθp2

θ; ð32Þ

but the potential now has cross terms and reads as

V ¼ gttE2 þ gϕ1ϕ1Φ2
1 þ gϕ2ϕ2Φ2

2

− 2gtϕ1EΦ1 − 2gtϕ2EΦ2 þ 2gϕ1ϕ2Φ1Φ2; ð33Þ

which can be recast as

V ¼ −
1

D
½E2ðη21η22 − ðη1; η2Þ2Þ þΦ2

1ðξ2η22 − ðξ; η2Þ2Þ
þΦ2

2ðξ2η21 − ðξ; η1Þ2Þ þ 2Φ1Φ2ððξ; η1Þðξ; η2Þ
− ξ2ðη1; η2ÞÞ þ 2EΦ1ððξ; η1Þη22 − ðξ; η2Þðη1; η2ÞÞ
þ 2EΦ2ððξ; η2Þη21 − ðξ; η1Þðη1; η2ÞÞ�; ð34Þ

where

D ≔ η21ðξ; η2Þ2 þ η22ðξ; η1Þ2 þ ξ2ðη1; η2Þ2
− ξ2η21η

2
2 − 2ðξ; η1Þðξ; η2Þðη1; η2Þ: ð35Þ

Once again, due the equivalence principle, energy of the
light will not play a role by itself, and we can pull it out as a
factor in the effective potential. At this stage the discussion
bifurcates: if the angular momenta of the light are equal to
each other, the problem is easier to handle, if not, one
needs to work a little harder. Let us study these two cases
separately.

A. Case I: Equal angular momenta

Let Φ1 ¼ Φ2 ¼ Φ and define, as in the static case, the
inverse impact parameter

σ ≔
E
Φ

ð36Þ

then (34) reduces to

FIG. 3. v⃗ ¼
�

−1
r4 sin θ cos θ ð2 − r2Þ; 4

ffiffiffiffiffiffiffi
r2−1

p
r3

�
cos 2θ
sin2 2θ

		
obtained by

using the effective potential function associated with the negative
rotation sense is plotted in neighborhood of the standard light
ring (r ¼ ffiffiffi

2
p

, θ ¼ π=4) for the static spacetime with two equal
angular momenta.

FIG. 2. v⃗ ¼
�

1
r4 sin θ cos θ ð2 − r2Þ;− 4

ffiffiffiffiffiffiffi
r2−1

p
r3

�
cos 2θ
sin2 2θ

		
obtained by

using the effective potential function associated with the positive
rotation sense is plotted in neighborhood of the standard light
ring (r ¼ ffiffiffi

2
p

, θ ¼ π=4) for the static spacetime with two equal
angular momenta.
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V ¼ −
Φ2

D
½σ2ðgϕ1ϕ1

gϕ2ϕ2
− g2ϕ1ϕ2

Þ
þ 2σðgtϕ1

ðgϕ2ϕ2
− gϕ1ϕ2

Þ þ gtϕ1
ðgϕ2ϕ2

− gϕ1ϕ2
ÞÞ

× ðgttðgϕ1ϕ1
þ gϕ2ϕ2

− 2gϕ1ϕ2
Þ− ðgtϕ1

− gtϕ2
Þ2Þ�; ð37Þ

where, we have introduced the metric components explic-
itly. The effective potential factors as

V ¼ −
Φ2

D
ðσ − σþÞðσ − σ−Þ ð38Þ

with

σ� ≔
A�
B

; ð39Þ

where

A� ≔ −gϕ2ϕ2
gtϕ1

− gϕ1ϕ1
gtϕ2

þ gtϕ1
gϕ1ϕ2

þ gtϕ2
gϕ1ϕ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðgϕ1ϕ1

þ gϕ2ϕ2
− 2gϕ1ϕ2

Þ
q

ð40Þ

and

B ≔ gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2
: ð41Þ

In order to find the light ring outside the event horizon, we
are going to follow a similar approach with the static case
and investigate the gradient flows along a contour and take
limits to cover all the space outside the Killing horizon.

1. Axis limit

A: θ → 0
In order to understand the behavior of the metric

components while approaching the axis, it is beneficial
to introduce a local coordinate [5]

ρ2 ≔ gϕ1ϕ1
ð42Þ

and ρ → 0 as θ → 0. The other metric components can be
expanded in terms of ρ as ρ → 0. Keeping the dominant
terms, we have

gtt ≈ gð0Þtt þOðρÞ;
gtϕ1

≈ ρn þOðρnþ1Þ;
gtϕ2

≈ gð0Þtϕ2
þOðρÞ;

gϕ1ϕ2
≈ ρm þOðρmþ1Þ;

gϕ2ϕ2
≈ gð0Þϕ2ϕ2

þOðρÞ: ð43Þ

At this point, it is important to emphasize the fact that n ≥ 2
and m ≥ 2. This can easily be shown by extending the
regularity ideas developed in [5] and require a nonvanishing

scalar curvature. [We give the details of this in the
Appendix.] By using these expansions, one has

D ≈ ρ2
�
ðgð0Þtϕ2

Þ2 þ gð0Þϕ2ϕ2

ρ2n

ρ2
þ gð0Þtt

ρ2m

ρ2

−gð0Þtt g
ð0Þ
ϕ2ϕ2

− 2gð0Þtϕ2

ρnþm

ρ2

�
: ð44Þ

Because of the fact that gϕ1ϕ1
cannot go to zero faster than

gtϕ1
and gϕ1ϕ2

, one has

D ≈ ρ2ððgð0Þtϕ2
Þ2 − gð0Þtt g

ð0Þ
ϕ2ϕ2

Þ; ð45Þ

while

A ≈ ρ2
�
−gð0Þtϕ2

�
�
ððgð0Þtϕ2

Þ2 − gð0Þtt g
ð0Þ
ϕ2ϕ2

Þ
�
1þ gð0Þϕ2ϕ2

ρ2

��1
2
�
;

ð46Þ

and

B ≈ ρ2gð0Þϕ2ϕ2
− ρ2m ≈ ρ2ðgð0Þϕ2ϕ2

Þ: ð47Þ

As a consequence,

σ� ≈ −
gð0Þtϕ2

gð0Þϕ2ϕ2

�
½ððgð0Þtϕ2

Þ2 − gð0Þtt g
ð0Þ
ϕ2ϕ2

Þð1þ gð0Þϕ2ϕ2

ρ2
Þ�

1
2

gð0Þϕ2ϕ2

≈ −
gð0Þtϕ2

gð0Þϕ2ϕ2

� 1

ρ

½ððgð0Þtϕ2
Þ2 − gð0Þtt g

ð0Þ
ϕ2ϕ2

Þðρ2 þ gð0Þϕ2ϕ2
Þ�12

gð0Þϕ2ϕ2

≈ constant� 1

ρ
× constant: ð48Þ

The forms of σ� imply that vr ∝ 1
ρ and vθ ∝ 1

ρ2
. Therefore,

vθ is dominant as ρ → 0. As a conclusion,

Ω ¼ arcsin

�
vθ
v

�����
0

→ ∓ π=2 for θ → 0: ð49Þ

B: θ → π
2

A similar approach in the θ → 0 limit, after defining the
local coordinate as

ρ2 ≔ gϕ2ϕ2
: ð50Þ

yields

σ� ≈ constant� 1

ρ
× constant: ð51Þ

In conclusion
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Ω ¼ arcsin

�
vθ
v

�����
π
2

→ �π=2 for θ →
π

2
: ð52Þ

2. Horizon limit

In order to investigate the behavior of the metric
components while approaching the horizon, it is useful
to introduce the lapse function, defined as

N≔ ð−gttÞð−1
2
Þ

¼
�
−
g2tϕ2

gϕ1ϕ1
− 2gtϕ1

gtϕ2
gϕ1ϕ2

þ g2tϕ1
gϕ2ϕ2

g2ϕ1ϕ2
− gϕ1ϕ1

gϕ2ϕ2

− gtt

�1
2

: ð53Þ

Recalling that

D ¼ gϕ1ϕ1
g2tϕ2

þ gϕ2ϕ2
g2tϕ1

þ gttg2ϕ1ϕ2

− gttgϕ1ϕ1
gϕ2ϕ2

− 2gtϕ1
gtϕ2

gϕ1ϕ2
ð54Þ

one can write the lapse function as

N2 ¼ −
D

g2ϕ1ϕ2
− gϕ1ϕ1

gϕ2ϕ2

: ð55Þ

The Killing vector field (with constant Ω1;2)

χ ≔ ∂t þΩ1∂ϕ1
þ Ω2∂ϕ2

ð56Þ

is null on the horizon,

ðχμχμÞjH ¼ 0; ð57Þ

given that these constants are chosen as

Ω1 ≔
�
gtϕ2

gϕ1ϕ2
− gtϕ1

gϕ2ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

�
H

ð58Þ

and

Ω2 ≔
�
gtϕ1

gϕ1ϕ2
− gtϕ2

gϕ1ϕ1

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

�
H

: ð59Þ

By defining two functions that extend Ω1;2 beyond the
horizon

ω1 ≔
gtϕ2

gϕ1ϕ2
− gtϕ1

gϕ2ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

; ð60Þ

and

ω2 ≔
gtϕ1

gϕ1ϕ2
− gtϕ2

gϕ1ϕ1

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

; ð61Þ

we can write the effective potential functions as

σ� ¼ ω1 þ ω2 � N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕ1ϕ1

þ gϕ2ϕ2
− 2gϕ1ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

s
: ð62Þ

Note that this can be expressed as a function of the Killing
vectors ξ; η1; η2, but the above form is easier to work with.
Now, we introduce two coordinates, n, z, where n

represents the normal distance to the horizon which
vanishes at the horizon, and the z direction is perpendicular
to n. One can write the other components as a function of
these two coordinates. Without loss of generality, we can
safely assume, outside the horizon, gnn ¼ 1. By general-
izing the approximation ideas introduced in [11], we obtain

gϕ1ϕ1
ðn; zÞ ¼ ½gH�ϕ1ϕ1

ðzÞ þOðn2Þ;
gϕ2ϕ2

ðn; zÞ ¼ ½gH�ϕ2ϕ2
ðzÞ þOðn2Þ;

gϕ1ϕ2
ðn; zÞ ¼ ½gH�ϕ1ϕ2

ðzÞ þOðn2Þ;
Nðn; zÞ ¼ κHnþOðn3Þ;
ω1ðn; zÞ ¼ Ω1 þOðn3Þ;
ω2ðn; zÞ ¼ Ω2 þOðn3Þ; ð63Þ

where κH is the surface gravity which is a nonzero constant
on the horizon. Therefore, near the horizon, the effective
potential functions become

σ� ≈Ω1 þ Ω2 � κHn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gH�ϕ1ϕ1

þ ½gH�ϕ2ϕ2
− 2½gH�ϕ1ϕ2

½gH�ϕ1ϕ1
½gH�ϕ2ϕ2

− ½gH�2ϕ1ϕ2

s

≈ constant� κHn × constant: ð64Þ

Since,

1ffiffiffiffiffiffiffi
gnn

p ∂

∂n
¼ 1ffiffiffiffiffiffi

grr
p ∂

∂r
ð65Þ

near the horizon, and gnn ¼ 1, we have

vr;� ¼ 1ffiffiffiffiffiffi
grr

p ∂

∂r
σ� ¼ ∂

∂n
σ�

≈�κH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gH�ϕ1ϕ1

þ ½gH�ϕ2ϕ2
− 2½gH�ϕ1ϕ2

½gH�ϕ1ϕ1
½gH�ϕ2ϕ2

− ½gH�2ϕ1ϕ2

s
: ð66Þ

The important observation is that there is no sign change in
the horizon limit. Therefore we can say that for positive
effective potential, vr is always positive, and for negative
effective potential, vr is always negative. Nevertheless, the
angular component (vθ) changes sign during the contour,
because for a positive rotation sense, it starts in the positive
direction and ends in the negative direction. This contrib-
utes a negative half winding, as expected.
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3. Asymptotic limit

In the asymptotic limit, we have a flat spacetime in
spherical coordinates

gtt ≈ −1; gtϕ1
¼ 0; gtϕ2

¼ 0;

grr ≈ 1; gθθ ≈ r2; gϕ1ϕ2
¼ 0;

gϕ1ϕ1
≈ r2sin2θ; gϕ2ϕ2

≈ r2cos2θ: ð67Þ

This yields

vr;� ¼ 1ffiffiffiffiffiffi
grr

p ∂

∂r
σ� ¼ ∂

∂r
σ�; ð68Þ

where

σ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt

�
1

gϕ1ϕ1

þ 1

gϕ2ϕ2

�s

¼ � 1

r sin θ cos θ
: ð69Þ

Therefore,

vr;� ¼ ∓ 1

r2 sin θ cos θ
: ð70Þ

Since to θ ∈ ½0; π
2
�, sin θ cos θ > 0, one has

signðvr;�Þj∞ ¼ ∓1: ð71Þ

This is sufficient. The angular component changes sign and
it contributes a negative half winding. The discussion in the
paragraph including (30) applies here verbatim and one
gets a total winding number −1 which refers to a standard
light ring.

B. Case II: Distinct angular momenta

At this point, we would like to investigate the solutions
with distinct angular momenta of light Φ1 ≠ Φ2. The
effective potential can be written as

V ¼ −
1

D
ðgϕ1ϕ1

gϕ2ϕ2
− g2ϕ1ϕ2

Þ
�
E2 þ E

�
2Φ1

�
gtϕ1

gϕ2ϕ2
− gtϕ2

gϕ1ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

�
2Φ2

�
gtϕ2

gϕ1ϕ1
− gtϕ1

gϕ1ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

��

þ
�
Φ2

1

�
gttgϕ2ϕ2

− g2tϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

�
þΦ2

2

�
gttgϕ1ϕ1

− g2tϕ1

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

�
2Φ1Φ2

�
gtϕ1

gtϕ2
− gttgϕ1ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

���
: ð72Þ

Here instead of the inverse impact parameters σ1;2, it pays
to use the impact parameters b1;2, hence pulling out the E2,
the effective potential factors as

V ¼ −
E2

D
ðgϕ1ϕ1

gϕ2ϕ2
− g2ϕ1ϕ2

Þð1 − bþÞð1 − b−Þ; ð73Þ
where

b� ≔ −b1
�
gtϕ1

gϕ2ϕ2
− gtϕ2

gϕ1ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

�

− b2

�
gtϕ2

gϕ1ϕ1
− gtϕ1

gϕ1ϕ2

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

�
� 1

2

ffiffiffiffi
Δ

p
ð74Þ

and

Δ¼ 4D
ðgϕ1ϕ1

gϕ2ϕ2
−g2ϕ1ϕ2

Þ2 ðgϕ2ϕ2
b21þgϕ1ϕ1

b22−2gϕ1ϕ2
b1b2Þ:

ð75Þ

From now on, the vector field will be defined as

vr ≔
∂rb�ffiffiffiffiffiffi
grr

p ; vθ ≔
∂θb�ffiffiffiffiffiffi
gθθ

p : ð76Þ

1. Axis limit-I

One can show that as θ → 0, one has

D ≈ ρ2
�
ðgð0Þtϕ2

Þ2 þ gð0Þϕ2ϕ2

�
ρ2n

ρ2

�
þ gð0Þtt

�
ρ2m

ρ2

�

−gð0Þtt gð0Þϕ2ϕ2
− 2gð0Þtϕ2

�
ρnþm

ρ2

��

≈ ρ2ððgð0Þtϕ2
Þ2 − gð0Þtt g

ð0Þ
ϕ2ϕ2

Þ: ð77Þ

Therefore,

b� ≈
1

ρ2gð0Þϕ2ϕ2
− ρ2m

�
−b1ðρngð0Þϕ2ϕ2

− gð0Þtϕ2
ρmÞ

− b2ðρ2gð0Þtϕ2
− ρnρmÞ � ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgð0Þtϕ2

Þ2 − gð0Þtt g
ð0Þ
ϕ2ϕ2

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þϕ2ϕ2

b21 þ ρ2b22 − 2ρmb1b2

q �
: ð78Þ

Keeping the leading and the next to leading terms,
one has
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b� ≈
1

gð0Þϕ2ϕ2

�
−b2g

ð0Þ
tϕ2

� 1

ρ
jb1j

ffiffiffiffiffiffiffiffiffiffi
gð0Þϕ2ϕ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgð0Þtϕ2

Þ2 − gð0Þtt g
ð0Þ
ϕ2ϕ2

q �
;

which compactly reads:

b� ≈ constant� 1

ρ
× constant: ð79Þ

Therefore, vr ∝ 1
ρ and vθ ∝ 1

ρ2
. Thus, we obtained the same

result as in the equal angular momenta case.

2. Axis limit-II

This time, as θ → π
2
,

b� ≈
1

ρ2gð0Þϕ1ϕ1
− ρ2m

ð80Þ

×

�
−b1ðρ2gð0Þtϕ1

−ρnρmÞ−b2ðρngð0Þϕ1ϕ1
−gð0Þtϕ1

ρmÞ

�ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgð0Þtϕ1

Þ2−gð0Þtt g
ð0Þ
ϕ1ϕ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þϕ1ϕ1

b22þρ2b21−2ρmb1b2

q �
;

ð81Þ

which again has the dominant terms given as

b� ≈
1

gð0Þϕ1ϕ1

�
−b1g

ð0Þ
tϕ1

� 1

ρ
jb2j

ffiffiffiffiffiffiffiffiffiffi
gð0Þϕ1ϕ1

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgð0Þtϕ1

Þ2 − gð0Þtt g
ð0Þ
ϕ1ϕ1

q �
:

In other words, we obtained a result in the form of

b� ≈ constant� 1

ρ
× constant: ð82Þ

Therefore, vr ∝ 1
ρ and vθ ∝ 1

ρ2
. We obtained the same result

as in the equal angular momenta case.

3. Horizon limit

We can write the effective potential functions as

b� ¼ ω1b1 þ ω2b2 �
ffiffiffiffi
D

p

gϕ1ϕ1
gϕ2ϕ2

− g2ϕ1ϕ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕ2ϕ2

b21 þ gϕ1ϕ1
b22 − 2gϕ1ϕ2

b1b2
q

: ð83Þ

With the help of the lapse function, one has

b� ¼ ω1b1 þ ω2b2

� N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕ2ϕ2

b21 þ gϕ1ϕ1
b22 − 2gϕ1ϕ2

b1b2
gϕ1ϕ1

gϕ2ϕ2
− g2ϕ1ϕ2

s
; ð84Þ

which in the near the horizon limit, yields

b� ≈Ω1b1 þΩ2b2

� κHn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH;ϕ2ϕ2

b21 þ gH;ϕ1ϕ1
b22 − 2gH;ϕ1ϕ2

b1b2
gH;ϕ1ϕ1

gH;ϕ2ϕ2
− g2H;ϕ1ϕ2

s

≈ constant� κHn × constant: ð85Þ

Since, we have

vr;� ¼ ∂nb� ð86Þ

the discussion around (66) for the equal momenta case
applies here; and this gives a negative half winding.

4. Asymptotic limit

In the asymptotic limit, one can work in the flat spacetime
coordinates, which are shown in (67). This implies that

vr ¼
1

grr
∂rb� ¼ ∂rb�:

In this limit,

D ≈ r4 sin2 θ cos2 θ; ð87Þ

and therefore

Δ ≈
4

r2 sin2 θ cos2 θ
ðcos2 θb21 þ sin2 θb22Þ: ð88Þ

By using this, we obtain

b� ¼ � 1

r sin θ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θb21 þ sin2 θb22

q
; ð89Þ

and finally calculate

vr;� ¼ ∓ 1

r2 sin θ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θb21 þ sin2 θb22

q
: ð90Þ

Since θ ∈ ½0; π
2
�, sin θ cos θ > 0. In the asymptotic limit,

r → ∞,

signðvr;�Þj∞ ¼ ∓1; ð91Þ

The angular component changes sign as in the equal
momenta case and contributes a negative half winding.
The general behavior of the vector field around the light ring
is plotted in Figs. 4 and 5.
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V. NAKED SINGULARITY, COSMIC CENSORSHIP
AND LIGHT RINGS

In the discussions so far, we have assumed the existence
of a Killing horizon that hides the singularity in the
spacetime as is expected according to the cosmic censor-
ship hypothesis [12]. But, one could ask if this hypothesis
can be tested using the light ring structure and the
corresponding shadow. This problem will be addressed
in full in [13]. Here we would like to point out that when the
horizon disappears, the rotating solution loses one of its
light rings as shown in Figs. 6 and 7: there remains a single
light ring around the naked singularity.
In this work, we have shown this in 4þ 1 dimensions,

but the same phenomenon also appears in the 3þ 1
dimensional Kerr black hole. Let us show this analytically.
There are two light rings outside the event horizon of a Kerr
black (with mass m and the dimensionless rotation param-
eter u ¼ a2=m2) which are located in the equatorial plane at
the radii (r� ¼ mx�) [9]

x� ¼ 2þ 2 cos

�
2

3
cos−1ð� ffiffiffi

u
p Þ

�
: ð92Þ

where xþ is the retrograde orbit satisfying 3 ≤ xþ ≤ 4,
while x− is the prograde orbit satisfying 1 ≤ x− ≤ 3. The
event horizon is located at

xH ¼ 1þ ð1 − uÞ1=2; ð93Þ

FIG. 4. Black hole case: The vector field, v⃗, obtained by using
the impact parameter bþ as given in (75) and (76) can be seen in
the neighborhood of the standard light ring for the Myers-Perry
black hole with two distinct angular momenta. For this plot, we
assumed that the mass term is μ ¼ 1, the rotation parameters are
a ¼ 0.1 and b ¼ 0.4 and the angular momenta of the photon are
Φ1 ¼ 1.1 and Φ2 ¼ 1.5. The horizon is located at rH ¼ 0.83.

FIG. 5. Black hole case: The vector field, v⃗, obtained by using
the impact parameter b− as given in (75) and (76) can be seen in
the neighborhood of the standard light ring for the Myers-Perry
black hole with two distinct angular momenta. We took μ ¼ 1,
a ¼ 0.1 and b ¼ 0.4 and the angular momenta of the photon are
Φ1 ¼ 1.1 and Φ2 ¼ 1.5. The horizon is located at rH ¼ 0.83.

FIG. 6. No horizon case: The vector field, v⃗, obtained by using
the impact parameter bþ as given in (75) and (76) can be seen in
the neighborhood of the single light ring for the naked singularity.
So this light ring survives. For this plot, we assumed that the mass
term is μ ¼ 1, the rotation parameters are a ¼ 0.3 and b ¼ 0.8 and
the angular momenta of the photon are Φ1 ¼ 1.1 and Φ2 ¼ 1.5.
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for 0 ≤ u ≤ 1 and disappears for larger values of u. For any
value of u > 1, the retrograde orbit xþ remains but the
prograde orbit x− disappears. That means compared to the
Kerr black hole with a horizon, the naked singularity has
only a single light ring. This could allow us to test the
cosmic censorship hypothesis.

VI. CONCLUSIONS

Recent developments [5,6] suggest that the environment
of a black hole (an ultra-compact object with a horizon) has
rather unique observable properties which are best studied
by light rings. These are null, unstable circular orbits and
are closely related to the ringdown and shadow of black
holes and the stability of the black hole itself. Ultracompact
objects without horizons that could mimic black holes also
have light rings at least one of which is stable (proven under
certain conditions on the matter forming the ultracompact
object [6]). The stability of the light ring yields a nonlinear
instability of the ultracompact object whose fate has been
studied for bosonic stars [14].
In [5], topological arguments were established to prove

that assuming the existence of a Killing horizon in four-
dimensional spacetime, there exists a light ring for each
rotation sense for a vacuum axially symmetric, topologi-
cally sphere, circular, stationary, asymptotically flat metric.
In the current work, we extended these topological argu-
ments to five-dimensional generic stationary black holes
without referring to the field equations and showed that
there exists a light ring for each rotation sense of the

five-dimensional stationary geometry with a Killing
horizon. We assumed asymptotic flatness such that far
away from the black hole region, the stationary solution
reduces to the Myers-Perry spinning solution. We also
studied the static case. When applying the topological
techniques to five-dimensional black holes, one encounters
the difficulty that generically there are two distinct con-
served angular momenta for the light which eventually
complicates the effective potential: namely, the impact
parameters of light enter the effective potential. But these
parameters do not spoil the topological arguments in proving
the existence of light rings for generic stationary metrics
without referring to the underlying field equations. But these
parameters do change the location of the light rings in
the r, θ coordinates. Our computations and the examples
show that the techniques developed in [5] are robust.
Finally, we have also studied the naked singularity case for

which the black hole has no horizon and showed that one of
the light rings disappears and one is left with a single light
ring. We have also discussed the four-dimensional naked
singularity and showed that the prograde light ring of theKerr
black hole disappearswhile the retrograde orbit is intact. This
opens up an interesting discussion regarding a plausible test
of the cosmic censorship which will be discussed else-
where [13].

APPENDIX: CALCULATION OF RICCI SCALAR

In the first axis limit, θ → 0, we assumed that gtϕ1
and

gϕ1ϕ2
approach zero faster than or as fast as gϕ1ϕ1

. Here we
provide a proof of this assumption. First, we introduce ρ ≔ffiffiffiffiffiffiffiffiffiffigϕ1ϕ1

p and z is a coordinate that is orthogonal to ρ. The
metric can be rewritten as

ds2 ¼ gttðρ; zÞdt2 þ 2gtϕ1
ðρ; zÞdtdϕ1 þ 2gtϕ2

ðρ; zÞdtdϕ2

þ 2gϕ1ϕ2
ðρ; zÞdϕ1dϕ2 þ ρ2dϕ2

1 þ gϕ2ϕ2
ðρ; zÞdϕ2

2

þ gρρðρ; zÞdρ2 þ gzzðρ; zÞdz2: ðA1Þ
Around the axis, ρ → 0, the metric components can be
expanded as

gtt ≈ −1þOðρÞ; gtϕ2
≈ 1þOðρÞ;

gρρ ≈ 1þOðρÞ; gzz ≈ 1þOðρÞ;
gϕ2ϕ2

≈ 1þOðρÞ;
gtϕ1

≈ gð1Þtϕ1
ðzÞρþ gð2Þtϕ1

ðzÞρ2 þOðρ2Þ;
gtϕ2

≈ gð1Þtϕ2
ðzÞρþ gð2Þtϕ2

ðzÞρ2 þOðρ2Þ: ðA2Þ
The scalar curvature in the first order of expansion can be
computed to be

R ≈
gð1Þtϕ1

ðzÞ2 − 2gð1Þtϕ1
ðzÞgð1Þtϕ2

ðzÞ − gð1Þtϕ2
ðzÞ2

2ρ2ðgð1Þtϕ1
ðzÞ2 − 2gð1Þtϕ1

ðzÞgð1Þtϕ2
ðzÞ − gð1Þtϕ2

ðzÞ2 þ 2Þ
:

FIG. 7. No horizon case: The vector field, v⃗, obtained by using
the impact parameter b− as given in (75) and (76) has no winding
as can be seen. The light ring with b− disappears for the naked
singularity case. We took μ ¼ 1, a ¼ 0.3 and b ¼ 0.8 and the
angular momenta of the photon are Φ1 ¼ 1.1 and Φ2 ¼ 1.5.
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For R to be finite as ρ → 0, one must have gð1Þtϕ1
ðzÞ ¼ 0

and gð1Þtϕ2
ðzÞ ¼ 0. This completes our proof. The

same procedure can be followed for the second axis

limit, θ → π
2
, and we reach the conclusion that gtϕ2

and gϕ2ϕ2
approach to zero faster than or as fast

as gϕ2ϕ2
.
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