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Abstract
On April 6, 2009, a strong earthquake (6.1 Mw) struck the city of L’Aquila, which was 
severely damaged as well as many neighboring towns. After this event, a digital model 
of the region affected by the earthquake was built and a large amount of data was col-
lected and made available. This allowed us to obtain a very detailed dataset that accurately 
describes a typical historic city in central Italy. Building on this work, we propose a study 
that employs machine learning (ML) tools to predict damage to buildings after the 2009 
earthquake. The used dataset, in its original form, contains 21 features, in addition to the 
target variable which is the level of damage. We are able to differentiate between light, 
moderate and heavy damage with an accuracy of 59%, by using the Random Forest (RF) 
algorithm. The level of accuracy remains almost stable using only the 12 features selected 
by the Boruta algorithm. In both cases, the RF tool showed an excellent ability to distin-
guish between moderate-heavy and light damage: around the 3% of the buildings classified 
as seriously damaged were labeled by the algorithm as minor damage.

Keywords Seismic damage prediction · Machine learning · L’Aquila 2009 earthquake · 
Ground motion

1 Introduction

The city of L’ Aquila, Italy, and several surrounding towns were completely leveled by 
an earthquake on the morning of April 6, 2009, at 3:32 a.m. (6.1 Mw). The quake hap-
pened on a typical fault that runs northwest to southeast. The hypocenter was pinpointed 
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at a depth of 8 kilometers, not far from the town of Roio (42.34 degrees N latitude, 13.37 
degrees E longitude; http:// terre moti. ingv. it/). L’Aquila is a bustling city that is home to a 
wide variety of buildings, both modern and ancient. Most of the homes were built at a time 
when construction codes were different.

As a result of the earthquake’s directivity effects, stations aligned with the rupture direc-
tion registered ground vibrations of high amplitude and short duration, whereas stations 
aligned with the opposite direction registered ground motions of low amplitude and long 
duration. More than 300 people were killed and over 1600 were injured, despite the fact 
that this earthquake was only moderate in size (Ugurhan et  al. 2012). This was because 
directivity effects combined with regional building characteristics caused catastrophic dev-
astation in the meizoseismal area in the city.

Felt (macroseismic) intensity is one qualitative measure that can be used to quantify the 
impact of ground shaking caused by earthquakes. These numbers are derived from cor-
relations between felt intensity and measurable ground motion parameters or from human 
reactions to ground shaking and damage to nearby structures. Damage after an earthquake 
can be visualized through the use of felt intensity metrics. Figure 1 shows that the commu-
nities of Castelnuovo and Onna registered the highest measured intensity values after the 
L’Aquila event ( IMCS = IX − X ) (Rovida et al. 2020, 2022). The central business district 
of L’Aquila and other areas in the epicenter’s immediate vicinity show signs of severe dam-
age with IMCS values over VII. Many commercial and residential structures kept crum-
bling or being severely damaged. Research on the ability to anticipate and categorize earth-
quake-induced structural damage is therefore crucial. The results of such an attempt would 
be useful not only in predicting how badly future earthquakes in the area would destroy 
buildings, but also in understanding the distribution of damages caused by the L’Aquila 
quake.

Fig. 1  Microseismic intensity distribution obtained from Rovida et al. (2020, 2022)

http://terremoti.ingv.it/
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After the earthquake, in parallel to a long and complex strengthening and reconstruction 
process, a massive data acquisition and sharing activity began, followed by the launch of 
the following two platforms:

• Open Data L’Aquila (GSSI 2019a).
• Open Data Ricostruzione (GSSI 2019b).

The first repository is mostly concerned with the reconstruction process of L’Aquila city 
and of surrounding villages. It contains data and maps which are continuously updated. 
The second one focuses on the municipality of L’Aquila and contains high-resolution maps, 
solar radiance, and water accumulation maps, an earthquake simulator as well as much 
other information regarding the geophysical and urban aspects of the city. Drones were 
used for the aero-photogrammetric survey, which allowed the production of extremely 
detailed geo-referenced maps and digital models as shown in Fig. 2.

The standard approach to estimate the possible damage to a building after an earthquake 
involves the use of fragility curves. These curves assign, based on statistical tools, the 
probability that a specific building type exceeds a certain damage threshold under various 
levels of ground motions. Using these curves, it is possible to estimate the probabilities of 
the occurrence of predefined damage states given the recorded ground motions of a seis-
mic event. The literature in this context is very broad, see for example Kirçil and Polat 
(2006), Shinozuka et al. (2000), Lallemant et al. (2015), Baker (2015) and De Luca et al. 
(2015), Del Gaudio et al. (2019), Rosti et al. (2018), mostly focused on the 2009 L’Aquila 
earthquake.

In this article, machine learning tools able to estimate the damage to buildings after 
an earthquake are described. This approach, potentially complementary to the afore-
mentioned fragility curves, was initially first proposed in Mangalathu and Jeon (2018), 
where the authors applied four different supervised machine learning techniques to pre-
dict the level of earthquake-induced damage to structures. They used a dataset consist-
ing of 3677 buildings (reduced to 2276 after the data-cleaning procedure) located in 
the cities of Napa, American Canyon, and Vallejo, that were struck by a 6.0 Mw mag-
nitude earthquake on August 24, 2014. In that study, each building has been assigned 

Fig. 2  Dense point cloud from aero-photogrammetric drone survey and processing
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the spectral acceleration at 0.3 s at that location (INGV 2020), distance from the projec-
tion of the fault plane, shear wave velocity at 30 m, the number of floor levels, the age, 
building irregularity, footprint of the building, and building economic value. The target 
value was the level of damage: red, yellow, and green for heavy, moderate, and light 
damage levels, respectively. The accuracy reached 66% for the Random Forest algo-
rithm, but the dataset in that study contains only 81 red-tagged buildings.

A similar approach is also used in Harirchian et al. (2021) and Roeslin et al. (2020). 
In Harirchian et  al. (2021), the authors applied four different machine-learning tech-
niques to evaluate seismic damage. Four different earthquakes have been taken into 
account: Ecuador 2016 ( Mw = 7.8 ) with 172 buildings, Haiti 2017 ( Mw = 7.0 ) with 
145 buildings, Nepal 2015 ( Mw = 7.3 ) with 135 buildings, and South Korea 2017 
( Mw = 5.5 ) with 74 buildings. According to their numerical results, supervised learning 
provides better prediction rates.

Roeslin et al. (2020) have studied a dataset containing 340 buildings in the Mexico 
City urban area in relation to the 2017 Mexico City earthquake ( Mw = 7.1 ). For each 
building, 12 features have been assigned including geographical coordinates, construc-
tion techniques (structural system such as reinforced concrete frames, masonry, etc.), 
Peak Ground Acceleration (PGA), and the number of stories. The target variable is 
the damage rates assigned as negligible to light damage and moderate damage to col-
lapse. Among the employed algorithms including Logistic Regression, Support Vec-
tor Machine, Decision Tree, and Random Forest, the last one achieves the best level of 
damage prediction accuracy which is 0.65 (65%).

In Yerlikaya-Özkurt and Askan (2020), the authors consider a dataset containing 228 
reinforced concrete frame buildings, damaged during three different earthquakes that 
occurred in Turkey: Erzincan (1992, Mw = 6.6 ), Dinar (1995, Mw = 6.2 ), and Duzce 
(1999, Mw = 7.2 ). For each building, five structural parameters have been assigned. 
Four different levels of damage have been originally defined (None, Light, Moderate, 
and Severe+Collapse). The dataset was analyzed using a machine learning algorithm 
named CART (Classification And Regression Trees) (Breiman et al. 2017) for different 
combinations of the structural performance levels.

As mentioned previously, the main purpose of this study is to use a machine learning 
approach to estimate the observed damages during the 2009 L’Aquila event and defines 
the main predictive parameters influencing the structural damage. We consider a set of 
3060 buildings, reduced to 2532 after the cleaning procedure, characterized by the 21 
features displayed in Tables 1 and 2. Most of these structures are located in the histori-
cal city centers. The target variable is the level of damage, assigned as light, moderate, 
and severe. The key difference of this study from the previous ones is that our dataset 
contains a significantly higher and uniformly distributed number of buildings classified 
as light, moderate, and severely damaged which reduces the sampling bias in the predic-
tion models. Moreover, each building is extraordinarily well-described through 21 char-
acteristics. This allows us to extensively take into account the complexity of the seismic 
event, building characteristics, and the local site effects.

The paper is organized as follows: we initially describe the data acquisition and prep-
aration procedure followed by a theoretical introduction to the machine learning tools. 
Then, we present and discuss the performance of classifiers and compare the results 
obtained using the height of the building provided by Regione-Abruzzo (2019) with that 
obtained through aero-photogrammetric techniques. Finally, we summarize the main 
findings and describe the possible developments of this work.
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2  Dataset preparation and preliminary analysis

2.1  Dataset preparation

The data considered in this study come from different sources and have different formats, 
such as raster (mainly GeoTiff), vector (shapefile, geojason), and comma-separated values 
(.csv). The dataset construction represents a crucial part of our workflow and is carefully 
described. The choice of sources was made taking into consideration that the data would be 
processed with GIS software (QGis 3.1 and later https:// www. qgis. org/ en/ site/). It follows 
that all the data had to be either already georeferenced or structured in an appropriate form 
to be georeferenced. Once the suitable sources were chosen, it was possible to carry out 
comparisons and calculations between different datasets on a geographical basis, overlay 
layers from different sources, and create new maps and new datasets.

Some data matrices collected during the project Open Data Ricostruzione (GSSI 
2019b), despite representing the characteristics of buildings affected by the earthquake, are 
not georeferenced. These structural characteristics are essential to the ML tools, such as 
the severity of the damage, the type of construction, the number of structural units, and 
the year of construction. Such matrices are constructed by inserting a progressive number, 
typically an ID, which in this case is not comparable with the ID of the shapefile matrix 
downloaded from the Abruzzo Region cartographic portal (Regione-Abruzzo 2019) repre-
senting the buildings. It was therefore necessary to identify a field of the matrix that could 
be uniquely superimposed on a georeferenced datum. This datum was identified in another 
georeferenced dataset containing field values, specifically a column of unique data, in com-
mon with that essential to the ML process, thus allowing georeferencing. To perform the 
union of these datasets, the native QGis plugin “Join attributes by field value” was used. 
The data used for the georeferencing, observed with the QGis software, are made up of 
polygons representing the footprint on the ground of the buildings subjected to the post-
earthquake reconstruction process. Such polygons, called aggregates, while not showing 
any internal subdivision, can contain a single structural unit or more. Very often the struc-
tural units forming the aggregate have different characteristics, such as height, construction 
type, and restructuring phases carried out at different times. In the dataset used for georef-
erencing, the distinction between structural units of an aggregate is not made and when a 
distinction exists, it is on the basis of different parameters, such as building owners.

From the point of view of evaluating the response of buildings to seismic actions, this 
distinction is fundamental, providing more detailed dimensional information such as area, 
height, and the number of vertices of the building. In the shapefile downloaded from the 
Abruzzo Region cartographic portal, the distinction of the structural units making up an 
aggregate is instead visible by observing the polygons with the QGis software Fig. 3. For 
the reasons mentioned above, further merging between the data arrays was performed. Spe-
cifically, the matrix obtained georeferencing the data from the Open Data Ricostruzione 
database, was combined with the matrix provided by the Abruzzo Region cartographic 
portal. The resulting polygon shapefile is a georeferenced matrix containing the distinction 
of the structural units and many other parameters useful for the ML computational process.

The advantage of having georeferenced data lies in the possibility of overlapping dif-
ferent layers, be they raster or vector maps, to be able to build new datasets deriving 
from their combination or to implement an existing one with new data. This advantage 
was exploited to enrich the last shapefile described above, with the data of the web por-
tal http:// shake map. ingv. it/ shake4/ (INGV 2020; Michelini et  al. 2020). The values of 

https://www.qgis.org/en/site/
http://shakemap.ingv.it/shake4/
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PGA, PGV, SA0.3s, and Vs30 were transferred, using the QGis software, to a single 
point inside each polygon. Each point represents a single structural unit, and for each 
of them, the number of vertices from which it is composed was calculated. These val-
ues complete the range of parameters useful for ML analysis. In Tables 1 and 2, all of 
the features regarding the building characteristics and geophysical aspects are displayed, 
respectively, along with the corresponding references.

Fig. 3  Distinction of the structural units: left side in orange from CTR, right side in green from Open Data 
Ricostruzione DB

Table 1  Buildings features Features Type

Construction technique (GSSI 2019b) Categorical
Aggregation type∗ (GSSI 2019b) Categorical
Position (GSSI 2019b) Categorical
Number of units∗ (GSSI 2019b) Numerical
Age (GSSI 2019b) Categorical
Height∗ (Regione-Abruzzo 2019) Numerical
Mean area (GSSI 2019b) Numerical
Total Area∗ (GSSI 2019b) Numerical
Number of vertex∗ (Regione-Abruzzo 2019) Numerical
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2.2  Dataset description

The dataset, in its final form, contains 2532 georeferenced points. Among them, 539 are 
located in the city of L’Aquila as displayed in Figs. 10 and 11, respectively.

The dataset contains 21 attributes for each building, which can be grouped into two 
main categories:

• Buildings features: construction techniques (such as reinforced concrete, masonry, 
steel), aggregation type, position (with respect to the aggregate), number of units (in 
the aggregate), height, surface aggregate area, mean area, number of vertices (in the 
aggregate), and age.

• Geophysical features: geographical coordinate (WGS84/UTM 33 N), distance from 
the epicenter, distance from the depocenter, peak ground velocity, peak ground 
acceleration both from the INGV (2020), time-average shear wave velocity to 30 m 
of depth (Vs30), spectral acceleration at 0.3  s, coefficient of stratigraphic amplifi-
cation (local site effects), coefficient of topographic amplification, slope, maximum 
design acceleration value.

The Buildings features are summarized in Table  1. The dataset contains many aggre-
gated buildings (here simply called aggregates), namely buildings connected to each 
other by common walls. This configuration is very common in Italy, especially in old 
town centers, and affects the dynamic response of the system (see for example Stavrou-
laki 2019 and reference therein). For this reason, it represents, a priori, an important 
parameter for our analysis. As we say before some of the features refer to the aggre-
gates, namely height, total area, and the number of vertexes. Also, the number of struc-
tural units contained in each aggregate is reported. Dividing the total area by the num-
ber of units, we get the mean area of the unitary structure. This value corresponds to the 
real surface area of the building just if the number of units is equal to 1. The kinds of 
aggregate we are considering and the position of the building within the aggregate are 
also reported. Finally, the feature ‘Age’ assigns the century of construction of the build-
ing. For the sake of clarity, all the variables that belong to the aggregate and not to the 
single building are indicated with an asterisk (*).

Table 2  Geophysical features Features Type

Geographical coordinate (GSSI 2019b) Numerical
Peak ground acceleration (INGV 2020) Numerical
Peak ground velocity (INGV 2020) Numerical
Spectral acceleration at 0.3 (Vs30) (INGV 2020) Numerical
Shear wave vel. at 30 m(INGV 2020) numerical
Epicenter distance (Petricca et al. 2021) Numerical
Depocenter distance (Petricca et al. 2021) Numerical
St coefficient (GSSI 2019b) Numerical
Ss coefficient (GSSI 2019b) Numerical
Acceleration (GSSI 2019b) Numerical
Slope (GSSI 2019b) Categorical



 Natural Hazards

1 3

In Table 1, all the Building features are listed and the type of data is properly indicated 
for each feature. The distribution of this subset of predictor variables is shown in Fig. 4.

Within the geophysical features (see Table 2 and Fig. 5) peak ground velocity, peak 
ground acceleration, shear wave velocity at 30 m, and spectral acceleration at 0.3 s have 
been provided by the platform Shakemap (INGV 2020). We just point out that values of 
PGV, PGA, and SA at 0.3 are interpolated between the available recording stations. 

To account for the building site to seismic source distance, two parameters have been 
selected: the distance from the epicenter (42.34 N; 13.38 E) and from the depocenter 
(42.32  N; 13.44  E). While the first one is a commonly used variable, the depocenter 
needs further explanation. It can be defined as the point that suffers the maximum verti-
cal displacement and it has been observed that the distance from the depocenter could 
affect the damage distribution (Petricca et  al. 2021). Therefore we decide to include 
both the depocenter and epicenter in our analysis, at least at this initial stage, together 
with the geographic coordinates.

The coefficient of stratigraphic amplification (Ss), topographic amplification (St), 
and the maximum horizontal acceleration values (a) come from GSSI (2019b). Accord-
ing to the Technical Standard of Italian Constructions (2018), the coefficient Ss is 
assigned according to the subsoil properties, whereas the coefficient St depends on the 
local topography. The acceleration a is the maximum design horizontal acceleration. 

(a) Aggregate types (b) Number of Units (c) Position

(d) Total Area (e) Mean Area (f) Height

(g) Number of Vertex (h) Age (i) Material

Fig. 4  Building features distribution. Red, orange, and green are heavy, moderate, and light levels of dam-
age, respectively
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Some (less than 5%) stratigraphic amplification coefficient and acceleration values 
were clearly out of scale. They have been corrected manually, assuming a typo or, more 
likely, a conversion problem between one format and another in the various phases of 
the construction of the dataset. We specify that the PGV, the PGA, SA at 0.3 s, and the 
distance from depocenter and epicenter are the variables that, in this study, refer to the 
event of the 2009 seismic event in particular.

The spatial distribution of PGA, PGV, SA0.3 and VS30 are displayed in Figs.  6, 7,  8 
and 9. 

The target feature is the level of damage. Six levels of damage have been, originally, 
assigned to each building as follows (with the number of buildings in each level in 
parenthesis):

(a) PGV (b) PGA (c) SA (0.3 s)

(d) Vs30 (e) Stratigrafic Coefficient (f) Topografic Coefficient

(g) Depocenter Distance (h) Epicenter Distance (i) Slope

(j) Max. horizontal acc. (k) Coordinate (EW) (l) Coordinate (NS)

Fig. 5  Geophysical features distribution. Red, orange, and green are heavy, moderate, and light levels of 
damage, respectively
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Fig. 6  Spatial distribution of peak ground acceleration (INGV 2020)

Fig. 7  Spatial distribution of peak ground velocity (INGV 2020)
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Fig. 8  Spatial distribution of spectral acceleration at 0.3 s (INGV 2020)

Fig. 9  Spatial distribution of the time-averaged shear wave velocity for the top 30 m (INGV 2020)
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• D0: no damage (73).
• D1: light damage (473).
• D2: moderate damage (511).
• D3: medium damage (539).
• D4: serious damage (429).
• D5: heavy damage or collapse (507).

However, due to the dimension of the dataset, in order to improve the accuracy of ML 
tools, we consider just three levels, namely light, moderate, and heavy damage, as follows

• D0–D1 light damage (546).
• D2–D3 moderate damage (1050).
• D4–D5 heavy damage (936).

The spatial distribution of all the buildings and of those contained within the city walls are 
displayed in Figs. 10 and 11, respectively.

3  ML tools

In this section, we briefly describe the ML tools used to analyze our dataset. The first sub-
section is dedicated to the algorithms for feature selection, the second one concerns the 
supervised ML tools, and the last is the hyperparameters optimization.

Fig. 10  Spatial distribution of the buildings located in the city center of L’Aquila. In green, orange, and red 
the building reported light, moderate, and heavy levels of damage, respectively
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3.1  Features selection

Our dataset contains 21 features (plus the target variable). All of them could be a priori 
useful, but we do not expect that all of them equally contribute to the target variable pre-
diction. Therefore, before starting the data analysis procedure, we apply a feature selection 
technique to reduce the number of variables. This step is often mandatory for a good data 
analysis workflow. It allows us to reduce the computational costs and improve the predic-
tive power of ML tools, by eliminating the noncorrelated and redundant features.

A strategy commonly used to reduce the dimension of the dataset is the variable reduc-
tion techniques, such as principal component analysis (PCA) and linear discriminant analy-
sis (LDA). However, we avoid this approach because we want to preserve the interpret-
ability of the results, and we prefer to employ the feature selection techniques that can be 
grouped into (Alelyani et al. 2018; Liu and Yu 2005; Solorio-Fernández et al. 2022)

• Filter methods (FM).
• Wrapper methods (WM).
• Embedded methods (EM).

Since our dataset contains mixed data partially numerical and partially categorical, not all 
algorithms can be successfully used. The problem has recently been addressed in detail in 
Solorio-Fernández et al. (2022), where some of the most used algorithms for the feature 
selection of mixed datasets are reported and compared.

Fig. 11  Spatial distribution of the 2532 buildings included in the dataset. In green (D0–D1), orange (D2–
D3), and red (D4–D5) are the building reported light, (546), moderate (1050), and heavy (936) damaged 
levels, respectively
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It is not the purpose of this article to offer an exhaustive review of feature selection tech-
niques; we will try to summarize the pros and cons of each approach in order to justify the 
choice of the algorithm used in this paper.

The FM can be based on univariate or multivariate statistics. In the univariate approach, 
the characteristics are considered independently from each other; therefore, the algorithms 
are not able to identify the redundant characteristics, because the feature is never com-
pared. These are very efficient algorithms from the computational point also due to their 
height scalability. The multivariate-based algorithms are slightly more expensive from a 
computational point of view but are able to identify the redundant and irrelevant charac-
teristics because the importance of each feature with respect to the others is evaluated. 
Examples of FM are variance threshold (VT) and correlation feature selection (CFS). FMs 
are usually quite fast but not always exhaustive and therefore are usually used in the pre-
processing steps especially if the number of features is particularly high, that is not the case 
with our dataset.

Wrapper methods are computationally expansive but usually provide better perfor-
mances in terms of accuracy and overfitting prevention. They use different subsets of char-
acteristics to identify the features having the best performance according to an evaluation 
criterion. Belong to this group, the Boruta algorithm (R Core Team 2021; Kursa and Rud-
nicki 2010) and Recursive Feature Elimination, that will be employed within this paper. 
Hybrid methods usually combine the filer and wrapper approach in the same algorithm; 
they are less expensive from the computational point of view but also less accurate com-
pared to the WM. Since the dataset in question has a moderate size and there is no objec-
tive computational cost problem, it seems reasonable to use wrapper-type models for the 
selection of characteristics. Before selecting the best wrapper algorithm to employ, we 
pre-analyze our dataset using four different classifiers that are Random Forest (RF), Deci-
sion Trees (DT), K-nearest neighbors, and Linear discriminant analysis (LDA). For each 
of them, the default configuration of the hyperparameters has been selected, and then each 
algorithm has been trained on the training subset containing the 70% of the data points and 
tested on the remaining part. The best accuracy has been obtained for using the RF which 
correctly classifies the of 57% the data points in the test set. It, therefore, seems reasonable 
to use a random forest-based algorithm for the feature selection. The worst performance 
was instead obtained from LDA, 0.48 of accuracy, which therefore was not considered in 
the supervised analysis of the dataset, described in the next section.

We decide to employ the Boruta algorithm that has been originally developed in R (R 
Core Team 2021; Kursa and Rudnicki 2010) and more recently translated to Python. In 
summary, it evaluates the importance of each feature by creating a shadow dataset obtained 
from the original one, just scrambling the values within each column. Then the two data-
sets (original and shadow) are analyzed by an RF classifier. In this way, we identify the 
features of the original dataset that most influence the classifier’s predictive capacity. The 
process is iterated many times until all redundant features are removed. The 12 features 
selected through the Boruta algorithm are: Mean Area, Total Area∗ , Number of Un its∗ , 
Distance from the Depocenter, Distance from the Epicenter, Height∗ , Coordinate (EW 
direction), Coordinate (NS direction), PGV, Vs30, Ss coefficient, and Age.

It is interesting to observe that among these, two refer to the building space position 
(geographic coordinates), six refer to the building itself or to the ground on which it is built 
(Mean Area, Total Area, Number of Units, Ss coefficient, Vs30, Age and Height) and three 
(PGV, distance from the epicenter and from the depocenter) to the specific event we are 
considering. These initial observations immediately suggest that adequate seismic planning 
must take into account the following main features: the potential events that may occur 
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in the area of interest, the local site effects, and the physical properties of the buildings 
of interest. These findings are consistent with both the previous observations on seismic 
effects and the main seismic design criteria in modern building codes. In Fig. 12, the score 
for each of the 12 features obtained with the RF algorithm, is reported. According to our 
analyses, the characteristic that most influences the level of damage is the average area, that 
is the total area of the aggregate divided by the number of buildings contained in it. Both 
of these characteristics (total area and number of units) are present among the 12 features 
selected by the Boruta algorithm, but it is their combination that has a greater impact on 
our analysis. Also, the distance of the depocenter (rather than that from the epicenter) has a 
strong effect on the damage as already observed in Petricca et al. (2021).

3.2  Supervised ML tools

We consider three different classifiers in this study: the k-nearest neighbors (k-NN), the 
random forest (RF), and the decision trees (DT). We do not account for linear discriminant 
analysis, the tools proposed for example by Mangalathu et al. (2020), that is not able to 
capture the strictly nonlinear nature of the phenomenon in our study. Furthermore, other 
approaches, such as the convolution neural network, have been effectively implemented in 
the literature, especially for the analysis of satellite and UAV data (Ci et al. 2019; Fujita 
et al. 2017), and are of potential interest in future studies. However, in this first work, we 
have chosen the most practical and validated technique which is supervised ML.

Next, we briefly review the tools employed within the paper followed by the results 
obtained with each technique. We note that all the machine learning models have been 
implemented herein using Scikit-learn, a Python tool specifically designed for data anal-
ysis. We refer to Raschka and Mirjalili (2017) for a very useful and complete guide to 
Scikit-learn and to the most commonly used machine learning tools.

3.3  K‑nearest neighbor (KNN) algorithm

The KNN algorithm, first introduced by Fix and Hodges (1951), belongs to the class of the 
nonparametric models and is one of the simplest and most used algorithms for classifica-
tion and regression. It assigns the label to each element according to the characteristics of 

Fig. 12  Feature importance 
obtained using the RF algorithm 
on the 12 features selected by the 
Boruta algorithm
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the ‘k’ elements of the train subset ‘closest’ to the element (each data point) under analysis. 
Its functioning can be summarized as follows: 

Step 1 The first step is to select an appropriate metric for the distances. The choice of met-
ric depends on the characteristic of the detest we are using and many different options 
are available in Scikit-learn. The most common choice is the Euclidean metric. In this 
case, the distance between two elements xi and xj , belonging to �� , reads 

Step 2 Using the metric selected above, we identify the k points of the training dataset 
that are closest to each element that must be classified.

Step 3 Finally, we assign the label using the principle of majority vote. If two labels reach 
the same score, then the algorithm will take into account the distance and will assign 
the most frequent label to the closest neighbors (Raschka and Mirjalili 2017).

3.4  Decision trees

Decision tree is a very useful classifier for many purposes because of its intrinsic interpret-
ability (Raschka and Mirjalili 2017). The algorithm can be shortly described through the 
following two steps: 

Step 1 Initially, we fix the Information Gain (IG), which can be seen as the difference of 
the impurity between the parent node Ip and the M child node Ii , namely 

 where Ni and Np are the number of data points for the ith child node and for the parent 
node, respectively. Impurity can be assigned in many different ways; the most common 
are Gini Impurity, Entropy, and Classification Error. Then, starting from the root we 
split our dataset to maximize IG.

Step 2 The process will be iterated until the maximum depth value k, fixed a priori, has 
been reached.

3.5  Random forest

The Random Forest algorithm is one of the most useful ML tools (Liaw and Wiener 2002). 
In summary, it can be interpreted as an ensemble of decision trees (Raschka and Mirjalili 
2017), and works as follows: 

Step 1 We start from a random bootstrap sample of size n and grow a decision tree.
Step 2 We iterate the procedure above k times. Each of the iterations provides a result, 

namely a value for the target variable.
Step 3 Finally, we assign the label using the majority vote algorithm.

d(xi, xj) =

√

√

√

√

N
∑

n=1

(xi(n) − xj(n))2

IG(Dp, g) = Ip −

M
∑

i=1

Ni

Np

Ii
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3.6  Hyper‑parameters optimization

In this subsection, we will briefly discuss how to optimize the hyperparameters of a classi-
fier to achieve optimal performance.

Parameter optimization can basically be done in three different ways:

• Manual optimization: the analyst selects some values of the hyperparameters based on his 
experience and knowledge of the dataset and modifies them manually until reaching opti-
mal accuracy.

• Grid search: the analyst selects a grid of values for each hyperparameter. The model is 
trained and evaluated on each combination of the values entered in the grids. This is a very 
accurate method if dense grids are used, but it has a very high computational cost.

• Random search: also in this case a grid or a range of values is assigned for each hyperpa-
rameter and the number n of combinations to consider. The system randomly selects and 
evaluates n combinations of hyperparameters. This is a computationally efficient method 
that usually best approximates the optimal combination of hyperparameters.

Within this paper, we employ the Scikit-learn function RandomizedSearchCV, which com-
bines the Randomized Search approach described above and the cross-validation technique to 
control the overfitting (see Raschka and Mirjalili 2017 for more detail). Each model was opti-
mized using the training dataset, over a space of 200 hyperparameter combinations.

4  Results and discussion

We present and analyze the results of damage state predictions using the datasets and machine 
learning tools described above.

Of the 2532 data points that constitute the database, 2278 were used to train the models and 
760 (30%) to test them, as in Mangalathu and Jeon (2018). The distribution of the target vari-
able, within the train and test sets, follows that of the original dataset, as displayed in Table 3.

We consider two different datasets, named S21 and S12 , containing the same number of data 
points (2532), but a different number of predictor variables. The first is the complete dataset 
that includes all of the mentioned 21 features, whereas in the second one there are just the 
12 variables selected by the Boruta algorithm. To compare the three classifiers (and the two 
datasets), we use the confusion matrix, which allows quick visualization of the distribution of 
the predicted tags (damage states) versus the originally assigned (observed) ones. The main 
diagonal contains the number of buildings of which the damage state is correctly classified, 
while the numbers in off-diagonal elements indicate the buildings with incorrectly classified 
damage states.

Table 3  Data distribution Damage Total Train Test %

Light 546 382 164 22
Moderate 1050 735 315 41
Heavy 936 655 281 37
Tot 2532 1772 760 100



 Natural Hazards

1 3

In Figs. 13 and 14, the scores are obtained employing the dataset S21 and S12 , respectively. 
Under each map, the overall accuracy of the method is also shown. It represents the overall 
percentage of correctly classified buildings and can be defined as:

where TP, FP, TN, and FN stand for true positives, false positives, true negatives, and false 
negatives, respectively. The performance of the two datasets is comparable, although the 
reduced one yields slightly higher accuracy at least for the KNN classifier.

This confirms that a reduction in the number of variables, and consequently the data-
set complexity, allows for improvement in the tool performance while lowering the com-
putational cost. For both datasets, the RF algorithm provides higher accuracy. It is thus 
important to decide and eliminate less critical structural or geophysical explanatory vari-
ables before a prediction analysis. The precision is the ratio between the number of tags 
assigned correctly and the total number of times that the specific tag has been assigned by 
the model including false positives. Conversely, recall is the ratio between the number of 
tags assigned correctly and the total number of times that the specific tag appears in the 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(a) KNN (0.51) (b) RF (0.59)

(c) DT (0.53)

Fig. 13  Performance of the three classifiers using dataset S
21

 . In brackets is the accuracy of each method
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dataset including false negatives. High values of recall and precision values correspond to 
a high predictive capacity of the model.

From Figs. 13b and 14b, it is clear that the RF algorithm has an excellent ability to dis-
tinguish between the most seriously damaged buildings from those that have suffered only 
minor damage. In fact, for the reduced dataset we can see that only 10 ‘red’ tagged build-
ings (the 3% out of a total of 281) were classified as ‘light damage.’ Indeed for the red tags, 
the precision and recall are quite high, reaching 62 and 65%, respectively. This is antici-
pated since heavy damage and light damage correspond to very different numerical values 
of the explanatory variables. This observation is consistent with the findings of a past study 
using discriminant analysis to predict damage states of buildings after large earthquakes in 
Turkey (Askan and Yucemen 2010). The results of the entire dataset are slightly better in 
this case: only 6 ‘red’ tagged buildings were classified as ‘light damage.’ In this case, the 
precision and recall reach 65 and 67%, respectively. As a general remark, we observe that 
the maximum accuracy achieved by the RF algorithm is around 65%, although in line with 
many of the results available in the literature, is probably improvable using a more well-
constrained dataset. However in this work, we preferred to preserve the entire dataset even 
though the values of some features are poorly represented within the dataset, and this has 

(a) KNN (0.54) (b) RF (0.58)

(c) DT (0.53)

Fig. 14  Performance of the three classifiers using dataset S
12

 . In brackets is the accuracy of each method
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certainly worsened the overall performance of our classifiers. From now on we focus on 
the reduced dates; however, similar conclusions can be drawn by looking at the results of 
the complete dataset. Observing Fig. 14b we can see how the performance for the ‘orange’ 
buildings is also quite good with recall and precision equal to 63 and 55%, respectively. 
Among the total of moderate 315 data points analyzed in the train set, approximately 10% 
of them were classified as light damage. The results for light damage (green) buildings are 
not satisfactory, probably because they are less numerous in the dataset. Less than 40% 
buildings with minor damage were classified correctly, with a recall of 30%. Slightly worse 
is the performance of the DT and KNN classifiers which reaches an accuracy of 0.55 and 
0.54, respectively.

In compiling a damage inventory after earthquakes, the exact height of the buildings 
could be unknown. In this case, aereophotogrammetry is the simplest and most economi-
cal tool to get this information. In addition, it is often more accurate data that also takes 
into account the slope of the ground and the presence of towers or bell towers. To study 
the significance of the accuracy of building heights, we introduce another dataset where 
the height of the buildings is given by aereophotogrammetric techniques ( S12UAV ). It will 
be compared to a subset of S12 with the same number of buildings as S12UAV but heights 
provided by regional technical maps (Regione-Abruzzo 2019). From now on we call this 
dataset S12RTM . We note that both S12UAV and S12RTM contain 12 features, those selected by 
the Boruta algorithm.

Before presenting the data analysis, we briefly illustrate the process by which we calcu-
lated the height of the buildings.

From the DEMs it was possible to extract the Digital Terrain Models (DTMs) and the 
Digital Surface Models (DSM), the former represents the surface of the soil without eleva-
tions (buildings, trees, vehicles), the latter the elevations without the soil obtained sub-
tracting the DTMs to the DEMs. It follows that DEMs and DTMs provide elevation val-
ues with respect to the sea level, while the DSMs with respect to the ground (Fig. 15a–c). 
Through the analysis of the DSM raster, the QGIs software was forced to perform a statisti-
cal analysis of the heights, confining the calculation inside each polygon that represents a 
single structural unit. The maximum, minimum, and average heights were thus calculated, 
although only the maximum has been used for our analysis. These values were then trans-
ferred to the data matrix useful for the ML calculation. A total of about 180,000 aerial geo-
referenced photographs were acquired, through which dense point clouds, Digital Eleva-
tion Models (DEMs), and orthomosaics were produced with photogrammetric processing. 
The DEMs of the built areas have a very high resolution, about 6 cm/pixel, and are the first 
ever produced for the city of L’Aquila at such a resolution.

The obtained dataset contains 1457 buildings, of which 656 (45%) have been cata-
loged as red buildings (i.e., seriously damaged), 565 (39%) with moderate damage, and 
236 (16%) with light or no damage (vs the 22% of the datasets analyzed above). The same 
distribution of target variables is maintained for training and testing sets. For both datasets, 
the accuracy is in general smaller than those obtained for S12 , due to the drastic reduction 
in the number of data points.

In this case, the best performance is obtained from the RF classifier; indeed, it shows 
a total accuracy of 57% for S12RTM , against 55%. In general, from Figs. 16 and 17, we can 
conclude that the two dataset provides comparable results. This finding justifies the use of 
aereophotogrammetric techniques to evaluate the heights of buildings if they are not avail-
able from other sources.
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5  Conclusions

Damage datasets from the 2009 L’Aquila earthquake are used to apply machine learning 
algorithms, and the most accurate forecast factors are presented. Although our dataset is not 
very large, it provides unprecedented detail on the structures and soil in a typical town in 
the Central Apennines, a high-risk area that has been struck by several recent earthquakes 
(L’Aquila 2009, Amatrice and Norcia 2016). Our dataset can be used to provide useful 
insight into the factors that significantly affect how a building reacts during an earthquake. 
On the other hand, it can serve as a standard against which other machine learning methods 
and feature selection strategies can be evaluated. When compared to other datasets of a 
similar size, like the one used in Mangalathu and Jeon (2018), it has a rather even distribu-
tion of buildings reported with light, moderate, and heavy damage. Any potential biases 
toward a particular damage state can be mitigated with the help of such a distribution. Aer-
ial photogrammetric surveys of several of the structures are also available and can be used 
to supplement the dataset in the future. For the first time, a supervised learning approach is 
used to forecast the seismic damage states of structures hit by the 2009 L’Aquila event. The 
techniques and datasets employed here allow us to draw the following findings. Less than 
3% of buildings with red tags were misclassified as green, showing that the Random Forest 
algorithm can effectively distinguish between severely damaged and unharmed structures. 

Fig. 15  Workflow for buildings height calculation
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The mean area, calculated by dividing the entire area of the aggregate by the total number 
of structures, is determined to be the primary characteristic affecting damage. Damage dis-
tribution in our dataset is also substantially influenced by geographical location, building 
height, and distance to the depocenter (as opposed to the epicenter) (Petricca et al. 2021). 
In the future, we plan to assess the efficacy of other supervised learning methods, maybe 
in tandem with ensemble models, which permit the integration of multiple methods into 
a single model. By using the Boruta approach for selecting the features, we were able to 
cut down on processing time without sacrificing forecast precision. However, it is fascinat-
ing to use various feature reduction and selection approaches to a bigger dataset to better 
understand the impact of each variable. The topic of this forthcoming study. The machine 
learning algorithms evaluated here can be used in a systematic damage assessment frame-
work where the input ground motions are not interpolated from observable data but are 
instead simulated with different methods (Di Michele et al. 2022; Evangelista et al. 2017; 
Askan et al. 2013; Di Michele et al. 2021). A scenario-based methodology like this could 
be useful for estimating the costs of future earthquakes.

(a) KNN (0.53) (b) RF (0.55)

(c) DT (0.52)

Fig. 16  Performance of the classifiers using dataset S
12UAV

 , where the height of the building is obtained by 
aereophotogrammetric techniques. In brackets is the accuracy of each method
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Appendix

In this section, we report for each dataset the values of the hyperparameters employed in 
our analyses

S12

• RF: (criterion = entropy, max_features = sqrt, n _estimators = 1604,
  min_samples_split = 10,min_samples_leaf = 4, max_depth = 100)
• KNN: (weights =  distance, p =  1, n _neighbors =  20)
• DT : (random_state  =  100,min_samples_split  =   2, min_samples_leaf  =   1, max_

features =  12, max_depth = 130, criterion =  gini)

S21

(a) KNN (0.53) (b) RF (0.57)

(c) DT (0.51)

Fig. 17  Performance of the classifiers using the dataset S
12RTM

 , where the height of the buildings has been 
obtained from Regione-Abruzzo (2019). In brackets is the accuracy of each method
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• RF: (criterion = entropy, max_features = sqrt, n _estimators = 1146,
  min_samples_split = 2,min_samples_leaf = 6, max_depth = 120)
• KNN: (weights =  distance, p =  1, n _neighbors =  38)
• DT : (random_state = 10,min_samples_split =  1, min_samples_leaf =  2, max_fea-

tures =  20, max_depth = 39, criterion =  entropy)

SUAV

• RF: (criterion = entropy, max_features = sqrt, n _estimators = 1604,
  min_samples_split = 10,min_samples_leaf = 4, max_depth = 100)
• KNN: (weights =  distance, p =  1, n _neighbors =  20)
• DT : (random_state = 10,min_samples_split =   2, min_samples_leaf =   1, max_fea-

tures =  12, max_depth = 130, criterion =  gini)

SRTM

• RF: (criterion = entropy, max_features = log2, n _estimators = 1185,
  min_samples_split = 10,min_samples_leaf = 1, max_depth = 10)
• KNN: (weights =  distance, p =  1, n _neighbors =  34)
• DT : (random_state = 10,min_samples_split =   2, min_samples_leaf =   1, max_fea-

tures =  12, max_depth = 10, criterion =  entropy)
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