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ABSTRACT

PROBING SIGNS OF NEW PHYSICS AT LOW ENERGIES: THE NEUTRINO CASE

Elpe, Altuğ

Ph.D., Department of Physics

Supervisor: Prof. Dr. İsmail Turan

Co-Supervisor: Assoc. Prof. Dr. Levent Selbuz

January 2023, 99 pages

Neutrinos have a special place in particle physics. They are spin-1/2, electrically

neutral, nearly massless, and very weakly interacting particles. Properties of weak

interactions can be conveniently studied through neutrinos. They are assumed to

be sensitive to new physics effects. Moreover, searching for new physics at low en-

ergies has its motivations based on the null results about new physics at high ener-

gies coming out of Hadron Colliders’ data. One of the favorite signs of new physics

at low energies would be the so-called dark sector, which would show some sizable

effects in neutrino scattering experiments. This thesis analyzes Abelian dark sec-

tor scenarios embedded into the two-Higgs doublet models through the Coherent

Elastic Neutrino-Nucleus Scattering experiment, which was first measured by the

COHERENT Collaboration in 2017. The theoretical framework assumes that there

is a U(1) gauge group in the dark sector with a non-zero kinetic mixing with the

hypercharge field. Moreover, the scalar sector of the Standard Model is extended

with a second doublet which, under certain assumptions, makes mass mixing be-

tween the dark gauge field and neutral electroweak fields possible. The COHER-

ENT data for the CsI and liquid argon (LAr) targets are used to constraint the multi-
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dimensional parameter space, spanned by the dark gauge coupling, kinetic mixing

parameter, and the dark photon mass, for a total of seven different representative

scenarios, which are also compared and contrasted among each other to find out

about the most sensitive one to the data.

Keywords: New Physics, BSM, Vector Boson, Neutrino, COHERENT Collaboration
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ÖZ

YENİ FİZİĞİN İZLERİNİN DÜŞÜK ENERJİLERDE ARAŞTIRILMASI: NÖTRİNO
DURUMU

Elpe, Altuğ

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. İsmail Turan

Ortak Tez Yöneticisi: Doç. Dr. Levent Selbuz

Ocak 2023 , 99 sayfa

Nötrinoların parçacık fiziğinde özel bir yeri vardır. Spin-1/2, elektriksel olarak nötr,

neredeyse kütlesiz ve çok zayıf etkileşen parçacıklardır. Zayıf etkileşimlerin özellik-

leri, nötrinolar aracılığıyla rahatlıkla incelenebilir. Yeni fizik etkilerine duyarlı ol-

dukları varsayılmaktadır. Ayrıca, düşük enerjilerde yeni fizik arayışı, Hadron Çar-

pıştırıcılarının verilerinden yüksek enerjilerde yeni fizik hakkında değeri olmayan

sonuçlara dayanan motivasyonlara sahiptir. Düşük enerjilerde yeni fiziğin en önemli

işaretlerinden biri, nötrino saçılma deneylerinde bazı büyük etkiler göstermesi bek-

lenen ve karanlık olarak adlandırılan sektördür. Bu tez, ilk olarak 2017’de COHE-

RENT Collaboration tarafından ölçülen Tutarlı Elastik Nötrino-Çekirdek Saçılımı

deneyi aracılığıyla iki Higgs ikili modellerine gömülü Abelyen karanlık sektör se-

naryolarını analiz eder. Teorik çerçeve hiperyük alanı ile kinetik karışıma giren bir

karanlık sektör U(1) ayar alanı varsayar. Ayrıca, Standart Modelin skaler sektörü,

belirli varsayımlar altında karanlık ayar alanı ile nötr elektrozayıf alanlar arasında

kütle karışımını mümkün kılan ikinci bir ikili ile genişletilir. CsI ve sıvı argon (LAr)
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hedefleri için COHERENT verileri, toplam yedi farklı temsili senaryo için karan-

lık çiftlenim sabiti, kinetik karışım parametresi ve karanlık foton kütlesi tarafından

yayılan çok boyutlu parametre uzayını kısıtlamak için kullanılır. Verilere en duyarlı

olanı bulmak için bunlar da birbirleriyle karşılaştırılır.

Anahtar Kelimeler: Yeni Fizik, SMÖ, Vektör Bozon, Nötrino, COHERENT Kolabo-

rasyonu
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CHAPTER 1

INTRODUCTION

The Standard Model (SM) is the most valid model in existence today that describes

the fundamental particles, which are the building blocks of the universe, and their

fundamental interactions. It is powerful enough to explain almost all observed

phenomena within the electromagnetic, weak, and strong interaction domains 1.

However, it is unable to provide a complete picture of the subatomic world. There-

fore, it is considered to be an incomplete theory. The shortcomings of SM under

three categories are given below.

1. Structural failures:

• One critical issue is that physicists are unable to incorporate gravity into this

framework.

• Neutrino oscillations observed in 1998 by Super-Kamiokande Collaboration

[6] point to the existence of neutrino masses which are not predicted by the

SM.

• The vacuum of the universe has a uniform energy density that is related to its

expansion. This energy is associated with the cosmological constant in Gen-

eral Relativity. The observed cosmological constant is small but non-zero.

The Standard Model lacks a mechanism for generating a non-zero cosmo-

logical constant and provides no explanation for the origin of this energy [7].

2. Cosmological problems that the SM based models fail to explain:

• There is an excess of matter over anti-matter in the observable universe.
1 As an example, see the results of regularly performed electroweak precision tests, given in Table 4.2 of [5]
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Although there is a possible CP violation in the quark sector, cosmological

models based solely on it are unable to explain the observed discrepancy [8].

• Cosmological observations suggest that %85 of all the material in the uni-

verse eluded our observations and have exotic futures. This material is re-

ferred to as dark matter, and there is no viable candidate for this material in

the SM that fits the expected profile[9].

3. The so-called fine-tuning problems:

• There is a phase in the quark sector that leads to CP violation in strong inter-

actions. However, no such violation is observed. This means that the phase

is, or is close to zero. When a parameter is zero, physicists expect the exis-

tence of an underlying symmetry that drives that parameter to zero. SM does

not provide a reason for this particular value of the parameter. This is called

the Strong CP Problem [10].

• Quantum corrections from heavy particles at all energy scales contribute to

the calculation of Higgs boson mass and drag it upwards. The Higgs mass

should be much larger than what has been observed. It is unclear why quan-

tum corrections do not increase the mass of the Higgs boson significantly. To

make our calculations sense, the Higgs mass must be precisely adjusted so

that the quantum corrections are canceled out [11].

This thesis investigates the possible interactions between the SM particles and the

dark sector where a possible candidate for dark matter may also originate from.

The dark matter problem is one of the fundamental problems in cosmology and

astrophysics. There is overwhelming evidence for gravitational effects caused by

a non-luminous material that corresponds to the majority of the mass in the uni-

verse. Various astrophysical observations on large scale structures indicate that

galaxies and clusters are surrounded by this material.

The first evidence for the existence of dark matter came from Fritz Zwicky’s obser-

vations on the motions of galaxies in Coma Clusters in 1933 [12] that concluded

2



the gravity from visible material is insufficient to account for the galaxies’ fast or-

bits. He coined the term "dark matter" to refer to the invisible material that should

exist to hold the galaxies in the cluster. Shortly after, unexpectedly high velocities

of galaxies are also observed in the Virgo cluster [13]. Similar behavior is observed

within the individual galaxies for the first time in the 70s. Rubin and his collabo-

rators measured the rotation speed of the galactic disks of Andromeda and other

spiral galaxies. They observed that the speed of the luminous material at the out-

skirts did not decrease as expected from the galaxies’ densities but maintained an

approximately constant speed [14, 15], which suggests a dark matter density pro-

portional to the distance from the galaxy center. Similar observations on other

galaxies supported and expanded this finding [16].

Evidence for missing material is also obtained by another method for mass mea-

surement, gravitational lensing. Galaxies and clusters bend the light that comes

from an object behind them, acting like a lens. If the distance between two ob-

jects is known, the resulting lensing pattern can be expressed in terms of the mass

distribution of the foreground object. Galaxy mass measurements are also per-

formed by studying X-ray emissions from intergalactic gas. Gas forms clusters of

high-temperature plasma that emits X-rays. Being dependent on the kinetic en-

ergy of the gas, the wavelength of this emission can be related to the gravitational

potential of the galaxy cluster. A significant finding is obtained in the observation

of colliding galaxies, first on Bullet Cluster. Due to collision, the intergalactic gas is

observed to slow down, heat up, and emit X-rays. Compared to the mass distribu-

tion measured by gravitational lensing, the galaxy cluster mass center appeared to

separate from luminous material [17, 18]. This indicates that this problem cannot

be solved by only modifying gravitation theory.

Apart from galactic surveillance, cosmological observations may hint at the ex-

istence of dark matter. Our current understanding of the early universe heavily

relies on the gravitational effects of non-baryonic dark matter. The Cosmic Mi-

crowave Background (CMB) radiation reveals essential information about the uni-

verse’s early history and formation of large-scale structures. Small fluctuations in

the temperature and density of the CMB are linked to galaxy formations, and other

large-scale structures [10]. Simulations of the universe with dark matter can re-
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produce the observed large-scale structure as well as the temperature and density

fluctuations seen in CMB radiation [19].

A DM candidate has to satisfy a number of criteria to produce the observed effects.

It has to be non-baryonic, electrically neutral, and have restricted self-interaction

[20]. In order to explain the early universe, the DM might have additional con-

straints on its mass, production mechanism, stability, and kinetic energy depend-

ing on the cosmological model. The most researched DM candidates originate

from theories motivated by solving other problems in particle physics. They in-

clude the lightest supersymmetric particles, axions, Kaluza-Klein particles, sterile

neutrinos, and inert Higgs doublets [21] that come along with new mechanisms.

None of these particles have been observed up until this day.

An alternative approach to the conceptualization of dark matter can be taken. The

DM does not need to be described by a single particle and a single interaction. It

is plausible to consider the DM as part of a larger dark sector parallel to the visible

sector represented by the SM. This new sector could contain the DM, new gauge

interactions, and other dark particles. There is no reason to assume the physics

in the dark sector not to be extensive like the visible sector. After all, the current

paradigm expects the dark matter to be produced through BSM mechanisms.

The primary interaction between the visible sector and the dark sector is gravity.

If gravity is the only interaction between the sectors, the dark sector stays hidden.

However, it is possible that other weak interactions between sectors exist. If signs

of a new interaction in the visible sector are detected, it can be used to probe the

dark sector (see Fig. 1.1). It is always possible to consider the SM particle cou-

pling to a gauge boson from a new gauge group that also couples to dark sector

particles. Moreover, this generic type of connection is not the only way to form

communication between sectors. It is possible to construct gauge invariant terms

that combine fields from two sectors. Possible combinations called portals; that

are not suppressed by the energy scale are given in Table 1.1.

In this thesis, the vector portal scenario is examined. The dark sector particle, in

this case, is known as the dark photon [22]. It is analogous to the SM photon be-

cause it arises from a U(1) symmetry and mediates a dark force. It is possible to
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Table 1.1: Possible portals between the visible and dark sectors

Portal Dark Sector particle Operators

Vector Dark Photon (X 0
µ) ϵYµνX 0µν

Higgs Dark Scalar (S) (µS +λS2)φ†φ

Axion Pseudo Scalar (a) (a/ fa)FµνF̃µν, (a/ fa)GiµνG̃µν

i , (1/ fa)∂µaψ̄γµγ5ψ

Neutrino Sterile Neutrino (n) ynLφn.

Figure 1.1: Description of dark and visible sectors communicating through a portal

form a gauge invariant term by coupling the dark vector field strength tensor with

the one belonging to the weak hypercharge group U(1)Y . The strength of this cou-

pling is described by the kinetic mixing parameter sinϵ. This parameter acts as

a small perturbation to the SM, so its value is highly suppressed. Moreover, the

dark photon can be massive. However, the dark sector is considered to play a role

in the formation of the early universe. Models with light dark photon reproduce

the observations on CMB radiation. Therefore, the dark photon mass is typically

considered at most in the MeV range.

There are various approaches to detecting dark photons if they exist. The cosmo-

logical searches involve measurements of cosmic rays, looking for a characteristic

excess of energy, and looking for distortions in the temperature and polarization in

the CMB radiation. On the other hand, ground-based experiments allow the pro-

duction and direct detection of BSM particles in the laboratory. Due to the dark

photon’s small mass and weak interaction, it is impossible to separate and detect it

in high-energy experiments such as Large Hadron Collider. In order to detect such

particles, low-energy experiments are proposed and built.
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A suitable low energy phenomena for dark photon search is the coherent elastic

neutrino-nucleus scattering (CEνNS ). In 1974, Freedman theorized that elastic

neutrino nucleus scattering occurs coherently when the incident neutrino energy

is less than ≈ 50 MeV [23]. At such low energies, neutrino interacts with the nucleus

as a whole, rather than with its individual constituents. In SM, the cross section for

elastic scattering is two orders of magnitude larger than inelastic scattering, which

makes CEνNS viable for observation. The interest in CEνNS goes beyond testing

for neutrino couplings in SM and probing nuclear structure. If a new neutral cur-

rent interaction mediated by a light vector boson exists, it would not be suppressed

by SM interactions in this region. In spite of the fact that the earliest experimental

proposal to measure CEνNS was rather old [24], it took indeed almost four decades

to be able to make significant progress on the way of measuring CEνNS cross sec-

tion. CEνNS was observed for the first time by the COHERENT Collaboration in

2017[2] (see Section 4.2 for details). Hence CEνNS has become one of the impor-

tant probes for physics beyond the SM since then.
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CHAPTER 2

REVIEW OF THE STANDARD MODEL AND ITS SCALAR SECTOR EXTENSIONS

The concepts of symmetry transformations, gauge freedom, spontaneous symme-

try breaking, and the Higgs mechanism play a fundamental role in the construction

of the SM. These concepts are discussed in Sec. 2.1. Then, Sec 2.2 discusses how

the SM is constructed.

2.1 Spontaneous Symmetry Breaking and The Higgs Mechanism

Spontaneous symmetry breaking the Higgs mechanism plays a central role in the

construction of the SM. In quantum field theories, the fundamental property of

gauge freedom prevents writing mass terms for force-carrying bosons. The Higgs

mechanism describes how this problem is overcome by breaking the theory’s un-

derlying symmetries.

2.1.1 Symmetries in Quantum Field Theories

A transformation is called a symmetry transformation (or simply symmetry) of a

system if the transformed system is identical to the initial one [25]. In mathemati-

cal terms, a symmetry transformation preserves Lagrangian up to a total derivative.

L →L ′ =UL =L +∂µ f µ (2.1)

According to Noether’s first theorem, there is a conserved quantity corresponding

to every continuous symmetry [26].

Two types of symmetries need to be discussed; global and local symmetries. This
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discussion is given for a simpler model below for clarity before moving on to the

SM. One of the simplest quantum field theories is the theory of a self-interacting

complex scalar field, known as the φ4 theory [27]

L =(
∂µφ

)∗(
∂µφ

)−µ2φ∗φ−λ(
φ∗φ

)2. (2.2)

This Lagrangian is symmetric under a global phase shift φ→φ′ = e iθφ.

L ′ =(∂µφ
′)∗(∂µφ′)−µ2φ′∗φ′−λ(

φ′∗φ′)2 =L (2.3)

This type of transformation is called global U (1) transformation, referring to 1×1

unitary matrices. Under the further inspection of the Lagrangian, it is clear that

this symmetry does not hold locally, i.e., φ→φ′ = eiθ(x)φ.

L ′ =(
∂µφ

′)∗(
∂µφ′)−µ2φ′∗φ′−λ(

φ′∗φ′)2

=
(
∂µeiθ(x)φ

)∗(
∂µeiθ(x)φ

)
−µ2φ∗φ−λ(

φ∗φ
)2

=[
i
(
∂µθ(x)

)
φ+∂µφ

]∗ [
i
(
∂µθ(x)

)
φ+∂µφ]−µ2φ∗φ−λ(

φ∗φ
)2 (2.4)

The transformation property of ∂µφ prevents invariance. The same situation arises

for fermionic kinetic term ψ̄γµ∂µψ. The source of this behavior can be understood

by examining the definition of the derivative. Derivative ofφ in the direction of the

vector nµ is [28]

nµ∂µφ= lim
ϵ→0

1

ϵ

(
φ(x +ϵn)−φ(x)

)
(2.5)

Under a local phase transformations, φ(x +ϵn) and φ(x) have different transfor-

mation properties. In order to perform this subtraction, a factor that compensates

for the difference in phase transformations needs to be introduced. This a scalar

quantity U (y, x), which transforms as

U (y, x) → e iα(y)U (y, x)e−iα(x). (2.6)

U (y, x) can be considered a pure phase in general. With this object, φ(y) and

U (y, x)φ(x) can have the same transformation properties. This defines the covari-

ant derivative as

nµ∂µφ= lim
ϵ→0

1

ϵ

(
φ(x +ϵn)−U (x +ϵn, x)φ(x)

)
(2.7)
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To get the full expression, U (y, x) can be expanded by separating the two points.

U (x +ϵn, x) = 1− ieϵnµAµ+O (ϵ2) (2.8)

where e is an arbitrary constant. Since U is a scalar, ϵnµ is companied by a vector

field Aµ. As a result, the covariant derivative takes the form

Dµ = ∂µ− ie Aµ (2.9)

By replacing ∂µ with Dµ, a Lagrangian that is invariant under local phase transfor-

mation can be constructed.

L =(
Dµφ

)∗(
Dµφ

)−µ2φ∗φ−λ(
φ∗φ

)2. (2.10)

The new field Aµ transforms as

Aµ→ Aµ− 1

e
∂µθ(x) (2.11)

so that it cancels the extra terms in Eq.(2.4). However, Eq. 2.10 is incomplete. A

kinetic term for the gauge field should be added to describe its propagation [29].

To preserve the invariance, this kinetic term needs to be constructed with anti-

symmetric terms,

Lg aug e =−1

4
FµνFµν (2.12)

where

Fµν = ∂µAν−∂νAµ. (2.13)

The φ4 Lagrangian becomes

L =(
Dµφ

)∗(
Dµφ

)− 1

4
FµνFµν−µ2φ∗φ−λ(

φ∗φ
)2. (2.14)

2.1.2 Gauge Freedom

The mentioned gauge theory plays a central role in the Higgs mechanism and gen-

eral theory crafting. It is the freedom to redefine fields with superfluous degrees of

freedom that ultimately have no physical consequence, and it is just a mathemati-

cal property of the model. Unlike symmetry transformations which transform into
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another state with the same physical properties, gauge transformations transform

into the same state [25].

Every physics student is introduced to the concept of gauge freedom in Maxwell’s

electromagnetism. Electric and magnetic fields are restated in terms of a four-

vector Aµ = (V ,A), where

E =−∇V −∂t A, B =∇×A. (2.15)

The Maxwell action,

SM axwel l =
1

2µ0

∫
d 4x(E2 −B2) = 1

4µ0

∫
d 4xFµνFµν. (2.16)

is left invariant under the following transformation

Aµ(x) → Aµ(x)+∂µα(x). (2.17)

This is a gauge transformation. It does not affect E and B fields. Likewise, Eq. 2.11

is a gauge transformation.

Photon in vacuum has two degrees of freedom, the two perpendicular polarization

states. However, Aµ, having four components, starts with four degrees of freedom.

There need to be equations that relate these components. The product pµAµ is

proportional to mass. This removes one degree of freedom. A second degree of

freedom is removed by a procedure called gauge fixing. By choosing to work with a

specific gauge, the redundancy in our description is removed, and a constraint on

the gauge field is obtained. In order to describe massless photon, gauge theory is

beneficial.

2.1.3 Spontaneous Symmetry Breaking

A mass term for Aµ is missing in Eq. 2.14 since a term of the form AµAµ would break

the invariance. Therefore, the symmetries need to be broken somehow for gauge

bosons to obtain mass. However, Lagrangian has to maintain its symmetry. There

is a solution to this dilemma, as it is possible to get solutions from the Lagrangian,

which does not exhibit its symmetries. In other words, a system does not always

show the symmetries it is governed by. In this case, the vacuum state is not going

to be invariant. This is called spontaneous symmetry breaking.
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Before examining how vacuum breaks the symmetry, a quick explanation for what

vacuum means in quantum field theories should be given. Energy eigenstates, to

which if annihilation operator acts yields zero, are taken as the definition of vac-

uum [28].

a |Ω〉 = 0. (2.18)

These states have no quanta of energy to be annihilated. The energy quanta are

interpreted as particles. Then, to populate the state with particles, the creation

operator is acted on the vacuum.

a†(k) |Ω〉 = |k〉 (2.19)

Thus, field excitations require a definite vacuum state.

2.1.3.1 Goldstone Theorem

Returning to the first premise, in order to show how vacuum does not hold the

global symmetry in Eq.(2.2), the complex scalar φ field can be described in terms

of two distinct fields

φ(x) = 1p
2

(
φ1(x)+ iφ2(x)

)
. (2.20)

Then Eq.(2.2) is rewritten as

L =1

2
∂µφ1∂

µφ1 + 1

2
∂µφ2∂

µφ2 − 1

2
µ2(φ2

1 +φ2
2)− 1

4
λ(φ2

1 +φ2
2)2. (2.21)

Two cases can be considered; µ2 > 0 and µ2 < 0 [30]. Note that λ≥ 0 so that poten-

tial has a finite minimum.

If µ2 > 0, this describes a system of two real scalar particles with masses µ/
p

2. The

potential is azimuthally symmetric, and vacuum is located at (0,0). The case µ2 < 0

may indicate imaginary masses at first glance, but this is not the case. The point

(0,0) is again an extrema as V ′(φ) = 0, however it is a local maxima; V ′′(φ) =−2µ2.

The global minima,V (φ) = −λv4

4 , is on a set of points satisfying |φ|2 = v2

2 , located

along a circle of radius v , where v is the vacuum expectation value (vev)

2〈Ω|φ|Ω〉2 = v2 =−µ
2

λ
. (2.22)
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In order to get the particle content, a particular ground state is chosen to perturb.

Without loss of generality, it can be

(φ1,φ2) =
(

vp
2

,0

)
. (2.23)

Excitation around the stable minima is expressed as

φ(x) = 1p
2

(
v +η(x)+ iξ(x)

)
(2.24)

whereη and ξ are the two components of the complex field with 〈Ω|η|Ω〉 = 〈Ω|ξ|Ω〉 =
0. Then Eq.(2.21) can be written as

L =1

2
∂µη∂

µη+ 1

2
∂µξ∂

µξ−

constant︷ ︸︸ ︷
v2

(
µ2

2
+ λv2

4

)
−vη

=0︷ ︸︸ ︷(
µ2 +λv2)

−

mass︷ ︸︸ ︷
η2

(
µ2

2
+ 3λv2

2

)
−ξ2

(
µ2

2
+ λv2

2

)
−λ

4
η4 −λvη3 − λ

4
ξ4 − λ

2
η2ξ2 −λvηξ2.

(2.25)

After inserting Eq.(2.22), the linear term in η and the quadratic term in ξ disap-

pears. We get

L =1

2
∂µη∂

µη+ 1

2
∂µξ∂

µξ+µ2η2 − λ

4
η4 +µ2η3 − λ

4
ξ4 − λ

2
η2ξ2 +µ2ηξ2. (2.26)

This describes a state of one massive and one massless particle. The outcome

about the masses is expected as η describes radial excitations that go up the po-

tential well, and ξ describes angular excitations which do not climb the potential

locally. This is a case of the Goldstone theorem, which states that a massless boson

exists for each spontaneously broken symmetry.

2.1.3.2 Spontaneous Symmetry Breaking of a Local Gauge Invariant Model

Although gauge freedom cannot be spontaneously broken [25], its existence affects

the symmetry-breaking process. To see this, the same procedure from the previous

section can be applied to Eq.(2.14). Again for µ2 > 0, it is a system of two particles

of mass µ. When µ2 < 0, the minimum of the potential will be on a circle of radius

|φ|2 =−µ
2

λ
= v2. (2.27)
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After selecting (φ1,φ2) =
(

vp
2

,0
)

as the vacuum, excitations around this point can

be written as

φ(x) = 1p
2

(
v +η(x)+ iξ(x)

)
, (2.28)

with assuming 〈Ω|η|Ω〉 = 〈Ω|ξ|Ω〉 = 0. Then Eq.(2.14) becomes

L =1

2
∂µη∂

µη+ 1

2
∂µξ∂

µξ− 1

4
FµνFµν− v2

(
µ2

2
+ λv2

4

)
− vη

(
µ2 +λv2)

+ 1

2
e2v2 A2 −η2

(
µ2

2
+ 3

2
λv2

)
−ξ2

(
µ2

2
+ λv2

2

)
+ 1

2
e2 A2(η2 +2vη+ξ2)

− λ

4

(
η2 +ξ2)2 −λvη3 −λvηξ2 +e Aµξ∂µη+e Aµη∂µξ+ev Aµ∂µξ. (2.29)

As before, inserting Eq.(2.27) cancels out the linear term in η and the mass term of

ξ. After dropping the constant terms, it becomes

L =1

2
∂µη∂

µη+ 1

2
∂µξ∂

µξ− 1

4
FµνFµν+ 1

2
e2v2 A2 +µ2η2

+ 1

2
e2 A2(η2 +2vη+ξ2)− λ

4

(
η2 +ξ2)2 +µ2η3 +µ2ηξ2.

+e Aµξ∂µη−e Aµη∂µξ−ev Aµ∂µξ (2.30)

The Lagrangian now contains a mass term with m2
A = v2

2 for the gauge boson in ad-

dition to the previous section. However, the procedure is not finished yet as there

needs to be a clarification about degrees of freedom[27]. In the beginning, the La-

grangian had four degrees of freedom; two from massless gauge boson and two

from φ1 and φ2. In the end, three come from massive gauge bosons and two from

η and ξ. Seemingly an unphysical field appeared in the process. It is easy to find

this field as it shows itself in the last term of Eq.(2.30). The term ev Aµ∂µξ describes

a process in which vector particle A transforms into scalar ξ during propagation.

This tells ξ acts as the longitudinal component of A. Therefore, to go on the phys-

ical eigenstate basis, one has to perform diagonalization, which would eliminate

the bilinear term. In fact, in this case, the diagonalization procedure is the gauge

transformation Eq.(2.11). Terms involving ξ can be rewritten as:

1

2
∂µξ∂

µξ+ev Aµ∂µξ+ 1

2
e2v2 A2 = 1

2
e2v2

(
Aµ+ 1

ev
∂µξ

)2

= 1

2
e2v2 A′2. (2.31)

This specific choice of θ = ξ/v is called the unitary gauge. This transformation

alone does not eliminate all ξ from the Lagrangian as there still are in the inter-

action terms. However, recalling from Section 2.1.1, the above transformation is
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companied by phase transformation for φ, which rotates away the remaining ξ. To

simplify this calculation, Eq.(2.28) can be expressed in an equivalent form of fields

h and ζ

φ(x) = 1p
2

(
v +η(x)+ iξ(x)

)= 1p
2

(v +h)eiζ/v , (2.32)

where h = η and ζ= ξ in the first order due to (v +h)(1+ iζ) = v +h + iζ. This time

a unitary gauge transformation with θ = ζ/v would look like

φ→ e−iζ/vφ, Aµ→ Aµ− 1

ev
∂µζ. (2.33)

This transformation cancels out ζ, leaving φ with a simpler form:

φ= 1p
2

(v +h); (2.34)

a form that would not lead to undesired terms appearing in the Lagrangian.

L =(
Dµφ

)∗(
Dµφ

)− 1

4
FµνFµν−µ2φ∗φ−λ(

φ∗φ
)2

= 1

2
∂µh∂µh − 1

4
FµνFµν+ 1

2
e2v2 A2 +µ2h2

+ 1

2
e2 A2(h2 +2vh

)+µ2
(
h3 + 1

4
h4

)
(2.35)

In the end, spontaneous symmetry breaking transformed one of the scalar fields

into the longitudinal mode of the gauge boson. Without the gauge freedom, this

field would end up as a massless Goldstone boson. Therefore, it is said that in the

symmetry-breaking process, the gauge boson ate the Goldstone boson and gained

mass. This process is called the Higgs mechanism. Here h in Eq.(2.35) is called the

Higgs boson. It is massive, and examining the interaction terms shows that it has

both self-interactions and interactions with the gauge boson.

2.2 Higgs Mechanism in the Standard Model

Apart from assigning masses to gauge bosons, the characteristic that weak inter-

actions couple only left chiral fields interferes with writing mass terms for elemen-

tary particles in the Lagrangian. In this section, the idea of spontaneous symmetry

breaking of a scalar theory from the previous section is applied to Standard Model

by introducing a scalar doublet. The Higgs Boson, a prediction of the Higgs mech-

anism, was observed on July 4, 2012.
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2.2.1 The Standard Model

The SM is a gauge theory of group structure SU(3)C ⊗ SU(2)L ⊗U(1)Y. The group

SU(3)C is related to strong interactions, whereas SU(2)L ⊗U(1)Y is the group struc-

ture of the Electroweak Theory (EW) (formulated by Glashow, Weinberg, and Salam),

which is a unified theory of the electromagnetic and weak interactions [11]. The

scope of this thesis is confined to the EW sector; therefore, only this sector is de-

tailed below. The fermionic matter content includes leptons and quarks, organized

in three families.

Leptons =
νe

e

 ,

νµ
µ

 ,

ντ
τ

 , Quarks =
u

d

 ,

c

s

 ,

 t

b

 .

Leptons include electron, muon, and tau and their related neutrinos and quarks

include up, down, strange, charm, bottom, and top quarks. In both sectors, the

quantum numbers of families are equal, and the only difference is in their masses.

An important characteristic of weak interactions is electrically charged interac-

tion couples only left-handed fields in a structure called V-A interactions, which

is why the Higgs mechanism is needed to make fermions massive. The difference

between left-handed and right-handed fermions in EW is formulated using the

group SU(2)L , where L refers to left-handed fields. Left-handed fields form dou-

blets, while right-handed fields form singlets. Quark fields form

Qα
L =

uα
L

dα
L

 , uα
R , dα

R

where α is the family index. u, c, t are referred as up type quarks and d , s, b are

referred as down type quarks. Similarly, leptons form

Lα =
ναL

eαL

 , eαR

where right-handed neutrinos ναR are missing.

Interactions between particles formed through coupling to four gauge bosons, cor-

responding to three generators of SU(2) and one generator of U(1)

W a
µ , Bµ
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Table 2.1: Quantum numbers of elementary particles under SU(2)L ⊗U(1)Y

Particles I 3 Y Q I 3 Y Q

uα
L

1
2

1
6

2
3 uα

R 0 2
3

2
3

dα
L −1

2
1
6 −1

3 dα
R 0 −1

3 −1
3

eαL −1
2 −1

2 −1 eαR 0 −1 −1

ναL
1
2 −1

2 0

where a = 1,2,3. The EW covariant derivative is

Dµ = ∂µ− igW a
µ t a − ig ′Y Yµ, (2.36)

where t a and Y are generators of the related groups, and g and g ′ are coupling

constants. Fermionic and scalar fields have weak isospin quantum numbers, I =
0 or 1/2 with

t a =

= 0 if I = 0

= 1
2σ

a if I = 1
2

(2.37)

where σa are Pauli matrices and hypercharge Y = Q − I 3 where Q is the electric

charge and I 3 is the third component of isospin. Quantum numbers of fermionic

fields are given in Table (2.1). Under SU(2)L ⊗U(1)Y symmetry transformations

fermionic fields transform as [11]

Qα
L →exp

(
iY ρ

)
exp

(
i
σa

2
ωa

)
Qα

L

uα
R →exp

(
iY ρ

)
uα

R

dα
R →exp

(
iY ρ

)
dα

R (2.38)

Lα→exp
(
iY ρ

)
exp

(
i
σa

2
ωa

)
Lα

eαR →exp
(
iY ρ

)
eαR .

Similarly, gauge bosons transform as (see Appendix A)

Yµ→Yµ− 1

g ′∂µρ

W̃µ→exp

(
i
σa

2
ωa

)
W̃ exp

(
i
σa

2
ωa

)†

+ i

g

(
∂µexp

(
i
σa

2
ωa

))
exp

(
i
σa

2
ωa

)†

(2.39)
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where W̃µ = σa

2 W a
µ . With these, the EW Lagrangian becomes

L =
3∑

α=1

(
Q
α

L /DQα
L +uα

R /Duα
R +d

α

R /Ddα
R +L

α
/DQα

L +eαR /DeαR

)

− 1

4
YµνY µν−

1
4 W a

µνW aµν︷ ︸︸ ︷
1

2
Tr

(
W̃µνW̃ µν

)
(2.40)

where /D = Dµγ
µ and Yµν, W a

µν are field strength tensors of Yµ, W a
µ ;

Yµν =∂µYν−∂νYµ

W a
µν =∂µW a

ν −∂νW a
µ + fwϵ

abcW b
µW c

ν . (2.41)

2.2.2 Spontaneous Symmetry Breaking in the Electroweak Theory

While generating masses for gauge bosons, one has to generate mass terms for W ±

and Z bosons while leaving photons massless. This means that after symmetry

breaking, the system should still have the symmetry of QED, or U(1)Q . Further-

more, three degrees of freedom for scalar fields need to be absorbed to obtain three

massive bosons. To this end, EW theory is extended with a scalar sector. However

to retain symmetry, only SU(2)L ⊗U(1)Y multiples can be added. This leads to the

introduction of Higgs doublet[27]

φ=
φ+

φ0

= 1p
2

φ1 + iφ2

φ3 + iφ4

 . (2.42)

which has quantum numbers I = 1/2 and Y = 1. Electric charges of both compo-

nents are selected to ensure the condition on the hypercharge. The Lagrangian of

the scalar sector is

Lscalar =
(
Dµφ

)†(Dµφ
)−V (φ). (2.43)

Which has a potential that would spontaneously break the symmetry

V (φ) =µ2
(
φ†φ

)
+λ

(
φ†φ

)2
, with µ2 < 0. (2.44)

The product φ†φ can be expanded as

φ†φ= 1

2

(
φ+∗φ++φ0∗φ0)= 1

2

(
φ2

1 +φ2
2 +φ2

3 +φ2
4

)
. (2.45)
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Just like before, the vacuum is not unique. However, the vacuum should not be in

the charged direction to preserve electric charge conservation. Therefore the vac-

uum is chosen to be at φ1 =φ2 =φ4 = 0 and φ3 = v , giving the vacuum expectation

value

〈Ω|φ|Ω〉 = 1p
2

0

v

 , v =
√
−µ

2

λ
. (2.46)

The theory is then developed around the vacuum with excitations h, ξ1,2,3:

φ=
 ξ1 + iξ2

1p
2

(v +h)− iξ3

= e
2it aξa

v

 0
1p
2

(v +h)

 . (2.47)

After applying gauge transformation as in section Eq.(2.1.3.2), ξa fields disappear.

φ→ e−
2it aξa

v φ= 1p
2

 0

v +h

 (2.48)

The result is symmetry breaking of form SU(2)L ⊗U(1)Y → U(1)Q .

2.2.3 Generating Gauge Boson Masses

Gauge boson mass terms come from the covariant derivative square term in Eq.(2.43)

[30]. With φ given in Eq.(2.48), the relevant terms become

∣∣Dµφ
∣∣2 ⊃

∣∣∣∣∣∣
(
− ig

2
t aW a

µ − ig ′

2
Y Yµ

)
1p
2

0

v

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣ −iv

2
p

2

 gW 1
µ − igW 2

µ

−gW 3
µ + g ′Yµ

∣∣∣∣∣∣
2

= v2

8

(
g 2

((
W 1
µ

)2 +
(
W 2
µ

)2
)
+

(
−gW 3

µ + g ′Yµ
)2

)
. (2.49)

The established W ±, Z bosons, and photon states arise from this point.

2.2.3.1 Rewriting W 1
µ and W 2

µ as Charged Gauge Bosons W +
µ and W −

µ

The charged W ± states are defined through charge raising and lowering operators

[31]

t+ = 1

2

(
t 1 + it 2)= 1

2

0 1

0 0


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t− = 1

2

(
t 1 − it 2)= 1

2

0 0

1 0

 . (2.50)

In terms of W 1,2, they are expressed as

W +
µ = 1p

2

(
W 1
µ − iW 2

µ

)
W −
µ = 1p

2

(
W 1
µ + iW 2

µ

)
(2.51)

In this mass eigenbasis, charged weak interactions couple members of weak isospin

doublets.

QL /DQL =− ip
2

g
(
uL d L

)0 1

0 0

uL

dL

 /W +− ip
2

g
(
uL d L

)0 0

1 0

uL

dL

 /W −+ ...

=− ip
2

g
(
uLγ

µdLW +
µ +d Lγ

µuLW −
µ

)
+ ... (2.52)

Returning back to Eq.(2.49), W 1,2 terms can be rewritten as

v2g 2

8

((
W 1
µ

)2 +
(
W 2
µ

)2
)
= v2g 2

4

((
W +
µ

)2 +
(
W −
µ

)2
)
, (2.53)

yielding the W boson mass as

mW ± = v g

2
. (2.54)

2.2.3.2 Rewriting W 3
µ and Bµ as Neutral Gauge Bosons Zµ and Aµ

Next, W 3
µ and Yµ can be rewritten as neutral gauge bosons Zµ and Aµ. The last

term in Eq.(2.49) can be expressed as

v2

8

(
−gW 3

µ + g ′Yµ
)2 = v2

8

(
W 3
µ Yµ

) g 2 −g g ′

−g g ′ g ′2

W 3
µ

Yµ

 . (2.55)

The mass matrix needs to be diagonalized. It has two eigenvalues and eigenvec-

tors, leading to two gauge bosons [31]

λ1 = 0, V1 = 1√
g 2 + g ′2

 g

g ′

→ Aµ = 1√
g 2 + g ′2

(
gW 3

µ + g ′Yµ
)

λ2 = g 2 + g ′2, V2 = 1√
g 2 + g ′2

 g

−g ′

→ Zµ = 1√
g 2 + g ′2

(
gW 3

µ − g ′Yµ
)
. (2.56)
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In other words, there are bosons; massless photon Aµ and massive Z boson Zµ.

Inserting the expression for Z into Eq.(2.49) gives

mZ = v

2

√
g 2 + g ′2 (2.57)

2.2.3.3 The Weak Mixing Angle

There is a clear relation between W and Z masses Eq.(2.54), Eq.(2.57), which can

be expressed in terms of trigonometric relations of some angle θW called Weinberg

angle (or the weak mixing angle) [30]

mZ =
√

g 2 + g ′2

g
mW = mW

cosθW
(2.58)

with

cosθW = g√
g 2 + g ′2 , sinθW = g ′√

g 2 + g ′2 (2.59)

This angle can also be interpreted as a rotation angle between bases
(
W 3,Y

)
and

(Z , A).

The parts involving W 3
µ and Yµ in the EW covariant derivative Eq.(2.36) can be writ-

ten in terms of Zµ and Aµ as

−ig t 3W 3
µ − i

2
g ′Y Yµ =−i

g g ′√
g 2 + g ′2

(
t 3 + Y

2

)
Aµ− i

1√
g 2 + g ′2

(
g t 3 − g ′ Y

2

)
Zµ (2.60)

which leads to the relationship between EW and QED couplings

e = g g ′√
g 2 + g ′2 = g sinθW = g ′ cosθW . (2.61)

In particle physics calculations, a commonly encountered value sin2θW , is mea-

sured to have the value [11]

sin2θW = 1− m2
W

m2
Z

≈ 0.2234. (2.62)

2.2.4 Fermion Masses

Mass terms for fermions are missing in the EW Lagrangian Eq.(2.40). Left and right

chiral fields couple to each other inside the mass terms.

Lmass =−m f † f =−m
(

f̄L + f̄R
)(

fL + fR
)=−m

(
f̄L fR + f̄R fL

)
(2.63)
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However, since their transformation properties are different, directly adding this

term breaks the symmetry.

The Higgs mechanism can generate fermion mass terms just like it is used to gen-

erate mass terms for gauge bosons [32, 33]. If a singlet term under SU(2)L and

U(1)Y can be constructed, it can be used inside EW Lagrangian. By using the Higgs

doublet, such terms can be written as

LYukawa =−y
(

f̄Lφ fR + f̄R φ̃ fL
)

(2.64)

where

φ̃c = iσ2φ∗ = 1p
2

v +h

0

 . (2.65)

This term is known as Yukawa interaction, and the coupling y is Yukawa coupling.

Not only it generates mass terms for fermions, but it also describes interactions

between the Higgs field and fermions.

The EW extension in the Yukawa sector is

−LYukawa = y ′αβ
e L̄′αφe ′β

R + y ′αβ
u Q̄ ′α

L φ̃
c u′β

R + y ′αβ
d Q̄ ′α

Lφd ′β
R +h.c. (2.66)

where the Yukawa couplings takes a matrix form yαβf due to family structure.

The primes in Eq.(2.66) indicate that fields are in interaction basis, which is ex-

plained as follows: In general, the matrices y f are not diagonal. As a result, we

obtain non-diagonal mass matrices after the EW symmetry breaking

m′
f =

vp
2

y ′
f . (2.67)

However, the mass matrices can be diagonalized with a change of basis. The basis

in which the mass matrices diagonal is called the mass (or physical) basis. The

states in the bases are related through unitary matrices

f ′
L =V f

L fL , f ′
R =V f

R fR (2.68)

Consequently, the Yukawa couplings transform as

y ′
f =V f

L y f V f
R

†
(2.69)
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2.2.4.1 Lepton Masses

The EW symmetry-breaking process of the leptonic part of Eq.(2.66) is as follows:

−L
lepton
Yukawa =y ′αβ

e

(
L̄′αφeβR + ē ′β

R φ̄L′
)

=− y ′αβ
ep
2

(
ν̄αL ē ′α

L

) 0

v +h

e ′β
R + ē ′β

R

(
v +h 0

)ναL
e ′α

L



= y ′αβ
ep
2

(v +h)

ē ′αe ′β︷ ︸︸ ︷(
ē ′α

L e ′β
R + ē ′β

R e ′α
L

)
= y ′αβ

e vp
2

ē ′αe ′β + y ′αβ
e vp

2
hē ′αe ′β

=
3∑

α=1

(
yααe vp

2
ēαeα + yααe vp

2
hēαeα

)
(2.70)

where two terms are the lepton mass term and lepton-Higgs interaction, respec-

tively. The physical lepton masses are

mlα =
yααe vp

2
(2.71)

and interaction coupling is proportional to the lepton mass.

2.2.4.2 Quark Masses

The process of symmetry-breaking process in the quark sector is likewise.

−L
quark
Yukawa =y ′αβ

u Q̄ ′α
L φ̃

c u′β
R + y ′αβ

d Q̄ ′α
Lφd ′β

R +h.c.

= y ′αβ
u vp

2
ū′αu′β+ y ′αβ

d v
p

2
d̄ ′αd ′β + y ′αβ

u vp
2

hū′αu′β+ y ′αβ
d v
p

2
hd̄ ′αd ′β

=
3∑

α=1

(
yααu vp

2
ūαuα+ yααd v

p
2

d̄αdα + yααu vp
2

hūαuα+ yααd v
p

2
hd̄αdα

)
(2.72)

The distinction between interaction and mass basis had no tangible effect in the

lepton sector. However, it leads to quark mixing in charged weak current interac-

tions. The weak current is

−LW = gp
2

(
ū′

L c̄ ′L t̄ ′L
)
γµW +

µ


d ′

L

s′L
b′

L

+h.c.
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= gp
2

(
ūL c̄L t̄L

)
γµW +

µ

VCKM︷ ︸︸ ︷
V u

L V d†
L


dL

sL

bL

+h.c. (2.73)

where VCKM is the Cabibbo–Kobayashi–Maskawa matrix.

VCKM =V u
L V d†

L =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb

 (2.74)

Its elements give the probability of transition between quark states. For example,

the transition from a down quark to an up quark is described by Vud , whereas the

transition from an up quark to a down quark is described by V ∗
ud .

Since it is a product of two unitary matrices, the CKM matrix is a 3×3 unitary ma-

trix. An n ×n unitary matrix can be described by n(n −1)/2 angles and n(n +1)/2

phases. In the case of the CKM matrix, five phases can be rotated away, leaving

three angles and one CP- violating phase [34]. It is possible to parametrize the

CKM matrix in different ways, but the common way is as follows[35]:

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδ

0 1 0

−s13e iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e−iδ

−s12c13 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13

s12s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13

 (2.75)

where si j and ci j are shorthand for sin and cos of the mixing angle between gener-

ations i and j .

Note that a complete review of the Higgs mechanism would involve gauge boson

self-interactions, Higgs boson interactions, discussions on Higgs boson mass, and

Higgs vacuum stability. However, these topics are not relevant to this thesis study;

therefore, they are omitted here.
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2.3 Two Higgs Doublet Models

The Higgs sector of the SM is minimal, meaning that it has the simplest possi-

ble form that generates mass terms for bosons and fermions after the electroweak

symmetry breaking. However, there is no theoretical upper bound for the number

of scalar doublets that can be added to the model. Therefore, in an attempt to for-

mulate the physics beyond the SM, one might consider additional Higgs doublets.

Some of the motivations for such extensions are as follows[36]. In some cases, the

addition is related to satisfying requirements from higher symmetry groups. In

supersymmetric models, a Higgs doublet cannot simultaneously give mass to up

type (charge 2/3) and down type (charge -1/3) quarks. Furthermore, the anomaly

cancellation condition requires an additional doublet to exist. In addition to that,

the strong and electroweak interactions are unified in the grand unified theories

under a higher compact symmetry group. This group needs to break down to

SU(3)C ⊗SU(2)L ⊗U(1)Y , which requires a different scalar structure. This leads to

additional scalar doublets in the electroweak scale.

In other cases, it is related to giving rise to particular phenomenologies. In the

Peccei-Quinn model and its variations, the CP violating phase in the QCD La-

grangian can be rotated away if the Lagrangian contains two Higgs doublets. More-

over, it is possible to have CP violation in the Higgs sector in the extended scenar-

ios. These models are investigated as a possible source of CP violation to generate

baryon asymmetry in the universe.

Two Higgs Doublet Models (2HDM) are the simplest scalar sector extensions to the

SM, with two identical SU(2)L doublets

φi =
φ+

i

φ0
i

 . (2.76)

Hence there are eight scalar degrees of freedom. During the electroweak symmetry

breaking, two charged and one neutral Goldstone bosons turn into longitudinal

modes of W ± and Z bosons. Five Higgs particles remain: a charged pair h±, two

neutral scalars, and a neutral pseudoscalar [37].

The 2HDM scalar potential V (φ1,φ2) can be constructed out of gauge invariant
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combinations of φ†
1φ1, φ†

2φ2, φ†
1φ2, and φ†

2φ1. The renormalizability condition

limits the maximum possible power of these combinations to 2. The most general

potential at the tree level is [37, 36]

V 2HDM(
φ1,φ2

)=m2
11φ

†
1φ1 +m2

22φ
†
2φ2 −

(
m2

12φ
†
1φ2 +h.c.

)
+ λ1

2

(
φ†

1φ1

)2

+ λ2

2

(
φ†

2φ2

)2 +λ3

(
φ†

1φ1

)(
φ†

2φ2

)
+λ4

(
φ†

1φ2

)(
φ†

2φ1

)
+

[
λ5

2

(
φ†

1φ2

)2 +λ6

(
φ†

1φ1

)(
φ†

1φ2

)
+λ7

(
φ†

2φ2

)(
φ†

1φ2

)
+h.c.

]
(2.77)

where m2
11, m2

22, λ1, λ2, λ3, andλ4 are real and m2
12, λ5, λ6, and λ7 are complex

parameters in general. Considering the complex conjugates, there are 14 parame-

ters in the potential. Due to a large number of parameters, the maxima can exhibit

complex characteristics. Similar to the SM, the vacuum is not unique, and there

are three types of vevs in the 2HDM.

• CP-conserving

〈φ1〉 =
 0

v1p
2

 , 〈φ2〉 =
 0

v2p
2

 (2.78)

• CP-violating (where vevs have a relative phase)

〈φ1〉 =
 0

v̄1eiθ
p

2

 , 〈φ2〉 =
 0

v̄2p
2

 (2.79)

• Charge violating

〈φ1〉 = 1p
2

α
v ′

1

 , 〈φ2〉 = 1p
2

 0

v ′
2

 (2.80)

with v2
1 + v2

2 = v2 = 246 GeV2.

In the 2HDM applications, the potential is not necessarily considered in its most

general form. Different versions of 2HDM applications have several simplifying

assumptions to exhibit different characteristics. In general, both doublets couple

to both I3 = 1/2 and−1/2 fermions. After EW symmetry breaking, the Yukawa in-

teraction [36]

L 2HDM
Yukawa =−y i j

1 f̄ i
Lφ1 f j

R − y i j
2 f̄ i

Lφ2 f j
R +h.c. (2.81)
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leads to a mass matrix of the form

M i j = v1 y i j
1 f̄ i f j + v2 y i j

2 f̄ i f j . (2.82)

The Yukawa matrices y1 and y2 are not necessarily simultaneously diagonalizable;

hence, the Yukawa interactions are not flavor diagonal. As a result, neutral Higgs

bosons mediate flavor-changing interactions at the tree level [38]. Although flavor-

changing neutral currents (FCNC) can be viable inside models with certain as-

sumptions, they generally face phenomenological difficulties and are excluded from

the models. Glashow-Weinberg-Pashcos theorem [39, 40] shows that it is possible

to remove FCNC if fermions of particular electric charge couple only to a single

doublet in the Yukawa term. This is achieved by introducing a discrete Z2 sym-

metry on both scalars and fermions. This symmetry is implemented by assigning

each particle a Z2 charge, ±1. It is known as the Natural Flavor Conservation (NFC)

criterion. The scalars have different parity

φ1 →−φ1, φ2 →φ2 (2.83)

which prevents the transition φ1 ↔ φ2 and implies m12 = λ6 = λ7 = 0. However,

the removal of FCNC can also be achieved by letting m12 to be non-zero, which

softly breaks the Z2 symmetry. Depending on assumptions on the other parame-

ters, keeping the parameter m12 leads to various phenomenological outcomes [41].

In addition, the CP violation is generally excluded in 2HDM applications. Since all

fields are scalar in Eq.(2.77), the invariance depends on doublets behavior under

charge conjugation. The Higgs doublets transform as ψi → eiηi
cψ∗

i under charge

conjugation. Therefore, the gauge invariant combination transforms as ψ†
iψ j →

e
i
(
ηi

c−η j
c

)
ψ†

jψi . If there is no relative phase, ηi
c = η

j
c , the CP violation in Eq.(2.77)

results from complex coefficients. Therefore all coefficients are assumed to be real.

The most general FNC 2HDM scalar potential is [41]

V 2HDM
N FC

(
φ1,φ2

)=m2
11φ

†
1φ1 +m2

22φ
†
2φ2 −

(
m2

12φ
†
1φ2 +h.c.

)
+ λ1

2

(
φ†

1φ1

)2

+ λ2

2

(
φ†

2φ2

)2 +λ3

(
φ†

1φ1

)(
φ†

2φ2

)
+λ4

(
φ†

1φ2

)(
φ†

2φ1

)
+

[
λ5

2

(
φ†

1φ2

)2 +
(
φ†

2φ1

)2
]

(2.84)
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Table 2.2: Types of 2HDMs that prevents FCNC, their descriptions and Z2 charges

of the fermions

Model QL uR dR L lR Description

type-I + - - + - all fermions couple only to φ2

type-II + - + + -

up type quarks couple to φ2, and

down type quarks and leptons couple

to φ1

lepton-specific + - + + -
quarks couple to φ2 while leptons

couple to φ1

flipped + - - + +

up type quarks and leptons couple to

φ2, and down type quarks couple to

φ1

In this case, four possible ways to configure the Yukawa sector exist. They are given

in Table (2.2) along with Z2 parities assigned to the fermions [36].

The Yukawa sector takes the form

L 2HDM
Yukawa =−

2∑
i=1

(
Q̄Lψ̃iδ

u
i uR +Q̄Lψiδ

d
i dR + L̄ψiδ

l
i eR +h.c.

)
(2.85)

with δ f
1 = 0 or δ f

2 = 0 depending on the model.
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CHAPTER 3

VECTOR PORTAL

3.1 A Simple U(1)D Extension of the Standard Model

The simplest form for a U(1) extension for the SM, which would act as a dark sector

portal, would be obtained in the case when kinetic mixing is omitted. This case

would appear as SM particles interact within a new U(1) group. Lagrangian would

take the form:

LD =− 1

4
X 0
µνX 0µν+ 1

2
m2

X X 0
µX 0µ+ gD JµD X 0

µ, (3.1)

JµD =q ′
f ψ̄ f γ

µψ f (3.2)

where X 0
µ is the new gauge boson or, in this case, the dark photon and X 0

µν is its

field strength tensor, gD is the gauge coupling, and q ′
f is he quantum number of

fermions under U(1)D . One of the possible anomaly-free options for q ′
f is q ′

f =
B −L where B is the baryon number, and L is the lepton number of the fermion

(see Appendix B).

mX is the Stueckelberg mass parameter for the gauge field X 0
µ. Particles in the visi-

ble sector gain mass through the Higgs mechanism. However, an alternative way of

mass generation can be employed in U(1)D . One such popular way is the Stueckel-

berg mechanism. In this mechanism, U(1)D gauge boson couples to the derivative

of axionic dark scalar in an invariant form under local gauge transformations. This

allows Lagrangian to be gauge invariant while still allowing gauge particles to be

massive. Such Lagrangian can be expressed as

LStueckelberg =−1

4
X 0
µνX 0µν+ 1

2
m2

X

(
X 0
µ−∂µσ

)2
(3.3)
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where σ is a scalar field. This Lagrangian is invariant under gauge transformation

X 0
µ→ X 0′

µ = X 0
µ+∂µλ

σ→σ′ =σ−λ (3.4)

where λ is an arbitrary function of spacetime. A scalar field from the dark sector is

assumed to be charged under U(1)D only so that mass term in Eq. (3.1) is obtained.

3.2 Kinetic Mixing Between U(1)D and U(1)Y

Unlike in more complex groups, in the U(1) group, the field strength tensor Fµν is

already gauge invariant. Therefore, an essential property of U(1) extensions is that

it is possible to write gauge invariant terms that mix field strength tensors from

different groups with a simple form of FµνF ′
µν field is considered along with the

previously given extension.

L =L KE
Gauge +L KM+Mass

Gauge +L KE
Scalar +L KE

Fermion + . . .

L KE
Gauge =− 1

4
W3µνW µν

3 − 1

4
YµνY µν− 1

4
X 0
µνX 0µν+ . . . (3.5)

L KM+Mass
Gauge =− 1

2
sinϵ X 0

µνY µν+ 1

2
m2

X X 0
µX 0µ (3.6)

L KE
Scalar =

(
Dµ 〈φ〉

)†Dµ 〈φ〉 (3.7)

L KE
Fermion =∑

i
f̄i i /D fi (3.8)

where Y µ and W3µ are hypercharge fields, and the third component of weak isospin

field and Y µν and W µν
3 are their strength tensors. The coupling between Y µ and

X 0µ is expressed with sinϵ. This value is considered very small; therefore, the ap-

proximation sinϵ≃ ϵ could be used.

By keeping the kinetic mixing term as it is, the theory can be developed around the

basis of the existing gauge fields, and calculations can be made accordingly. How-

ever, removing the kinetic mixing term with a change of basis is more convenient.

A rotation from the initial (Yµ,W 3
µ , X 0

µ) basis and a new (Bµ,W 3
µ , Xµ) basis can be
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written as 
Bµ

W3µ

Xµ

=


1 0 sinϵ

0 1 0

0 0 cosϵ




Yµ

W3µ

X 0
µ



≡VB X ,Y X 0 ·


Yµ

W3µ

X 0
µ

 . (3.9)

In the new basis, the kinetic mixing term between X 0
µ and Yµ is no longer present;

however, the transformation induces new mixing among the gauge fields in the

mass and interaction terms. Therefore, additional transformations are needed to

obtain the mass eigenstates of the gauge bosons, which are related to symmetry

breaking and mass-gaining mechanisms.

Regardless of the form of the dark sector, a symmetry breaking of the form GSM →
SU (3)C ⊗U (1)Q is present. In order to illustrate this, the covariant derivative for

GSM ⊗U (1)D model can be explicitly stated.

Dµ =∂µ− ig t ·Wµ− igY Y Yµ− igDQD X 0
µ

=∂µ− ig t3W3µ− ig ′Y Yµ− igDQD X 0
µ+

[
−i

gp
2

(
t+W +

µ + t−W −
µ

)]
=− ig t3W3µ− ig ′Y Bµ− i

1

cosϵ

(− g ′Y sinϵ+ gDQD
)
Xµ+ . . . (3.10)

In order to give substance to the mass gaining mechanism, the Higgs field with

quantum numbers (2,1/2) under SU (2)L ⊗U (1)Y with vacuum expectation value

〈H〉 = (0 v/
p

2)T , v = 246GeV is introduced initially.

L Mass
Gauge =

1

2
m2

X X 0
µX 0µ+ (

Dµ〈H〉)(Dµ〈H〉)†

=1

2
m2

X sec2 ϵ XµX µ

+ 1

8
(g ′2 + g 2)v2(− sinθW Bµ+cosθW W3µ+ tanϵsinθW Xµ

)2 (3.11)

where θW is Weinberg mixing angle, tanθW = g ′/g . In case of Xµ’s absence (or

ϵ→ 0), −sinθW Bµ+cosθW W3µ would normally be Z boson and the other orthog-

onal combination cosθW Bµ+sinθW W3µ would be the photon. Of course, the fields

31



obtained in the presence of X µ are not physical, and an additional transformation

is required. Next, keeping X µ untouched, Weinberg transformation which changes

the basis (Bµ,W3µ, Xµ) → (Aµ,W̃3µ, Xµ) is performed.


Aµ

W̃3µ

Xµ

=


cosθW sinθW 0

−sinθW cosθW 0

0 0 1




Bµ

W3µ

Xµ



≡VAW̃ ,BW ·


Bµ

W3µ

Xµ



=VAW̃ ,BW ·VB X ,Y X 0 ·


Yµ

W3µ

X 0
µ



≡VAW̃ ,Y X 0 ·


Yµ

W3µ

X 0
µ



=


cosθW sinθW sinϵcosθW

−sinθW cosθW −sinϵsinθW

0 0 cosϵ




Yµ

W3µ

X 0
µ

 (3.12)

Here VAW̃ ,Y X 0 is defined as a single transformation from the initial base to the last

base. The reason that the (Aµ,W̃3µ, Xµ) base is not the physical base is that the

mass term is free of mixings

L Mass
Gauge =

1

2
m2

X sec2 ϵXµX µ

+ 1

2

1

4
(g ′2 + g 2)v2︸ ︷︷ ︸

m2
Z 0

(− sinθW Bµ+cosθW W3µ+ tanϵsinθW Xµ

)2

≡1

2

(
Aµ W̃3µ Xµ

) ·M 2
Gauge ·


Aµ

W̃3µ

Xµ


32



M 2
Gauge =


0 0 0

0 m2
Z 0 m2

Z 0 tanϵsinθW

0 m2
Z 0 tanϵsinθW m2

X sec2 ϵ+ (
mZ 0 tanϵsinθW

)2

 (3.13)

In the mass mixing matrix M 2
Gauge, it is seen that the photon remains massless as

expected. However, mass square terms for the remaining (W̃3µ, Xµ) fields are still

not diagonal. At this point, if an orthogonal transformation is performed,
Aµ

Zµ

A′
µ

=


1 0 0

0 cosξ sinξ

0 −sinξ cosξ




Aµ

W̃3µ

Xµ



≡VZ A′,W̃ X ·


Aµ

W̃3µ

Xµ



=VZ A′,W̃ X ·VAW̃ ,BW ·VB X ,Y X 0 ·


Yµ

W3µ

X 0
µ



≡VAZ A′,Y W X 0 ·


Yµ

W3µ

X 0
µ



=


cosθW sinθW sinϵcosθW

−cosξsinθW cosξcosθW sinξcosϵ−cosξsinϵsinθW

sinξsinθW −sinξcosθW cosξcosϵ+ sinξsinϵsinθW




Yµ

W3µ

X 0
µ


(3.14)

and Eq.(3.13) can be rewritten in this base. By choosing a suitable ξ angle, M 2
Gauge

given in Eq. 3.13 can be diagonalized.

L Mass
Gauge =

1

2

(
Aµ Zµ A′

µ

)


0 0 0

0 M 2
Z 0

0 0 M 2
A′




Aµ

Zµ

A′
µ

 (3.15)
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This angle choice is given by the relation
1 0 0

0 cosξ sinξ

0 −sinξ cosξ

m2
Z 0


0 0 0

0 a b

0 b c




1 0 0

0 cosξ −sinξ

0 sinξ cosξ

=


0 0 0

0 M 2
Z 0

0 0 M 2
A′

 , (3.16)

which yields tan2ξ= 2b/(a−c) where a, b and c are elements of the matrix M 2
Gauge:

a =1

b = tanϵ sinθW (3.17)

c =sec2 ϵD Z + (tanϵ sinθW )2, D Z =
(

mX

mZ 0

)2

The resulting physical gauge boson masses are:

M 2
A = 0,

M 2
A′ = m2

X cos2ξsec2 ϵ+m2
Z 0 [sinξ−cosξsinθW tanϵ]2 , (3.18)

M 2
Z = m2

X sin2ξsec2 ϵ+m2
Z 0 [cosξ+ sinξsinθW tanϵ]2 .

Due to the mixing with the dark sector, the Z boson mass expression gets contribu-

tions from dark sector and therefore, the mass of Z would change according to the

values of new parameters (see Fig. 3.1). However, this mass is measured precisely

with a universal fit of MZ = 91.1876±0.0021 [11], so the dark sector contribution

should not change this value too much. Dark sector contribution is in the eV order

in the light mX region (mX ≤ 1 GeV). Moreover, for the A′ mass, while for large

mX dominates the mass term so that MA′ ≈ mX , and in the small mX region, the

second term in the right hand side of M 2
Z expression is dominant (see Fig. 3.2).

In this basis, the interaction term is also modified:

LInteraction ⊂∑
i

f̄i i /D fi

=∑
i

1

2
f̄i

(
C f

V γ
µ+C f

Aγ
µγ5

)
fi Aµ+ 1

2
f̄i

(
C ′

V
f
γµ+C ′

A
f
γµγ5

)
fi Zµ

+ 1

2
f̄i

(
C ′′

V
f
γµ+C ′′

A
f
γµγ5

)
fi A′

µ

≡g ′ JµY Yµ+ g Jµ3 W3µ+ gD JµX X 0
µ

=(
g ′ JµY g Jµ3 gD JµX

)


Yµ

W3µ

X 0
µ


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Figure 3.1: Z boson mass as a function of mX for sinϵ= 10−3

10-6 10-4 10-2 100 102 104
mX(eV)

10-6

10-4

10-2

100

102

104

M
A
′ (e

V)

Minimal B-L

sinε

10−6

10−5

10−4

10−3

Figure 3.2: The mass of the dark photon, MA′ , as a function of mX for various sinϵ

in the minimal B −L model

=(
g ′ JµY g Jµ3 gD JµX

) ·V −1
AZ A′,Y W X 0 ·


Aµ

Zµ

A′
µ

 (3.19)

Here JµY , Jµ3 , and JµX are fermion currents involving hypercharge, weak and dark

forces, respectively. V −1
AZ A′,Y W X 0 is the inverse of total transformation matrix,

V −1
AZ A′,Y W3 X 0 =


cosθW − sinθW cosξcosϵ+sinξsinϵ

cosϵ
sinθW sinξcosϵ−cosξsinϵ

cosϵ

sinθW cosξcosθW −sinξcosθW

0 sinξ
cosϵ

cosξ
cosϵ

 . (3.20)
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The photon interactions remain unchanged. The vertex factors contributing to

CEνNS process are given in Table 3.1.

Table 3.1: The relevant vertex factors contributing to the CEνNS in U(1)D extended

model. A shorthand notation is used for the trigonometric expressions. For exam-

ple, (sξ , tϵ) stand for (sinξ , tanϵ) and similar for the others.

Vertices C ′
V

f C ′
A

f

νL νL

Z
− gD sξ

4cϵ
+ e(cξ+sξtϵsW )

4cW sW
− e(cξ+sξtϵsW )

4cW sW

u u

Z

gD sξ
12cϵ

+ ecξ
(
8s2

W −3
)+5esξtϵsW

12cW sW
− e(cξ+sξtϵsW )

4cW sW

d d

Z

gD sξ
12cϵ

+ ecξ
(
4s2

W −3
)+esξtϵsW

12cW sW

e(cξ+sξtϵsW )
4cW sW

C ′′
V

f C ′′
A

f

νL νL

A′

gD cξ
4cϵ

+ e(sξ−cξtϵsW )
4cW sW

e(sξ−cξtϵsW )
4cW sW

u u

A′

gD cξ
12cϵ

+ esξ
(
8s2

W −3
)−5ecξtϵsW

12cW sW

e(sξ−cξtϵsW )
4cW sW

d d

A′

gD cξ
12cϵ

− esξ
(
4s2

W −3
)−ecξtϵsW

12cW sW
− e(sξ−cξtϵsW )

4cW sW

3.3 The Mass Mixing

Another term that can be considered in U(1) extensions is a mass mixing between

the new vector mediator and the third component of the weak field, W̃ µ
3 , of the

form

L
MassMixing
Gauge = 1

2
m2

mixXµW̃ µ
3 . (3.21)

Inserting this term in a way that preserves gauge invariance would be related to

the Higgs sector. If the Higgs doublet is charged under U(1)D , this mixing occurs

36



in the electroweak symmetry-breaking procedure. However, since the anomaly-

free charge options contain some combinations of baryon and lepton quantum

numbers, the SM Higgs field cannot induce such a mass mixing term. Nonetheless,

in the models with SM Higgs sector extended, the doublets can acquire non-zero

B −L values.

3.3.1 Framework of the Two Higgs Doublet Model with U(1) Extensions

The most general 2HDM Lagrangian suffers from FCNC at the tree level. To remove

these currents, typically, a Z2 symmetry is imposed on the 2HDM Lagrangian, which

is discussed in Section 2.3. The Z2 symmetry, however, is not the only way to avoid

the FCNC problem. Another postulated approach to the problem is to extend the

symmetry group of the Lagrangian with a U(1). Under such an extension frame-

work, the gauge principles effectively repeat the effects of Z2 symmetry and lead to

the usual NFC 2HDM classes [41] [42]. The key criterion is that the U(1) charges of

the two Higgs doublets differ. This criteria leads to distinct transformation charac-

teristics for the doublets and simplifies the NFC scalar potential Eq.(2.84) to

V 2HDM
N FC

(
φ1,φ2

)=m2
11φ

†
1φ1 +m2

22φ
†
2φ2 + λ1

2

(
φ†

1φ1

)2 + λ2

2

(
φ†

2φ2

)2

+λ3

(
φ†

1φ1

)(
φ†

2φ2

)
+λ4

(
φ†

1φ2

)(
φ†

2φ1

)
(3.22)

The fields transform under U(1)D as

f → f ′ = e
iq ′

f ρ f (3.23)

where q ′
f is the fermion charges under U(1)D , and ρ is arbitrary spacetime depen-

dent parameter. Once the type of Yukawa interaction is specified, the dark charges

of fermions are related to each other. In this case, type-I 2HDM is chosen. Under

U(1)D , the Yukawa interaction transforms as

−L
type−I
Yukawa →−L

′type−I
Yukawa =e

i
(
−q ′

L+Q
φ2
D +q ′

e

)
ρ

y ′αβ
e L̄′αφe ′β

R +e
i
(
−q ′

QL
−Q

φ2
D +q ′

u

)
ρ

y ′αβ
u Q̄ ′α

L φ̃
c u′β

R

+e
i
(
−q ′

QL
+Q

φ2
D +q ′

d

)
ρ

y ′αβ
d Q̄ ′α

Lφd ′β
R +h.c. (3.24)

where Qφ2
D is the charge of the second doublet. The U(1)D invariance of this term

gives the constraints

Qφ2
D +q ′

e −q ′
L = 0,
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−Qφ2
D +q ′

u −q ′
QL

= 0, (3.25)

Qφ2
D +q ′

d −q ′
QL

= 0.

Note that, since Qφ1
D ̸= Qφ2

D , the first doublet’s coupling with fermions inside the

Yukawa term is prohibited by gauge invariance.

3.3.1.1 Anomaly-Free Conditions in Natural Flavor Conserving Two Higgs Dou-

blet Models

The previously discussed Minimal B −L model requires additional right-handed

neutrinos to satisfy anomaly-free conditions. However, in the NFC 2HDMs, it is

possible to obtain anomaly cancellation without adding new fermions [1]. By com-

bining the anomaly cancellation condition Eq.(B.7) (q ′
L = −3q ′

QL
) with gauge free-

dom condition from Yukawa term Eq.(3.25), the charges of fields can be written in

terms of q ′
uR

and q ′
dR

q ′
QL

=
q ′

uR
+q ′

dR

2
,

q ′
L =−

3
(
q ′

uR
+q ′

dR

)
2

,

q ′
eR

=−
(
2q ′

uR
+q ′

dR

)
,

Qφ2
D =

q ′
uR

−q ′
dR

2

(3.26)

These charge assignments satisfy Eqs.(B.5)-(B.11). However, inserting them in the

cancellation condition for (U(1)D )3 triangle anomaly, Eq.(B.5), gives

q ′3
eR

+3q ′3
uR

+3q ′3
dR

−2q ′3
L −6q ′3

QL

=
(
−2q ′

uR
−q ′

dR

)3 +3q ′3
uR

+3q ′3
dR

−2

(
q ′

uR
+q ′

dR

2

)3

−6

(
q ′

uR
−q ′

dR

2

)3

=
(
q ′

uR
+2q ′

dR

)3
(3.27)

Therefore, in the absence of new fermions, anomaly cancellation requires q ′
uR

=
−2q ′

dR
.
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3.3.1.2 Neutrino Masses in the Two Higgs Doublet Models

Until this point, no constraints on Qφ1
D are obtained; hence, it is arbitrary. A con-

straint can be obtained in a variation of this class model, which explains the neu-

trino masses. The neutrino masses can easily be generated by introducing a right-

handed neutrino for each family of leptons. However, it is also possible to imple-

ment the seesaw mechanism within the 2HDM framework [43]. The advantage

of using this mechanism is that it naturally explains the smallness of the neutrino

masses. Additionally, it can be used to explain the baryon asymmetry in the uni-

verse.

In this context, three right-handed Majorana neutrinos nR are added to the model.

This changes the anomaly cancellation constraint on charges of uR and dR . The

following relation is obtained from Eq.(B.14).

q ′
nR

=−
(
q ′

uR
+2q ′

dR

)
(3.28)

The Yukawa term needs to be examined next. However, since right-handed neutri-

nos are charged under U(1)D , the bare Majorana mass term of the form mR n̄c
R nR

is prohibited. Instead, this coupling is achieved by introducing a massive scalar

singlet φs . This addition extends the scalar potential Eq.(3.22) with the following

term.

Vs = m2
sφ

†
sφs + λs

2

(
φ†

sφs

)2 +λ8φ
†
1φ1φ

†
sφs +λ9φ

†
2φ2φ

†
sφs +

(
λ10φ

†
1φ2φs +h.c.

)
(3.29)

All of the terms above are invariant under U(1)D as they stand, except for the last

term. This term requires Qφs
D =Qφ1

D −Qφ2
D for invariance. Then the neutrino part of

the Yukawa term reads

−L ν
Yukawa = y i j

D L̄i φ̃2n j
R + y i j

M n̄c i
φsn j

R , (3.30)

In order to generate neutrino masses through the spontaneous symmetry-breaking

process, symmetry breaking of U(1)D through the scalar singlet obtaining its vac-

uum expectation value is assumed to happen way above the electroweak scale. At

a lower energy scale, v2 breaks the electroweak symmetry. This process realizes the
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type-I seesaw mechanism [44].

Mν′ =
(
ν̄L n̄R

) 0 mD

mT
D mM

νL

nR

 (3.31)

The eigenvalues of Mν′ are M1,2 = 1
2

(
mM ±

√
m2

M +4mD

)
. Under the assumption

mR ≫ mD , diagonalization yields

mνL =−m2
D

mR
, mnR = mR (3.32)

where

mD = yD v2

2
p

2
and mR = yM vs

2
p

2
. (3.33)

Returning to the constraints on the dark charges, invariance of the first term in the

neutrino Yukawa Lagrangian Eq.(3.30) is already established with the previously

given constraints Eqs. (3.26, 3.28). Invariance of the second term in Eq.(3.30) re-

quires

2q ′
nR

+Qφs
D = 0

or Qφs
D = 2q ′

uR
+4q ′

dR
. (3.34)

Using the constraint from the scalar potential Qφs
D = Qφ1

D −Qφ2
D , the charge of the

first doublet can be written as

Qφ1
D = 5q ′

uR

2
+

7q ′
dR

2
. (3.35)

In the end, all charges under U(1)D are linked to q ′
uR

and q ′
dR

. In the case q ′
uR

=
q ′

dR
= 1/6, we obtain the U(1)B−L case in the 2HDM 1. Beyond that, a whole class

of models can be generated under these constraints. A set of models leading to

different phenomenology developed in [1] is given in Table 3.2.

1 The charges are 1/6 instead of 1/3 due to our convention. A common convention is to take the covariant

derivative in the form Dµ = ∂µ+ ig ′ q ′
2 A′

µ+ .... In our case, the factor 1/2 is absorbed in q ′
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3.3.2 Vector Portal in Two Higgs Doublet Model

A part of the Lagrangian for U(1)D extended Type-I FNC 2HDM can be expressed

as follows:

L =L KE
Gauge +L KM+Mass

Gauge +L KE
Scalar +L KE

Fermion + . . .

L KE
Gauge =− 1

4
W3µνW µν

3 − 1

4
YµνY µν− 1

4
X 0
µνX 0µν+ . . . (3.36)

L KM+Mass
Gauge =− 1

2
sinϵ X 0

µνY µν+ 1

2
m2

X X 0
µX 0µ (3.37)

L KE
Scalar =

(
Dµ 〈φ1〉

)†Dµ 〈φ1〉+
(
Dµ 〈φ2〉

)†Dµ 〈φ2〉 (3.38)

L KE
Fermion =∑

i
f̄i i /D fi (3.39)

Vacuum expectation values of the Higgs doublets have the form v2 = v sinβ and

v1 = v cosβ with v ≈ 246 GeV. The covariant derivative of a Higgs doublet is

Dµφi =
(
−ig t3W3µ− ig ′Y Yµ− igD qD X 0

µ

)
φi . (3.40)

Similar to the earlier case, in order to obtain the mass eigenbasis, three rotations

are performed. First, the field redefinitions Yµ→ Bµ− tanϵXµ, X 0
µ → secϵXµ, anal-

ogous to Eq. (3.9), removes the kinetic mixing. Eq. (3.40) takes the form

Dµφi =
(
−ig IHσ

3W3µ− ig ′YH
(
Bµ− tanϵXµ

)− igDQ Hi
D secϵXµ

)
φi

=
(
i
g

2
σ3W3µ− i

g ′

2
Bµ− i

cosϵ

(
−g ′ sinϵ

2
+ gDQ Hi

D

)
Xµ

)
φi (3.41)

=
−i g

2 W3µ−i g ′
2 Bµ− i

cϵ

(
− g ′sϵ

2 + gDQ Hi
D

)
Xµ 0

0 i g
2 W3µ−i g ′

2 Bµ− i
cϵ

(
− g ′sϵ

2 + gDQ Hi
D

)
Xµ

φi

(3.42)

where Q Hi
D is the charge of the Higgs doublet under U(1)D . Inserting the vacuum

expectation value

〈φi 〉 =
 0

vip
2

 (3.43)

gives

Dµ 〈φi 〉 =
 0

vp
2

(
i g

2 W3µ− i g ′
2 Bµ− i

cosϵ

(
− g ′ sinϵ

2 + gDQ Hi
D

)
Xµ

) and
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(
Dµ 〈φi 〉

)† =
(
0 vp

2

(
−i g

2 W3µ+ i g ′
2 Bµ+ i

cosϵ

(
− g ′ sinϵ

2 + gDQ Hi
D

)
Xµ

))
. (3.44)

Then, the kinetic energy terms of the scalar fields become(
Dµ 〈φi 〉

)†(Dµ 〈φi 〉
)

=− v2
i

2

(
i
g

2
W3µ− i

g ′

2
Bµ− i

cosϵ

(
−g ′ sinϵ

2
+ gDQ Hi

D

)
Xµ

)2

=v2
i

8

( (cw W3µ−sw Bµ)
p

g 2+g ′2︷ ︸︸ ︷
gW3µ− g ′Bµ − 2

cosϵ

(
−g ′ sinϵ

2
+ gDQ Hi

D

)
Xµ

)2

=1

8

√
g 2 + g ′2v2

i

(
cwW3µ− sw Bµ− 2

cosϵ
√

g 2 + g ′2

(
−g ′ sinϵ

2
+ gDQ Hi

D

)
Xµ

)
. (3.45)

where sw and cw stand for sine and cosine of the Weinberg angle, respectively, and

Eq. (2.59) is used in the third row. By using sinθW = g ′/
√

g 2 + g ′2 again, the Xµ

term can be rewritten as

−2

cosϵ
√

g 2 + g ′2

(
−g ′ sinϵ

2
+ gDQ Hi

D

)
Xµ =

(
sinθW tanϵ− 2gD√

g 2 + g ′2 secϵQ Hi
D

)
Xµ.

(3.46)

At this point, the second basis transformation can be performed. This is the Wein-

berg transformation Aµ = sinθW W3µ+ cosθW Bµ, W̃3µ = cosθW W3µ− sinθW Bµ, a

transformation of basis (Bµ,W3µ, Xµ) → (Aµ,W̃3µ, Xµ) described in Eq. (3.12). Us-

ing g 2 + g ′2 = 4m2
Z0

v2 , Eq. (3.45) becomes(
Dµ 〈φi 〉

)†(Dµ 〈φi 〉
)

=

1
2 m2

Z0︷ ︸︸ ︷
1

8
(g 2 + g ′2)v2 ti

( W̃3µ︷ ︸︸ ︷
cwW3µ− sinθW Bµ+

(
sw tanϵ−

gD v
mZ0︷ ︸︸ ︷
2gD√

g 2 + g ′2 secϵQ Hi
D

)
Xµ

)2

=1

2
m2

Z0
ti

(
W̃3µ+

(
sinθW tanϵ− gD v

mZ0

secϵQ Hi
D

)
Xµ

)2

, ti = sin2βor cos2β (3.47)

The gauge mass term Eq. (3.38) becomes

L mass
Gaug e =

1

2
m2

X sec2 ϵXµX µ+
2∑

i=1

(
Dµ 〈φi 〉

)†(Dµ 〈φi 〉
)

=1

2
m2

X sec2 ϵXµX µ+ 1

2
m2

Z0
sin2β

(
W̃3µ+

(
sinθW tanϵ− gD v

mZ0

secϵQ H2
D

)
Xµ

)2

+ 1

2
m2

Z0
cos2β

(
W̃3µ+

(
sinθW tanϵ− gD v

mZ0

secϵQ H1
D

)
Xµ

)2
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=1

2
m2

Z0

{(
sin2β+cos2β

)
W̃3

2
µ

+ sin2β

( Q̃H2︷ ︸︸ ︷
tanϵsinθW − 2gD√

g ′2 + g 2
secϵQ H2

D

)2

X 2
µ

+cos2β

( Q̃H1︷ ︸︸ ︷
tanϵsinθW − 2gD√

g ′2 + g 2
secϵQ H1

D

)2

X 2
µ

+2

[
cos2β tanϵsinθW − 2gD√

g ′2 + g 2
secϵQ H1

D

+ sin2β tanϵsinθW − 2gD√
g ′2 + g 2

secϵQ H2
D

]
W̃3µX µ

}
=1

2
m2

Z0
W̃3

2
µ+

1

2
m2

Z0

(
cos2β Q̃2

H1
+ sin2β Q̃2

H2

)
X 2
µ

+ 1

2
m2

Z0

(
cos2β Q̃H1 + sin2β Q̃H2

)
2W̃3µX µ (3.48)

This term can be stated in the matrix form as follows

L mass
Gauge =

1

2
m2

X secϵXµX µ+
2∑

i=1

(
Dµ 〈Hi 〉

)†Dµ 〈Hi 〉

=1

2

(
Aµ W̃3µ Xµ

)
M 2

Gauge


Aµ

W̃3
µ

X µ

 (3.49)

where

M 2
Gauge = m2

Z0


0 0 0

0 a b

0 b c

 ,

a = 1

b = cos2β Q̃H1 + sin2β Q̃H2

c = sec2 ϵ
m2

X0

m2
Z0

+cos2β Q̃2
H1

+ sin2β Q̃2
H2

(3.50)

where

Q̃Hi = tanϵsinθW − 2gD√
g ′2 + g 2

secϵQ Hi
D . (3.51)

Therefore, the third rotation should diagonalize this matrix. This transformation is

equivalent to Eq. (3.16), and the rotation angle satisfies tan2ξ= 2b/a−c. The total
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transformation from the initial base to the physical basis takes the form
Aµ

Zµ

A′
µ

=


cosθW sinθW sinϵcosθW

−cosξsinθW cosξcosθW sinξcosϵ−cosξsinϵsinθW

sinξsinθW −sinξcosθW cosξcosϵ+ sinξsinϵsinθW




Yµ

W3µ

X 0
µ


(3.52)

The corresponding eigenvalues are

M 2
A =0, (3.53)

M 2
A′ = m2

X cos2ξsec2ϵ+ 1

4
g 2

D v2 cos2ξsec2ϵ

[
cos2β

(
Qφ1

D

)2 + sin2β
(
Qφ2

D

)2
]

+ gD v mZ0 cosξsecϵ
(
cos2βQφ1

D + sin2βQφ2
D

)
(sinξ−cosξsinθW tanϵ)

+m2
Z0

(sinξ−cosξsinθW tanϵ)2, (3.54)

M 2
Z =m2

X sin2ξsec2ϵ+ 1

4
g 2

D v2 sin2ξsec2ϵ

[
cos2β

(
Qφ1

D

)2 + sin2β
(
Qφ2

D

)2
]

− gD v mZ0 sinξ secϵ
(
cos2βQφ1

D + sin2βQφ2
D

)
(cosξ+ sinξsinθW tanϵ)

+m2
Z0

(cosξ+ sinξsinθW tanϵ)2. (3.55)

They correspond to squares of the masses of the photon A, dark photon A′, and

electroweak neutral bozon Z , respectively. The Z boson mass receives contribu-

tion due to mixing with the U(1)D gauge field X 0
µ and coupling with Higgs doublets

with non-zero dark charges. Even though the Z mass is different from the SM ex-

pression for Z mass, its numerical value lies inside the SM prediction range for all

parameter space except for mX >O (GeV).

The behavior of the dark photon mass as a function of dark sector parameter mX

for various gD in the Two Higgs Doublet B − L model is given in Fig. (3.3). The

dark photon mass has a contribution from Higgs doublets, proportional to gD , and

becomes a critical parameter. When mX becomes smaller than a critical value, the

dark photon mass is only determined by the terms proportional to gD . Therefore

for fixed sinϵ or gD , there will be a non-zero minimum value for the dark photon

mass. Furthermore, the dark photon mass is observed to be not sensitive to sinϵ.

Similar to the minimal case, the interactions are needed to be expressed in terms

of the single transformation matrix given in Eq. (3.52). The interaction term takes
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Figure 3.3: Sensitivity of the mass of the dark photon, MA′ , to the dark coupling gD

in the Two Higgs Doublet B −L model

the form

LInteraction ⊂∑
i

f̄i i /D fi

=∑
i

1

2
f̄i

(
C f

V γ
µ+C f

Aγ
µγ5

)
fi Aµ+ 1

2
f̄i

(
C ′

V
f
γµ+C ′

A
f
γµγ5

)
fi Zµ

+ 1

2
f̄i

(
C ′′

V
f
γµ+C ′′

A
f
γµγ5

)
fi A′

µ

≡g ′ JµY Yµ+ g Jµ3 W3µ+ gD JµX X 0
µ

=(
g ′ JµY g Jµ3 gD JµX

)


Yµ

W3µ

X 0
µ



=(
g ′ JµY g Jµ3 gD JµX

) ·V −1
AZ A′,Y W X 0 ·


Aµ

Zµ

A′
µ

 (3.56)

where JµY , Jµ3 , and JµX are the fermion currents involving hypercharge, weak and

dark forces, respectively. V −1
AZ A′,Y W X 0 is the inverse of the total transformation ma-

trix. It has the same form with minimal model Eq. (3.19) in terms of model param-

eters, but the parameter ξ takes a different form.

V −1
AZ A′,Y W3 X 0 =


cosθW − sinθW cosξcosϵ+sinξsinϵ

cosϵ
sinθW sinξcosϵ−cosξsinϵ

cosϵ

si nθW cosξcosθW −sinξcosθW

0 sinξ
cosϵ

cosξ
cosϵ

 . (3.57)
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In this case, some of the vertex factors take the form given in Table 3.3.

46



Ta
b

le
3.

2:
D

ar
k

q
u

an
tu

m
ch

ar
ge

s
o

f
th

e
fi

el
d

s
u

n
d

er
U

(1
) D

,a
d

ap
te

d
fr

o
m

re
f.

[1
].

N
o

te
th

at
th

er
e

is
a

d
if

fe
re

n
ce

in
th

e
co

n
ve

n
ti

o
n

to

d
efi

n
e

th
e

co
va

ri
an

td
er

iv
at

iv
e

w
h

er
e

w
e

u
se

th
e

P
es

ki
n

an
d

Sc
h

ro
ed

er
co

n
ve

n
ti

o
n

.

F
ie

ld
s

u
R

d
R

Q
L

L
L

e R
ν

R
φ

2
φ

1

D
ar

k
C

h
ar

ge
s

Q
′ u

Q
′ d

Q
′ u
+Q

′ d
2

−3(
Q

′ u
+Q

′ d
)

2
−(

2Q
′ u
+Q

′ d
)

−(
Q

′ u
+2

Q
′ d

)
Q

′ u
−Q

′ d
2

5Q
′ u
+7

Q
′ d

2

M
o

d
el

C
1 4

−1 2
−1 8

3 8
0

3 4
3 8

−9 8

M
o

d
el

D
1 2

0
1 4

−3 4
−1

−1 2
1 4

5 4

M
o

d
el

E
0

1 2
1 4

−3 4
−1 2

−1
−1 4

7 4

M
o

d
el

F
2 3

1 3
1 2

−3 2
−5 3

−4 3
1 6

17 6

M
o

d
el

G
−1 6

1 3
1 12

−1 4
0

−1 2
−1 4

3 4

M
o

d
el

B
−L

1 6
1 6

1 6
−1 2

−1 2
−1 2

0
1

M
in

im
al

B
−L

1 6
1 6

1 6
−1 2

−1 2
−1 2

0
−

47



Table 3.3: The relevant vertex factors contributing to the CEνNS in the two-Higgs

Doublet Models extended with a dark U (1)D group. A shorthand notation is used

for the trigonometric expressions. For example, (sξ , tϵ) stand for (sinξ , tanϵ) and

similar for the others.

Vertices C f
V C f

A

νL νL

Z
− gD sξ

(
7Q ′

d+5Q ′
u

)
8cϵ

+ e(cξ+sξtϵsW )
4cW sW

− gD sξ
(
Q ′

d−Q ′
u

)
8cϵ

− e(cξ+sξtϵsW )
4cW sW

u u

Z

gD sξ
(
Q ′

d+3Q ′
u

)
8cϵ

+ ecξ
(
8s2

W −3
)+5esξtϵsW

12cW sW
− gD sξ

(
Q ′

d−Q ′
u

)
8cϵ

− e(cξ+sξtϵsW )
4cW sW

d d

Z

gD sξ
(
3Q ′

d+Q ′
u

)
8cϵ

+ ecξ
(
4s2

W −3
)+esξtϵsW

12cW sW

gD sξ
(
Q ′

d−Q ′
u

)
8cϵ

+ e(cξ+sξtϵsW )
4cW sW

C
′ f
V C

′ f
A

νL νL

A′

gD cξ
(
7Q ′

d+5Q ′
u

)
8cϵ

+ e(sξ−cξtϵsW )
4cW sW

− gD cξ
(
Q ′

d−Q ′
u

)
8cϵ

+ e(sξ−cξtϵsW )
4cW sW

u u

A′

gD cξ
(
Q ′

d+3Q ′
u

)
8cϵ

+ esξ
(
8s2

W −3
)−5ecξtϵsW

12cW sW
− gD cξ

(
Q ′

d−Q ′
u

)
8cϵ

+ e(sξ−cξtϵsW )
4cW sW

d d

A′

gD cξ
(
3Q ′

d+Q ′
u

)
8cϵ

− esξ
(
4s2

W −3
)−ecξtϵsW

12cW sW

gD cξ
(
Q ′

d−Q ′
u

)
8cϵ

− e(sξ−cξtϵsW )
4cW sW
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CHAPTER 4

PHENOMENOLOGY

In this chapter, phenomenological study of the dark sector model through recent

CEνNS observation by COHERENT Collaboration is described. In sec. 4.1, theo-

retical introduction for CEνNS is given. In sec. 4.2, details of the experiment con-

ducted by COHERENT Collaboration is given. Then in sec. 4.3, this experiment is

simulated and a theoretical expectation of number of events is obtained. And in

sec. 4.4, statistical analysis for comparing COHERENT data with our dark sector

model is discussed.

4.1 Coherent Elastic Neutrino Nucleus Scattering

In this section, the CEνNS cross sections in the SM and minimal and non-minimal

vector portal models are derived.

4.1.1 CEνNS Cross Section in the Standard Model

In the SM, elastic neutrino nucleus scattering is mediated by neutral current (NC).

The part of the SM Lagrangian that describes this type of interaction is [28]

L ⊃ g

cW
JαNC Zα (4.1)

where the neutral current is

JαNC =ν̄Lγ
α

(
1

2

)
νL + ūLγ

α

(
1

2
− 2

3
s2

W

)
uL + ūRγ

α

(
−2

3
s2

W

)
uR

+ d̄Lγ
α

(
−1

2
− 1

3
s2

W

)
dL + d̄Rγ

α

(
1

4
s2

W

)
dR + ... (4.2)
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and sw and cw are sine and cosine of Weinberg mixing angle respectively. The

values inside the parenthesizes (g f
P ) are extended forms of fermion couplings in

SM. At low energies NC interaction is given by the effective Lagrangian,

LNC = GFp
2

JµNC JNCµ. (4.3)

The CEνNS cross section in SM is already well established in the literature. The

SM predicts a coherent elastic scattering cross section to be proportional to the

weak nuclear charge, Q2
W , which is a value close to neutron number of the nucleus.

The differential CEνNS cross section is expressed with respect to the nuclear recoil

energy T because it is the only measurable quantity in this phenomena. In the co-

herent limit where the form factor approaches to unity, differential cross sections

for spin-0 and spin-1/2 targets are given by [45]:

dσSM

dT
=G2

F Q2
W M

4π

(
1− T

Eν
− MT

2E 2
ν

+2JN
T 2

E 2
ν

)
, (4.4)

where GF is the Fermi coupling constant, M is the nucleus mass, JN = 0,1/2 is the

spin of the nucleus, Eν is the incident neutrino energy and QW is the weak nuclear

charge [46, 47] given by,

QW = (2Z +N )g u
V + (2N +Z )g d

V = N − (1−4s2
W )Z (4.5)

where g u
V and g d

V are vector couplings of u and d quarks, Z and N are the atomic

and neutron number respectively. Effect of the extra T 2/E 2
ν term appearing in the

spin- 1
2 case is negligible. Therefore it is convenient to work on the spin- 1

2 case

since more developed computational tools are available for fermionic particles.

The same applies to the dark sector extended models. Calculation details are given

in Appendix C

4.1.2 Dark Sector Contribution to the CEνNS Cross Section

If the dark sector is considered along with the SM, the CEνNS process is described

by two diagrams, one Z exchange and one A′ exchange. The total amplitude of

the process receives a contribution from both diagrams. The CEνNS cross sections

obtained for our models are given below. Thew details of the calculation for the

minimal B −L model are given In Appendix D. The calculation is similar for the
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other cases, with the only difference being the form of currents.

Minimal B −L without kinetic mixing:

dσ

dT

∣∣∣SM+B−L without KM

spi n−1/2
= F 2(q2)M

8π(2MT +m2
A′)2

(
1− T

Eν
− MT

2E 2
ν

+2JN
T 2

E 2
ν

)
×

[
2g 2

B−L A2 +p
2GF QW (2MT +m2

A′)
]2

(4.6)

Minimal B −L with kinetic mixing:

dσ

dT

∣∣∣SM+B−L with KM

spi n−1/2
= F 2(q2)M

8πc4
ϵm4

Z (2MT +m2
A′)2

(
1− T

Eν
− MT

2E 2
ν

+2JN
T 2

E 2
ν

)
[(

2MT +m2
A′

)( 4p
2
√

GF mZ
(
cβcϵ+ sβsw sϵ

)− gB−L sβ
)

×
(
−2AgB−L sβ+ 4p

2
√

GF mZ
(
cβcϵQW + sβsw sϵ(A+2Z )

))
+m2

Z

(
4p

2
√

GF mZ
(
sβcϵ+ cβsw sϵ

)+ gB−Lcβ
)

×
(
2AgB−Lcβ+ 4p

2
√

GF mZ
(
cβsw sϵ(A+2Z )+ cϵsβQW

))]2

(4.7)

where c and s are used as shorthand for cosine and sine. Kinetic mixing vanishing

limit, i.e. ϵ,β→ 0 leads to reduction to eq.(4.6) as expected. The differential cross

section expression for the 2HDM instance is rather lengthy and will not be shown

here.

F (q2) is the equations above are Helm-type nuclear form factor [48] and q2 denotes

the squared momentum transfer given by q2 = 2MT . The Helm form factor is

F (q2) = 3 j1
(
qR1

)
qR1

e−qs (4.8)

where j1(x) is the spherical Bessel function and q =√
qµqµ with q2 defined above,

s ≈ 0.9fm is the nuclear skin thickness and R1 is the effective nuclear radius

R1 ≃
√

R2
A + 7

3
π2r 2

0 −5s2 (4.9)

where

RA ≃ (
1.23A1/3 −0.6

)
fm, r0 ≃ 0.52fm. (4.10)

Furthermore, the cross-section expressions are not different for Dirac and Majo-

rana neutrinos. The details are given in Appendix F. This experiment can not be

used to determine if the neutrinos are Majorana fermions.
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4.2 The COHERENT Experiment

COHERENT is a neutrino-based fixed target experiment. Neutrino beams are pro-

duced by striking proton beams of pulse ∼ 1 µs to a Mercury target at 60 Hz, creat-

ing ≈ 5×1020 collisions per day. These collisions produceπ− andπ+ as byproducts.

Pions come to rest inside the target. π− are mostly absorbed by Mercury and π+

decays through π+ → µ++νµ. Two-body decay at rest results in monochromatic

energy of ≈ 29.7 MeV for νµ, which are called prompt neutrinos. Pion decay is then

followed by muon decay ∼ 2.2 µs later, through µ+ → e++ ν̄µ+νe . Energy spectra

for neutrinos coming from this decay are continuous up to 52.8 MeV. ν̄µ and νe are

called delayed neutrinos. This process produces ∼ 0.08 neutrinos of νµ, ν̄µ and νe

flavors per proton on target (POT) collision.

The produced neutrinos then collide with 14.57 kg CsI and 24 kg Liquid Argon tar-

gets located at 19 m and 27.5 m away from the Mercury target. The incoming neu-

trino flux depends on energy due to its production mechanism. Since the delayed

νe and ν̄µ beams are produced through muon decay; their energy spectrum is de-

scribed by Michel spectrum [49, 50](Top panel of Fig: 4.1)

f
νµ

E (Eν) =δ
(

Eν−
m2
π−m2

µ

2mπ

)

f
ν̄µ

E (Eν) =64E 2
ν

m3
µ

(
3

4
− Eν

mµ

)
(4.11)

f νe
E (Eν) =192E 2

ν

m3
µ

(
1

2
− Eν

mµ

)

Combining it with time dependence in time f ναt (t ), given in the bottom panel in

Fig. 4.1, the final form of incoming neutrino flux is obtained:

f να(Eν, t ) =N f ναE (Eν)× f ναt (t ) (4.12)

where f ναE (Eν) and f ναt (t ) are normalized according to
∫
Ωd x f (x) = 1, normaliza-

tion of the total flux is given by N = r NPOT /4πL2, L is the distance between the

detector and the neutrino source, r = 0.0848 is the number of neutrinos per flavor

created for each POT collision and the total number of POT collisions throughout
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Figure 4.1: Energy and time-dependent distribution of incoming neutrinos.

the experiment is NPOT . Its value is 1.76×1023 for CsI 2017, 3.198×1023 for CsI 2022

releases and 1.37×1023 for LAr based experiment.

4.2.1 Energy Quenching

Nuclear recoil energy is picked up by scintillation detectors and converted into

photoelectrons (PE). This conversion is parametrized with light yield LY , which is

the amount of PE produced per unit energy. Values provided with the data releases

are as LY = 13.348 PE/keVee for CsI and ∼ 4.5 PE/keVee for LAr based experiment.

The number of produced PE can be expressed as

nPE = QF T LY . (4.13)

There is an important detail in Eq.(4.13). Nuclear recoil energy is primarily dissi-

pated through secondary nuclear recoils, and only a small amount is turned into

scintillation (or ionization). Quenching factor QF is the ratio of energy turned into

53



scintillation

QF = Eee

T
, (4.14)

where the subscript ee stands for electron equivalent and Eee is the equivalent en-

ergy of a recoiling electron in which the energy is dissipated through only scin-

tillation. Suggestions for quenching factors were provided with data releases. In

the 2017 study, two measurements of the quenching factor for CsI performed by

the collaboration were considered, along with two previous measurements. Agree-

ment between measurements is poor. As a pragmatic solution, a constant quench-

ing factor QFCsI = 8.78±1.66% was suggested. Later an energy-dependent model

for the quenching factor was proposed in [51], which increases the accuracy of SM

expectation of event rate. This model describes the scintillation in CsI by slow ions

with low energy approximation to Birks’ scintillation model [52] multiplied by an

adiabatic factor to account for the behavior of scintillation production cut off at

low nuclear recoil energy limit. Modeled quenching factor takes the form

QF(T ) = [
kB · (dE/dr )i

]−1(1−exp(−T /E0)
)
, (4.15)

where kB = 3.311±0.075×10−3g/MeVcm2 and E0 = 12.97±0.61keV. And (dE/dr )i

is the total stopping power for ions, extracted from the software SRIM-2013 [53].

Both QF suggestions for CsI were considered in the analysis in the following sec-

tion.

In the 2022 study, the previously released CsI quenching factor was reassessed.

A new scintillation response to nuclear recoils measurement on CsI[Na] crystal

came for consideration. Quenching in the region of interest is modeled as a fourth-

degree polynomial fit to five measurements mentioned above [54]

Eee = g (T ) = 0.05546T +4.307T 2 −111.7T 3 +840.4T 4 (4.16)

where detector response Eee is in MeVee and nuclear recoil energy T is in MeVnr.

For the LAr-based experiment, the suggested quenching factor is a linear fit [55] to

world data on argon which is given in Fig 7 of [4].

QFLAr(T ) = a +bT (4.17)

where T is in keVnr, a = 0.246 and b = 7.8×10−4keVnr−1.

54



4.3 Simulating COHERENT Events

In a collision experiment, the total number of expected events is [56]

Nevent =σL (4.18)

where σ is cross section and L is integrated luminosity. In fixed-target experi-

ments, integrated luminosity takes the form

L =ΦNtarg (4.19)

where Ntarg is the number of particles in the target, which can be obtained using

Avogadro’s number andΦ is the total number of incoming particles.

COHERENT published events in a binned histogram, counted in nPE and time bins.

In order to find the expected number of events in a bin, an integration of flux and

differential cross section over bin limits is required. However, the integral should

also account for detector effects on measurement.

4.3.1 Forward Folding

In an experiment that reports a spectrum in a binned histogram such as COHER-

ENT, two detector effects distort and smear data in the measurement process. A

response function maps the true spectrum, which is the spectrum that would have

been observed without detector effects, to the measured (or reconstructed) spec-

trum. This function, generally published by the experimental group, is estimated

using Monte Carlo methods. Using this function, either the measured data is post-

processed to remove detector effects (unfolding), or a theoretical calculation is dis-

torted and compared with the measured data (forward folding). A response func-

tion is given alongside raw measurements in all COHERENT data releases, and for-

ward folding is the preferable approach. Details of this approach are given below.

Response function contains the two detector effects. The first effect is due to de-

tectors’ finite potential to detect signal events [57]. Acceptance of a detector refers

to a region of kinematic properties in which signals are potentially detectable. As a

function, it gives the fraction of signal events visible to the detector. This property
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is always expressed along with another factor called detector efficiency, which is

the probability of the detector responding to an event for it to be detected. This

is modeled with a function that gives the fraction of signal events that pass the

event selection criterion decided by the experimenters. Acceptance efficiency is

the product of these two functions. Functions provided in COHERENT data re-

leases are as follows (see Fig:4.2):

CsI 2017[58]:

Acceptance efficiency for the recoil energy spectrum is

A (nPE) = a

1+exp(−k(nPE −x0))
Θ(nPE) (4.20)

where the parameters have the following values:

a = 0.6655+0.0212
−0.0384,

k = 0.4942+0.0335
−0.0131,

x0 = 10.8507+0.1838
−0.3995 (4.21)

andΘ(nPE) is a modified Heavy-side step function defined as

Θ(nPE) =


0 nPE < 5

0.5 5 ≤ nPE < 6

1 nPE ≥ 6

(4.22)

CsI 2022[3]:

Acceptance in the energy spectrum is:

APE(nPE) = 1.32045

1+exp(−0.285979(nPE −10.8646))
−0.333322 (4.23)

Furthermore, this is the only data release with Acceptance Efficiency for the time

spectrum.

At (t ) =

1 t < a

e−b(t−a) t ≥ a
(4.24)

where

a = 0.52µs
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b = 0.0494/µs (4.25)

and total efficiency can be expressed as

A (nPE, t ) =APE(nPE)×At (t ) (4.26)

LAr:

A function for acceptance was not directly given. A csv file of efficiency vs. keVnr

for Analysis A is given [55]. Efficiency used in Analysis B is obtained from figure 2

of [4]. If only Acceptance efficiency is considered, the expected number of events
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Figure 4.2: Acceptance efficiency provided along data releases for CsI 2017 [2], CsI

2022 [3] and LAr Analyses A and B [4].

in i th PE and j th t bin can have a simple form

N i , j
event =

∑
α=flavor

∑
β=Nucleus

Nβ
t ar g

∫ T i
max

T i
min

∫ E max
ν

E min
ν

∫ t
j
max

t
j
min

fνα(Eν, t )A (T, t )

(
dσ

dT

)
d tdEνdT

(4.27)

The second effect is due to the finite resolution of the detectors. This smears the

true energy spectrum with a resolution function. A smearing function P
(
xreco|xtrue

)
gives the probability of measuring a true value xtrue as xreco. By definition, it has

the property ∫
Ωreco

d xrecoP
(
xreco|xtrue)= 1 (4.28)

In COHERENT 2022 CsI release, the energy smearing is parametrized in the follow-

ing form by using the Gamma function Γ(1+b) [3]:

P
(
nreco

PE

∣∣E true
ee

)= (a(1+b))1+b

Γ(1+b)
nb

PEe−a(1+b)nPE (4.29)
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where parameters a = 0.0749/E true
ee and b = 9.56×E true

ee , depends on quenched en-

ergy deposition. With this effect number of events in i th PE and j th time (t ) bin

is

N i , j
event =

∑
β=Nucleus

Nβ
t ar g

∑
α=flavor

∫ T i
max

T i
min

∫ E max
ee

E min
ee

∫ E max
ν

E mi n
ν

∫ t
j
max

t
j
min

dT recodE true
ee d tdEν

fνα(Eν, t )APE(T reco)At (t )P
(
nPE

(
T reco)∣∣E true

ee

)( dσ

dT

(
T true

∣∣
T=g−1(Eee)

))
(4.30)

Our expected event number calculated for the SM in comparison to the experi-

mental group’s and other studies are given in Table (4.1).

Table 4.1: Our calculated values for the total number of events in the SM, in com-

parison to the literature

Data Set Our Study Literature References

CsI 2017 (constant QF) 173 173 [2]

CsI 2017 (energy dependent QF) 139 138 [54]

CsI 2022 437 431 [3]

LAr−Analysis A 128 128 [4]

LAr−Analysis B 101 101 [4]

4.4 Statistical Analysis of COHERENT Data

In this section, χ2-fit will be adopted to study the sensitivity of COHERENT to phe-

nomenological parameters in the framework of new physics interaction. The sen-

sitivity analysis is based on the following form of the χ2 function depending on a

parameter set P , which generally denotes the parameters of interest given below

[2]

χ2(P ) = ∑
i=bins

(
N i

meas −N i
exp(1+α)−B i

on[1+β]
)2

σ2
stat

+ fpull(α,σα)+ fpull
(
β,σβ

)
.

(4.31)

where Nmeas and Nexp are measured and expected number of events respectively,

Bon is the estimated background when the beam is on, α corresponds to uncer-
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tainty on the signal rate, β corresponds to uncertainty of Bon. χ2 function is mini-

mized over α and β. Here, the statistical uncertainty of the measurement is given

by σstat =
p

Nmeas +Bon +2BSS, where the quantity BSS denotes the steady-state

background. The pull terms given by the COHERENT Collaboration [2] have the

form

fpull(x,σx) =
(

x

σx

)2

, x =α,β (4.32)

where σα and σβ are fractional uncertainty of α and β, corresponding to 1-sigma

variation. The pull term in the above form is observed to lead to unphysical results

at its limiting values. This behavior was also noted in [59] and an asymmetric pull

term of the form

fpull(x,σx) = 2

σ2
x

(
x − log(x +1)

)
, (4.33)

is suggested to use. For completeness, both forms of the pull terms were used in

the χ2 calculation and comment on their effect.

Even though the scattering data were obtained in a multi-binned detector, the ear-

lier analyses provided by COHERENT Collaboration combines all events in a single

bin [2] for CsI 2017 and LAr data. This is because they created the most likelihood

probability distribution function to account for both the energy spectra of the neu-

tron background and the arrival time of neutrinos. However, a simplistic count of

excess events over the background that does not benefit from this knowledge yields

similar results on the total events. For this case, performing analysis on each bin

separately can be preferable. Furthermore, later it is suggested to adopt a multi-

bin approach by COHERENT. In the following section, analysis for both single bin

and more than one multi-bin options have been performed. The χ2 function for

the single bin analysis can be obtained from Eq. (4.31) by simply using the total

number of events for the signal and the background.

4.4.1 Numerical Results

In this section, both minimal B −L and various 2HDMs extended by a dark U(1)D

gauge group are analyzed by looking at the effects of various parameters and fac-

tors in simulating CEνNS data measured by the COHERENT collaboration. MA′ ,
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sinϵ, gD , tanβ, q ′
uR

, and q ′
dR

are the parameters of the theoretical framework con-

sidered here. Additional factors like binning options (1PE - 1t, 9PE-1t, and 9PE-10t

bins), the target used, the publication version, which are called CsI 2017, CsI 2022,

LAr A, and LAr B, selection of quenching factor and pull term. There are, in total,

seven chosen representative scenarios for 2HDMs, obtained by fixing
(
q ′

uR
, q ′

dR

)
values. Considering the number of parameters, factors, and models mentioned

above, it would not be feasible to present all possible plots here. Instead, plots of

two distributions for each model in the
(
gD , sinϵ

)
and

(
gD , MA′

)
parameter spaces,

varying one factor at a time are given.

The results given in Fig. (4.3) have been obtained for CsI 2022 data along with pro-

vided the QF in the data release, and the χ2 analysis has been carried out with one

single bin (1PE-1t). In fact, our search has indicated that these are the circum-

stances where better bounds are possible compared to the case where the target is

LAr and the χ2 is minimized over multi bins (9PE-1t or 9PE-10t). This feature is not

only true for the minimal B −L scenario but also valid for the rest of the models

considered.

In the left panel of Fig. (4.3), the exclusion curves in the
(
gD , sinϵ

)
parameter space

for various MA′ values upto 1 GeV are shown for the minimal B −L model. Spaces

above the curves are excluded with %90 confidence level (CL). Stronger bounds are

observed for lighter gauge bosons. This is expected because the new physics con-

tribution to scattering cross section is inversely proportional to the dark photon

mass. The number of CEνNS events increases for lighter dark photons, forcing the

parameters gD and sinϵ to be smaller.

In the right panel of Fig. (4.3), similar exclusion curves are given in the
(
gD , MA′

)
parameter space for various sinϵ, including no kinetic mixing scenario, is given

with %90 CL. The sensitivity to the kinetic mixing parameters starts around MA′ =
100 MeV. Larger kinetic mixing pushes the bound on gD to smaller values.

Figures (4.4, 4.6) verify their respective comparisons within the framework of spe-

cific models, but their results are valid in general. A characteristic that appears

in the 2HDM case is the left tails in the right panels in Figures (4.4- 4.6). Due to

MA′ depending on other parameters and explicitly on gD , the minimum mass re-
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Figure 4.3: The exclusion curves in the
(
gD , sinϵ

)
and

(
gD , MA′

)
parameter spaces

for various MA′ (left) and sinϵ (right) values, respectively, in the minimal B − L

model. Regions above the curves are excluded with %90 CL by the COHERENT

data for CEνNS.

quirement (or possible values MA′ can obtain, see Fig. (3.3) and the accompanying

discussion) determines the boundary of the excluded part in this end. In the heav-

ier dark photon region, the COHERENT data take over and give more stringent

bounds.
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Figure 4.4: The exclusion curves in the
(
gD , sinϵ

)
parameter space for MA′ =

100 MeV (left) and
(
gD , MA′

)
parameter space for sinϵ= 10−4 (right) for energy in-

dependent and energy dependent quenching factors proposed for CsI 2017 relase.

Regions above the curves are excluded with %90 CL by the COHERENT data for

CEνNS.

Fig.(4.8) compares the exclusion regions of all the models considered so far in the(
gD , sinϵ

)
parameter space (the left panel) and in

(
gD , MA′

)
(the right panel). The

analysis comparing the models has been performed for an intermediate dark pho-
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Figure 4.5: The exclusion curves in the
(
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)
parameter space for MA′ =

100 MeV (left) and
(
gD , MA′

)
parameter space for sinϵ= 10−4 (right) for the sources

CsI 2017, CSI 2022, LAr option A and LAr option B in the Model C. Regions above

the curves are excluded with %90 CL by the COHERENT data for CEνNS.
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Figure 4.6: The exclusion curves in the
(
gD , sinϵ

)
parameter space for MA′ =

100 MeV (left) and
(
gD , MA′

)
parameter space for sinϵ = 10−4 (right) for the single

bin (1PE-1t) and multi-bin (9PE- 1t and 9PE-10t) analyses in the Model E. Regions

above the curves are excluded with %90 CL by the COHERENT data for CEνNS.

ton mass (MA′ = 50 MeV), tanβ = 5, and for the CsI 2022 data, and single bin χ2

configuration. For the most part, the sensitivity to the value of the parameter β

disappears at tanβ≥ 5, and the choice of value does not play a significant role. The

exclusion curves for the minimal B−L model are given in Fig. (4.8) for comparison.

In the left panel, the Minimal B −L Model seems to have the most stringent bound

in the entire region across all models. The behavior of models in the MeV dark pho-

ton mass range can be seen in the right panel. For the most part, the minimal B −L

model has the most stringent exclusion bound except for MA′ ≈ few MeV region.

Model F seems most sensitive to sub-MeV dark photon mass.
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(
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)
parameter space for sinϵ = 10−4 (right) for analyses

done with symmetric and logarithmic pull terms. Regions above the curves are ex-

cluded with %90 CL by the COHERENT data for CEνNS.
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Figure 4.8: The exclusion curves in the
(
gD , sinϵ

)
parameter space for MA′ =

50 MeV (left) and
(
gD , MA′

)
parameter space for sinϵ= 10−5 for all the models con-

sidered. Regions above the curves are excluded with %90 CL by the COHERENT

data for CEνNS.

In addition to analyzing the experimental constraints of COHERENT data for CEνNS

on parameter spaces of the minimal B−L model and various representative 2HDM,

one can analyze the effect of variation of free dark charges q ′
uR

and q ′
dR

, leading

to different models than listed in Table 3.2. Inclusions determined from CsI 2022

data with %90 CL in the
(
q ′

uR
, q ′

dR

)
parameter space with respect to variation of the

other parameters of 2HDM are given in Fig. (4.9). In the top left panel, the inner

light blue region is the allowed region by COHERENT data for the given parame-

ters. The encompassing yellow region is the region of the parameter space where

100 MeV dark photon is possible. Outside this region, dark photon mass has to be
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greater. The sensitivity to tanβ is shown on the top right panel. The previous ar-

gument on sensitivity loss for high values of tanβ can be repeated here. Inclusion

regions for tanβ = 5, 20 or any higher value are inseparable. In the lower row, the

allowed regions are indicated for various gD values on the left panel and various

MA′ values on the right panel. The size of the allowed region has effected signifi-

cantly by varying gD , which is somehow less pronounced for the variation of the

dark photon mass.
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Figure 4.9: Allowed %90 CL regions for the dark charges q ′
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for the CsI

target. In the upper row, gD = 5×10−4, sinϵ= 10−5, and MA′ = 100 MeV are chosen

with tanβ = 2 (upper left) and for two different tanβ values (upper right). The(
q ′
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, q ′
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)
values of all the 2HDMs extend with U(1)D are marked on the graphs
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for various gD (lower left) and sinϵ = 10−5 and gD = 10−4 for various MA′ (lower

right). The shaded regions are allowed by the COHERENT data for CEνNS.
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CHAPTER 5

CONCLUSION

The dark matter problem can be conceptualized with a dark sector parallel to the

visible sector, with numerous particles interacting via gauge bosons. After all, the

visible sector is full of particles and has rich and interesting physics, and the same

could be possible for the dark sector. This thesis analyzes U(1)D group extension

to SM as a dark sector model alongside a scalar extension in the visible scalar sec-

tor. The new gauge boson that arises with this group is called a dark photon. It

can act as a portal between two sectors. In the simplest case, the dark photon

would act as the mediator of the fifth force that couples to both SM and dark sector

particles. Furthermore, as a property of the U(1) group, the dark photon can still

connect the two sectors even if it does not couple to SM particles directly. This is

achieved via kinetically mixing the U(1)D gauge field with the electroweak hyper-

charge field, which has no precedent in SM. This mixing results in dark photon and

neutral electroweak bosons turning into each other during propagation. However,

it is not convenient to work on the original basis. The kinetic mixing term is ro-

tated away with a transformation that alters the field definitions of dark photon

and SM gauge bosons. Another possible connection between sectors is via a mass

mixing between dark photon and Z boson. This mixing can be observed in cases

where the visible scalar sector is modified. If the Higgs field is also charged under

this new gauge group U(1)D , the mixing, as mentioned earlier, occurs after elec-

troweak symmetry breaking. However, this case has a problem since there are few

anomaly-free options for the charge of the new group. These are some combina-

tions of baryon and lepton quantum numbers, and in this thesis, the qD = B −L

case is selected. Mass mixing can not occur in this framework since the SM Higgs

field’s baryon, and lepton quantum numbers are zero. Nonetheless, in the models
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where the SM Higgs sector is extended, this charge could be non-zero, and mass

mixing can emerge. This study chooses a specific 2HDM model as the Higgs sector

expansion.

In Chapter 2, a general review of SM, the Higgs mechanism, and how this mecha-

nism is applied in the context of SM is given. The EW Lagrangian is extended with

a scalar sector where a complex scalar doublet called Higgs doublet is present. Due

to the form of the potential, the Higgs vacuum is infinitely degenerate and requires

selecting a specific point before seeing the particle content of the model. This se-

lection of vacuum spontaneously breaks the EW symmetry, which results in mass

terms for both gauge bosons and fermions. However, there is no theoretical cap on

the number of scalar fields, and the SM Higgs sector can be expanded. A specific

type-I 2HDM was discussed along with the Higgs fields charge configurations.

In Chapter 3, U(1)D extension to both SM and 2HDM are studied. In the SM exten-

sion case charge associated with the new gauge group is selected to be B−L; hence

this case is called the minimal B −L model within the context of this thesis. Three

field redefinitions are performed. In sequential order, they remove the kinetic mix-

ing, perform the Weinberg transformation, and diagonalize the gauge boson mass

matrix. The resulting photon and Z boson expressions differ from their SM coun-

terparts, but the masses and interactions are similar. The resulting dark photon

is massive, and its interactions depend on the kinetic mixing parameter. Its mass

receives a contribution from visible sector neutral gauge bosons and, depending

on the values of the new gauge group, can be dominated by this contribution.

Moreover, the difference in construction if the visible scalar sector is extended was

studied. In the framework of the type-I 2HDM used, only the second Higgs doublet

couples to the fermions. Just like previously, the B −L value for this doublet is zero.

However, the first doublet obtains a non-zero B −L value, allowing mass mixing to

occur. Other possible anomaly-free charges can be associated with U(1)D . All these

charges were considered in the phenomenological study provided in the end. In

this case, the approach to obtaining physical is similar to before. The same three

basis rotations are performed, but the rotations are modified due to the mass mix-

ing between the dark vector boson and the Z boson. Again, the resulting photon
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and Z boson behave close to their SM counterparts. The dark photon, however, has

a substantial contribution proportional to dark gauge coupling to its mass. This

prevents dark photon mass from dropping below the MeV range in the region of

interest gD = 10−6 − 10−3. The structures of interactions are also affected by this

process. The dark photon mediated interactions receive a contribution from the

visible sector, and so do the visible sector interactions from the dark sector.

In Chapter 4, phenomenological study on our dark sector model was performed

through the recent observation of CEνNS by COHERENT Collaboration. In SM,

this interaction is mediated by the Z boson. In the energy range of this phenomenon,

the differential cross section for SM neutral current interactions is two orders of

magnitude greater than SM charged current interactions. This gap makes CEνNS

viable for testing the validity of neutral current interactions of SM. SM predicts

the cross-section of this interaction scales with the number of neutrons in the nu-

cleus. This behavior is unique to SM and dark photon exchange contribution to the

cross-section scales with atom number. In sec. 4.1.2, different cross-sections for

both minimal B −L and non-minimal models are given. Then, in sec. 4.2, simula-

tion of the experiment performed by COHERENT Collaboration is discussed. The

experiment counts the scattering events by detecting the recoil energy of the tar-

get nuclei. The expected number of events depends on experimental parameters

provided by the collaboration, which are open to discussion in the literature. Us-

ing the equation for the expected number of events with respect to cross-section,

chi-square goodness of fit analysis is performed to study the sensitivity of the dark

sector parameters.

The models are sensitive to the mass of the dark photon MA′ , particularly in the

MeV-GeV region, and this characteristic disappears for the so-called minimal B−L

model for around MA′ ≲ 1 MeV where the exact value depends on the kinetic mix-

ing. On the other hand, the non-minimal models exhibit different behavior in this

region. The dark photon mass receives scalar sector contribution proportional to

gD . This contribution is significant regardless of the value of the kinetic mixing

and produces the behavior of light-dark photon tail in the right panels in the fig-

ures (4.4) - (4.6). As a result, the minimal B −L model provides the best bounds for

MA′ ≥ 1 MeV, whereas the other models have stronger bounds in the lighter dark
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photon region. This might be the means to distinguish them. It is also observed

that the best bounds are obtained for the single bin case (1PE-1t) for the CsI 2022

data. In the final set of plots, Fig.4.9, the allowed bands on the (q ′
uR

, q ′
dR

) plane have

been shown, and this could be used as a reference for better assessment of the sce-

narios beyond the chosen representative ones listed in Table 3.2. With additional

data accessible at low energies, it may be possible to better probe new physics sce-

narios, such as 2HDM, or perhaps to identify a critical signal that may outline the

physics beyond the SM.
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Appendix A

GAUGE TRANSFORMATIONS IN THE SU(2) GROUP

The covariant derivative in an SU(2) theory is

Dµ = ∂µ+ i
g

2
Wµ ·σ. (A.1)

SU(2) transformations take the forms

ψ→ψ′ =
(
1+ i

1

2
ω ·σ

)
ψ, ψ̄→ ψ̄′ = ψ̄

(
1− i

1

2
ω ·σ

)
(A.2)

and

Dµ→ D ′
µ = ∂µ+ i

g

2
W ′

µ ·σ. (A.3)

The condition for gauge invariance is

ψ̄γµDµψ= ψ̄′γµD ′
µψ

′. (A.4)

This is possible if Dµψ transforms just like ψ.

Dµψ→ D ′
µψ

′ =
(
1+ i

g

2
ω ·σ

)
Dµψ (A.5)

Then (
∂µ+ i

g

2
W ′

µ ·σ
)(

1+ i
1

2
ω ·σ

)
ψ=

(
1+ i

1

2
ω ·σ

)(
∂µ+ i

g

2
Wµ ·σ

)
ψ

(
∂µ+ i

g

2
W ′

µ ·σ
)
=

(
1+ i

1

2
ω ·σ

)(
∂µ+ i

g

2
Wµ ·σ

) 1−i 1
2ω·σ︷ ︸︸ ︷(

1+ i
1

2
ω ·σ

)−1

∂µ+ i
g

2
W ′

µ ·σ =∂µ− i
1

2

(
∂µω

) ·σ+ i
g

2
Wµ ·σ−

(
i

2

)2

g
(
Wµ ·σ

)
(ω ·σ)

+
(

i

2

)2

g (ω ·σ)
(
Wµ ·σ

)+O
(
ω2). (A.6)
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Ignoring the high order terms in ω, the last two terms can be further simplified. In

index notation these are

g

4

((
Wµ

)
iσiω jσ j −ω jσ j

(
Wµ

)
iσi

)
. (A.7)

By using the property of sigma matrices

σiσ j −σ jσi = 2iϵi j kσk (A.8)

(A.7) can be written as

−i
g

2
ϵi j kωi

(
Wµ

)
jσk =−i

g

2

(
ω×Wµ

) ·σ. (A.9)

Inserting this in (A.6) gives

∂µ+ i
g

2
W ′

µ ·σ = ∂µ− i
1

2

(
∂µω

) ·σ+ i
g

2
Wµ ·σ− i

g

2

(
ω×Wµ

) ·σ (A.10)

and

W ′
µ =Wµ− 1

g

(
∂µω

)− (
ω×Wµ

)
. (A.11)
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Appendix B

ANOMALIES

In a classical theory, every continuous symmetry of a system corresponds a con-

served current. In particle physics, the energy is quantized, generating to quantum

fields. The quantum field theoretical equivalence to classical conservation laws

are known as Ward identities. Ward identities relates the correlation functions of

the conserved currents to correlation functions of the fields. However, due to the

quantum corrections, identities obtained in a classical theory may not hold at the

quantum level. This situation is referred as anomaly. The effects of the anomaly

depends on the type of symmetry effected. The current conservation under a local

symmetry plays a crucial role in gauge theories. Hence, gauge anomalies, associ-

ated with gauge currents, may lead to unrenormalizable theories and braking of

the gauge invariance and must be avoided.

The anomalies are generally generated by triangle diagrams. The triangle diagrams

contains a type of generator at each vertex, indicated with a Latin letter in Fig. (B.1).

The amplitude of this diagram is related to

Figure B.1: Triangle diagram

M ∝〈Ω|T
[

Jµi Jνj Jρk

]
|Ω〉 . (B.1)
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Figure B.2: Triangle diagrams with U(1)Y and SU(2)L interactions

By using Feynman rules, the amplitude can be shown to be proportional to

M ∝ Tr
[
Ti ,R {T j ,R ,Tk,R }

]−Tr
[
Ti ,L{T j ,L ,Tk,L}

]
(B.2)

where TL,R are group generators for left- and right-handed representations. The

quantum corrections come from all possible current combinations of triangle dia-

grams. The anomaly cancellation requires that sum of diagrams from all possible

fermion loops for a given group combination is zero. For example, a set of diagrams

involving two SU(2)L and a U(1)Y gauge bosons (Fig.(B.2)) have the following con-

dition ∑
fR

(
I 3

fR

)2
Y fR −

∑
fL

(
I 3

fL

)2
Y fL = 0

=−(
YeL +YνL +3(Yu +Yd )

)= 0

=−
(
2× (−1)+3×2× 1

3

)
= 0 (B.3)

where the factor 3 comes from the number of color states of the quarks. The

placement of the currents inside the diagrams does not effect this outcome. The

ten possible combinations considered in the SM is as follows:

SU(3)3
C , SU(3)2

C SU(2)L , SU(3)2
C U(1)Y , SU(3)C SU(2)LU(1)Y

SU(3)C U(1)2
Y , SU(2)3

L , SU(2)2
LU(1)Y , SU(2)LU(1)2

Y , U(1)3
Y

The SM by itself turns out to be anomaly-free. However, the U(1)D extension brings

new anomaly-free conditions. These are

(SU(3)C )2 U(1)D :

M ∝ Tr

[{
λi

2

λ j

2

}
q ′

fR

]
−Tr

[{
λi

2

λ j

2

}
q ′

fL

]
(B.4)
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giving ∑
quarks

q ′
fR
− ∑

quarks
q ′

fL
=

(
3q ′

uR
+3q ′

dR

)
−

(
3×2q ′

QL

)
= 0

q ′
uR

+q ′
dR

−2q ′
QL

= 0, (B.5)

where λ/2 is the generator for SU(3)C .

(SU(2)L)2 U(1)D :

M ∝∑
fL

(
I 3

fL

)2
Y fL (B.6)

giving

−∑
fL

q ′
fL
=−

(
2q ′

L +3×2q ′
QL

)
= 0

q ′
L +3q ′

QL
= 0, (B.7)

(U(1)Y )2 U(1)D :

M ∝ Tr
[
{YR ,YR } q ′

R

]−Tr
[
{YL ,YL} q ′

L

]
(B.8)

giving ∑
fR

Y fR
R

2
q fR

R −∑
fL

Y fL
R

2
q fL

R

=
(
(−2)2q ′

eR
+3

(
4

3

)2

q ′
uR

+3

(
−2

3

)2)
q ′

dR
−

(
2(−1)2q ′

L +3×2

(
1

3

)2

q ′
QL

)
= 0

6q ′
eR

+8q ′
uR

+2q ′
dR

−3q ′
L −q ′

QL
= 0, (B.9)

(U(1)Y ) U(1)2
D :

M ∝ Tr
[{

q ′
R , q ′

R

}
Y fR

]−Tr
[{

q ′
L , q ′

L

}
Y fL

]
(B.10)

giving(
(−2)q ′2

eR
+3

(
4

3

)
q ′2

uR
+3

(
−2

3

)
q ′2

dR

)
−

(
2(−1)2q ′2

L +3×2

(
1

3

)2

q ′2
QL

)
= 0

−q ′2
eR

+2q ′2
uR

−q ′2
dR

+q ′2
L −q ′2

QL
= 0, (B.11)

and lastly

U(1)3
D :

M ∝ Tr
[{

q ′
R , q ′

R

}
q ′

R

]−Tr
[{

q ′
L , q ′

L

}
q ′

L

]
(B.12)
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giving

=
(
q ′3

eR
+3q ′3

uR
+3q ′3

dR

)
−

(
2q ′3

L +3×2q ′3
QL

)
= 0

q ′3
eR

+3q ′3
uR

+3q ′3
dR

−2q ′3
L −6q ′3

QL
= 0. (B.13)

Charge configuration of any U(1) extension needs to satisfy the above conditions to

be anomaly-free. According to the Adler-Bardeen theorem, once the anomalies are

canceled at one loop, there are no more anomalies coming from higher diagrams.

In the case q ′ = B −L, Eqs. (B.5) - (B.11) are satisfied. However, in order to satisfy

Eq.(B.13), a right-handed neutrino ni
R that do not enter weak interactions needs

to added for each lepton family. The inclusion of right-handed neutrinos modify

Eq.(B.13) as

q ′3
nR

+q ′3
eR

+3q ′3
uR

+3q ′3
dR

−2q ′3
L −6q ′3

QL
= 0. (B.14)

84



Appendix C

CEνNS CROSS SECTION CALCULATION IN THE STANDARD MODEL

The scattering amplitude for coherent elastic neutrino-nucleus scattering described

by 4.3 is expressed as follows:

iMZ =− (ig )2

c2
W

−igαβ+ i qαqβ

m2
Z

q2 −m2
Z

〈ν(pν f )|JαNC ,ν|ν(pνi )〉〈N (pN f )|JβNC ,q |N (pNi )〉 ,

(C.1)

where q is the momentum transfer, JαNC ,ν and JβNC ,q are neutrino and quark parts

of the neutral current, respectively. This expression can be simplified at low energy

interactions, i.e., mZ >> |q|. By using the relations mZ cw = mW and GF /
p

2 =
g 2/8m2

W , C.1 becomes

iMZ = i8GFp
2

〈ν(pν f )|JαNC ,ν|ν(pνi )〉〈N (pN f )|JαNC ,q |N (pNi )〉 . (C.2)

Since neutrinos are point-like particles, the leptonic matrix element can be written

as

〈ν(pν f )|JαNC ,ν|ν(pνi )〉 = ūs′
ν γ

α1

2

(1−γ5)

2
us
ν (C.3)

where us
ν and ūs′

ν are neutrino spinors with spin indices s and s′. For hadronized

states, the matrix element can be written as

〈N |JαNC ,q |N〉 =g u
L 〈N |ūLγ

αuL|N〉+ g u
R 〈N |ūRγ

αuR |N〉
+ g d

L 〈N |d̄Lγ
αdL|N〉+ g d

R 〈N |d̄Rγ
αdR |N〉 (C.4)

If parity symmetry for the nucleus is assumed, the following relation is obtained

[45].

〈N |ūLγ
αuL|N〉 = 〈N |ūRγ

αuR |N〉 ,
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〈N |d̄Lγ
αdL|N〉 = 〈N |d̄Rγ

αdR |N〉 (C.5)

This leads to

〈N |ūγαu|N〉 = 2〈N |ūγαPLu|N〉 ,

〈N |d̄γαd |N〉 = 2〈N |d̄γαPLd |N〉 . (C.6)

Since strong interactions can not distinguish u and d quarks, the matrix elements

are expected to have the following forms:

〈N |ūγαu|N〉 = (2Z +N ) f α,〈N |d̄γαd |N〉 = (2N +Z ) f α. (C.7)

Here Z and N are numbers of proton and neutron in the nucleus and f α is related

to the form factor that can be determined from the electromagnetic properties of

the nucleus, which is mediated by the electromagnetic current

JαE M = 2

3
ūγαu − 1

3
d̄γαd . (C.8)

However, these properties depend on the nucleus spin. Spin-0 and spin-1/2 nu-

cleus cases are examined below.

C.1 Spin-0 Nucleus Case

In a U (1) gauge field theory, the interaction vertex involving a gauge boson and two

scalar fields is proportional to the initial and final momentum of the scalar field.

〈N (pN f )|JαE M |N (pNi )〉 = (pNi +pN f )αZ F (q2) (C.9)

where F (q2) is the nuclear form factor. Hence the function f α has the form

f α = (pNi +pN f )αF (q2) (C.10)

Inserting Eq.(C.7) in Eq.(C.4)

〈N |JαNC ,q |N〉 =1

2
(pNi +pN f )αF (q2)

×
[

(2Z +N )(g u
L + g u

R )+ (2N +Z )(g d
L + g d

R )
]

=− 1

4
(pNi +pN f )αF (q2)QW (C.11)
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where the weak nuclear charge QW is

QW = N − (1−4s2
w )Z , (C.12)

along with N and Z standing for neutron and proton numbers, respectively. Now

inserting Eq.(C.11) and Eq.(C.3) in Eq.(C.2), gives the amplitude

iM ss′
Z =− i

2
p

2
GF QW F (q2)(pNi +pN f )αūs′

ν (pν f )γα(1−γ5)us
ν(pνi ) (C.13)

Taking amplitude square

|iMZ |2 =
∑
ss′

|iM ss′
Z |2 (C.14)

and implementing kinematic relations given in Appendix E yields

|iMZ |2 = 8G2
F QW F 2(q2)M 2E 2

ν

(
1− T

Eν
− MT

2Eν2

)
(C.15)

where Eν is the initial neutrino energy, T and M are recoil energy and mass of the

nucleus. By using the relation pνi · q = q2/2, it is possible to write T in terms of

other parameters[45]

T = 2ME 2
νc2

θ

(M +Eν)2 −E 2
νc2

θ

(C.16)

where cθ is the scattering angle between initial neutrino momentum and final nu-

cleus momentum. Maximum for T is achieved at θ = 0,

Tmax(Eν) = 2E 2
ν

M +2Eν
(C.17)

The differential cross section in the lab frame can be written as

dσ

dcθ

∣∣∣SM

spi n−0
= |MZ |2

8π

cθ(EνM)2

[(Eν+M)]2 −E 2
νc2

θ

. (C.18)

In the neutrino-nucleus scattering experiments, the only observable is the recoil

energy of the nucleus, so it is convenient to express the differential cross section in

terms of recoil energy,

dσ

dT

∣∣∣SM

spi n−0
= |MZ |2

32πME 2
ν

. (C.19)

Implementing the amplitude square, Eq.(C.15), gives

dσ

dT

∣∣∣SM

spi n−0
= G2

F Q2
W

4π
M

(
1− T

Eν
− MT

2Eν2

)
. (C.20)
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C.2 Spin-1/2 Nucleus Case

In the case of a spin-1/2 nucleus (C.11) is modified to

〈N (pN f ,r ′)|JµNC |N (pNi ,r )〉 =−1

4
QW F (q2)ūr ′

N (pN f )γµur
N (pNi ) (C.21)

where ur
N and ūr ′

N are initial and final states of the nucleus. Then (C.13) is modified

to

iM r r ′ss′
Z =− i

2
p

2
GF QW F (q2)[ūr ′

N (pN f )γµur
N (pNi )][ūs′

ν (pν f )γα(1−γ5)us
ν(pνi )].

(C.22)

The square of this amplitude is

|MZ |2 =
∑
ss′

1

2

∑
r r ′

|M r ′r ss′
Z |

=8G2
F QW F 2M 2E 2

ν

(
1− T

Eν
− MT

2Eν2
+ T 2

2E 2
ν

)
(C.23)

and the cross section becomes

dσ

dT

∣∣∣SM

spi n−1/2
= G2

F (2gνLQW )2

4π
M

(
1− T

Eν
− MT

2Eν2
+ T 2

2Eν

)
. (C.24)

Note that the cross section for both νN and ν̄N scattering are equal to each other

since the interaction between the nucleus and Z boson is assumed to conserve

parity.
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Appendix D

CEνNS CROSS SECTION CALCULATION IN THE MINIMAL B −L MODEL

The amplitude for one dark photon exchange, described by the Lagrangian Eq.(3.1)

is

iMD =−(igB−L)2

−iηαβ+ iqαqβ

m2
A′

q2 −m2
A′

〈ν(pν f )|JαD |ν(pνi )〉〈N (pN f )|JβD |N (pNi )〉 . (D.1)

In this case, the expression for the leptonic matrix element is

〈ν(pν f )|JαD |ν(pνi )〉 = 〈ν(pν f )|ν̄γαν|ν(pνi )〉 = ūs′
ν γ

α (1−γ5)

2
us
ν (D.2)

The hadronic matrix element again depends on the nucleus spin. For a spin-0

nucleus, using Eq.(C.7) gives

〈N |JβD |N〉 = 1

3

[
〈N |ūγβu|N〉+〈N |d̄γβd |N〉

]
= (pNi +pν f )βAF (q2), (D.3)

where A is the atom number. Hence Eq.(D.1) can be written as

iMD =− i
g 2

B−L

q2 −m2
A′

[
(pNi +pν f )αA F (q2)ūs′

ν γ
α (1−γ5)

2
us
ν

+ 1

m2
A′

(pNi +pν f ) ·q A F (q2)qανs′γα
(1−γ5)

2
us
ν

]
=− i

g 2
B−L

q2 −m2
A′

A F (q2)ūs′
ν γ

α (1−γ5)

2
us
ν

×
[

(pNi +pν f )α+ qα

m2
A′(pNi +pν f ) ·q

]
(D.4)

If both SM and B −L interactions are considered alongside each other, both con-

tribute to the total scattering amplitude.

M =MZ +MD (D.5)
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The Square of this amplitude is

|iM |2 = 4F 2(q2)M 2E 2
ν

(2MT +m2
A′)2

(
1− T

Eν
− MT

2E 2
ν

)
×

[
2g 2

B−L A2 +p
2GF QW (2MT +m2

A′)
]2

(D.6)

and the cross section is

dσ

dT

∣∣∣SM+B−L

spi n−0
= F 2(q2)M

8π(2MT +m2
A′)2

(
1− T

Eν
− MT

2E 2
ν

)
×

[
2g 2

B−L A2 +p
2GF QW (2MT +m2

A′)
]2

(D.7)

When the nucleus spin is 1/2, the hadronic matrix element is

〈N |JβD |N〉 = A F (q2)ūr ′
N (pN f )γµur

N (pNi ) (D.8)

This time square of the total amplitude is

|iM |2 = 4F 2(q2)M 2E 2
ν

(2MT +m2
A′)2

(
1− T

Eν
− MT

2E 2
ν

+ T 2

E 2
ν

)
×

[
2g 2

B−L A2 +p
2GF QW (2MT +m2

A′)
]2

(D.9)

The cross section becomes

dσ

dT

∣∣∣SM+B−L

spi n−1/2
= F 2(q2)M

8π(2MT +m2
A′)2

(
1− T

Eν
− MT

2E 2
ν

+ T 2

E 2
ν

)
×

[
2g 2

B−L A2 +p
2GF QW (2MT +m2

A′)
]2

(D.10)
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Appendix E

KINEMATIC RELATIONS FOR ELASTIC FIXED TARGET NEUTRINO

COLLISIONS

In this chapter, the kinematic relations for an elastic neutrino-fixed nucleus scat-

tering depicted in Fig.(E.1) is derived. pνi and pNi are the initial, and pν f and pN f

are final neutrino and nucleus momenta respectively. The momentum transfer is

qµ = pµ

N f
−pµ

Ni
= pµ

νi
−pµ

ν f
(E.1)

The kinematic relations are obtained from the following combinations.

1:

pµ

Ni
pµ

N f
=ENi EN f −

0︷︸︸︷
pNf ·pNi

pµ

Ni
pµ

N f
=M(M +T ) (E.2)

2:

qµ2 =(pµ

Ni
−pµ

N f
)2 = (pµ

Ni
)2 + (pµ

N f
)2 −2pµ

Ni
pµ

N f

=M 2 +M 2 −2M(M +T )

qµ2 =−2MT (E.3)

Figure E.1: The process of elastic neutrino nucleus scattering
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3:

qµpµ

Ni
=(pµ

N f
−pµ

Ni
)pµ

Ni
= pµ

N f
pµ

Ni
− (pµ

Ni
)2

=M(M +T )−M 2

qµpµ
ν f

=MT (E.4)

4:

qµ2 = (pµ
νi
−pµ

ν f
)2 =(pµ

Ni
−pµ

N f
)2

0︷ ︸︸ ︷
(pµ

νi
)2+

0︷ ︸︸ ︷
(pµ

ν f
)2−2pµ

νi
pµ
ν f

=(pµ

Ni
−pµ

N f
)2

pµ
νi

pµ
ν f

=MT (E.5)

5:

qµpµ
νi
=(pµ

νi
−pµ

ν f
)pµ

νi

=
0︷ ︸︸ ︷

(pµ
νi

)2−pµ
ν f

pµ
νi

qµpµ
νi
=−MT (E.6)

6:

pµ
νi

pµ

Ni
=EνM −

0︷ ︸︸ ︷
pνi ·pNi (E.7)
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Appendix F

DIFFERENCE IN THE CROSS SECTION CALCULATION FOR MAJORANA AND

DIRAC NEUTRINOS

In order to obtain the scattering amplitude for Majorana particles, Wick’s theorem

can be used. The matrix element for νN → νN scattering via Z exchange for a

generic neutrino can be expressed in terms of a set of Wick contractions [60]

〈Ω∣∣bN bν
(
gνν̄γ

µPLν
)
Z Z †(N̄ gNγ

µN
)
b†

N b†
ν

∣∣Ω〉∣∣∣
possible contractions

=〈Ω∣∣bN bν
(
gνν̄γ

µPLν
)
Z Z †(N̄ gNγ

µN
)
b†

N b†
ν

∣∣Ω〉
+〈Ω∣∣bN bν

(− gνν̄γ
µPLν

)
Z Z †(N̄ gNγ

µN
)
b†

N b†
ν

∣∣Ω〉 (F.1)

The explicit form of the free spinor fields are

ψ(x) =
∫

d 3k

(2π)32E

∑
s

[
b(k, s)u(k, s)e−ikx +d †(k, s)v(k, s)e ikx

]
ψ̄(x) =

∫
d 3k

(2π)32E

∑
s

[
b†(k, s)ū(k, s)e−ikx +d †(k, s)v̄(k, s)e ikx

] (F.2)

Figure F.1: Elastic Majorana neutrino-Nucleus via Z boson exchange
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where b† and d † are particle and anti-particle creation, and b and d are particle

and anti-particle annihilation operators respectively. u and v are spinors with mo-

mentum k and spin s. The contractions between fields and operators yield

ψb† =<Ω|ψb†|Ω>→ u(k, s)

bψ̄=<Ω|bψ̄|Ω>→ ū(k, s)

ψ̄d † =<Ω|ψ̄d †|Ω>→ v̄(k, s)

dψ=<Ω|dψ|Ω>→ v(k, s)

(F.3)

The first set of contractions, the second line in Eq.(F.1), is the contraction set for

Dirac particles and leads to the amplitude Eq.(C.22). However, the last line in

Eq.(F.1) appears only for Majorana fermions. For a Dirac field, contractions bψ

and ψ̄b† are equal to zero. However, since the particle creation operator is equal

to the anti-particle creation operator for a Majorana field, these contractions are

non-zero.

In order to put the form of contractions ...ν̄γµPLν ..., which typically appear in Ma-

jorana case, in the form given in Eq.(F.3), the definition of charge conjugate fields

can be used [60, 61].

ψc =Cψ̄T , ψ̄c =−ψT C−1 and
(
ψc)c =ψ (F.4)

where the charge conjugate matrix C satisfies

C−1γµ
T C =−γµ, C−1(γµγ5)T

C = γµγ5, C−1 =C † =−C∗. (F.5)

By using Eqs.(F.4, F.5), the following relation can be obtained[62].

ν̄iγ
µPLν j = νT

j

(
γµPL

)T
ν̄T

i = ν̄c
j
(−γµPR

)
νc

i (F.6)

Further implementing the Majorana condition νc = ν, the contraction in the last

line of Eq.(F.1) can be written as [60]

〈Ω∣∣bN bν
(
gνν̄γ

µPLν
)
Z Z †(N̄ gNγ

µN
)
b†

N b†
ν

∣∣Ω〉
=〈Ω∣∣bN bν

(− gνν̄γ
µPRν

)
Z Z †(N̄ gNγ

µN
)
b†

N b†
ν

∣∣Ω〉, (F.7)

which can be calculated just like the Dirac term. This leads to the Majorana neu-

trino version of amplitude Eq.(C.22)

iM r r ′ss′
Z =− ip

2
GF QW F (q2)[ūr ′

N (pN f )γµur
N (pNi )][ūs′

ν (pν f )(PL −PR )us
ν(pνi )]
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= ip
2

GF QW F (q2)[ūr ′
N (pN f )γµur

N (pNi )][ūs′
ν (pν f )(γµγ5)us

ν(pνi )] (F.8)

This amplitude is different from the Dirac neutrino amplitude Eq.(C.22). However,

neutrinos can almost be considered a chiral state due to their small mass. There-

fore an additional PL is included in the Majorana case, which equalizes the ampli-

tude expressions [63] [64]. Although this derivation is given for Z exchange, the

same procedure can be applied to the A′ exchange case.
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