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ABSTRACT 

 

RIGID PAVEMENT CRACK DETECTION UTILIZING GENERATIVE 

ADVERSARIAL NETWORKS 

 

 

 

 

Muturi, Tanner Wambui 

Master of Science, Civil Engineering 

Supervisor: Assoc. Prof. Dr. Onur Pekcan 

 

 

January 2023, 77 pages 

 

Cracks are observed to be an initial sign of the degradation of the pavement and 

should therefore be detected and repaired to prevent further disintegrations. With the 

growth in technology, various image processing, machine learning, and deep 

learning methods have been applied to detect cracks on road pavements. The 

research leans towards using deep learning models for the pixel-wise segmentation 

of pavement image cracks among these models. However, most deep-learning 

models adopted in the literature are supervised and thus require enormous amounts 

of images with their corresponding ground-truth labels, which are expensive to 

obtain. Therefore, this study proposes using Cycle Generative Adversarial Network 

(CycleGAN), an unsupervised image translation model, for the pixel-wise 

segmentation of crack regions. A novel training procedure is adopted, with the 

forward and reverse cycle generators trained for every odd epoch and the 

discriminators for the even ones. A rigid pavement dataset of Fully Convolutional 

Network (FCN) (X. Yang et al., 2018) and drone (Ersoz et al., 2017) images are 

collected for training. As the model does not require accurate ground truth labels, 

labor-free unpaired image labels are obtained by compiling the ground truth crack 

labels from CrackForest, GAPS384, CrackTree200, and Crack500 public datasets. 
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The proposed model achieved an overall F1 score of 0.84, achieving comparable 

results with the CrackForest algorithm (Shi et al., 2016), FCN algorithm (X. Yang et 

al., 2018), and pix2pix model (Isola et al., 2017). In addition, the model outperforms 

the CrackForest algorithm and FCN-supervised model when testing the drone 

dataset. Finally, the effect of change in discriminator architecture and the application 

of transfer learning in the generator is investigated. A one-class discriminator 

architecture and loading of ImageNet pre-trained weights to the generator were 

observed to achieve the best performance. 

 

Key words: Unsupervised Crack Detection, Generative Adversarial Networks, Cycle 

Generative Adversarial Networks, Image Translation, Segmentation. 



 

 

vii 

 

ÖZ 

 

BETON YOLLARDA ÇEKİŞMELİ ÜRETİCİ AĞLAR KULLANARAK 

YOL ÇATLAK TESPİTİ  

 

 

 

 

Muturi, Tanner Wambui 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Doç. Dr. Onur Pekcan 

 

Ocak 2023, 77 sayfa 

 

Çatlaklar, kaplamanın bozulmasının ilk işareti olarak gözlenir ve bu nedenle 

kaplamanın daha fazla parçalanmasını önlemek için tespit edilmeli ve onarılmalıdır. 

Teknolojideki büyüme ile yol kaplamalarındaki çatlakları tespit etmek için çeşitli 

görüntü işleme, makine öğrenimi ve derin öğrenme yöntemleri uygulanmıştır. Bu 

yöntemlerden araştırmalar, görüntülerdeki çatlakların piksel bazında bölütlenmesi 

için derin öğrenme modellerinin kullanımına yöneliktir. Bununla birlikte, literatürde 

benimsenen derin öğrenme modellerinin çoğu denetlenir ve bu nedenle, elde 

edilmesi pahalı olan, karşılık gelen yer-gerçeği etiketleriyle birlikte çok büyük 

miktarda görüntü gerektirir. Bu nedenle, bu çalışma, çatlak bölgelerinin piksel 

bazında bölütlenmesi için denetimsiz bir görüntü çeviri modeli olan Döngüsel 

Çekişmeli Üretici Ağlar'ın (CycleGANs) kullanılmasını önermektedir. Her tek 

dönem için eğitilmiş ileri ve geri çevrim üreteçleri ve çift dönem için ayrımcılar ile 

yeni bir eğitim prosedürü benimsenmiştir. Eğitim için FCN (X. Yang ve diğerleri, 

2018) ve drone (Ersoz ve diğerleri, 2017) görüntülerinden oluşan rijit bir kaplama 

veri seti toplanır. Model, doğru kesin bilgi etiketleri gerektirmediğinden, 

CrackForest, GAPS384, CrackTree200 ve Crack500 genel veri kümelerinden temel 

doğruluk çatlak etiketlerinin derlenmesiyle emek gerektirmeyen eşleştirilmemiş 
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görüntü etiketleri elde edilir. Önerilen model, CrackForest algoritması (Shi ve 

diğerleri, 2016), FCN algoritması (X. Yang ve diğerleri, 2018) ve pix2pix modeli 

(Isola ve diğerleri, 2017) ile karşılaştırılabilir sonuçlar elde ederek 0,84'lük bir genel 

F1 puanı elde etmiştir.). Ayrıca geliştirilen model, insansız hava aracı veri setini test 

ederken CrackForest algoritması ve FCN denetimli modelden daha iyi performans 

göstermektedir. Son olarak, diskriminatör mimarisindeki değişimin etkisi ve üreteçte 

transfer öğrenme uygulaması araştırılmıştır. Tek sınıf bir ayrımcı mimarisi ve 

ImageNet’in önceden eğitilmiş ağırlıkların üretece yüklenmesinin en iyi performansı 

sağladığı gözlemlenmiştir. 

 

Anahtar Kelimeler: Denetimsiz Çatlak Tespiti, Çekişmeli Üretken Ağlar, Döngüsel 

Çekişmeli Üretken Ağlar, Görüntü Çevirisi, Segmentasyon 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Overview 

Infrastructure maintenance forms a significant part of the lifecycle of any built 

structure. Monitoring directs the maintenance process and allows the maintenance 

works to perform regular checks and identify defects. Road pavements are exposed 

to different weather conditions that could lead to the degradation of their lifespan; 

hence they should be regularly monitored. Lack of regular road maintenance could 

lead to transport inefficiency and pose a problem to vehicle safety. Furthermore, 

higher costs could be incurred if observed defects are not mitigated, resulting in the 

need for complete road reconstruction. Hence the importance of carrying out regular 

monitoring of the pavement. The Federal Highway manual (Miller & Bellinger, 

2014) identifies road pavement defects such as cracks, potholes, patches, and 

depressions. Of these, cracks are observed to be the initial sign of damage to the road 

pavement. The crack in analogy could be viewed as the initial symptoms of a 'sick' 

pavement. 

Pavement Management Systems (PMS) have been developed to monitor pavements 

effectively. These systems aim to collect images from pavements, process the 

information, and analyze the road's status. 

Various collection methods exist, with the oldest involving going on field surveys, 

to manually note and measure defects on the road. However, manual survey methods 

are time-consuming, labor-intensive, and put the surveyor at risk. Furthermore, they 

are subjective, leading to poor reproducibility and repeatability. Vehicles fitted with 

cameras and laser scanners have also been utilized with imaging systems such as the 

Agile-RN system (Figure 1.1a), the Laser Crack Measurement System (LCMS) 
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(Figure 1.1b), and the VIAPIX system (Figure 1.1c) being developed (Kaddah et al., 

2020). Beyond this, Unmanned Air Vehicles (UAVs) (Figure 1.2) have been 

explored for collecting pavement information. Silva et al. (2020) employed drones 

in collecting pavement information, citing their advantage in collecting large 

amounts of data over a short period. Furthermore, the use of drones is relatively 

cheaper compared to vehicles fitted with road imaging systems.

 

Figure 1.1.Vehicle-fitted imaging systems (a) Agile-RN system (b) LCMS system 

(c) VIAPIX system showing the acquisition module, exploration module, and the 

vehicle fitted with the acquisition module (Kaddah et al., 2020) 
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Figure 1.2. DJI Phantom 5 drone 

Following the collection of images, data processing and analyses are performed. 

Tasks employed during analyses include detecting, classifying, or measuring 

pavement defects. The growth in computing capability has boosted this process by 

introducing various algorithms. The oldest are image processing techniques such as 

filters, thresholding, and edge detection algorithms. In addition, image processing 

methods have been complemented by the introduction of machine learning models, 

which shall be the focus of the study.  

Machine Learning models can broadly be divided into traditional and deep learning 

models. Traditional machine learning techniques require prior extraction of learning 

features. Examples of such models include Artificial Neural Networks (ANN), 

Support Vector Machines (SVM), and Random Forest. First, image processing 

techniques such as edge detection methods, image thresholding, or image are applied 

for crack classification and detection. After processing, statistical features 

representing line locations, orientations, lengths, and thicknesses are extracted for 

classification using machine learning. Various authors have adopted traditional 

machine learning techniques. For example, Kaseko and Ritchie (1993) utilized ANN 

to classify cracks on pavement surfaces. Hoang et al. (2018) proposed using SVM 

and the artificial bee colony optimization algorithm to classify cracks. Beyond this, 

Shi et al. (2016) proposed the CrackForest crack detection framework, which utilized 
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the Random Forest algorithm to detect and classify cracks on pavement surfaces. 

However, traditional machine learning techniques are heavily affected by false crack 

detection for images with shadows, low contrast, and discontinuous crack regions. 

Furthermore, shallow learning techniques adopted are deemed unsuitable for 

complex information in the images (Hsieh & Tsai, 2020). 

Consequently, deep learning techniques have been utilized increasingly in literature. 

In exploiting the deep learning methods, the task of crack detection could be divided 

into three primary functions, i.e., (i) classification, (ii) object detection, and (iii) pixel 

segmentation (Figure 1.3). Classification could present itself in the form of the model 

identifying image patches (Figure 1.3b) or the entire image as either a crack or non-

crack image. To accomplish this task, Cha and Choi. (2017) proposed a 

Convolutional Neural Network (CNN) for the classification of image patches 

achieving an accuracy of 98%.  

Object detection can be characterized as the localization of regions containing 

cracks, as seen in (Figure 1.3c). Silva et al. (2020) adopted the YOLO model for 

detecting potholes and cracks, achieving an average precision (AP) of 94.67%. Tran 

et al. (2020) trained RetinaNet in the localization of cracks. The authors achieved a 

detection accuracy of 89.1% considering crack type only and 84.9% considering the 

crack type and severity level on images obtained from the survey vehicle.     
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Figure 1.3. Different deep learning crack analysis methods. (a) The input image (b) 

Patch-based classification (c) Object detection (d) Crack segmentation. (Hsieh & 

Tsai, 2020)  

The task of pixel segmentation of cracks could be defined as the pixel-wise labeling 

of an image as either crack or no crack, resulting in a binary mask (Figure 1.3d). As 

seen in Figure 1.4 of the analysis methods, most research articles are geared toward 

pixel segmentation of cracks. Pixel-wise labeling allows for identifying the crack 

width and pattern, which could help extract crack parameters and severity levels. 

Deep learning models employed in pixel segmentation can be divided into 

supervised and unsupervised machine learning models. Supervised models require 

ground truth labels for training, but unsupervised models do not.  
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Figure 1.4. Distribution of published articles utilizing deep learning from 2015 to the 

year 2020. (Hsieh & Tsai, 2020)  

Various supervised deep-learning architectures for the task of crack segmentation 

have been investigated. Cheng et al. (2019) proposed a U-Net architecture with their 

methodology achieving 6-9% accuracy higher than popular algorithms such as 

CrackTree, CrackIT, and CrackForestSVM. Wu et al. (2019) adopted the focal loss 

and self-attention mechanism with the U-Net architecture for crack detection to 

achieve better segmentation results. Their methodology reached 43.3% and 76.23% 

precision and recall metrics on the CrackForest dataset. Augustauskas and Lipnickas 

(2020) proposed a modified pixel-wise segmentation network based on the U-Net 

architecture autoencoder. The authors utilized residual connections, atrous spatial 

pyramid pooling with parallel and "Waterfall" connections, and attention gates to 

perform better defect extraction. At 0-pixel tolerance, the authors' model achieved 

accuracy, recall, and precision scores of 99%, 74.9%, and 68.9% on the CrackForest 

dataset. Beyond this, Tang et al. (2021) proposed an encoder-decoder network 

(EDNet) tested on 3D and 2D images. Authors attained an overall precision of 

96.15%, recall of 99.56%, and F1-score of 97.82% on the CrackForest dataset 

outperforming the U-Net. 
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Despite achieving high-performance results, supervised methodologies are 

disadvantageous as model training heavily depends on accurate pixel-wise labels. 

Moreover, with the introduction of new images, the model would require retraining 

and hence the development of new tags, which is time-consuming, especially with 

large amounts of data (Duan et al., 2020). Beyond this, unsupervised methodologies 

best mimic human learning ability and are thus the focus of research in deep learning. 

Following this, the use of unsupervised algorithms has been adopted in the detection 

and classification of cracks. Autoencoders (Generative Adversarial Networks, 

Variational Autoencoders), K-means clustering, and Minimal Path Selection are 

common algorithms adopted in the literature. 

1.2 Objectives of the Research 

As observed, pavements require regular monitoring, with crack detection paramount 

for the early mitigation of defects. Current research on detecting cracks is geared 

toward developing better segmentation techniques, as seen in Figure 1.4. Of the 

methodologies presented, the use of traditional machine learning models and 

supervised deep learning models were unfavorable for the segmentation task. 

Following this, the objective of this thesis is to utilize unsupervised deep learning 

models for the task of pixel-wise identification of cracks in rigid pavements. The 

thesis presented is novel in that it shall: 

• Apply the CycleGAN model to segment a rigid pavement dataset, which has 

yet to be explored in the literature. 

• Introduce an unpaired ground truth label dataset by collecting ground truth 

labels from other crack datasets. 

• Adopt a model architecture based on VGG16 and a novel training procedure 

to improve performance on the dataset collected. 

• Investigate the effects of change in discriminator architecture and application 

of transfer learning in the generator, which has not been explored in literature 

yet. 
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Subject to the following limitations: 

• Images during training are resized to 128x128 pixels, which though it reduces 

crack information, speeds up the time taken during training. 

• An exact description of thin cracks at the pixel level is not defined in the 

literature and is thus subject to visual inspection. 

With the novelty and limitations of the study set, this study is significant in that: 

• Pixel-wise segmentation of cracks shall be performed, thus relaying 

information on the crack network. This information could subsequently be 

used to calculate crack width and severity. 

• An unsupervised deep learning model will be adopted; thus, the model is 

insensitive to ground truth labels. Furthermore, the model can work with a 

large amount of unlabeled data. Beyond this, if additional crack images are 

collected, the model can easily be retrained, as no additional labels are 

required. 

1.3 Thesis Organization 

Following the description of the research objective above, the thesis has been divided 

so that Chapter 2 reviews current unsupervised crack detection models adopted in 

the literature. Chapter 3 then introduces the use of Generative Adversarial Networks 

(GANs), the concept of image-to-image translation, and CycleGAN used to 

accomplish the research objective. With this discussed, Chapter 4 introduces the 

implementation of CycleGAN to the task of crack pixel segmentation. Chapter 5 

discusses the datasets utilized in the deep learning model training, and Chapter 6 

provides the results obtained. Finally, the summary, conclusions, and future works 

are highlighted in Chapter 7.   
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CHAPTER 2  

2 LITERATURE REVIEW 

A comprehensive survey of unsupervised models and algorithms for crack detection 

is done in the literature. The author emphasizes the keywords such as self-supervised 

crack detection, unsupervised crack detection, and semi-supervised crack detection 

during the literature survey. The unsupervised algorithms found are divided into 

cluster-based methodologies, Minimal Path Selection (MPS) methodologies, novel 

unsupervised algorithms, and deep learning-based algorithms. The sources 

discovered are described below: 

In subsequent sections, detection shall be defined as the classification of either 

patches/pixels as either crack or non-crack. Classification of cracks shall be defined 

as evaluating the crack patterns according to a defined system such as longitudinal, 

transverse, or fatigue. 

2.1 Cluster-based algorithms 

In their 2013 article, Oliveira and Correia (2013) proposed using clustering to detect 

road pavement cracks. In their methodology, firstly, the images were divided into 

75X75 pixel blocks and prelabelled using the mean and standard deviation of the 

block's matrices. This preliminary labeling is further utilized in dividing the images 

into training and test sets, ensuring representability in both data sets. The images are 

pre-processed through normalization to ensure blocks classified as non-crack have a 

uniform illumination in the image. Following normalization, pixel saturation is 

performed using a set threshold value such that the brightest pixels in a block are 

either below the value or equal to it. Pixel saturation will allow the standard deviation 

values of crack blocks to stand out in the feature matrix. The standard deviation and 
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mean matrix are computed for the normalized blocks and then further normalized for 

easier processing. In calculating the feature space normalization, each image in the 

training database is first clustered, and a global centroid is computed for the target 

cluster (non-crack images). A linear fit on the target class is then performed to 

calculate a reference angle for each 2D space. The feature space is normalized using 

these results in the training set to ensure the target cluster is conspicuous. K-means, 

Hierarchical, and the mixture of two Gaussian-clustering are utilized in the 2-class 

classification. 

In contrast, the one-class classification strategy utilizes the Gaussian density method, 

Prazen density estimator, and minimum covariance determinant gaussian classifier 

(MCDG). Following training, the computed boundaries are superimposed into the 

feature distribution of the test image to classify the blocks. The authors develop a set 

of rules to classify the image based on the standard deviation calculated for each row 

and column of crack-connected components. Furthermore, the severity level of the 

cracks is calculated as the pixels' spatial resolution is known. In the development of 

severity level, the blocks containing crack pixels are thresholded through the Otsu 

method to define the crack pixels enabling the calculation of crack width. The 

performance of the selected algorithm is evaluated on 56 grey-level images of 

1536X2048 pixel images obtained while avoiding shadows cast by objects during 

sunny weather. Five images containing cracks were used in training, and 51 were 

used in testing, with eight containing no cracks. The precision, recall, f-measure, 

error rate, and crack error rate are calculated. The mixture of the two gaussian-

clustering achieved the best overall performance with an F measure (93.5%), the best 

global error- rate (0.6%), and the second-best performance in terms of recall (95.5%). 

The model took about 2min to process 56 images. The authors proposed future work 

in developing denoising techniques and entropy reduction. Furthermore, the authors 

proposed adopting different crack types and severity levels characterization. 

Mubashshira et al. (2020) proposed crack detection by adopting k-means clustering. 

Firstly, a color histogram is utilized to segment the road section from other regions 

in the picture. To separate the road segment from the rest of the image, mean shift 
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filtering was performed, and a 3x3 window was used to detect the color of the 

pavements. The pixel color is converted to black if it does not achieve the set 

threshold. After this, the images were resized to 450x500 pixels and converted to 

greyscale. A Gaussian filter and log transform were further employed to smooth the 

image and enhance the brightness of the crack pixels. K-means clustering with k=2 

was employed, and similar pixels were grouped in this stage to classify the pixels as 

crack and non-crack. Finally, the Otsu method was used to binarize the image. In 

dealing with noise pixels, morphological dilation, and erosion were performed, and 

a feasible contour was drawn to connect the crack pixels in the original image. 

Contours help eliminate noise. Utilizing 120 images from the internet, the authors 

achieved an accuracy of 97.75% 

Vignesh Mohanraj et al. (2018) utilized k-means clustering to segment images. In 

the methodology, images were obtained from a video sequence and pre-processed 

using a mean filter to eliminate bright pixels, a median filter to eliminate salt and 

pepper noise, and an adaptive Weiner filter to remove additive white noise. 

Subsequently, the images were divided into n-by-n blocks, with the mean and 

standard deviation being utilized as features to classify blocks as crack or non-crack. 

Beyond these features, the authors carried out canny edge detection. For each pixel, 

an analog canny edge value was assigned as the magnitude of the gradient. Each 

block's maximum analog edge value was chosen as the third feature in classifying 

blocks as crack or non-crack. Following feature extraction, the blocks are classified 

as crack or non-crack using clustering. Finally, post-processing was performed to 

improve crack connectivity. The methodology developed is disadvantageous as it 

offers low computational efficiency, and the authors did not evaluate their method at 

the pixel level. 

Mucolli et al. (2019) carried out a comparative study between k-means and k-

medians in classifying underwater structures as either cracked or not cracked using 

Haralick texture features derived from the image. Bridge foundations and dams were 

inspected with 490, 256x256 pixels images obtained with the GoPro Hero 7 camera. 

Obtained images are subjected to a median filter of kernel size 5 to reduce noise. 
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Following this, the image is divided into 16x16 pixel non-overlapping boxes for 

which the grey level co-occurrence matrix is computed. Features computed included 

the angular second moment, contrast, inverse difference model, entropy, correlation, 

and variance. Following clustering, images are post-processed to remove outliers. 

The histogram of the candidate block is drawn up and treated as a bimodal Gaussian 

distribution. Utilizing Bayes theory and average greyscale values, outliers are 

eliminated. The authors concluded that k-median outperformed k-means, though 

with a higher processing time. The authors obtained F1 scores between 0.63 and 0.9 

for different images. 

Ji et al. (2020) proposed using clustering with feature extraction by resnet50 in 

labeling microcracks in solar cells. 640, 300X300 grayscale image samples are 

obtained. The images are normalized concerning size and perspective and 

subsequently annotated as 1 or 0 as either containing defect or not. An equal selection 

of crack and non-crack images is obtained. Data augmentation is performed at two 

levels, the first involving resizing and horizontal flipping, and the second, in addition 

to the first level, contrast and saturation adjustment are performed. The methodology 

applied included first applying initial labels with the clustering head. The feature 

extractor is then trained, and labels are assigned by measuring the distance between 

the image and label utilizing the Sinkhorn Knopp algorithm. The model is 

constrained to produce an equal number of crack and non-crack labels. Results 

showed that level one augmentation showed better performance compared to level 

2. In addition, utilizing 2 cluster heads resulted in an accuracy rate of 74.53%. The 

methodology is compared to k-means, with the self-labeling system achieving better 

performance. Furthermore, an unbalanced dataset showed lower performance. 

Though clustering offers an unsupervised detection of cracks, detection is generally 

performed at the patch level with the need for extraction of features or the adoption 

of post-processing techniques such as edge detectors to segment the cracks. The use 

of statistical features is not suitable for increasingly complex images. Furthermore, 

patch-level classification offers blocky results that would not be suitable for 
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extracting features such as crack width. Minimal path selection (MPS) methods have 

been investigated to combat these disadvantages. 

2.2 Minimal Path Selection (MPS) Based Algorithms 

Amhaz et al. (2016) proposed minimal path selection in detecting cracks on 

pavement surfaces. The methodology proposed is divided into the selection of 

endpoints, estimation of a minimal path, minimal path selection, and post-processing 

procedures. In selecting endpoints, the image is subdivided into squares from which 

the darkest pixel is chosen. Next, this pixel is subjected to a threshold value and is 

discarded if it exceeds it. The minimal path between endpoint pixels is then estimated 

using the Dijkstra algorithm. A cost function based on pixel intensities determines 

the minimal way. Post-processing is further applied to eliminate spikes and loops 

that may be retained in the final path selection. The image is subdivided into linear 

segments, and thresholding is applied hence eliminating spikes and loops. 

Furthermore, neighboring pixels with intensity below the threshold are absorbed into 

the crack image in detecting crack width. In evaluating their methodology, one 

synthetic image and 269 real images collected using the survey vehicle were used. 

Of the real images, 68 contained reference segmentations. The authors obtained an 

average dice score of about 50% to 65% for different databases of the real image. 

MPS adopted here outperformed other methodologies such as the Markov-based 

methods, Freeform anisotropy, and geodesic contour method. 

Kaddah et al. (2019) proposed an Optimized Minimal Path Selection (OMPS) on 

pavement images to reduce the computational cost of MPS introduced by Amhaz et 

al. (2016). The authors introduced the use of local anisotropy (retaining pixels whose 

anisotropy is high enough for use as candidate endpoints) and adaptive thresholding 

to reduce the number of bright pixels with a low probability of belonging to the crack 

during the selection of endpoints. To curb computational cost during the estimation 

of the minimal path, the authors suggest the adoption of 3P X 2P image subnets to 
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reduce the number of paths to be computed to 4 instead of the original 8. The authors 

obtained 33 1900×924-pixel images from the Agile-RN imaging device. Due to the 

unbalanced lighting, the dataset was divided into 991×462 images and 311×462 

images. For 991x462 images, a decrease in processing time was noted from 796 sec 

to 47 sec if only local anisotropy is applied and 12 sec if adaptive thresholding is 

applied too. An increase in dice scores from 64% to 74% and 75% was observed. A 

similar trend was seen in 311X462 images with time values of 234, 16, and 3 seconds 

and dice scores of 70%, 71%, and 72%. 

Kaddah et al. (2020) further developed the Automatic darkest filament detection 

(ADFD) method to detect cracks on road surfaces in an unsupervised way. Image 

processing was first performed through normalization and edge detection, increasing 

contrast while reducing noise and uneven illumination. Secondly, the selected crack 

candidate pixels are chosen as the darkest in an image. Following this, a 1-pixel 

width crack is segmented, and the segmentation results are improved through post-

processing. Authors claim the difference between ADFD and the MPS lies in the 

pre-processing of the images, the method of selection of endpoints, and the post-

processing steps. The authors utilized images collected through the Agile-RN, Laser 

Crack Measurement System (LCMS), and VIAPIX system. For the Agile-RN 

dataset, authors achieved 76% and 77% dice scores on the 991x462 pixel and 

311x462 pixel images, respectively. 

Despite offering unsupervised detection of cracks on pavement surfaces, MPS 

requires selecting parameters such as thresholding values that would vary across 

different image sets. Furthermore, the method is computationally expensive. As a 

result, other novel methods have been investigated to mitigate the disadvantages. 

2.3 Novel Algorithms 

In their 2015 article, Shamsabadi et al. (2015) proposed using a hessian-based 

filtering algorithm to segment cracks on a road surface. In achieving the 
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segmentation of cracks on the road surface, pre-processing of the images is done to 

eliminate lane markers and further correct the images for distortion. The hessian 

method detects tubular/ridge-like structures in an image in all directions. In their 

algorithm, the authors first detected the area covered by the alligator cracks, and 

longitudinal and transverse cracks were detected from the remaining area. Any other 

crack encountered is characterized as other. On 150 images, the authors achieved a 

detection accuracy of all cracks of between 93% and 98%. Though the methodology 

does not require training, it falls short in that specific parameters need to be chosen 

to threshold the eigenvalues. 

To develop a method that deals with the disadvantages of edge detection algorithms 

that are heavily affected by noise and k-means clustering, which requires a large 

amount of data, Lei et al. (2018) developed the Crack Central Point Method (CCPM). 

Images obtained by a UAV are firstly pre-processed through converting to grayscale, 

image filtering, and finally, image enhancement. CCPM assumes that the crack 

center has the lowest intensity along an image's row or column of pixels. Crack pixels 

are detected based on this assumption, and a threshold value is introduced restricted 

by the crack's width. The authors evaluate the performance of CCPM on concrete 

crack images obtained from a UAV flying 40cm above the ground. Authors report 

better performance of CCPM compared to that of traditional edge detection methods, 

the LoG algorithm, and the Prewitt algorithm. 

Mathavan et al. (2014) investigated the use of self-organizing maps (SOM) or 

Kohonen maps to detect cracks on pavement surfaces. The methodology proposed 

combines texture and color properties to distinguish cracks from the background. 

Firstly, the co-occurrence matrix is obtained from Haralick features to represent the 

texture in an image. The coarse-grained textured surface is separated from the finely 

textured surface. The SOM is subsequently trained on the acceptable aggregate 

segments to differentiate between the cracks and the background. The authors tested 

their algorithm on four 3,264×2,448 pixels images captured with the Sony Cybershot 

DSC-W180 while avoiding shadows. While training, the images were divided into 
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tiles of 60x60 pixels, obtaining 8,640samples. The model recorded an overall 

segmentation precision of 75% and a recall of 70%. 

Li et al. (2019) proposed using a multi-scale fusion crack detection algorithm 

(MFCD) to detect pavement cracks. In detecting cracks, authors utilizing a 

windowed minimal intensity path first extracted candidate cracks with the 

assumption that cracks exhibit lower intensity values than the background and pixels 

belonging to the same crack form a continuous path. Candidate cracks found at 

different scales are fused based on a multivariate statistical test. The algorithm 

performance is tested on the Agile-RN, CFD, and a self-captured dataset containing 

33 images. The algorithm's performance is compared with the performance of 

Geodesic Contour (GC), Free Form Anisotropy (FFA), Minimal Path Selection 

(MPS), CrackIT, CrackTree, and CrackForest. MFCD is shown to have better overall 

performance compared to other algorithms. In the CFD dataset, the model achieves 

89.9%, 89.47%, and 88.04% precision, recall, and F1-measure, respectively. 

Fang et al. (2020) proposed using video image sequences and different unsupervised 

machine-learning algorithms to detect faults in sewer lines. The authors first 

extracted the image sequences from the video. Obtained images are resized to 

224x224-pixel size, with features being subsequently extracted. Features extracted 

include the local binary patterns (LBP), histograms of oriented gradient (HOG), grey 

level co-occurrence matrices (GLCM), Gabor filter processing, and image feature 

vectors (IMG-FV) (Obtained using PCA on the image itself). The authors evaluated 

the performance of iForest, Gaussian distribution, one-class SVM, and Local Outlier 

Factor (LOF) detection algorithms on these features. The authors further performed 

a sensitivity analysis on the detection algorithms' choice of features. From a sample 

size of 8952 images containing 1514 images with faults, the authors attained the best 

performance with selected features and Gaussian distribution algorithms (accuracy, 

precision, and recall of 0.88, 0.94, and 0.90, respectively). On the other hand, OV-

SVM and LOF show poor performance across all datasets utilized by the authors. 

Authors further note that though Gaussian-d and iForest offer an overall better 
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performance, Gaussian-d had the best performance irrespective of the feature 

combination. 

Abdel-Qader et al. (2006) proposed using Principal Component Analysis to detect 

cracks on a bridge deck. Firstly, the train set images are normalized by subtracting 

the mean of all the images in the set. From this, the covariance matrix is calculated, 

to which the PCA algorithm is applied. Euclidean distance is then applied to cluster 

images with similar features. The authors adopted linear convolutional masks for 

vertical, horizontal, and diagonal line detection to improve results. Following 

convolution, the images are passed through a smooth filter to eliminate noise in the 

form of weak cracks. The authors further implemented local processing by dividing 

the images into 16 blocks and processing each as an individual image. The training 

dataset consisted of 5 crack and five non-crack images, and the test set consisted of 

40 images, of which 20 were crack and 20 were non-crack. With PCA being applied 

directly to the test images, the authors achieved an accuracy of 57.5%. The authors 

achieved an overall accuracy of 60% with the introduction of convolution. However, 

they noted an increase in false negatives. With the introduction of local processing, 

authors saw an overall accuracy of 73%, with a reduction of false negatives 

compared to other approaches. 

Beyond these novel algorithms, deep learning models such as autoencoders, 

variational autoencoders, and Generative Adversarial Networks (GAN) have been 

adopted. These models do not require parameter selection that would vary from one 

image set to another and are thus more advantageous. 

2.4 Deep Learning-Based Algorithms 

Chow et al. (2020) trained a convolutional autoencoder with defect-free images to 

detect defects in concrete structures. First, 42200 256X256-pixel defect-free RGB 

images in the training set were resized to 320X320 pixels and normalized between -

1.0 and 1.0. Next, the training dataset was randomly augmented through flipping and 
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rotation. Finally, utilizing a mean squared error loss, batch size of 16, and Adam 

optimizer, an anomaly map was created from the reconstruction and the original 

image to detect the cracks. The investigated model yielded an average precision of 

0.607 and a recall of 0.879 for defect detection.  

Y. Wang et al. (2019) proposed using UAVs to detect anomalies on wind turbine 

blades, aiming to reduce the cost of periodic checking. One-class support vector 

machine (OCSVM) and an unsupervised learning method with in-depth features 

learned from a generic data set. VGG-16 is used as the backbone CNN for feature 

extraction, pre-trained on the ILSVRC2014 ImageNet dataset. PCA (principal 

component analysis) is used to reduce the dimensionality of the feature map obtained 

from the CNN. In addition, the min-max operation was used to normalize the feature 

vector for ease of training in the OCSVM. The OCSVM is trained on normal data to 

create a hypersurface that separates normal (not containing cracks) from abnormal 

images. Image patches of 128 x128 pixels are utilized in the network to reduce 

dimensionality. The training data included 130 images of blades with no damage, 

and they were divided into 73,918 patches. The test data contained 30 blade images 

with known damage, divided into 21,085 patches. The authors obtained a precision 

of 0.63, recall of 0.496, and F1 score of 0.555 with a 1-layer VGG-16 network. Their 

research found lower layers better-extracted features related to anomalies, especially 

cracks. The authors experienced limitations in that the model may wrongly detect 

conspicuous dirt, stains, and patterns of painted lines. 

Z. Liu et al. (2020) investigated Variational Autoencoders (VAE) in detecting micro-

cracks in photovoltaics, with the significant advantage being that the VAE does not 

require manually labeled samples. The proposed architecture consists of the encoder 

that reduces the input scan into an array of latent variables and the decoder that 

converts the latent variable to a line scan profile. The encoder consists of 2 

convolutional layers (Conv1D), a max pooling layer, and a flattened, fully connected 

layer. The output of the encoder is a 10-pixel array, the encoded latent variable. The 

VAE is trained on data without any cracks, enabling it to learn how to reconstruct an 

uncracked line scan profile; hence when faced with a cracked sample, the difference 
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between a reconstructed sample and an original sample beyond a certain threshold 

will signal an anomaly is present. The authors achieved precision and recall scores 

of 0.83 and 0.72, respectively. 

Zhai et al. (2018) adopted Generative Adversarial Networks (GAN) to evaluate 

textured surfaces for defects. The methodology proposed was applied to wood 

surfaces and road crack surfaces. Authors first train a GAN to generate images 

similar to a normal textured surface. In doing this, the network learns a good 

representation of features in a latent vector space. Following this, the first three 

layers of the discriminator are utilized as feature extractors whose response is 

sensitive to the abnormal regions. A course vector calculated from the feature maps 

generated by the convolutional layers is used to distinguish abnormal zones in an 

image. Beyond this, a multi-scale heatmap fusion strategy is adopted. The authors 

first resize inspection maps produced by the convolutional layers to the same size 

and then further apply a weighted average method for fusion. After obtaining the 

final heatmap, the Otsu method binarizes the image. IoU and pixel accuracy were 

used as evaluation metrics. This method, compared with other baseline methods, 

showed superior performance. 

K. Zhang et al. (2020) introduced a self-supervised model based on a cycle-

generative adversarial network (GAN) to perform pixel-wise crack detection. The 

proposed model is advantageous in that it does not require ground-truth labels for 

the training images. Instead, labor-free ground-truth images collected from other 

sources are used as a structure library in training the network. The model consists of 

2 GANs. The first transforms a crack patch image into a Ground Truth-like image, 

and a second GAN performs the reverse, i.e., it transforms the GT-like image into a 

crack patch image. The GAN consists further of 2 discriminators, one that compares 

the generated GT image and the structure image and a second one that compares the 

translated structure image and the original crack image. A cycle consistency loss 

with extra constraints is introduced to help the generator create accurate structure 

images. A U-Net architecture is chosen for the generator, and a classifier is chosen 

for the discriminator. In training, publicly available CrackForest database (CFD), 
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FCN data set (X. Yang et al., 2018a), and a personal database were used. The 

personal database consisted of 600 images collected using a line-scan camera 

mounted on a survey vehicle. GT values were roughly marked by engineers with a 

1-pixel curve which was not accurate. Model performance was compared with state-

of-the-art CrackIT, Crack-Forest, MFCD, FCN, and DeepCrack algorithms. The 

author performed a patch-level evaluation with p-rate, r-rate, F1 score, and Hausdorff 

distance used as evaluation metrics. The methodology achieved comparable results 

with other algorithms. Lastly, it boasted a faster processing speed. The authors 

carried out an ablation study by removing the cycle-consistency loss and the one-

class discriminator. These were found to be crucial in structure learning. The authors 

also found that the methodology developed was not domain specific.  

Duan et al. (2020) investigated a method to translate crack images to binary images 

using Generative Adversarial Networks (GANs) with unpaired data. Eight residual 

blocks connected convolutional neural network for feature extraction are used as a 

generator, and a 5-layer fully convolutional network is used as a discriminator. GAN 

containing two modules, the generator, and discriminator, is advantageous in faster 

speed, sharper generative sample, and fully fitting data. Residual blocks in the 

generator are utilized as they are faster to train. Skip connections were added 

between the encoder and decoder to keep crack details. The discriminator FCN 

utilized leaky, ReLU nonlinearity, and normalization. The authors’ unpaired images 

are obtained using the SHcracklabel120 with 30 images drawn by hand and then 

rotated 90 degrees, 180 degrees, and 270 degrees, respectively, and reshaped to a 

resolution of 320×480 pixels. Cycle consistency is introduced to enhance the 

accuracy of crack localization. The proposed methodology is validated with the 

CrackForest database (CFD) containing 118 images. With a 5-pixel tolerance, the 

methodology proposed achieves a precision of 89.70%, a recall of 82.52%, and an 

overall F1 score of 85.07%. However, the methodology proposed falls short in that 

the width of the crack in the binary image does not change, and the binary image is 

less sensitive to the bending of the crack. 
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Following the literature analysis above, unsupervised training using CycleGAN is 

proposed. Although K. Zhang et al. (2020) and Duan et al. (2020) utilized this 

method in crack segmentation, a new approach is adopted in the thesis in the form 

of: 

• Compiling an unpaired ground truth label dataset by collecting ground truth 

labels from other crack datasets. This is proposed to allay the disadvantage 

mentioned by Duan et al. (2020), who utilized drawn labels resulting in 

cracks insensitive to bending and having uniform widths. 

• The model is applied to a rigid pavement dataset, whereas previous authors 

applied the methodology to flexible pavements. As the construction material 

of the topmost layer in flexible and rigid pavements is different, this leads to 

a contrast in the type of cracks and their backgrounds. Flexible pavements 

have ‘noisy’ backgrounds due to reflective materials in the asphalt binder, 

whereas rigid pavements have smooth backgrounds.  

• Different model architectures and training procedures are adopted to improve 

the results of the dataset collected. 

• Investigating the effect of change in the discriminator architecture and 

application of transfer learning in the generator. 

The next chapter shall introduce Generative Adversarial Networks (GANs), image-

to-image translation, and the proposed model, CycleGAN.
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CHAPTER 3  

3 GENERATIVE ADVERSARIAL NETWORKS (GANs) 

3.1 Overview of GANs 

Generative Adversarial Networks (GANs), a machine learning model, are among 

recent breakthrough models in machine learning. First proposed by Goodfellow et 

al. (2014) for the implicit modeling of high dimensional data in either an 

unsupervised or semi-supervised way has been heavily researched. The authors 

proposed a framework composed of a generator G that learns the data distribution 

and discriminator D that estimates the probability of the sample being part of the real 

distribution or the generated distribution. The training of a GAN hence results in a 

max-min two-player game that aims to trick such that it cannot tell the difference 

between real samples and the generated ones (fake samples). Thus, Generator G can 

be considered an art forger and discriminator D as an appraiser trying to detect 

counterfeit artwork. The competition between the two networks drives the teams 

(referring to the generator and discriminator) to improve their approach, hence 

adversarial networks.  

GANs have been used widely for tasks of image synthesis (a core GAN capability), 

image-to-image translation, and classification. For this thesis, Image-to-image 

translation is further discussed in depth. 

3.2 Image-to-Image Translation 

To better understand the definition of image-to-image translation, a question is 

posed. For example, if one would like to transform a sketched image into a realistic 

image or have a gray-scale image and would like to color it (Figure 3.1), how would 

this be possible computationally? The answer to this question led to research in the 
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broadly deemed domain of image-to-image translation (I2I). Hence, image-to-image 

translation is defined as the process of transforming an image from the source to the 

target domain while preserving the content. Therefore, the chosen model aims to 

learn the mapping between the output and the input image. To achieve the outlined 

objective, I2I borrows from generative models, which can learn and approximate the 

underlying distribution of data. 

 

 

Figure 3.1. Grayscale image → colored image 

Variational Autoencoders and GANs are among the most used and efficient deep 

generative models for the task of I2I translation. Variational Autoencoders (VAE) 

model data distribution by maximizing the lower bound of the data log-likelihood. 

However, VAE shall not be discussed further as GANs are the focus of the thesis.  

I2I translation applications range from image style transfer (Lee et al., 2020) (Figure 

3.2a), semantic segmentation (Park et al., 2019) (Figure 3.2c), image colorization 

(Suarez et al., 2017) (Figure 3.2d), image super-resolution (Y. Zhang et al., 2020) 

(Figure 3.2e) to image inpainting (Marinescu et al., 2020) (Figure 3.2d).). 
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Figure 3.2. Examples of image-to-image translation applications (Pang et al., 2021) 

I2I translation can be divided into two-domain I2I tasks and multi-domain I2I tasks. 

Multi-domain I2I centers on utilizing a single model to handle multiple domains with 

multiple outputs, different style textures, or semantic contents. An example of the 

kind of dataset that would be utilized in a model is shown in Figure 3.3 (Pang et al., 

2021) below. Conversely, two-domain I2I focuses on the use of a single model which 

captures the relationship between two domains. The thesis focuses on the two-

domain I2I task, which can further be divided into four sub-categories based on 

leveraged data. These include: 

• Supervised I2I. Aligned image pairs of the source and target domain (Figure 

3.4) are utilized during training and testing. This led to the development of 

models such as the pix2pix model (Isola et al., 2017)  

• Unsupervised I2I. Obtaining a large set of paired training data is time-

consuming, expensive, and sometimes impossible. This disadvantage led to 

research on unsupervised I2I tasks, where an unpaired dataset is utilized (Yi 

et al., 2017; Zhu et al., 2017)  (Figure 3.4). Unsupervised I2I translation 

forms the basis of the thesis research objective. 

• Semi-supervised I2I. To further improve unsupervised I2I translation 

results, the authors utilize a few source-target paired images alongside the 

unpaired data during training. This model is used in fields such as the 

restoration of old films or genomics (Mustafa & Mantiuk, 2020).  
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• Few-shot I2I. Human beings are observed to learn from only one or a limited 

number of examples. Beyond that, they are found to utilize prior experience 

and knowledge in learning a new task. This characteristic of human beings 

inspired the development of few- or on-shot I2I algorithms (Liu et al., 2019). 

These models have been proposed for translating a few or even one example 

in a limited unpaired training dataset. 

 

Figure 3.3. Example of a dataset that would be utilized in a multi-domain I2I task 

(Pang et al., 2021) 

 

Figure 3.4. Example of paired images and unpaired images used in training of a two-

domain I2I task (Zhu et al., 2017) 
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3.3 Training of GANs 

Following the introduction to the task of image-to-image translation and GANs, this 

section shall discuss the process of training GANs, which forms the basis of the task 

tackled in the thesis. 

As described, the training of GANs aims to find values in the generator 𝐺 that 

effectively confuse the discriminator 𝐷 and, conversely, values that allow the 

discriminator to tell apart generated values effectively. To further understand the 

training frameworks, given that we would like to learn the generator’s distribution 

𝑝𝑔 over data 𝑥, a prior input noise variable 𝑝𝑧(𝑧) is defined, with a final mapping to 

the dataspace as 𝐺(𝑧, 𝜃), where 𝜃 are the parameters of the network 𝐺. A second 

network is defined as 𝐷(𝑥, 𝜃), which outputs a single scalar, with 𝐷(𝑥) representing 

the probability that 𝑥 came from the data rather than 𝑝𝑔. 𝐷 is trained to maximize 

the probability of assigning the correct label to both training and samples from 𝐺, 

whereas 𝐺 is trained to minimize log(1 − 𝐷(𝐺(𝑧))), i.e., the probability of 𝐷 being 

able to tell apart the generated sample. This results in the value function 𝑉(𝐺, 𝐷) 

outlined below: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) log𝐷(𝑥) +𝔼𝑧~𝑃𝑍(𝑧)  log(1 −𝐷(𝐺(𝑧))) 

 

(1) 

Early in training, Goodfellow et al. (2014) notes 𝐺 is poor, and 𝐷 can reject sample 

with a high degree of accuracy; hence the equation log (1 − 𝐷(𝐺(𝑧))) saturates. 

Therefore, to alleviate this problem, the authors suggest that instead of minimizing 

the equation, instead, G should be trained to maximize log 𝐷(𝐺(𝑧)). Therefore, 

equation (1) can be broken down into equations (2) and (3): 

𝑚𝑎𝑥𝐷𝑉𝐷(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log𝐷(𝑥)] + 𝔼𝑧~𝑃𝑍(𝑧)[log(1 −𝐷(𝐺(𝑧)))] 

   

(2) 

𝑚𝑎𝑥𝐺𝑉𝐺(𝐷, 𝐺) = 𝔼𝑧~𝑃𝑍(𝑧)[log 𝐷(𝐺(𝑧))] (3) 
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Figure 3.5 (Goodfellow et al., 2014) below presents the pseudocode of the training 

procedure of a GAN network. 

 

Figure 3.5. GAN algorithm training pseudocode (Goodfellow et al., 2014) 

3.4 Types of GANs 

Training of GANs is often unstable. In literature, evaluating the ‘symptoms’ of 

unstable training is recommended to train a GAN properly. These ‘symptoms’ could 

include: 

1. Failure of the models to converge. 

2. Mode collapse. This is a situation observed when the generator produces 

similar images with different inputs.  

3. The discriminator loss converges to 0. This prevents the update of the 

generator. 
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Different GAN models have been developed to alleviate the problems encountered 

above or produce higher quality results and growing interest and research in GANs. 

These include models such as conditional GAN (Mirza & Osindero, 2014), InfoGAN 

(Chen et al., 2020),  Wasserstein GAN (Arjovsky et al., 2017), StackGAN (H. Zhang 

et al., 2017), CycleGAN (Zhu et al., 2017) and more. The subject in this thesis takes 

advantage of CycleGAN in accomplishing crack segmentation. CycleGAN is 

discussed in detail below.  

3.5 CycleGAN 

In accomplishing the objective outlined in the Introduction, a variation of GANs 

known as CycleGAN is utilized. The CycleGAN, first introduced by Zhu et al. 

(2017), aims to perform image-to-image translation using unpaired image samples 

Figure 3.4. Thus, given an image in domain 𝑋, the model attempts to map it to the 

target domain 𝑌. To achieve this, a cycle consistency loss is introduced to preserve 

the original image.  

CycleGAN relishes being an unsupervised image-to-image translation model. This 

fact has numerous applications in style transfer, such as transforming an image from 

a realistic view to Monet or Van Gogh style, object transfiguration (zebras to horses), 

season transfer (summer to winter), and photo enhancement, as seen in Figure 3.6 

below. 
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Figure 3.6. Examples of the application of CycleGAN (Zhu et al., 2017) 

As proposed by the authors, the CycleGAN model consists of two GANs, commonly 

referred to as the forward and reverse cycle GAN. The section below outlines the 

training objective in CycleGAN. 

3.5.1 Training of CycleGAN 

When broken down, a CycleGAN model consists of two GAN models (forward and 

reverse cycle GAN) trained for the task at hand. In the forward cycle, generator 𝐺 

performs the mapping of images from domain 𝑋 to 𝑌(𝐺: 𝑋 → 𝑌), while the 

discriminator 𝐷𝑦, aims to distinguish between real samples in 𝑌 and generated 

images 𝐺(𝑥). In the reverse cycle, generator 𝐹 does the mapping 𝐹: 𝑌 → 𝑋, while 

the discriminator 𝐷𝑥, aims to distinguish generated images 𝐹(𝑦) and samples in 𝑋. 

The two GAN models utilize adversarial loss discussed in section 3.3. Beyond this, 

the authors introduce a second loss, the Cycle Consistency Loss.  
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3.5.1.1 Adversarial loss 

The Adversarial loss, described in equation (1) in the training of GANs, is applied to 

both mapping functions. For the function 𝐺: 𝑋 → 𝑌 and its discriminator 𝐷𝑦, the 

adversarial loss is given as: 

𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑦, 𝑋, 𝑌) = 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)
[log 𝐷𝑌(𝑦)] +

𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log(1 −𝐷𝑌(𝐺(𝑥)))]  

 

(4) 

𝐺 aims to minimize this function whereas 𝐷𝑦 aims to maximize it, leading to the 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑦𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑦, 𝑋, 𝑌) adversarial loss objective (equation (4)). This similar 

objective is applied to the reverse cycle as well, which does the mapping 𝐺: 𝑌 → 𝑋, 

(𝑚𝑖𝑛𝐹𝑚𝑎𝑥𝐷𝑥𝐿𝐺𝐴𝑁(𝐹, 𝐷𝑥, 𝑋, 𝑌) 

3.5.1.2 Cycle Consistency Loss 

Given the adoption of adversarial loss only, a well-trained model on the data 

distribution in either domain 𝑋 or 𝑌 could produce several random permutations of 

the source image in the target domain. This unconstrained behavior would not lead 

to the desired mapping of 𝑋 → 𝑌 and vice versa. To diminish this occurrence, the 

authors adopt transitivity through cycle consistency. 

The use of transitivity in the regularization of models has been a long-established 

practice. In the domain of language translation, translators have carried out “back 

translation and reconciliation” to improve and verify translation (Xia et al., 2016). In 

visual tracking, a forward-backward consistency has been utilized (Kalal et al., 

2010). More recently, higher order cycle consistency has also been used in the task 

of depth estimation(Godard et al., 2017), dense semantic alignment(Zhou et al., 

2015), co-segmentation (Wang et al., 2013) as well as structure from motion (Zach 

et al., 2010). Zhu et al. (2017) adopt the transitivity approach and introduce the cycle 

consistency loss.  
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To further explain this, for an image 𝑥, the mapping 𝐺(𝑥) gives a fake 𝑦, and the 

application of 𝐹(𝐺(𝑥)) should lead to a sample comparable to the original 𝑥 (𝑥 ≈

𝐹(𝐺(𝑥)).  Similarly, for an image 𝑦, 𝐺(𝐹(𝑦)) should be equal to 𝑦(𝑦 ≈ 𝐺(𝐹(𝑥)) 

(Figure 3.7). This behavior is therefore parameterized through the objective function 

(5) (Zhu et al., 2017). 

𝐿𝑐𝑦𝑐 = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) [||𝐹(𝐺(𝑥)) − 𝑥||
1
] + 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦) [||𝐺(𝐹(𝑦)) − 𝑦||

1
] (5) 

The final objective function (6) defined by Zhu et al. (2017) is shown below: 

𝐿(𝐺, 𝐹, 𝐷𝑦 , 𝐷𝑥) = 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑦 , 𝑋, 𝑌) + 𝐿𝐺𝐴𝑁(𝐹, 𝐷𝑥, 𝑋, 𝑌) + 𝜆𝐿𝑐𝑦𝑐 (6) 

The lambda value, introduced as a multiplier of the cycle loss, controls the relative 

importance of the two objectives. 

 

Figure 3.7. Representation of the introduction of a forward and reverse cycle, (b) 

Forward cycle consistency loss, (c) Reverse cycle consistency loss (Zhu et al., 2017) 

3.5.1.3 Training Parameters 

In the training of the CycleGAN, Zhu et al. (2017) proposed replacing the negative 

log-likelihood objective with the least-squares loss, which provides more stability. 

Furthermore, the authors offer a solution to the oscillation problem by updating the 

discriminator on a history of generated images, not the immediately generated ones. 

Moreover, a lambda value of 10 with the Adam optimizer is suggested during 
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training. An initial learning rate of 0.0002 was chosen for the first 100 epochs and 

linearly decaying the rate to 0 over the subsequent 100 epochs. A batch size of 1 is 

utilized, with instance normalization and reflection padding employed. 

Despite positive results, especially in texture and color change, Zhu et al. (2017) 

noted a limitation in carrying out geometric changes and situations where the 

distribution characteristics of the training dataset caused failure.  

An introduction to Generative Adversarial Networks was shared. Image-to-image 

(I2I) translation was focused on two-domain I2I tasks. Consequently, the training of 

GANs was discussed, and the different derivations of the original GAN model were 

introduced. A study of the CycleGAN model was then carried out, focusing on the 

training objective and parameters adopted in the original article. This foundation 

directs to the next chapter, which discusses implementing the CycleGAN model for 

unsupervised crack image segmentation. 
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CHAPTER 4  

4 IMPLEMENTATION 

This chapter discusses the implementation of CycleGAN in the pixel-wise 

segmentation of crack images. The chapter has been divided into a discussion of the 

application of CycleGAN, the model architecture adopted, hyperparameters chosen 

for the model, and the training pseudocode. 

4.1 Overview 

As expounded in the previous chapter, the CycleGAN model consists of a forward 

and reverse cycle, resulting in a model with two generators and two discriminators. 

Following the notation established in section 3.5.2, Figure 4.1 below represents the 

task assigned to the discriminators and generators.  In the image, the generator 𝐺 

learns the mapping from the original crack image (Figure 4.2a) in domain 𝑋 to the 

target segmented images 𝑌 (Figure 4.2b). In contrast, the generator 𝐹 learns the 

mapping of the segmented images in domain 𝑌 (Figure 4.2b) to the crack images in 

domain 𝑋 (Figure 4.2c). The discriminator 𝐷𝑦, learns to tell apart the generated 

images, 𝐺(𝑥), and real images in 𝑌, whereas the discriminator 𝐷𝑥 learns to tell apart 

the generated crack images, 𝐹(𝑦),and real crack images in 𝑋. Following training, 

the crack detection model is chosen as the generator 𝐺 
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Figure 4.1. Schematic representation of the proposed model 

 

Figure 4.2. Sample of the (a) Crack image fed to generator 𝐺, which aims to translate 

it into image (b) Representing the ground truth pixel segmentation. Feeding 

generator 𝐹 with the segmented images results in the image (c) A generated crack 

image. 

4.2 Model Architecture 

The same generator architecture is adopted for both the forward and reverse cycle, 

likewise for the discriminator, as also observed by Zhu et al. (2017). However, the 
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individual generator and discriminator architectures differ. The paragraphs below 

expound on the architectures adopted in the thesis.  

The generator model adopts a fully convolutional architecture. In the convolutional 

section, generally referred to as the encoder, the VGG16 backbone is utilized. Pooled 

results are stored and added during deconvolution as a skip connection. The VGG16 

backbone is loaded with ImageNet (Deng et al., 2010) pre-trained weights. Zhu et 

al. (2017) proposed the use of Instance normalization and reflection padding to 

reduce artifacts during training. Therefore, the generator adopts reflection padding 

in all layers except the final deconvolution layer. Reflection padding in the final 

deconvolution layer resulted in sporadic results and was consequently dropped. 

Instance normalization is only adopted during deconvolution. Regularization 

through applying dropout during deconvolution and an L2 regularization with a 

factor of 0.5 is applied to all layers. Figure 4.5 displays the architecture of the 

generator.   

The discriminator architecture in K. Zhang et al. (2020) is adopted. The architecture 

consists of 4 3X3 convolutional layers followed by a fully connected layer with a 

final single output. Whereas K. Zhang et al. (2020) adopt a SoftMax last activation 

function, this activation function is disregarded as a lack of training convergence was 

observed when included. Moreover, the ReLU activation function in intermediate 

layers is replaced by leakyReLU with a negative slope coefficient of 0.3. To improve 

training convergence, a dropout rate of 0.3 and L2 regularization, with a factor of 

0.5, are introduced at each layer. Figure 4.6 displays the architecture of the 

discriminator. Initial weights are set to random uniform values with a mean of 0 and 

standard deviation of 0.02 (similarly for generator layers that do not have pre-trained 

weights) 

Zhu et al. (2017) proposed the PatchGAN discriminator architecture during training. 

An investigation on the effect of using the PatchGAN discriminator is also carried 

out. 
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4.3 Hyperparameter Search 

In the training of the model, different hyperparameters are investigated. These 

include: 

• Batch size 

• Cycle Consistency loss multiplier 

• L2 regularization factor 

• Dropout probability 

• Initial learning rate 

• Epochs 

Optimal Hyperparameter values are chosen based on a grid search between the upper 

and lower limit values. In selecting the batch size and cycle consistency lower limit, 

values of 1 and 0.35 are set, as proposed by Zhu et al. (2017) and K. Zhang et al. 

(2020), respectively. The lower limit for the L2 regularization factor is determined 

as TensorFlow API’s default value given as 0.01. In selecting the initial learning rate, 

a value of 0.0002 is chosen, as suggested by Zhu et al. (2017). Beyond these values, 

other upper and lower limits are determined experimentally, observing the training 

speed and convergence of the model. 

Table 4.1 below displays the list of hyperparameters, the search boundaries, and the 

values chosen.  
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Table 4.1 Hyperparameter Values 

Hyperparameter 
Grid Search 

Range 
Final Value Chosen 

 
Lower 

Limit 

Upper 

Limit 
 

Batch size 1 20 20 

Cycle consistency loss 

multiplier 
0.35 100 0.35 

L2 regularization factor 0.01 1 0.5 

Dropout probability 0.3 0.5 
0.3 - discriminator 

0.5 - generator 

Initial learning rate 0.0002 0.0002 

Number of epochs 50 150 100 

 

4.4 Model Training 

Adopting an Adam optimizer (Kingma & Lei Ba, 2014), all generators are first 

trained, and following an entire epoch, the discriminators are then trained. The flow 

chart (Figure 4.3) represents the training procedure. Training the generators for every 

odd epoch and discriminators for every even epoch was found to reduce the training 

time and promote faster convergence.  While training, the initial learning rate is 

halved every 50 epochs, and checkpoints are saved after every ten epochs. After 100 

epochs, training activity is terminated, with the best performance observed at the 

final epoch.  

The model is written in the TensorFlow 2.8.2 environment and trained in Google 

Collab, offering users free GPU resources. The pseudocode (Figure 4.4) displays the 

training procedure and losses calculated at each step.  
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Figure 4.3. CycleGAN implementation flow chart 

 

Figure 4.4. CycleGAN implementation pseudocode 
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Figure 4.5. Generator architecture 
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Figure 4.6. Discriminator architecture 
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CHAPTER 5  

5 DATASETS 

5.1 Overview 

As mentioned in the previous chapter, the thesis aims to propose an unsupervised 

method for identifying surface cracks, emphasizing cracked pavement surfaces. 

Road pavements can be broadly divided into flexible and rigid pavements based on 

the nature of the constituent layers. Their topmost layer is constructed from asphaltic 

concrete for flexible pavements, whereas their top layer is built from cementitious 

concrete for rigid pavements.  This difference leads to a difference in cracks formed 

as well as the nature of the background, i.e., flexible pavements have ‘noisy’ 

backgrounds due to the presence of reflective materials in the asphalt binder, whereas 

rigid pavements have smooth backgrounds. The methodology adopted is trained and 

tested using a collected rigid pavement dataset. The paragraphs below outline the 

collection method, source, division of data, and size of the dataset utilized. 

5.2 Compiling Crack Dataset 

A rigid pavement dataset is collected and composed of images from the FCN dataset 

(X. Yang et al., 2018) and the drone dataset (Ersoz et al., 2017). The FCN dataset 

(X. Yang et al., 2018) is a public dataset consisting of 776 images obtained from 

pavements and buildings in China of size 327x306 pixels. The drone dataset (Ersoz 

et al., 2017) contains 154 images, 4000x3000 pixels in size, collected by flying a 

drone 0.5 to 3 m above the ground along a rigid pavement at Middle East Technical 

University. In preparation for training, the full-size images are divided into crops of 

size 800 X 500 pixels. Following this division, images presenting no cracks or 

foreign bodies are eliminated. This augmentation results in a total of 1678 images 
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for training and testing. After collecting all pictures, these are divided into 4:1 for 

training and testing, totaling 1960 images for training. Figure 5.1 below displays this 

division: 

 

Figure 5.1. Division of datasets for training and testing 

5.3 Compiling Unpaired Groundtruth Labels 

In their article, Duan et al. (2020) collected unpaired ground truth labels by drawing 

crack labels on a white background. A total of 30 images are drawn, which are then 

augmented to create a label set of 120 images used in training. The model is then 

trained on 118 crack images chosen from the CrackForest dataset and tested on the 

remaining ten images.  K. Zhang et al. (2020) assembled their ground truth labels by 

cropping 64X64 blocks from full-sized binary images with different structure 

patterns. Crack images are prepared by cropping 64x64 image blocks from the CFD, 

CrackTree, and FCN datasets.  Following the abovementioned methods, the thesis 

adopts a different method for ground truth label collection. Unpaired ground truth 

labels of different crack datasets are collected and augmented through flipping to 

become equivalent to the training crack images. Thus, during the training of the rigid 

pavement dataset, the ground truth labels from the CFD dataset (Shi et al., 2016), 
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CrackTree200 dataset (Zou et al., 2012), Gaps348 dataset (Eisenbach et al., 2017), 

and Crack500 dataset (F. Yang et al., 2019) are utilized during the training (Figure 

5.2). Table 5.1 below represents the number of images collected from the datasets. 

 

Figure 5.2. Sample crack images from different datasets (a) Crack500 Dataset, (b) 

CFD Dataset, and (c) CrackTree200 Dataset sample 

Table 5.1 Number of ground truth labels collected from different crack image 

datasets 

Dataset Number of Images 

CFD 118 

CrackTree200 206 

Crack500 494 

GAPS384 169 

Augmentation 973 

Total 1960 

5.4 Preprocessing 

Before training, crack images are converted to grayscale and resized to 128 X 128-

pixel size. Grayscale conversion reduces the training complexity by getting rid of 

unnecessary color information. Resizing the image to 128 X128 allows the image to 

retain crack information while simultaneously speeding up the training process. 

Beyond this, the images are normalized to values between -1 and 1. Normalization 

is necessary as it improves model performance. Furthermore, normalization between 

-1 and 1 in combination with the Tanh activation function in the final layer of the 
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generator aims to constrain the generator output and allows for faster training and 

saturation over a color space (Radford et al., 2016).
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CHAPTER 6  

6 PERFORMANCE EVALUATION 

Following the detailed introduction to the proposed model and the datasets compiled, 

this chapter details the evaluation of its performance. First, the chapter shall present 

the evaluation metrics adopted in crack segmentation. Second, comparative models 

are used in the model’s performance evaluation, and then metric segmentation results 

are shared. Finally, the results of the investigative study on the effect of change in 

discriminator architecture and the application of transfer learning in the generator 

are discussed.  

6.1 Evaluation Metrics 

Different metrics are utilized to evaluate segmentation results. These metrics range 

from precision, recall, and F1 score to accuracy. Calculating the scores can be done 

at either the pixel level or at a regional level. First, at the pixel level, a comparison 

between pixels in the ground truth mask and those in the predicted mask with an 

allowable tolerance is made (see equations (7) to (10)). Tolerance most observed in 

the literature ranges from 0 to 5-pixel tolerance, with a larger tolerance leading to 

higher accuracy. Regional result-based metrics involve the creation of a matrix 

whose rows and columns reflect patches in the image (Figure 6.1). If crack pixels are 

present, the cells in the matrix are assigned the number 1 (representing crack cell); 

otherwise, 0 (representing non-crack cell) (see Figure 6.1b). This matrix based on 

the captured image is then compared to the predicted matrix, and region-based 

precision, recall, and F1 scores are calculated as in equations (11) to (14).  

The calculation of precision, recall, F1, and accuracy scores are as follows: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10) 

 

Where: 

𝑇𝑃: True Positive 

𝐹𝑃: False Positive 

𝐹𝑁: False Negative 

𝑇𝑁: True Negative 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 =
𝑇𝑃𝑟𝑒𝑔𝑖𝑜𝑛

𝑇𝑃𝑟𝑒𝑔𝑖𝑜𝑛 + 𝐹𝑃𝑟𝑒𝑔𝑖𝑜𝑛
 (11) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 =
𝑇𝑃𝑟𝑒𝑔𝑖𝑜𝑛

𝑇𝑃𝑟𝑒𝑔𝑖𝑜𝑛 + 𝐹𝑁𝑟𝑒𝑔𝑖𝑜𝑛
 (12) 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙
 (13) 

𝐴𝑐𝑐 =
𝑇𝑃𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑇𝑁𝑟𝑒𝑔𝑖𝑜𝑛

𝑇𝑃𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑇𝑁𝑟𝑒𝑔𝑖𝑜𝑛 + 𝐹𝑃𝑟𝑒𝑔𝑖𝑜𝑛 + 𝐹𝑁𝑟𝑒𝑔𝑖𝑜𝑛
 (14) 
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Figure 6.1. Representation of the process of creating labels for region-wise metric 

analysis (a) The original image, (b) The original image overlaid by the grid 

representation of crack cells 

Each of the scores reveals information about the algorithm or model chosen. For 

example, a lower precision value indicates the model identifies cracks where there 

are none in the image (a high number of false positives). A low recall value implies 

the model does not correctly identify crack pixels where they are observed in the 

ground truth mask (a high number of false negatives). The F1 score measures the 

model's overall performance, also referred to as the dice score or harmonic mean.  

Apart from the metrics explored above, the Enhanced Hurdsoff distance (EHD) (Tsai 

& Chatterjee, 2017) is also utilized in displaying the overall localization accuracy of 

the model. The metric is calculated based on the mean distance between the ground 

truths and the detected cracks and aims to evaluate model results while reducing the 

effects of subjectivity involved in developing the ground truth masks. Hsieh and Tsai 

(2020) and K. Zhang et al. (2020, 2021) utilized this metric to evaluate crack 

segmentation.  Equations (15) to (17) below are used to calculate the EHD score 

between A and B. 

𝑠𝑐𝑜𝑟𝑒𝐵𝐻(𝐴, 𝐵) = 100 −
𝐵𝐻(𝐴, 𝐵)

𝑢
∗ 100 (15) 
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Where:  

𝐵𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥[ℎ𝑝(𝐴, 𝐵)ℎ𝑝(𝐵, 𝐴)] (16) 

Given the penalty ℎ𝑝(A, B) is defined as  

ℎ𝑝(𝐴, 𝐵) =
1

|𝐴|
∑𝑠𝑎𝑡𝑢(𝑚𝑖𝑛𝑏𝜖𝐵‖𝑎 − 𝑏‖)

𝑎𝜖𝐴

 (17) 

𝑢 is an upper limit value that is used to eliminate the influence of false positives that 

are far from the GTs hence reflecting better localization accuracy. Tsai and 

Chatterjee (2017) proposed setting this value as 1/5of the image width. In the 

equations above, A and B represent the predicted and ground truth crack pixel 

locations, respectively.   

6.2 Comparative Methodologies: 

Test results are compared to those obtained by already existing segmentation models 

to evaluate the overall performance of the adopted methodology. The paragraphs 

below detail chosen models that shall be compared. 

The CrackForest algorithm (Shi et al., 2016) adopts a Random Structured Forest. 

The authors first identify integral channel features to redefine crack tokens, 

following which the random structured forests are used to identify cracks which are 

then characterized. 

X. Yang et al. (2018) Fully Convolutional Network (FCN) model provides end-to-

end supervised training on a pixel-labeled dataset. In the FCN network, the authors 

adopt VGG19 architecture loaded with pre-trained weights during downsampling. 

The Pix2pix model (Isola et al., 2017) utilizes conditional GANs for image-to-image 

translation tasks. The authors propose a U-Net-based generator architecture and a 

‘PatchGAN’ classifier network for the discriminator, which penalizes results at a 

scaled image patch level. As analyzed in the article, a lambda value for the L1 

multiplier of 100 is chosen during training.  
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6.3 Metric Results  

This section introduces the metric results of the FCN and Drone datasets. 

As explored in chapter 5, the rigid pavement dataset collected consisted of the FCN 

and drone datasets. During training, three different training dataset combinations are 

leveraged. Table 6.1 below summarizes the training dataset combinations and the 

sections and tables where the testing results are discussed. 

Table 6.1 Training and test combinations summary 

 

Training 

Dataset 

Combination 

Number of 

training 

images 

Testing Dataset 

FCN Drone 

Discussion 

Chapter 

Results 

Table 

Discussion 

Chapter 

Results 

Table 

1 Drone + FCN 1960 
Section 

6.2.2.1 
Table 6.2 

Section 

6.2.2.2 

Table 

6.5 
2 Drone only 1340 

3 FCN only 620 

 

While training on the first and second dataset combinations, the investigated and 

applied hyperparameter values in section 4.3 of chapter 4 were kept constant. 

However, these parameters were not transferrable while training the model on the 

third combination (FCN dataset only). Therefore, another grid search was performed, 

and it was determined that keeping all other hyperparameters constant and changing 

the cycle consistency loss multiplier to 48 resulted in the best metric results. FCN 

dataset and Drone dataset results are elaborated below. 

6.3.1 Results on the FCN Dataset 

A total of 156 images in the FCN dataset are used to test the model’s performance. 

Metric scores when training on the three dataset combinations are shown in Table 
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6.2 below. The overall best metric results are achieved when training on the Drone 

+ FCN dataset combination, with the lowest results being observed when training on 

the FCN dataset only. As seen in Figure 6.2d, when training on the FCN dataset only, 

though the crack is well defined, noise is observed in the areas around the crack 

hence lower performance. 

Table 6.2 Region-based metric results on the FCN dataset under different training 

combinations 

Training Dataset Precision Recall F1 score 

Drone + FCN 0.82 0.87 0.84 

FCN only 0.76 0.80 0.78 

Drone only 0.76 0.88 0.81 

 

 

Figure 6.2. The pictorial result on the FCN dataset (a) Represents the original crack 

image (b) The ground truth mask (c) Prediction of the original image when training 

on the Drone + FCN dataset (d) Prediction when training on the FCN dataset only 

(e) Prediction when training on the drone dataset only 
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The best results in Table 6.2 above are compared with FCN test results from the 

comparative methodologies discussed in section 6.2.1. The CrackForest (Shi et al., 

2016), X. Yang et al. (2018), and Pix2pix models are trained on the 620 FCN training 

images, predefined during train to test dataset division in section 5.2. The FCN 

dataset contains pixel-level accurate labels and thus allows for end-to-end training 

of the supervised model. Following training, these models are tested on the 156 FCN 

test images (utilized in Table 6.2 above), with precision, recall, F1, and EHD scores 

displayed in Table 6.3 and Table 6.4 below for region-based and pixel-wise metric 

scores, respectively. Figure 6.2 further displays the pictorial results of image samples 

in the test set.  

The Pix2pix model achieves the best results with an F1 score of 0.92 and an EHD 

score of 93.6. As seen in Table 6.3 and Figure 6.3c, the CrackForest algorithm 

attained the lowest precision score, caused by a high number of false positives 

observed as the algorithm predicted larger crack widths in the images. As observed 

in Figure 6.3d, The FCN model failed to recognize thin cracks. A similar issue is 

reported by X. Yang et al. (2018). The proposed model is observed to achieve 

comparable results to the supervised algorithms, with the recall score coming second 

only to the pix2pix model and achieving a higher precision score than the 

CrackForest model. 
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Table 6.3 Comparative results on the FCN dataset (Region-based metrics) 

Algorithm Precision Recall F1 score EHD score 

Supervised Machine Learning based 

CrackForest (Shi et al., 

2016) 
0.68 0.85 0.76 82 

Supervised Deep Learning based 

X. Yang et al. (2018) 0.96 0.82 0.88 91 

Pix2pix 0.93 0.91 0.92 94 

Unsupervised Deep Learning based 

Proposed 0.82 0.87 0.84 89 

 

Table 6.4 Comparative results on the FCN dataset (Pixel-wise metrics) 

Algorithm Precision Recall 
F1 

score 

Supervised Machine Learning based 

CrackForest (Shi et al., 

2016) 
0.55 0.87 0.67 

Supervised Deep Learning based 

X. Yang et al. (2018) 

0.93 

0.82 - Given 

in the paper 

0.65 

0.79 - Given in 

the paper 

0.76 

Pix2pix 0.91 0.91 0.91 

Unsupervised Deep Learning based 

Proposed 0.89 0.69 0.78 
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Figure 6.3. The pictorial results on the FCN dataset (a) Crack image (b) Ground truth 

label (c) CrackForest (d) X. Yang et al. (2018) (e) Pix2pix model (f) Proposed model 
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6.3.2 Results on the Drone Dataset 

As the drone dataset does not contain pixel-accurate labels, simple labels are 

prepared by creating 2-pixel width labels representing the cracks. Furthermore, since 

the labels are not pixel accurate, the calculation of region-based metrics is most 

suitable. Table 6.5 below displays the precision, F1 score, and recall of the testing 

images when training is done on the three different dataset combinations. Training 

on the drone dataset only is found to achieve the best overall results. 

Table 6.5 Region-based metric results on the drone dataset with different training 

combinations 

Training Dataset Precision Recall F1 score 

Drone + FCN 0.86 0.72 0.78 

FCN only 0.84 0.71 0.77 

Drone only 0.84 0.84 0.84 

 

The best results in Table 6.5 above are compared with those observed in the four 

comparative methodologies chosen. Supervised deep-learning models utilized in the 

literature require accurate pixel-level labels for training. However, for the drone 

dataset, this is not available. Therefore, the CrackForest (Shi et al., 2016), X. Yang 

et al. (2018), and Pix2pix models, trained on the 620 FCN training images, as defined 

in section 5.2, are tested on the drone dataset’s test images utilized in Table 6.5 

above. Each model’s precision, recall, F1, and EHD scores are shown in  

Table 6.6. Figure 6.4 further displays the pictorial results of image samples in the 

test set.  

The pix2pix model achieves the best metric results, with an overall F1 score of 0.89. 

CrackForest (Shi et al., 2016) failed to detect thin cracks and was insensitive to the 

crack's width. Though the FCN (X. Yang et al., 2018) performed better than the 
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CrackForest, thin crack detection was still poor. The proposed model achieves 

comparable results with the precision, recall, F1 score, and EHD score only 4% lower 

than that achieved in pix2pix. 

Table 6.6 Comparative results on drone dataset (Region-based metrics)  

Algorithm Precision Recall F1 score EHD score 

Supervised Machine Learning based 

CrackForest (Shi et al., 

2016) 
0.46 0.67 0.55 69 

Supervised Deep Learning based 

X. Yang et al. (2018) 0.80 0.73 0.76 81 

Pix2pix 0.88 0.89 0.89 92 

Unsupervised Deep Learning based 

Proposed 0.84 0.87 0.84 85 
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Figure 6.4. Pictorial results on the drone dataset (a) Crack image (b) Ground truth 

label (c) CrackForest (d) X. Yang et al. (2018) (e) Pix2pix model (f) Proposed model 
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6.4 Investigative Study 

An investigative study is done to determine the effect of the change in discriminator 

architecture and the adoption of ImageNet (Deng et al., 2010) pre-trained weights in 

the generator on the proposed model. 

6.4.1 Change in Discriminator architecture.  

In the original CycleGAN model, Zhu et al. (2017) proposed the use of the 

PatchGAN architecture (see Chapter 3); however, in the application of CycleGAN 

to crack detection, K. Zhang et al. (2020) and in this study, a one-class classifier 

architecture is adopted. Therefore, maintaining all other hyperparameters, the 

performance of the two different architectures is compared. Figure 6.5 below shows 

the loss difference between the utilization of the two different discriminator 

architectures. As seen in Figure 6.5, though a significant difference is observed in 

the initial loss values, both models achieve Nash equilibrium at almost the same 

number of epochs. However, despite this equivalence of equilibrium, it is observed 

that the generated images in the PatchGAN model were sporadic, a situation that 

could be defined as mode collapse. This situation could be attributed to the choice of 

the cycle consistency loss multiplier adopted during training (Figure 6.6). 
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Figure 6.5. Loss comparison between the adoption of the One-class discriminator 

and the PatchGAN discriminator. Graphs (a) to (g) represent the different loss values 

calculated during training for the first 50 epochs 
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Figure 6.6. Pictorial results of the two different discriminator models. (a) Original 

Crack images (b) Ground truth labels (c) Model predictions 

6.4.2 Application of Transfer Learning in the Generator 

Transfer Learning hopes to exploit information learned in a different task to the 

current task. In deep learning, this is distinguished as a repurposing of trained models 

loaded with their known weights to the current task (Bengio, 2012). In investigating 

the effect of transfer learning, the previously loaded generator with ImageNet (Deng 

et al., 2010) weights is initialized randomly with values exhibiting a uniform 

distribution with a mean of 0 and a standard deviation of 0.02. The model is then 

trained for 50 epochs on Drone + FCN dataset combination keeping all 

hyperparameters constant. The losses observed are displayed in Figure 6.7 below. 

From the analysis of the losses, no significant difference is observed. However, upon 
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further inspection of the pictorial results at the final epoch, it was observed that pre-

trained weights offer significantly better crack connectivity at the 50th epoch (Figure 

6.8). 

 

 

Figure 6.7. Loss comparison of the effect of utilizing vgg16 pre-trained weights as 

opposed to random uniform initialized. Graphs (a) to (b) represent the different 

losses calculated for the first 50 epochs 
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Figure 6.8. Pictorial results showing the effect of utilizing pre-trained weights 

instead of uniform random initialized weights. (a) Original Crack images (b) Ground 

truth labels (c) Model predictions 
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CHAPTER 7  

7 SUMMARY, CONCLUSION, AND RESEARCH PROSPECTS 

7.1 Summary 

Road pavements are exposed to different loading conditions during their lifespan. 

These conditions lead to the road structure's degradation, causing defects such as 

cracks, potholes, or depressions. Degradation of road integrity could pose a problem 

to vehicle safety and cause transport inefficiency. Furthermore, immense costs could 

be incurred during repair, especially if a rework of the pavement is required. 

Therefore, regular monitoring should be done to prevent the detrimental decay of the 

pavements. The study, therefore, focused on pavement monitoring to detect cracks. 

Different algorithms are utilized in the detection of cracks on pavement surfaces. 

The oldest algorithm used was image processing. With the growth in computing 

capability, traditional machine learning algorithms such as ANN, SVM, and Random 

Forests have been adopted alongside image processing methods.  However, these 

techniques are heavily affected by false crack detection in images with shadows, low 

contrast, and discontinuous crack regions. Furthermore, shallow learning techniques 

utilized are not suitable for complex information in the images (Hsieh & Tsai, 2020). 

Deep learning models have been applied to crack detection to mitigate the 

disadvantages. Different application levels exist, such as image-based and patch-

based classification, object detection, and pixel segmentation. Of these application 

levels, deep learning has increasingly been applied in pixel segmentation of cracks.  

Deep learning models could be divided into supervised and unsupervised deep 

learning models. Supervised models require image labels for end-to-end training, 

whereas unsupervised models do not. Supervised methodologies are 

disadvantageous as the model’s training heavily depends on accurate pixel-wise 
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labels. Moreover, generating pixel-wise accurate crack labels is expensive. 

Therefore, the study aimed to utilize unsupervised deep learning methods in pixel-

wise segmentation of images.  

A comprehensive literature survey was conducted using keywords such as 

unsupervised, semi-supervised, and self-supervised crack detection. In the literature, 

unsupervised cluster-based algorithms were applied.  These algorithms were 

disadvantageous in that, in contrast to deep learning methods, they require prior 

parameter extraction. Furthermore, feature extraction is inefficient in increasingly 

complex images. Minimal Path Selection based models are also utilized in the 

literature. However, they require selecting parameters such as threshold, which is not 

interchangeable across datasets. Novel algorithms have also been adopted in 

literature; however, they face similar disadvantages as MPS and cluster-based 

algorithms.   

CycleGAN offered the best performance with the lowest computational cost of the 

unsupervised deep learning models researched. CycleGAN is a model consisting of 

two Generative Adversarial Networks which perform image-to-image translation. 

The forward cycle maps the crack image to its ground truth image, whereas the 

reverse cycle maps the ground truth to its crack image. This process requires the 

calculation of adversarial losses in the generators and cycle consistency loss in a 

single forward-reverse cycle. The introduction of the cycle consistency loss 

constrains the model. 

Implementing the CycleGAN requires a one-class discriminator with five 

convolutional blocks. In addition, a fully convolutional Network (FCN) with a 

VGG16 encoder section is applied for the generators. A hyperparameter grid search 

is then conducted on the dataset to obtain the best performance. Moreover, to 

improve performance and training speed, the generators are trained for an entire odd 

epoch and discriminators for an even one.    

The rigid pavement dataset is compiled following the determination of the best 

training algorithm. First, images from FCN (X. Yang et al., 2018) and drone (Ersoz 
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et al., 2017) public datasets are collected. The FCN dataset contains 776 images of 

size 327X306, captured from buildings and pavements in China. The drone dataset 

includes images taken by flying a drone 0.5 to 3m above the ground along a rigid 

pavement at Middle East Technical University. A total of 154 images of size 

4000x3000 are obtained. The drone images are subsequently cropped to 800x500 

pixels resulting in a total of 1678 images. The datasets are individually divided into 

a ratio of 4:1 for training and testing. Beyond this, unpaired ground truth labels are 

obtained by collecting ground truth labels from the CFD dataset (Shi et al., 2016), 

CrackTree200 dataset (Zou et al., 2012), Gaps348 dataset (Eisenbach et al., 2017), 

and Crack500 dataset (F. Yang et al., 2019) public crack pavement database. 

7.2 Conclusions 

The study proposed CycleGAN, an unsupervised deep learning algorithm, for the 

pixel-wise segmentation of a rigid pavement dataset. In doing so, a novel model 

architecture and training procedure are utilized. Furthermore, an unpaired ground 

truth label dataset is collected by compiling ground truth labels from the public crack 

pavement database. 

To evaluate the performance of the applied algorithm, precision, recall, F1 score, and 

EHD score are calculated. While training the algorithm, three different training 

dataset combinations are investigated.  Firstly training is performed on all datasets 

(1960 images) on the FCN dataset only (620 images) and the drone dataset only 

(1340 images). Training on 1960 images achieves the best results while testing the 

FCN dataset with an F1 score of 0.84. On the other hand, while testing on the drone 

images, training on the drone dataset only attains the best results with an F1 score of 

0.84. 

The proposed model performance is compared with those in the literature. When 

testing the model with the FCN dataset, the model achieved comparable results with 

CrackForest (Shi et al., 2016) and FCN (X. Yang et al., 2018) supervised models. 
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Furthermore, when testing the model with the drone dataset, the CrackForest and 

FCN models were outperformed.   

Finally, the effect of loading pre-trained weights and changing the discriminator 

architecture is investigated. Adopting the ‘PatchGAN’ discriminator architecture 

results in mode collapse as the discriminator produces sporadic results. Loading pre-

trained weights was not observed to affect the training convergence. However, at the 

50th epoch, the model loaded with pre-trained weights achieved better crack 

connectivity. 

Despite achieving high performance, the proposed model fails to recognize thinner 

cracks in pavement images. Furthermore, the model is sensitive to shadows, which 

is also observed in supervised algorithms. 

7.3 Research Prospects 

As the model is sensitive to shadows, an unsupervised shadow removal algorithm 

could be adopted to alleviate this problem. In addition to segmentation, the 

classification of the different crack patterns through unsupervised models such as K-

means clustering or Principal Component Analysis (PCA) could be undertaken. 
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