
EXPLOITING WORD AND SENTENCE EMBEDDINGS FOR
DIVERSIFICATION IN CRAWLING AND RANKING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CAN DURAN ÜNALDI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2022

Approval of the thesis:

EXPLOITING WORD AND SENTENCE EMBEDDINGS FOR
DIVERSIFICATION IN CRAWLING AND RANKING

submitted by CAN DURAN ÜNALDI in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering, METU

Prof. Dr. Özgür Ulusoy
Computer Engineering, Bilkent University

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Can Duran Ünaldı

Signature :

iv

ABSTRACT

EXPLOITING WORD AND SENTENCE EMBEDDINGS FOR
DIVERSIFICATION IN CRAWLING AND RANKING

Ünaldı, Can Duran
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. İsmail Sengör Altıngövde

September 2022, 100 pages

The increase in the volume of the Web and Microblogging sites caused copious

amounts of duplicate or near duplicate content which emerged the diversification

paradigm. On a typical search system, there are three main components, namely,

a crawler, an indexer and a query processor. While most diversification approaches

aim at the query processing stage of the search system, in this work, we aim to apply

the diversification paradigm to both crawling and query processing stages. First, we

introduce a diversification-aware focused crawler, which considers all the aspects of

a given search query in order to construct a collection that contains equal coverage

of them. Second, we focus on the diversification of short texts, such as social media

posts, for the query processing stage. For both contributions, we apply well-known

diversification approaches in the literature and extend them by exploiting the neural

language models that are state-of-the-art for several information retrieval and natural

language processing tasks. Our experiments, in which we evaluate both approaches

with well-crafted experimental setups, show that the diversification paradigm is suc-

cessful for both the crawling stage and short texts. Moreover, neural language models

perform comparable results for the diversification paradigm.

v

Keywords: Word Embeddings, Sentence Transformers, Document Embeddings, Di-

versification, Focused Crawling, Microblogging

vi

ÖZ

TARAMA VE SIRALAMADA ÇEŞİTLENDİRME AMACIYLA KELİME VE
CÜMLE VEKTÖRLERİNDEN YARARLANMA

Ünaldı, Can Duran
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İsmail Sengör Altıngövde

Eylül 2022 , 100 sayfa

Web ve mikroblog sitelerinin hacmindeki artışın yarattığı çok sayıda kopya veya kop-

yaya yakın içerik çeşitlendirme paradigmasını ortaya çıkardı. Tipik bir arama siste-

minde üç ana bileşen bulunmaktadır, bunlar tarayıcı, endeksleyici ve sorgu işleyicisi-

dir. Çoğu çeşitlendirme yöntemi sorgu işleme bileşenini hedeflerken, bu çalışmada

çeşitlendirme paradigmasını hem tarayıcı hem de sorgu işleyiciye uygulamak he-

deflenmektedir. Öncelikle, sorgunun alt anlamlarını kullanarak alt anlamları dengeli

bir dağılımda içeren bir koleksiyon oluşturmayı amaçlayan çeşitlendirmeye duyarlı

odaklı tarayıcı geliştirildi. Sonrasında, sorgu işleme aşaması için sosyal medya içe-

rikleri gibi kısa metinleri çeşitlendirmeye odaklanıldı. Her iki katkıda da, literatürde

tanınmış çeşitlendirme yaklaşımları uygulandı ve bir çok bilgi getirimi ve doğal dil iş-

leme yönteminde kullanılmış modern sinirsel dil modelleri kullanılarak bu yaklaşım-

lar genişletildi. Her iki yaklaşım da iyi hazırlanmış deney ortamlarında denendiğinde

çeşitlendirme paradigmasının hem tarama aşamasında hem de kısa metinlerde başa-

rılı olduğu görüldü. Ayrıca, çeşitlendirme paradigması için sinirsel dil modellerinin

kıyaslanabilir sonuçlar aldığı görüldü.

vii

Anahtar Kelimeler: Kelime Temsilleri, Cümle Dönüşütürücüler, Doküman Temsilleri,

Farklılaştırma, Odaklı Tarayıcılık, Mikrobloglar

viii

To my family

ix

ACKNOWLEDGMENTS

First of all, I want to express my gratitude to my supervisor İsmail Sengör Altıngövde

since this thesis would not have been possible without his continuous support and

guidance. Also, I’m grateful to my thesis committee members Prof. Dr. İsmail Hakkı

Toroslu and Prof. Dr. Özgür Ulusoy, for their positive encouragement and valuable

comments.

I am deeply indebted to my colleague Yiğit Sever for his continuous support and

helpful brainstorming through this thesis. I am also extremely grateful to my lab

partners Abdullah Doğan, Sena Terzi, and Bilge Eren, for their valuable contributions

to this thesis. Special thanks to Makbule Gülçin Özsoy and Kezban Dilek Önal for

their contributions on this study. Moreover, I would like to thank my colleague Merve

Asiler for her understanding and Furkan Murat for his support.

And finally, I would like to offer my special thanks to my parents for their support

throughout my life and for their understanding and supportive attitude throughout this

thesis. Moreover, I could not have undertaken this journey without Göknur Ercan and

I would like to express my deepest gratitude for her love and support. Without them,

I would not be able to accomplish this study.

This work is partially funded by The Scientific and Technological Research Council

of Turkey (TÜBİTAK) under grant no. 117E861.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ALGORITHMS . xviii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Diversification-Aware Focused Crawler 1

1.2 Diversifying Rankings for Tweet Search 2

1.3 Contribution . 3

1.4 The Outline of the Thesis . 4

2 RELATED WORK . 5

2.1 Focused Crawling . 5

2.2 Diversification for Tweet Search Results 7

xi

3 PRELIMINARIES . 9

3.1 Representing Documents . 9

3.1.1 TF-IDF . 9

3.1.2 BM25 . 10

3.1.3 Word Embeddings . 11

3.1.3.1 GloVe . 11

3.1.3.2 FastText . 12

3.1.4 Sentence Transformers . 13

3.1.4.1 . 13

3.1.4.2 SBERT . 14

3.2 Search Result Diversification . 15

3.2.1 Maximal Marginal Relevance 15

3.2.2 Sy . 17

3.2.3 xQuAD . 19

3.3 Distance Metrics . 20

3.3.1 Cosine Distance . 20

3.3.2 Jaccard Distance . 21

3.3.3 Word Mover’s Distance . 22

4 FOCUSED CRAWLING . 25

4.1 Apache Nutch . 25

4.1.1 Processing the Data . 26

4.1.1.1 Decapitalizing . 27

4.1.1.2 Stop Word Elimination 28

xii

4.1.1.3 Stemming . 28

4.2 Focused Crawler . 29

4.2.1 Classifier . 30

4.2.1.1 Training Set . 30

4.2.2 Modifying Nutch System . 31

4.2.2.1 Adding the Classifier to the System 31

4.2.2.2 Favoring Recently Extracted Links 32

4.2.3 Scoring System . 32

4.2.3.1 Selecting Positive Phrases 33

4.2.3.2 TFIDF for Scoring . 34

4.2.3.3 Word Embeddings for Crawler 35

4.2.3.4 Sentence Transformers for Crawler 35

4.3 Diversification-Aware Focused Crawler 36

4.3.1 Aspect Phrases . 37

4.3.2 Scoring for the Diversification-Aware Focused Crawler 39

4.4 Experiments . 41

4.4.1 Diversification on Focused Crawler 42

4.4.1.1 Deciding IDF Values 43

4.4.2 Seed URLs . 44

4.4.3 Comparison of the Crawlers 44

5 DIVERSIFICATION FOR TWEET SEARCH RESULTS 51

5.1 Pre-processing Tweets . 51

5.2 Ranking . 52

xiii

5.2.1 Averaging Word Embeddings 53

5.2.2 Using Maximum and Minimum 54

5.3 Diversification of Tweet Search Results Using Embeddings 54

5.4 Experiments . 56

5.4.1 Dataset . 56

5.4.2 Experimental Setup . 57

5.4.3 Fine-Tuning . 58

5.4.4 MMR . 59

5.4.5 Sy . 64

5.4.6 xQuAD . 67

5.5 On-the-Fly Ranking . 68

6 CONCLUSION . 71

REFERENCES . 73

APPENDICES

A FOCUSED CRAWLER SETUP . 79

B FOCUSED CRAWLER EXPERIMENTAL RESULTS 87

C ON THE FLY TWEET DIVERSIFICATION 95

xiv

LIST OF TABLES

TABLES

Table 3.1 Example: Doc-doc and Doc-query Similarity Scores 16

Table 4.1 Example: Document to Topic and Aspect Relevances 40

Table 4.2 Example: Document to Topic and Aspect Relevances 41

Table 4.3 Number of Relevant Pages for Each Aspect at Batch 20 45

Table 4.4 Number of Relevant Pages for Each Aspect at Batch 45 45

Table 4.5 Precision-IA for each crawler setup at Batch 45 46

Table 4.6 Aspect Cosine Similarity Score Percentages at Batch 45 46

Table 4.7 Standard Deviation of each crawler setup at Batch 45 47

Table 4.8 Precision-IA for each crawler setup at Batch 20 47

Table 4.9 Aspect Cosine Similarity Scores at Batch 20 48

Table 4.10 Standard Deviation for each crawler setup at Batch 20 48

Table 4.11 Percentage of Zero Score Aspects at Batch 45 48

Table 4.12 Percentage of Zero Score Aspects at Batch 45 49

Table 5.1 Combination of Method and Metrics 55

Table 5.2 Ndeval Output for Twitter Diversification 58

Table 5.3 MMR Single Lambda Example . 61

xv

Table 5.4 MMR Average results for different lambda values 62

Table 5.5 MMR – Ratio-H Cosine Comparison 63

Table 5.6 MMR – Comparison of SBERT and FastText with baseline results . 63

Table 5.7 Sy – Baseline Result . 64

Table 5.8 Sy – SBERT Fine-Tuning Comparison 65

Table 5.9 Sy – Retweet Operation Results . 66

Table 5.10 Sy – SBERT and Baseline Retweet Operation Result Comparison . . 66

Table 5.11 xQuAD – SBERT, FastText and Baseline Results 67

Table 5.12 xQuAD – SBERT, FastText and Baseline Retweet Removal Results . 68

Table A.1 NLTK Stopwords . 81

Table A.2 Covid-19 – Economic Impact Phrases 82

Table A.3 Covid-19 – Symptoms Phrases . 83

Table A.4 Covid-19 – Vaccine Phrases . 84

Table A.5 Covid-19 – Research Phrases . 85

Table A.6 Covid-19 – Prevention Phrases . 86

Table B.1 Number of Relevant Pages in No Diversification Focused Crawler . 88

Table B.2 Number of Relevant Pages in Diversification Aware Focused Crawler

Results . 90

Table B.3 Number of Relevant Pages in Diversification Aware Word Embed-

ding Focused Crawler . 92

Table B.4 Number of Relevant Pages in Diversification Aware SBERT Fo-

cused Crawler . 94

xvi

LIST OF FIGURES

FIGURES

Figure 3.1 BERT Architecture (adapted from [1]) 14

Figure 3.2 Cosine Distance . 21

Figure 3.3 WMD Example (adapted from [2]) 23

Figure 4.1 Workflow of General Nutch Crawler 26

Figure 4.2 Workflow of Modified Nutch Focused Crawler 29

Figure 4.3 Google Suggestions for Coronavirus Research 38

Figure 4.4 Google Suggestions for Coronavirus Symptoms 38

Figure C.1 Twitter Application – Login Page 96

Figure C.2 Twitter Application – Search Page 97

Figure C.3 Twitter Application – Results Page - Coronavirus 98

Figure C.4 Twitter Application – Results Page - Covid 19 99

Figure C.5 Twitter Application – Annotation Page 100

xvii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 MMR . 17

Algorithm 2 Sy . 18

Algorithm 3 Sy Duplicate Detection . 18

Algorithm 4 xQuAD (adapted from [3]) . 20

Algorithm 5 Calculating Similarity using Word Embeddings 36

xviii

LIST OF ABBREVIATIONS

ABBREVIATIONS

NLP Natural Language Processing

WE Word Embeddings

ASCII American Standard Code for Information Interchange

TF Term Frequency

IDF Inverse Document Frequency

TFIDF Term Frequency - Inverse Document Frequency

BERT Bidirectional Encoder Representations from Transformers

SBERT Sentence-BERT

MMR Maximal Marginal Relevance

WMD Word Mover’s Distance

NLTK Natural Language Toolkit

JWNL Java WordNet Library

RT Retweet

xix

xx

CHAPTER 1

INTRODUCTION

A typical search (or text-retrieval) system includes 3 main components, namely, a

general-purpose or focused crawler, to obtain the underlying collection from the Web,

an indexer and a query processor (i.e. ranker). The recently emerging paradigm of

diversification is essentially associated with the last component, ranking, and several

approaches are proposed to post-process a candidate ranking to obtain more diversi-

fied top results where, broadly, diversification may imply results different than each

other and/or covering different aspects of the query at hand. In this thesis, we aim to

achieve diversification in both focused crawling and ranking stages; and while doing

so, we exploit neural language models that set the state-of-the-art for several infor-

mation retrieval (IR) and natural language processing (NLP) tasks.

1.1 Diversification-Aware Focused Crawler

The initial step of a typical search system is a crawler, which can be a general-purpose

crawler or a focused crawler. Unlike the general-purpose crawler, the focused crawler

aims to gather pages that is relevant to the given target topic. Although the main goal

is to gather only relevant pages, since the crawler can not know the content of the page

before fetching it, all of the pages might not be relevant to the topic. The crawler uses

the information of the given seed URLs and continuously fetches the URLs that are

located in the fetched pages. While doing so, a focused crawler exploits the textual

content of the fetched page to predict the likelihood of the URL to be relevant to the

target topic. In this thesis, following the practice in Chakrabarti et al. [4] and Pant

et al. [5], we implement a baseline focused crawler which assess the relevance of a

1

URL based on its anchor text and nearby text, as well as the content of the entire page

including the URL.

For a given search query, there can be many aspects of that query each can lead to dif-

ferent pages. Assuming there is no aspect of the search query might lead to different

pages that is only have one meaning of the query. However, if we add the knowl-

edge of the aspects to the crawler we may gather more diverse results that may satisfy

all meanings of the aspects and the query. In this thesis, we introduce the notion of

diversification-aware focused crawling, which aims to incrementally construct a col-

lection with equal coverage of alternative aspects of a target crawling topic. To this

end, we adopt an approach from Ozdemiray & Altingovde [6] that has been proposed

for search result diversification. The proposed approach is extended to compute sim-

ilarity between target topic and Web pages using word embeddings [7] [8] [9] [10]

and sentence transformers [11].

1.2 Diversifying Rankings for Tweet Search

A crucial component of a typical search system is the ranker. After fetching and

indexing the search results, a search system should present ordered results to the user.

The main goal of the ranking stage is to sort the results using the relevance score

between the query and results. An emerging paradigm considered during ranking is

diversification, which aims to eliminate similar search results and favor results that

include novel information and/or cover alternative interpretations of the query. In

this study, we focus on short text (namely, Twitter posts) where the problem becomes

more challenging, as argued in [12].

Microblogging sites are popular and their popularity increases over time. On average,

more than 500 million tweets per day and more than 200 billion tweets per year

are tweeted. Although the growth on the tweets are declining, the increase in the

number of tweets are still increasing. In this study, we aim to improve the results for

tweet search, which is a more challenging problem since a tweet is limited to the 280

characters. Understanding the meaning of a sentence becomes harder if the sentence

becomes shorter as explained in [12]. Although the Twitter has 280 character limit

2

now, back in 2013 which our dataset is created at, the Twitter was only has 140

characters limit which limits our ability to extract the meaning from the sentence.

To this end, following the practice in [12], we use three well-known diversification

approaches from the literature (namely, MMR [13], Sy [14] [15] and xQuaD [3] [16])

with the well-known scoring methods such as BM25 3.1.2, tf -idf 3.1.1 and distance

metrics such as Cosine 3.3.1 and Jaccard 3.3.2. We extend these diversification ap-

proaches to employ word embeddings and sentence transformers representations to

investigate the impact of the models on the diversification problem on ranking stage.

1.3 Contribution

To the best of our knowledge, it is the first time that word embeddings and sentence

transformers are applied to a diversification aiming search system. Our contributions

in this work are follows:

• Create a focused crawler that is using sentence transformers and word embed-

dings.

• Introduce the notion of diversified focused crawler which exploits the aspects

of target topic in addition to page content and link text.

• Create a ranking system that applies diversification paradigm on a microblog-

ging site, Twitter, by using sentence transformers and word embeddings.

Finally, we extensively evaluate the proposed approaches in a well-crafted experi-

mental setup. For the focused crawling, our experiments involved real-time crawling

of tens of thousands of Web pages for the target topic Covid 19. For the ranking part,

we employed a benchmark dataset, Tweets2013 [14]. Our experiments reveal that

the proposed approaches are promising to improve diversification for both focused

crawling and ranking components of a search system.

3

1.4 The Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 reviews the related work

and Chapter 3 provides the preliminary information about the methods, metrics and

algorithms that are used in this study. In Chapter 4, we propose our approach of

diversification aware focused crawling and provide experimental results. Chapter 5

presents how embeddings are employed during diversification of rankings for tweet

search, and provides a detailed experimental evaluation of their impact on diversifica-

tion performance. Finally, we conclude and point to future work directions in Chapter

6.

4

CHAPTER 2

RELATED WORK

In this chapter, studies that are inspired or used as a basis and studies that are spec-

ified in the context of this work including baseline methods, general diversification

problem approaches, twitter studies and focused crawler related studies are explained.

2.1 Focused Crawling

The rapid increase in the number of pages on Web, caused too much information to

extract and decide whether the information is useful or not. By this mean, there are

lots of focused crawler implemented for some specific or general contents.

Although it was not a complete focused crawler, the idea behind the ARACHNID [17]

using agents to get best neighbors just like a crawler uses fetcher threads to crawl

best links. The resource of a crawler is the computational power and ARACHNID

simulates this resource by giving energy to its agents. Moreover, the score between

the query and neighbors are calculated using cosine similarity in order to select the

best neighbor to jump. Not only working on local system, but also ARACHNID

tested on actual on-line Web environment.

The work of Chakrabarti et al. [4] [18] is the first work using the naming focused

crawler. They are using general approach types of the focused crawler thus set-

ting general convention and approach to the focused crawler area. They use naïve-

Bayesian classifier to measure the relevance of a downloaded page to the target topic.

Using the link information on selecting URLs is presented in their work which is in-

spired most of the later and even recent works such as our study. The idea of using

5

the link information is used in Rennie et al. [19] before the study of Chakrabarti et al.

The link information can be summarized as follows:

• The URL of the link.

• The anchor text and the text near anchor text.

Although this information is simple, it is very important to catch the actual meaning of

the link. Moreover, they use the category information from DMOZ which is important

for our study since we also use a similar information on our crawler.

The work of Altingovde and Ulusoy [20] is a different approach to gather the pages

related to the target topic. The main idea behind the work is to gather pages that

can be located in an unrelated page. For example, page1 has a link to page2 and our

crawler find page1 irrelevant, however page2 is highly relevant to our topic. They try

to use probability of the page to be in the context of our topic and by creating rules

they obtain the probability of getting correct information by following a path. Thus,

their proposed method is able to select best path among the pages.

Wang et al. [21] are implementing a focused crawler that is applying relevance judge-

ment using a Bayesian Classifier (as explained by Leung [22]). They are not using a

scoring function such as BM25, instead they direcly use their classifier to find the rele-

vance of a page to the target topic. Similar to Wang et al., Lu et al. [23] are improving

their focused crawler using a classifier to detect irrelevant pages. However, for the

scoring function they extend the page score with anchor text and URL text informa-

tion like the practice of Chakrabarti et al. [4] and Pant et al. [5]. The workflow of their

crawler is similar to our non diversification focused crawler workflow. Although, the

general structure of their focused crawler is similar to our proposed model, they are

not applying any diversification methods to the system. Again similar to our work,

they create a focused crawler that supports for multiple topics.

Du et al. [24] are implementing 4 different focused crawlers that works for differ-

ent target topics (where the first crawler is just breadth-first crawler). They are us-

ing tf -idf and compute cosine similarity (just like our initial focused crawler) at

their VSM crawler. Then they extend their model by adding semantic meaning to

6

the VSM crawler by calculating the semantic meaning between the terms using on-

thology. Their final crawler uses semantic vector space instead of semantic meaning

between the terms.

Another approach from Farag et al. [25] is classifying the web pages to some pre-

defined events since events might carry important information to a related topic or

related locations. They extend a general purpose crawler to focus on a given event by

using classification models. An event contains the topic (they use California shooting

event), the date and the location information. By scoring the page using the event and

page similarity they aim to find pages only relevant to the given event.

2.2 Diversification for Tweet Search Results

Microblogging sites and diversification on them are both interesting and challenging

problems. The work of Ozsoy et al. [12] is applying diversification on a microblog-

ging site, namely Twitter. They apply most well-known diversification algorithms

such as MMR [13], Sy [14] [15] and xQuAD [3] [16] in order to re-rank the twitter

search results by combining these methods with distance metrics such as Jaccard and

Cosine Although the sentence length of each data is limited, their results are shown

to be successful in terms of diversifying tweets.

Onal et al. [26] are using the same setup with Ozsoy et al. [12] and they use word

embeddings in their work. Unlike our proposed method, they use word embeddings

to expand the query and tweets. Using K-Nearest Neighbor expansion method to-

gether with word embeddings they increase the information available for each query

and tweet, then they use Jaccard similarity to calculate the similarity. As a second

expansion method, they use ConceptNet 1. Moreover they use the most well-known

diversification algorithms, namely MMR, Sy and xQuAD to diversify the tweet re-

sults. Their results show that expansion that is applied is giving better diversification

results than the direct usage of the query and tweets.

Gollapudi et al. [27] propose methods to increase diversity on result sets. Their meth-

ods are trying to maximize: the sum of similarity and diversity (Max-Sum) and mini-

1 https://api.conceptnet.io/

7

mum relevance and dissimilarity (Max-Min). They use greedy algorithms to achieve

the two objectives. For another greedy approach, Vieira et al. [28] proposes 2 methods

which are related to the diversification paradigm. GMC tries to maximize marginal

contribution of each candidate which is similar to the MMR, however, the GMC uses

a different ranking function. Second method, GNE they use the GRASP technique

which is a randomized selection method. Then they use the same ranking function

that they used on GMC to restrict the selection set. By changing then λ variable they

change the randomness of the results.

Although it is not applied for tweet search results, Ulu et al. [29] are exploiting the

word embeddings for web search results diversification. Since the web search results

are large documents, they create document embeddings using the idea of De Boom et

al. [30] and use the document embeddings on well-known diversification algorithm

MMR. As they state in their experimental results, almost all of the sets document

embeddings with MMR gives the best α-nDCG@10 scores.

Moreover, Text REtrieval Conference (TREC) 2 was organizing microblogging tracks

from 2011 to 2015. Just like our study, microblogging tracks contains twitter data

in order to be diversified by the contestants. Moreover, there are 23 submission on

average to a single track and 40 submission to the track 2011 as peak. There are many

different approach to the microblogging problem just from the TREC microblogging

track.

2 https://trec.nist.gov/

8

CHAPTER 3

PRELIMINARIES

In this section, the methods, techniques and the fundamentals used throughout this

study is explained in detail.

3.1 Representing Documents

3.1.1 TF-IDF

The tf -idf weighting method, as explained in [31], aims to represent the importance

of a word in a document. We can use the tf -idf to calculate the importance of

a document on a corpus by finding the importance of all of the words inside the

document. There are two parts of the method: term frequency and inverse document

frequency.

Term frequency denotes the frequency of a word inside a document, not the whole

corpus. This is used as a metric for the word’s importance. The calculation of the

term frequency is given in the Equation 3.1.

tf(t, d) =
ft,d∑
t′∈dft′,d

(3.1)

The inverse document frequency (IDF) gives insight on how unique or rare a word

is in the corpus. The unique words are considered more important than the frequent

ones such as stop words. The calculation for IDF is given in the Equation 3.2 where

N is the number of documents in the corpus and D is the set of documents in the

corpus.

9

idf(t) = log(
N

1 + |d ∈ D : t ∈ d|
) (3.2)

If the number of documents that contain the term t is lower, the idf value becomes

higher in order to increase the importance of a rare word. The tf -idf score of a word

can be calculated as shown in Equation 3.3.

tf-idf(t, d) = tf(t, d) ∗ idf(t) (3.3)

Another usage for tf -idf is to create tf -idf vectors using the calculations above.

Thus, a document can be represented by a vector of tf -idf values computed for the

terms in the document.

The vector representations are important for NLP, as well as for the current study

since:

• A document vector can be used alongside a distance metric (e.g. cosine dis-

tance) to calculate the similarity between two documents.

• Similarly, a document vector can be used to calculate the similarity of the doc-

ument to a given search query.

3.1.2 BM25

BM25 is a function which is widely used in information retrieval to rank a set of

document in terms of their relevance to a given query without considering positions

of the words inside the document or query. The calculation of BM25 score of a

document for a given query is given in the Equation 3.4.

score(d, q) =
n∑

i=1

idf(qi) ·
tf(qi, d) · (k1 + 1)

tf(qi, d) + k1 · (1− b+ b ∗ |d|
avg(|D|))

(3.4)

BM25 uses the idea behind the tf -idf (Equation 3.1 and Equation 3.2) and expand

with some parameters it to achieve better accuracy.

• k1 ∈ [1.2, 2]

10

• b = 0.75

• avg(|D|): average length of the documents inside the corpus.

3.1.3 Word Embeddings

As explained in the above sections, many retrieval methods need to represent words

and/or documents as numerical vectors. However, numerical representation of a word

is a challenging problem for information retrieval. One of the solution to converting

a document to a numerical representation is creating tf -idf vectors as explained

in the section 3.1.1. Another, recent approach is to find vector representation of a

word, such as Word2Vec [32] [7], to represent a word. By using word embedding

representations, we are able to achieve the following:

• Check similarity between two words using a distance metric (e.g. cosine dis-

tance)

• Combine these vectors to represent a document vector to find similarity be-

tween two documents or a document to a query.

There are many applications of word embeddings such as Word2Vec [32] [7], ELMo [10],

GloVe [8] and FastText [9]. For the purposes of this study, we will explain only GloVe

and FastText.

3.1.3.1 GloVe

Glove [8] model, stands for Global Vectors, is developed with an unsupervised learn-

ing algorithm to create word representations. The idea behind the algorithm is to

represent words using their semantic distances and probability to be on the same con-

text. For example, if we have 3 word representations for 1 capital (’Ankara’) and 2

countries (’Turkey’ and ’Italy’). ’Ankara’ has two main properties: being a capital,

being inside Turkey. If we remove the vector of Turkey from the vector of Ankara we

obtain only the capital status of the word. Moreover, if we add Italy to the equation,

we again add the belonging status to the word, however, this time for Italy and get the

11

capital of the Italy, Rome.

vector(′Ankara′)− vector(′Turkey′) + vector(′Italy′) (3.5)

Their approach is to define the word representations such that after the operations

in the Equation 3.5, resulting vector should be as close as possible to the vector of

’Rome’. Another example can be the relation between Prince and Princess. If we

remove Man vector from the Prince vector and add Woman, we should be able to get

a resulting vector which is very close to the vector of the Princess word. One vector’s

value is dependent to the other one. The main constraint for the model is given in the

Equation 3.6, where wi is the vector of the main word, wj is the vector for the word in

the context and bi, bj values are biases. Finally, Xij gives the probability of the main

word and the context word’s appear together.

wT
i wj + bi + bj = log(Xij) (3.6)

3.1.3.2 FastText

FastText [9] is a library created by Facebook AI team to create vector representations

by taking morphology into account. Facebook made pre-trained word embeddings for

294 languages available on FastText. They are using the idea behind the Word2Vec

(skip-grams) by expanding the idea with the usage of n-grams, thus separating the

word into smaller chunks. This method allows model to be successful on the lan-

guages that are morphologically rich such as Turkish. For example, in Turkish we are

using ’hecelemek’, which can be directly defined in English as spell. However, the

word ’hecelemek’ has very similar meaning with its root ’hece’, which is very com-

mon than the original word. The common words are easier to represent as vectors,

since they are more likely to appear in the training set. However, the rare words can

be never seen by the model, thus reducing the accuracy of it when it encounters such

word. By taking n-grams the model is able to get the meaning behind the rare word

by finding more common one.

Their proposed model is using n-grams, where n ∈ [3, 6]. An example for the n-gram

can be the word ’abacus’ (where < and > are boundary symbols):

12

2-grams of the word abacus:

<a, ab, ba, ac, cu, us, s>

3-grams of the word abacus:

<ab, aba, bac, acu, cus, us>

The methodology behind using n-grams is to find the word representation in terms of

the word vectors of its n-grams. The general scoring function of the model is given in

Equation 3.7, where uwt is the vector representation of the term and vwc is the vector

representation of the context word.

s(wt, wc) = uT
wtvwc (3.7)

However, after taking n-grams into account, the equation becomes the Equation 3.8,

where Gw is the n-grams of the word and zg is the vector representation of each n-

gram.

s(w, c) =
∑
g∈Gw

zTg vc (3.8)

3.1.4 Sentence Transformers

In order to understand sentence transformers, we should have a look at Bidirectional

Encoder Representations from Transformers (BERT) [1].

3.1.4.1

BERT BERT is a multi-layer bidirectional Transformer and unlike Word2Vec or

GloVe, BERT is considering the context in which the word is found. For example, we

know that the word ’application’ has two different meaning in the following words:

He is researching the application of machine learning

techniques on NLP.

He has released his application on AppStore.

13

Figure 3.1: BERT Architecture (adapted from [1])

Another example can be the word ’saw’, since saw can be a verb which is the past

tense of see, or a carpenter tool that is used to cut trees, these two usages are very dif-

ferent from each other. For Word2Vec or GloVe representations these ’application’s

has the same vectors. However, BERT is considering the context of the sentence to

define the word vectors. The word ’application’ will have different word vectors for

these usages as it should be. The architecture of BERT, as explained in the BERT

paper [1], is given in the Figure 3.1

3.1.4.2 SBERT

Word embeddings are powerful tools to represent the words and find the relation

between two words. Moreover, word embeddings can be converted using some tech-

niques (explained in 4.2.3.3) to represent documents or sentences. However, these

techniques are not accurate enough to find the actual document representation. Sen-

tence Transformers (SBERT) [11] is developed for such need, to represent sentences

in more accurate way. The main idea behind the SBERT is expanding the fine-tuning

capabilities of BERT and modify it to obtain more accurate and meaningful sentence-

embeddings. Both BERT and SBERT are developed by Google to apply machine

learning techniques in the Natural Language Processing (NLP) area.

The drastic improvement in the performance of the fine-tuning BERT model as showed

14

in SBERT paper [11] is one of the main advantages of using sentence transformers. In

this thesis, we also employ SBERT to obtain sentence embeddings to be used during

focused crawling and ranking tasks. Note that, we essentially focus on the impact

of such embeddings on the effectiveness (i.e., quality of the results) but not the effi-

ciency.

3.2 Search Result Diversification

3.2.1 Maximal Marginal Relevance

Maximal Marginal Relevance (MMR) [13] is a greedy re-ranking algorithm designed

to create diverse search results on a given result set for a given query. The typical

approach to rank the documents for a given query is to rank the documents based on

their similarity to the query. Although, ranking using the similarity between a query

and a document is the part of the algorithm, MMR also checks the similarity between

the current document and already selected documents. If current document is close

to the already selected ones, we can reduce its ranking score, thus prevent duplicate,

near duplicate or similar results on the result set. The algorithm’s scoring function is

given in the Equation 3.9:

MMR = Arg max
Di∈R\S

[
λ(sim(Di, Q))− (1− λ)max

Dj∈S
(sim(Di, Dj))

]
(3.9)

In Equation 3.9, Di denotes documents in the collections, Q denotes the query, R

denotes the relevant documents in the collection and S denotes the already selected

documents.

We can set the lambda value to weigh the relevance and diversification parts of equa-

tion. As the lambda increases we give higher importance to the first part of the equa-

tion, which is relevance, similarly, if we decrease the lambda value we give higher

importance to the second part of the equation, which is the diversification. As an ex-

ample, assume that we have 5 documents and their relevance values to the query and

similarity among each other given below:

15

Doc1 Doc2 Doc3 Doc4 Doc5

Doc1 1 0.8 0.3 0.6 0.1

Doc2 0.8 1 0.7 0.4 0.5

Doc3 0.3 0.7 1 0.1 0.4

Doc4 0.6 0.4 0.1 1 0.3

Doc5 0.1 0.5 0.1 0.3 1

Query

Doc1 0.9

Doc2 0.7

Doc3 0.6

Doc4 0.5

Doc5 0.2

Table 3.1: Example: Doc-doc and Doc-query Similarity Scores

If we want to select the top 3 documents using MMR algorithm and set the lambda

value to 0.5, we can follow the steps given in the Equation 3.10

Iteration1 :

Doc1 is selected.

Iteration2 :

Doc2 = 0.5 ∗ 0.7− 0.5 ∗ 0.8 = −0.05

Doc3 = 0.5 ∗ 0.6− 0.5 ∗ 0.3 = 0.15

Doc4 = 0.5 ∗ 0.5− 0.5 ∗ 0.6 = −0.05

Doc5 = 0.5 ∗ 0.2− 0.5 ∗ 0.1 = 0.05

Doc3 has the maximum score, thus selected.

Iteration3 :

Doc2 = 0.5 ∗ 0.7− 0.5 ∗ 0.8 = −0.05

Doc4 = 0.5 ∗ 0.5− 0.5 ∗ 0.6 = −0.05

Doc5 = 0.5 ∗ 0.2− 0.5 ∗ 0.2 = 0.00

Doc5 has the maximum score, thus selected.

RS = [Doc1,Doc3,Doc5].

(3.10)

Although D2 and D4 are more relevant than D5, we’ve not selected them. The al-

gorithm favored diversity to relevance. The pseudocode of MMR is given in the

Algorithm 1.

16

Algorithm 1: MMR
Data: Docs, length, Q

Result: S

D ← sort(Docs)

S ← D[0]

del D[0] from D

while LEN(S) < length do
X ← 0

mSc← −INTMAX

i← −1
while X < LEN(D) do

//calculate MMR score of D[X] over Q and documents inside S

sc← λ(sim(D[X], Q)− (1− λ)max(sim(D[X], S)))

if sc > mSc then
mSc← sc

i← X

push D[i] to S

3.2.2 Sy

Sy method, as proposed in [14] [15], is a duplicate or near-duplicate elimination

method which is used on tweet streams. According to their work there are 5 different

levels of near-duplication:

• Exact Copy

• Nearly Exact Copy

• Strong near-duplicate

• Weak near-duplicate

• Low Overlapping

The levels are defined by the similarity between tweets in terms of syntactical sim-

ilarity, contextual meaning and semantic meaning. Since the method is defined and

17

tested on Twitter environment it perfectly fits our experimental setup 5.4. Moreover,

near-duplicate elimination can be used on diversification problem since the less du-

plicate in a result set results in a more diverse results. The method uses different types

of distance metrics and methods such as Levenshtein distance, the difference in tweet

lengths, overlap in WordNet [33] and WordNet concepts as applied in the work of

Lin [34] and tweet features (e.g hashtags, URLs, etc.). By calculating these distances

they eliminate tweets if they have near-duplicate tweets in the result set, thus reduc-

ing the number of duplicates to 0 (only the highest ranked one). For each tweet if

the result set contains a duplicate of the current tweet, the algorithm rejects the tweet

and only accepts tweets that are not have any duplicate on the selected result set. The

algorithm is explained in the Algorithm 2 and Algorithm 3.

Algorithm 2: Sy
Data: Docs, length, Q

Result: S

D ← sort(Docs)

S ←
i← 0

while LEN(S) < length do
// Check whether the current document (tweet) has any duplicate in the

// already selected result set.

if !duplicate(D[i], S) then
push D[i] to S

i← i+ 1

Algorithm 3: Sy Duplicate Detection
Data: T, S, length

Result: B

B ← False

i← 0

while LEN(S) < length do

// Check whether two tweets are duplicate if duplicate(T ,S[i]) then
B ← True

i← i+ 1

In [15] [14] the authors define six variants of Sy algorithm that differs in the employed

18

similarity metric. The general algorithm is the same in all variants, however, the

semantics or the contextual features are not common in all of them. The variants are

listed below:

Sy Syntactical features compared only

SySe Syntactical features and semantic features (WordNet)

SyCo Syntactical and contextual features

SySeCo Syntactical, semantic and contextual features

SySeEn Syntactical and semantical features

SySeEnCo All features

3.2.3 xQuAD

Another result diversification method, the eXplicit Query Aspect Diversification [16] [3]

(xQuAD), is an explicit diversification method which considers not only the query it-

self but also subqueries (i.e., aspects) of the query. xQuAD is a probabilistic model

that is diversifying the results by using the knowledge of the aspects. The basis of the

model can be seen in the Equation 3.11

(1− λ)P(d|q) + λP(d, S|q) (3.11)

where P(d|q) is the probability of the document occur in the result set of the query q

and P(d, S|q) is observing the document but not the documents in the set S. As can be

seen in the formula, the P(d|q) is defining the relevance whereas the P(d, S|q) aims to

achieve the diversification of the results. The λ value is defining the trade-off between

these two components. Moreover, in their work, they employ the query aspects while

computing the P(d, S|q). The algorithm of the method (which is directly adapted

from [3]) is given in the Algorithm 4

19

Algorithm 4: xQuAD (adapted from [3])
Data: q, R, τ , λ

Result: S

S ← ∅
while LEN(S) < τ do

d∗ ← argmaxd∈R\S(1− λ)P(d|q) + λP(d, S|q)

R← R\ {d∗}

S ← S ∪ {d∗}

3.3 Distance Metrics

Vector representations of words allow us to operate over numerical data, however, for

some operations, such as finding similarity over two words, we need some distance

metrics. There are some distance metrics such as Euclidean distance, Manhattan

distance, Cosine distance for such purposes. In this study, we used cosine distance,

Jaccard distance and word mover’s distance for such operations.

3.3.1 Cosine Distance

Cosine distance is used as a similarity metric on data analysis purposes since the met-

ric gives results between [-1, 1] regardless the magnitude of the vectors and accurate

if the provided vectors are well defined. The metric calculates the angle between

given two vectors as long as they are at the same dimension vector spaces. The sim-

ilarity between two vectors becomes the cosine of the angle between them. On the

Figure 3.2 the similarity of B and C vectors can be defined as cos(θ).

If the vectors are proportional, i.e. they have the same unit vectors, their cosine simi-

larity becomes 1. Similarly, if they are orthogonal, their cosine similarity becomes 0

and for opposite vectors, cosine similarity becomes -1.

Cosine similarity calculation is given in the Equation 3.12.

cos θ =
A ·B
|A||B|

(3.12)

20

Figure 3.2: Cosine Distance

For this study, we will use the cosine similarity to find the distance/similarity between

two document vectors.

3.3.2 Jaccard Distance

Jaccard Distance [35], also known as Jaccard index or Jaccard Similarity coefficient,

is a statistical metric used to determine the similarity or diversity over given sets. Al-

though the purpose of the metric is similar to the Cosine Distance, the use case of

Jaccard is different. Instead of numerical representations, Jaccard can be applied di-

rectly on given two sets. The metric is simply finds a proportion of common elements

of two sets over the unique elements in the union of them. The calculation of the

metric is given in the Equation 3.13

J =
|A ∩B|
|A ∪B|

(3.13)

Since we can think a document as a set of words, we can directly use Jaccard metric

over given two documents in order to find their similarity.

Assume the following three documents:

21

D1 = Barack Obama was the president of the USA.

D2 = We can swim today, since its hot.

D3 = Kamala Harris become the vice president of the USA.

We can find the similarity between D1 and the others by applying Jaccard:

D1 ∩ D2 = ∅

D1 ∪ D2 = {Barack, Obama, was, the, president, of, USA, we, can, swim, today, since, its, hot}

J(D1,D2) =
|D1 ∩ D2|
D1 ∪ D2

=
0

14
= 0.0

D1 ∩ D3 = {the, president, of, USA}

D1 ∪ D3 = {Barack, Obama, was, the, president, of, the, USA, Kamala, Harris, become, vice}

J(D1,D3) =
|D1 ∩ D3|
D1 ∪ D3

=
4

12
= 0.33

(3.14)

Jaccard similarity between D1 and D3 is higher than D1 and D2. As can be seen,

the jaccard score is always normalized and in [0,1], so we don’t need to apply any

normalization to the score or the documents. Moreover, in this toy example, we have

not applied any pre-processing to the documents, however, in real applications we

need to. The pre-processing stages will be explained in the Section 4.1.1, by applying

pre-processing we will not be biased neither by the stopwords, such as the, of, etc,

nor the incorrectly spelled words.

3.3.3 Word Mover’s Distance

Converting word embeddings into document representation is a challenging problem

and there are some ways to solve that problem. Taking minimum, maximum or the

average of each dimension of word embeddings of a document to represent the doc-

ument itself is one of the ways. Moreover, sentence transformers can directly give

the document embedding of a given document. We can use these document represen-

tations using distance metrics such as Cosine distance in order to find the similarity

between two documents.

22

Figure 3.3: WMD Example (adapted from [2])

Word Mover’s Distance (WMD) [2] is a distance metric which is directly calculat-

ing the distance between two documents by taking their word embeddings. The idea

behind the WMD is to find the cumulative distance of the words inside the docu-

ment to calculate the distance between the documents itself. As explained in the

Section 3.1.3.1, adding or subtracting the correct meanings from the embedding, we

can find another word’s embeddings such as removing Paris from France and adding

Ankara to it gives us Turkey. The WMD cumulatively calculates these distances and

finds the distance between given documents. The explanation of the idea in 2D vector

space from their work is given in the Figure 3.3 as an example.

23

24

CHAPTER 4

FOCUSED CRAWLING

One of the main contributions of this work is constructing a diversification-aware

focused crawler, which is constantly collecting the web pages starting from a group

of seed urls and trying to find most relevant pages to the target topic by moving on

the urls inside the fetched ones.

In the following, we begin with describing Apache Nutch, an open-source general

purpose crawler, which we extend to build a focused crawler (Section 4.1). Next, in

Section 4.2, we present how we modified Nutch to build our baseline focused crawler,

which employs classification and scoring components as in [4] [5]. In this section,

we also discuss how we exploit word and sentence embeddings in this scenario. In

Section 4.3, we propose a diversification-aware focused crawler which is aware of

aspect information just like explicit diversification methods and again employ word

and sentence embeddings to diversification-aware crawler

4.1 Apache Nutch

Apache Nutch is an open-source web crawler written in Java. We extended Nutch into

a focus crawler for this study. In order to achieve that, we first analyzed the original

structure of the Nutch, which executes the following steps in each iteration:

• Injecting

• Fetching

• Parsing

25

• Updating

Figure 4.1: Workflow of General Nutch Crawler

The Nutch workflow can be explained as:

1 Adding the set of seed URLs to the crawl database in order to retrieve them

later.

2 Getting top X URLs from the crawl database for traversal. Top X value is

defined beforehand, which indicates the number of pages to be crawled on each

iteration.

3 At this stage, injected URLs are ready to fetch. Fetcher crawls these URLs

using multithreading in order to speed up this stage.

4 After all of the pages are fetched, parser starts to parse them. Some processing

methods are applied here which are explained in detail in the Section 4.1.1.

4.1.1 Processing the Data

In this section, we briefly review the procedures applied in the parsing stage of Nutch.

The web pages exhibit a high degree of variation in their content and style. In order to

maintain consistency throughout our pipeline, we have to change the format of all the

pages to fit a certain structure. In what follows, we briefly review the pre-processing

26

procedures applied in the parsing stage of Nutch. The procedures we followed to

achieve this are:

• Decapitalizing the text

• Stop word elimination

• Stemming

4.1.1.1 Decapitalizing

Upper case and lower case characters are represented differently for machines, but

they are easily discernable by humans. A person can see that “what” and “WhaT”

are the same word. However, they are represented in different ASCII values. In most

cases, the meaning of a sentence or a document is not affected by the case differences.

Assume the following sentences:

A = the reasons of global warming.

B = The Reasons Of Global Warming.

Both of the sentences are the same. However, the Jaccard similarity between these

two sentences are 0 as shown in the Example 4.1.

A ∩ B = {}

A ∩ B = {the, reasons, of, global, warming, The, Reasons, Of, Global, Warming}

J(A,B) =
0

10
= 0.0

(4.1)

We can say that the second sentence is a title and the first sentence is not. The Jaccard

similarity is not sufficient to anticipate the logical similarity between sentences when

no preprocessing is used. In this study, we tackle this problem by lower casing every

character on a document or a sentence.

27

4.1.1.2 Stop Word Elimination

According to the Oxford Dictionary, there are approximately 171,146 word on En-

glish that are currently in use [36]. The commonness of these words follow a long tail

distribution: a large majority of these words are rare. However, some words appear

in most of the sentences and they do not give a broad meaning to the sentence. These

words are called stop words and they might cause misjudgements on our evaluations.

Assume the following two sentences:

A = President of the USA is giving his speech to public.

B = He is called the secretary of department to get his ID.

These two words do not share a similar meaning, however if we apply Jaccard simi-

larity (assuming we have lowered the cases), we will find that these two sentences are

actually similar as shown in the Example 4.2

A ∩ B = {of, the, is, his, to}

A ∩ B = {president, of, the, USA, is, giving, his, speech, to, public, he, called,

secretary, department, get, ID}

J(A,B) =
5

16
= 0.31

(4.2)

A stop word list can be found on most NLP libraries or as plain text files on the web.

In this study, we used Natural Language Toolkit 1 (NLTK) stop word list, which is

given in the Table A.1.

4.1.1.3 Stemming

Eliminating stop words and lower casing the words solves most of the problems.

There is another operation needs to be completed, which is stemming. Some words

might share the same root or base, although their similarity on most of the metrics are
1 https://www.nltk.org/

28

different. For example, “waiting”, “waited” and “waits” all have a common root of

“wait”. If we apply Jaccard similarity to 2 sentences one of which contains “waited”

and the other “waits”, we will find no similarity among them. However, in real life

examples, they probably have similar meaning and we are losing that information. In

order to avoid such situation we can apply stemming, which includes converting all

the words to their corresponding stem words.

Stemming is a general linguistic problem, however first stemmer [37] is relatively new

compared to the problem itself. There are many stemmers or stemming algorithms

available. In this study, we have directly used the available libraries for this task

which are: Java WordNet Library 2 (JWNL) and NLTK stemmer for Python.

4.2 Focused Crawler

The main idea of this study is to create a focused crawler that is successfully gathering

pages in the context of the target topic and favoring different aspects of the target topic

equally. The schema of the Nutch is given in the Figure 4.2 and main contribution

to the system is that we extended the system by adding a classifier and the scoring

function.

Figure 4.2: Workflow of Modified Nutch Focused Crawler

The new structure of our modified focused crawler is that after fetching and parsing a

2 https://sourceforge.net/projects/jwordnet/

29

particular page, we send the content to our classifier which eliminates the pages that

are not relevant to the target topic. After that, we pass the remaining scores to our

scorer which scores the pages and the links inside the page. For each link inside the

page, a weighted sum of original page score and the score that scorer give to the link

is calculated. The scorer calculates the link score using the URL of the link, anchor

text of the link and the text near link.

4.2.1 Classifier

The classifier is used for initial elimination process to remove the pages that are not

relevant to the target topic from the list without using the scorer. It is a binary classifier

that decides whether the page is relevant to the target topic or not.

4.2.1.1 Training Set

Since we want this crawler to be available for every target topic, we need a automat-

ically working system. For this system we need a tool to create training set by just

giving the context without need of a user judgement. Moreover, we can not find a

data set for each target topic so we have to gather our own with the context of the

target topic automatically.

In order to gather such data set, we’ve used our crawler, Google search engine and

ODP 3 for gathering negative samples. The main idea is to reach the pages as in

context of the target topic and similarly while finding pages that are distant from the

target topic. For positive pages, we are providing a set of URLs that is taken from the

Google’s top X pages. The process of taking these URLs is to send the target topic as

a query to the Google Search API and gathering the top pages that show up in results.

For negative pages, we crawl the pages by checking the ODP categories. We take a

set of irrelevant category contents that are selected by the human judges. An example

of the ODP categories are listed below:

Arts/Animation/Anime

3 https://dmoz-odp.org/

30

Arts/Art_History

Arts/Design/Fashion/

Arts/Literature

Arts/Music/

Arts/Performing_Arts

Business/Accounting/

Business/Aerospace_and_Defense

Business/Agriculture_and_Forestry

Business/Automotive/

Business/Chemicals/

Business/Construction_and_Maintenance

In order to comply with Google’s API regulations, we used multiple account keys to

gather the pages. We gather 1000 positive and 1000 negative pages (the values can be

changed from the configuration file) from the Google Search API to create our data

set.

On this training dataset, we employ Random Forest Classifier algorithm to train a

model that will serve as an initial filter, i.e., to eliminate clearly irrelevant pages and

keep others to be passed to the Scorer.

4.2.2 Modifying Nutch System

4.2.2.1 Adding the Classifier to the System

Nutch uses multithreaded fetchers and a database which contains the URLs that are

fetched and needs to be fetched with their corresponding scores. We need to change

the workflow of the system in order to merge our classifier to the system and apply

our methodology fully. In order to do that, just before the scoring phase, at the parsing

stage, we have added our classifier which checks whether the page is relevant or not.

We have changed the parser by overriding the methods that sends the parsed content to

the scorer. Before sending, we send the content to our classifier to check its relevance,

relevant pages are scored and irrelevant pages are discarded.

31

4.2.2.2 Favoring Recently Extracted Links

After fetching a page, Nutch finds all the links inside the page and after scoring them,

sends the links with their scores to its database. At the next inject stage, the URLs are

sorted by their scores, regardless of their timestamp and the top N URLs are taken

from the database to be fetched. However, we want to favor more recent URLs over

older ones. For example, if a URL is found on the first iteration (i.e. a link inside

the seed URL) and has not been fetched until iteration 10, we want to favor the URL

found on the iteration 9 even if its score is lower than the older one. To achieve this,

we have created a dummy database to apply our idea without changing the internal

system too much. The scored links are sent to the dummy database instead of the

original database. After that, instead of taking top N links from the database, we

are taking top N
2

links from the original database and top N
2

links from the dummy

database. Just before updating the database, we are merging dummy database into the

original one and remove all the contents inside the dummy database. Thus, after each

iteration, we return to our original state and gather half of the links from the older

ones and other half from the recent ones.

4.2.3 Scoring System

The scoring system decides the relevance of the links inside the page to the target

topic. Scoring the entire page content gives us insight about the relevance of the links

inside the page, since a link to a target topic inside a relevant page has higher chance

to be relevant to the target topic.

The important thing of scoring is to decide whether to fetch the link inside the page

or not. In order to achieve that, we calculate the score of each link inside the page as

shown in the Equation 4.3

score = λ ∗ score(p, q) + (1− λ) ∗ score(l, q) (4.3)

where:

32

• p : Current page

• q : Target topic

• l : Link to be scored

• λ : Constant, taken as 0.5

For the score function of the Equation 4.3, we tried different approaches. The sim-

plest one is calculating the term frequency 3.1.1, however, in order to calculate the

frequency using only target topic was not enough since we are trying to compare at

least 500 words long file with 1 or 2 words topic similarity. To be more accurate, we

need to expand the target topic with more meaningful words. However, expansion

should be done for positive phrases of the target topic.

4.2.3.1 Selecting Positive Phrases

In order to expand the target topic for positive phrases, we used the data of Wikipedia

by getting the content of the Wikipedia page of the target topic. We used a tool

that takes every inlink from the Wikipedia page of the target topic and by manual

evaluation, we are selecting the meaningful ones and thus creating the positive phrases

of the topic.

We use these positive phrases in the link score calculation using the equation given

in the Equation 4.3 which also considers the score of the link for the target topic. To

calculate the score of the link we are checking following properties of the link:

• URL of the Link

• Anchor Text of the Link

• The text around the Link

The modified scoring function with link information above added is given in the Equa-

tion 4.4

33

score = λ ∗ score(page) + (1− λ) ∗ (score(URL)

+ score(anchor) + score(text))/3
(4.4)

The calculation gives the actual score of that link to be stored inside the database for

next iterations of the crawl operation. For the Equation 4.4 we selected the scoring

method as tf -idf 3.1.1. To this end, we need to create a tf -idf vector of both target

topic and the current page in order to calculate the tf -idf for that page and similarly,

for the link, anchor and the text around the link.

4.2.3.2 TFIDF for Scoring

To start the tf -idf calculation, we will not use the negative phrases since we are

trying to find the similarity between two tf -idf vectors. We need to create one vector

that contains both the target topic term and the positive phrases (i.e. expanded target

topic). Thus we merged these terms into a list of words. After that, we calculated

the IDF score of each term using the IDF values taken from CLUEWEB-B 4 which

contains more than 50 million pages. We do not need to check the IDF values of

every single word on the pages but only those that appear inside the expanded target

topic, since finding the IDF of every word inside the page will be costly and since we

are calculating the cosine similarity, their effect on the result will be 0.

linkScore =
(
tfidf(link, topic) + tfidf(anchor, topic) + tfidf(text, topic)

)
/3

score = λ ∗ tfidf(page, topic) + (1− λ) ∗ linkScore
(4.5)

After implementing tf -idf , we also implemented BM25 to score calculation as ex-

plained in the Section 3.1.2.

4 https://lemurproject.org/clueweb09/

34

https://lemurproject.org/clueweb09/

4.2.3.3 Word Embeddings for Crawler

As a part of the scoring system, we adapted word embeddings as a scoring function,

just like tf -idf . To achieve this, we need the word embeddings for both expanded

target topic phrases and the words inside the page. However, in order to compare the

page similarity using word embeddings, we need to create a document embedding

vector for the page and another vector for the target topic phrases. In order to convert

word embeddings into documents embeddings there are some methods such as Ulu et

al. [29] that we can follow which are for each dimension:

• Taking the minimum among all embeddings

• Taking the maximum among all embeddings

• Taking the average of the embeddings

In this work, we used the first option which is taking the minimum among the word

embeddings for each dimension to represent the document using its word embed-

dings. For each word inside the target topic and positive phrases we get the word

embeddings from the GloVe and by taking minimum of each dimension we con-

vert the target topic and positive phrase embeddings into a document representation.

Moreover for each page we fetched and parsed, we use the parsed content to get word

embeddings of them and similar to the target topic and positive phrases we create a

document representation. The process of getting document similarity is explained in

Algorithm 5, which takes the page (D), the target topic (T) and positive phrases (P)

as input and returns the similarity (R) using cosine as distance metric. We load the

GloVe word embeddings to the Nutch system beforehand in order to get the word

embeddings for each new page on the fly.

4.2.3.4 Sentence Transformers for Crawler

For our focused crawler, we apply the sentence transformers as a scoring function,

just like we employ word embeddings. However, instead of converting word em-

beddings into document embeddings we convert sentence embeddings into document

35

embeddings. Sentence transformers have a limitation of 512 words per sentence, thus

we might not represent a document as one sentence. For each aspect and the target

topic we acquire a sentence embedding since the size of aspect and aspect phrases or

topic and topic phrases are small. However, since a page that we fetch is generally

longer than 512 words, we need more than one sentence embedding. The approach

of creating document embedding using sentence embedding are similar to the word

embedding to document embedding conversion. As explained in the previous section,

we follow the practice of Ulu et al. [29] to get the document embedding from sentence

embeddings.

Finally, we calculate cosine similarity between the document embedding of the page

and the sentence embedding of the target topic and aspects and between the document

embedding of the page and the sentence embedding of each aspect.

Algorithm 5: Calculating Similarity using Word Embeddings
Data: D, T, P

Result: R

u← ∅
v← ∅
foreach w ∈ D do

push getWE (w) to u

foreach w ∈ T ∪ P do
push getWE (w) to v

p← calculateMin(u)

q ← calculateMin(v)

R← cosine(p, q)

4.3 Diversification-Aware Focused Crawler

A target topic might have more than one meaning and searching the target topic di-

rectly might lead us to miss those meanings. For example, the word apple might be

both a type of fruit and the company. Moreover, a word might have some aspects

(i.e. aspects) which are slightly different from the general meaning of the word. For

example, if we consider the coronavirus, there are lots of aspects behind the term,

36

symptoms or research towards coronavirus can be considered as aspects of coron-

avirus.

We assume that the aspects of the target topic are available to us and we adopt a

strategy inspired from explicit search diversification methods (namely, CombSumDiv

based approach introduced in [6]) To achieve that, we have to modify our current

scoring system to score the links by not only the target topic but also the aspects.

However, in order to change the scoring system, first we need the aspect phrases just

like the target topic phrases.

4.3.1 Aspect Phrases

For each aspect, we need a set of phrases that explain the aspect itself. To achieve

that, we are using Google Suggestions API, which provides suggestions just like the

suggestions in Google Search. Sending the aspect to the Google Suggestions API

and gathering the suggestions will provide a set of words that can be used as phrases.

However, aspect word might not be directly related to the meaning of the target topic.

For example, coronavirus has an aspect of research, while the word research itself is

too general. Thus, before calling the API, we are merging the aspect to the target topic

and gather the suggestions from Google. Examples of such suggestions are given in

the Figure 4.3 and Figure 4.4

In order to gather more suggestions, we increased the dimension of the suggestions

by adding every letter from alphabet at the end of the target topic. For example, we

sent “coronavirus research x” to the API where x ranged from “a” to “z”. Thus, for

each aspect, we gather 150-400 suggestions which creates 200-500 new words for

each aspect.

37

Figure 4.3: Google Suggestions for Coronavirus Research

Figure 4.4: Google Suggestions for Coronavirus Symptoms

38

4.3.2 Scoring for the Diversification-Aware Focused Crawler

After gathering aspects, we calculate score of the link. For this purpose, we use

CombSum [38], since its power for explicit diversification has been demonstrated as

CombSumDiv [6]. The formula for the CombSumDiv is given in the Equation 4.6

S(q, d) = (1− λ)P (d|q) + λ
∑
qi∈T

P (qi|q)P (d|qi) (4.6)

Up to this point we only expanded the target topic with aspects without applying di-

versification. In order to create a fair and diversified crawler, we consider the aspect

relevance of the pages that we gathered. The λ value in the CombSumDiv Equa-

tion 4.6 is the same for all aspects, so we are not favoring any aspect over other.

However, if we change the weights, we can favor less fetched ones over the more ap-

peared ones, creating diversification. In order to achieve that, in a given iteration, we

are calculating and storing the aspect score of each gathered page for each aspect. In

the next iteration, we are using the previous aspect information to lower the impact of

the most fetched aspects and improve the impact of the least fetched aspects to create

fairness among all the aspects. To achieve that, we are using the formula given in the

Equation 4.7.

aspectWeight(x) = (
∑
a∈A

(score(a))− score(x))/
∑
a∈A

(score(a) (4.7)

where A is all the aspects of the target topic and x ∈ A is a particular aspect..

Finally, by changing the weight of the aspects on each iteration we are applying a fa-

voring mechanism to be fair on every aspect and create diversification on our focused

crawler.

We illustrate our method on a toy scenario as follows. Assume that we have a target

topic of T and 3 aspects of the target topic, A1, A2, A3 and in the first iteration we

downloaded 3 documents, namely D1, D2 and D3. Each document has 2 links inside

them and the links are:

D1 → D5, D8

39

D2 → D6, D7

D3 → D4, D9

The Table 4.1 shows for each document the Cosine similarity score of target topic and

each aspect, which may be calculated using distance of tf -idf vectors.

Target Topic A1 A2 A3

D1 0.7 0.8 0.1 0.1

D2 0.6 0.2 0.9 0.1

D3 0.5 0.1 0.2 0.9

Table 4.1: Example: Document to Topic and Aspect Relevances

We calculate the CombSumDiv [6] Score for all 3 documents as in the Equation 4.8

assuming the λ value is equal to 0.5. Note that, at the first crawling iteration, we use

the same weight value, 1/3, for each aspect, as we have no prior information at this

point.

D1 = 0.5 ∗ 0.7 + 0.5 ∗ (0.8
3

+
0.1

3
+

0.1

3
) = 0.516

D2 = 0.5 ∗ 0.6 + 0.5 ∗ (0.2
3

+
0.9

3
+

0.1

3
) = 0.500

D3 = 0.5 ∗ 0.5 + 0.5 ∗ (0.1
3

+
0.2

3
+

0.9

3
) = 0.450

(4.8)

The highest scored document is D1, thus we fetch the links inside the D1 (for sim-

plicity we are not using link score, as we normally apply like shown in Equation 4.5),

namely D5 and D8.

After fetching D5 and D8 assume that the Table 4.2 shows the relevance table just

before the second iteration.

Now, we can see that there is no equal Cosine similarity score in the aspects. The

aspect A3 is covered the most while the aspect A2 has the least Cosine similarity score.

Thus, we can recalculate the weights of each using the formula in the Equation 4.7

we can find the new weights given in the Equation 4.9.

40

Target Topic A1 A2 A3

D1 0.7 0.8 0.1 0.1

D2 0.6 0.2 0.9 0.1

D3 0.5 0.1 0.2 0.9

D5 0.4 0.7 0.3 0.5

D8 0.6 0.4 0.2 0.8

Total 2.2 1.7 2.4

Table 4.2: Example: Document to Topic and Aspect Relevances

AspectWeight(A1) = (6.3− 2.2)/6.3 = 0.65

AspectWeight(A2) = (6.3− 1.7)/6.3 = 0.73

AspectWeight(A3) = (6.3− 2.4)/6.3 = 0.62

(4.9)

Thus, in the third iteration, our method will be favoring the A2 by increasing its weight

and reducing the effect of other aspects on our calculation. The CombSumDiv scores

of the pages before the third iteration is given in the Equation 4.10.

D2 = 0.5 ∗ 0.6 + 0.5 ∗ (0.2 ∗ 0.65 + 0.9 ∗ 0.73 + 0.1 ∗ 0.62) = 0.724

D3 = 0.5 ∗ 0.5 + 0.5 ∗ (0.1 ∗ 0.65 + 0.2 ∗ 0.73 + 0.9 ∗ 0.62) = 0.634

D5 = 0.5 ∗ 0.4 + 0.5 ∗ (0.7 ∗ 0.65 + 0.3 ∗ 0.73 + 0.5 ∗ 0.62) = 0.692

D8 = 0.5 ∗ 0.6 + 0.5 ∗ (0.4 ∗ 0.65 + 0.2 ∗ 0.73 + 0.8 ∗ 0.62) = 0.751

(4.10)

Since the D8 has the highest score among all 4 documents, we are fetching the doc-

uments inside the D8 for the third iteration. This example is extended in our system

by adding link scoring 4.5.

4.4 Experiments

For the experimental setup, we selected the target topic of "Covid-19" because of the

ongoing pandemic. In our experiments, we compare the diversification aware focused

41

crawler and the focused crawler uses all the setup without considering a diverse result.

Moreover, we compare the effect of the sentence transformers on the diversification

aware focused crawler. First, we will explain the effect of the diversification, then we

will explain the effect of the word embeddings and sentence transformers.

For both setups, we use the same classifier as explained in the Section 4.2.1 and for

the classifier training set, as explained in the Section 4.2.1.1, we gather 100 positive

and 100 pages from the Google Search API. Positive pages are related to the Covid-

19 and directly taken from the Google. Negative pages are irrelevant to the Covid-19

as selected from the ODP categories.

4.4.1 Diversification on Focused Crawler

For this setup, we use tf -idf vectors in order to score pages and links. In order to

score a page or link, we need the following:

• Target topic, which is set to Covid-19.

• Phrases that are relevant to the target topic.

• Aspects of the target topic.

• Phrases that are relevant to each aspect.

The aspects of the topic Covid 19 are determined manually as follows:

• Vaccine

• Research

• Symptom

• Economic (impact)

• Prevention

Moreover, for both target topic and its aspects we gather the phrases that are relevant

to them. For the target topic we are using the Wikipedia as the dataset as explained in

42

the Section 4.2.3.1. For the target topic Covid-19, we have 236 terms as topic phrases.

For aspects, we gather the phrases using Google Suggestions API as explained in the

Section 4.3.1. The number of terms for each aspect is given below:

• Vaccine: 367 terms

• Research: 134 terms

• Symptom: 321 terms

• Economic: 105 terms

• Prevention: 142 terms

Moreover, the aspect phrases Economic Impact, Symptoms, Research, Vaccine and

Prevention are given in the Tables A.2, A.3, A.5, A.4, A.6 respectively.

For this experiment we compare 2 different focused crawlers. First one does not have

any information about the aspects and their phrases, uses just the target topic and

its positive phrases. Second crawler is diversification aware focused crawler, which

considers diversification and has the information about both target topic and aspects

as explained in the Section 4.3. In order to simplify the namings, we name these

crawlers as follows: No diversification (NoDiv) crawler and Diversification aware

(DivAware) crawler.

4.4.1.1 Deciding IDF Values

Calculation of tf -idf requires idf value for each word. For this purpose, we need

a dataset to decide on the idf values for the words. In particular, we are using

CLUEWEB-B as explained in the Section 4.2.3.2. The dataset includes more than

50 million documents and the idf file is more than 50 GB. Using such a large file on

the on the fly system is going to slow everything, however, we only need a portion

of the data inside the file. Since, we are calculating the tf -idf values for the target

topic, aspects and their phrases the other words that are not part of this set will always

give zero on the calculation. Thus, we shortened the file to a small portion of words

which only contains target topic, aspects and phrases.

43

For each focused crawler and each batch of crawling, we are calculating the following

in order to compare the success of each crawler.

• Cosine similarity between the tf -idf vectors for the topic aspects and page.

• Number of totally irrelevant pages, i.e., those with zero Cosine similarity to the

aspect.

• The weights given to each aspect.

Although the no diversification crawler does not have the aspect information on scor-

ing, we apply two calculations, one for the actual scoring and the other for the evalu-

ation purposes. We compute the aspect scores on the crawler, however, do not reflect

the score to the actual computation.

For each setup, we calculate the Cosine similarity scores using the idf set and score

both the page itself and its links in order to both decide whether the page is relevant

and pass the score to the link in order to sort them. For a link, we consider the url, the

anchor text of the link and the text surrounding the link.

4.4.2 Seed URLs

As a starting point, we define 20 seed URLs for the crawler. These URLs are selected

from Google Search API and injected to the crawler at the initial fetching stage. The

seed URLs are given below in A.1.

4.4.3 Comparison of the Crawlers

In this setup, we apply word embeddings and sentence embeddings as explained

in Section 4.2.3.3 and Section 4.2.3.4 to the scoring function of the diversification

aware focused crawler. Thus, we compare the performances of four different focused

crawlers.

We calculate the Cosine similarity score in the no diversification focused crawler

and diversification aware focused crawler. While the diversification aware focused

44

crawler also has the aspect information, we only calculate the Cosine similarity score

of the page content for the sake of fair evaluation. Similarly, although the score

calculations of word embedding applied diversification aware focused crawler and

the sentence embedding applied one are different than tf -idf , we also calculate the

Cosine similarity scores to compare all 4 crawlers.

In our experiments, we report the number of pages that are said to be relevant to each

aspect, i.e., have a Cosine similarity score greater than a threshold. We consider these

pages to relevant to that aspect. The threshold is set to 0.1 for this setup and the

cumulative number of pages after each iteration are given for each crawler are given

in the Tables B.1, B.2, B.4, B.3. For simplicity, we will examine the batches 20 and

45 for these experiments. For each crawler, the cumulative number of relevant pages

at batch 20 is given in the Table 4.3 and at batch 45 is given in the Table 4.4.

Vaccine Symptoms Prevention Research Economic

NoDiv 1351 4897 2177 2053 2022

DivAware 1658 5728 2569 2444 2452

DivAware+WE 1324 4869 2067 1966 1953

DivAware+SBERT 216 811 282 271 270

Table 4.3: Number of Relevant Pages for Each Aspect at Batch 20

Vaccine Symptoms Prevention Research Economic

NoDiv 3302 12193 5015 4733 4677

DivAware 3644 13688 5531 5240 5327

DivAware+WE 3403 12333 5180 4982 4938

DivAware+SBERT 377 1801 506 486 483

Table 4.4: Number of Relevant Pages for Each Aspect at Batch 45

Each crawler is executed online for 45 batches. The number of pages downloaded at

the end of the batch 45 are 33557 pages for no diversification crawler, 32546 pages

for SBERT, 32972 pages for word embedding crawler and 33251 pages for diversifi-

cation aware crawler. For each crawler, we compute the precision for each aspect of

45

the target topic and get the average of the latter values, which is equivalent to com-

puting the well-known intent-aware precision (P-IA) [39] metric in the diversification

literature. The P-IA values are reported in Table 4.5.

P-IA

NoDiv 0.178

DivAware 0.201

DivAware+WE 0.187

DivAware+SBERT 0.022

Table 4.5: Precision-IA for each crawler setup at Batch 45

We see that the precision of the diversification aware focused crawler is better than

all 3 crawlers. Moreover, the sentence transformers performs the worst among all

crawlers. Except sentence transformers, we can say that precision is increasing if we

apply diversification on the system. The Cosine similarity score of each aspect for

each crawler at the last batch 45, given in the Table 4.6.

Vaccine Symptoms Prevention Research Economic

NoDiv 0.110 0.407 0.167 0.158 0.156

DivAware 0.109 0.409 0.165 0.156 0.159

DivAware+WE 0.110 0.399 0.167 0.161 0.160

DivAware+SBERT 0.109 0.409 0.165 0.156 0.159

Table 4.6: Aspect Cosine Similarity Score Percentages at Batch 45

We calculate the standard deviation for each crawler which shows how the Cosine

similarity score of each aspect differ from each other. On an ideal system, the standard

deviation of the Cosine similarity scores of aspects on a crawler should be 0. The

standard deviation results are given in the Table 4.7

We can say that no diversification crawler and diversification aware crawler is per-

forming similarly and word embeddings has a better impact on the diversification

results.

46

STDEV

NoDiv 0.118

DivAware 0.119

DivAware+WE 0.114

DivAware+SBERT 0.164

Table 4.7: Standard Deviation of each crawler setup at Batch 45

Up to now, we presented our findings for the batch 45 which is the last batch of the

crawling.

However, it would be useful to provide an insight for the trend in the earlier batches.

Therefore, we also report the performance of all crawlers almost at the middle of our

crawling cycle, namely, at the batch 20. In this case, the number of fetched pages for

the no diversification crawler is 11809 while 12237 for diversification aware crawler,

11688 for word embeddings and 11456 for SBERT crawler. The P-IA scores for each

crawler is given in the Table 4.8.

P-IA

NoDiv 0.177

DivAware 0.211

DivAware+WE 0.182

DivAware+SBERT 0.032

Table 4.8: Precision-IA for each crawler setup at Batch 20

The results did not changed significantly at the batch 20, although there is a sharp in-

crease in terms of precision. We also report the Cosine similarity scores and standard

deviation at the batch 20 in Tables 4.9 and 4.10 respectively.

From Tables ?? and 4.10 , we see that this time the diversification aware focused

crawler performed the best among all 4. In both of the batches 20 and 45 the no

diversification crawler performed on average. Our diversification aware approaches

(DivAware and DivAware+WE) performed the best and sentence embeddings per-

47

Vaccine Symptoms Prevention Research Economic

NoDiv 0.110 0.407 0.167 0.158 0.156

DivAware 0.109 0.409 0.165 0.156 0.159

DivAware+WE 0.110 0.399 0.167 0.161 0.160

DivAware+SBERT 0.109 0.409 0.165 0.156 0.159

Table 4.9: Aspect Cosine Similarity Scores at Batch 20

STDEV

NoDiv 0.115

DivAware 0.110

DivAware+WE 0.117

DivAware+SBERT 0.116

Table 4.10: Standard Deviation for each crawler setup at Batch 20

formed the worst in all two experiments.

Although SBERT fails to improve the results for the metrics reported up to this point,

there is one case where it seems to be useful. This time we calculated the percentage

of pages with zero similarity score to each aspect and report the cumulative number

after each batch. For simplicity, again, we only cover the number of those pages at

the Batch 45 for each crawler and each aspect is given in the Table 4.11 and the same

approach for Batch 20 is given in the Table 4.12.

Vaccine Symptoms Prevention Research Economic

NoDiv 0.542 0.543 0.548 0.549 0.549

DivAware 0.497 0.498 0.502 0.503 0.503

DivAware+WE 0.515 0.515 0.52 0.52 0.52

DivAware+SBERT 0.365 0.366 0.372 0.386 0.385

Table 4.11: Percentage of Zero Score Aspects at Batch 45

48

Vaccine Symptoms Prevention Research Economic

NoDiv 0.542 0.543 0.548 0.549 0.549

DivAware 0.505 0.506 0.511 0.511 0.51

DivAware+WE 0.512 0.513 0.516 0.516 0.516

DivAware+SBERT 0.417 0.416 0.424 0.435 0.437

Table 4.12: Percentage of Zero Score Aspects at Batch 45

In both results, the SBERT outperforms all 3 methods. Although the diversification

aware focused crawler using SBERT is giving worse in terms of P-IA and higher

Cosine similarity scores, SBERT seems to be more successful in avoiding pages that

are completely irrelevant, which is a promising finding that we plan to investigate

deeper in our future work. Moreover, our diversification aware focused crawler using

tf -idf scoring is the second best in both cases while no diversification crawler is tend

to fetch more pages with zero similarity score to target topic and its aspects than all

the other crawlers.

Overall, we show that our DivAware crawler outperforms NoDiv crawler in terms

of P-IA or Standard deviation. While tends are not conclusive, we also show that

word embeddings further have the potential to improve the DivAware crawler. In

contrast, we observed that sentence embeddings obtained via SBERT did not help

improving performance. We think that SBERT may benefit from pre-training with a

larger training set, so that embeddings can be more helpful to distinguish different

aspects of a target topic.

49

50

CHAPTER 5

DIVERSIFICATION FOR TWEET SEARCH RESULTS

Twitter contains billions of tweets where any of these tweets can be a result to a

search query. Our aim is to create a diverse search result for a given search query.

This is a more challenging task, as tweets are much shorter than typical web pages

over which diversification methods are typically applied. There are only a few studies

that investigated the diversification over Tweet search results [12], which revealed that

implicit methods perform better than explicit ones. In this chapter, we investigate the

performance of both types of methods where similarity scores computed using word

and sentence embeddings.

In what follows, we first describe how tweets are pre-processed and then in Sec-

tion 5.2 we discuss their representation using embedding vectors for relevance rank-

ing. Finally, in Section 5.3, we provide an in depth evaluation of div performance

using embedding vectors.

5.1 Pre-processing Tweets

Similar to the processing of the pages in focused crawler, we have to apply some pre-

processing to the tweets in order to create a stable structure over all the dataset. We

are applying all the procedures, explained in the Secion 4.1.1, are applied on focused

crawler also to the tweets. Moreover, tweets has some special characters and words

that are not considered as actual words and they reduce the accuracy of a vector rep-

resentation. One of them is the word “RT” which means retweet. Although it shows

that this tweet is a mention to another tweet, while creating a vector representation

the word “RT” should better not have any meaning. Thus, we are eliminating all the

51

“RT” words inside a tweet. Finally, a user that is posting a tweet is given with the

character “@”, the username is not important for our vector representation thus we

are again removing the character “@” and the username that comes after it.

Twitter contains excessive amount of duplicate or near duplicate tweets. In order to

present a good result set to user, we need to consider two things:

• Initial Relevance Ranking

• Diversification of the initial ranking

The main idea is to rank these tweets on the context of the query while trying to

achieve a diverse result set. This idea is similar to the idea behind the work of Ulu

and Altingovde [29] which is using diversification methods along with embeddings

in order to rank a set of documents by providing diverse results. However, the main

difference we are using more shorter text while they are using long web pages.

5.2 Ranking

In order to create a ranking for each query, we need to sort the tweets by their similar-

ity to the query. There are some similarity metrics such as Cosine Similarity (Subsec-

tion 3.3.1), Jaccard Similarity (Subsection 3.3.2) and Word Mover’s Distance (Sub-

section 3.3.3).

For Jaccard similarity, we do not need any vector representation. We are directly

taking the words inside the tweet and the query to compute the similarity. Using that

information we are reranking all the tweets.

For Cosine Similarity and Word Mover’s Distance, we need a vector representation

for a given tweet. For that purpose we need one of the:

• TF vector

• tf -idf vector

• Word or Document representation

52

As long as we have vector representation we can compute the cosine similarity or

calculate word mover’s distance. Fortunately, tweets are shorter documents and can

be considered as a sentence since it generally contains 1 to 3 sentences. Moreover,

we can directly use SBert 3.1.4.2 in order to find sentence representation for a given

tweet. Representing the tweets as the set of documents using tf -idf or SBert allows

us to use them in Cosine Similarity or Word Mover’s Distance calculations. However,

in order to use word embeddings to represent tweets, there are some methods that we

can follow for such tasks, namely averaging word embeddings or getting maximum

or minimum on each dimension of the word embeddings which are all explained and

experimented in the work of De Boom et al. [30].

5.2.1 Averaging Word Embeddings

The sentence or document are represented by words as a sentence embedding can be

represented by word embeddings. To achieve that, we can take the average of the

embeddings of the words inside the sentence for each dimension to find an accurate

corresponding sentence representation. Its application can be seen in the work of

Kenter et al. [40] as they are also adding weight parameters to embedding values over

a Siamese Network.

SE(j) =

∑N
i=0(WEi(j))

N
(5.1)

where:

• N : number of words inside the sentence.

• SE: sentence embedding

• WE: word embedding

The formula of the averaging word embeddings can be seen in the Equation 5.1 To

understand the operations assume the basic words and word representations given in

Example 5.2.

53

Cosine similarity used on vectors.

Cosine = [0.6, 0.8, 1.0, 0.3, 0.5]

similarity = [0.1, 0.8, 0.9, 0.4, 0.6]

used = [0.3, 0.4, 0.4, 0.4, 0.4]

vectors = [0.6, 0.9, 0.1, 0.8, 0.7]

sentence = [0.4, 0.725, 0.6, 0.475, 0.55]

sentence = [0.5, 0.7, 0.612, 0.456, 0.524]

(5.2)

5.2.2 Using Maximum and Minimum

Very similar to the averaging, we are getting the maximum and minimum of each

dimension in order to convert word embeddings into sentence embeddings. If we

modify the Equation 5.1 we can reach the following Equation 5.3 which is converting

a word embedding into a sentence embedding using maximum function.

SE(j) = max(WEi(j)) (5.3)

Similarly, if we change the max function with the min function we again can get the

sentence embedding.

Another way of getting sentence embeddings is to use sentence transformers [11]

which gives sentence representation of a given input as explained in the Section 3.1.4.2.

The main idea of the ranking is to find similarity between a given query (i.e. query)

and a tweet (i.e. sentence) using the sentence representations with the similarity mea-

sures. However, another aspect of the task is creating diverse result set.

5.3 Diversification of Tweet Search Results Using Embeddings

In this thesis, we combine ranking and diversification methods to create a both ac-

curate and diverse result set. To achieve this, the main idea is to combine the true

54

similarity metric with its corresponding representation. The step by stem explanation

of the methodology is given below:

1 Obtain a candidate ranking of tweets (by applying methods in Section 5.2)

2 For diversification, obtain representation of the query (and its aspects, if avail-

able) and the tweets in the candidate ranking based on sentence embeddings

(by applying methods in Section 3.1.4)

3 Apply one of the diversification algorthims (namely, MMR, Sy or xQuAD)

discussed in Section 3.2.

Some diversification methods are more suitable to a vector representation method

and to a similarity metric. In this study, we tried to apply most of the combinations

in order to find out which one is the best. The combination of the diversification

methods, vector representation type and similarity metric is given in the Table 5.1.

Diversification Method Vector Representation Similarity Metric

MMR FastText Word Mover’s Distance

MMR Sentence Transformers Cosine

Sy FastText Word Mover’s Distance

Sy Sentence Transformers Cosine

xQuad FastText Word Mover’s Distance

xQuad Sentence Transformers Cosine

Table 5.1: Combination of Method and Metrics

Moreover, for xQuad, we use the subqueries of each query in order to take aspects

into account. There are approximately 8 aspect for each query on the dataset. The

aspects of the query “hillary clinton resign” is given in below:

positive aspects of Clinton’s reign

who follows Clinton as secretary of state

what may be next for Hillary Clinton

details of resignation

55

political positions Hillary Clinton

details during time as secretary of state

Similar to query processing operations on ranking and diversification, we are apply-

ing the same process for each aspect. The vector representation of each aspect is

created in order to calculate the similarity of the tweet to the aspect. Each different

approach applied on xQuad (as given in the Table 5.1) is also applied to the aspect-

tweet comparison.

For each method, we calculate tweet to tweet similarity, using two dimensional array

and store the similarity of each tweet to another. Moreover, on the cases that we apply

sentence transformers, we fine-tune the pretrained BERT model in order to get better

results. The details of the fine-tuning is explained in the Section 5.4.3.

5.4 Experiments

5.4.1 Dataset

For this study, we will use a dataset specifically designed for twitter diversification

which is Tweets2013. We used the same setup as Ozsoy et al. [12] On the setup, we

have:

• 50 query

• Top 100 tweet for each query (83 on average)

• Top 500 tweet for each query (403 on average)

As they did, we removed queries with ids 7, 8, 14, 43, 46 and 47 from the top 100

tweets and queries with ids 3, 5, 7, 9, 14, 28, 37, 43, 45, 46 and 47 from the top 500

tweets since their lack of relevant tweets.

A tweet has the following properties:

• tweetId

56

• timestamp

• content

• URL

Similarly, a query has the following properties:

• queryId

• queryText

• timestamp

Since the dataset is specifically created for search result diversification, there is a

ground truth table for each query and tweet relevances.

5.4.2 Experimental Setup

Using the Twitter2013 dataset, explained in 5.4.1, we are trying to achieve a diversi-

fied results. To compare our results we are using Ndeval 1 which is a program that is

used for diversity measuring. The tool is measuring some metrics that are: ERR-IA,

nERR-IA, α-DCG, α-nDCG, NRBP, nNRBP, MAP-IA, P-IA and strec.

For each method we are trying to calculate these values using the tool for each query.

An example result, for some queries, is given in the Figure 5.2

It can be seen that for different queries the results are highly differs. For example,

on the Table 5.2 query 3 has higher α-nDCG value which shows that the results are

diverse, however, for query 13 this value is much smaller. Thus, we can not rely

on one query, we are using the average results over all queries in order to find more

accurate results. For each method on and setup we are using in this study, we are

using the average result for all queries as our resulting metric. Moreover, we will

consider α-nDCG@10, α-nDCG@20, P-IA@10, P-IA@20, strec@10 and strec@20

as evaluation metrics.
1 https://trec.nist.gov/data/web/10/ndeval.c

57

https://trec.nist.gov/data/web/10/ndeval.c

query alpha-nDCG@10 alpha-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

1 0.185117 0.258361 0.066667 0.050000 0.333333 0.666667

2 0.249394 0.223563 0.037500 0.018750 0.375000 0.375000

3 0.645926 0.646851 0.080000 0.050000 0.600000 0.600000

4 0.000000 0.201473 0.000000 0.050000 0.000000 0.400000

6 0.203367 0.307841 0.050000 0.050000 0.500000 0.750000

10 0.373040 0.363358 0.062500 0.043750 0.375000 0.375000

12 0.271388 0.285282 0.062500 0.050000 0.375000 0.375000

13 0.071342 0.079267 0.010000 0.010000 0.100000 0.100000

15 0.510305 0.471262 0.133333 0.075000 0.500000 0.500000

Table 5.2: Ndeval Output for Twitter Diversification

For each setup we gather top 30 tweets for a given query and use qrels file (which indi-

cates query relevance judgements) as our ground truth file. The qrels file is included

in the dataset and we are directly using it on ndeval evaluation without additional

judgement.

We will explain the setup, the parameters and the results of each diversification

method one by one and then compare them with the original results from the work of

Ozsoy et al. [12].

5.4.3 Fine-Tuning

Sentence transformers provide more than 10 pretrained models on their work. We

selected two of these models and used on our experiments. The pretrained models

that we used on this study is given below:

• all-MiniLM-L6-v2

• all-mpnet-base-v2

Moreover, we fine-tuned these models using the Tweets 2013 (Internet Archive) [41]

dataset, which contains similar structure of tweets with our own data. There are

58

252713133 tweets and 60 queries on the dataset which are different from our original

dataset. We create tweet pairs using the relevance information on the dataset for each

query and label each pair with a relevance percentage. We use the new tweet pairs

which contains 18000 tweet pairs to fine tune the pretrained models above.

5.4.4 MMR

For the MMR experiments, we use the system that is provided by the work of [12]

and add sentence transformers and FastText to the system. We try different lambda

values for MMR on each experiment and select the best result among them. An ex-

ample result of a lambda value is given below for the metrics that are explained in the

Section 5.4.2, namely, α-nDCG@10, α-nDCG@20, P-IA@10, P-IA@20, strec@10

and strec@20. These metrics and setup are same for all other methods on this study.

The Table 5.3 shows the results of an example MMR run. Each row defines a different

query and the last row is the average results.

As in the Table 5.3, we calculate the evaluation metrics, using Ndeval, for each query.

Since we apply the experiments for multiple λ values, to select the best setup, we

take the last row, which is the average value for our queries. You can see the average

results for different λ values for the same setup in the Table 5.4.

query α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

1 0.448 0.490 0.100 0.067 0.500 0.667

2 0.000 0.066 0.000 0.013 0.000 0.250

3 0.458 0.470 0.060 0.040 0.600 0.600

4 0.406 0.405 0.080 0.060 0.200 0.200

6 0.362 0.362 0.100 0.050 0.750 0.750

10 0.134 0.182 0.025 0.031 0.250 0.375

11 0.210 0.220 0.040 0.030 0.400 0.400

12 0.000 0.075 0.000 0.013 0.000 0.250

13 0.450 0.393 0.050 0.030 0.200 0.200

15 0.389 0.370 0.050 0.033 0.333 0.333

Continued on next page

59

Table 5.3 – Continued from previous page

query α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

16 0.144 0.190 0.027 0.041 0.182 0.273

17 0.237 0.249 0.023 0.031 0.231 0.231

18 0.480 0.494 0.057 0.079 0.571 0.571

19 0.542 0.568 0.150 0.150 0.500 0.500

20 0.000 0.078 0.000 0.020 0.000 0.200

21 0.000 0.059 0.000 0.008 0.000 0.105

24 0.177 0.265 0.055 0.068 0.273 0.455

26 0.568 0.612 0.090 0.075 0.500 0.700

27 0.665 0.663 0.250 0.138 1.000 1.000

29 0.158 0.162 0.100 0.075 0.250 0.250

30 0.368 0.373 0.100 0.079 0.429 0.429

31 0.209 0.272 0.025 0.025 0.250 0.500

32 0.243 0.239 0.040 0.040 0.200 0.200

33 0.377 0.457 0.140 0.120 0.800 1.000

34 0.447 0.510 0.100 0.090 0.600 0.800

36 0.137 0.157 0.044 0.044 0.222 0.333

37 0.386 0.493 0.070 0.060 0.400 0.700

38 0.238 0.255 0.033 0.028 0.333 0.444

39 0.596 0.712 0.160 0.120 0.600 0.800

40 0.216 0.424 0.075 0.150 0.500 1.000

41 0.064 0.123 0.014 0.021 0.143 0.286

42 0.260 0.239 0.044 0.044 0.333 0.333

44 0.375 0.412 0.055 0.055 0.455 0.545

45 0.000 0.189 0.000 0.030 0.000 0.600

48 0.466 0.542 0.083 0.083 0.667 0.833

49 0.404 0.416 0.100 0.060 0.600 0.600

50 0.432 0.434 0.067 0.042 0.500 0.667

amean 0.298 0.341 0.065 0.058 0.372 0.497

Continued on next page

60

Table 5.3 – Continued from previous page

query α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

Table 5.3: MMR Single Lambda Example

runid α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

0.80 0.297 0.334 0.061 0.051 0.374 0.507

0.80 0.294 0.335 0.062 0.054 0.360 0.490

0.35 0.288 0.327 0.058 0.050 0.361 0.493

0.25 0.259 0.292 0.049 0.040 0.312 0.430

0.60 0.298 0.341 0.065 0.058 0.372 0.497

0.10 0.235 0.275 0.039 0.035 0.277 0.418

0.20 0.267 0.303 0.052 0.043 0.327 0.455

0.60 0.293 0.334 0.062 0.054 0.360 0.490

0.75 0.281 0.326 0.056 0.051 0.348 0.500

0.15 0.243 0.282 0.042 0.036 0.288 0.426

0.60 0.297 0.334 0.061 0.051 0.374 0.507

0.40 0.295 0.332 0.062 0.055 0.363 0.481

0.35 0.269 0.306 0.053 0.045 0.332 0.462

0.35 0.299 0.340 0.066 0.059 0.372 0.488

0.90 0.281 0.326 0.056 0.051 0.348 0.500

0.55 0.293 0.335 0.062 0.054 0.360 0.494

0.85 0.298 0.341 0.065 0.058 0.372 0.497

0.85 0.297 0.334 0.061 0.051 0.374 0.507

0.60 0.281 0.326 0.056 0.051 0.348 0.500

0.75 0.297 0.334 0.061 0.051 0.374 0.507

0.55 0.298 0.341 0.065 0.058 0.372 0.497

0.30 0.301 0.339 0.066 0.058 0.375 0.488

0.55 0.295 0.334 0.060 0.051 0.372 0.507

0.55 0.281 0.325 0.056 0.051 0.348 0.494

0.25 0.297 0.339 0.066 0.057 0.368 0.496

Continued on next page

61

Table 5.4 – Continued from previous page

runid α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

0.50 0.290 0.329 0.060 0.050 0.363 0.499

0.40 0.288 0.330 0.059 0.051 0.361 0.505

0.10 0.244 0.283 0.046 0.038 0.276 0.412

0.20 0.294 0.336 0.064 0.057 0.363 0.488

0.40 0.299 0.341 0.065 0.058 0.372 0.494

0.85 0.281 0.326 0.056 0.051 0.348 0.500

0.65 0.297 0.334 0.061 0.051 0.374 0.507

0.45 0.277 0.317 0.055 0.048 0.343 0.483

0.80 0.298 0.341 0.065 0.058 0.372 0.497

0.70 0.298 0.341 0.065 0.058 0.372 0.497

0.30 0.291 0.332 0.062 0.055 0.355 0.484

0.50 0.281 0.325 0.056 0.050 0.348 0.494

0.70 0.297 0.334 0.061 0.051 0.374 0.507

Table 5.4: MMR Average results for different lambda values

We will present the best λ value for each experimental setup and compare the results

using the best lambda value and the average result among all queries. For each setup,

we use a set of parameters in order to achieve the best result. The parameter types are

given below:

• λ (Real): Constant used on MMR calculation. The formula can be seen in the

Section 3.2.1

• Hashtags (Bool): Defines whether to use hashtags of the tweet or not.

• Timestamp (Bool): Similar to the hashtag, defines the usage of timestamp of

the tweet.

• EdgeSimilarity (Function): The similarity function used on calculating the sim-

ilarities between the tweets.

62

• NodeSimilarity (Function): The similarity function used on calculating the sim-

ilarity of the tweet and the query.

First, we reproduced the results of the work of Ozsoy et al. [12], since the dataset and

the setup was similar on both their and our work. We experimented the MMR results

with both Ratio-H and Cosine as similarity function their corresponding results are

given in the Table 5.5.

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

MMR_Cosine 0.313573 0.351419 0.064177 0.054150 0.386365 0.506234

MMR_Ratio-H 0.335558 0.373629 0.063934 0.053914 0.408797 0.546616

Table 5.5: MMR – Ratio-H Cosine Comparison

The best setup of Cosine similarity uses the following parameters: takes hashtag into

consideration, while timestamps are not taken into account and λ is 0.8. Similarly, for

the best setup of Ratio-H similarity the following parameters applied: both hashtag

and timestamp information is not used and λ is 0.3.

After reproducing the baseline results, we tried both sentence transformers and the

FastText for the same setup. The results is given in the Table 5.6.

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

MMR_Cosine 0.313573 0.351419 0.064177 0.054150 0.386365 0.506234

MMR_Ratio-H 0.335558 0.373629 0.063934 0.053914 0.408797 0.546616

MMR_SBERT 0.298548 0.341170 0.065329 0.058335 0.372206 0.494316

MMR_FastText 0.328084 0.364173 0.069257 0.058380 0.417546 0.541950

Table 5.6: MMR – Comparison of SBERT and FastText with baseline results

The MMR parameters for sentence transformers and FastText are for their best setup

is: both FastText and SBERT uses hashtag information and does not use timestamp

information. The λ value for FastText is 0.95, while for SBERT is 0.8. We use Cosine

similarity for SBERT similarity calculations while we use Word Mover’s Distance for

FastText setup.

63

As can be seen in the Table 5.6, although the sentence transformers and FastText

are not performing better than the baseline results in much cases, in some cases the

methods are the best such as P-IA10, P-IA20 and strec@10.

5.4.5 Sy

For Sy method, we use a similar environment as the MMR experiments 5.4.4. We

change the parameter types along with the method and again we generate the baseline

results again for Sy. The parameters used in the Sy method are given below:

• λ (Bool): The value that is the threshold of the Sy calculation, which is ex-

plained in the Section 3.2.2.

• Hashtags (Bool): Similar to the MMR experiments 5.4.4, defines whether to

use the hashtags of the tweet in calculation or not.

• Timestamp (Bool): Defines whether to use the timestamp of the tweet or not.

• TweetSimilarity (Function): Similarity function used on calculation.

After reproducing the baseline results, we applied sentence transformers and FastText

word embeddings to the system, just as the MMR experiments. The comparison

between the baseline results of the Sy and our contributions to the system are given

in the Table 5.7. As shown in the table, we can say that the SBERT gives competitive

results in the Sy setup. Moreover, similar to the MMR method, in some cases SBERT

outperforms the baseline results.

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

Sy_Baseline 0.348171 0.383123 0.082955 0.068976 0.418546 0.541773

Sy_SBERT 0.340802 0.376743 0.084510 0.076604 0.409548 0.522357

Sy_FastText 0.339251 0.377139 0.078713 0.066695 0.400925 0.524407

Table 5.7: Sy – Baseline Result

The parameters of each method as follows: all 3 methods uses both hashtag and

timestamp informations. Baseline and SBERT uses Cosine for similarity calculations

64

while FastText is using Word Mover’s Distance. And finally, the λ values are 0.5 for

baseline, 0.9 for SBERT and 0.23 for FastText.

Second, we fine-tuned the SBERT in order to achieve better results. To fine-tune the

pretrained model, we used the Tweets 2013 (Internet Archive) [41]. There are two

different fine-tuned models: one is trained with 1500 tweets (modelSmall) and the

other is trained with 20000 tweets (modelBig). The results of the fine-tuned models

are given with the baseline results in the Table ??

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

Sy_SBERT 0.340802 0.376743 0.084510 0.076604 0.409548 0.522357

Sy_SBERTsmall 0.333754 0.375599 0.078393 0.068258 0.397143 0.531646

Sy_SBERTbig 0.338858 0.379366 0.079021 0.068536 0.399502 0.530725

Table 5.8: Sy – SBERT Fine-Tuning Comparison

After fine-tuning with the bigger dataset, we find out an increase in the α-nDCG@20

value which is one of the most important metrics on our experimental setup. All the

other metrics, except strec@20, shows slight decrease in their values. Although there

is a decrease in other metrics, the increase in the α-nDCG@20 is sharper than these

decreases which leads us to use the fine-tuned model SBERTbig as our main model

for the Sy setup.

Finally, we observe that in some of the results some retweets appear with their original

content, although the diversification algorithm is applied. Since a retweet is the same

as its original except the user who tweets it, these values should not be appear in the

result set. We come up with two solutions to this problem: completely remove all

retweets by not accepting them in the result set and increasing their similarity result

by a constant to reduce their likelihood of appearing in the result set. Increasing the

similarity result is achieved by multiplying the original tweet to tweet similarity by a

constant value as shown in the Equation 5.4.

sim(t1,t2) = sim(t1,t2) ∗ λ (5.4)

65

First, we applied the retweet removal and impact lowering to the SBERT fine-tuned

big model and these experiment’s results are given in the Table 5.9.

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

Baseline 0.348171 0.383123 0.082955 0.068976 0.418546 0.541773

Sy_SBERTbig 0.338858 0.379366 0.079021 0.068536 0.399502 0.530725

RTRemove 0.348957 0.382893 0.080867 0.066000 0.426521 0.550268

RTLowerImpact 0.355180 0.382546 0.082293 0.065531 0.434649 0.531329

Table 5.9: Sy – Retweet Operation Results

Again these operations for SBERT gives the best results on the parameters of the

original fine-tuned model’s parameters. Moreover for lowering the impact of the

retweets, the best result is found for the λ constant 1.35 for the similarity increase

function. The results again shows sharp increase in the α-nDCG@20 metric and

models gives better result in almost every metric, except the P-IA@20. Moreover,

we see that the results are very competitive against the baseline results. Especially

lowering the impact of the retweets gives better results than the baseline in the most of

the cases. Although the results are competitive and better in some cases the baseline

results still slightly higher than in the α-nDCG@20 metric.

Finally, we apply both retweet operations to the baseline method in order to find out

whether there is a similar increase in the results or not. The results is given in the

Table 5.10 with the SBERT retweet operation results for comparison.

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

Baseline 0.348171 0.383123 0.082955 0.068976 0.418546 0.541773

Baseline_RTRemove 0.349991 0.380891 0.083069 0.063479 0.416875 0.541669

Baseline_RTLower 0.360097 0.388982 0.084718 0.064304 0.433368 0.549153

SBERTBig-RTRemove 0.348957 0.382893 0.080867 0.066000 0.426521 0.550268

SBERTBig-RTLower 0.355180 0.382546 0.082293 0.065531 0.434649 0.531329

Table 5.10: Sy – SBERT and Baseline Retweet Operation Result Comparison

There is a drastic increase in the baseline results after applying retweet lowering op-

66

eration, especially in terms of α-nDCG@10 and α-nDCG@20 metrics. Although

retweet lowering causes sharp increase, removing retweets decreased the baseline re-

sults. Moreover, we can see that the SBERT still gives competitive results and even

better in strec metrics.

5.4.6 xQuAD

xQuAD, as explained in the Section 3.2.3, is a probabilistic model which need the

subquery information. The subqueries that are used are also taken from the Dataset 5.4.1.

We apply both SBERT and FastText to the baseline setup in both parts of the xQuAD

equation, which are tweet to query and tweet to aspect similarity. For each tweet,

query and aspect we calculate SBERT embeddings and FastText word embeddings.

For SBERT we use Cosine distance and for FastText we apply Word Mover’s Dis-

tance. Initially, we present 3 results in the Table 5.11 which contains baseline, SBERT

and FastText results for xQuAD. The SBERT model that we use is explained in the

Section 3.2.2, we are using the fine-tuned big model.

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

Baseline 0.248999 0.295140 0.054159 0.050697 0.331457 0.478965

FastText 0.187580 0.244771 0.036369 0.039731 0.228067 0.418430

SBERTBig 0.155725 0.198940 0.032212 0.035855 0.221816 0.351632

Table 5.11: xQuAD – SBERT, FastText and Baseline Results

We only change lambda values and the distance metric that is used in similarity cal-

culation. For each method these parameters are: baseline and SBERT uses Cosine

and FastText uses Word Mover’s Distance for similarity calculations. The λ values

are 1.6 for baseline, 0.8 for SBERT and 0.2 for FastText.

As can be seen in the Table 5.11, both SBERT and FastText results are significantly

lower than the baseline results. Although, SBERT and FastText performs similar

in previous approaches, for xQuAD the is no promising result from these methods.

Moreover, similar to the Sy and MMR experiments, we apply retweet removing op-

eration during the ranking stage for xQuAD. The parameters for the best results are

67

not changed for all 3 methods and the results are given in the Table 5.12.

Method α-nDCG@10 α-nDCG@20 P-IA@10 P-IA@20 strec@10 strec@20

Baseline_RTRemove 0.273648 0.319169 0.059554 0.054961 0.362647 0.509575

FastText_RTRemove 0.201773 0.264507 0.042329 0.045081 0.254832 0.461445

SBERT_Big_RTRemove 0.187580 0.244771 0.036369 0.039731 0.228067 0.418430

Table 5.12: xQuAD – SBERT, FastText and Baseline Retweet Removal Results

Comparison of Table 5.11 and Table 5.12 shows that retweet removing is significantly

increases the results of all 3 methods. However, similar to the initial results, the

baseline methods are still performs the best among all 3 results.

5.5 On-the-Fly Ranking

Finally, we present an on-the-fly ranking system to the Twitter system. We gather

tweets from the Twitter from the Twitter API using the developer system. Moreover,

we rank the search results using MMR and SBERT to create diverse search results

and present the results to the user. In order to convert this to a live tool, we created

a Django application using Python, in which we gather query and number of tweets

from the user and gather that many result from the Twitter API, then using SBERT

and MMR we sort the results and present to the user. In order to make comparison,

we present the results in a two column based page, in one side there is original Twitter

results and on the second column, we present the diverse results.

The system is currently working on the local machine, but can be served to a Web

Server and can be opened to the public use. The application is simple, consists of 3

pages:

• Login page

• Query-Count Input page

• Results page

68

Examples from the application are given in the Figures C.1 C.2 C.3.

Moreover, the system has another component which allow us to make human judge-

ments. The system is creating a database using the already retrieved tweets and for

each query we define aspects of the query. System assigns a set of tweets to each user

and collect their annotation about how relevant given tweet is to the query and how

relevant is tweet to its aspects. The judgements are stored in our local database for

creating a our own dataset of tweet search and diversification.

An example from the evaluation page of the system is given in the Figures C.5.

69

70

CHAPTER 6

CONCLUSION

In this thesis, as our first contribution, we proposed a diversification aware focused

crawler which aims to not only fetch the pages relevant to a given target topic but

also provide a balanced coverage of the aspects of the topic among those pages. To

achieve this goal, we converted a general purpose crawler into a focused crawler by

extending the module using a Random Forest Classifier [42] and a scorer following

the practice of Chakrabarti et al. [4] and Pant et al. [5]. Next, we modified the scorer

function with a diversification strategy inspired from the approach in [6], and by using

manually determined aspects and extending them using Google API, we constructed

a diversification aware focused crawler. We also extended the diversification aware

crawler using word and sentence embeddings, to investigate the impact of such alter-

native representations on a focused crawler.

To evaluate the performance of the proposed approaches, we conducted several crawl-

ing sessions for the target topic “Covid 19”. Our experimental results showed that

the diversification aware focused crawler outperforms the typical focused crawler in

terms of the P-IA metric and standard deviation. We also found that word embeddings

have the potential to further improve the performance of our crawler. In contrast, sen-

tence embeddings only helped reducing the number of totally irrelevant pages, i.e.,

with zero similarity to the target topic and its aspects.

As our second contribution in this thesis, we exploited the word and sentence em-

beddings to improve the performance of diversification on Tweet search results. In

particular, we adapted the evaluation methodology in [12] and exploited both word

embeddings and sentence transformers using well-known implicit and explicit diver-

sification algorithms. We evaluated the performance over the standard datasets and

71

found that both word embeddings and sentence embeddings yield promising results.

We observed that especially sentence embeddings perform better than word embed-

dings and may improve the diversification performance in terms of P-IA and ST-recall

metrics. This is an intuitive finding, as tweets, including no more than few hundred

characters, are likely to be appropriately represented by sentence embeddings.

As future work, we are planning to apply Doc2Vec [43] to both diversification aware

focused crawler and tweet search result diversification. Moreover, we will explore

alternative aspect weighting functions that may favor the uncovered aspects more

strongly. Finally, we plan to fine-tune our sentence transformer models with a larger

dataset to see its impact for both of the diversification scenarios.

72

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the

2019 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), (Minneapolis, Minnesota), pp. 4171–4186, Association for Computa-

tional Linguistics, June 2019.

[2] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “From word embed-

dings to document distances,” in Proceedings of the 32nd International Confer-

ence on International Conference on Machine Learning - Volume 37, ICML’15,

(Lille, France), pp. 957–966, JMLR.org, July 2015.

[3] R. L. Santos, C. Macdonald, and I. Ounis, “Exploiting query reformulations

for web search result diversification,” in Proceedings of the 19th International

Conference on World Wide Web, WWW ’10, (New York, NY, USA), pp. 881–

890, Association for Computing Machinery, Apr. 2010.

[4] S. Chakrabarti, M. V. D. Berg, and B. Dom, “Focused crawling: A new approach

to topic-specific web resource discovery,” in Computer Networks, pp. 1623–

1640, 1999.

[5] G. Pant and P. Srinivasan, “Link contexts in classifier-guided topical crawlers,”

IEEE Transactions on Knowledge and Data Engineering, vol. 18, pp. 107–122,

Jan. 2006.

[6] A. M. Ozdemiray and I. S. Altingovde, “Explicit search result diversification

using score and rank aggregation methods,” J. Assoc. Inf. Sci. Technol., vol. 66,

no. 6, pp. 1212–1228, 2015.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” in 1st International Conference on Learning

73

Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Work-

shop Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2013.

[8] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word

Representation,” in Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP), (Doha, Qatar), pp. 1532–1543, As-

sociation for Computational Linguistics, 2014.

[9] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors

with subword information,” Trans. Assoc. Comput. Linguistics, vol. 5, pp. 135–

146, 2017.

[10] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and

L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings

of the 2018 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, NAACL-HLT

2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers)

(M. A. Walker, H. Ji, and A. Stent, eds.), pp. 2227–2237, Association for Com-

putational Linguistics, 2018.

[11] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using

siamese bert-networks,” in Proceedings of the 2019 Conference on Empiri-

cal Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong

Kong, China, November 3-7, 2019 (K. Inui, J. Jiang, V. Ng, and X. Wan, eds.),

pp. 3980–3990, Association for Computational Linguistics, 2019.

[12] M. G. Ozsoy, K. D. Onal, and I. S. Altingovde, “Result Diversification for Tweet

Search,” in Web Information Systems Engineering – WISE 2014 (B. Benatallah,

A. Bestavros, Y. Manolopoulos, A. Vakali, and Y. Zhang, eds.), Lecture Notes in

Computer Science, (Cham), pp. 78–89, Springer International Publishing, 2014.

[13] J. Carbonell and J. Goldstein, “The use of MMR, diversity-based reranking for

reordering documents and producing summaries,” in Proceedings of the 21st

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’98, (New York, NY, USA), pp. 335–336, Asso-

ciation for Computing Machinery, Aug. 1998.

74

[14] K. Tao, C. Hauff, and G.-J. Houben, “Building a Microblog Corpus for Search

Result Diversification,” in Information Retrieval Technology (R. E. Banchs,

F. Silvestri, T.-Y. Liu, M. Zhang, S. Gao, and J. Lang, eds.), Lecture Notes

in Computer Science, (Berlin, Heidelberg), pp. 251–262, Springer, 2013.

[15] K. Tao, F. Abel, C. Hauff, G.-J. Houben, and U. Gadiraju, “Groundhog day:

Near-duplicate detection on Twitter,” in Proceedings of the 22nd International

Conference on World Wide Web, WWW ’13, (New York, NY, USA), pp. 1273–

1284, Association for Computing Machinery, May 2013.

[16] R. L. T. Santos, J. Peng, C. Macdonald, and I. Ounis, “Explicit search result

diversification through sub-queries,” in Advances in Information Retrieval, 32nd

European Conference on IR Research, ECIR 2010, Milton Keynes, UK, March

28-31, 2010. Proceedings (C. Gurrin, Y. He, G. Kazai, U. Kruschwitz, S. Little,

T. Roelleke, S. M. Rüger, and K. van Rijsbergen, eds.), vol. 5993 of Lecture

Notes in Computer Science, pp. 87–99, Springer, 2010.

[17] F. Menczer, “ARCCHNID: adaptive retrieval agents choosing heuristic neigh-

borhoods,” in Proceedings of the Fourteenth International Conference on Ma-

chine Learning (ICML 1997), Nashville, Tennessee, USA, July 8-12, 1997 (D. H.

Fisher, ed.), pp. 227–235, Morgan Kaufmann, 1997.

[18] S. Chakrabarti, K. Punera, and M. Subramanyam, “Accelerated focused crawl-

ing through online relevance feedback,” in Proceedings of the 11th international

conference on World Wide Web, WWW ’02, (New York, NY, USA), pp. 148–

159, Association for Computing Machinery, May 2002.

[19] J. Rennie and A. McCallum, “Using reinforcement learning to spider the web

efficiently,” in Proceedings of the Sixteenth International Conference on Ma-

chine Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999 (I. Bratko and

S. Dzeroski, eds.), pp. 335–343, Morgan Kaufmann, 1999.

[20] I. Altingovde and O. Ulusoy, “Exploiting interclass rules for focused crawling,”

IEEE Intelligent Systems, vol. 19, pp. 66–73, Nov. 2004.

[21] W. Wang, X. Chen, Y. Zou, H. Wang, and Z. Dai, “A Focused Crawler Based on

75

Naive Bayes Classifier,” in 2010 Third International Symposium on Intelligent

Information Technology and Security Informatics, pp. 517–521, Apr. 2010.

[22] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (4th Edi-

tion). Pearson, 2020.

[23] H. Lu, D. Zhan, L. Zhou, and D. He, “An Improved Focused Crawler: Using

Web Page Classification and Link Priority Evaluation,” Mathematical Problems

in Engineering, vol. 2016, pp. 1–10, 2016.

[24] Y. Du, W. Liu, X. Lv, and G. Peng, “An improved focused crawler based on

Semantic Similarity Vector Space Model,” Applied Soft Computing, vol. 36,

pp. 392–407, Nov. 2015.

[25] M. M. G. Farag, S. Lee, and E. A. Fox, “Focused crawler for events,” Interna-

tional Journal on Digital Libraries, vol. 19, pp. 3–19, Mar. 2018.

[26] K. D. Onal, I. S. Altingovde, and P. Karagoz, “Utilizing word embeddings for re-

sult diversification in tweet search,” in Information Retrieval Technology - 11th

Asia Information Retrieval Societies Conference, AIRS 2015, Brisbane, QLD,

Australia, December 2-4, 2015. Proceedings (G. Zuccon, S. Geva, H. Joho,

F. Scholer, A. Sun, and P. Zhang, eds.), vol. 9460 of Lecture Notes in Computer

Science, pp. 366–378, Springer, 2015.

[27] S. Gollapudi and A. Sharma, “An axiomatic approach for result diversification,”

in Proceedings of the 18th international conference on World wide web, WWW

’09, (New York, NY, USA), pp. 381–390, Association for Computing Machin-

ery, Apr. 2009.

[28] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Sri-

vastava, C. Traina, and V. J. Tsotras, “On query result diversification,” in 2011

IEEE 27th International Conference on Data Engineering, pp. 1163–1174, Apr.

2011. ISSN: 2375-026X.

[29] Y. B. Ulu and I. S. Altingovde, “Predicting the Size of Candidate Document

Set for Implicit Web Search Result Diversification,” in Advances in Information

Retrieval (J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva,

76

and F. Martins, eds.), Lecture Notes in Computer Science, (Cham), pp. 410–417,

Springer International Publishing, 2020.

[30] C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt, “Representation

learning for very short texts using weighted word embedding aggregation,” Pat-

tern Recognition Letters, vol. 80, pp. 150–156, Sept. 2016.

[31] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information re-

trieval. Cambridge University Press, 2008.

[32] Q. V. Le and T. Mikolov, “Distributed representations of sentences and docu-

ments,” in Proceedings of the 31th International Conference on Machine Learn-

ing, ICML 2014, Beijing, China, 21-26 June 2014, vol. 32 of JMLR Workshop

and Conference Proceedings, pp. 1188–1196, JMLR.org, 2014.

[33] G. A. Miller, “WordNet: A lexical database for English,” Communications of

the ACM, vol. 38, pp. 39–41, Nov. 1995.

[34] D. Lin, “An Information-Theoretic Definition of Similarity,” in Proceedings of

the Fifteenth International Conference on Machine Learning, ICML ’98, (San

Francisco, CA, USA), pp. 296–304, Morgan Kaufmann Publishers Inc., July

1998.

[35] P. Jaccard, “The Distribution of the Flora in the Alpine Zone.1,” New Phytolo-

gist, vol. 11, no. 2, pp. 37–50, 1912.

[36] B. Sagar-Fenton and L. McNeill, “How many words do you need to speak a

language?,” BBC News, June 2018.

[37] J. B. Lovins, “Development of a stemming algorithm,” Mech. Transl. Comput.

Linguistics, vol. 11, pp. 22–31, 1968.

[38] J. A. Shaw and E. A. Fox, “Combination of multiple searches,” in Proceed-

ings of The Third Text REtrieval Conference, TREC 1994, Gaithersburg, Mary-

land, USA, November 2-4, 1994 (D. K. Harman, ed.), vol. 500-225 of NIST Spe-

cial Publication, pp. 105–108, National Institute of Standards and Technology

(NIST), 1994.

77

[39] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, “Diversifying search

results,” in Proceedings of the Second ACM International Conference on Web

Search and Data Mining, WSDM ’09, (New York, NY, USA), pp. 5–14, Asso-

ciation for Computing Machinery, Feb. 2009.

[40] T. Kenter, A. Borisov, and M. de Rijke, “Siamese CBOW: optimizing word em-

beddings for sentence representations,” in Proceedings of the 54th Annual Meet-

ing of the Association for Computational Linguistics, ACL 2016, August 7-12,

2016, Berlin, Germany, Volume 1: Long Papers, The Association for Computer

Linguistics, 2016.

[41] R. Sequiera and J. Lin, “Finally, a Downloadable Test Collection of Tweets,” in

Proceedings of the 40th International ACM SIGIR Conference on Research and

Development in Information Retrieval, (Shinjuku Tokyo Japan), pp. 1225–1228,

ACM, Aug. 2017.

[42] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5–32, Oct. 2001.

[43] Q. Le and T. Mikolov, “Distributed representations of sentences and docu-

ments,” in Proceedings of the 31st International Conference on Machine Learn-

ing (E. P. Xing and T. Jebara, eds.), vol. 32 of Proceedings of Machine Learning

Research, (Bejing, China), pp. 1188–1196, PMLR, 22–24 Jun 2014.

78

APPENDIX A

FOCUSED CRAWLER SETUP

79

Listing A.1: Seed URLs

h t t p s : / / c o r o n a v i r u s . j h u . edu / map . h tml

h t t p s : / / s c dh e c . gov / cov id19

h t t p s : / / www. usa . gov / c o r o n a v i r u s

h t t p s : / / www. c o r o n a v i r u s . i n . gov /

h t t p s : / / www. aap . o rg / en / pages / 2 0 1 9 novel c o r o n a v i r u s covid 1 9

i n f e c t i o n s / c h i l d r e n and covid 1 9 s t a t e l e v e l da t a r e p o r t /

h t t p s : / / www. osha . gov / c o r o n a v i r u s

h t t p s : / / l d h . l a . gov / c o r o n a v i r u s /

h t t p s : / / www. w h i t e h o u s e . gov / c o v i d p l a n /

h t t p s : / / f l o r i d a h e a l t h c o v i d 1 9 . gov /

h t t p s : / / www. mich igan . gov / c o r o n a v i r u s /

h t t p s : / / www. hhs . gov / c o r o n a v i r u s / community based t e s t i n g s i t e s / i n d

ex . h tml

h t t p s : / / www. a u s t i n t e x a s . gov / cov id19

h t t p s : / / cov id19 . ncdhhs . gov / d a s h b o a r d

h t t p s : / / d shs . t e x a s . gov / c o v i d v a c c i n e /

h t t p s : / / cov id19 . ca . gov /

h t t p s : / / s t u d e n t a i d . gov / announcements e v e n t s / c o r o n a v i r u s

h t t p s : / / c o r o n a v i r u s . i d a h o . gov /

h t t p s : / / www. s s a . gov / c o r o n a v i r u s /

h t t p s : / / www. p u b l i x . com / covid v a c c i n e

h t t p s : / / c o r o n a v i r u s . iowa . gov /

80

i me my myself we our ours

ourselves you you’re you’ve you’ll you’d your

yours yourself yourselves he him his himself

she she’s her hers herself it it’s

its itself they them their theirs themselves

what which who whom this that that’ll

these those am is are was were

be been being have has had having

do does did doing a an the

and but if or because as until

while of at by for with about

against between into through during before after

above below to from up down in

out on off over under again further

then once here there when where why

how all any both each few more

most other some such no nor not

only own same so than too very

s t can will just don don’t

should should’ve now d ll m o

re ve y ain aren aren’t couldn

couldn’t didn didn’t doesn doesn’t hadn hadn’t

hasn hasn’t haven haven’t isn isn’t ma

mightn mightn’t mustn mustn’t needn needn’t shan

shan’t shouldn shouldn’t wasn wasn’t weren weren’t

won won’t wouldn wouldn’t

Table A.1: NLTK Stopwords

81

map payments consequences forum europe recession

injury cases 19 economy damage causes

outlook united act statistics post covid

aid relief slowdown supporting live update

latest articles depression coronavirus city loss

affect analysis challenges fund uk crisis

inequality affected effects essay collapse world

blog package italy covid-19 recovery fallout

stimulus problems policy application paper updates

pakistan tax alternatives price documentation bangladesh

measures affects corona germany global us

reset development measure effect south bill

times war china disaster country shock

payment strategy approach downturn support swiss

response 2022 growth economic socio sweden

forecast kavach covid19 plan news login

canada loan factors states impact india

Table A.2: Covid-19 – Economic Impact Phrases

82

leg just precautions 19 signs medicine

stuffy covid relief latest nose late

head groin rate 2020 progression cold

stomach common days muscle sores fully

mayo babies urgent confusion pregnant child

quarantine hunger questionnaire vaccinated fatigue baby

negative jaw quick mouth knee people

going away infection nowadays young quotes

gone county come onset hospital eye

list excessive care unable hot clinic

smell stages wikipedia initial tongue dataset

thirst vertigo light throwing francais heartbeat

rash relapse teens kids headache vision

pressure burning test sore employees worse

night flashes flu bleed pfizer jour

waves upper sweats legs gastrointestinal blocked

chart heartburn adults watch temperature taste

yellow peeing range swollen gum skin

peak last wise ear update eyes

joint newborn emergency corona heart checker

eyesight ray recently elderly cure toddler

kidney many variant urine ears timeline

show brain sneezing phlegm appetite dogs

rapid nodes time exposure boosted shot

rib en early versus color pain

india nasal wave pregnancy day shivering

gastro diary redness headed aches gassy

dizzy hallucinations remain mucus first throat

chest diarrhea recent coronavirus fever belegte

per vomiting treatment allergies unvaccinated getting

related sleep migraine vaccine covid-19 sweating

recovery zunge pink booster man delta

earache red bangla orange glands qld

hearing order symptoms gov cough second

2021 tested step sinus english reviews

omicron 2022 children covid19 mild restless

Table A.3: Covid-19 – Symptoms Phrases

83

safe benefits scan percentage 19 ladies

hand registration zonder issues walk jersey

covid certificate distribution long ludhiana vaccinations

ny nj kinds registry research kroger

babies reactions download pregnant made helsinki

verification malaysia report jobs rate status

guidelines online immunocompromised details jacksonville vero

quantity patients ingredients numbers infection number

news quotes types gone county hospital

graph questionnaire youtube vaasa hub yonkers

shots region third wala term gravid

uk safety drawing wikipedia effects toll

application usa espoo perth nz soopers

database groningen pfizer helpline under los

zurich queue investigation logo nuksan yuma

tylenol which fda vaccine.gov.lk without vaccines

netherlands company cancer working names equity

greensboro recommendations side kisne japan az

breastfeeding stroke template verify chart testing

training inventor travel tidsbestilling diego vial

name nikale haven united appointment questions

journal old target breast aid bloomberg

paso approval wiki den rite qualifications

corona evidence poster development free timeline

walgreens animal efficacy cdc rates dosage

sites variants work map vaccination finder

waiver eligibility update risks osha virus

wrong statistics qr giant live omicron

moderna mandatory effective coronavirus approved per

indiana coronavaccin denmark kaise portal information

washington pakistan contraindications booster yakima makati

younger tracker viagra paralysis entry groups

effectiveness haag country francisco worldwide manitoba

mandate fact info lawsuit reviews trials

dose 2022 children covid19

Table A.4: Covid-19 – Vaccine Phrases

84

smoking who sbi partnership 19.clinical quantitative

near good range 19 curfew medicine

antibody education funding students questions jhu

journal kara recipe covid coalition examples

cans centre update blood john nl

latest result nih findings volunteers coronavirus

title recent wuhan university mit proposal

treatment analysis uk tagalog results queso

ideas related philippines effects information vaccine

uf covid-19 problem qatar example hopkins

topic paper papers washington net data

booster research registry price article blvd

database psychology coronanet boulevard sample corona

center important report about jobs disease

drug livestock brainly fonds south csir

test study solar review topics literature

project studies harrison institute group company

community denver donation trials eu researchgate

omicron design toyota statement games clinical

paid qualitative medical dose pdf type

during jardin russia hindi stock canada

oxford luxembourg history super grants impact

Table A.5: Covid-19 – Research Phrases

85

urdu slogan safety food role cartoon

chart who gif training vaccination guidance

pills preventing materials malayalam checklist precautions

workplace shopify epidemic btp medicine icon

questions virus camp clipart pics covid

signs vector dress notice bengali pictures

website articles webinar coronavirus tips california

dental video treatment marathi rate against

tagalog swiggy drawing quiz wikipedia essay

vaccine machine shop prevent telugu control

tamil quebec covid-19 rules devices images

kit equipment ways contre policy school

method methods cpt cure industry research

organization babies measures message corona malaysia

global exercises prevention activities report spray

steps slogans discharge rice poster guidelines

disease drug speech logo flyer symptoms

nepali tienda tablets slideshare animation meds

cdc appendix english network strategies prevention.org

trials program infection covid19 natural medication

plan code pdf tools quotes messages

ucsd hindi schools questionnaire office protocol

home and symbol awareness nasal ppt

Table A.6: Covid-19 – Prevention Phrases

86

APPENDIX B

FOCUSED CRAWLER EXPERIMENTAL RESULTS

Batch Vaccine Symptoms Prevention Research Economic

1 4 6 4 4 4

2 48 78 53 52 52

3 79 169 93 90 88

4 121 382 159 150 151

5 176 579 249 224 224

6 252 871 371 337 329

7 315 1161 489 444 429

8 361 1429 615 559 546

9 404 1693 706 642 638

10 477 2005 847 773 768

11 550 2292 967 888 878

12 637 2610 1120 1031 1016

13 713 2899 1242 1148 1137

14 801 3183 1373 1277 1259

15 857 3427 1475 1372 1354

16 930 3706 1583 1476 1462

17 996 3956 1684 1573 1556

18 1083 4223 1806 1690 1672

19 1217 4561 1992 1872 1847

20 1351 4897 2177 2053 2022

21 1479 5193 2357 2224 2185

22 1587 5496 2508 2377 2336

Continued on next page

87

Table B.1 – Continued from previous page

Batch Vaccine Symptoms Prevention Research Economic

23 1726 5825 2689 2553 2514

24 1827 6098 2813 2670 2635

25 1934 6414 2967 2822 2777

26 2030 6713 3094 2944 2902

27 2120 7016 3201 3051 3004

28 2199 7321 3311 3160 3108

29 2290 7626 3433 3273 3222

30 2375 7892 3527 3364 3316

31 2450 8159 3639 3469 3424

32 2526 8449 3752 3570 3531

33 2591 8735 3852 3660 3624

34 2639 8999 3942 3742 3705

35 2710 9325 4057 3852 3810

36 2766 9671 4153 3941 3888

37 2813 9948 4227 4010 3954

38 2887 10224 4329 4108 4047

39 2959 10523 4440 4212 4150

40 3018 10796 4535 4295 4229

41 3076 11079 4626 4370 4311

42 3141 11367 4737 4471 4410

43 3198 11647 4822 4554 4494

44 3241 11909 4907 4634 4571

45 3302 12193 5015 4733 4677

Table B.1: Number of Relevant Pages in No Diversification Focused Crawler

88

Batch Vaccine Symptoms Prevention Research Economic

1 4 6 4 4 4

2 45 81 53 52 52

3 81 181 94 91 91

4 129 413 163 152 157

5 194 674 269 244 250

6 258 960 390 350 359

7 335 1267 539 485 502

8 417 1595 684 619 642

9 474 1905 789 717 739

10 562 2255 949 869 887

11 666 2632 1122 1033 1047

12 751 2963 1257 1165 1179

13 854 3321 1418 1326 1336

14 960 3679 1573 1471 1485

15 1067 4018 1726 1620 1632

16 1156 4333 1859 1745 1760

17 1275 4694 2048 1928 1941

18 1396 5076 2225 2106 2118

19 1516 5379 2378 2255 2269

20 1658 5728 2569 2444 2452

21 1781 6050 2718 2583 2594

22 1906 6435 2898 2750 2773

23 1976 6752 3018 2863 2890

24 2052 7078 3145 2983 3014

25 2141 7413 3272 3103 3138

26 2228 7783 3408 3226 3264

27 2316 8126 3538 3352 3385

28 2407 8427 3692 3499 3526

29 2458 8727 3793 3593 3622

30 2510 9025 3879 3676 3709

Continued on next page

89

Table B.2 – Continued from previous page

Batch Vaccine Symptoms Prevention Research Economic

31 2579 9302 3984 3775 3812

32 2657 9569 4099 3886 3929

33 2760 9908 4239 4017 4073

34 2837 10195 4345 4117 4179

35 2925 10483 4439 4206 4283

36 3006 10789 4546 4303 4386

37 3085 11094 4666 4417 4502

38 3185 11422 4809 4557 4637

39 3289 11753 4955 4701 4773

40 3357 12075 5050 4790 4866

41 3415 12371 5153 4884 4971

42 3491 12732 5270 4993 5080

43 3548 13053 5369 5089 5172

44 3589 13372 5444 5157 5243

45 3644 13688 5531 5240 5327

Table B.2: Number of Relevant Pages in Diversification Aware Focused Crawler Re-

sults

Batch Vaccine Symptoms Prevention Research Economic

1 4 6 4 4 4

2 45 78 53 52 52

3 78 169 92 89 88

4 116 376 151 141 143

5 182 622 242 220 220

6 233 890 329 299 293

7 286 1177 430 393 384

8 346 1461 556 508 500

Continued on next page

90

Table B.3 – Continued from previous page

Batch Vaccine Symptoms Prevention Research Economic

9 405 1721 675 620 612

10 499 2019 825 765 748

11 580 2321 970 902 891

12 663 2618 1096 1023 1017

13 735 2869 1210 1133 1124

14 809 3127 1325 1244 1230

15 887 3392 1430 1347 1337

16 954 3635 1533 1451 1430

17 1060 3924 1676 1586 1569

18 1155 4247 1806 1714 1692

19 1248 4553 1935 1838 1820

20 1324 4869 2067 1966 1953

21 1430 5175 2209 2100 2080

22 1509 5472 2321 2208 2189

23 1615 5808 2470 2352 2324

24 1698 6106 2589 2469 2439

25 1797 6410 2717 2599 2568

26 1868 6679 2815 2691 2666

27 1945 6938 2920 2791 2758

28 2023 7233 3026 2891 2858

29 2097 7532 3144 3006 2970

30 2179 7842 3273 3132 3085

31 2272 8148 3422 3278 3221

32 2326 8416 3517 3369 3310

33 2405 8744 3637 3489 3427

34 2499 9036 3764 3616 3554

35 2592 9330 3896 3749 3682

36 2671 9603 4017 3864 3796

37 2759 9880 4160 3997 3938

Continued on next page

91

Table B.3 – Continued from previous page

Batch Vaccine Symptoms Prevention Research Economic

38 2854 10183 4293 4123 4064

39 2924 10511 4424 4249 4189

40 3010 10801 4565 4389 4333

41 3115 11110 4706 4530 4478

42 3200 11424 4835 4657 4604

43 3276 11759 4971 4783 4733

44 3333 12038 5075 4879 4836

45 3403 12333 5180 4982 4938

Table B.3: Number of Relevant Pages in Diversification Aware Word Embedding

Focused Crawler

Batch Vaccine Symptoms Prevention Research Economic

1 4 5 4 4 4

2 48 77 53 52 52

3 48 84 56 53 53

4 50 95 59 56 56

5 53 118 65 60 59

6 84 233 113 103 102

7 84 236 113 103 102

8 86 248 115 105 105

9 89 256 119 109 109

10 91 268 122 111 111

11 139 432 186 174 176

12 139 435 187 175 176

13 139 456 188 175 176

14 185 644 245 233 232

15 185 647 245 233 232

Continued on next page

92

Table B.4 – Continued from previous page

Batch Vaccine Symptoms Prevention Research Economic

16 215 799 281 270 269

17 215 801 281 270 269

18 216 805 282 271 270

19 216 808 282 271 270

20 216 811 282 271 270

21 255 1022 329 318 321

22 255 1023 329 318 321

23 255 1029 330 319 321

24 255 1031 330 320 321

25 255 1040 333 323 323

26 257 1053 336 326 326

27 258 1061 340 330 328

28 261 1076 343 333 331

29 315 1293 427 411 402

30 316 1295 427 411 402

31 317 1305 428 411 402

32 317 1305 428 411 402

33 343 1484 466 446 438

34 343 1487 466 446 438

35 343 1489 466 446 438

36 356 1644 479 459 453

37 356 1645 479 459 453

38 356 1646 479 459 453

39 356 1648 479 459 453

40 356 1651 479 459 453

41 358 1655 480 460 454

42 358 1657 480 460 454

43 358 1661 480 460 455

44 377 1799 506 486 483

Continued on next page

93

Table B.4 – Continued from previous page

Batch Vaccine Symptoms Prevention Research Economic

45 377 1801 506 486 483

Table B.4: Number of Relevant Pages in Diversification Aware SBERT Focused

Crawler

94

APPENDIX C

ON THE FLY TWEET DIVERSIFICATION

95

Figure C.1: Twitter Application – Login Page

96

Figure C.2: Twitter Application – Search Page

97

Figure C.3: Twitter Application – Results Page - Coronavirus

98

Figure C.4: Twitter Application – Results Page - Covid 19

99

Figure C.5: Twitter Application – Annotation Page

100

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	introduction
	Diversification-Aware Focused Crawler
	Diversifying Rankings for Tweet Search
	Contribution
	The Outline of the Thesis

	related work
	Focused Crawling
	Diversification for Tweet Search Results

	preliminaries
	Representing Documents
	TF-IDF
	BM25
	Word Embeddings
	GloVe
	FastText

	Sentence Transformers
	
	SBERT

	Search Result Diversification
	Maximal Marginal Relevance
	Sy
	xQuAD

	Distance Metrics
	Cosine Distance
	Jaccard Distance
	Word Mover's Distance

	Focused Crawling
	Apache Nutch
	Processing the Data
	Decapitalizing
	Stop Word Elimination
	Stemming

	Focused Crawler
	Classifier
	Training Set

	Modifying Nutch System
	Adding the Classifier to the System
	Favoring Recently Extracted Links

	Scoring System
	Selecting Positive Phrases
	TFIDF for Scoring
	Word Embeddings for Crawler
	Sentence Transformers for Crawler

	Diversification-Aware Focused Crawler
	Aspect Phrases
	Scoring for the Diversification-Aware Focused Crawler

	Experiments
	Diversification on Focused Crawler
	Deciding IDF Values

	Seed URLs
	Comparison of the Crawlers

	Diversification for Tweet Search Results
	Pre-processing Tweets
	Ranking
	Averaging Word Embeddings
	Using Maximum and Minimum

	Diversification of Tweet Search Results Using Embeddings
	Experiments
	Dataset
	Experimental Setup
	Fine-Tuning
	MMR
	Sy
	xQuAD

	On-the-Fly Ranking

	conclusion
	REFERENCES
	Focused Crawler Setup
	Focused Crawler Experimental Results
	On the Fly Tweet Diversification

