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ABSTRACT

STOCHASTIC EMERGENCY MEDICAL SERVICE VEHICLE LOCATION
PROBLEM: EQUITY, PERFORMANCE EVALUATION AND

MATHEMATICAL MODELS

Akdoğan, Muharrem Altan

Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Z. Pelin Bayındır

Co-Supervisor: Prof. Dr. Cem İyigün

January 2023, 174 pages

In this thesis, emergency medical service (EMS) vehicle location problem with

uncertainties in demand, travel times, and incident handling time is studied in three

layers. The performance measures of EMS systems are evaluated with discrete

event simulation models due to the uncertainties incorporated. Firstly, we focus on

the equity in service quality resulting from vehicle location decisions in emergency

medical services. We address the unbalanced service quality among regions with

respect to various mathematical models including conventional ones. An extensive

numerical study is conducted to show the effect of modeling approaches and network

features on equity. Several observations are drawn and it is shown that the use of

overall performance measures in the objective functions of mathematical models

ignores other essential criteria, and there is room for improvement in terms of equity.

Secondly, we propose decomposition methods based on queueing theory to assess the

performance measures of the EMS system under a given location solution without

needing to construct computationally cumbersome queueing or simulation models.

The proposed decomposition methods require a set of nonlinear equations to be
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solved simultaneously, yet they are still favorable to exact queueing or simulation

models in terms of the computational burden. A genetic algorithm is proposed

to use the decomposition method in the optimization problems and find solutions

for the EMS vehicle location problem based on queueing theory. It is shown that

the proposed methods perform well in assessing the performance measures and

evaluating close enough solutions the best solution for the optimization problems.

Lastly, we propose mixed integer nonlinear problems (MINLP) with various objective

functions incorporating closed-form formulations for the performance measures of

the system based on decision variables. With MINLP models, there is no need for

estimating problem parameters such as busy probability of vehicles in advance. The

proposed models are easier to construct and solve with respect to approximation

algorithms or decomposition methods in the literature where stochastic processes

are incorporated. Hence, the proposed MINLP models enable decision-makers to

incorporate uncertainties in the problem environment directly in the estimation of the

parameter of the models based on queueing theory while still keeping the models

relatively easy to solve since only the objective functions are nonlinear.

Keywords: emergency medical services, ambulance location, simulation, stochastic

processes
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ÖZ

STOKASTİK ACİL TIBBİ HİZMET ARACI KONUM PROBLEMİ:
EŞİTLİK, PERFORMANS DEĞERLENDİRME VE MATEMATİKSEL

MODELLER

Akdoğan, Muharrem Altan

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Z. Pelin Bayındır

Ortak Tez Yöneticisi: Prof. Dr. Cem İyigün

Ocak 2023 , 174 sayfa

Bu tezde, talep, seyahat süreleri ve yerinde müdahale süresinde belirsizlikler

içeren acil tıbbi hizmet araç lokasyonu problemi üç katmanda incelenmiştir.

Acil tıbbi hizmet sistemlerinin performans ölçümleri, dahil edilen belirsizlikler

nedeniyle ayrık olay simülasyon modelleri ile değerlendirilmiştir. İlk olarak, acil

tıbbi hizmetlerde araç yeri kararından kaynaklanan hizmet kalitesindeki eşitlik

üzerine odaklanılmıştır. Bölgeler arasındaki dengesiz hizmet kalitesi, geleneksel

modeller de dahil olmak üzere çeşitli matematiksel modellerle ele alınmıştır.

Modelleme yaklaşımlarının ve ağ özelliklerinin eşitlik üzerindeki etkisini göstermek

için kapsamlı bir sayısal çalışma yapılmıştır. Çeşitli gözlemler çıkarılmış ve

matematiksel modellerin amaç fonksiyonlarında genel performans ölçümlerinin

kullanılmasının diğer temel kriterleri göz ardı ettiği ve eşitlik açısından iyileştirmenin

mümkün gösterilmiştir. İkinci olarak, hesaplama açısından kuyruk veya simülasyon

modelleri oluşturmaya gerek kalmadan belirli bir lokasyon çözümü altında acil

tıbbi hizmet sisteminin performans ölçümlerini değerlendirmek için kuyruk teorisine
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dayalı ayrıştırma yöntemleri öneriyoruz. Önerilen ayrıştırma yöntemleri, bir dizi

doğrusal olmayan denklemin aynı anda çözülmesini gerektirir, ancak bunlar

performansalarına bakılarak yine de kuyruk veya simülasyon modellerine tercih

edilebilir. Ayrıştırma yöntemini optimizasyon problemlerinde kullanmak ve kuyruk

teorisine dayalı EMS araç konum problemine çözüm bulmak için bir genetik

algoritma önerilmiştir. Önerilen yöntemlerin, performans ölçülerini kestirmede ve

optimizasyon problemlerinin en iyi çözümüne yeterince yakın çözümleri bulmada

iyi performans gösterdiği gösterilmiştir. Son olarak, karar değişkenlerine dayalı

sistemin performans ölçümleri için kapalı form formülasyonları içeren çeşitli amaç

fonksiyonlarına sahip karma tamsayılı doğrusal olmayan problemler (MINLP)

öneriyoruz. MINLP modelleri ile araçların meşgul olma olasılığı gibi problem

parametrelerinin önceden tahmin edilmesine gerek yoktur. Önerilen modellerin

oluşturulması ve çözülmesi, stokastik süreçlerin dahil edildiği literatürdeki yaklaşım

algoritmaları veya ayrıştırma yöntemlerine göre daha kolaydır. Bu nedenle, önerilen

MINLP modelleri, karar vericilerin problem ortamındaki belirsizlikleri doğrudan

kuyruk teorisine dayalı modellerin parametre tahmininde hesaba katmaya olanak

tanırken, yalnızca amaç fonksiyonları doğrusal olmadığı için modelleri çözmek

nispeten kolay olmaktadır.

Anahtar Kelimeler: acil tıbbi yardım servisi, ambulans lokasyonu, benzetim, stokastik

süreçler
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CHAPTER 1

INTRODUCTION

Emergency medical service (EMS) is one of the most critical daily services, among

others, for public service providers. Emergency services, in general, need planning at

every level, from operational to strategic.

EMS vehicle location has been an important topic for decision-makers and a critical

research area for researchers. Management of these systems is mostly regulated

by governmental bodies which oblige operators of the systems to sustain a system

satisfying specific criteria. One of the most prominent criteria among those is the

response time of these systems. For instance, National Health Service England

(NHS-England (2015)), one of the four national service institutions of the United

Kingdom, enforces 90% of life-threatening incidents to be responded to within 15

minutes. Some studies focus on other important measures in the literature, such

as the fraction of lost demand, coverage, or costs related to strategic or operational

activities. Aringhieri et al. (2017), Bélanger et al. (2019) and Wang et al. (2021)

present comprehensive reviews of EMS location planning literature.

Emergency medical service operations planning is an essential topic for governmental

authorities. It requires several parties to work together, such as call centers, operating

companies, hospitals. Emergency response is a critical part of emergency service and

requires planning personnel, equipment, vehicles, and physical infrastructure.

There are various approaches in the planning of the emergency medical service (EMS)

vehicle stations, from deterministic models to simulation studies in the literature.

Vehicle location problems could be handled in a deterministic problem setting where

demand and service are taken as static entities. This approach could disregard the
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overflow of emergency calls due to installed capacity, i.e., vehicles, or the uncertainty

in demand calls, service times, or travel times. Regarding those concerns, a stream of

studies in the literature focuses on modeling approaches incorporating the uncertainty

in the environment.

1.1 Problem Definition and Environment

In this thesis, we study EMS vehicle location problem to locate predefined number of

vehicles at candidate locations where the problem environment includes uncertainties

in demand calls, travel time between vehicle locations and demand regions, and

incident handling times at scene.

A geographic area where EMS vehicles are to be located is divided into demand

regions, indexed by j ∈ J . Candidate vehicle locations are formed as a subset

of demand regions, I ⊂ J . The number of vehicles, N , is predetermined by the

decision-maker where all vehicles are identical.

A call for medical emergency service is called demand. We assume that the demand

calls occur at the center of each demand region and follow a time-homogeneous

Poisson Process. It is assumed that demand across regions is independent. The mean

number of calls in a unit time in regions, denoted by λj for region j, are known and

are allowed to be non-identical. When a call is received, the closest available vehicle

is assigned to that call, and the service starts. If there is no available vehicle in the

system at the time of the call, the demand is assumed to be lost. Demand calls are not

queued and assumed to be handled by external systems, similar to a stream of studies

in EMS vehicle location literature.

A service is composed of three modes: (i) traveling to the demand region, (ii)

incident handling, and (iii) returning to the vehicle location. The incident handling

time is assumed to be exponentially distributed with known mean ϕj for region j.

Travel time is considered a significant component of the service. Travel time from

a vehicle location i ∈ I to a demand region j, Tij is assumed to follow Exponential

distribution with a known mean, ωij and it is symmetrical for the mode of traveling

back. Although the variance in incident handling and travel times is high due to
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the assumption of Exponential distribution, it is justified since loss systems where

demand calls are not queued is said to be relatively insensitive to the form of the

service distribution by Jarvis (1975). Service time is random and as a result of

being dependent on the demand and vehicle locations, it is the sum of three random

variables: (i) travel time to the demand region, (ii) incident handling time, and (iii)

travel time for returning to the vehicle location. Incident handling times are assumed

specific to demand regions. It is assumed that it includes the travel time within the

region if the region is served by a vehicle located in this region. Travel times are taken

explicitly for the case of serving a region by a vehicle located in another region.

In this problem environment, performance measures of a candidate location solution,

such as mean response time, could be evaluated by using queueing theory. A queuing

model for the system resulting from a candidate location solution can be constructed

as follows. We refer to this model as the exact queueing model in the rest of the thesis.

Demand calls arrive according to a time homogeneous Possion process with known

means λj from region j ∈ J . Incident handling and travel times are exponentially

distributed with known means ϕj for region j, and ωij from vehicle location i to

demand region j, respectively. Since the service time for a demand call includes

travel times which are distributed exponentially with known mean, the state definition

for the exact queueing model should represent the location of each vehicle, the state

of the vehicle (available or busy), the region it serves if the vehicle is busy and the

mode of the service (en-route to the demand region, serving the demand, en-route to

the vehicle location).

Under these assumptions, let {Bt, t ≥ 0} be a continuous time Markov chain with

state space L.

Then, this queueing model can be represented by an N-dimensional state as follows:

Bt = (b1, b2, . . . , bN), t ≥ 0

where bk represents the status of the kth vehicle at time t and denotes a 3-tuple as:

bk = (ik, s,m) , s ∈ J ∪ {0} , m = 0, 1, 2, 3

where ik represents the location that the kth vehicle is located, s stands for "idle" or

3



the region being served, and m represents the mode of the service (en-route to the

demand region, serving the demand, en-route to the vehicle location).

If the vehicle is not busy, s and m are set to 0. Then, bk = (ik, 0, 0) represents the

state that the vehicle at location ik is free. If the vehicle is busy serving demand region

j ∈ J , s is set to j. When the vehicle is busy, m is set to 1, 2 or 3 if the vehicle is

en-route to demand region j, handling the incident or en-route to the vehicle location,

respectively. Then, bk = (ik, j, 1) represents the state where the vehicle at location ik

is busy with responding to the demand from region j ∈ J and traveling to the demand

region.

Let lk be the set of possible statuses of bk of the state Bt in the exact queueing model.

Then, lk is as follows with (3 |J |+ 1) possible statuses:

lk =
{
(ik, 0, 0) , (ik, 1, 1) , (ik, 1, 2) , (ik, 1, 3) , (ik, 2, 1) , (ik, 2, 2) , (ik, 2, 3) ,

. . . , (ik, |J | , 1) , (ik, |J | , 2) , (ik, |J | , 3)
}
, k = 1, ..., N

where ik is the location that the kth vehicle is located.

Then, the state space L for the chain {Bt, t ≥ 0} is as follows:

L = {(b1, b2, . . . , bN)|b1 ∈ l1, b2 ∈ l2, ..., bN ∈ lN} .

Hence, the state definition results in a state space with (3 |J |+1)N states, and the size

of the state space increases exponentially with the increasing number of vehicles. Due

to this complexity and computational burden, the exact queueing model is not used to

evaluate performance measures in this thesis. In order to account for the uncertainties,

a discrete event simulation model is constructed to evaluate the performance measures

of the system resulting from a candidate solution for the EMS system and proposed

models are compared to the simulation of the exact system in the rest of the study.

In the next section, we briefly explain the research conducted on EMS vehicle location

problem within the scope of this thesis.
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1.2 Proposed Methods and Models

We study the EMS vehicle location problem in three layers. First, we focus on

equity aspects resulting from the location decision of vehicles in emergency medical

systems. Then, we propose decomposition methods based on queueing theory to

assess the performance measures of the EMS system under a given location solution.

Lastly, we propose mixed integer nonlinear problems (MINLP) with various objective

functions incorporating closed form formulations for the performance measures of the

system based on decision variables.

EMS systems provide service to the public under certain criteria to be met by service

providers. Those criteria are mostly on response time to incidents where a certain

threshold to be satisfied in at least a predetermined fraction of the incidents similar

to the threshold by NHS-England (2015). However, the differences among regions

in quality of service could be overlooked due to use of overall measures as the one

in "90% of life-threatening incidents" . Hence, the equity in EMS systems is an

important topic that needs to be discussed in EMS vehicle/facility location problems

explicitly. However, the literature on equity in EMS systems are scarce as it is later

discussed in Chapter 2 in more detail. Therefore, we study the EMS vehicle location

problem from an equity perspective in Chapter 3. We use several location models

with varying objective functions and/or constraints to show the effect of models on

equity. An extensive computational study is conducted by using a discrete event

simulation model and a ranking selection algorithm to find optimal solutions to the

problem based on simulation study. The problem instances for the computational

study are constructed by changing the network features such as distribution of demand

regions over the plain, number of vehicles to be located and incident handling rate.

In Chapter 3, we discuss the equity in emergency medical services by addressing the

unbalanced service quality among regions due to limited resources. An extensive

computational study shows the effect of modeling approach or network features on

equity in emergency care.

The problem environment incorporates stochastic processes which enables us to use

queueing theory to assess the performance of an EMS system. However, the size

of the exact queueing model that needs to be constructed increases exponentially
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in the number of vehicles and regions. Therefore, we rely on simulation study

for the experimental study in Chapter 3. Although we use a ranking and selection

algorithm to select best solutions among feasible solutions for the problem instances,

the assessment of the performance of the feasible solutions still requires significant

computation power and time. Therefore, we study on decomposition methods to

assess the performance of an EMS system based on queueing theory without requiring

to construct the exact queueing model in Chapter 4. The exact queueing model is

decomposed into interdependent queueing models in an effort to approximate the

performance measures of the EMS system under the exact queueing model. The

interdependence between queueing models in the decomposition methods results in

a set of nonlinear equations that needs to be solved simultaneously in order to assess

the steady state probabilities. In Chapter 4, a solution approach is proposed for

the nonlinear equations and, the performance measures of the exact queueing model

are estimated based on the steady state probabilities of the interdependent queueing

models. An extensive computational study is conducted to show the performance

of the decomposition method in estimating the performance measures of the EMS

system, including real-life problem instances. In addition, an evolutionary meta-

heuristic algorithm is proposed to find solutions to the optimization problems using

the decomposition methods. The meta-heuristic algorithm uses the decomposition

method to assess the objective function value of feasible solutions and finds a best

solution for the optimization problem based on evolution. Hence, we propose a

method to assess the performance measure of the EMS system and a genetic algorithm

to find solutions for the optimization problems based on queueing theory for the EMS

vehicle location problem in Chapter 4.

As it is explained above, the estimation of the performance measures of an EMS

system relies on the queueing models in Chapter 4. EMS system is decomposed

into interdependent queueing models, and performance measures of the EMS system

are estimated based on the steady-state distributions of those interdependent models.

The decomposition methods proposed requires algorithmic solution approaches in

approximating the steady-state distribution which is the solution to a nonlinear set of

equations. Therefore, the decomposition methods are computationally burdensome

in comparison to closed-form mathematical models for which commercial solvers
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could be easily exploited. Therefore, approximate closed-form formulations for

the performance measures of the EMS systems are studied in Chapter 5. A

similar approach to Chapter 4 is taken and EMS system are represented as

separate independent queueing models. The major difference is the assumption

of independence among queueing models in Chapter 5. This assumption results

in a linear set of equations which needs to solved to assess the steady-state

distribution. Hence, the steady state distributions could now be expressed as a

function decision variables in the constraints of a mixed integer program. Based

on this structure, several objective functions are constructed based on the decision

variables in nonlinear form. Thus, several mixed integer nonlinear programming

models are proposed for EMS vehicle location problem in Chapter 5. In the

computational study, those models are evaluated with commercial solvers and the

results are compared with the optimal solutions found by complete enumeration. The

performance of models are compared with the simulation-based ranking selection

algorithm, proposed decomposition methods and a widely-known probabilistic model

for EMS location problem, maximum expected coverage location problem by Daskin

(1983).

1.3 Contributions and Novelties

The contribution of this thesis can be summarized as follows.

In Chapter 3, we lay the ground for equity discussions in the EMS vehicle location

problem by addressing unbalanced service quality among demand regions resulting

from the limited resources. We work on various modeling approaches to close

the gap between existing research and fairness in emergency care from a Rawlsian

perspective. We bring conventional models into the equity discussion as well as

new ones in a stochastic problem environment. An extensive numerical study is

conducted focusing on network features that could affect the performance of different

approaches. By revealing the trade-off between overall performance and equity with

the help of a structured experimental study, we show that models based on overall

performance measures ignore other essential criteria, and conclude that there is a

room for improvement in terms of equity.
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In Chapter 4, decomposition methods are proposed to approximate the performance

measures of exact system without needing to construct computationally cumbersome

queueing models. For the proposed models, it is shown that there exists at least one

solution to the resulting set of nonlinear equations and the performance measures

could be estimated based on that solution. Differently from the studies in the

literature, the vehicles at the same location are prioritized so that the effect of

an additional vehicle at that location on the existing vehicle’s performance could

be observed. An easy-to-apply meta-heuristic algorithm is proposed to use the

decomposition method in the optimization problems and find solutions for the EMS

vehicle location problem based on queueing theory.

In Chapter 5, closed form formulations for performance measures are derived

based on separate queueing models for the vehicles. Those formulations are used

in the mixed integer nonlinear problems (MINLP) for which commercial solvers

could be used to find optimal solutions. Differently from studies in the literature,

there is no need for estimating the problem parameters like busy probability of

vehicles in advance.The proposed models are easier to construct and solve with

respect to approximation algorithms or decomposition methods in the literature where

stochastic processes are included in the problem definition. Hence, the proposed

MINLP models enable decision makers incorporate uncertainties in the problem

environment directly in the estimation of the parameter of the models based on

queueing theory while still keeping the models relatively easy to solve since only

the objective functions are nonlinear.

1.4 The Outline of the Thesis

The outline of the thesis is as follows. In Chapter 2, a literature review on emergency

vehicle location problems is presented including widely known deterministic models,

probabilistic models and models using queueing theory to assess performance of such

systems. A separate section is dedicated to the studies focusing on equity in EMS

location problems. In Chapter 3, equity in EMS vehicle location problem is discussed

and a comprehensive computational study is presented. In Chapter 4, we present

decomposition methods to evaluate performance measures of EMS system. In Section
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5, we present MINLP models for EMS vehicle location problem. In Section 6, the

thesis is concluded with a summary of findings and contributions.

9



10



CHAPTER 2

LITERATURE REVIEW

In this chapter, a literature review is presented focusing on emergency facility/vehicle

location problems.

Facility location problems could be separated into three categories as p-median,

p-center and covering problems. The building blocks of p-center and p-median

problems are first proposed by Hakimi (1964) to find optimum locations of switching

centers, which later on extended in various studies for the EMS facility/vehicle

location problem. In p-center problem, the maximum distance to a facility is

minimized whereas a weighted measure is minimized in p-median problem. The

first covering problem proposed for locating emergency facilities is the location set

covering problem (LSCP) by Toregas et al. (1971).

Both deterministic and probabilistic models are used to locate service vehicles

such as ambulances and corresponding facilities. We first present very well-known

deterministic models used in emergency facility location problem and continue with

probabilistic models. Lastly, the studies in the emergency facility/vehicle location

problem focusing on equity are presented.

2.1 Deterministic models

As mentioned earlier, Toregas et al. (1971) is the first to formulate LSCP for

emergency facilities. The coverage defined in terms of a maximal service distance

where nodes are assumed to be covered if there are at least one facility within the

maximal service distances. The objective of LSCP is to minimize the number of
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facilities given all nodes are covered. Let xj be the binary decision variable which

is equal to 1 if a facility is located at node j and 0; otherwise. dji is the distance

from node j to node i and Ni is the set of nodes within s distance of node i,

Ni = {j = 1, . . . , n|dji ≤ s}. Then, LSCP is constructed as follows:

Minimize
n∑

j=1

xj (2.1)

subject to:
∑
j∈Ni

xj ≥ 1, ∀i = 1, . . . , n, (2.2)

xj ∈ {0, 1} , ∀j = 1, . . . , n. (2.3)

Church and ReVelle (1974) propose maximal location covering model (MCLP) that

is to maximize the number of regions covered where coverage of a region is assessed

based on the existence of a facility within a travel distance under a threshold. Let I

be the set of demand nodes, J be the set of facility sites, Ni be set of facility sites that

can cover demand node i under threshold travel distance s, ai be the population to be

served at demand node i and P be the number of facilities to be located. Let xj be the

binary decision variable which is equal to 1 if a facility is located at node j and 0 and

yi be the binary variable which is equal to 1 if demand node i is covered by at least

one facility. According to the parameters and decision variables, MCLP is written as

follows:

Maximize
∑
i∈I

aiyi (2.4)

subject to:
∑
j∈Ni

xj ≥ yi, ∀i ∈ I, (2.5)

∑
j∈J

xj = P, (2.6)

xj ∈ {0, 1} , ∀j ∈ J, (2.7)

yi ∈ {0, 1} , ∀i ∈ I. (2.8)

Daskin and Stern (1981) is the first to introduce multiple coverage of the demand

regions into modeling with hierarchical objective set covering model (HOSC). In

HOSC, the number of vehicles located is minimized while maximizing the number

of times that demand regions are covered. Later, Hogan and ReVelle (1986) propose

12



backup coverage problem, BACOP 1 which maximizes the population covered twice

and BACOP 2 which maximizes the weighted average of population covered once

and covered twice given the number of vehicles. While previous multiple coverage

models use a single threshold for coverage, Gendreau et al. (1997) propose Double

Standard Model (DSM) and use double coverage and varying coverage thresholds.

Berman and Krass (2002) extend MCLP and propose generalized maximal location

covering model by allowing partial coverage based on distances. Drezner et al. (2004)

propose gradual covering problem based on a linear coverage function. Karasakal

and Karasakal (2004) extend MCLP and propose MCLP-P in the presence of partial

coverage where the coverage function is allowed to be continous or discrete; linear

or nonlinear. Differently from previous models, Berman et al. (2009) assume that

every vehicle can cover a region at certain levels based on the distance and a region

is covered only if the aggregate coverage provided by vehicles exceeds a certain

threshold.

2.2 Probabilistic models

Probabilistic studies mainly focus on providing coverage with a probability which

is based on a threshold response time or availability of the vehicles. Aly and White

(1978) handle uncertainty that is related to problem inputs in coverage criterion where

the response time for an emergency facility is a random variable and a demand is

considered as covered if the response time is less than and equal to a threshold.

Other studies focusing on the varying availability of the vehicles. Maximum

expected covering location problem (MEXCLP) by Daskin (1983) incorporates busy

probabilities of vehicles into the mathematical model. Let M be the number of

facilities to be located, N be the number of nodes in the network, hk be the demand

generated at node k, dik be the distance between site i and node k, aki be a parameter

which is equal to 1 if a vehicle at site i covers node k meaning dik ≤ D and 0

otherwise. p states the probability that a facility is not working. Let xi be a decision

variable which is equal to 1 if a vehicle is located at site i, and yjk is a decision

variable that is equal to 1 if node k is covered by at least j vehicles, 0 otherwise.
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Then, MEXCLP as follows:

Maximize
N∑
k=1

M∑
j=1

(1− p)pj−1hkyjk (2.9)

subject to:
M∑
j=1

yjk −
N∑
i=1

akixi ≤ 0, k = 1, ..., N (2.10)

∑
i∈I

xi ≤ M (2.11)

xi ≤ M, integer, i = 1, ...,M (2.12)

yjk ∈ {0, 1} , j = 1, ...,M, k = 1, ..., N. (2.13)

Some deterministic models are extended as well in order to introduce the uncertainties

in the system into the models. ReVelle and Hogan (1988) extend LSCP by introducing

a reliability constraint and propose probabilistic location set covering problem

(PLSCP). The reliability constraint relies on the estimation of the probability of a

demand being covered by one the vehicles that are closer to the demand region than a

certain threshold. For the constraint, the number of vehicles that needs to be located

within the threshold radius of every region is calculated based on the estimation of

the local buys fractions of vehicles and the required reliability level.

PLSCP is as follows:

Minimize
n∑

j=1

xj (2.14)

subject to:
∑
j∈Ni

xj ≥ bi, ∀i = 1, . . . , n, (2.15)

xj ≥ 0, integer ∀j = 1, . . . , n. (2.16)

where bi is the smallest integer satisfying 1− (Fi/bi)
bi ≥ α. Fi is the daily fractional

workload that is shared among
∑

j∈Ni
xj many vehicles which can cover node i.

Then, (Fi/bi)
bi is the probability of all bi vehicles covering node i being busy and

1− (Fi/bi)
bi is the reliability level for node i given bi.

Later, ReVelle and Hogan (1989) propose the maximum availability location problem

(MALP) based on the same reliability structure of PLSCP. In MALP, the objective is

to maximize the population covered with reliability α. The version of the MALP that
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uses local busy fractions is as follows:

Maximize
∑
i∈I

fiyibi (2.17)

subject to:
bi∑

k=1

yik ≤
∑
j∈Ni

xj, ∀i ∈ I, (2.18)

yik ≤ yik−1, k = 2, ..., bi, i ∈ I, (2.19)∑
j∈J

xj = p (2.20)

xj ≥ 0, integer, i = 1, ...,M (2.21)

yik ∈ {0, 1} , k = 1, ..., bi, i ∈ I. (2.22)

where fi the population at node i, yik is equal to 1 if there exists k servers covering

node i and 0 otherwise, and bi is the smallest integer satisfying 1− (Fi/bi)
bi ≥ α.

Later, several models are constructed based on the models MEXCLP and MALP.

Ball and Lin (1993) propose a reliability model by imposing an upper limit for the

probability that a demand call is not met while incorporating the randomness of

demand calls in the calculation of the probability of failure, differently from MALP.

Sorensen and Church (2010) propose local reliability-based maximum expected

covering location problem (LR-MEXCLP) where the maximum expected coverage

objective of MEXCLP and local reliability estimation of MALP are integrated.

El Itani et al. (2019) propose a bi-objective model combining MEXCLP and MALP

to maximize expected coverage while minimizing the cost of using external resources

(ambulances) to increase coverage.

Another deterministic model that is extended in a way to incorporate uncertainties is

DSM by Gendreau et al. (1997). Liu et al. (2016) propose a probabilistic DSM where

every demand region is covered at east once within the secondary coverage threshold

while ensuring some portions of the demand regions are covered with a given service

reliability level in the first and secondary coverage threshold.

Differently from previous studies, Erkut et al. (2008) propose a new measure for the

objective function. They construct a survivability measure based on travel times and

propose maximal survival location problem where the expected number of patients

who survive is maximized. All the models mentioned utilize objective functions that
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are representative of system-wide (overall) performance such as minimum average

weighted distance, maximum number of covered location and maximum expected

coverage.

Another stream of research in probabilistic studies uses Queuing Theory to assess the

performance measures of emergency service systems. Queuing Theory is introduced

in location models by Larson (1974) with the Hypercube Queuing Model (HQM).

The model analyzes vehicle location-allocation and districting in emergency response

units operated as server-to-customer services. With HQM, various performance

measures such as travel times and work-loads are obtained from the steady-state

probabilities of the system. Jarvis (1985) proposes an approximation algorithm based

on HQM to find the performance of systems with distinguishable servers and general

service time distributions.

Several studies use HQM to measure the performance of the systems such as Sacks

and Grief (1994), Brandeau and Larson (1986), Iannoni and Morabito (2007), Takeda

et al. (2007). HQM is extended for different service rates for each server by

Mendonca and Morabito (2001) to assess the mean response time of the system. In

the studies of Iannoni and Morabito (2007) and Takeda et al. (2007), service time

variations resulting from the variations in travel times to the demand location are

considered insignificant with respect to the sum of variations in set-up time, on-scene

service time and travel time back to the vehicle location. Halpern (1977) states that the

estimations for service times in the study of Mendonca and Morabito (2001), where

variations in the travel times are considered to be of second-order, give questionable

results where travel time is a significant part of the service time.

Saydam and Aytuğ (2003) use HQM in a genetic algorithm to find location-specific

server busy probabilities and employ these probabilities in the estimation of expected

coverage. Iannoni et al. (2008) use a genetic algorithm to find the locations for EMS

servers, allowing only one server at a single location while using service rates specific

to servers. Iannoni et al. (2009) and Iannoni et al. (2011) use HQM in an optimization

environment for location and districting decisions of EMS servers on highways with

alternative objectives. Geroliminis et al. (2009) extend HQM and develop a Spatial

Queuing Model (SQM) by defining non-identical service times for servers that take
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into account the demand call’s characteristics (inter-district or intra-district response).

In a different study, Geroliminis et al. (2011) work on a large-scale system to deploy

emergency response mobile units. They first divide the area into districts and find the

optimal locations in these districts with the help of a genetic algorithm. Akdogan et al.

(2018) extend SQM further differentiating service rates specific to vehicle location-

demand region pairs and allowing multiple vehicles in a single location.

Approximation algorithms are studied in the location analysis of emergency service

vehicles as well. Boyacı and Geroliminis (2015) propose approximation algorithms

for large-scale networks with spatially distributed demand. They propose a

partitioning algorithm that is used to find optimal server locations. Atkinson et al.

(2008) propose ad-hoc heuristics to assess the probability of loss using algorithms

based on the HQM. Budge et al. (2009) propose an algorithm to find the dispatch

frequencies of vehicles. Differently from the previous studies, they allow locating

multiple vehicles at a single location. Neither of the studies in Atkinson et al. (2008)

and Budge et al. (2009) considers an optimization problem. Toro-Dı́az et al. (2015)

focus on reducing disparities between the mean response time of different regions

while employing algorithmic approximation method for vehicle dispatch fractions by

Budge et al. (2009) in an optimization problem.

Another stream of studies use queueing theory to estimate busy probabilities of

emergency vehicles and utilize these in previously well studied models such as

MEXCLP, PLSCP and MALP. Marianov and ReVelle (1994) extends the assumption

of server independence in the PLSCP and propose Q-PLSCP. They use queueing

theory in order to find the right hand side value in (2.15). In another study, Marianov

and ReVelle (1996) extends MALP and propose queueing maximal availability

location problem (Q-MALP) by again relaxing the server independence assumption

and calculating the right hand side in (2.15) based on queueing models. Galvão et al.

(2005) extends the classical MEXCLP and MALP by dropping the assumptions of

server independence and common workload for servers. The authors embed HQM

by Larson (1974) into the problems and propose EMEXCLP and EMALP for which

they use local search methods to find solutions.
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2.3 Studies on Equity in EMS Vehicle Location Problem

Although various studies consider different aspects of the EMS location problem,

literature focusing on equity and fairness is scarce as it is also pointed out in two

literature review studies by Li et al. (2011) and Aringhieri et al. (2017). On equity,

no principle is commonly accepted. The studies incorporating equity have different

emphases on specific issues. Brandeau and Larson (1986) use inequity in ambulance

availability among regions as one of the primary performance measures in evaluating

alternative location decisions. Drezner et al. (2009) use a model to locate facilities,

not specific to EMS, minimizing the Gini coefficient as the equity measure. Mclay

and Mayorga (2010) use priority ratings for emergency calls and propose a model

that maximizes the number of high priority demand calls satisfying performance

requirements and report disparities in patient survival between urban and rural areas

according to changing response time thresholds. Chanta et al. (2014) propose bi-

objective models to reduce the disparity in covered demand between urban and rural

areas. Chanta et al. (2011) develop a p-envy location problem, modeling customer

dissatisfaction as a distance-based function and minimizing overall envy. Toro-Dı́az

et al. (2015) focus on reducing disparities among the mean response time of different

regions while employing the algorithmic approximation method for vehicle dispatch

fractions proposed by Budge et al. (2009). Along with Iannoni et al. (2008), Iannoni

et al. (2009) and Iannoni et al. (2011), the study of Toro-Dı́az et al. (2015) is one

of the few studies that uses the Queuing Theory to obtain performance measures

while considering equity. Khodaparasti et al. (2016) propose a bi-objective model

to locate EMS facilities while maximizing the efficiency and equity of the system

where minimizing the total number of uncovered demand zones is used as the equity

criterion. Although regulations impose restrictive performance requirements for

these systems, studies in the literature are scarce addressing equity in a stochastic

environment. Our study aims to explore some conventional models in relation to

equity systematically under different network features.
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CHAPTER 3

AN ANALYSIS OF EQUITY IN STOCHASTIC EMS VEHICLE LOCATION

PROBLEM UNDER VARIOUS LOCATION MODELS AND NETWORK

FEATURES

This chapter focuses on planning emergency medical service vehicle locations

as a strategic level problem from an equity perspective by examining important

performance criteria. As it is mentioned in Chapter 2, the studies focusing on equity

in this context is scarce although emergency medical service is one of the most

crucial services within the public health system. EMS operations are regulated by

governmental bodies as in the case of NHS England that (NHS-England (2015)) uses

priority categories for the emergencies with strict target performance to be achieved

by the operators such as 90% of life-threatening incidents to be responded to within 15

minutes. However, the differences of service quality among regions (which could be

defined by neighborhoods or political divisions) under limited resources remains an

important topic. In this chapter of the thesis, we study several conventional location

models that differ in the performance measures used in the objective function or

constraints for the emergency vehicle location problem in an effort to show the effect

of modeling approaches and network features on equity. The aim of this chapter is

not to propose models but rather assess the performance of some conventional models

in terms of equity.

To discuss equity, one first needs to define how it is conceived. In the literature,

various definitions for equity are employed. Bertsimas et al. (2011) identify three

alternative theories for social equity: Aristotelian equity, classical utilitarianism, and

Rawlsian equity. Aristotelian equity dictates the proportional allocation of resources

according to some pre-existing claims or rights of each party. This creates a problem
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regarding the determination of these claims or rights in society. Another theory

is classical utilitarianism which was widely influential in economics during the

19th century. Allocation of resources is realized in a way to maximize the sum of

utilities of individual parties. The third theory is proposed by Rawls (1971) based

on political philosophy. Rawlsian equity gives priority to the least well-off parties

to guarantee the highest minimum utility level. The drawback of this approach is to

impose inconvenience on almost all parties. In this chapter, we approach equity from

a Rawlsian perspective and use measures to assess the disparities among demand

regions to respect individuals’ equal rights in access to emergency care resulting from

modeling approaches.

We study the emergency vehicle location problem where the problem environment

involves uncertainty in incident handling times, travel times, and the occurrence of

emergency service demand. We use models to benefit the least well-off demand

regions in addition to models with widely used system-wide (overall) performance

measures as mean response time and expected coverage in Section 3.2. Region-wise

measures that may show the difference in service quality between demand regions

are utilized to compare the models. We specifically use the variance of region-wise

mean response time, the variance of region-wise lost demand, and the Gini coefficient

by Gini (1912). Regarding the uncertainty in problem parameters, we use simulation

optimization based on a fully sequential ranking algorithm, KN++, which is proposed

by Kim and Nelson (2006). The relationship between equity and network features

such as distribution of regions in the area, number of ambulances to be located, and

incident handling rate is investigated in the experimental study.

This chapter is organized as follows. The problem environment is further explained in

Section 3.1, and models under investigation are presented in Section 3.2. In Section

3.3, the details of the experimental study are given, results are analyzed from an equity

perspective. Lastly, concluding remarks are laid out in Section 3.4.
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3.1 Modeling Approach

We construct a mathematical model with only one set of decision variables, xi,∀i ∈ I ,

which indicates the number of vehicles located in vehicle location i. Let x⃗ be the

vector of decision variables, xi’s, representing a solution. The objective function

is defined as a function of x⃗ in the models. Different performance measures are

used in the objective function in the next section, also with the addition of different

constraints, forming alternative models to explore equity in EMS location problem.

Since the problem environment includes probabilistic aspects and the objective

function includes the average performance measures in the steady-state, there is no

closed-form formulation of the performance measures as a function of x⃗. In order

to evaluate the performance measures of the EMS system resulting from a candidate

solution x⃗, one needs to find the steady-state distribution of the EMS system and

evaluate the objective function value based on those. Therefore, the objective function

of the model is defined as a function of a candidate solution without introducing

further notations.

We use one of the commonly used objective functions in the literature, mean response

time, as a base model to compare with the models introduced later on. Mean response

time is one of the most critical measures that is taken into account for the evaluation

of emergency systems and it is based on the time passed between a demand call and

arrival of a vehicle at the corresponding demand location.

Base model P1, that uses the mean response time of the system as the objective

function, is defined as follows:

(P1) Minimize R(x⃗) (3.1)

subject to:
∑
i∈I

xi = N (3.2)

xi ≥ 0, integer, ∀i ∈ I. (3.3)

where R(x⃗) is the mean response time of the system under given solution x⃗ and (3.2)

enforces N vehicles to be located.

In the next section, we present location models that differ in objective function or
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constraints from the base model. In an experimental study, these models are examined

to understand how the equity imposed by the models changes.

3.2 Location Models

Eight different location models for EMS vehicle location problem is presented in this

section. These models are constructed considering some of the important criteria

related to the performance of emergency systems.

3.2.1 Deterministic coverage constraint for a balanced service

Using a deterministic coverage constraint based on mean travel times is a way of

incorporating equity consideration into models, which narrows down the solution

space in the meantime. The vehicle locations that can cover a specific demand region

are constrained by a time threshold. A demand region is assumed to be covered if

there is a vehicle located within the threshold time, considering the mean travel time

between the region and vehicle location. Let τ be the threshold travel time in minutes

and ωij be the mean travel time in minutes between vehicle location i and demand

region j. For every region j, we define a set Wj consisting of vehicle locations

covering demand region j as follows:

Wj = {i ∈ I : ωij ≤ τ} ,∀j ∈ J.

Let uj be the demand fraction of region j in total demand and equals λj∑
k∈J λk

. The

model P2 below enforces that at least α fraction of total demand is covered by at least
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one vehicle.

(P2) Minimize R(x⃗) (3.4)

subject to:
∑
i∈Wj

xi ≥ yj, ∀j ∈ J (3.5)

∑
j∈J

ujyj ≥ α (3.6)

∑
i∈I

xi = N (3.7)

xi ≥ 0, integer, ∀i ∈ I (3.8)

yj ∈ {0, 1} , ∀j ∈ J. (3.9)

A new decision variable is introduced to formulate the coverage criterion in P2. yj is

a binary decision variable taking the value of one if at least one vehicle is located in

one of the vehicle locations in set Wj and zero otherwise in (3.5) for every j. (3.5)

determines the regions covered in a solution and (3.6) enforces the threshold coverage

where a feasible solution should cover a set of regions whose demand fractions, uj ,

add up to at least α fraction of the total demand.

3.2.2 Chance constraints in assessing coverage

Notice that coverage criterion in P2 is utilized to define feasible solutions by means

of constraints in the model and the coverage definition is based on mean travel time

between regions. This approach is deterministic and it disregards the uncertainty in

travel times since a certain region is assumed to be covered if there is a vehicle located

in a location having mean travel time to the region less than threshold time τ . All

demand of this region is assumed to be served within the threshold time, however this

is a clear overestimation of the demand met within this threshold due the uncertainty

in travel times. In addition, some demand calls from "not-covered" regions could be

covered within threshold time based on realizations as well. It is also noted that, in

P2, there is no consideration about the amount of demand that could be served from

each vehicle location, i.e. the server capacity. The assumption that a vehicle covers

the whole demand of the regions which it is the nearest cannot be justified without

any further analysis of the problem environment.
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There are regulations in place related to the concerns above, for example the one

imposed by one of the four national health service institutions of the United Kingdom,

NHS-England (2015). This regulation requires 90% of the life-threatening medical

incidents to be responded within 15 minutes. One should make sure that such

deterministic coverage constraints serve the purpose of this requirement and it leads

to a more balanced system in terms of service quality, rather than just narrowing down

the solution space.

Due to the uncertainties involved as well as the regulations, chance constraints are

proposed to handle those concerns. Since travel times are random variables defined

by known probability distribution functions, it is possible to suggest probabilistic

constraints.

In the definition of the coverage constraint of P2, it is required to cover α fraction of

the total demand under threshold time τ . Since the travel time from vehicle location

i to region j is a random variable, we can bound the probability of serving time for a

demand call from region j with a vehicle from location i being under threshold τ by

α. For a vehicle location i and region j, the constraint is given as:

P (Tij ≤ τ) ≥ α, (3.10)

where Tij is a random variable representing travel time between location i and region

j.

Recall that Tij is assumed to be exponentially distributed with a mean of ωij . Let FTij

be the cumulative distribution function of random variable Tij . Then, (3.10) can be

written as

FTij
(τ) ≥ α.

Hence, we can further break down (3.10) into

τ ≥ −ωij ln(1− α),

where FTij
(τ) = 1− e

τ
ωij .

therefore, we can define a set Vj as the set of vehicle locations that could serve region

j under threshold time τ with probability greater than or equal to α as

Vj =

{
i ∈ I : ωij ≤ − τ

ln(1− α)

}
,∀j ∈ I.
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Then, the following model, named as P3, is constructed using this set.

(P3) Minimize R(x⃗) (3.11)

subject to:
∑
i∈Vj

xi ≥ zj, ∀j ∈ J (3.12)

∑
j∈J

zj ≥ β (3.13)

∑
i∈I

xi = N (3.14)

xi ≥ 0, integer, ∀i ∈ I (3.15)

zj ∈ {0, 1} , ∀j ∈ J. (3.16)

A new binary decision variable, zj , is introduced in P3. By (3.12), zj takes the value

of one if at least one vehicle is located in one of the locations in Vj meaning there exist

at least one location with a vehicle that could serve demand region j under threshold

time τ with probability greater than or equal to α. It is zero, otherwise. (3.13) requires

that at least β fraction of the demand regions should have access to a vehicle under

threshold time τ with probability greater than or equal to α. Therefore, P3 accounts

for the uncertainty in travel times with the help of these constraints, and it enforces a

more realistic coverage criterion, differently from P2.

3.2.3 Minimizing worst region-wise mean response time

The quality of service for individual regions is as important as system-wide

performance for emergency systems. The variation in mean response time among

the regions could be high, resulting in unfair service quality. In addition to coverage

constraints, region-wise mean response time could be another important measure to

include in modeling EMS vehicle location problems. We construct the model P4

based on this proposition by minimizing the maximum of mean region-wise response

times. Let Rj(x⃗) be the mean response time for region j under solution x⃗, P4 is given
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as follows:

(P4) Minimize max
j∈J

(Rj(x⃗)) (3.17)

subject to:
∑
i∈I

xi = N (3.18)

xi ≥ 0, integer, ∀i ∈ I. (3.19)

The objective function in (3.17) is of min-max type and it puts the emphasis on the

least well-off region in line with Rawlsian equity.

3.2.4 Maximizing coverage

For a given location solution, another important measure is actual or realized

coverage, i.e. the actual fraction of demand calls covered within threshold time τ .

The actual coverage could be incorporated into the EMS vehicle location models as

an objective function, rather than just as a constraint.

The model, P5, is constructed to maximize the realized coverage. A demand call is

treated to be covered if the realized travel time to the demand region is shorter than

threshold time τ . Let C(x⃗) be the expected fraction of total demand that is covered

under threshold time τ for solution x⃗.

P5 is written as follows:

(P5) Maximize C(x⃗) (3.20)

subject to:
∑
i∈I

xi = N (3.21)

xi ≥ 0, integer, ∀i ∈ I. (3.22)

C(x⃗) is calculated as the ratio of total number of covered demand calls based on

realized values to the total number of calls generated. Since a demand call is assigned

a vehicle if there is any available at the time of the call and assumed to be lost

otherwise, P5 takes both the uncertainty in travel times and vehicle availability into

account.
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3.2.5 Positive deviation from average region-wise mean response time

While considering the least well-off region like in P4 is one way of enforcing

equity, focusing on variations in region-wise measures is another one. According

to a Rawlsian equity perspective, variations in region-wise measures are not desired.

For this reason, we introduce an objective function that minimizes the total positive

deviation of individual region-wise mean response times from the overall average

region-wise mean response time (i.e. the sample mean). By this way, it is aimed to

minimize the positive deviation and variance with a single metric.

Following the above discussion, a new model, P6, is given as:

(P6) Minimize
∑
j∈J

[
Rj(x⃗)−

∑
k∈J Rk(x⃗)

|J |

]
+

(3.23)

subject to:
∑
i∈I

xi = N (3.24)

xi ≥ 0, integer, ∀i ∈ I. (3.25)

where [ . ]+ = max {0, .}.

3.2.6 Positive deviation from an average threshold travel time

While minimizing the total positive deviation from the average region-wise mean

response time is meaningful in decreasing the variance of region-wise mean response

times, it does not impose any restriction on the overall mean response time of the

system. To account for the mean response time of the system in the model, we use

the threshold time τ and construct a new objective function that penalizes based on

the mean region-wise response time values exceeding τ . In this model, the total

positive deviation of region-wise mean response time from the threshold time, τ , is

minimized.

(P7) Minimize
∑
j∈J

[Rj(x⃗)− τ ]+ (3.26)

subject to:
∑
i∈I

xi = N (3.27)

xi ≥ 0, integer, ∀i ∈ I. (3.28)
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where [ . ]+ = max {0, .}.

The objective function in (3.26) puts an indirect bound on mean response time,

R(x⃗), by minimizing positive deviations from the threshold. Hence, this does not

only decrease variations among regions but also considers system-wide average

performance as well.

3.2.7 Positive deviation from average region-wise lost demand

Lost demand fraction is another measure that can be evaluated from an equity

perspective. This measure corresponds to the part of the society that fails to receive

service under an EMS system in consideration. Similar to P6, we propose an

objective function which minimizes the total positive deviation of individual region-

wise lost demand fractions from the overall average of fractions.

Let Hj(x⃗) be the fraction of lost demand in region j under solution x⃗. Model P8 can

be expressed as:

(P8) Minimize
∑
j∈J

[
Hj(x⃗)−

∑
k∈J Hk(x⃗)

|J |

]
+

(3.29)

subject to:
∑
i∈I

xi = N (3.30)

xi ≥ 0, integer, ∀i ∈ I, (3.31)

where [ . ]+ = max {0, .}.

3.2.8 Limiting positive deviation from threshold travel time

We introduce another model by imposing a limit on the total positive deviation of

region-wise mean response time from threshold time τ . The new constraint requires

the sum of positive deviation from τ should be less than or equal to σ ∈ [0, 1/2]

fraction of the total deviation, hence it favors solutions with Rj’s around τ . Then,
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proposed model with the new constraint is

(P9) Minimize R(x⃗) (3.32)

subject to:
∑
i∈I

xi = N (3.33)

∑
j∈J

[Rj(x⃗)− τ ]+ ≤ σ
∑
j∈J

|Rj(x⃗)− τ | (3.34)

xi ≥ 0, integer, ∀i ∈ I, (3.35)

where [ . ]+ = max {0, .}.

(3.34) makes the problem infeasible if there exist no solutions where the total positive

deviation of region-wise mean response times from τ is smaller than or equal to σ

fraction of the total absolute deviation. Lack of such feasible solutions indicates that

the model would result in an optimal mean response time value higher than τ without

considering (3.34) where σ ∈ [0, 1/2] . Through the new constraint, then, we focus

on the least well-off regions and the mean response time of the system together by

eliminating solutions that could lead to mean response time values higher than τ .

3.3 Experimental Study

To evaluate the models presented in Section 3.2, an extensive experimental study is

conducted with various problem instances having different network configurations.

Problem instances are generated in a specific way to observe the effect of network

features such as geographical distribution of regions, number of vehicles, and incident

handling rate. Four performance measures are used for assessing the models; the

mean response time, the variance of region-wise mean response time, the variance of

region-wise lost demand, and the Gini coefficient. The details of the computational

framework is presented in the Section 3.3.1.

3.3.1 Computational framework for the experimental study

The experimental study consists of two main parts as simulation module and analysis

module. In the simulation module, the best solution for a problem instance under each
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model is selected. In the analysis module, the performance measures given above for

each best solution are evaluated and an analysis of modeling approaches is performed

based on the corresponding measures. In Figure 3.1, a flowchart is given to present

the experimental study steps from the problem instance generation to the analysis of

the effect of modeling approaches and network features.

Figure 3.1: Computational framework

The computational burden of the experimental study mainly lies in the simulation

module where KN++ algorithm is used to select the best solution for a problem

instance under each model (See Section 3.3.3 for the details). In the execution of

KN++ algorithm, all feasible solutions are evaluated with the simulation model for
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the initial stage in order to eliminate a set of inferior solutions. Since the simulation

runs of the remaining solutions are iterated until a termination condition is satisfied,

the computational log of the simulation run for each feasible solution such as demand

arrival time, travel time realizations and incident handling time realization has to

be stored. The computational burden of selecting the best solution under a model,

hence, depends on the model of choice and the problem instance. The number of

feasible solution that needs be assessed ranges from 66 to 38760 in the experiments.

Due to the size complexity of the data stored in the computational environment, all

data regarding the simulation run of a feasible solution is written to a separate text

file. Then, the data are read from these text files to iterate the simulation runs of the

remaining feasible solutions after the initial stage. The generation of the problem

instances used in the experimental study and the selection of the best solutions are

explained in Section 3.3.2 and 3.3.3, respectively.

3.3.2 Test bed

For the experiments, the problem instances are generated considering different

network specifications. Three distribution patterns of demand regions over the plain

are considered.

• Uniform: the regions are uniformly distributed over the area.

• Center-accumulated: there is an accumulation of regions in the center of the

plain.

• Outer-accumulated, there is an accumulation of regions in an outer corner of

the plain.

These patterns allow us to test the models under instances with different average

pairwise distances between regions which would affect the resulting mean response

time under the best solutions.

The numbers of regions and vehicles are chosen regarding the computational burden

in the experiments. Every region is considered as a vehicle location candidate.
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Therefore, the number of feasible solutions in the models increases exponentially

with the number of vehicles and regions. All feasible solutions under a mathematical

model are evaluated using a simulation model, meaning that, computational effort

increases in the number of regions and vehicles. In accordance, the number of regions

is set to 15 where all are defined as candidate vehicle locations, and 4, 5 or 6 vehicles

are considered to be located.

Instances for the three distribution patterns with 15 demand regions are seen in Figure

3.2.

Figure 3.2: Distribution patterns of demand regions

The incident handling rate is set to 6 and 12 incidents per hour to observe the changes

in the performance measures of the models when the proportions of the components

in service time, namely travel time and incident handling time, change.

In total, 18 instances are generated based on full factorial design using three factors:

Distribution Pattern with three levels, Number of Vehicles with three levels (4,5 and

6) and Incident Handling Rate with two levels (6 and 12).

Demand rate is assumed to be the same for every region as 0.5 unit per hour.

Following values are set as the model parameters, minimum required coverage, α,

is 0.90, the threshold time, τ , is 10 minutes, β in P3 is 0.5 and σ in P9 is 0.5.

3.3.3 Selecting the best solution for a model

Since there is no closed-form formulation for the models, a simulation model is

constructed and coded in Matlab environment to simulate the emergency medical
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systems. The simulation model is constructed to simulate the system for the number

of vehicles which corresponds to a given feasible solution in a model. Discrete event

simulation is used, and performance measures of the emergency system are obtained

accordingly.

The best solution for all models are found using KN++ algorithm by Kim and

Nelson (2006) which relies on the estimates of the objective functions obtained by

simulation. KN++ is a fully sequential selection algorithm that uses indifference

zones to eliminate inferior solutions and terminates with a predefined number of

alternatives remain.The algorithm tries to guarantee to select the best system with

a predefined probability by comparing the long run average performance of the

systems. It stops when the best system is at least a given amount better than the rest

of the systems. In our context, for a given model, each feasible solution constitutes

an alternative system that needs to be evaluated against others.

The procedure starts with a first-stage sample of all systems. The initial observation

count is set by the decision-maker. Based on the first-stage sample, an estimator for

the asymptotic variance of the difference between alternative systems is calculated.

This estimator is used to find a continuation region, and the systems falling out of

this region are eliminated. Then, simulation models are run for one more observation

for each remaining system, and the objective function values are checked against the

continuation region again for possible elimination. The algorithm terminates when a

predefined number of systems remains.

Let Ost be the objective function value of feasible solution s after observation t, for

s = 1, 2, .., k and t = 1, 2, ..., n0 where n0 is the initial observation count, and Ōs(n0)

is the mean of first n0 observations from system s. An observation for a feasible

solution corresponds to one demand call that is satisfied. (For P8, it corresponds to

one demand call that arrives to the system since the objective function is calculated

based on the lost demand fractions.)

KN++ uses batch means to calculate the asymptotic variance which is used to find

a continuation region. Assume n observations Os1, Os2, ..., Osn are divided into b

contiguous batches, each of length m. Let Ōs,a,m be the ath batch mean from system

s. Then, the asymptotic variance, mV 2
b , that is used in the calculation of indifference
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zone can be found by the following estimator

mV 2
b ≡ m

b− 1

b∑
a=1

(
Ōs,a,m − Ōs(n)

)2 (3.36)

where Ōs(n) is the mean of first n observations from system s.

The details of KN++ algorithm can be seen in Algorithm 1.

Algorithm 1 KN++
Setup:

Select confidence level 1/k < 1 − γ < 1, indifference-zone parameter δ > 0,

first-stage sample size n0 ≥ 2, initial batch size m0 < n0.

Calculate η as the solution to the equation,∑c
l=1(−1)l+1

(
1− 1

2
I(l = c)

)
e−

η
c
(2c−l)l = 1 − (1 − γ)1/(k−1), where the constant c

may be any non-negative integer.

Initialization:

Let S = 1, 2, ..., k be the set of systems in contention, and let h2 = 2cη.

Obtain n0 observations Ost, t = 1, 2, ..., n0, from each system s = 1, 2, ..., k.

Set observation counter r = n0 and mr = m0.

Update:

If mr or br has changed since the last update, then for all s ̸= u, s, u ∈
I , compute estimator mrV

2
su(r), the sample asymptotic variance of the difference

between systems s and u based on br batches of size mr.

Nsu = ⌊h2mrV 2
su(r)

δ2
⌋ and Ns(r) = maxu̸=sNsu(r).

If r ≥ maxs Ns(r) + 1, then stop and select the best system in S with the

smallest Ōs(r) as the best. Otherwise, go to Screening.

Screening:

Set Sold = S.

S =
{
s : s ∈ Sold and Ōs(r) ≤ Ōu(r) +Wsu(r) ∀u ∈ Sold, u ̸= s

}
where

Wsu(r) = max
{
0, δ

2cr

(
h2mrV 2

su(r)
δ2

− r
)}

.

If |S| = 1, then stop and select the system whose index is in S as the best.

Otherwise, take one additional observation Os,r+1 for each system s ∈ S, set r =

r + 1, and go to Update.
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KN++ requires a batching sequence (mr, br) to introduce more updates to ensure

convergence. Kim and Nelson (2006) use the following batching sequence from the

study of Goldsman et al. (2002) to update mr and br parameters as the algorithm

continues. Let n0 = b0m0 and r = n0 + 1, mr = m0, br = b0 and f = 2, ur =
√
r.

Every time another observation is realized in KN++ algorithm (for each new value of

r), mr and br are updated with respect to Algorithm 2.

Algorithm 2 Update of parameters mr and br
If (ur < m0 & r = fn0)

Set mr = mr−1

Set br = 2br−1

Set f = 2f

Else if (ur ≥ m0 & u(r) is integer)

Set mr = ur

Set br = ⌊r/mr⌋
Else

Set mr = mr−1

Set br = br−1

End if

Each instance is solved with models P1 - P9 using the simulation model. The best

solution for all models are found using KN++ algorithm by Kim and Nelson (2006).

For KN++ algorithm, first-stage sample size n0 is set to 50,000 demand calls for

P1, P2, P3, P5 and 100,000 calls for P4, P6 and P7 where steady-state behavior is

harder to reach due to the use of region-wise measures in the objective function. Initial

number of batches, b0, is set to 10 for all models. The confidence level γ, indifference-

zone parameter δ and parameter c are set to 0.05, 0.01 and 1, respectively. KN++

algorithm is terminated when the best performing alternative has a 0.1 % difference

in the objective function value from the worst performing one. Then, the best solution

is selected randomly from the remaining alternatives.
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3.3.4 Evaluation of the performance measures

After finding the best solutions for each instance under each model (by KN++

algorithm), all performance measures are estimated by running the simulation model.

A total of 550,000 demand calls is simulated for every best solution in the simulation

model, and the performance measures are reported by using batch means where the

warm-up period is selected as 50,000 calls. Ten batches are constructed from the last

500,000 calls, and the batch mean of the performance measure is found. Analysis of

the performance measures is conducted based on this experimental procedure.

Let x⃗∗ be the optimal solution with the best objective function value for a model, and

O(x⃗∗) be the corresponding batch mean value of the measure O for this solution from

the simulation run taken after choosing the best with KN++. To compare the modeling

approaches, four performance measures are used, namely the mean response time,

R(x⃗∗), the variance of region-wise mean response time, V arRj(x⃗
∗), the variance of

region-wise lost demand, V arHj(x⃗
∗) and the Gini coefficient, G(x⃗∗).

Gini coefficient is a well known measure in economics and used as an indicator

of economic inequality. It is calculated based on the line of equality and Lorenz

curve. The Lorenz curve shows the proportion of cumulative income generated by

the cumulative share of the population, and it is a non-decreasing function in the

cumulative population. On the other hand, the line of equality represents a society

in which every individual has the same income. Gini coefficient is equal to twice the

size of the area in between the Lorenz curve and the line of equality.

In our problem setting, we use the Gini coefficient to find the inequality in mean

response time among regions. Cumulative mean response time and cumulative

demand are considered to calculate the Gini coefficient for the best solution for a

model where each region is a demand source.

In Figure 3.3, twice the size of the shaded area A gives the Gini coefficient for a

representative instance with five demand regions. Each point in Figure 3.3 shows the

percent of cumulative mean response time generated by the regions whose percent

cumulative demand adds up to the coordinate in x-axis.
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Figure 3.3: Graphical representation of Gini coefficient for a problem instance with 5

demand regions

3.3.5 Results and discussion

In this section, various measures are reported for the best solution for each problem

instance under models P1 - P7.

P8 is excluded from the analysis since objective function values are very small for all

feasible solutions of all instances, and KN++ reports a different best solution in every

run. This inconsistency is attributed to the fact that demand rates for all regions are

identical, resulting in lost demand fractions close to each other for all regions in each

feasible solution since there is no queuing and prioritization of the calls. Due to the

same reason, the variance of region-wise lost demand, V arHj(x⃗), is also excluded

from the performance measures used to assess the equity.

For Model P9, it is not possible to use KN++ algorithm since constraint (3.34) needs

to be assessed after every demand call met. This procedure would lead some solutions

to leave the alternative solution list and re-enter in another iteration, which is not

possible in the structure of KN++ algorithm. Instead, the best solutions reported for

P1 are checked whether they are feasible for P9 since both models have the same

objective function. It is seen that the best solutions for P1 do not violate (3.34), and

they are treated as the best solutions for P9 as well. Since P1 and P9 shares the same

best solutions, P9 is excluded from the further analysis.

The experimental results are reported in various ways to analyze the effects of
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network specifications and models on different performance measures. In Figure

3.4, R(x⃗), V arRj(x⃗) and G(x⃗) results are shown as bar charts with the first and

third quartiles for each model. (x⃗) is dropped from the notation of the performance

measures in the rest of the study to facilitate reading.

It is seen that P6 provides better equity among regions due to low V arRj and G

values, whereas the mean response time, R, is higher than other models. In all 18

instances, P6 gives the highest R and the smallest G values. In thirteen instances,

it provides the smallest V arRj values. These results show that P6 is the model that

yields the smallest variance in service quality and betters off equity among regions the

most. As expected, this results in a substantial increase in the overall mean response

time value.

From Figure 3.4, we observe that P1, P3, P5 show similar results in the performance

measures within each other. P4 and P7 are the other models which behave similarly.

To test the similarity and significance of the differences between models, hierarchical

clustering and statistical tests are used.

First, the performance measures used to quantify equity in the system, V arRj and G,

are checked for correlation to prevent confounding in the tests. It is seen that V arRj

and G are highly correlated with a correlation coefficient of 0.79. Since these two

measures are highly correlated, V arRj is dropped in the application of hierarchical

clustering. G is used as the equity measure since it is more sensitive to outliers than

V arRj as stated by Yitzhaki and Schechtman (2013), therefore it would be better in

assessing equity from a Rawlsian perspective.

Hierarchical agglomerative clustering is used to form clusters based on dissimilarity

between the models. In agglomerative clustering, each observation starts in its

own cluster, and pairs of clusters are merged based on a dissimilarity measure. In

this study, Mahalanobis distance is used as the dissimilarity measure. It considers

the correlation between multiple measures and removes the scale effect on them.

Mahalanobis distance between models Pm and Pn is found as follows:

d(Pm, Pn) =

√
(O⃗Pm − O⃗Pn)S

−1(O⃗Pm − O⃗Pn)
T (3.37)
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where O⃗Pm is a row vector of
(
R̄, Ḡ

)
, R̄ is the average mean response time and Ḡ is

average Gini coefficient under Pm over all instances and S is the covariance matrix

for the measures R and G.

As clusters emerge, single linkage is used to define the distance between the clusters.

In single linkage, the distance between clusters is taken as the distance between the

nearest neighbors of these clusters. Then, the two clusters with the smallest distance

are merged. The clusters are shown on a dendrogram which visualizes the merge

of clusters through the iterations with the corresponding dissimilarity values. The

models are clustered, starting with each model as a cluster itself, and merged with

the most similar ones until all models merged into one final cluster. The resulting

dendrogram for clustering of the models is presented in Figure 3.5.

Figure 3.5: Dendrogram with Mahalanobis distance

Initially, each model is a single cluster. P1 and P3 is the most similar pair to each

other in comparison to the other pairs and these models are clustered firstly. Then, P5

is grouped with the cluster of (P1, P3). The next closest clusters are the clusters of

P4 and P7, so they are clustered next. Then, P2 is clustered with the cluster of (P1,

P3, P5). Later, all models except P6 are clustered together before the final single

cluster. The most dissimilar model among all is P6, similar to our observation from

Figure 3.4.
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To check the statistical significance of the difference between performance measures

obtained under the best solution for models clustered together, we use full factorial

multivariate analysis of variance (MANOVA) since we have multiple response

variables as R and G.

The mathematical model, distribution pattern of regions, number of vehicles, and

incident handling rate are taken as factors. Model has a different number of levels

based on the comparison. Pattern has three levels as uniform, center-accumulated,

outer-accumulated. Number of Vehicles has three levels as 4,5 and 6, and Incident

Handling Rate has two levels as 6 and 12. For the statistical tests, we take ten

replications for each model’s best solution using the simulation model.

We apply MANOVA for four experiments where Model factor has levels of (P1,

P3), (P1, P3, P5), (P4, P7) as the first three clusters formed, and (P1 - P7) as

all models. In all four tests, p-values for all factors and interaction terms are smaller

than 2E−16. This result shows that Model, Pattern and Number of Vehicles, and their

interactions affect the performance measures R and G significantly in all MANOVA

models. Further details of MANOVA, and the test results for the experiment with

Model factor level (P1, P3) as an example are given in Appendix A.

In order to quantify the difference of models from the base model P1, we provide

the performance measures obtained under the best solutions in relative to the ones

obtained under the best solution for P1. The mean absolute percent deviation of

measures of the models, MAPD, from base model P1 is calculated for each measure.

Let k represents kth instance in the set of instances, K, then MAPD between model

Pm and base model P1 is found as:

MAPD =
100

|K|
∑
k∈K

∣∣∣∣OPm(k)−OP1(k)

OP1(k)

∣∣∣∣ (3.38)

where OP1(k) is the batch mean of measure O for the best solution in instance k under

P1.

We report the average positive percent deviations of the mean response time, R, of

the best solution in the models from P1. This measure for a model Pm is
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avgpd(%) =
100

|K ′|
∑
j∈K′

OPm(j)−OP1(j)

OP1(j)
(3.39)

where K ′ = {k ∈ K : OPm(k)−OP1(k) > 0}.

The percent of instances with positive deviation, ppd(%), in R is also reported to

show the fraction of instances with positive deviation. ppd(%) for Pm is calculated

as:

ppd(%) =
100 |K ′|
|K|

(3.40)

where K ′ = {j ∈ K : OPm(j)−OP1(j) > 0}.

For V arRj and G, the average negative percent deviation, avgnd(%), and the percent

of instances with negative deviation, pnd(%), is reported instead since equity gets

better as V arRj and G decrease. In Table 3.1, these statistics are reported to show

the changes in R, V arRj and G.

Table 3.1: Comparison of Models P2 to P7 with P1 in performance measures

Measure Statistics P2 P3 P4 P5 P6 P7

MAPD(%) 2.86 1.77 14.62 1.85 57.10 14.79

R ppd(%) 83.33 72.22 100.00 83.33 100.00 100.00

avgpd(%) 3.34 2.21 14.62 2.10 57.10 14.79

MAPD(%) 18.89 7.00 45.37 26.21 69.77 51.73

V arRj pnd(%) 77.78 44.44 100.00 44.44 100.00 100.00

avgnd(%) 23.24 4.64 45.37 16.71 69.77 51.73

MAPD(%) 12.68 2.60 35.73 10.99 72.63 39.05

G pnd(%) 77.78 61.11 100.00 50.00 100.00 100.00

avgnd(%) 15.76 2.67 35.73 9.38 72.63 39.05

As seen in Table 3.1, P6 yields the biggest changes in all three measures where P7

follows as the second. Compared to the best solutions of P1, the mean response time

(R) worsens in all the instances, and equity measures V arRj and G better off in

all instances under the best solutions of P6. P6 has the worst R values with more

than 30% deviation in each instance and an overall average of 57%. This result is
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attributed to the objective function being analogous to minimizing the variance of

region-wise mean response time since we minimize the sum of positive deviation of

region-wise mean response time from its average. This objective function results in

the best solution with minimum V arRj in each but five instances, minimum G and

maximum R results in each instance among models. The statistics in Table 3.1 show

that the best solutions under P3 yields very small MAPD in R (P5 follows it) where

others show significant deviations from P1.

Based on the results in Table 3.1, we present our findings as observations and give

additional plots in the rest of this section.

Observation 1 Coverage maximization could be an alternative objective when mean

response time is harder to derive.

Having mean response time values R almost inline under P1 and P5 implies that the

coverage maximization objective is comparable to mean response time minimization

in the resulting mean response time values under the optimal solutions.

Observation 2: Deterministic coverage constraints do not deliver as expected if used

to narrow down the solution space, while chance constraints are better at capturing

the minimum possible mean response time.

In ten out of eighteen instances, the best solutions under P3 are the same with the ones

under P1. On the other hand, P2, which utilizes deterministic coverage constraints,

evaluates the same best solutions in five instances, and the average deviation (3.34%)

in the mean response time from P1 for other instances is slightly higher than P3.

Therefore, chance constraints for coverage as in P3 could be useful in narrowing

down the solution space if the objective is to achieve the minimum possible mean

response time.

Another measure that we are interested in is the variance of region-wise mean

response time. It could be considered a Rawlsian equity measure where one is

interested in response time differences in among regions.

In terms of V arRj , the models P2, P4, P6 and P7 stand out in decreasing the variance

among regions in comparison to P1.
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Observation 3: Minimizing total positive deviation of region-wise mean response

times from the average region-wise mean response time of all regions worsens mean

response time, R, while it provides better equity among the regions.

P6 has the smallest variance among instances except for five instances. However, it

has the largest (worst) R in all instances. P6 has 70% decrease in variance whereas

P4 follows with 45%, P7 with 52% and P2 with 23% decrease in variance on the

average.

Observation 4: Deterministic coverage constraints impose better equity among

regions than chance constraints, with a small negative effect on overall mean response

time.

P2 has a slight effect on R as 3% increase; however, it helps to decrease the variance

of region-wise mean response time by 23% on the average in fourteen out of eighteen

instances. Chance constraints in P3 could be used to narrow down the solution space

(in the expense of 2% increase in R) since its effect on equity is substantial with

an average decrease of 5% in V arRj in eight instances. So, incorporating chance

constraints in assessing coverage works towards the overall system performance

rather than seeking the performance from an equity perspective.

In accordance with V arRj results, models P2, P4, P6 and P7 have smaller Gini

coefficients than other models have in comparison to P1 according to Table 3.1. P6 is

significantly better than most of the models, whereas P2 has a closer Gini coefficient

to the base model P1 than others, but it still has better equity. The average percent

negative deviation avgnd% and MAPD for P2, P4 and P7 are slightly smaller than

in V arRj . However, this does not change the general behaviour of the models in

terms of equity.

Observation 5: Minimizing maximum region-wise mean response time increases

equity but worsens overall service quality.

P4 worsens R by about 15% whereas G decreases by 36% on the average with respect

to P1. P7 has a greater effect on G (39% decrease) while it results in higher R values

than P1 has by 15% on the average. Focusing on the least well-off region as in P4

does not result in better equity among regions than P7, where the focus in P7 is on
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total region-wise positive deviation from a threshold.

Observation 6: Minimizing total region-wise positive deviation from a threshold

results in a more equitable system, and its effect on system-wide performance is

limited in comparison to its effect on equity measures.

Although P7 puts an indirect bound on mean response time while minimizing the

positive deviation from a threshold, it provides a better equity than P4 which is

a model focusing on the region with the worst mean response time. Besides, P7

has a similar system-wide performance measure as P4. P7 also balances out the

shortcoming of P6 where P6 ends up putting all the emphasis on the variance of

region-wise mean response time.

The observations up to this point coincides with the results of the hierarchical

clustering analysis that (P1, P3, P5) show similar performances, and (P4, P7) are

the other models which behave similarly.

In addition to the comparison with P1, main effect and interaction effects of factors

are also explored to gather insight into the changes of performance measures. In

Figure 3.6, main effect plots for factors Model, Distribution Pattern, Number of

Vehicles and Incident Handling Rate are given for three performance measures.

In the first plot of each row in Figure 3.6, the main effect of Model on the

performance measures over all instances are consistent with the previous analysis

on the similarities and dissimilarities between the models.

Observation 7: Distribution of the demand regions over the plain significantly affects

system-wide average performance and equity.

Concerning the results shown in Figure 3.6 (f) & (j), it is seen that equity among

regions is better when demand regions are uniformly distributed over the plain. In

the case of accumulation of regions in some part of the plain, equity tends to worsen,

especially in Center-accumulated instances.

Observation 8: Increasing number of vehicles does not necessarily better off equity

while decreasing mean response time.
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Mean response time, R, decreases in the number of vehicles, see Figure 3.6 (c). This

result is intuitive as more vehicles are available, the average travel time to demand

regions from vehicle locations could decrease. However, this does not directly result

in the increase of equity among regions as the change in G does not show a regular

pattern while V arRj decreases, see Figure 3.6 (g) & (k).

Observation 9: Increasing incident handling rate does not necessarily better off

equity while decreasing mean response time.

The average mean response time over instances is decreased as the incident handling

rate increases as in Figure 3.6 (d). The incident handling time is one of the three

components of service time (sum of travel time to the region, incident handling time,

and travel time back to vehicle location), so an increase in incident handling rate

makes service time decrease. Due to this decrease, regions would be served by the

closest vehicle more, which would decrease the mean response time. However, the

change in the equity measures is not consistent as the average of V arRj decreases

while G increases.

To better understand the effect of network specifications on the behavior of different

models, we present another set of analysis in Figure 3.7. In this figure, the interaction

of network features with modeling approaches in performance measures can be seen.

Observation 10: The choice of modeling approach has greater importance in the

existence of accumulation of demand regions over the plain.

The change in equity measures, V arRj and G, are more prominent in patterns Center-

accumulated and Outer-accumulated with respect to the results in Figure 3.7 (d) &

(g) while the line connecting medians of each model under Uniform pattern is flatter.

However, mean response time R is affected similarly in all three patterns. This shows

us that the distribution of demand regions would change the scale of the effect of the

models on equity, and the preference of a mathematical model over another could be

more desirable under certain demand distribution patterns.

Only in model P3, the effect in equity has a similar behavior as in P1, irrespective

of the distribution of regions and the number of vehicles. This shows that P3

behaves very similarly to the base model P1 under different network specifications
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and reinforces the previous inference.

Observation 11: Minimizing variance results in similar equity irrespective of the

distribution of regions.

The performance measures V arRj and G are very close for P6 in all patterns in

Figure 3.7. This might result from the fact that P6 enforces the best obtainable equity

by minimizing the total positive deviation from the average in the objective function.

In Figure 3.8, interaction between factors are given in a different setting where this

time Distribution Pattern and Number of Vehicles are on the x-axis.

The scale of change in equity measures under P4 , P5 and P7 are easier to observe in

Figure 3.8 (c) & (e). The difference between models is more prominent in the patterns

having an accumulation of demand regions in some parts of the plain.

Following the second plot in each row, it is seen that an increase in the number of

regions consistently decreases mean response time. However, this does not translate

into a consistent behavior in equity measures, as it is stated in Observation 8. It is

seen that equity worsens in our instances under P2 and P6 as the number of vehicles

increases, while in other models, it tends to better off. Therefore, the change in

V arRj and G in the number of vehicles depends on the model.

Observation 12: Increasing incident handling rates worsens equity in models with

the objective of minimizing inequality among regions.

The change in equity measures is different under different incident handling rates It is

seen that the change in V arRj is dependent on the model when the incident handling

rate increases. For P1, P2, P3, P5, there is a decrease in variance from rate 6 to 12 (a

slight decrease for P2), while in the other models there seem to be slight increases. It

is also seen that G values increase in P4, P6 and P7 with rate increase. These models

are similar to each other in the objective function where the objective is to minimize

inequality among regions in general. This shows that increasing incident handling

rates worsens equity for models having this type of objective function. We would like

to point out that the incident handling time is the smaller portion of the overall service

time in the best solutions of instances under all models for both incident handling
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rates.

The change in incident handling rates affects service time differently based on the

travel times for a location solution. If the average travel time is a smaller component

of the service time, the effect of increasing incident handling rate on average service

time would be more significant. We realize that average service time depends on

the location solution; however, we construct the problem instances in a way that the

distribution of demand regions over the plain is an indicator of the average service

time, where we control demand rates, incident handling rates and number of vehicles

systematically. This is also justified by the interaction of R with distribution patterns

in Figure 3.8 (a). The average pairwise distances between regions are 15.31, 12,2, and

13.58 minutes in instances with outer-accumulated, center-accumulated and uniform

patterns, respectively. It is seen that mean response time, R, has the highest values

for outer-accumulated and lowest values in center-accumulated instances for the best

solution for a given model except P6 as anticipated. Therefore, another plot is

presented in Figure 3.9 to show the interaction effect of incident handling rate and

distribution of regions over the plain on the behavior of the models.

The results in Figure 3.9 show that the scale of change in R with increasing incident

handling rates is directly proportional to average pairwise distance in instances where

we observe the most significant decreases in outer-accumulated pattern.

Observation 13: The difference between modeling approaches in terms of equity

lessens as the traffic intensity of the system decreases.

The effect of incident handling rate on the equity measures changes with respect to

the distribution pattern and the models. It is seen that V arRj values are very close

to each other in uniform pattern for a given model. For the other patterns, equity

is affected based on the model of choice. As the incident handling rate increases

(which would decrease the system’s traffic intensity), the difference in V arRj among

models tends to get less prominent where the line connecting the medians gets flatter.

This change is more prominent in outer-accumulated pattern. However, G results

are similar irrespective of the incident handling rate, which could be due to the Gini

coefficient’s sensitivity to outliers.
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Lastly, we reinforce Observation 10 with the help of Figure 3.9. It could be seen

that the change in equity measures with respect to models is more prominent in

patterns with an accumulation of demand regions (center-accumulated and outer-

accumulated).

3.4 Conclusion

In this chapter, we work on various models for EMS vehicle location problem in

an effort to address issues related to equity. The motivation of this chapter is

that EMS vehicle location problem requires a more comprehensive approach with

multiple important criteria. Otherwise, decision-makers sacrifice from equity where

emergency care should be reasonably available to every member of society.

It is seen that models focusing on overall performance, such as minimization

of mean response time without any further considerations, do not perform well

in terms of equity among regions. Deterministic coverage constraints are more

promising in decreasing the disparities between regions than chance constraints. It

is also possible to improve equity by focusing on region-wise performance measures

such as mean region-wise response time. On the other hand, the use of chance

constraints is found to be more promising in narrowing down the feasible region than

deterministic constraints. In the results, it is shown that network specifications affect

the equity enforced by the models. Therefore, it is better to understand the network

specifications and incorporate them in the process of choosing the mathematical

model to be used.

In this chapter, we stick to a simulation study to evaluate the EMS systems’

performance measures since the environment involves uncertainty and the exact

queueing model is computationally expensive. One important research direction is to

obtain the performance measure via deterministic approximation models/algorithms

rather than simulation study. In the next chapter, we work on a decomposition method

to approximate the performance measure of the exact queueing model and evaluate

the performance of an EMS system.
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CHAPTER 4

DECOMPOSITION METHODS FOR ESTIMATING THE PERFORMANCE

MEASURES OF STOCHASTIC EMS SYSTEMS

In Chapter 3, we work on emergency vehicle location problem form an equity

perspective rather than developing a mathematical model for the problem. The

evaluation of alternative solutions for an EMS system is done based on discrete

event simulation which is computationally expensive. In this chapter, we study on

developing a method to evaluate performance measures of an EMS system based on

stochastic processes, which could be used to locate emergency vehicles.

The exact queueing model constructed for the problem is computationally

cumbersome as the size of the state space increases exponentially in the number

of regions and vehicles to be located. Accordingly, we work on a decomposition

method to approximate the performance measures of an EMS system under the

exact queueing model in this chapter. Instead of working on a single queueing

model as HQM by Larson (1974), the exact queueing model is decomposed into

interdependent partial queueing models whose balance equations form a non-linear

set of simultaneous equations. This decomposition enables us to work with service

rates that depend on the server location and the region. The decomposition methods

proposed are also capable of representing solutions with multiple vehicles at a single

location. Different than Budge et al. (2009), we distinguish the vehicles at a single

location by assigning priorities in dispatching, which allows the decision-maker to

observe the change in the busyness of a vehicle when an additional vehicle is located

at the exact location. We present an approximation method to solve the resulting

set of equations and estimate the steady-state probabilities. Once the steady-state

probabilities are evaluated, several performance measures could be obtained based

55



on those.

We present two optimization problems and use the decomposition methods in the

evaluation of the objective function value. An analysis of the performance of the

decomposition methods under optimization setting is presented, which is not shown

in studies of Budge et al. (2009) and Toro-Dı́az et al. (2015), by employing a ranking

selection algorithm based on simulation to obtain best performing location solutions.

Since the mathematical models have no closed-form formulation, a genetic algorithm

is presented to find near-optimal solutions.

In the rest of the chapter, the problem environment is introduced in Section 4.1, and

the decomposition of the exact queueing model is explained in Section 4.2. A meta-

heuristic solution algorithm for the mathematical model is given in Section 4.3 The

experimental results for the performance of decomposition methods and the meta-

heuristic algorithm are given in Section 4.4. Lastly, the chapter is concluded in

Section 4.5.

4.1 Problem Definition

We construct the mathematical model with only one set of decision variables, xi, ∀i ∈
I which is the number of vehicles located in vehicle location i. Let x⃗ be the vector

of decision variables, xi’s, representing a solution. The objective function, R(x⃗),

is the mean response time of the system under solution x⃗. It is one of the most

critical measures that is taken into account for the evaluation of emergency systems

and defined as the time passed between a demand call and the arrival of a vehicle at

the corresponding demand location. As we define our problem environment based

on stochastic processes, there is no closed-form formulation of the performance

measures as a function of x⃗; therefore, the objective function is defined as a function

of a candidate solution without introducing further notations.

We define two mathematical models PS and PM where we allow only a single and

multiple vehicles to be located at a given location in PS and PM , respectively.
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PS and PM are as follows:

(PS) Minimize R(x⃗) (4.1)

subject to:
∑
i∈I

xi = N (4.2)

xi ∈ {0, 1} , ∀i ∈ I. (4.3)

(PM) Minimize R(x⃗) (4.4)

subject to:
∑
i∈I

xi = N (4.5)

xi ≥ 0, integer, ∀i ∈ I. (4.6)

In the next section, we propose decomposition algorithms to evaluate the objective

function values of these problems based on queueing theory.

4.2 Decomposing the Exact Queueing model

Recall the exact queueing model introduced in Chapter 1 which could be used to

evaluate the performance measures of an EMS system.

{Bt, t ≥ T} is a continuous time Markov chain with state space L, and Bt is an N-

dimensional state variable defining the underlying queueing system as follows:

Bt = (b1, b2, ..., bN), t ≥ T

where bk represents the status of the kth vehicle at time t and denotes a 3-tuple as:

bk = (ik, s,m) , s ∈ J ∪ {0} , m = 0, 1, 2, 3

where ik represents the location that the vehicle is located, s stands for "idle" or the

region being served, and m represents the mode of the service at time t.

If the vehicle is not busy, s and m are set to 0. Then, bk = (ik, 0, 0) represents the

state that the vehicle at location ik is free. If the vehicle is busy serving demand region

j ∈ J , s is set to j. When the vehicle is busy, m is set to 1, 2 or 3 if the vehicle is
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en-route to demand region j, handling the incident or en-route to the vehicle location,

respectively.

Under this definition, the size of the set of the possible statuses for every bk ∈
Bt, k = 1, . . . , N is equal to (3 |J | + 1). Hence, the state definition results in a

state space L with (3 |J | + 1)N many states, and the size of the state space increases

exponentially with the increasing number of vehicles. Therefore, we propose an

approximation method to estimate the performance measures that would result from

the exact queueing model.

The exact queueing model is decomposed into N interdependent queueing models,

each representing a single vehicle. Furthermore, we assume that the service time for

a demand call from region j by a vehicle from location i is exponentially distributed

with mean that is equal to the sum of mean travel time to demand region, mean

incident handling time and mean travel time back to vehicle location (ωij +ϕj +ωij).

In the exact queueing model, the closest available vehicle is assigned to a demand

call. To approximate it with interdependent multiple queueing models, we need to

incorporate the busyness of the vehicles (sum of the steady-state probabilities of the

states where the vehicle is busy) into the queueing models. So, the demand arrival

rate from a certain region for a specific vehicle should differ concerning the rank of

this vehicle among other vehicles in proximity to that region. This means that the

demand arrival rate from certain region for a specific queueing model depends on

the sum of a set of the steady-state probabilities of other queueing models where the

corresponding vehicles are closer to that region.

We present three variations of the decomposition method. In the first method, at most

one vehicle is allowed at a single location. In the second method, we improve the

calculation of demand rates by addressing the dependency between busy probabilities

of vehicles in the exact queueing model while allowing again at most one vehicle at a

single location. In the third method, multiple vehicles are allowed at a single location

and dependency between vehicles is addressed in calculating demand rates.
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4.2.1 DM-S : single vehicle only case

We first focus on the case where at most one vehicle is allowed to be located at a single

location as in mathematical model PS . Let I ′ be the set of vehicle locations with one

vehicle located under the given solution x⃗, I ′
= {i ∈ I|xi > 0}. We construct N

interdependent queueing models, denoted by QMi, for ∀i ∈ I
′ .

Let {bt, t ≥ T} be a continuous time Markov chain with state space Li for QMi. A

state bt ∈ Li, t ≥ T is 0 when the vehicle is free and j when it is busy serving region

j at time t. Then, Li = J ∪ {0} for QMi, ∀i ∈ I
′ .

Let πi
j be the steady state probability for state j ∈ Li of QMi. Then, πi

0 denotes the

probability that vehicle i is free.

Let Si
j be the set of vehicles that are closer to region j than i, Si

j =

{k ∈ I ′|ωkj < ωij}. We can find the probability that all vehicles closer to region j

than vehicle i are busy by using the set Si
j . Let cij be the probability that all vehicles

closer to region j than vehicle i being busy. Then,

cij =


1 if Si

j = ∅,∏
k∈Si

j

(1− πk
0), otherwise. (4.7)

In the exact queueing model, the probability that all the closer vehicles are busy may

not be equal to the multiplication of busy probabilities of individual vehicles. Hence

we note that servers are assumed independent in building this probability, cij , whereas

this may not be justified depending on the busyness of the system.

The transition from state j = 0 to state j ∈ Li\ {0} is realized when a demand call

arrives from region j. For QMi, the transition rate from state i to state j is equal to

the demand rate of region j if vehicle i is the closest vehicle to this region. Otherwise,

the transition rate is calculated based on both the demand rate of the region and the

busy probabilities of vehicles that are closer to this region than vehicle i.

Accordingly, the transition rate from state j = 0 to state j ̸= 0 for QMi where a

demand call arrives is λjc
i
j .

The service rate for state j ̸= 0 for QMi, i.e. for region j, when served by vehicle i,
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is

µji =


60

ϕj

if j = i,

60

2ωij + ϕj

, otherwise.
(4.8)

Example: Assume x⃗ = (1, 0, 1) where I = {1, 2, 3}, J = {1, 2, 3} and N = 2. We

construct a queueing model for the vehicle in Region 1 as QM1 and another for the

one in Region 3 as QM3. Then, L1 = {0, 1, 2, 3} for QM1 and L3 = {0, 1, 2, 3} for

QM3.

Let π1 = (π1
0, π

1
1, π

1
2, π

1
3) be the vector of the steady state probabilities for QM1, and

π3 = (π3
0, π

3
1, π

3
2, π

3
3) for QM3 .

Assume that Region 2 is closer to Region 1 than Region 3. So, a demand call from

Region 2 is served by vehicle at Region 3 only if the vehicle at Region 1 is busy.

Then, the queueing models could be constructed as in Figure 4.1 where (1− π1
0) and

(1 − π3
0) are the probabilities that the vehicle located at Region 1 and Region 3 are

busy, respectively.

The balance equations for QM1 are as follows:

π1
0λ1 = π1

1µ11,

π1
0λ2 = π1

2µ21,

π1
0λ3(1− π3

0) = π1
3µ31.

The balance equations for QM3 are as follows:

π3
0λ1(1− π1

0) = π3
1µ13,

π3
0λ2(1− π1

0) = π3
2µ23,

π3
0λ3 = π3

3µ33.

By using balance equations for QM1 and π1
0 + π1

1 + π1
2 + π1

3 = 1, we reformulate

steady state probabilities as follows:

π1
0 + π1

0

λ1

µ11

+ π1
0

λ2

µ21

+ π1
0

λ3(1− π3
0)

µ31

= 1

which is equal to

π1
0

(
µ11µ21µ31 + λ1µ21µ31 + λ2µ11µ31 + λ3(1− π3

0)µ11µ21

)
= µ11µ21µ31.
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01 2

3

λ1

λ2

λ3(1− π3
0)

µ11

µ21

µ31

(a) Rate diagram for QM1

01 2

3

λ1(1− π1
0)

λ2(1− π1
0)

λ3

µ13

µ23

µ33

(b) Rate diagram for QM3

Figure 4.1: Rate diagrams for the queueing models of the given solution x⃗

Then, the probability that the vehicle at Region 1 is free is found as

π1
0 =

∏
j∈{1,2,3}

µj1∑
j∈{1,2,3}

c1jλj

∏
k∈{1,2,3},k ̸=j

µk1 +
∏

j∈{1,2,3}
µj1

(4.9)

where c1j = (1−π3
0) is the probability that all vehicles closer to region i than location

1 is busy if S1
j is not an empty set.

By dividing numerator and denominator of (4.9) by
∏

j∈L1\{0}
µj1, we have

π1
0 =

1∑
j∈{1,2,3}

c1jλj

µj1
+ 1

.

Then, (4.10) and (4.11) give the steady state probabilities of states of QMi in general
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form:

πi
0 =

1∑
j∈Li\{0}

cijλj

µji
+ 1

, (4.10)

πi
j =

cijλj

µji

( ∑
k∈Li\{0}

cikλk

µki
+ 1

) , j ∈ Li\ {0} . (4.11)

Notice that (4.10) and (4.11) have the term cij which includes the steady state

probabilities of QM3. Therefore, the set of non-linear equations for the example

that needs to be solved to find the steady-state probabilities is:

π1
0 +

λ1

µ11

π1
0 +

λ2

µ21

π1
0 +

λ3(1− π3
0)

µ31

π1
0 = 1, (4.12)

π3
0 +

λ1(1− π1
0)

µ13

π3
0 +

λ2(1− π1
0)

µ23

π3
0 +

λ3

µ33

π3
0 = 1, (4.13)

where 0 ≤ π1
0 ≤ 1 and 0 ≤ π3

0 ≤ 1.

It is seen that, the number of unknowns and non-linear equations that needs to be

solved are equal to the number of vehicles located. (4.12) and (4.13) could be written

in general form as follows:

πi
0 +

∑
j∈Li\{0}

λi

µji

cijπ
i
0 = 1, ∀i ∈ I

′
. (4.14)

In the next section, the calculation of demand rates are improved by changing the

estimation of the busy probability of vehicles closer than vehicle i to region j, cij .

4.2.2 DM-S-CF: single vehicle only case with correction factors

To estimate the EMS system’s performance measures, we decompose the exact

queueing model into separate queueing models, one for each vehicle, in DM-S. In

order to imitate the exact queueing model under solution x⃗, we use busy probabilities

of other vehicles in the demand rate of the region j for QMi since vehicle i responds

to a demand call only if all vehicles that are closer to region j than vehicle i are busy.

We calculate the probability that all vehicles closer to region j than vehicle i is

busy by
∏

k∈Si
j
(1 − πk

0). This assumes that servers are independent; hence we could
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multiply the busy probabilities of vehicles to find the probability that these vehicles

are busy at the same time. However, in the exact queueing model, this probability is

not equal to the multiplication of individual busy probabilities since servers are not

independent.

To overcome this bias in the calculation of this probability, Larson (1975) proposes

correction factors based on M/M/N/(.) queueing systems.

Assume the general M/M/N/∞ queueing system with demand rate λ and service rate

µ per server and ρ = λ/Nµ < 1. Let Uk indicate the state where k servers are busy.

For M/M/N/∞ queueing system, we know that

P (U0) = P0 =
1

N−1∑
i=0

N iρi

i!
+ NNρN

N !(1−ρ)

,

P (Uk) = Pk =
Nkρk

k!
P0, k = 1, 2, . . . , N − 1,

P (UN)= PN =
NNρN

N !(1− ρ)
P0.

Suppose, we randomly sample servers until we find the first server which is free. Let

Wj be the event that jth selected server is busy and Aj = W c
j be the event that jth

selected server is available. We derive an expression for P (W1W2...WjAj+1).

By conditioning,

P (W1W2...WjAj+1) =
N∑
k=0

P (W1W2 . . .WjAj+1|Uk)Pk (4.15)

and

P (W1W2 . . .WjAj+1|Uk)

= P (Aj+1|W1W2 . . .WjUk)P (Wj|W1W2...Wj−1Uk)...P (W1|Uk). (4.16)

We know that P (W1|Uk) =
k
N

, P (W2|W1Uk) =
k−1
N−1

.

In general,

P (Wi|W1W2 . . .Wi−1Uk) =
k − (i− 1)

N − (i− 1)
, i = 1, 2, ..., k + 1. (4.17)
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Similarly,

P (Aj+1|W1W2 . . .WjUk) =
N − k

N − j
, j = 0, 1, 2, ..., k. (4.18)

Then, we get the following equation by inserting (4.16), (4.17) and (4.18) into (4.15):

P (W1W2 . . .WjAj+1) =
N−1∑
k=j

[
k

N

] [
k − 1

N − 1

]
...

[
k − (j − 1)

N − (j − 1)

] [
N − k

N − j

]
Pk

(4.19)

When we insert Pk into (4.19) and reorder the equation, we have

P (W1W2 . . .WjAj+1)

=

[
N−1∑
k=j

(
(N − j − 1)!(N − k)

(k − j)!

)(
Nk

N !

)
ρk−j

]
ρj(1 − ρ)

[
P0

(1− ρ)

]
. (4.20)

As it is seen, we now have ρj(1−ρ) in (4.20) and other terms in the form a multiplier

which reflects the correction factor for the probability that j +1st vehicle is available

when first j is busy where independence among servers is not implied. Hence, this

multiplier, C(N, ρ, j), could be used as a correction factor in the calculation of the

probability of the event that all j vehicles which are closer to a region than the vehicle

in QMi are busy.

P (W1W2 . . .WjAj+1) = C(N, ρ, j)ρj(1 − ρ)

where

C(N, ρ, j)

=

[
N−1∑
k=j

(
(N − j − 1)!(N − k)

(k − j)!

)(
Nk

N !

)
ρk−j

][
P0

(1− ρ)

]
, j = 0, 1, ..., N − 1.

Until now, we work on an M/M/N/∞ system. For the system M/M/N/N (no

queueing), the actual fraction of time ρ′ that a server is busy is smaller than ρ = λ/Nµ

since calls are lost if all servers are busy. For M/M/N/N,

ρ
′
= ρ(1− P

′

N)

64



where

P (U0)= P
′

0 =
1∑N

i=0
N iρi

i!

,

P (Uk)= P
′

k =
Nkρk

k!
P

′

0, k = 0, 1, ..., N.

We can derive the new correction factor as C
′
(N, ρ, j) =

P (W1W2 . . .WjAj+1)/(ρ
′
)j(1 − ρ

′
) by substituting ρ with ρ

′
/(1 − P

′
N) to

obtain the term (ρ
′
)j(1− ρ

′
) in P (W1W2 . . .WjAj+1). Then,

P (W1W2 . . .WjAj+1)

=

[
N−1∑
k=j

(N − j − 1)!(N − k)

(k − j)!

(
Nk

N !

)
ρk−j

]
(

1

1− P
′
N

)j (
P0

1− ρ(1− P
′
N)

)
(ρ

′
)j(1 − ρ

′
).

Hence, the correction factor C ′
(N, ρ, j) can be set as follows:

C
′
(N, ρ, j)

=

[
N−1∑
k=j

(N − j − 1)!(N − k)

(k − j)!

(
Nk

N !

)
ρk−j

](
1

1− P
′
N

)j (
P0

1− ρ(1− P
′
N)

)
.

Eventually, the correction factor C
′
(N, ρ, j) is used in the calculation of the

probability cij to overcome the bias due to the assumption of servers being

independent. Let c′ij be an alternative to cij in (4.7) as follows:

c
′i
j =


1 if Si

j = ∅,

C
′
(N, ρ,

∣∣Si
j

∣∣) ∏
k∈Si

j

(1− πk
0), otherwise. (4.21)

where
∣∣Si

j

∣∣ is the size of set Si
j , and ρ is equal to the total demand rate over total

average service rate µavg (which is calculated from QMi’s ):
∑

j∈J λj

Nµavg
.

Hence, we rewrite the set of equations in (4.14) that need to be solved simultaneously

to find the steady-state probabilities of QMi’s according to DM-S-CF decomposition

method as follows:

πi
0 +

∑
j∈Li\{0}

λi

µji

c
′i
j π

i
0 = 1, ∀i ∈ I

′
. (4.22)
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4.2.3 DM-M-CF: multiple vehicle case with correction factors

In DM-S-CF method, at most one vehicle is allowed in a single location. We extend

the DM-S-CF decomposition method in a way to handle the case where multiple

vehicles to be located at a single location. This would change the calculation of the

probability that all vehicles closer than the vehicle in QMi to a region are busy.

In this method, the interdependent queueing models are constructed differently. In the

previous methods, each QMi is constructed for only one vehicle. Since we now allow

more than one vehicle at a single location, if we continue with one queueing model

for each vehicle, some queueing models would be very similar in transition rates. We

could allow some models to include more than one server; however, this increases

the size of the state space of the model exponentially similar to the exact queueing

model. Instead of constructing queueing models with more than one vehicle, we stick

to the previous structure by giving pseudo orders to the vehicles in the same location.

So, an interdependent queueing model is constructed for each vehicle while paying

attention to the order of vehicles at the same locations. The representation of multiple

vehicles in this method also allows one to observe the change in the busyness of a

vehicle when an additional vehicle located at the same location.

Following from the previous example, we locate another vehicle at Region 3 and

change x⃗ as follows: x⃗ = (1, 0, 2) where I = {1, 2, 3}, J = {1, 2, 3} and N = 3.

The definition of set I ′ is redefined for DM-M-CF as follows:

I
′
= {ik|i ∈ I, xi > 0, k = 1, . . . , xi} .

Then, I ′
= {11, 31, 32} under x⃗. We construct a queueing model for each vehicle in

I
′: QM11 for the vehicle at Region 1 and QM31 , QM32 for the vehicles in Region 3.

Then, the state space for all 3 queueing models are the same and equal to {0, 1, 2, 3}.

Let πi
j, ∀i ∈ I

′
, ∀j ∈ Li be the steady-state probabilities for QMi’s and assume that

Region 2 is closer to Region 1 than Region 3. Then, the queueing models could be

constructed as in Figure 4.2.

As seen in the figure, the calculation of the probability that all vehicles closer to

region j than vehicle i are busy is changed since we have more than one vehicle
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λ1

λ2

λ3C
′
(3, ρ, 2)(1− π31

0 )(1− π32
0 )

µ11

µ21

µ31

(a) Rate diagram for QM11

01 2

3

λ1C
′
(3, ρ, 1)(1− π11

0 )

λ2C
′
(3, ρ, 1)(1− π11

0 )

λ3

µ13

µ23

µ33

(b) Rate diagram for QM31

01 2

3

λ1C
′
(3, ρ, 2)(1− π11

0 )(1− π31
0 )

λ2C
′
(3, ρ, 2)(1− π11

0 )(1− π31
0 )

λ3C
′
(3, ρ, 1)(1− π31

0 )

µ13

µ23

µ33

(c) Rate diagram for QM32

Figure 4.2: Rate diagrams for the queueing models of the given solution x⃗
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at a location now. For the vehicle locations with more than one vehicle, the index

of the vehicle location in set I ′ defines the preference order of the vehicles in this

location. Following the example, 32 responds a demand call from Region 2 only if

vehicle 11 and 31 is busy. Hence, the transition rate from state j = 0 to state j = 2 is

λ2C
′
(3, ρ, 2)(1− π11

0 )(1− π31
0 ) for QM32 .

Accordingly, we redefine the set Si
j as the set of vehicle that are closer to region j

than vehicle i or the vehicles that are preferred to vehicle i if there are more than

one vehicle at the location of i. Let Z(k) is equal to l which is the pseudo order

of k ∈ {il|i ∈ I, xi > 0, l = 1, ..., xi}. Then, we define set Si
j as follows: Si

j =

{k ∈ I ′|ωkj < ωij ∨ Z(k) < Z(i)}.

The set of non-linear equations that need to be solved simultaneously to find

the steady-state probabilities of QMi’s is the same as the one for DM-S-

CF in (4.22) where the definition of c
′i
j is now based on the set Si

j =

{k ∈ I ′|ωkj < ωij ∨ Z(k) < Z(i)}.

πi
0 +

∑
j∈Li\{0}

λi

µji

c
′i
j π

i
0 = 1, ∀i ∈ I

′
(4.23)

where I
′
= {ik|i ∈ I, xi > 0, k = 1, . . . , xi}.

4.2.4 Approximation method for the steady-state probabilities

The proposed decomposition methods require a set of non-linear equations to be

solved to find the steady-state probabilities of the queueing models constructed for

vehicles.

Let aji be equal to λi

µji
and Π be the vector of πi

0’s. By inserting aji in 4.23, we

write N functions that needs to solved simultaneously with N unknowns for DM-

M-CF which is the most general decomposition method allowing multiple vehicles

in a single location and incorporating correction factors for the busy probabilities as

follows:

fi(Π) = πi
0 +

∑
j∈Li\{0}

ajic
′i
j π

i
0 − 1, ∀i ∈ I

′
(4.24)
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where I
′
= {ik|i ∈ I, xi > 0, k = 1, . . . , xi}

Then, we write N equalities that defines a system of non-linear equations for DM-M-

CF decomposition method:

fi(Π) = 0, ∀i ∈ I
′
, Π ∈ [0, 1]N . (4.25)

Let Π∗ be the solution to the system of non-linear equations defined in (4.25). To

prove that such Π∗ exists, we use Poincaré-Miranda Theorem by Kulpa (1997).

Theorem 1 (Poincaré-Miranda Theorem). Let In := [0, 1]n be the n-dimensional

cube of the Euclidean space Rn and let δIn be its boundary. For each i ≤ n let us

denote

I−i = {x ∈ In : x(i) = 0} , I+i = {x ∈ In : x(i) = 1} (4.26)

the i-th opposite faces.

Let f : In → Rn, f = (f1, ..., fn), be a continuous map such that for each i ≤
n, fi(I

−
i ) ⊂ (−∞, 0] and fi(I

+
i ) ⊂ [0,∞). Then, there exists a point c ∈ In such

that f(c) = 0.

Proof. We show the properties of the function fi introduced in (4.24).

Let 0 and 1 be the vector of zeroes and ones which correspond to I−i and I+i ,

respectively.

By (4.24), we have

fi(0) = −1, ∀i ∈ I
′
, (4.27)

and,

fi(1) =
∑

j∈Li\{0}

ajic
′i
j , ∀i ∈ I

′
. (4.28)

We know that aji =
λj

µji
, making 0 < aji, ∀j ∈ Li\ {0} , ∀i ∈ I

′ by definition.

Recall

c
′i
j =


1 if Si

j = ∅,

C
′
(N, ρ,

∣∣Si
j

∣∣) ∏
k∈Si

j

(1− πk
0), otherwise (4.29)
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where Si
j = {k ∈ I ′|ωkj < ωij ∨ Z(k) < Z(i)}.

By (4.29), c
′i
j = 1, ∀(i, j) ∈

{
(k, l)|k ∈ Li\ {0} , ∀l ∈ I

′
, Sl

k = ∅
}

and c
′i
j =

0, ∀(i, j) ∈
{
(k, l)|k ∈ Li\ {0} , ∀l ∈ I

′
, Sl

k ̸= ∅
}

since πi
0 = 1, ∀i ∈ I

′ . Hence,

the summation in (4.28) is positive and fi(1) ≥ 0, ∀i ∈ I
′ .

Therefore, we show that fi(I−i ) ⊂ (−∞, 0] and fi(I
+
i ) ⊂ [0,∞), ∀i ∈ I

′ where

I−i = 0 and I+i = 1.

Then, there exist a solution Π∗ such that f(Π∗) = 0 by Poincaré-Miranda Theorem.

Π∗ is said to be a nonsingular if the associated Jacobian matrix for the set of functions

in (4.24 ) is nonsingular at Π∗: det f ′(Π∗) ̸= 0. However, to be able to say that

there exist only one solution to this system of equations, one needs to show that det

f ′(Π) ̸= 0, for all Π ∈ [0, 1]N .

As we show that there exists at least one solution to the non-linear system of

equations, we propose an iterative algorithm to solve the system of equations. In

every iteration of the algorithm, we construct the queueing models by using the busy

fractions (1 − πi
0) from the previous iteration. Then, we solve the balance equations

for each queueing model separately and get closer to the solution of the non-linear

set of equations in (4.24). The algorithm continues until a convergence criterion is

satisfied.

In the approximation of Π∗, the correction factor C ′
(N, ρ, .) is set to 1 initially for

DM-S-CF and DM-M-CF, then it is updated after each iteration based on the average

service rate, µavg, found from the steady-state probabilities of QMi’s. For the DM-S

method, the algorithm could be used by just disregarding the correction factors.

The pseudo code in Algorithm 3 summarizes how the steady-state probabilities, Π∗,

are approximated.
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Algorithm 3 Algorithm to approximate steady-state probabilities with correction

factors
1: initialize iteration counter: iter = 0

2: initialize iterC
′
(N, ρ,

∣∣Si
j

∣∣) = 1, ∀i ∈ I
′
, ∀j ∈ Li\ {0}

3: initialize iterP
i
0 = 0, ∀i ∈ I

′

4: construct individual queueing models, QMi, ∀i ∈ I
′ by using iterC

′
(N, ρ,

∣∣Si
j

∣∣)
and using (1− iterP

i
0) as the busy probability for vehicle i

5: iter = 1

6: solve balance equations and find πi
j, ∀j ∈ Li for each QMi

7: set iterP
i
0 = πi

0, ∀i ∈ I
′

8: while maxi∈I′
{∣∣

iterP
i
0 − (iter−1)P

i
0

∣∣} >= 0.001 do

9: calculate ρ and iterC
′
(N, ρ,

∣∣Si
j

∣∣) based on iterP
i
0, ∀i ∈ I

′
, ∀j ∈ Li\ {0}

10: construct individual queueing models, QMi, ∀i ∈ I
′ by using iterP

i
0

11: solve balance equations and find πi
j, ∀j ∈ Li for each QMi

12: iter = iter + 1

13: set iterP
i
0 = πi

0

14: end while

15: return πi
j, ∀j ∈ Li, ∀i ∈ I

′

4.2.5 Calculation of the performance measures

Once steady-state probabilities of QMi’s are evaluated, several performance measures

for an EMS system could be estimated based on those. The mean response time

for the system is used as the objective function value in the mathematical models

in Section 4.1. In addition to this, three other performance measures that could be

obtained through steady-state probabilities of QMi’s are listed below:

• ED(x⃗): expected satisfied demand in unit time,

• CD(x⃗): expected satisfied demand under threshold time τ ,

• Rj(x⃗): mean region-wise response time of region j.

Let ED(x⃗) be the expected satisfied demand in unit time. ED(x⃗) is found by using

the number of dispatches of vehicles to regions in unit time which is calculated based
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on steady state probabilities and transition rates of QMi’s.

The number of times vehicle i is dispatched to region j in unit time is equal to the

steady state probability of vehicle i being free, πi
0, multiplied with the transition rate

to state j, that is cijλj . So, the number of dispatches in unit time from i to j is πi
0c

i
jλj .

Then, ED(x⃗) is equal to the number of dispatches from vehicle i to region j summed

over all vehicles and regions,

ED(x⃗) =
∑
j∈J

∑
i∈I′

πi
0c

i
jλj. (4.30)

Similarly, it is possible to estimate the expected covered demand CD(x⃗) of the system

under x⃗. Recall that Tij is a random variable representing travel time between location

i and region j and FTij
is the cumulative distribution function of random variable Tij .

The expected number of demand calls satisfied in unit time that is covered under

threshold τ from region j by vehicle i is given by FTij
(τ)πi

0c
i
jλj . Then, the expected

covered demand under x⃗ is found as

CD(x⃗) =
∑
j∈J

∑
i∈I′

FTij
(τ)πi

0c
i
jλj. (4.31)

Another measure that can be evaluated based the number of dispatches is mean

region-wise response time, Rj(x⃗), under solution x⃗. The region-wise mean response

time for region j is the weighted average of mean travel times to region j based on

the number of dispatches under x⃗.

Rj(x⃗) =

∑
i∈I′

πi
0c

i
jλjωij∑

i∈I′
πi
0c

i
jλj

, ∀j ∈ J, (4.32)

where numerator is the weighted total travel time based on the number of dispatches

and the denominator is the total number of dispatches to region j in unit time.

Similar to mean region-wise response time, the mean response time of the system,

R(x⃗), is evaluated as follows:

R(x⃗) =

∑
j∈J

∑
i∈I′

πi
0c

i
jλjωij∑

j∈J

∑
i∈I′

πi
0c

i
jλj

. (4.33)
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R(x⃗) is used in PS and PM , however; performance measures can be diversified such

as E(x⃗), C(x⃗) and Rj(x⃗) which are estimated based on QMi’s.

In the next section, a meta-heuristic solution algorithm is presented to be able to

find near optimal solutions for the mathematical models, PS and PM where R(x⃗)

is estimated based on the steady-state probabilities and transition rates of QMi’s by

using the approximation algorithm in Section 4.2.4.

4.3 A Genetic Algorithm for PM

In Section 4.1, we present two mathematical models, PS and PM , to locate EMS

vehicles whose objective functions are evaluated with the help of decomposition

methods proposed in Section 4.2. Since there is no closed-form formulation

for the objective function, a genetic algorithm (GA) is constructed to find near-

optimal solutions for PM while evaluating the objective function values with the

decomposition methods.

Genetic algorithms use chromosome structure to encode different solutions and

compares their fitness function values, i.e. objective function values.They are

designed to generate a population of initial solutions and evolve toward better ones

in terms of the fitness function value. Evolution is realized through the reproduction

of the population using two main genetic operators, crossover and mutation operator,

which create the next generation for the algorithm.

A feasible solution to model PM is the number of vehicles located in given locations.

In the chromosome structure, a solution is represented by an N-dimensional array.

Each entry of this array is called a gene and shows the location of a vehicle in the

solution. Since PM allows multiple vehicles in one location, genes representing the

same location might show up in chromosomes more than once. The number of genes

with the same location indicates the number of vehicles located in that location. For

an instance where N = 3, the solution at hand x⃗ = (1, 0, 2) and I = {1, 2, 3},

chromosome is encoded as ⟨1|3|3⟩. Each chromosome is called an individual, the

collection of which makes up the population of the algorithm.
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The notation used for the genetic algorithm are given in Table 4.1.

Table 4.1: Notation used for Genetic Algorithm

Parameters

M Size of the population and the mating pool

Oi Fitness value of individual i of the population

us(i) Probability of selection of individual i

uc Probability of crossover

c Crossover point

um Probability of mutation

M many random individuals are generated to form the initial population. Each

individual represents a feasible solution for the model to be solved. A predefined

number of individuals, M , are copied to a mating pool to reproduce the next

generation population in the reproduction process. The selection of the individuals

is based on their fitness values. A larger probability is assigned to an individual with

a smaller fitness value.

The fitness value, Oi, of an individual i is simply the objective function value for the

solution encoded in the chromosome. The DM-M-CF decomposition method is used

to find the objective function value of individual and is recorded as the fitness value.

The probability of selection for individual i is given by:

us(i) =
1
Oi∑S
j=1

1
Oj

.

After constructing the mating pool with individuals from the population, parents are

selected in pairs for reproduction. This selection is random with equal probabilities

for all individuals in the mating pool.

The crossover operator is used to transfer genes from parents to children and applied

to selected pairs of individuals (as parents) with a predefined probability uc. If the

probability fails, crossover operation is not applied, the parents are duplicated, i.e.,

children are the same as the parents. If crossover were applied, one-point crossover is

used. A crossover point, c, is selected randomly between 1 and N . The first c genes
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of Parent 1 are copied to Child 1 and Parent 2 to Child 2. Genes after the crossover

point, c, are copied from Parent 1 to Child 2 and from Parent 2 to Child 1.

As an example consider Parent 1, Parent 2 which are given below and c = 2. Child 1

and Child 2 are reproduced with the crossover as follows;

Parent 1 Parent 2

⟨1|1|3⟩ ⟨2|3|5⟩

Child 1 Child 2

⟨1|1|5⟩ ⟨2|3|3⟩

After reproducing children from crossover operation, every gene of a child is mutated

to diversify the solutions in the population and better search the solution space by

not restricting the search to solutions only with genes represented in a generation.

The mutation is realized with probability um for every gene in a child. If probability

succeeds, the child’s gene is overridden by a random location from set I with equal

probabilities (with locations that do not exist in the child if only single vehicles are

allowed in a location).

After crossover and mutation operations, 2 ∗M individuals exist in the mating pool,

including the children. The next generation is constructed from the best M feasible

individuals in terms of the fitness function value from the mating pool. When

the next generation produced from a population of individuals consists of a single

chromosome represented M times, it is assumed that the population has converged.

This individual is taken as the best solution suggested by the genetic algorithm for

PM , and iteration is terminated.

This genetic algorithm could be used for PS as well by changing the crossover and

mutation operators to maintain feasibility in the generation of the next population.

The pseudo-code of the GA for PM is given in Algorithm 4.
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Algorithm 4 Pseudo-code of the genetic algorithm

1: Generate initial population with M many solutions, Pop = {p1, ..., pM}
2: Find fitness values of the solutions in initial population

3: repeat

4: Initiate mating pool, Pool = ∅
5: for k = 1 to M do

6: u = rand(0, 1)

7: Pool = Pool∪{pi} where pi ∈ Pop and
∑i−1

j=1 us(j) ≤ u ≤
∑i

j=1 us(j)

8: end for

9: for k = 1 to M/2 do

10: Generate i = rand(1,M) and l = rand(1,M)

11: Parent1 = mi and Parent2 = ml

12: u = rand(0, 1)

13: if u ≤ uc then

14: Child1 := Crossover(Parent1, Parent2)

15: Child2 := Crossover(Parent1, Parent2)

16: else

17: Child1 := Parent1

18: Child2 := Parent2

19: end if

20: for j = 1 to 2 do

21: for n = 1 to N do

22: u = rand(0, 1)

23: if u ≤ um then

24: Childj(n) := Mutation(Childj(n))

25: end if

26: end for

27: end for

28: Choose the best M solutions from

(Parent1, ..., ParentM , Child1, ..., ChildM) to the population Pop

29: end for

30: until Termination condition is satisfied return The best individual
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4.4 Experimental Study

An experimental study is conducted to see the performance of decomposition methods

in evaluating objective function values of each feasible solution of the mathematical

models, PS and PM , given in Section 4.1. The optimal solutions for PS and PM

based on complete enumeration with decomposition methods are compared to the

best solution found based on simulation as well to check the performance under

optimization problems. The proposed decomposition methods are used to evaluate

two different objective functions from Chapter 3. Lastly, the performance of the

proposed genetic algorithm is checked in terms of the quality of solutions reported at

the end of runs.

Various problem instances having different network configurations are used in the

experiments as in Chapter 3. In addition to toy data, decomposition methods are

tested on a real-life data set as well to check the performance of the methods under

larger size problems. The analysis performed are explained in detail below.

Three decomposition methods are used to evaluate the objective function value of a

feasible solution of the mathematical models, PS and PM , given in Section 4.1. A

discrete event simulation model is constructed and coded in Matlab environment to

simulate the emergency medical systems and evaluate the mean response time of

a location solution since the exact queueing model is computationally expensive.

Then, the quality of approximation of the decomposition methods is checked by

comparing the objective function values of each feasible solution of the problem

evaluated with the simulation model and the decomposition methods based on

complete enumeration.

Differently from one-to-one comparison of feasible solutions, the quality of the

optimal solutions of the mathematical models under decomposition methods found

by complete enumeration is also analyzed by comparing them to the best solutions

obtained from a ranking selection algorithm that employs the simulation model.

Hence, the performance of the decomposition methods under optimization problems

is tested.

In addition, the proposed decomposition methods are used to evaluate the objective
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function values of the models P4 and P7 from Chapter 3 which are the models found

performing well in terms of equity. The optimal solutions for the problems are found

with complete enumeration. Then, the changes in the mean response time, variance

of the region-wise mean response time and Gini coefficient are checked similarly for

the optimal solutions of the models in order to observe whether similar equity results

are achieved when feasible solutions are evaluated with the decomposition methods.

Lastly, a design of experiments is conducted for the genetic algorithm which is

proposed to find near-optimal solutions for the mathematical models.

4.4.1 Test bed

For the experiments, the same sets of regions from Chapter 3 are used, which include

three forms with 15 demand regions as seen in Figure 4.3.

Figure 4.3: Distribution of demand regions

The number of vehicles is set to 4, 5 or 6. The demand rate is assumed to be the same

for every region as 0.5 units per hour. The incident handling rate is set to 3, 6, 9 and

12.

In total, 36 instances are generated based on a full factorial design using three factors:

Form with three levels, Number of Vehicles with three levels (4,5 and 6) and Incident

Handling Rate with four levels (3, 6, 9 and 12).
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4.4.2 Selection of the best solution and evaluation of performance measures

Since there is no closed-form formulation for the models that includes stochastic

processes in the study, the discrete event simulation model constructed is again used

to simulate the emergency medical systems. In order to show the performance of the

decomposition methods under optimality, the best solution for each problem instance

for models PS and PM are found using KN++ algorithm by Kim and Nelson (2006)

based on this discrete event simulation model as in the previous chapter.

For KN++ algorithm, first-stage sample size n0 is set to 100,000 demand calls. The

initial number of batches, b0, is set to 10. The confidence level γ is set to 0.05,

indifference-zone parameter δ to 0.01, and parameter c to 1. KN++ algorithm is

stopped when the best performing alternative has a 0.1 % difference in the objective

function value from the worst performing among the remaining alternatives. Then,

the best solution is selected randomly from the remaining alternatives.

4.4.3 Performance of the decomposition methods

The performance of the proposed models is explored in two steps, by analyzing

the goodness of the approximation of the objective function value for each feasible

solution, and by comparing the optimal solutions of the models obtained using

decomposition methods based on complete enumeration to the best solutions obtained

with KN++.

The mean response times of all feasible solutions for mathematical models are

evaluated both with the decomposition methods and the simulation model for each

instance. Due to the computational burden, the batch means method is used to

estimate the performance measures with a total of 550,000 demand calls where the

warm-up period is set to 50,000 calls and ten batches of size 50,000 are used.

Let O(.)(k) be the objective function value evaluated by the decomposition method (.),

where (.) is replaced by DM-S, DM-S-CF and DM-M-CF, and OSim(k) be the mean

of the confidence interval of the objective function value evaluated by the simulation

model for the solution k of a problem instance under any mathematical model. We
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find the mean absolute percent deviation (MAPD) of O(.)(k) from OSim(k) over all

feasible solutions of a problem instance as follows:

MAPD =
100

K

K∑
k=1

∣∣∣∣O(.)(k)−OSim(k)

OSim(k)

∣∣∣∣ (4.34)

where K is the total number of feasible solutions compared.

In Table 4.2, we present MAPD results for 36 instances under models using DM-S,

DM-S-CF and DM-M-CF methods. Recall that DM-S method is used to evaluate

performance measures of EMS systems with at most one vehicle per location, DM-S-

CF is an extension of DM-S where we use correction factors in the calculation of the

demand rates of the queueing models, and DM-M-CF incorporates correction factors

in evaluating the performance measures of EMS systems where multiple vehicles at a

single location are allowed . Hence, we use DM-S and DM-S-CF methods to evaluate

the objective function values of the solutions of model PS and DM-M-CF for PM .

Table 4.2: MAPD of the objective function value under decomposition methods from

simulation evaluation overall feasible solutions in 36 instances

Model PS Model PM

Form Nb. of Vehc. Inc. Hand. Rate DM-S DM-S-CF DM-M-CF

Uniform 4 3 6.68 0.36 0.38

6 8.32 0.48 0.42

9 8.92 0.63 0.42

12 9.22 0.76 0.43

5 3 9.76 0.41 0.57

6 10.50 0.57 0.70

9 9.28 0.66 0.74

12 7.95 0.70 0.76

6 3 12.00 0.51 0.93

6 5.48 0.68 1.31

9 1.35 0.91 1.50

12 1.33 1.11 1.60

Center-Acc. 4 3 5.83 0.36 0.37

6 7.17 0.48 0.40

9 7.54 0.60 0.43

12 7.65 0.69 0.43

Continued on next page
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Table 4.2 – continued from previous page

Model PS Model PM

Form Nb.of Vehc. Incident Hand. Rate DM-S DM-S-CF DM-M-CF

5 3 8.56 0.43 0.49

6 8.72 0.61 0.61

9 7.25 0.69 0.66

12 5.92 0.75 0.69

6 3 10.47 0.52 0.73

6 4.05 0.62 0.97

9 1.43 0.63 1.12

12 1.83 0.73 1.23

Outer-Acc. 4 3 7.07 0.42 0.47

6 8.98 0.50 0.53

9 9.88 0.61 0.53

12 10.38 0.77 0.53

5 3 10.29 0.54 0.75

6 11.73 0.66 0.93

9 10.85 0.71 0.99

12 9.52 0.76 1.03

6 3 12.84 0.80 1.29

6 5.88 1.33 1.87

9 1.95 1.90 2.18

12 2.99 2.25 2.33

Average 7.49 0.73 0.87

The results show that DM-S evaluates the mean response time under a feasible

solution with up to an average of 13% deviation in some instances and with an

average of 7.5% over all. However, the quality of approximation of the mean response

significantly betters off with the inclusion of correction factors, where MAPD is

smaller than 1% in most instances under DM-S-CF and DM-M-CF.

The results show that allowing multiple vehicles at a single location increases the

average MAPD from 0.73% to 0.87%. But, the overall MAPD is very low under

models with correction factors (DM-S-CF and DM-M-CF).

In order to evaluate the decomposition methods’ ability to differentiate the feasible

solutions in line with the actual performance and deliver an optimal solution

performing close to the best solution with respect to KN++, the optimal solution
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of the mathematical models found by complete enumeration based on the evaluation

using decomposition methods and the best solution obtained with KN++ is compared.

After finding the best solutions with KN++ algorithm and the optimal solutions

of the models based on complete enumeration for each instance, the objective

function values are estimated by running the discrete event simulation model for ten

independent replications. A total of 550,000 demand calls is simulated for every

solution at hand in the simulation model. The warm-up period is selected as 50,000

calls, and the objective function values are reported accordingly. The analysis of the

performances of the decomposition methods concerning the optimal solutions is done

based on this experiment.

Let x⃗∗
(.) be the solution that gives the minimum mean response time with respect to

complete enumeration under decomposition method (.) and OSim(x⃗
∗
(.)) denotes the

mean of 90% confidence interval of the objective function value for this solution

based on 10 independent replications of the simulation model. Subsequently, let

x⃗∗
KN++ represent the best solution evaluated by KN++ algorithm and OSim(x⃗

∗
KN++)

denote the mean of the 90% confidence interval of the objective function value for

this solution based on 10 independent replications.

The percentage deviation from the optimal solution for an instance is denoted by

%∆∗
Sim and is found by

%∆∗
Sim = I{

x⃗∗
(.)

̸=x⃗∗
Sim

}
(
100

OSim(x⃗
∗
(.))−OSim(x⃗

∗
KN++)

OSim(x⃗∗
KN++)

)
,

where I is the indicator function being equal to 0 if the solutions are the same.

%∆∗
Sim results are presented in Table 4.3 for 36 instances with respect to DM-S,

DM-S-CF and DM-M-CF. %∆∗
Sim values are reported as zero if the optimal solution

under a model is the same with the best solution evaluated by KN++. Suppose the

difference between objective function values of the optimal solution of a model and

the best solution by KN++ is not significant, meaning confidence intervals of the

objective function values coincide. In that case, the percentage deviation found is

marked with an asterisk in the table.
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Table 4.3: %∆∗
Sim for the best solution for models evaluated with respect to

decomposition methods in 36 instances

Model PS Model PM

Form Nb. of Vehc. Inc. Hand. Rate DM-S DM-S-CF DM-M-CF

Uniform 4 3 0 0 -0.19 *

6 0 0 -1.08

9 -0.54 -0.44 0

12 0 0 0

5 3 0 0 0

6 -0.03 * -1.15 0

9 0 0 0

12 0 0 0

6 3 -0.51 -0.31 0

6 0 0 0

9 0 -0.32 * -0.23 *

12 0 0 0

Center-Acc. 4 3 0 0.20 * 0.14 *

6 0.54 -0.10 * -0.30 *

9 0.36 0 -0.61

12 0.41 0 0

5 3 0.44 0 -1.04

6 -0.14 * -0.09 * 0

9 0 0.43 0.41

12 0.08 * 0.10 * -0.31

6 3 0 -0.41 0

6 0 0 0

9 0.21 * 0.22 * 0.04 *

12 0 0 0

Outer-Acc. 4 3 0 -0.22 * 0

6 0 0 0.03 *

9 0.01 * 0.04 * 0.17 *

12 1.53 0 0

5 3 1.14 0 -0.16 *

6 0 0 0

9 0 0 0

12 0.08 * 0.29 * 0

6 3 0 0 0

6 0 0 0

Continued on next page
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Table 4.3 – continued from previous page

Model PS Model PM

Form Nb.of Vehc. Incident Hand. Rate DM-S DM-S-CF DM-M-CF

9 0 0 0

12 0 0 0

In order to summarize %∆∗
Sim results in Table 4.3 , four statistics are computed as

follows:

• Number of instances for which the differences are not statistically

significant: the number of instances where the optimal solution is the same

with the best solution for PS reported by KN++ or the optimal solutions are

not statistically different in terms of the objective function value,

• Average %∆∗
Sim: the average %∆∗

Sim over all instances,

• Average %∆∗
Sim over instances for which the differences are statistically

significant: the average %∆∗
Sim over instances having optimal solutions that

are statistically different,

• Average absolute %∆∗
Sim over instances for which the differences are

statistically significant: the average absolute %∆∗
Sim over instances having

optimal solutions that are statistically different.

The summary statistics for %∆∗
Sim results are given in Table 4.4.

The results in Table 4.4 show that DM-S performs similar to other models in finding

solutions near the best solution by KN++. Remember that the average MAPD over

instances is 7.49% for DM-S from Table 4.2. Although DM-S evaluates the mean

response time of a solution with up to 13% deviation in some instances, it performs

as well as DM-S-CF in delivering optimal solutions close to the best solution by

KN++ where the average deviation of instances with statistically significant solutions

is 0.42% for DM-S.

In Table 4.3, there are negative %∆∗
Sim for some instance-model pairs. These are

acceptable given that KN++ is an algorithm that is said to guarantees to find the
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Table 4.4: Summary of %∆∗
Sim in the corresponding objective function values with

respect to KN++ best solutions in 36 instances

Model PS Model PM

Statistics DM-S DM-S-CF DM-M-CF

Number of instances for which the differences are not

statistically significant

28 31 31

Average %∆∗
Sim 0.10 -0.05 -0.09

Average %∆∗
Sim over instances for which the differences

are statistically significant

0.42 -0.38 -0.52

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

0.68 0.55 0.69

best solution with a predefined probability. Therefore, there could be solutions

that perform better than the best solution evaluated by KN++. In Table 4.4 , the

average %∆∗
Sim over instances for which the differences are statistically significant

is -0.38% for DM-S-CF and -0.52% for DM-M-CF. Although the averages are small,

these results show that use of DM-S-CF and DM-M-CF methods in evaluation of the

objective function value result in optimal solutions that are statistically significantly

better than the best solution obtained with KN++.

The average %∆∗
Sim over all instances are very low for all three methods. Therefore,

assuming server independence (as in DM-S where correction factors are not used)

does not significantly affect the ability of decomposition method in finding close

enough solutions to the best solution, although it worsens the approximation of the

mean response time where the average MAPD over instances is 7.49% for DM-S

from Table 4.2.

In addition to the quality of the approximations, computation times in seconds are

reported in Table 4.5. As mentioned earlier, the optimal solutions for PS and

PM are found by enumerating all feasible solutions and evaluating the objective

function value with methods DM-S, DM-S-CF and DM-M-CF. In Table 4.5, the

computation times spent on finding the optimal solutions under the models and the

best solution with KN++ algorithm are presented. The experiments are run on the

same workstation with Intel Xeon E2246G, a 3.6 GHz processor and 16 GB RAM.
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Table 4.5: Computational time in seconds for models in 36 instances

Model PS Model PM

Form Nb. of Vehc. Inc. Hand. Rate KN++ DM-S DM-S-CF KN++ DM-M-CF

Uniform 4 3 558 2 8 1150 18

6 460 2 11 966 22

9 586 2 11 1156 24

12 443 2 12 1069 26

5 3 984 6 30 3736 113

6 854 7 42 3469 140

9 871 8 45 3331 155

12 861 9 47 3248 157

6 3 1581 16 82 13424 604

6 1326 21 108 12793 707

9 1309 20 107 11683 708

12 1307 19 105 11697 709

Center-Acc. 4 3 526 2 8 1093 17

6 499 2 9 1004 21

9 468 2 11 1103 24

12 575 2 12 925 25

5 3 991 5 29 3590 112

6 1006 7 37 3455 134

9 836 8 42 3290 146

12 908 8 44 3443 144

6 3 1561 15 79 12733 579

6 1556 20 103 12799 651

9 1597 19 100 12267 1484

12 1439 18 97 11498 646

Outer-Acc. 4 3 658 3 13 1160 23

6 570 2 10 1027 21

9 496 2 12 1103 24

12 448 2 12 1003 25

5 3 1168 6 31 3803 119

6 865 7 39 3497 141

9 1005 8 47 3444 155

12 960 9 49 3472 160

6 3 1168 15 84 12918 604

6 1528 23 102 12580 728

9 1586 22 113 12136 745

Continued on next page
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Table 4.5 – continued from previous page

Model PS Model PM

Form Nb. of Vehc. Inc. Hand. Rate KN++ DM-S DM-S-CF KN++ DM-M-CF

12 1448 21 111 12182 726

In Table 4.5, the computation times for proposed methods are significantly lower

than KN++ for both single and multi-vehicle models despite complete enumeration

of feasible solutions. The required computational effort increases with the inclusion

of correction factors from DM-S to DM-S-CF. When multiple vehicles are allowed at

a single location (as in PM ), the computation time again increases since the number of

feasible solutions increases for a problem instance. However, the computation times

required for the proposed models are still significantly less than the time required for

KN++.

Based on these results, DM-S-CF and DM-M-CF methods are very promising since

they approximate the objective function value very close to the simulation model

without the need for simulation and deliver optimal solution close to the best solution

found by KN++. The required computation time is also significantly less than

KN++ where the best performing solution is obtained through the simulation of the

alternative solutions.

In the next section, we use the DM-S-CF method in Model PS on a real-life data set,

checking the performance on problem instances with higher number of vehicles and

demand regions.

4.4.4 Performance of the methods on Edmonton Data

The data set of City of Edmonton Emergency Medical Services by Ingolfsson et al.

(2003) consists of 180 demand nodes with given demand rates and 16 stations with

specified capacities ranging from one to three. The demand rates for the nodes vary

from node to node. The means of travel time between stations and nodes are given in

the data set. The mean incident handling time is set to 45 minutes for this experiment.

Total demand calls per hour is set to 5.
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We use PS model with DM-S-CF method to locate from 8 to 12 emergency medical

vehicles in Edmonton City, resulting in five problem instances in total. KN++

algorithm is used to select the best solutions for these instances with respect to

simulation evaluation. According to the results, the best solution (according to

KN++) in all five instances is found when DM-S-CF method is used to evaluate the

objective function value of a solution. Hence, the number of instances for which

the differences are not statistically significant is 5 out of 5 for this data set. This

shows that DM-S-CF is a good method to find near-best solutions for instances with a

higher number of vehicles as well, where the number of individual queueing models

constructed to approximate the objective function value is also higher.

The computation times required to solve the problem instances are also reported in

Table 4.6 for Edmonton data.

Table 4.6: Computational time in seconds

Nb. of Vehc. KN++ PS with DM-S-CF

8 15234 4270

9 14736 4864

10 11505 4175

11 6977 2642

12 3025 1240

It is seen that computation time for complete enumeration of PS with DM-S-CF is

less than the time required for KN++ algorithm to evaluate the best solution. As

the number of feasible solutions under an instance increases (from 12 vehicles to 8

vehicles), the decrease in computation time in comparison to KN++ increases. This

is due to the increasing computational burden of simulation of all feasible solutions

in the initial stage of the KN++ and the increasing number of solutions that needs to

be eliminated in the iterations when the number of feasible solution increase.
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4.4.5 Performance of DM-S-CF under P4 and P7

In addition to the models PS and PM , we use the decomposition models to evaluate

different objective functions. For this purpose, models P4 and P7 are used from

Chapter 3. From the experiments in the Chapter 3, it is seen that P4 and P7 improves

equity in resulting optimal solutions in comparison to minimizing mean response

time. Therefore, decomposition methods are used to find optimal solutions for these

models with different objective functions from PS and PM .

Recall that P4 minimizes the maximum mean region-wise response time while P7

minimizes the total positive deviation of mean region-wise response time from a

threshold travel time τ .

(P4) Minimize max
j∈J

(Rj(x⃗)) (4.35)∑
i∈I

xi = N (4.36)

xi ∈ {0, 1} , ∀i ∈ I. (4.37)

(P7) Minimize
∑
j∈J

[Rj(x⃗)− τ ]+ (4.38)

∑
i∈I

xi = N (4.39)

xi ∈ {0, 1} , ∀i ∈ I, (4.40)

where [ . ]+ = max {0, .}.

We use DM-S-CF method to evaluate the objective function value of feasible

solutions of P4 and P7, and find the optimal solutions for each model under each

problem instance by complete enumeration. By using KN++, the best solutions

according to the simulation study are found as well. After finding the optimal solution

by using DM-S-CF and the best solution by using KN++, the performance measures

for these solutions are evaluated from a separate simulation run.

Firstly, %∆∗
Sim are found for each problem instances by comparing the objective

function values of solution found by DM-S-CF and KN++. In order to summarize
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%∆∗
Sim results, four statistics are computed as in Chapter 4.4.3 and given in Table

4.7.

Table 4.7: Summary of %∆∗
Sim in the corresponding objective function values with

respect to KN++ best solutions in 36 instances

Statistics P4 P7

Number of instances for which the differences are not

statistically significant

35 33

Average %∆∗
Sim -0.03 0.53

Average %∆∗
Sim over instances for which the differences

are statistically significant

-0.79 5.04

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

0.79 7.32

It is seen that DM-S-CF evaluates the same solution with KN++ best or a solution that

the difference is not statistically significant in thirty-five instances for P4 and thirty-

three instances for P7. The average %∆∗
Sim over instances for which the differences

are statistically significant are -0.79 % and 5.04 % for P4 and P7, respectively.

The average %∆∗
Sim is relatively high for P7 where this can be attributed to the

convolution of estimation errors due to the summation of region-wise measures in the

objective function. However, DM-S-CF still evaluates the same solution or a solution

that the difference is not statistically significant in thirty-three instances. Then, the

performance of DM-S-CF for these two measures is similar to its performance in

mean response time measure assessed using models PS and PM .

Secondly, the effect of evaluating the objective function with DM-S-CF on equity

measures of the resulting solution of P4 and P7 is also checked. The optimal solutions

of P4 and P7 found by using DM-S-CF and the best solutions found by using KN++

are compared to the best solution for PS in terms the mean response time, the variance

of region-wise mean response time and the Gini coefficient as in Chapter 3.

In order to quantify the difference of the models, the mean absolute percent deviation

of measures for the optimal solution of the models, MAPD, from PS is calculated for

each measure over all instances. We report the average percent positive deviations,

avgpd(%), of the mean response time of the best solution in the models from PS . The
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percent of instances with positive deviation, ppd(%), in mean response time is also

reported in order to show the fraction of instances with positive deviations. One can

refer to (3.38),(3.39) and (3.40) for the details of the statistics, MAPD, avgpd(%)

and ppd(%).

For V arRj and G, the average percent negative deviation, avgnd(%), and the percent

of instances with negative deviation, pnd(%), are reported instead since equity gets

better as V arRj and G decrease.

In Table 4.8, these statistics are reported to show the changes in R, V arRj and G.

Table 4.8: Comparison of Models P4 and P7 with PS in performance measures

P4 P7

Measure Statistics DM-S-CF KN++ DM-S-CF KN++

MAPD(%) 14.10 14.74 11.23 11.51

R ppd(%) 100 100 100 100

avgpd(%) 14.10 14.74 11.23 11.51

MAPD(%) 49.15 49.97 48.31 51.24

V arRj pnd(%) 100 100 91.67 97.22

avgnd(%) 49.15 49.97 51.59 51.80

MAPD(%) 37.76 38.59 34.47 36.67

G pnd(%) 100 100 97.22 97.22

avgnd(%) 37.76 38.59 35.29 37.48

The results show that the effect of P4 and P7 on the mean response time, the variance

of mean region-wise response time and the Gini coefficient does not significantly

change when DM-S-CF is used to evaluate the objective function value of the feasible

solutions. This result is said to be expected since DM-S-CF performs very well in

finding the best solutions reported by KN++ for P4 and P7 as mentioned earlier.

4.4.6 Performance of the proposed genetic algorithm

In this section, the performance of the genetic algorithm proposed is studied in terms

of finding the optimal solution for the mathematical models and the deviations of the

best solutions from the optimal.
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A design of experiments is constructed to see the effect of different algorithm

parameters on the performance of the genetic algorithm. These parameters are

determined as population size (M ), probability of crossover (uc) and probability of

mutation (um). For each parameter, two levels are defined as in Table 4.9.

Table 4.9: GA parameter levels for the design of experiments

Parameter M uc um

Levels 50 0.80 0.05

100 0.90 0.10

Thirty-six problem instances of PM are solved using GA where the number of feasible

solutions is higher than PS . DM-M-CF method are used to evaluate the objective

function value of a solution. Each problem instance is solved by starting GA ten

times. The best solutions, x⃗∗
KN++, under KN++ and optimal solutions, x⃗∗

PM
for

Model PM with DM-M-CF method for these instances are known from the previous

analysis.

Two measures are reported to show the performance of the GA under different

settings. The first one is the percent of the replications of GA with different initial

populations, AOF(%), that GA found the optimal solution x⃗∗
PM

of an instance out

of ten independent replications. The second measure is the percent of time, OF(%),

that GA finds the optimal solution for a problem instance in at least one of the ten

replications. For these measures, solutions are not compared in terms of the objective

function values but in vehicle locations only. The averages of these measures overall

problem instances are given in Table 4.10 with respect GA parameters.

In addition, the solutions reported by GA is compared to the best solution obtained

with KN++ and previous measures are given for this comparison in Table 4.10 as

well.

According to the results, GA always finds the optimal solution, x̄∗
PM

, among at

least one of the ten independent replications when population size is set to 100.

This population size increases the likelihood of finding the best solution, x⃗∗
KN++,

in a single run (AOF for KN++) as well. More detailed results are given under
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Table 4.10: Average performance of the GA according to PM and KN++ solutions

PM Optimal KN++ Best

S uc um AOF(%) OF(%) AOF(%) OF(%)

50 0.8 0.05 45 94 28 78

0.1 57 100 34 83

0.9 0.05 43 94 25 72

0.1 56 97 34 78

100 0.8 0.05 70 100 38 67

0.1 79 100 43 69

0.9 0.05 71 100 40 75

0.1 81 100 45 67

different network specifications (form, number of vehicles and incident handling rate)

in Appendix B.

In addition to the performance of GA in finding optimal or near-best solutions, we

also report the percent deviation %∆∗
Sim and mean absolute percent deviation of the

objective function value of GA solutions from x̄∗
PM

and x⃗∗
KN++. Every solution found

by GA is evaluated under the simulation model with ten independent replications, and

a 90% confidence interval on the objective function value is constructed to compare

objective function values.

Let x⃗∗
(.) be the solution that gives the minimum mean response time under model (.)

and OSim(x⃗
∗
(.)) denotes the mean of 90% confidence interval of the objective function

value for the solution based on 10 independent replications of the simulation model.

%∆∗
Sim =

100

K

K∑
k=1

I{
x⃗∗
(.)

̸=x⃗∗
GA,k

}
(
O∗

Sim(x⃗
∗
GA,k)−OSim(x⃗

∗
(.))

OSim(x⃗∗
(.))

)
where I is the indicator function, K is the total number of GA replications for an

instance and equal to ten, and k indexes the corresponding statistics for the kth run of

the GA. (.) is replaced by PM and KN++ for Tables 4.11 and 4.12, respectively.

MAPD =
100

K

K∑
k=1

I{
x⃗∗
(.)

̸=x⃗∗
GA,k

}
∣∣∣∣∣O

∗
Sim(x⃗

∗
GA,k)−OSim(x⃗

∗
(.))

OSim(x⃗∗
(.))

∣∣∣∣∣
where K is the total number of GA replications for an instance and equal to 10 and
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(.) is replaced by PM and KN++ for Tables 4.11 and 4.12, respectively.

In Tables 4.11 and 4.12, the averages of those measures over all solutions and

the averages over only the solutions statistically different from the optimal or

best solution are reported under the columns Overall and Statistically Significant,

respectively.

Table 4.11: Average %∆∗
Sim and MAPD of GA results from PM Optimal Solution

Overall Statistically Significant

S uc um Avg %∆∗
Sim (%) MAPD(%) Avg %∆∗

Sim (%) MAPD(%)

50 0.8 0.05 0.77 0.79 1.64 1.68

0.1 0.39 0.42 1.21 1.25

0.9 0.05 0.80 0.81 1.48 1.50

0.1 0.48 0.51 1.27 1.31

100 0.8 0.05 0.23 0.26 1.16 1.21

0.1 0.15 0.18 0.92 0.98

0.9 0.05 0.22 0.25 1.10 1.15

0.1 0.13 0.17 0.95 1.03

From the results in Table 4.11, it is seen that GA has the smallest Avg %∆∗
Sim and

MAPD(%) from the PM optimal solution under the setting S = 100, uc = 0.90 ,

um = 0.10 over all solutions.

Table 4.12: Average Deviation and MAPD of GA results from KN++ Best Solution

Overall Statistically Significant

S uc um Avg %∆∗
Sim (%) MAPD(%) Avg %∆∗

Sim (%) MAPD(%)

50 0.8 0.05 0.67 0.80 1.45 1.62

0.1 0.29 0.48 0.95 1.22

0.9 0.05 0.69 0.83 1.26 1.45

0.1 0.37 0.55 1.03 1.26

100 0.8 0.05 0.14 0.35 0.80 1.09

0.1 0.06 0.29 0.63 1.00

0.9 0.05 0.14 0.34 0.74 1.05

0.1 0.04 0.28 0.57 0.97

In Table 4.12, the smallest values for the measures are realized under the same setting
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(S = 100, uc = 0.90 , um = 0.10) for both of the cases: over all solutions and

statistically different solutions. Hence, parameters could be set as S = 100, uc = 0.90

, um = 0.10 for the GA.

In addition to quality of the solution reported by GA, the computation time required

for GA to report a solution under the setting (S = 100, uc = 0.90 , um = 0.10), next

to solution times for KN++ and complete enumeration of feasible solutions of PM

with DM-M-CF method are presented in Table 4.13

Table 4.13: Computational time in seconds for KN++, complete enumeration and GA

in 36 instances

PM with DM-M-CF

Form Nb. of Vehc. Inc.Hand. Rate KN++ Compl. Enum. GA

Uniform 4 3 1150 18 5

6 966 22 5

9 1156 24 7

12 1069 26 6

5 3 3736 113 11

6 3469 140 14

9 3331 155 18

12 3248 157 17

6 3 13424 604 22

6 12793 707 28

9 11683 708 27

12 11697 709 26

Center-Acc. 4 3 1093 17 6

6 1004 21 6

9 1103 24 6

12 925 25 7

5 3 3590 112 11

6 3455 134 14

9 3290 146 14

12 3443 144 14

6 3 12733 579 22

6 12799 651 26

9 12267 1484 28

12 11498 646 24

Continued on next page
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Table 4.13 – continued from previous page

PM with DM-M-CF

Form Nb. of Vehc. Inc. Hand. Rate KN++ Compl. Enum. GA

Outer-Acc. 4 3 1160 23 4

6 1027 21 5

9 1103 24 5

12 1003 25 6

5 3 3803 119 9

6 3497 141 11

9 3444 155 12

12 3472 160 13

6 3 12918 604 18

6 12580 728 19

9 12136 745 21

12 12182 726 22

Together with the previous results, it is seen that the proposed genetic algorithm

finds a solution under an average of thirty seconds in all instances with very small

deviations from the objective function value of the optimal solution of PM and of the

best solution obtained with KN++.

4.5 Conclusion

In this chapter, the exact queueing model is decomposed into interdependent

queueing models to assess the EMS system’s performance measures due to the

exponentially increasing size of the exact queueing model with the number of

vehicles and demand regions. The decomposition method proposed results in a set of

interdependent balance equations, forming a non-linear set of simultaneous equations.

An approximation method is proposed to solve the resulting set of equations and

estimate the steady-state probabilities.

The proposed decomposition methods work on cases where multiple vehicles are

allowed at a single location and service rates are specific to vehicle location - demand

region pairs. Differently from the studies of Budge et al. (2009), the vehicles

at a single location are differentiated by prioritizing the dispatches among them.
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Furthermore, decomposition methods are analyzed under an optimization setting

to reveal the ability in differentiating alternative solutions under a mathematical

model in line with the simulation model. A meta-heuristic algorithm to solve

the mathematical models since the mathematical models have no closed-form

formulation.

An extensive experimental study is conducted on both toy and real-life data to assess

the performance of the methods. The experiments have shown that DM-S-CF and

DM-M-CF methods are very good at approximating the mean response time of the

system by about %2.5 deviation at the most and about 0.9% deviation on average

in the problem instances. It is also shown that near-best solutions are found by

about 0.5% deviation from the best solution obtained from a simulation study. In

addition, DM-S-CF are tested on two models P4 and P7 from Chapter 3 with two

different objective functions: maximum mean region-wise response time and the total

positive deviation of mean region-wise response time from a threshold. It is seen that

DM-S-CF are good at finding optimal solutions for those models where it finds the

optimal solution in thirty-five and thirty-three instances out of thirty-six for P4 and

P7, respectively.

The genetic algorithm proposed is also analyzed in terms of the solutions found. It

is seen that GA always finds the optimal solution of the mathematical model and

finds the best solution obtained by simulation in 67% of instances in one of the ten

independent runs for the toy data. Although GA could not find the best solution with

respect to simulation study in some instances, the average deviation of GA solutions

from the best solution of the simulation study is very low at around 0.57%.

In this chapter, an algorithmic approach is proposed for the exact queueing model to

assess the performance measures of the EMS system. Working with queueing models

in the proposed decomposition methods allows the decision-maker to evaluate various

measures, including mean region-wise response time, coverage or lost demand.

However, the method requires algorithmic approaches in assessing the measures due

to set of nonlinear equations and in finding the optimal solutions for a mathematical

model such as meta-heuristics.

In the next chapter, we work on closed form formulations to approximate the exact
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queueing model which can be solved with package solvers, enabling one to construct

optimization problems with various performance measures.
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CHAPTER 5

MATHEMATICAL MODELS BASED ON CLOSED-FORM

APPROXIMATIONS OF PERFORMANCE MEASURES FOR STOCHASTIC

EMS VEHICLE LOCATION PROBLEM

In this chapter, mathematical models which can be solved with commercial solvers

are proposed for the EMS vehicle location problem. Closed-form formulations to

approximate the performance measures of the EMS system are developed based

on queueing models similar to the decomposition methods in Chapter 4. Hence,

objective functions and constraints are expressed as a function of decision variables

which enables one to construct several mathematical models for the EMS vehicle

location problem.

In the literature, there are various probabilistic models that can be solved with

commercial such as MEXLCP by Daskin (1983), PLSCP by ReVelle and Hogan

(1988) and MALP by ReVelle and Hogan (1989). Later, several studies extend

those models which includes local reliability contraints for service or multi-objective

problems, previously mentioned in Chapter 2. However, aforementioned models

and extensions require estimation of the fundamental parameter, busy probability of

vehicles, a priori. In this chapter, we propose mathematical models where the busy

probabilities of vehicles are expressed in the form of decision variables based on

queueing models. Therefore, we embed the estimation of the busy probabilities in

the models which makes the application easier for the decision makers. Another

contribution is that the busy probabilities are estimated with respect to feasible

solutions instead of using pre-computed constant busy probabilities which are not

affected by the location decisions.

In Chapter 4, a decomposition method with various variants is proposed to evaluate
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the performance measures of an EMS system. The decomposition methods relies

on the queueing models to evaluate the measures. EMS system is decomposed into

interdependent queueing models, and performance measures of the EMS system are

estimated based on the steady-state distributions of those interdependent models.

The decomposition methods proposed requires algorithmic solution approaches in

approximating the steady-state distributions. Therefore, the decomposition methods

are more computationally burdensome than closed-form mathematical models, where

commercial solvers are easily exploited to solve the models.

In this chapter, the interdependence among vehicles in serving the demand calls is

ignored. Separate queueing models are constructed for each vehicle and treated as

independent systems. Since those models are independent, the balance equations

for a model do not incorporate nonlinear terms. Then, the busy probability of each

vehicle is easily found based on the steady-state distribution of each model. The busy

probabilities of models are used to estimate several performance measures of the

EMS systems. The estimation of busy probabilities and performance measures are

expresses in the form of decision variables and embedded in mathematical models.

Several mathematical models are proposed based on the same constraints by changing

objective functions such as maximizing expected satisfied demand, maximizing

expected covered demand or minimizing mean response time. Two different way

of estimating busy probabilities are proposed. The performance of models are tested

under optimality. The models’ ability in finding near-best solution in comparison to

KN++ algorithm are evaluated. The quality of the optimal solution of the models are

evaluated with respect to solutions obtained by complete enumeration. In addition, a

commercial solver is used to solve the mathematical models and the optimality gap is

reported for the models. The experiments are done on both toy data and the real life

data set from Chapter 4.

The rest of the chapter is as follows. In Section 5.1, the problem environment,

construction of the separate queueing models and estimation of the performance

measures are explained. In Section 5.2, mathematical models incorporating closed-

form formulations are presented. Experimental study is given in Section 5.3 and this

chapter is concluded in Section 5.4.
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5.1 Modeling Approach and Estimation of the Performance Measures

In the decomposition methods discussed in Chapter 4, the exact queueing model

is decomposed into N interdependent queueing models, each representing a single

vehicle. Furthermore, the service time for a demand call from region j by a vehicle

from location i is assumed to be exponentially distributed with a mean that is equal to

the sum of mean travel time to demand region, mean incident handling time, and mean

travel time back to the vehicle location (ωij+ϕj+ωij). In the decomposition methods,

queueing models are constructed interdependently since the closest available vehicle

is assigned to a demand call. This requires the demand rates in the queueing models

to change with respect to the busy probability of other vehicles so that the assignment

of demand calls in the exact queueing model are represented in the interdependent

queueing models. However, this structure results in a set of nonlinear equations which

need to be solved simultaneously to find steady state probabilities.

In this chapter, the interdependence among busy probabilities of vehicles is

ignored. Hence, separate independent queueing models constructed for each

vehicle. Differently from the previous chapter, the closed form formulations are only

developed for single-vehicle problems where at most one vehicle is allowed at a single

location.

Recall the queueing model for decomposition method DM-S in Chapter 4 where

{bt, t ≥ T} is a continuous time Markov chain with state space Li = J ∪ {0} for

QMi, ∀i ∈ I
′ , I ′

= {i ∈ I|xi > 0} under given solution x⃗. A state bt ∈ Li, t ≥ T

is 0 when the vehicle is free and j when it is busy serving region j at time t. The

transition from state j = 0 to state j ̸= 0 is realized when a demand call arrives and

its rate for QMi is λjc
i
j where cij is the probability that all vehicles closer to region j

than vehicle i are busy if there is any, and 1 otherwise.

Since interdependence between vehicles is ignored in this chapter, the transition rate

from state j = 0 to state j ̸= 0 for QMi becomes λj . The service rate µji for state

j ̸= 0 for QMi is kept the same as in (4.8).

Recall the example from Chapter 4 .
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Example: Assume x⃗ = (1, 0, 1) where I = {1, 2, 3}, J = {1, 2, 3} and N = 2.

Assume that Region 2 is closer to Region 1 than Region 3. We construct a queueing

model for the vehicle in Region 1 as QM1 and another for the one in Region 3 as

QM3. Then, L1 and L3 are the same and equal to {0, 1, 2, 3} for both models.

Then, the queueing models could be constructed as in Figure 5.1. Now, none of the

transition rates from state j = 0 includes the term cij differently from decomposition

method DM-S since queueing models are mutually independent now.

01 2

3

λ1

λ2

λ3

µ11

µ21

µ31

(a) Rate diagram for QM1

01 2

3

λ1

λ2

λ3

µ13

µ23

µ33

(b) Rate diagram for QM3

Figure 5.1: Rate diagrams for the queueing models of the given solution x⃗

Recall that πi
j is the steady state probability for state j ∈ Bi of QMi. Then, the

probability vehicle i being free, πi
0 , is written as follows :

πi
0 =

1∑
j∈Li\{0}

λj

µji
+ 1

. (5.1)

Notice that the computation of πi
0 in (5.1) is different from (4.10) where the former

lacks cij as a multiplier of λj .

Based on the steady-state probabilities, the busy probability of vehicle i under x⃗ is

equal to (1−πi
0). Now, these busy probabilities of vehicles derived from the queueing

models are used to construct closed-form formulations for performance measures of

the EMS system.

Remark. In the exact system, a vehicle responds to a demand call only if all closer

vehicles are busy. Therefore, the busy probability found by (1−πi
0) is an upper bound

for the busy probability of vehicle i in the exact queueing system since all vehicles are
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assumed to be mutually independent and serve the demand calls from all regions

without considering closer vehicles being available.

Following the assumption of independence, several performance measures could be

approximated by using busy probabilities of vehicles, such as expected satisfied

demand or mean response time of the system.

For the sake of brevity, let pi = (1− πi
0) be the busy probability of vehicle i under x⃗

based on the steady state probabilities of the states of the separate queueing models.

Let vjk be the vehicle location that is the kth closest to region j, vj1 being the closest

and vjN being the farthest location to region j with a vehicle located.

The probability that a demand call from region j is satisfied by the closest vehicle is

P
(

a dem. call from reg. j is satisfied by the closest vehc.
)
= (1− pvj1). (5.2)

Based on the assumption of independence among vehicles, the probability that a

demand call from region j is satisfied by at most the second closest vehicle is

P
(

a dem. call from reg. j is satf. by the cls. or the second cls. vehc.
)

= (1− pvj1) + (1− pvj2)pvj1 .
(5.3)

Following (5.2) and (5.3), the probability that a demand call from region j is satisfied

is calculated as follows:

P
(
a demand call from region j is satisfied

)
= (1− pvj1) +

N∑
t=2

(1− pvjt)
t−1∏
k=1

pvjk .
(5.4)

By using the probability given in (5.4), the expected amount of demand satisfied in

unit time under solution x⃗, ED(x⃗) is estimated as follows:

ED(x⃗) =
∑
j∈J

λj

(
(1− pvj1) +

N∑
t=2

(1− pvjt)
t−1∏
k=1

pvjk

)
. (5.5)
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Similar to ED(x⃗), the expected covered demand CD(x⃗) under x⃗ could be estimated.

The probability that a demand call form region j is covered under threshold τ is

P
(
a demand call from region j is covered under threshold τ

)
= (1− pvj1)FTjvj1

(τ) +
N∑
t=2

(1− pvjt)FTjvjt
(τ)

t−1∏
k=1

pvjk

(5.6)

where FTij
is the cumulative distribution function of the travel time between region j

and vehicle i.

Then, the expected covered demand in unit time under x⃗ is found as

CD(x⃗) =
∑
j∈J

λj

(
(1− pvj1)FTjvj1

(τ) +
N∑
t=2

(1− pvjt)FTjvjt
(τ)

t−1∏
k=1

pvjk

)
. (5.7)

Another measure that can be calculated based on busy probabilities is region-wise

mean response time, Rj(x⃗), under solution (x⃗).

Rj(x⃗) =

(1− pvj1)ωjvj1 +
N∑
t=2

(1− pvjt)ωjvjt

t−1∏
k=1

pvjk

1−
N∏
k=1

pvjk

(5.8)

where ωjvjt is the mean travel time between region j and vehicle location vjt. The

numerator in (5.8) is the weighted total travel time based on the probabilities that the

vehicle in the corresponding location (vjt) is assigned to the demand call form region

j while the denominator is the probability that there is at least one vehicle that could

be assigned to this demand call.

In addition, the mean response time R(x⃗) could be calculated based on the region-

wise mean response time (Rj(x⃗)) as follows:

R(x⃗) =

∑
j∈J

λj

(
(1− pvj1)ωjvj1 +

N∑
t=2

(1− pvjt)ωjvjt

t−1∏
k=1

pvjk

)
∑
j∈J

λj

(
(1− pvj1) +

N∑
t=2

(1− pvjt)
t−1∏
k=1

pvjk

) (5.9)

where the numerator is the demand weighted mean region-wise response time and the

denominator is the expected demand satisfied in unit time.
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Following the formulations for the performance measures, several mathematical

models are constructed by defining the busy probabilities of vehicles as decision

variables associated with the location solution in the next section.

5.2 Mathematical Models with Closed-form Formulations

In this section, we construct mathematical models for EMS vehicle location problem

by expressing the performance measures developed in the previous section based on

decision variables. The notation used for the mathematical models is given in Table

5.1.

Table 5.1: Notation used for the mathematical models

Sets

I the set of vehicle locations

J the set of demand regions

Parameters

N the number of vehicles to be located

ωij mean travel time between vehicle location i and demand region j

λj demand rate of region j per unit time

µji service rate for region j when served by a vehicle from location i

The mathematical models are constructed with the following decision variables in

Table 5.2.

The relation between decision variables are shown with an example. Assume that

xi = 1 for given i. aij1 = 1 if it is the farthest vehicle to region j, and then yj1 = ωij .

Similarly, aijN = 1 if it is the closest vehicle to region j, and yjN = ωij .

Recall that the probability that a demand call from region j is satisfied by the closest

vehicle is defined as (1− pvj1) where pvj1 is the busy probability of the vehicle which

is the closest to region j and located at vj1.

In terms of the decision variables pi and aijk, the probability that a demand call from
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Table 5.2: Decision variables used in the mathematical models

xi a binary variable being equal to 1 if a vehicle is located at

vehicle location i and 0, otherwise

pi the busy probability of vehicle located in region i

aijk a binary variable which takes the value of 1 if vehicle location

i is the kth farthest server location (where a vehicle is located)

to region j and 0, otherwise

yjk mean travel time from the kth farthest vehicle to region j

region j is satisfied by the closest vehicle can be expressed as

P

a demand call from region j is satisfied

by the closest vehicle

 = 1−
∑
i∈I

aijNpi (5.10)

where aijN takes the value of 1 only for i = vj1 for a given j by definition. Hence,∑
i∈I aijkpi computes the busy probability of the kth farthest vehicle to region j.

Based on the notation and decision variables, several mathematical models are

proposed with different objective functions as maximizing expected satisfied demand,

maximizing expected covered demand and minimizing mean response time.

5.2.1 Maximizing Expected Satisfied Demand (MESD) Model

The first model constructed is based on the measure ED, which is the expected

amount of demand satisfied in unit time.

MESD which maximizes expected satisfied demand in unit time is as follows:

Max
∑
j∈J

λj

(
(1−

∑
i∈I

aijNpi)

+
N−1∑
t=1

(
(1−

∑
i∈I

aijtpi)
N∏

k=t+1

∑
i∈I

aijkpi

)) (5.11)

s. to: pi =

1− 1∑
j∈J

λj

µji
+ 1

xi, ∀i ∈ I, (5.12)
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∑
i∈I

xi = N, (5.13)

yjk =
∑
i∈I

aijkωij, ∀j ∈ J, k = 1, . . . , N, (5.14)

yj(k+1) ≤ yjk, ∀j ∈ J, k = 1, . . . , N − 1, (5.15)
N∑
k=1

aijk ≤ xi, ∀i ∈ I,∀j ∈ J, (5.16)∑
i∈I

aijk = 1, ∀j ∈ J, k = 1, . . . , N, (5.17)

xi ∈ {0, 1} , ∀i ∈ I, (5.18)

pi ≥ 0, ∀i ∈ I, (5.19)

aijk ∈ {0, 1} , ∀i ∈ I,∀j ∈ J, k = 1, . . . , N, (5.20)

yjk ≥ 0, ∀j ∈ J, k = 1, . . . , N. (5.21)

The objective function in (5.11) maximizes expected satisfied demand in unit time.

Recall (5.5),

ED(x⃗) =
∑
j∈J

λj

(
(1− pvj1) +

N∑
t=2

(1− pvjt)
t−1∏
k=1

pvjk

)
,

where pvj1 is the busy probability of the vehicle which is the closest to region j and

located at vj1. The term (1−
∑

i∈I aijNpi) in (5.11) corresponds to the term (1−pvj1)

in (5.5) and
∑

i∈I aijkpi to the busy probability of the kth farthest vehicle to region

j. Hence, the objective function evaluates the expected satisfied demand in unit time

under solution x⃗.

(5.12) in MESD is constructed based on the steady state probability of vehicle at

location i being busy, (1 − πi
0) from QMi. The multiplier of xi in right-hand side of

(5.12) is equal to (1−πi
0) where πi

0 is substituted with (5.1). Hence, (5.12) enforces pi

to be equal to the busy probability of vehicle at location i if a vehicle is located and to

0 otherwise. (5.14) and (5.15) sorts the vehicle locations having a vehicle located with

respect to their mean travel time (ωij) to region j. (5.16) ensures that only location

with a vehicle is included in the sorting and (5.17) allows only one location is sorted

as the kth farthest location to region j.

Notice that the objective function in (5.11) includes nonlinear terms that can be
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linearized. The term aijkpi is the multiplication of a binary and a continuous decision

variable. Let sijk = aijkpi. Then, the following constraints is added to the model to

replace aijkpi with continuous decision variable sijk.

0 ≤ sijk ≤aijk, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N, (5.22)

pi − (1− aijk) ≤ sijk ≤ pi, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N. (5.23)

Following, MESD is rewritten in the form of a mixed integer nonlinear programming

model without any nonlinear terms in the constraints as follows:

Max
∑
j∈J

λj

(
(1−

∑
i∈I

sijN) +
N−1∑
t=1

(
(1−

∑
i∈I

sijt)
N∏

k=t+1

∑
i∈I

sijk

))
(5.24)

s. to: (5.12)− (5.23).

Although the term aijkpi is linearized, the objective function in (5.24) still includes

nonlinear terms due to the multiplication of decision variables sijk. Hence, the model

is a mixed integer nonlinear program.

5.2.2 Maximizing Expected Covered Demand (MECD) Model

Another model is constructed to maximize expected covered demand, CD(x⃗). Recall

that CD(x⃗) in (5.7) is estimated based on the busy probabilities as follows:

CD(x⃗) =
∑
j∈J

λj

(
(1− pvj1)FTjvj1

(τ) +
N∑
t=2

(1− pvjt)FTjvjt
(τ)

t−1∏
k=1

pvjk

)

where pvjk is the busy probability of kth closest vehicle location, vjk, to region j.

Similar to the representation of pvjk based on decision variables aijk and pi, FTjvj1
(τ)

is replaced with
∑

i∈I aijNFTij
(τ) in the objective function. aijN takes the value of

one for the closest vehicle location i to the region j (N th farthest) where a vehicle is

located, making FTjvj1
(τ) =

∑
i∈I aijNFTij

(τ).

The following model is constructed similar to MESD, having expected covered

demand in the objective function.
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Model MECD is as follows:

Max
∑
j∈J

λj

(
(1−

∑
i∈I

sijN)
∑
i∈I

aijNFTij
(τ)

+
N−1∑
t=1

(
(1−

∑
i∈I

sijt)
∑
i∈I

aijtFTij
(τ)

N∏
k=t+1

∑
i∈I

sijk

)) (5.25)

s. to: (5.12)− (5.23).

Similar to MESD, MECD is a mixed integer nonlinear program due to the nonlinear

terms in the objective function.

5.2.3 Minimizing Mean Response Time (MMRT) Model

In this section, a new model that minimizes mean response time is constructed. Recall

the approximation of the mean response time based on busy probabilities are

R(x⃗) =

∑
j∈J

λj

(
(1− pvj1)ωjvj1 +

N∑
t=2

(1− pvjt)ωjvjt

t−1∏
k=1

(pvjk)

)
∑
j∈J

λj

(
(1− pvj1) +

N∑
t=2

(1− pvjt)
t−1∏
k=1

(pvjk

) . (5.26)

where ωjvjt is the mean travel time between region j and vehicle location vjt.

Similar to the expression of FTjvj1
(τ) in (5.25) in terms of the decision variables,

ωjvj1 in (5.26) is expresses as
∑
i∈I

aijNωij in the objective function in (5.27) and Model

MMRT which minimizes mean response time of the system is constructed as follows:

Min

∑
j∈J

λj

(
(1−

∑
i∈I

sijN)
∑
i∈I

aijNωij

+
N−1∑
t=1

(
(1−

∑
i∈I

sijt)
∑
i∈I

aijtωij

N∏
k=t+1

∑
i∈I

sijk

))
∑
j∈J

λj

(
(1−

∑
i∈I

sijN) +
N−1∑
t=1

(
(1−

∑
i∈I

sijt)
N∏

k=t+1

∑
i∈I

sijk

)) (5.27)

s. to: (5.12)− (5.23).

Model MMRT has nonlinear terms in the objective function similar to MESD and

MECD. Notice that (5.27) now includes division of decision variables in addition to
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the multiplication. Hence, Model MMRT might be harder to evaluate with package

solvers.

For the models MESD, MECD and MMRT, the objective functions are constructed

based on the assumption of vehicles’ being independent of each other. This

assumption results in busy probabilities such that they are upper bounds for the busy

probabilities of vehicles in the exact system. In the next section, we propose another

approach for the approximation of busy probabilities and estimation of performance

measures of the EMS system in the mathematical models in order to the address the

estimation of busy probabilities at the upper bounds.

5.2.4 Order of districting for the approximation of busy probabilities and

performance measures

In the approximation of the busy probabilities, pi’s, in Section 5.1, it is assumed

that a vehicle responds to all regions in line with their demand rates without any

prioritization such as the closeness to the regions in regard to other vehicles. It

is previously mentioned in Section 5.1 that this is an upper-bound on the busy

probability of this vehicle under the exact queueing model since the queueing models

are constructed assuming that the vehicle at location i is the only vehicle responding

to the demand calls from all regions. However, another vehicle would respond to the

call in the exact system if it is closer and available at the time of the call.

Order of districting approach is utilized for the calculation of busy probabilities which

would better approximate the busy probabilities of the vehicles instead of estimating

the upper bounds. Let d be a parameter stating the order of districting level to be used.

Enforcing order of districting level of d assumes that a vehicle serves the regions only

if it is at most the dth closest vehicle to a demand region.

The order of districting approach could be applied only on the approximation of the

busy probabilities or applied on both the approximation of the busy probabilities and

the estimation of performance measures such as expected satisfied demand in unit

time or mean response time. We first start with applying order of districting on the

approximation of busy probability.
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Let fi be a decision variable that is equal to the probability that the vehicle located at

location i is free. This probability is estimated from the queueing models as fi = πi
0

for QMi. Then, fi could be written as follows:

fi =
1∑

j∈J

λj

µji
+ 1

, ∀i ∈ I.

In order to apply order of districting on the estimation of the probability that a vehicle

is free, decision variable aijk is used in the formulation. When the order of districting

level is set to d, fi is estimated as

fi =
1∑

j∈J

N∑
k=N−d+1

aijk
λj

µji
+ 1

, ∀i ∈ I, (5.28)

where vehicle i is assumed to only serve regions where it is the dth closest vehicle at

the most. With an arithmetic operation, (5.28) could be expressed as

fi +
∑
j∈J

N∑
k=N−d+1

fiaijk
λj

µji

= 1, ∀i ∈ I, (5.29)

where a nonlinear term, fiaijk, appears in the equation. This term could be linearized

by defining a new decision variable, vijk = fiaijk. The following set of constraints

are used to replace fiaijk with the new decision variable vijk.

0 ≤ vijk ≤aijk, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N, (5.30)

fi − (1− aijk) ≤ vijk ≤ fi, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N, (5.31)

Replacing fiaijk with vijk in (5.29) would make the definition of fi as follows:

fi +
∑
j∈J

3∑
k=1

vijk
λj

µji

= xi, ∀i ∈ I. (5.32)

Note that the right-hand side in (5.29) is replaced with binary decision variable xi

since fi should be assigned a positive value only if there is a vehicle located at location

i.

Since we have pi = 1− fi, (5.12) is rewritten as follows:

pi = (1− fi)xi, ∀i ∈ I

111



which could be expressed in the form of two linear inequalities in the mathematical

model as

0 ≤ pi ≤ xi, ∀i ∈ I, (5.33)

(1− fi)− (1− xi) ≤ pi ≤(1− fi), ∀i ∈ I. (5.34)

Eventually, MESD-P model where order of districting is applied only on the

estimation of busy probabilities is constructed with the addition of (5.30), (5.31),

(5.32), (5.33) and (5.34) as follows:

Max
∑
j∈J

λj

(
(1−

∑
i∈I

sijN) +
N−1∑
t=1

(
(1−

∑
i∈I

sijt)
N∏

k=t+1

∑
i∈I

sijk

))
(5.35)

s. to: (5.13)− (5.23),

(5.30)− (5.34).

Similarly, order of districting could be applied on the estimation of the performance

measures in the objective function as well. The objective function in (5.35)

which computes the expected satisfied demand in unit time (ED) is reformulated

incorporating the order of districting level as follows:

∑
j∈J

λj

(
(1−

∑
i∈I

sijN) +
N−1∑

t=N−d+1

(
(1−

∑
i∈I

sijt)
N∏

k=t+1

∑
i∈I

sijk

))
. (5.36)

Then, the expected satisfied demand now is estimated based on the assumption that

at most the dth closest vehicle could satisfy a demand call from a region.

Assume that the order of districting level is set to 3. The expression in (5.36) would

be as follows:

∑
j∈J

λj

(
(1−

∑
i∈I

sijN) +
N−1∑

t=N−2

(
(1−

∑
i∈I

sijt)
N∏

k=t+1

∑
i∈I

sijk

))

which is equal to

∑
j∈J

λj

(
(1−

∑
i∈I

sijN) + (1−
∑
i∈I

sij(N−1))
∑
i∈I

sijN

+ (1−
∑
i∈I

sij(N−2))
∑
i∈I

sijN
∑
i∈I

sij(N−1)

)
.
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When arithmetic operations are performed, the expression above is equal to

∑
j∈J

λj

(
1−

∑
i∈I

sijN +
∑
i∈I

sijN −
∑
i∈I

sij(N−1)

∑
i∈I

sijN

+
∑
i∈I

sijN
∑
i∈I

sij(N−1) −
∑
i∈I

sijN
∑
i∈I

sij(N−1)

∑
i∈I

sij(N−3)

)
which is further reduced to∑

j∈J

λj

(
1−

∑
i∈I

sijN
∑
i∈I

sij(N−1)

∑
i∈I

sij(N−2)

)
.

Hence, (5.36) boils down to the following expression without loss of generality when

order of districting level is set to d:

∑
j∈J

λj

(
1−

N∏
k=N−d+1

∑
i∈I

sijk

)
.

Then, MESD-PO where order of districting is applied for both estimating the busy

probabilities and the expected satisfied demand is written in explicit form as follows

Max
∑
j∈J

λj

(
1−

N∏
k=N−d+1

∑
i∈I

sijk

)
s. to:

∑
i∈I

xi = N

fi +
∑
j∈J

N∑
k=N−d+1

vijk
λj

µji

= xi, ∀i ∈ I,

fi − (1− aijk) ≤ vijk ≤ fi, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N,

0 ≤ vijk ≤ aijk, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N,

0 ≤ pi ≤ xi, ∀i ∈ I,

(1− fi)− (1− xi) ≤ pi ≤ (1− fi), ∀i ∈ I,

yjk =
∑
i∈I

aijkωij, ∀j ∈ J, k = 1, . . . , N,

yj(k+1) ≤ yjk, ∀j ∈ J, k = 1, . . . , N − 1,

N∑
k=1

aijk ≤ xi, ∀i ∈ I,∀j ∈ J,∑
i∈I

aijk = 1, ∀j ∈ J, k = 1, . . . , N,
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0 ≤ sijk ≤ aijk, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N,

pi − (1− aijk) ≤ sijk ≤ pi, ∀i ∈ I,∀j ∈ J, k = 1, . . . , N

xi ∈ {0, 1} , ∀i ∈ I,

pi ≥ 0, ∀i ∈ I,

aijk ∈ {0, 1} , ∀i ∈ I,∀j ∈ J, k = 1, . . . , N,

yjk ≥ 0, ∀j ∈ J, k = 1, . . . , N.

Therefore, two variants of the model MESD are constructed by applying order of

districting, MESD-P and MESD-PO. The motivation for this is to check for the effect

of approximating only the busy probabilities with order of districting, and the effect of

approximating busy probabilities and estimating the expected satisfied demand with

order of districting on the quality of the best solution, independently.

Similarly, the variants of models MECD and MMRT with order of districting applied

both on the approximation of the busy probabilities and estimation of the objective

function are constructed as MECD-PO and MMRT-PO.

Model MECD-PO where order of districting is applied on approximation of busy

probabilities and estimation of the expected covered demand in unit time is:

Max
∑
j∈J

λj

(
(1−

∑
i∈I

sijN)
∑
i∈I

aijNFij(τ)

+
N−1∑

t=N−d+1

(
(1−

∑
i∈I

sijt)
∑
i∈I

aijtFij(τ)
N∏

k=t+1

∑
i∈I

sijk

)) (5.37)

s. to: (5.13)− (5.23),

(5.30)− (5.34).

Model MMRT-PO where order of districting at level d is applied on both

approximating the busy probabilities and estimating the mean response time of the
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system is as follows:

Min

∑
j∈J

λj

(
(1−

∑
i∈I

sijN)
∑
i∈I

aijNωij

+
N−1∑

t=N−d+1

(
(1−

∑
i∈I

sijt)
∑
i∈I

aijtωij

N∏
k=t+1

∑
i∈I

sijk

))
∑
j∈J

λj

(
(1−

∑
i∈I

sijN) +
N−1∑

t=N−d+1

(
(1−

∑
i∈I

sijt)
N∏

k=t+1

∑
i∈I

sijk

)) (5.38)

s. to: (5.13)− (5.23),

(5.30)− (5.34).

5.3 Experimental Study

An extensive experimental study is conducted with various problem instances having

different network configurations as in Chapter 3 and 4.

The purpose of the experimental study is to check the quality of the optimal solutions

of the proposed models on toy data and real-life data, models’ performance under

package solvers, models’ performance with respect to the decomposition methods

proposed in 4 and a well-known model, MEXCLP by Daskin (1983), from literature.

The modeling approach is tested on two additional objective functions as well,

different from the ones constructed in Section 5.2. The details of the experimental

study are as follows.

In the proposed models in Section 5.2, three performance measures are used in the

objective function: expected satisfied demand in unit time (ED), expected covered

demand under threshold travel time in unit time (CD) and mean response time of the

system (R). In order to check the quality of the best solutions of the proposed models,

three models having these measures in the objective function are constructed.

Let xi,∀i ∈ I be a binary decision variable stating whether a vehicle located in

vehicle location i or not and x⃗ be the vector of decision variables, xi’s, representing a

solution.
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Model PE which maximizes the expected satisfied demand in unit time is as follows:

(PE) Maximize ED(x⃗) (5.39)

subject to:
∑
i∈I

xi = N (5.40)

xi ∈ {0, 1} , ∀i ∈ I. (5.41)

Model PC which maximizes the expected covered demand in unit time is as follows:

(PC) Maximize CD(x⃗) (5.42)

subject to:
∑
i∈I

xi = N (5.43)

xi ∈ {0, 1} , ∀i ∈ I. (5.44)

Model PR which minimizes the mean response time of the system is:

(PR) Minimize R(x⃗) (5.45)

subject to:
∑
i∈I

xi = N (5.46)

xi ∈ {0, 1} , ∀i ∈ I. (5.47)

A discrete event simulation model is constructed and coded in Matlab environment

to simulate the emergency medical systems and evaluate the objective function value

of a location solution for models PE , PC and PR since the exact queueing model is

computationally expensive.

The optimal solution of MESD and MMRT models (including variants) are

compared with the best solution for PE or PR in order to see the performance

of models in comparison to simulation. The optimal solutions of MESD and

MMRT are found by complete enumeration of the feasible solutions. To select the

best solutions for PE and PR, KN++ algorithm which utilizes the discrete event

simulation model is used. To compare the optimal solutions of the models with the

best solutions, the objective function values are estimated from a separate simulation

run.

The best solutions of the proposed models from complete enumeration are also

compared against the decomposition method DM-S-CF which is showed to perform
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very promising in finding near best optimal solution for the objective of minimizing

mean response time in Chapter 4. In the experiments, DM-S-CF is used to evaluate

the objective function value of a feasible solution for models PE and PR. With this

analysis, the performance of mathematical models with closed-form expressions of

performance measures are compared to an computationally cumbersome algorithmic

approach.

MECD variants are compared with PC and MEXCLP by Daskin (1983) where

busy probabilities of facilities are taken into account in estimating the performance

measure used in the objective function similar to our models. The effect of estimating

the busy probabilities specific to a feasible solution is checked in the comparsion with

MEXCLP where busy probabilities are calculated in advance and independent of any

feasible solutions.

MESD-PO, MECD-PO and MMRT-PO are also evaluated using package solver

BARON in order to report the gap in the performance measures of the optimal

solutions from complete enumeration and solver run. This is to show the performance

of the models with package solvers where objective function is nonlinear.

Similar to the analysis in Chapter 4, the proposed modeling approach are used

to construct the models P4 and P7 from Chapter 3 which are the models found

performing well in terms of equity. Instead of using objective functions in the

form of functions of solutions, closed form formulations are used to approximately

represent P4 and P7. The changes in the mean response time, variance of the region-

wise mean response time and Gini coefficient are checked similarly for the optimal

solutions of the models in order to observe whether similar equity results are achieved

when optimal solutions are found based on the models constructed according to the

approach proposed in this chapter.

Lasty, MESD-PO, MECD-PO and MMRT-PO models are used to locate emergency

vehicles on Edmonton Data which is previously used in Chapter 4 to show the

performance of models on larger problems.

The experimental study is summarized under seven main comparisons in Table 5.3 as

follows:
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5.3.1 Test bed

For the experiments, the same sets of regions from Chapter 3 and 4 are used, which

include three forms Uniform, Center-accumulated and Outer-accumulated with 15

demand regions.

The number of vehicles is set to 4, 5 or 6. The demand rate is assumed to be the same

for every region as 0.5 units per hour. The incident handling rate is set to 3, 6, 9 and

12.

In total, 36 instances are generated based on a full factorial design using three factors:

Form with three levels, Number of Vehicles with three levels (4,5 and 6) and Incident

Handling Rate with four levels (3, 6, 9 and 12).

For the experiments, order of districting level (d) is set to 3, and threshold travel time

(τ ) is set to 10.

5.3.2 Selection of the best solution and evaluation of performance measures

Since there is no closed-form formulation for the exact queueing model in the study,

a discrete event simulation model is constructed to simulate the emergency medical

systems in Chapter 3.

The best solutions for each instance under models PE , PC and PR are found using

KN++ algorithm by Kim and Nelson (2006) which uses the discrete event simulation

model to assess the objective function values.

For KN++ algorithm, first-stage sample size n0 is set to 100,000 demand calls. The

initial number of batches, b0, is set to 10. The confidence level γ is set to 0.05,

indifference-zone parameter δ to 0.01, and parameter c to 1. KN++ algorithm is

stopped when the best performing alternative has a 0.1 % difference in the objective

function value from the worst performing among the remaining alternatives. Then,

the best solution is selected randomly from the remaining alternatives.
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5.3.3 Performance of MESD and MMRT models

The performance of MESD and MMRT models is explored by comparing the optimal

solutions of the models to the best solutions of PE and PR obtained with KN++. The

optimal solutions of MSED models are compared with the best solutions of PE , and

MMRT with PR.

In order to evaluate the models’ ability to differentiate the feasible solutions in line

with the actual performance and deliver an optimal solution performing close to the

best solution with respect to KN++, the optimal solutions of the mathematical models

are found by complete enumeration. After finding the best solutions with KN++

algorithm and the optimal solutions of the models based on complete enumeration

for each instance, the objective function values are estimated by running the discrete

event simulation model for 10 independent replications. A total of 250,000 demand

calls is simulated for every solution at hand in the simulation model. The warm-

up period is selected as 50,000 calls, and the objective function values are reported

accordingly. The analysis of the performances of the models concerning the optimal

solutions is done based on this experiment.

Let x⃗∗
(.) be the optimal solution under model (.) and OSim(x⃗

∗
(.)) denotes the mean

of 90% confidence interval of the objective function value for this solution based

on 10 independent replications of the simulation model. Subsequently, let x⃗∗
P(.)

represent the best solution evaluated by KN++ algorithm for model P(.) having the

same performance measure in the objective function with model (.) and OSim(x⃗
∗
P(.)

)

denote the mean of the 90% confidence interval of the objective function value for

this solution based on 10 independent replications.

The percent deviation from the best solution is denoted by %∆∗
Sim and is found by

%∆∗
Sim = I{

x⃗∗
(.)

̸=x⃗∗
P(.)

}
(
100

OSim(x⃗
∗
(.))−OSim(x⃗

∗
P(.)

)

OSim(x⃗∗
P(.)

)

)
,

where I is the indicator function being equal to 0 if the solutions are the same.

%∆∗
Sim results are presented in Table 5.4 for 36 instances with respect to MESD,

MESD-P and MESD-PO. %∆∗
Sim values are reported as zero if the optimal solution
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under a model is same with the best solution for PE evaluated by KN++. Suppose

the difference between objective function value of the optimal solution of a model

and the best solution by KN++ is not significant, meaning confidence intervals of the

objective function values coincide. In that case, the percentage deviation found is

marked with an asterisk in the table.

Table 5.4: %∆∗
Sim in ED for the optimal solution of models based on the best solution

for PE in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MESD MESD-P MESD-PO

Uniform 4 3 -0.10 * -0.87 0.20 *

6 -1.00 -1.29 -0.30

9 -1.49 -1.65 -0.51

12 -1.75 -1.79 -0.64

5 3 -0.36 -4.83 0.28

6 -1.03 -5.19 0.13 *

9 -1.17 -5.26 0.03 *

12 -0.97 -4.87 0.17

6 3 -0.30 -3.36 -0.88

6 -0.51 -3.07 -0.56

9 -0.49 -2.66 -0.37

12 -0.55 -2.43 -0.45

Center-Acc. 4 3 0.17 * -4.87 0.15 *

6 -0.17 -4.87 -0.10 *

9 0.05 * -4.35 0.15 *

12 -0.20 -4.30 -0.20

5 3 -0.04 * -5.13 0.09 *

6 0.02 * -4.34 0.26

9 0.27 -3.47 0.58

12 -0.30 -3.68 0.03 *

6 3 -0.16 * -3.86 0.08 *

6 -0.09 -1.87 0.16

9 -0.08 -1.26 0.08

12 -0.29 -1.06 -0.09

Outer-Acc. 4 3 -1.53 -4.70 -0.32

6 -2.02 -7.71 -0.08 *

9 -2.99 -8.90 -0.79

12 -3.37 -9.28 -0.87

5 3 -1.42 -5.27 0.70

Continued on next page
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Table 5.4 – continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MESD MESD-P MESD-PO

6 -3.14 -7.27 0.74

9 -4.26 -8.20 -0.02 *

12 -4.37 -8.19 -0.05 *

6 3 -2.79 -5.74 -0.86

6 -3.44 -6.18 0.05 *

9 -3.66 -6.11 -0.19

12 -3.31 -5.30 0.01 *

In order to summarize the results in Table 5.4 and make comparisons of the models

easier, four statistics are computed as in Chapter 4:

• Number of instances for which the differences are not statistically

significant: the number of instances where MESD variants has an optimal

solution same with the best solution for PE reported by KN++ or the optimal

solutions are not statistically different in terms of the expected satisfied demand

(ED),

• Average %∆∗
Sim: the average %∆∗

Sim over all instances,

• Average %∆∗
Sim over instances for which the differences are statistically

significant: the average %∆∗
Sim over instances having optimal solutions that

are statistically different,

• Average absolute %∆∗
Sim over instances for which the differences are

statistically significant: the average absolute %∆∗
Sim over instances having

optimal solutions that are statistically indifferent.

These statistics are reported in Table 5.5 for MESD variants.

According to the results in Table 5.4 and 5.5, MESD-PO is the best model in finding

solutions that are close to the best solution reported by KN++ for the objective of

maximizing expected satisfied demand where %∆∗
Sim is less than 1% for all instances.

In fourteen instances, MESD-PO finds a solution that has a statistically insignificant

deviation from the best solution. MESD is the second best performing model,
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Table 5.5: Summary of %∆∗
Sim in ED results for the comparison of the optimal

solutions with PE in 36 instances

Statistics MESD MESD-P MESD-PO

Number of instances for which the differences are not

statistically significant

6 0 14

Average %∆∗
Sim -1.30 -4.53 -0.09

Average %∆∗
Sim over instances for which the differences

are statistically significant

-1.56 -4.53 -0.18

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

1.31 4.53 0.45

whereas MESD-P has optimal solutions for which the differences are statistically

significant in all instances with an average of 4.5%.

The average deviation and average absolute deviation without insignificant results

for MESD-PO are lower than 0.5%. Therefore, it is seen that order of districting

employed in model MESD-PO (in estimation of the expected satisfied demand and

the busy probabilities) helps the model finding a close enough solution to the best.

Since a pairwise comparison is not made for each feasible solution between MESD-

PO and simulation model, it does not necessarily mean that the estimation of the

objective function gets better, however the differentiation of the feasible solutions is

better than MESD.

It is seen that MESD-P performs worse than MESD and MESD-PO which means

using order of districting for only estimation of busy probabilities are not useful.

In summay, MESD-PO is a promising model in maximizing expected satisfied

demand.

Similar to the previous experiment above, %∆∗
Sim results for 36 instances under

MMRT and MMRT-PO are presented in Table 5.6. %∆∗
Sim values are reported as

zero if the optimal solution under a model is the same with the best solution for PR

evaluated by KN++.

The base model PR and the models MMRT and MMRT-PO share the same measure
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in the objective function, mean response time (R). Due to the observations in Chapter

3 where it is seen that maximizing expected satisfied demand and minimizing mean

response time are similar objectives in terms of the resulting best solution, MESD-

PO is also added to this comparison. %∆∗
Sim for this model is calculated based on the

mean response time value of the optimal solution of MESD-PO where it is assessed

from 10 independent replications of the simulation model as in the other comparisons.

In Table 5.6, %∆∗
Sim in R for MMRT, MMRT-PO and MESD-PO are reported.

Table 5.6: %∆∗
Sim in R of the optimal solution of models based on the best solution

for PR in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MMRT MMRT-PO MESD-PO

Uniform 4 3 0 2.30 2.45

6 0 2.22 2.39

9 -0.50 2.08 2.01

12 0 2.61 2.58

5 3 2.22 6.11 0.14 *

6 0.49 5.82 0.16 *

9 3.83 8.71 2.47

12 4.91 9.52 3.63

6 3 3.89 1.74 6.46

6 2.30 2.72 9.35

9 3.94 3.40 11.45

12 6.01 3.41 13.16

Center-Acc. 4 3 0 9.43 0

6 0.65 7.04 0.56

9 1.64 6.50 1.57

12 2.04 6.16 2.13

5 3 0.44 * 8.21 0

6 2.28 4.64 -0.05 *

9 3.39 3.22 0.26 *

12 4.49 2.48 0.66

6 3 0.98 15.73 -0.39

6 4.25 8.83 1.93

9 7.62 0.12 * 4.58

12 11.05 0.31 * 7.47

Outer-Acc. 4 3 0 4.62 0.72

Continued on next page
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Table 5.6 – continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MMRT MMRT-PO MESD-PO

6 0.99 1.36 1.56

9 1.45 0 1.83

12 3.53 0 4.06

5 3 1.05 7.22 0

6 7.47 7.16 0

9 11.93 5.87 0

12 14.71 5.44 0.13 *

6 3 7.97 3.67 6.75

6 21.24 0 3.65

9 31.75 0 4.00

12 37.15 0 4.69

Similar to the previous experiment, summary statistics for %∆∗
Sim values are reported

in Table 5.7.

Table 5.7: Summary of %∆∗
Sim in R results for the comparison of the optimal

solutions with PR in 36 instances

Statistics MMRT MMRT-PO MESD-PO

Number of instances for which the differences are not

statistically significant

6 7 10

Average %∆∗
Sim 5.70 4.41 2.84

Average %∆∗
Sim over instances for which the differences

are statistically significant

6.82 5.46 3.91

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

6.86 5.46 3.94

The results in Table 5.7 show that MMRT and MMRT-PO find near optimal

solutions in six and seven instances, respectively. The average %∆∗
Sim over instances

for which the differences are statistically significant is 6.86% for MMRT. When order

of districting is applied (MMRT-PO), this value decreases to 5.46%.

The deviations of the optimal solutions of MMRT and MMRT-PO from the best

solutions of PR are more significant than they are in the previous comparison for

MESD variants. Hence, it is justifiable to state that this modeling approach performs
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better in terms of differentiating feasible solutions in expected satisfied demand

measure than in mean response time. Although estimation of ED and R coincide

where R has additional mean travel time multiplier in the numerator, the estimation

of R results in models with less power in differentiating feasible solutions, probably

due to mean travel time magnifying the estimation errors.

On the other hand, MESD-PO which is constructed to maximize expected satisfied

demand in unit time proves promising according to the results in Table 5.7. The

mean response times of the optimal solutions of MESD-PO deviate by 2.84% on the

average from the best mean response times obtained with KN++ for PR. MESD-

PO finds solutions for which the differences are not statistically significant in ten

instances. This is greater than the ones for MMRT and MMRT-PO, although

they are specifically modeled to minimize mean response time. This observation

is particularly important since it shows that maximizing expected satisfied demand

(MESD-PO) performs well for the objective minimizing mean response time as well.

Overall, maximization of expected satisfied demand results in optimal solutions that

are close to the optimal solutions under mean response time minimization similar to

the previous observations. Therefore, an analytical proof is provided in Appendix C

for the special case of locating one vehicle showing that two objective functions are

equivalent. In addition, numerical results are reported for the case of locating two

vehicles by solving the balance equations of the queueing model for the EMS system

and finding the optimal solutions with complete enumeration.

5.3.4 Comparison of MESD-PO, MMRT-PO with DM-S-CF

In an effort to show the performances of models MESD-PO and MMRT-PO against

a more sophisticated algorithmic approach, the decomposition method DM-S-CF

proposed in Chapter 4 is used to estimate the objective function value of models

PE and PR. In Chapter 4, it is shown that DM-S-CF is a well performing estimation

method for mean response time (R) and near optimal solutions are found in thirty-one

out of thirty-six instances when used with complete enumeration.

In the first set of experiments, the optimal solutions MESD-PO and MMRT-PO and
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the optimal solution of PE evaluated with DM-S-CF are compared to the best solution

for PE obtained with KN++ in expected satisfied demand (ED).

In Table 5.8, %∆∗
Sim in ED for MESD-PO, MMRT-PO and PE with DM-S-CF are

reported.

Table 5.8: %∆∗
Sim in ED of the optimal solution of models based on the best solution

for PE in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO PE with DM-S-CF

Uniform 4 3 0.20 * 0.25 0.81

6 -0.30 -0.22 0.53

9 -0.51 -0.60 0.08 *

12 -0.64 -0.56 0

5 3 0.28 -1.23 0.33 *

6 0.13 * -1.08 0.19

9 0.03 * -0.85 0.21

12 0.17 -0.59 0.43

6 3 -0.88 -0.23 0.36

6 -0.56 0.00 * 0.11 *

9 -0.37 -0.05 * 0.12

12 -0.45 -0.15 -0.28

Center-Acc. 4 3 0.15 * -2.15 -0.08 *

6 -0.10 * -1.80 0.04 *

9 0.15 * -1.26 0.24 *

12 -0.20 -1.39 0.14

5 3 0.09 * -1.71 0.01 *

6 0.26 -0.70 0.31

9 0.58 0.03 * 0.36

12 0.03 * -0.37 -0.05 *

6 3 0.08 * -2.61 -0.11 *

6 0.16 -0.86 0.06 *

9 0.08 0.08 -0.19

12 -0.09 -0.05 -0.27

Outer-Acc. 4 3 -0.32 -1.62 0

6 -0.08 * 0.02 * 0.69

9 -0.79 0.04 * 0.09 *

12 -0.87 0.26 0.27

5 3 0.70 -1.27 0.78

Continued on next page
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Table 5.8 – continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO PE with DM-S-CF

6 0.74 -0.73 0.75

9 -0.02 * -1.11 0.01 *

12 -0.05 * -0.85 0.10 *

6 3 -0.86 -0.30 0.49

6 0.05 * 0.48 0.38

9 -0.19 0.06 * 0.03 *

12 0.01 * 0.16 0.19

The results in Table 5.8 show that MESD-PO, MMRT-PO and DM-S-CF are good

at finding near optimal solutions in ED in almost all instances. %∆∗
Sim values are

smaller than 1% in all instances for MESD-PO and DM-S-CF. MMRT-PO has upto

2.6% deviation in expected satisfied demand in some instance. In Table 5.9, summary

statistics for %∆∗
Sim in ED are reported.

Table 5.9: Summary of %∆∗
Sim in ED results for the comparison of the optimal

solutions with PE in 36 instances

Statistics MESD-PO MMRT-PO PE with DM-S-CF

Number of instances for which the differences are not

statistically significant

14 6 16

Average %∆∗
Sim -0.09 -0.64 0.20

Average %∆∗
Sim over instances for which the differences

are statistically significant

-0.18 -0.77 0.31

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

0.45 0.85 0.39

The statistics in Table 5.9 show that MESD-PO is as good as DC-S-MF where the

average absolute %∆∗
Sim over instances for which the differences are statistically

significant are 0.45 and 0.39, respectively. DC-S-MF method is a decomposition

method that approximates the steady state probabilities of the exact queueing system

to estimate the objective function value. It requires an algorithmic approach to

solve nonlinear set of equations in approximating the steady state probabilities.

Considering this, the performance of MESD-PO is very promising as a mixed integer

nonlinear program with linear constraints.
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In another set of experiments, the optimal solutions of MESD-PO and MMRT-PO

based on complete enumeration, and the optimal solution of PR evaluated with DM-

S-CF are compared to the best solution for PR obtained with KN++ in mean response

time (R).

In Table 5.8, %∆∗
Sim in R for MESD-PO, MMRT-PO and PR with DM-S-CF are

reported.

Table 5.10: %∆∗
Sim in R of the optimal solution of models based on the best solution

for PR in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO PR with DM-S-CF

Uniform 4 3 2.45 2.30 0

6 2.39 2.22 0

9 2.01 2.09 -0.44

12 2.58 2.61 0

5 3 0.14 * 6.12 0

6 0.16 * 5.81 -1.16

9 2.47 8.70 0

12 3.62 9.52 0

6 3 6.46 1.75 -0.31

6 9.34 2.72 0

9 11.45 3.40 -0.32

12 13.16 3.39 0

Center-Acc. 4 3 0 9.44 0.20 *

6 0.56 7.04 -0.11 *

9 1.57 6.50 0

12 2.13 6.16 0

5 3 0 8.21 0

6 -0.05 * 4.64 -0.09 *

9 0.26 * 3.22 0.43

12 0.67 2.49 0.11 *

6 3 -0.38 15.73 -0.40

6 1.93 8.83 0

9 4.59 0.13 * 0.23 *

12 7.46 0.30 * 0

Outer-Acc. 4 3 0.72 4.62 -0.22 *

6 1.55 1.36 0

9 1.82 0 0.03 *

Continued on next page
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Table 5.10 – continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO PR with DM-S-CF

12 4.06 0 0

5 3 0 7.22 0

6 0 7.16 0

9 0 5.88 0

12 0.13 * 5.44 0.29 *

6 3 6.75 3.67 0

6 3.65 0 0

9 4.00 0 0

12 4.69 0 0

As stated previously, near optimal solutions are found in most of the instances when

DM-S-CF is used to estimate the objective function value of PR. It is seen in

Table 5.10 that DM-S-CF reports the same best solution with KN++ in twenty-

two and solutions that the difference is not statistically significant in eight instances.

According to the summary statistics for %∆∗
Sim in Table 5.11, neither MESD-PO nor

MMRT-PO performs close enough to DM-S-CF in resulting mean response time of

the optimal solutions. This shows that the mean response time is harder to estimate

considering the simplifications in the estimation of busy probabilities of vehicles.

However, MESD-PO is still preferable to MMRT-PO if the objective is to minimize

mean response time, since maximization of expected satisfied demand with MESD-

PO results in optimal solutions that have less deviation in mean response time than

the deviation that the optimal solutions obtained by minimizing mean response time

with MMRT-PO have.

5.3.5 Performance of MECD models compared to MEXCLP

Another set of models proposed in the Section 5.2 are MECD and MECD-PO where

expected covered demand under a threshold travel time is maximized.

In an effort to compare the proposed models with a model from the literature,

MEXCLP by Daskin (1983) is chosen. The study is an extension of classical set

covering problems where a demand node is assumed to be covered if its distance to

a facility is less than a threshold. MEXCLP takes busy probabilities of facilities into
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Table 5.11: Summary of %∆∗
Sim in R results for the comparison of the optimal

solutions with PR in 36 instances

Statistics MESD-PO MMRT-PO PR with DM-S-CF

Number of instances for which the

differences are not statistically significant

10 7 30

Average %∆∗
Sim 2.84 4.41 -0.05

Average %∆∗
Sim over instances for which

the differences are statistically significant

3.91 5.46 -0.37

Average absolute %∆∗
Sim over instances

for which the differences are statistically

significant

3.94 5.46 0.51

account. Hence, there is a need for calculating the probability that a region is covered

under particular location configuration of facilities.

Recall that λj is the demand rate of region j, ωij is the mean travel time between

location i and region j, τ is the threshold travel time used in MECD model.

Let, aji be a parameter which is equal to 1 if a vehicle at location i covers region

j meaning ωij ≤ τ and 0 otherwise. p states the probability that a facility is not

working, analogous to being busy in our problem setting. Let xi be a decision variable

which is equal to 1 if a vehice is located at region i, and ykj is a decision variable that

is equal to 1 if region j is covered by at least k vehicles, 0 otherwise.

Single-vehicle version of MEXCLP where at most one vehicle is allowed at a single

location, s-MEXCLP is as follows:

(s-MEXCLP) Maximize
∑
j∈J

N∑
k=1

(1− p)pk−1λjykj (5.48)

subject to:
N∑
k=1

ykj −
∑
i∈I

ajixi ≤ 0, j ∈ J

(5.49)∑
i∈I

xi ≤ N (5.50)
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xi ∈ {0, 1} , i ∈ I

(5.51)

ykj ∈ {0, 1} , j ∈ J, k = 1, ..., N.

(5.52)

s-MEXCLP maximizes expected demand covered where coverage is defined based

on mean of travel time and a threshold. Therefore, MECD and s-MEXCLP could be

compared since they are constructed in a similar fashion in terms to coverage. The

difference in MECD is that, all vehicle locations can cover all demand regions but

for only the demand calls that travel time realization for the call is under the threshold

travel time.

MEXCLP model requires busy probability p as a parameter. The busy probability

is defined identical for all facility locations in the model. To compare the effect

of modeling approaches of MECD and MEXCLP, perfect information is supplied

to MEXCLP in terms of the required busy probability parameter for each feasible

solution in the experiment. The average busy probability of vehicles are estimated for

each feasible solution of every instance from a simulation study with 50,000 demand

calls. Then, the objective function values of all feasible solutions of s-MEXCLP

model are evaluated by using the corresponding average busy probability, and the

optimal solution is selected.

The optimal solutions of MECD, MECD-PO and s-MEXCLP based on complete

enumeration are compared to the best solution for PC obtained with KN++ in

expected covered demand (CD). In Table 5.12, %∆∗
Sim in CD for MECD, MECD-

PO and s-MEXCLP are reported.

Table 5.12: %∆∗
Sim in CD of the optimal solution of models based on the best

solution for PC in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MECD MECD-PO s-MEXCLP

Uniform 4 3 0.09 * -0.77 -1.38

6 0.48 * -0.82 -0.86

9 -0.26 -1.45 -0.89

12 0.55 * -0.40 * 0

Continued on next page
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Table 5.12 – continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MECD MECD-PO s-MEXCLP

5 3 -0.55 0.33 * 1.01

6 -0.70 * -1.13 -0.65

9 -1.21 -1.43 -0.56

12 -1.76 -2.18 -0.67

6 3 -1.75 0.53 -1.47

6 -0.71 0.16 * 0.32 *

9 -1.71 -0.72 -2.11

12 -2.22 -0.78 -1.50

Center-Acc. 4 3 0 0.04 * -2.60

6 -0.31 * -0.21 * -2.52

9 0.68 0.69 -1.48

12 -0.34 * -0.39 * 0.47 *

5 3 0.26 * 0.51 -0.45

6 -0.44 0.69 -0.64

9 -1.62 -0.17 * -2.21

12 -1.80 -0.43 -2.89

6 3 0.60 -0.05 * -2.68

6 -1.18 -0.01 * -2.71

9 -2.46 -0.69 -3.28

12 -3.11 -1.19 -1.55

Outer-Acc. 4 3 -2.67 1.11 -1.76

6 -5.88 0 -2.33

9 -6.92 0.30 * -1.83

12 -9.25 -1.19 -2.20

5 3 -5.45 1.13 -1.33

6 -11.95 0 -1.05

9 -12.88 1.04 -0.02 *

12 -7.01 -0.21 * -1.02

6 3 -4.66 -1.79 -0.97

6 -7.76 0.59 * -0.91

9 -9.76 0.64 -1.15

12 -9.99 1.03 -2.14

According to results, it is seen that MECD-PO finds solutions close to the best

solution reported by KN++ for PC where expected covered demand is maximized.

In Table 5.13, summary statistics for %∆∗
Sim show that MECD is not good at finding

well performing solutions in terms of CD. On the other hand, average %∆∗
Sim
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for MECD-PO are better than s-MEXCLP and all of the optimal solutions for s-

MEXCLP are statistically different from the best solution by KN++. This shows that

incorporating location specific busy probabilities and the uncertainty in travel time

which is exploited in the estimation of covered demand in MECD-PO increase the

quality of the optimal solutions. Additionally, average %∆∗
Sim under s-MEXCLP are

at around 1.5% in spite of the perfect information on the busy probabilities.

Table 5.13: Summary of %∆∗
Sim in CD results for the comparison of the optimal

solutions with PC in 36 instances

Statistics MECD MECD-PO s-MEXCLP

Number of instances for which the differences are not

statistically significant

8 14 10

Average %∆∗
Sim -3.16 -0.20 -1.33

Average %∆∗
Sim over instances for which the differences

are statistically significant

-4.06 -0.33 -1.52

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

4.15 1.00 1.59

In addition to the comparison of models in expected conditionally satisfied demand,

another comparison is made based on the mean response time (R) values of the

optimal solutions reported by the models. In Table 5.14, %∆∗
Sim in R for this

comparison are reported.

Table 5.14: %∆∗
Sim in R of the optimal solution of models based on the best solution

for PR in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MECD MECD-PO s-MEXCLP

Uniform 4 3 0 2.47 3.13

6 0 2.13 2.65

9 -0.32 * 2.16 1.53

12 0 2.44 1.77

5 3 2.32 2.28 1.01

6 0.51 * 2.24 2.07

9 3.80 4.74 4.46

12 5.30 6.01 3.41

Continued on next page
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Table 5.14 – continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MECD MECD-PO s-MEXCLP

6 3 4.17 1.84 4.76

6 3.61 3.03 1.46

9 5.70 2.47 7.40

12 7.22 3.35 5.85

Center-Acc. 4 3 0 0.37 4.55

6 0.68 0.50 4.51

9 1.79 1.30 4.86

12 2.12 1.83 0.74

5 3 0.25 * 0 1.53

6 2.21 -0.14 * 2.40

9 3.53 0.41 4.70

12 4.49 0.95 6.46

6 3 0.68 * 1.33 7.19

6 4.60 0.89 8.53

9 7.71 1.88 10.36

12 11.05 4.05 5.53

Outer-Acc. 4 3 8.89 0.66 * 5.37

6 13.36 1.39 5.93

9 16.71 2.11 5.68

12 19.90 3.69 5.60

5 3 14.30 0 5.30

6 28.59 0 0.68

9 36.32 0 1.07

12 18.32 0.58 * 2.00

6 3 12.02 3.87 2.26

6 27.57 0 4.57

9 38.93 0 5.18

12 46.17 0 12.30

The summary statistics in Table 5.15 show that MECD-PO also performs well in

terms of the mean response time of the system resulting from the optimal solutions.

s-MEXCLP finds solutions for which the differences are statistically significant in

every instance whereas MECD-PO finds solutions for which the differences are not

statistically significant in ten instances. The performance of s-MEXCLP is similar to

MESD-PO (in Table 5.7) where the average absolute deviation from the best mean

response time for MESD-PO is 3.94%.
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Table 5.15: Summary of %∆∗
Sim in R results for the comparison of the optimal

solutions with PR in 36 instances

Statistics MECD MECD-PO s-MEXCLP

Number of instances for which the differences are not

statistically significant

8 10 -

Average %∆∗
Sim 9.79 1.69 4.35

Average %∆∗
Sim over instances for which the differences

are statistically significant

12.55 2.30 4.35

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

12.55 2.30 4.35

According to the results in Table 5.15 and 5.7, MECD-PO outperforms MESD-PO

in several measures. The average absolute deviation for MECD-PO is 2.30% while

MESD-PO has 3.94%. The maximum deviation in mean response time increases up

to 14% in some instances under MESD-PO while MECD-PO has a more uniform

distribution in terms of the deviations in instances and the maximum deviation is

around 6%. This shows that MECD-PO which is contructed to maximize expected

covered demand is even better at finding well performing solutions in mean response

time than MESD-PO and MMRT-PO.

5.3.6 Performance under package solvers

The previous experiments are done based on complete enumeration of the feasible

solutions of the models. In an effort to show the performance of the models under

package solvers, thirty-six problem instances are solved with MESD-PO, MECD-

PO and MMRT-PO by using BARON solver on NEOS server (Czyzyk et al. (1998),

Dolan (2001) and Gropp and Moré (1997)). The computation time limit is set to

14400 seconds and the solutions reported by BARON at the end of runs are used in

the analysis.

In the experiments, BARON solver reported a solution in seven, one and eighteen out

of thirty-six instances before the time limit is invoked for MESD-PO, MMRT-PO

and MECD-PO, respectively. Based on the results, the relative optimality gap for
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each is found by comparing the objective function value of the solution reported by

the solver and the solution found by complete enumeration. Average and maximum

of the relative optimality gaps are reported in Table 5.16 along with the number of

instances that the optimal solution with respect to complete enumeration is found by

BARON solver.

Table 5.16: Summary of BARON runs for the models in 36 instances

Statistics MESD-PO MMRT-PO MECD-PO

Number of instances optimal solution found 1 6 11

Average optimality gap 0.84 3.03 1.19

Maximum optimality gap 2.68 12.00 5.30

It is seen that BARON finds the optimal solutions in one, six and eleven

instances among thirty-six for MESD-PO, MMRT-PO and MECD-PO. The average

optimality gap is 0.84%, and the maximum optimality gap is 2.68% for MESD-

PO. MMRT-PO has the highest average and maximum optimality gap among

models although optimal solution is found in six instances. BARON finds the

optimal solutions in eleven instances for MECD-PO, but the average and maximum

optimality gap is higher than MESD-PO.

In addition, %∆∗
Sim values of the solutions obtained with BARON solver are also

checked. %∆∗
Sim values are found in expected satisfied demand for MESD-PO, in

mean response time for MMRT-PO and in expected covered demand for MECD-PO.

The summary statistics for %∆∗
Sim are given in Table 5.17 for three models according

to BARON results.

It is seen that average absolute %∆∗
Sim in expected satisfied demand for MESD-PO

increases to 0.61% from 0.45% when BARON solver is used. In MMRT-PO, the

average absolute %∆∗
Sim increases to 7.28% from 5.46%. The increase in average

absolute %∆∗
Sim is more significant from 1.0% to 1.94% for MECD-PO, however,

the number of solutions for which the differences are not statistically significant is

twelve and it is similar to the result of fourteen under complete enumeration.

According to the results, it is seen that package solvers can be used to find good

solutions for MESD-PO although there exists decreases in the performance of the
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Table 5.17: Summary of %∆∗
Sim in corresponding measures over 36 instances

Statistics MESD-PO MMRT-PO MECD-PO

Number of instances for which the differences are not

statistically significant

7 3 12

Average %∆∗
Sim -0.32 6.67 -1.03

Average %∆∗
Sim over instances for which the differences

are statistically significant

-0.40 7.28 -1.54

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

0.61 7.28 1.94

solutions in comparison to the solutions found by complete enumeration. The

optimality gap is significantly high for MMRT-PO and MECD-PO. For those

models, the computation time limit could be increased or other commercial nonlinear

solvers could be used to improve the quality of solutions. As an alternative to package

solvers, meta-heuristic algorithms could be used to find solutions for the proposed

models as well.

In the next section, we use MESD-PO, MECD-PO and MMRT-PO on a real-life

data set, checking the performance on problem instances with higher number of

vehicles and demand regions.

5.3.7 Performance of the models on Edmonton Data

The data set of City of Edmonton Emergency Medical Services by Ingolfsson et al.

(2003) from the previous chapter is used to test MESD-PO, MECD-PO and MMRT-

PO, where there are 180 demand nodes with given demand rates and 16 possible

vehicle locations with specified capacities ranging from one to three. The demand

rates for the nodes vary from node to node. The mean of the travel time between

stations and nodes are given in the data set. The mean of the incident handling time

is set to 45 minutes for this experiment. The mean number of total demand calls

per hour is set to 5 and 10. We located from 8 to 12 emergency medical vehicles in

Edmonton City, resulting in ten problem instances in total.
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For all instances, KN++ is used to select the best solution and it is compared to the

optimal solutions of MESD-PO, MECD-PO and MMRT-PO based on complete

enumeration. The comparison is made on a separate simulation run. After finding the

best solutions with KN++ algorithm and the optimal solutions of the models based

on complete enumeration for each instance, three performance measures (expected

satisfied demand, expected covered demand and mean response time) are estimated

by running the discrete event simulation model for 10 independent replications. A

total of 550,000 demand calls is simulated for every solution at hand in the simulation

model. The warm-up period is selected as 50,000 calls, and the performance measures

are reported accordingly.

Based on the performance measures, %∆∗
Sim values are found in expected satisfied

demand, expected covered demand and mean response time for the optimal solutions

of MESD-PO, MECD-PO and MMRT-PO. %∆∗
Sim values in expected satisfied

demand (compared to the best solution for PE) are reported in Table 5.18 for three

models.

Table 5.18: %∆∗
Sim in ED of the optimal solution of models

Total Demand Rate Nb.of Vehc. MESD-PO MECD-PO MMRT-PO

5 8 -0.63 -0.65 -0.45

9 -0.42 -0.42 -0.05*

10 -0.11 -0.09 -0.03*

11 0.01* -0.01* 0.05*

12 0.02* 0.02* 0.06

10 8 -0.07* -0.30* -1.94

9 -0.62 -0.58 -0.74

10 -0.63 -0.86 -0.78

11 0.22* 0.25* -0.19*

12 -0.02* -0.05* -0.20*

According to the results in Table 5.18, it is seen that the difference between optimal

solution of models and the best solution reported by KN++ becomes insignificant

as the number of vehicles increases. As the number of vehicles increases, all three

models find solutions for which the difference with respect to the best solution is

not statistically significant. Although this results is valid for both levels of the
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total demand rate, average %∆∗
Sim over for which the differences are statistically

significant varies in total demand rate. In Table 5.19, the number of instances for

which the differences are not statistically significant and the average %∆∗
Sim over

instances for which the differences are statistically significant are reported.

Table 5.19: Summary of %∆∗
Sim in ED

MESD-PO MECD-PO MMRT-PO

Total Demand Rate 5 10 5 10 5 10

Number of instances for

which the differences are not

statistically significant

2 3 2 3 3 2

Average %∆∗
Sim over

instances for which the

differences are statistically

significant

-0.39 -0.62 -0.39 -0.72 -0.19 -1.15

According to results, it is seen that the average %∆∗
Sim over instances for which the

differences are statistically significant increases as the total demand rate increases

from 5 to 10. In the meantime, number of instances for which the differences are not

statistically significant increases from 2 to 3 for MESD-PO and MECD-PO while it

decreases from 3 to 2 for MMRT-PO. Overall, %∆∗
Sim values are less than 1% in all

instances but one instance for MMRT-PO, meaning that all models deliver solutions

that are close to the best solution for PE reported by KN++.

The performance of MESD-PO in minimizing the expected satisfied demand on

Edmonton data is similar to its performance on toy data. The average %∆∗
Sim over

instances for which the differences are statistically significant on Edmonton data are

-0.39% and -0.62% under total demand rate of 5 and 10, respectively, whereas it is

-0.18% on toy data in Table 5.5.

Similar to the previous analysis, %∆∗
Sim values in expected covered demand

(compared to the best solution for PC) are reported in Table 5.20 for three models.

The results in Table 5.20 shows that %∆∗
Sim in expected covered demand from the

best solution of PC reported by KN++ usually decreases as the number of vehicles
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Table 5.20: %∆∗
Sim in CD of the optimal solution of models

Total Demand Rate Nb.of Vehc. MESD-PO MECD-PO MMRT-PO

5 8 -3.38 -3.33 -1.23

9 -4.40 -4.53 -0.23*

10 -1.79 -1.72 0.02*

11 -1.61 -1.65 0.47

12 -1.86 -1.88 0.16*

10 8 0.95 0.73 -3.66

9 -3.09 -3.08 -2.89

10 -2.84 -3.22 -2.52

11 0.07* -0.03* -1.53

12 -0.16* -0.29* -0.60

increases given total demand rate. This could be attributed to the use of order of

districting which asserts that only the closest three vehicles respond to the demand

calls of a region. As the number of vehicles increases, the traffic intensity of the

system decrease, hence the use of order districting is further justified.

In Table 5.21, the summary of %∆∗
Sim values in expected covered demand is given.

Table 5.21: Summary of %∆∗
Sim in CD

MESD-PO MECD-PO MMRT-PO

Total Demand Rate 5 10 5 10 5 10

Number of instances for

which the differences are not

statistically significant

- 2 - 2 3 -

Average %∆∗
Sim over

instances for which the

differences are statistically

significant

-2.61 -1.66 -2.62 -1.86 -0.38 -2.24

According to Table 5.21, it is seen that MESD-PO and MECD-PO has similar

%∆∗
Sim meaning that MESD-PO performs well in delivering good solution in

expected covered demand objective although it is formulated to minimize expected

satisfied demand. The performance of MESD-PO and MECD-PO in finding a
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solution that is close the best solution of PC reported by KN++ gets better as the total

demand rate increases. This effect of increasing total demand rate could be attributed

to overall increase in the busyness of vehicles. As the traffic intensity increases, the

busy probabilities of vehicles would get closer to each other since a demand call is

assigned a vehicle if there is one available at the time of the call, making the effect

of the closeness of vehicle to the regions insignificant, in return making it easier to

estimate the expected covered demand.

In summary, MECD-PO performs worse on Edmonton data than on toy data

where the average %∆∗
Sim over instances for which the differences are statistically

significant in CD increases from -0.33% to -2.62 and -1.86 for total demand rates of

5 and 10, respectively.

Lastly, %∆∗
Sim values in mean response time (compared to the best solution for PR)

are reported in Table 5.22 for three models.

Table 5.22: %∆∗
Sim in R of the optimal solution of models

Total Demand Rate Nb.of Vehc. MESD-PO MECD-PO MMRT-PO

5 8 6.84 6.79 3.93

9 7.96 7.95 1.40

10 4.26 4.18 1.14

11 4.04 3.93 -0.41

12 4.30 4.11 0.15*

10 8 0.34 0.21 7.46

9 3.62 3.43 4.17

10 4.08 4.00 3.55

11 -1.48 -1.44 0.99

12 -0.13* -0.23* 0.16*

The results in Table 5.22 shows that the performance of the models in mean response

time gets better in the number of vehicles similar to the previous measures. Given

the number of vehicles, the performance of MESD-PO and MECD-PO get better

in the total demand rate, while MMRT-PO performs worse under total demand rate

of 10. Differently from the results in Section 5.3.3, MMRT-PO performs better on

Edmonton data than on toy data, both under total demand rates of 5 and 10. In the

previous experiments, MMRT-PO model has an average %∆∗
Sim of 5.46% from the
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best solution reported by KN++ for PR.

In Table 5.23, the summary of %∆∗
Sim values in expected covered demand is given.

Table 5.23: Summary of %∆∗
Sim in R

MESD-PO MECD-PO MMRT-PO

Total Demand Rate 5 10 5 10 5 10

Number of instances for

which the differences are not

statistically significant

- 1 - 1 1 1

Average %∆∗
Sim over

instances for which the

differences are statistically

significant

5.48 1.64 5.39 1.55 1.52 4.04

With respect to the results in Table 5.23, it is shown that the performance of MESD-

PO and MECD-PO gets better in finding close enough solution to the best solutions

reported by KN++ as total demand rate increases similar to their performance in the

expected covered demand measure. However, MMRT-PO performs worse.

As it is mentioned before, the busy probabilities of vehicles would get closer to each

other as the traffic intensity increases since a demand call is assigned a vehicle if there

is one available at the time of the call irrespective of its closeness in the exact system.

This could make the estimation of expected covered demand easier. However, the

composition of the probabilities that a demand region is served by a specific vehicle

location under the exact system would change depending on the traffic intensity.

This could negate the use of order districting since vehicles from farther locations

would respond to the demand calls more. In addition, small differences in the busy

probabilities of vehicles would be inflated when multiplied with mean travel times in

the objective function in MMRT-PO, differently from the expected satisfied demand

measure. However, MMRT-PO still performs better on Edmonton data than toy data.

Overall,we show that MESD-PO, MECD-PO performs relatively worse on

Edmonton data than on toy data. The performance of MMRT-PO on Edmonton

data is better than on toy data where the average %∆∗
Sim over instances for which the
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differences are statistically significant are down to 1.52% and 4.04% from 5.46% for

total demand rate of 5 and 10, respectively. With these results, we show that these

models can be used on larger data sets as well.

In the next section, we use the modeling approach to estimate two more performance

measures and construct two models from Chapter 3.

5.3.8 Performance of modeling approach under P4 and P7

In addition to MESD and MECD and MMRT variants, we use the modeling

approach to evaluate two different objective functions. For this purpose, models P4

and P7 are used from Chapter 3 where it is seen that these models improve equity in

resulting optimal solutions in comparison to minimizing mean response time.

Remember that P4 minimizes the maximum mean region-wise response time while

P7 minimizes the total positive deviation of mean region-wise response time from a

threshold travel time τ .

(P4) Minimize max
j∈J

(Rj(x⃗)) (5.53)

subject to:
∑
i∈I

xi = N (5.54)

xi ∈ {0, 1} , ∀i ∈ I. (5.55)

(P7) Minimize
∑
j∈J

[Rj(x⃗)− τ ]+ (5.56)

subject to:
∑
i∈I

xi = N (5.57)

xi ∈ {0, 1} , ∀i ∈ I, (5.58)

where [ . ]+ = max {0, .}.

P4 and P7 use region-wise mean response time in the objective function which can be

estimated based on the busy probabilities as it is mentioned in Section 5.1. Remember
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that region-wise mean response time, Rj(x⃗), under solution (x⃗) is found as follows:

Rj(x⃗) =

(1− pvj1)ωjvj1 +
N∑
t=2

(1− pvjt)ωjvjt

t−1∏
k=1

pvjk

(1− pvj1) +
N∑
t=2

(1− pvjt)
t−1∏
k=1

pvjk

(5.59)

where ωjvjt is the mean travel time between region j and vehicle location vjt.

Similar to the construction of MMRT, ωjvj1 is replaced with
∑
i∈I

aijNωij in 5.59 and

region-wise mean response time is defined as a function of the vector s⃗of decision

variable sijt as follows:

Rj(s⃗) =

(1−
∑
i∈I

sijN)
∑
i∈I

aijNωij +
N−1∑
t=1

(
(1−

∑
i∈I

sijt)
∑
i∈I

aijtωij

N∏
k=t+1

∑
i∈I

sijk

)
(1−

∑
i∈I

sijN) +
N−1∑
t=1

(
(1−

∑
i∈I

sijt)
N∏

k=t+1

∑
i∈I

sijk

)

Then, P4 − PO and P7 − PO are constructed based on Rj(s⃗) with the constraints

5.13) - (5.23) and (5.30) - (5.34) of model MESD-PO.

(P4 − PO) Minimize max
j∈J

(Rj(s⃗)) (5.60)

subject to: (5.13)− (5.23),

(5.30)− (5.34).

(P7 − PO) Minimize
∑
j∈J

[Rj(s⃗)− τ ]+ (5.61)

subject to: (5.13)− (5.23),

(5.30)− (5.34).

where [ . ]+ = max {0, .}.

In the experiments, the optimal solutions for P4 − PO and P7 − PO under each

problem instance are found by complete enumeration. The best solution for P4

and P7 are found by using KN++. After finding the optimal solutions and the best

145



solutions, the performance measures for these solutions are estimated from a separate

simulation run.

%∆∗
Sim are found for each problem instances by comparing the objective function

values of the optimal solutions of P4 − PO (P7 − PO) and the best solutions

found for P4 (P7) by KN++. The summary statistics for %∆∗
Sim results are given

in Table 5.24.

Table 5.24: Summary of %∆∗
Sim in the corresponding objective function values with

respect to KN++ best solutions in 36 instances

Statistics P4 − PO P7 − PO

Number of instances for which the differences are not

statistically significant

10 -

Average %∆∗
Sim 5.12 176.41

Average %∆∗
Sim over instances for which the differences

are statistically significant

6.90 176.41

Average absolute %∆∗
Sim over instances for which the

differences are statistically significant

7.08 176.54

It is seen that proposed model P4 − PO finds the same solution with KN++ best or

a solution for which the difference from KN++ is not statistically significant in ten

instances for P4. P7 − PO cannot find a close enough solution in any instances. The

average %∆∗
Sim over instances for which the differences are statistically significant

are 6.90 % and 176.41 % for P4 − PO and P7 − PO, respectively.

The performance of P4 − PO is close to MMRT-PO where it has an average

deviation of 5.46% over instances for which the differences are statistically

significant, however it is still the worst performing model among MESD-PO,

MECD-PO and MMRT-PO. The average %∆∗
Sim is very high for P7 − PO. The

objective function of this model is the summation of the deviation of region-wise

mean response times from a threshold which means the estimation errors in the

region-wise mean response time measure are accumulated. Therefore, it is seen that

this modeling approach may not be useful for this type of measure which is not a

weighted average of other measures but a summation of them.

146



In addition to the performance of optimal solution inn comparison to simulation

optimization, the effect of the modeling approach on the equity measures of the

optimal solutions of P4 − PO and P7 − PO is also checked. The optimal solutions

of P4 − PO and P7 − PO found by complete enumeration and the best solutions

of P4 and P7 found by using KN++ are compared to the best solution for PR (where

we minimize mean response time as in Chapter 3) in terms the mean response time,

the variance of region-wise mean response time and the Gini coefficient.

In order to quantify the difference of the models, the mean absolute percent deviation

of measures for the optimal solution of the models, MAPD, from PR is calculated

for each measure over all instances. We report the average percent positive deviations,

avgpd(%), of the mean response time of the best solution in the models from PR.

The percent of instances with positive deviation, ppd(%), in mean response time

is reported in order to show the fraction of instances with positive deviations. For

V arRj and G, the average percent negative deviation, avgnd(%), and the percent

of instances with negative deviation, pnd(%),are reported instead since equity gets

better as V arRj and G decrease.

In Table 5.25, these statistics are reported to show the changes in R, V arRj and G.

Table 5.25: Comparison of Models P4 and P7 with PS in performance measures

Measure Statistics P4 − PO P4 P7 − PO P7

MAPD(%) 22.00 14.74 4.58 11.51

R ppd(%) 100 100 94.44 100

avgpd(%) 22.00 14.74 4.82 11.51

MAPD(%) 52.53 49.97 20.24 51.24

V arRj pnd(%) 97.22 100 63.89 97.22

avgnd(%) 53.92 49.97 26.19 51.80

MAPD(%) 43.29 38.59 13.45 36.67

G pnd(%) 100 100 75 97.22

avgnd(%) 43.29 38.59 16.76 37.48

The results show that P7 − PO does not improve equity measures as good as P7

in Section 3 with respect to PR as expected since our modeling approach does not

perform well for this objective function.
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The effect of P4 − PO on the mean response time, the variance of mean region-

wise response time and the Gini coefficient are more prominent than in P4. So,

the solutions obtained P4 − PO improve equity more while sacrificing from mean

response time more in comparison to P4 in Section 3. This is due to the fact that

P4 − PO cannot estimate the objective function well enough in the first place.

Overall, it seems that the modeling approach is not useful in objective functions which

are constructed based on region-wise measures and the performance gets even worse

when there is a summation of region-wise measures in the objective function. With

this last experiment, we finish the experimental study and conclude this chapter in the

next section.

5.4 Conclusion

In this chapter, a modeling approach is proposed which can be used to approximate

the performance measures of the exact queueing model in closed-form. Then, these

closed form formulations are used to construct mathematical models that can be

solved with commercial package solvers.

Via an extensive experimental study, it is showed that proposed models MESD-

PO and MECD-PO are well performing with respect to the measures used in

their objective function, expected satisfied demand and expected covered demand.

Although MMRT-PO is specifically formulated to minimize mean response time,

it is seen that optimal solutions for MESD-PO and MECD-PO are better than the

optimal solutions of MMRT-PO in resulting mean response time values.

Models MESD-PO and MMRT-PO are compared to the decomposition method DM-

S-CF in two performance measures. It is seen that the performance of MESD-PO in

expected satisfied demand matches the performance of the more advanced method

DM-S-CF, but both MESD-PO and MMRT-PO fall behind DM-S-CF in minimizing

mean response time of the system.

MECD model variants are compared to s-MEXCLP which is used to find the solution

that covers the maximum demand. s-MEXCLP are provided with the average busy
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probability for each feasible solution of an instance which is estimated from a

simulation study. It is seen that MECD-PO is better than s-MEXCLP, marginally

in expected conditionally satisfied demand and significantly in mean response time of

the optimal solutions.

MESD-PO, MECD-PO and MMRT-PO models are tested under package solvers.

It is seen that the optimality gap for the solution are relatively low for MESD-

PO, MECD-PO and the performance of the models are not significantly affected.

MMRT-PO has a higher average optimality gap under BARON solver. Hence,

it is suggested to increase computation time under BARON or use meta-heuristic

algorithms to find better performing solutions for MMRT-PO.

MESD-PO, MECD-PO and MMRT-PO models are also tested on real-life data set,

Edmonton data. It is seen that MESD-PO, MECD-PO performs relatively worse on

Edmonton data than on toy data while MMRT-PO has lower deviations on Edmonton

data. With this, the applicability of models on larger data sets are shown on real-life

data set.

The modeling approach used to construct closed form formulations and mathematical

models are also employed to estimate other performance measures. Models

P4 and P7 from Chapter 3 are reconstructed in closed form as P4 − PO and

P4 − PO. The optimal solutions for those models are found via complete

enumeration. A comparison with the best solutions obtained with KN++ for P4 and

P7 shows that P7 − PO has unacceptable deviations from the best solutions while

P4 − POdelivers solutions with an average deviation of 6.90% over instances for

which the differences are statistically significant.

To conclude, the proposed models compete with more sophisticated algorithmic

approaches in finding an optimal solution for the problem instances. The models

incorporate important measures of EMS systems and are easy to apply since

performance measures of the EMS systems are expressed as a function of the

decision variables in closed form. Package solvers could be easily used to find good

solutions for the EMS vehicle location problems defined in this chapter that handle

the uncertainty in demand, travel times or incident handling times based on queueing

models.
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CHAPTER 6

CONCLUSION

In this thesis, the emergency medical service (EMS) vehicle location problem is

studied. The problem is defined based on stochastic processes addressing the

uncertainty in demand calls, travel times and incident handling times. Incorporating

uncertainties in the form of stochastic processes into the problem environment enables

one to construct queuing models to assess the performance measures resulting from a

candidate location solution for the EMS system. However, an exact queueing model

requires a state definition where the size of the state space increases exponentially

in the number of vehicles and demand regions. Hence, the exact queueing model is

not used in the evaluation of the performance measure of the system in this thesis. A

discrete event simulation model is constructed and used to evaluate the performance

measures in the rest of the study.

In Chapter 3, we work on the equity aspect in the EMS vehicle location problem

which is not extensively studied in the literature. Various location models are used to

locate emergency vehicles at candidate locations and the measures related to equity

such as the Gini coefficient and the variance of region-wise measures are checked. In

an extensive computational study based on simulation optimization is conducted. The

effect of network features and model choices on equity measures, and the trade-off

between overall performance and equity are revealed.

It is shown that equity is overlooked when overall performance measures such as

mean response time and expected satisfied demand are used in the objective function.

Deterministic coverage constraints based on mean travel time decrease the disparities

among regions. Region-wise performance measures improves equity at the most

in the expense of overall measures. It is seen that network features affect equity
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differently under different models depending on the network. Therefore, it might

be beneficial to incorporate the network specifications in the determination of the

mathematical model to be used.

Simulation of real-life systems is computationally expensive and exhaustive as the

gap between the simulation model and reality decreases. Another issue with using

simulation is the issue of selecting the best solution from alternative solutions where

simulation output analysis requires handling of randomness in the output variables.

As the number of alternative solutions increases, an algorithmic approach is needed to

select the best solution. In line with this requirement, we use a selection and ranking

algorithm, KN++, to select the best solution for a problem instance in Chapter 3. This

algorithm still requires running the simulation models for every feasible solution for

an initial number of demand calls to eliminate inferior alternatives. Although the

algorithm continues eliminating inferior solutions until the termination, it still uses

simulation models, and the computational burden persists.

Due to the reasons mentioned, a decomposition method with problem specific variants

is proposed in Chapter 4. The evaluation of the performance measures of an EMS

system relies on the queueing models constructed in the decomposition methods.

EMS system is decomposed into separate interdependent queueing models, and

performance measures of the EMS system are estimated based on the steady-state

distributions of those interdependent models. Differently from the literature, the

performance of the decomposition methods are checked on optimization problems.

A meta-heuristic algorithm is proposed to obtain well performing solutions for the

optimization problems by using the decomposition methods to assess the objective

function values.

The proposed decomposition methods performs very well in optimization problems

for several objective functions, regardless of the network features. The proposed

meta-heuristic algorithm is easy-to-apply, gives well performing solutions, and

the required computation time is significantly less than the time for simulation

optimization. Hence, we deliver a good approximation algorithm for the performance

measures of an EMS system based on queueing theory which can be used within

meta-heuristic algorithms to find solution to optimization problems.
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The decomposition methods proposed in Chapter 4 requires algorithmic solution

approaches in approximating the steady-state distribution which is the solution to

a nonlinear set of equations. Therefore, the decomposition methods are more

computationally burdensome than closed-form mathematical models for which

commercial solvers are easily exploited to solve. So, the interdependence among

queueing models in Chapter 4 is ignored in Chapter 5 in order to develop approximate

closed form formulations for the performance measures of the EMS system. Due

to the simplifications in the problem environment, closed-form formulations for the

performance measures are constructed based decision variables which are used to

propose mixed integer nonlinear programs for the EMS vehicle location problems.

Hence, the decision makers are provided with a mathematical model that could be

solved with commercial solvers and incorporates uncertainties in the demand, travel

time and incident handling time based on queueing theory.

With an extensive computational study, it is shown that MINLP models performs well

under the objective functions, maximum expected satisfied demand and maximum

expected covered demand, on both toy and real life data. The performance of the

MINLP models varies under different objective functions, models having regional

measures in the objective functions are particularly not performing well while the

performance might be acceptable under minimum mean response time objective

regarding the simplicity of the modeling approach. Overall, the proposed closed-

form approximations can be used to maximize expected satisfied or covered demand

in EMS vehicle location problems without any need for the estimation of problem

parameters in advance as in MEXCLP.

With this thesis, we study EMS vehicle location problem in terms of equity in depth,

deliver decomposition methods that can be used to estimate the performance measures

of the EMS systems, propose MINLP models for the EMS vehicle location problems

that can be solved with commercial solvers.
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Appendix A

DETAILS OF MANOVA ANALYSIS

Multivariate analysis of variance (MANOVA) is used to test the significance of effects

of factors on multiple response variables. MANOVA requires the assumptions of

analysis of variance (ANOVA) to be satisfied and some additional assumptions. These

are the absence of multivariate outliers, absence of multicollinearity, multivariate

normality, homogeneity of covariance matrices, and linear relationship between

response variables in each treatment group.

To satisfy the absence of multicollinearity, response variables with a correlation

higher than .90 are suggested to be excluded from the test by Tabachnick and Fidell

(2013). Mardia’s test is used to assess multivariate normality, which is proposed

by Mardia (1970). Heterogeneity in covariance matrices is said to affect the test’s

significance minimally when equal sample sizes for each group are satisfied, which is

also the case in our tests. Still, we use Box M test proposed by Box (1949) to test the

homogeneity of covariances. The existence of a linear relationship between response

variables in each group is checked visually with scatter plots.

The statistical test are conducted on R environment. We use manova function from

stats package to apply MANOVA, boxM function for Box M test from biotools

package, mvn function for Mardia’s test from MVN package by Korkmaz et al. (2014)

to assess multivariate normality , Shapiro-Wilk test from MVN package to assess

univariate normality. As an example, the output of the MANOVA on R environment

where Model factor has only two levels as P1 and P3 are given in Table A.1.

According to the results in Table A.1, it is seen that p-values (Pr(> F )) for all

factors and interaction terms are smaller than 0.05. So, all the terms are significant.

Therefore, we conclude that the difference between P1 and P3 is statistically
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Table A.1: MANOVA results where Model has two levels as P1 and P3

Type II MANOVA Tests: Pillai test statistic Df test stat approx F num Df den Df Pr(>F)

Model 1 0.88966 1302 2 323 < 2.2e-16

Pattern 2 1.99632 87935 4 648 < 2.2e-16

Number of Vehicles 2 1.86597 2255 4 648 < 2.2e-16

Incident Handling Rate 1 0.99643 45118 2 323 < 2.2e-16

Model:Pattern 2 1.57626 603 4 648 < 2.2e-16

Model:Number of Vehicles 2 1.13732 214 4 648 < 2.2e-16

Pattern:Number of Vehicles 4 1.97014 5344 8 648 < 2.2e-16

Model:Incident Handling Rate 1 0.64860 298 2 323 < 2.2e-16

Pattern:Incident Handling Rate 2 1.92597 4215 4 648 < 2.2e-16

Number of Vehicles:Incident Handling Rate 2 1.01429 167 4 648 < 2.2e-16

Model:Pattern:Number of Vehicles 4 1.55479 283 8 648 < 2.2e-16

Model:Pattern:Incident Handling Rate 2 0.84775 119 4 648 < 2.2e-16

Model:Number of Vehicles:Incident Handling Rate 2 0.78150 104 4 648 < 2.2e-16

Pattern:Number of Vehicles:Incident Handling Rate 4 1.46324 221 8 648 < 2.2e-16

Model:Pattern:Number of Vehicles:Incident Handling Rate 4 0.57631 33 8 648 < 2.2e-16

significant, although they are found to be very similar by hierarchical agglomerative

clustering.
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Appendix B

DETAILED DOE RESULTS FOR THE GENETIC ALGORITHM

Table B.1: Percent of Time IQM-CF-E Optimum Found in a single GA run (%)

Form Nb. of Vehc. Incident Hand. Rate

S uc um Uni. C-A. O-A. 4 5 6 3 6 9 12

50 0.8 0.05 36 31 68 51 43 40 58 49 42 30

0.1 50 43 79 68 56 48 69 66 41 53

0.9 0.05 33 30 65 53 43 32 57 41 37 36

0.1 52 44 73 61 62 47 62 61 50 52

100 0.8 0.05 61 57 93 78 75 57 82 70 60 68

0.1 73 67 97 83 86 68 87 83 74 71

0.9 0.05 66 55 91 79 69 63 77 74 64 67

0.1 77 66 100 91 80 72 92 80 74 77

Table B.2: Percent of Time IQM-CF-E Optimum Found among 10 GA runs (%)

Form Nb. of Vehc. Incident Hand. Rate

S uc um Uni. C-A. O-A. 4 5 6 3 6 9 12

50 0.8 0.05 100 83 100 100 100 83 100 100 89 89

0.1 100 100 100 100 100 100 100 100 100 100

0.9 0.05 100 83 100 92 100 92 100 100 89 89

0.1 100 92 100 100 100 92 100 100 89 100

100 0.8 0.05 100 100 100 100 100 100 100 100 100 100

0.1 100 100 100 100 100 100 100 100 100 100

0.9 0.05 100 100 100 100 100 100 100 100 100 100

0.1 100 100 100 100 100 100 100 100 100 100
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Table B.3: Percent of Time KN++ Optimum Found in a single GA run (%)

Form Nb. of Vehc. Incident Hand. Rate

S uc um Uni. C-A. O-A. 4 5 6 3 6 9 12

50 0.8 0.05 28 22 33 33 13 36 40 27 24 19

0.1 35 28 39 37 23 42 40 33 26 37

0.9 0.05 27 18 30 33 18 24 37 19 23 21

0.1 39 28 34 37 23 42 40 34 27 34

100 0.8 0.05 46 28 40 43 21 49 42 33 36 40

0.1 58 28 43 42 31 57 47 44 36 46

0.9 0.05 51 29 41 43 25 53 52 37 34 38

0.1 58 35 42 48 29 58 52 40 42 44

Table B.4: Percent of Time KN++ Optimum Found among 10 GA runs (%)

Form Nb. of Vehc. Incident Hand. Rate

S uc um Uni. C-A. O-A. 4 5 6 3 6 9 12

50 0.8 0.05 92 75 67 83 67 83 89 67 89 67

0.1 92 75 83 75 75 100 78 89 78 89

0.9 0.05 83 75 58 75 67 75 78 78 78 56

0.1 92 75 67 67 67 100 89 67 78 78

100 0.8 0.05 83 67 50 67 50 83 67 67 67 67

0.1 92 58 58 58 58 92 67 67 56 89

0.9 0.05 92 75 58 67 67 92 89 67 67 78

0.1 92 67 42 58 50 92 67 67 67 67
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Appendix C

ON EXPECTED SATISFIED DEMAND AND MEAN RESPONSE TIME

Assume that there are M regions where a single vehicle is to be located with the

objective of minimizing mean response time. Let λj be the demand rate of region

j = 1, ..,M and, let the travel time between region i and j be exponentially distributed

with mean ωij , and let the incident handling time for a region be exponentially

distributed with known mean ϕj for region j.

The EMS system having a single vehicle located at region icould be represented as

a queueing model as follows. {Bt, t ≥ T} is a continuous time Markov chain with

state space L. A state Bt could be one of the following:

• jk when the vehicle is responding to a call from region j and it is in the mode

k of the service at time t where k is set to 1, 2 or 3 if the vehicle is en-route

to demand region j, handling the incident or en-route to the vehicle location,

respectively,

• 0i when the vehicle being available at time t,

• i2 when the vehicle is serving a demand call from the region it is located at time

t.

Then, the state space for the queueing model located at region i is L = {0i, i2, jk},

j = 1, ...,M, j ̸= i, k = 1, 2, 3.

An example transition diagram is shown in Figure C.1 where t, u, v are the regions

and the vehicle is located at region t.

Let πb denote the steady state probability of state b ∈ L, balance equations for the
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Figure C.1: Rate diagram for the queueing model in the example

general queueing model are written as follows:

π0i

M∑
j=1

λj = πi2

60

ϕi

+
N∑

j=1,j ̸=i

πj3

60

ωij

(C.1)

π0iλi = πi2

60

ϕi

(C.2)

π0iλj = πj1

60

ωij

= πj2

60

ϕi

= πj3

60

ωij

, j = 1, ..,M, j ̸= i (C.3)

To find the steady state probabilities, (C.2), (C.3) and (C.4) are solved simultaneously.

π0i + πi2 +
M∑

j=1,j ̸=i

3∑
k=1

πjk = 1. (C.4)

Based on the definition of steady state probabilities in (C.2) and (C.3), we can rewrite

(C.4) as follows:

π0i + π0i

λiϕi

60
+

M∑
j=1,j ̸=i

π0i

λjωij

60
+

M∑
j=1,j ̸=i

π0i

λjϕj

60
+

M∑
j=1,j ̸=i

π0i

λjωji

60
= 1. (C.5)

π0i

(
1 +

M∑
j=1

λjϕj

60
+ 2

M∑
j=1,j ̸=i

λjωij

60

)
= 1. (C.6)
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Note that the second term inside the parenthesis in (C.6,)
∑M

j=1
λjϕj

60
, is a constant and

it is independent of the choice of vehicle location i. Let this term be equal to ρ. Then,

π0i for the queueing model where the vehicle is located at region i is

π0i =
1

1 + ρ+ 2
∑M

j=1,j ̸=i
λjωij

60

. (C.7)

The mean response time of the system where vehicle is located at region i is found as

follows:

R(i) =
π0iλi0 + π0i

∑M
j=1,j ̸=i λjωij

π0i

∑M
j=1 λj

. (C.8)

where the numerator is the mean travel time weighted with the number assignments

in unit time to regions and the denominator is the total number of assignments in unit

time.

Simplifying C.8, the mean response time of the system is calculated as follows:

R(i) =

∑M
j=1,j ̸=i λjωij∑M

j=1 λj

. (C.9)

where the denominator,
∑M

j=1 λj , is a constant since it is independent form the choice

of vehicle location i. Then, the optimal vehicle location which minimizes R(i) is

argmini=1,...,M

(∑M
j=1,j ̸=i λjωij

)
.

Note that π0i in (C.7) is maximized when
∑M

j=1,j ̸=i λjωij is minimized since ρ is

constant. Hence, minimization of mean response time maximizes π0i in the special

case where one vehicle is located.

The expected satisfied demand in unit time is

ED(i) = π0i

M∑
j=1

λj (C.10)

where the sum,
∑M

j=1 λj , is again a constant. Then, the solution that minimizes mean

response time maximizes expected satisfied demand by maximizing π0i .

From the other end, one needs to maximize π0i to maximize expected satisfied

demand. π0i is maximized when i is equal to argmini=1,...,M

(∑M
j=1,j ̸=i λjωij

)
. Then,

the optimal solution i that maximizes expected satisfied demand also minimizes mean
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response time by minimizing
∑M

j=1,j ̸=i λjωij (see (C.9)). This completes the proof for

the special case where one vehicle is to be located.

For the case where two vehicles, the balance equations does not allow for an analytical

proof where the state definition would require three entries as it is explained in the

problem definition. In an effort to show a numerical example for the case of two

vehicles, the modes of the service for a call is combined to a single mode where the

time for service completion is assumed exponentially distributed with known mean

(ωij + ϕj +ωij). For this queueing model the state definition should store the state of

the vehicle, being free or busy serving a region. Therefore, Bt = (k, l) where k, l =

0, 1, ...,M is the state where (0, 2) states that the first vehicle is available and second

vehicle is busy serving demand Region 2 at time t, resulting in a total of (M + 1)2

states for the queueing model. Based on this definition, the balance equations of this

queueing system is coded in MATLAB where two vehicles are located.

The problem instances from Section 4.4 are used for this experiment. The number of

regions is set to 15, each considered a vehicle location. The demand rate is assumed

to be the same for every region as 0.5 units per hour. The incident handling rate is set

to 3, 6, 9 and 12. In total, 12 instances are generated based on a full factorial design

using two factors: Form with three levels and Incident Handling Rate with four levels

(3, 6, 9 and 12).

For each alternative solution of the problem instance, balance equations are solved

with the help of MATLAB and mean response time (R) and expected satisfied demand

in unit time (ED ) is estimated based on the steady state probabilities. By complete

enumeration, the optimal solution for each problem instance is found. It is seen

that the optimal solution minimizing R and the optimal solution maximizing ED

are the same solutions for all twelve instances. Although it is not possible to show

analytically that two objectives are equivalent for greater number of vehicles than

one in this problem environment, they are shown to be empirically equivalent for the

two vehicle case as well by assessing the performance measures based on queueing

theory.
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