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ABSTRACT

STOCHASTIC EMERGENCY MEDICAL SERVICE VEHICLE LOCATION
PROBLEM: EQUITY, PERFORMANCE EVALUATION AND
MATHEMATICAL MODELS

Akdogan, Muharrem Altan
Ph.D., Department of Industrial Engineering
Supervisor: Prof. Dr. Z. Pelin Bayindir
Co-Supervisor: Prof. Dr. Cem lyigiin

January 2023, pages

In this thesis, emergency medical service (EMS) vehicle location problem with
uncertainties in demand, travel times, and incident handling time is studied in three
layers. The performance measures of EMS systems are evaluated with discrete
event simulation models due to the uncertainties incorporated. Firstly, we focus on
the equity in service quality resulting from vehicle location decisions in emergency
medical services. We address the unbalanced service quality among regions with
respect to various mathematical models including conventional ones. An extensive
numerical study is conducted to show the effect of modeling approaches and network
features on equity. Several observations are drawn and it is shown that the use of
overall performance measures in the objective functions of mathematical models
ignores other essential criteria, and there is room for improvement in terms of equity.
Secondly, we propose decomposition methods based on queueing theory to assess the
performance measures of the EMS system under a given location solution without
needing to construct computationally cumbersome queueing or simulation models.

The proposed decomposition methods require a set of nonlinear equations to be



solved simultaneously, yet they are still favorable to exact queueing or simulation
models in terms of the computational burden. A genetic algorithm is proposed
to use the decomposition method in the optimization problems and find solutions
for the EMS vehicle location problem based on queueing theory. It is shown that
the proposed methods perform well in assessing the performance measures and
evaluating close enough solutions the best solution for the optimization problems.
Lastly, we propose mixed integer nonlinear problems (MINLP) with various objective
functions incorporating closed-form formulations for the performance measures of
the system based on decision variables. With MINLP models, there is no need for
estimating problem parameters such as busy probability of vehicles in advance. The
proposed models are easier to construct and solve with respect to approximation
algorithms or decomposition methods in the literature where stochastic processes
are incorporated. Hence, the proposed MINLP models enable decision-makers to
incorporate uncertainties in the problem environment directly in the estimation of the
parameter of the models based on queueing theory while still keeping the models

relatively easy to solve since only the objective functions are nonlinear.

Keywords: emergency medical services, ambulance location, simulation, stochastic

processes
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STOKASTIK ACIL TIBBI HIZMET ARACI KONUM PROBLEMI:
ESITLIK, PERFORMANS DEGERLENDIRME VE MATEMATIKSEL
MODELLER

Akdogan, Muharrem Altan
Doktora, Endiistri Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Z. Pelin Bayindir
Ortak Tez Yoneticisi: Prof. Dr. Cem lyigiin

Ocak 2023 ,[174] sayfa

Bu tezde, talep, seyahat siireleri ve yerinde miidahale siiresinde belirsizlikler
iceren acil tibbi hizmet ara¢ lokasyonu problemi ii¢ katmanda incelenmistir.
Acil tibbi hizmet sistemlerinin performans Olctimleri, dahil edilen belirsizlikler
nedeniyle ayrik olay simiilasyon modelleri ile degerlendirilmistir. Ik olarak, acil
tibbi hizmetlerde ara¢ yeri kararindan kaynaklanan hizmet kalitesindeki esitlik
tizerine odaklamilmistir. Bolgeler arasindaki dengesiz hizmet kalitesi, geleneksel
modeller de dahil olmak iizere cesitli matematiksel modellerle ele alinmistir.
Modelleme yaklagimlarinin ve ag ozelliklerinin esitlik iizerindeki etkisini gostermek
icin kapsamli bir sayisal calisma yapilmustir. Cesitli gozlemler c¢ikarilmisg ve
matematiksel modellerin amag¢ fonksiyonlarinda genel performans ol¢iimlerinin
kullanilmasinin diger temel kriterleri gbz ardi ettigi ve esitlik agisindan iyilestirmenin
miimkiin gosterilmistir. Ikinci olarak, hesaplama acisindan kuyruk veya simiilasyon
modelleri olusturmaya gerek kalmadan belirli bir lokasyon ¢6ziimii altinda acil

tibbi hizmet sisteminin performans 6l¢iimlerini degerlendirmek icin kuyruk teorisine

vii



dayali ayristirma yontemleri oneriyoruz. Onerilen ayristirma yontemleri, bir dizi
dogrusal olmayan denklemin ayni anda c¢Oziilmesini gerektirir, ancak bunlar
performansalarina bakilarak yine de kuyruk veya simiilasyon modellerine tercih
edilebilir. Ayristirma yontemini optimizasyon problemlerinde kullanmak ve kuyruk
teorisine dayali EMS ara¢c konum problemine ¢6ziim bulmak icin bir genetik
algoritma Onerilmistir. Onerilen yontemlerin, performans olgiilerini kestirmede ve
optimizasyon problemlerinin en iyi ¢Oziimiine yeterince yakin coziimleri bulmada
iyl performans gosterdigi gosterilmistir. Son olarak, karar degiskenlerine dayali
sistemin performans Sl¢timleri i¢in kapali form formiilasyonlar1 iceren cesitli amag
fonksiyonlarina sahip karma tamsayili dogrusal olmayan problemler (MINLP)
oneriyoruz. MINLP modelleri ile araclarin mesgul olma olasilig1 gibi problem
parametrelerinin 6nceden tahmin edilmesine gerek yoktur. Onerilen modellerin
olusturulmasi ve ¢oziilmesi, stokastik siireclerin dahil edildigi literatiirdeki yaklasim
algoritmalar1 veya ayristirma yontemlerine gore daha kolaydir. Bu nedenle, 6nerilen
MINLP modelleri, karar vericilerin problem ortamindaki belirsizlikleri dogrudan
kuyruk teorisine dayali modellerin parametre tahmininde hesaba katmaya olanak
tanirken, yalnizca amac fonksiyonlari dogrusal olmadigi i¢in modelleri ¢6zmek

nispeten kolay olmaktadir.

Anahtar Kelimeler: acil tibbi yardim servisi, ambulans lokasyonu, benzetim, stokastik

siirecler
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CHAPTER 1

INTRODUCTION

Emergency medical service (EMS) is one of the most critical daily services, among
others, for public service providers. Emergency services, in general, need planning at

every level, from operational to strategic.

EMS vehicle location has been an important topic for decision-makers and a critical
research area for researchers. Management of these systems is mostly regulated
by governmental bodies which oblige operators of the systems to sustain a system
satisfying specific criteria. One of the most prominent criteria among those is the
response time of these systems. For instance, National Health Service England
(NHS-England| (2015)), one of the four national service institutions of the United
Kingdom, enforces 90% of life-threatening incidents to be responded to within 15
minutes. Some studies focus on other important measures in the literature, such
as the fraction of lost demand, coverage, or costs related to strategic or operational
activities. |Aringhier1 et al. (2017), [Bélanger et al. (2019) and Wang et al.| (2021)

present comprehensive reviews of EMS location planning literature.

Emergency medical service operations planning is an essential topic for governmental
authorities. It requires several parties to work together, such as call centers, operating
companies, hospitals. Emergency response is a critical part of emergency service and

requires planning personnel, equipment, vehicles, and physical infrastructure.

There are various approaches in the planning of the emergency medical service (EMS)
vehicle stations, from deterministic models to simulation studies in the literature.
Vehicle location problems could be handled in a deterministic problem setting where

demand and service are taken as static entities. This approach could disregard the



overflow of emergency calls due to installed capacity, i.e., vehicles, or the uncertainty
in demand calls, service times, or travel times. Regarding those concerns, a stream of
studies in the literature focuses on modeling approaches incorporating the uncertainty

in the environment.

1.1 Problem Definition and Environment

In this thesis, we study EMS vehicle location problem to locate predefined number of
vehicles at candidate locations where the problem environment includes uncertainties
in demand calls, travel time between vehicle locations and demand regions, and

incident handling times at scene.

A geographic area where EMS vehicles are to be located is divided into demand
regions, indexed by j € J. Candidate vehicle locations are formed as a subset
of demand regions, / C .J. The number of vehicles, NV, is predetermined by the

decision-maker where all vehicles are identical.

A call for medical emergency service is called demand. We assume that the demand
calls occur at the center of each demand region and follow a time-homogeneous
Poisson Process. It is assumed that demand across regions is independent. The mean
number of calls in a unit time in regions, denoted by A; for region j, are known and
are allowed to be non-identical. When a call is received, the closest available vehicle
is assigned to that call, and the service starts. If there is no available vehicle in the
system at the time of the call, the demand is assumed to be lost. Demand calls are not
queued and assumed to be handled by external systems, similar to a stream of studies

in EMS vehicle location literature.

A service is composed of three modes: (i) traveling to the demand region, (ii)
incident handling, and (iii) returning to the vehicle location. The incident handling
time is assumed to be exponentially distributed with known mean ¢; for region j.
Travel time is considered a significant component of the service. Travel time from
a vehicle location ¢ € I to a demand region j, T;; is assumed to follow Exponential
distribution with a known mean, w;; and it is symmetrical for the mode of traveling

back. Although the variance in incident handling and travel times is high due to
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the assumption of Exponential distribution, it is justified since loss systems where
demand calls are not queued is said to be relatively insensitive to the form of the
service distribution by Jarvis| (1975)). Service time is random and as a result of
being dependent on the demand and vehicle locations, it is the sum of three random
variables: (i) travel time to the demand region, (ii) incident handling time, and (iii)
travel time for returning to the vehicle location. Incident handling times are assumed
specific to demand regions. It is assumed that it includes the travel time within the
region if the region is served by a vehicle located in this region. Travel times are taken

explicitly for the case of serving a region by a vehicle located in another region.

In this problem environment, performance measures of a candidate location solution,
such as mean response time, could be evaluated by using queueing theory. A queuing
model for the system resulting from a candidate location solution can be constructed

as follows. We refer to this model as the exact queueing model in the rest of the thesis.

Demand calls arrive according to a time homogeneous Possion process with known
means \; from region j € J. Incident handling and travel times are exponentially
distributed with known means ¢; for region j, and w;; from vehicle location ¢ to
demand region j, respectively. Since the service time for a demand call includes
travel times which are distributed exponentially with known mean, the state definition
for the exact queueing model should represent the location of each vehicle, the state
of the vehicle (available or busy), the region it serves if the vehicle is busy and the
mode of the service (en-route to the demand region, serving the demand, en-route to

the vehicle location).

Under these assumptions, let {B;,¢ > 0} be a continuous time Markov chain with

state space L.

Then, this queueing model can be represented by an N-dimensional state as follows:
By = (b1, b, ...,bn), t>0
where by, represents the status of the £ vehicle at time ¢ and denotes a 3-tuple as:
b = (ix,s,m), s€ JU{0}, m=0,1,2,3

where 7, represents the location that the k" vehicle is located, s stands for "idle" or



the region being served, and m represents the mode of the service (en-route to the

demand region, serving the demand, en-route to the vehicle location).

If the vehicle is not busy, s and m are set to 0. Then, b, = (i, 0,0) represents the
state that the vehicle at location i, is free. If the vehicle is busy serving demand region
Jj € J, sis set to 5. When the vehicle is busy, m is set to 1,2 or 3 if the vehicle is
en-route to demand region 7, handling the incident or en-route to the vehicle location,
respectively. Then, b, = (i, j, 1) represents the state where the vehicle at location iy,
is busy with responding to the demand from region j € J and traveling to the demand

region.

Let [ be the set of possible statuses of by, of the state B, in the exact queueing model.

Then, [}, is as follows with (3 |.J| 4+ 1) possible statuses:

I, = { (14,0,0), (i, 1,1), (ix, 1,2) , (3, 1,3) , (ig, 2, 1) , (14, 2,2) , (ix, 2, 3) ,

o G 111, G 1 T152) (i 1], 3) } k=1,.,N

where iy, is the location that the k£ vehicle is located.

Then, the state space L for the chain {B;, ¢ > 0} is as follows:
L ={(b1,ba,...,bn)|b1 € l1,b2 € lg,...,bn € In}.

Hence, the state definition results in a state space with (3 |.J| +1)¥ states, and the size
of the state space increases exponentially with the increasing number of vehicles. Due
to this complexity and computational burden, the exact queueing model is not used to
evaluate performance measures in this thesis. In order to account for the uncertainties,
a discrete event simulation model is constructed to evaluate the performance measures
of the system resulting from a candidate solution for the EMS system and proposed

models are compared to the simulation of the exact system in the rest of the study.

In the next section, we briefly explain the research conducted on EMS vehicle location

problem within the scope of this thesis.



1.2 Proposed Methods and Models

We study the EMS vehicle location problem in three layers. First, we focus on
equity aspects resulting from the location decision of vehicles in emergency medical
systems. Then, we propose decomposition methods based on queueing theory to
assess the performance measures of the EMS system under a given location solution.
Lastly, we propose mixed integer nonlinear problems (MINLP) with various objective
functions incorporating closed form formulations for the performance measures of the

system based on decision variables.

EMS systems provide service to the public under certain criteria to be met by service
providers. Those criteria are mostly on response time to incidents where a certain
threshold to be satisfied in at least a predetermined fraction of the incidents similar
to the threshold by NHS-England| (2015)). However, the differences among regions
in quality of service could be overlooked due to use of overall measures as the one
in "90% of life-threatening incidents" . Hence, the equity in EMS systems is an
important topic that needs to be discussed in EMS vehicle/facility location problems
explicitly. However, the literature on equity in EMS systems are scarce as it is later
discussed in Chapter [2in more detail. Therefore, we study the EMS vehicle location
problem from an equity perspective in Chapter 3] We use several location models
with varying objective functions and/or constraints to show the effect of models on
equity. An extensive computational study is conducted by using a discrete event
simulation model and a ranking selection algorithm to find optimal solutions to the
problem based on simulation study. The problem instances for the computational
study are constructed by changing the network features such as distribution of demand
regions over the plain, number of vehicles to be located and incident handling rate.
In Chapter 3] we discuss the equity in emergency medical services by addressing the
unbalanced service quality among regions due to limited resources. An extensive
computational study shows the effect of modeling approach or network features on

equity in emergency care.

The problem environment incorporates stochastic processes which enables us to use
queueing theory to assess the performance of an EMS system. However, the size

of the exact queueing model that needs to be constructed increases exponentially
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in the number of vehicles and regions. Therefore, we rely on simulation study
for the experimental study in Chapter [3] Although we use a ranking and selection
algorithm to select best solutions among feasible solutions for the problem instances,
the assessment of the performance of the feasible solutions still requires significant
computation power and time. Therefore, we study on decomposition methods to
assess the performance of an EMS system based on queueing theory without requiring
to construct the exact queueing model in Chapter @ The exact queueing model is
decomposed into interdependent queueing models in an effort to approximate the
performance measures of the EMS system under the exact queueing model. The
interdependence between queueing models in the decomposition methods results in
a set of nonlinear equations that needs to be solved simultaneously in order to assess
the steady state probabilities. In Chapter ] a solution approach is proposed for
the nonlinear equations and, the performance measures of the exact queueing model
are estimated based on the steady state probabilities of the interdependent queueing
models. An extensive computational study is conducted to show the performance
of the decomposition method in estimating the performance measures of the EMS
system, including real-life problem instances. In addition, an evolutionary meta-
heuristic algorithm is proposed to find solutions to the optimization problems using
the decomposition methods. The meta-heuristic algorithm uses the decomposition
method to assess the objective function value of feasible solutions and finds a best
solution for the optimization problem based on evolution. Hence, we propose a
method to assess the performance measure of the EMS system and a genetic algorithm
to find solutions for the optimization problems based on queueing theory for the EMS

vehicle location problem in Chapter A

As it is explained above, the estimation of the performance measures of an EMS
system relies on the queueing models in Chapter i EMS system is decomposed
into interdependent queueing models, and performance measures of the EMS system
are estimated based on the steady-state distributions of those interdependent models.
The decomposition methods proposed requires algorithmic solution approaches in
approximating the steady-state distribution which is the solution to a nonlinear set of
equations. Therefore, the decomposition methods are computationally burdensome

in comparison to closed-form mathematical models for which commercial solvers



could be easily exploited. Therefore, approximate closed-form formulations for
the performance measures of the EMS systems are studied in Chapter 5] A
similar approach to Chapter [] is taken and EMS system are represented as
separate independent queueing models. The major difference is the assumption
of independence among queueing models in Chapter [5] This assumption results
in a linear set of equations which needs to solved to assess the steady-state
distribution. Hence, the steady state distributions could now be expressed as a
function decision variables in the constraints of a mixed integer program. Based
on this structure, several objective functions are constructed based on the decision
variables in nonlinear form. Thus, several mixed integer nonlinear programming
models are proposed for EMS vehicle location problem in Chapter [5| In the
computational study, those models are evaluated with commercial solvers and the
results are compared with the optimal solutions found by complete enumeration. The
performance of models are compared with the simulation-based ranking selection
algorithm, proposed decomposition methods and a widely-known probabilistic model
for EMS location problem, maximum expected coverage location problem by |Daskin

(1983).

1.3 Contributions and Novelties

The contribution of this thesis can be summarized as follows.

In Chapter 3] we lay the ground for equity discussions in the EMS vehicle location
problem by addressing unbalanced service quality among demand regions resulting
from the limited resources. We work on various modeling approaches to close
the gap between existing research and fairness in emergency care from a Rawlsian
perspective. We bring conventional models into the equity discussion as well as
new ones in a stochastic problem environment. An extensive numerical study is
conducted focusing on network features that could affect the performance of different
approaches. By revealing the trade-off between overall performance and equity with
the help of a structured experimental study, we show that models based on overall
performance measures ignore other essential criteria, and conclude that there is a

room for improvement in terms of equity.



In Chapter @ decomposition methods are proposed to approximate the performance
measures of exact system without needing to construct computationally cumbersome
queueing models. For the proposed models, it is shown that there exists at least one
solution to the resulting set of nonlinear equations and the performance measures
could be estimated based on that solution. Differently from the studies in the
literature, the vehicles at the same location are prioritized so that the effect of
an additional vehicle at that location on the existing vehicle’s performance could
be observed. An easy-to-apply meta-heuristic algorithm is proposed to use the
decomposition method in the optimization problems and find solutions for the EMS

vehicle location problem based on queueing theory.

In Chapter [5 closed form formulations for performance measures are derived
based on separate queueing models for the vehicles. Those formulations are used
in the mixed integer nonlinear problems (MINLP) for which commercial solvers
could be used to find optimal solutions. Differently from studies in the literature,
there is no need for estimating the problem parameters like busy probability of
vehicles in advance.The proposed models are easier to construct and solve with
respect to approximation algorithms or decomposition methods in the literature where
stochastic processes are included in the problem definition. Hence, the proposed
MINLP models enable decision makers incorporate uncertainties in the problem
environment directly in the estimation of the parameter of the models based on
queueing theory while still keeping the models relatively easy to solve since only

the objective functions are nonlinear.

1.4 The Outline of the Thesis

The outline of the thesis is as follows. In Chapter 2] a literature review on emergency
vehicle location problems is presented including widely known deterministic models,
probabilistic models and models using queueing theory to assess performance of such
systems. A separate section is dedicated to the studies focusing on equity in EMS
location problems. In Chapter 3] equity in EMS vehicle location problem is discussed
and a comprehensive computational study is presented. In Chapter 4l we present

decomposition methods to evaluate performance measures of EMS system. In Section



5l we present MINLP models for EMS vehicle location problem. In Section [6] the

thesis is concluded with a summary of findings and contributions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a literature review is presented focusing on emergency facility/vehicle

location problems.

Facility location problems could be separated into three categories as p-median,
p-center and covering problems. The building blocks of p-center and p-median
problems are first proposed by |[Hakimi (1964) to find optimum locations of switching
centers, which later on extended in various studies for the EMS facility/vehicle
location problem. In p-center problem, the maximum distance to a facility is
minimized whereas a weighted measure is minimized in p-median problem. The
first covering problem proposed for locating emergency facilities is the location set

covering problem (LSCP) by [Toregas et al.|(1971).

Both deterministic and probabilistic models are used to locate service vehicles
such as ambulances and corresponding facilities. We first present very well-known
deterministic models used in emergency facility location problem and continue with
probabilistic models. Lastly, the studies in the emergency facility/vehicle location

problem focusing on equity are presented.

2.1 Deterministic models

As mentioned earlier, [Toregas et al. (1971) is the first to formulate LSCP for
emergency facilities. The coverage defined in terms of a maximal service distance
where nodes are assumed to be covered if there are at least one facility within the

maximal service distances. The objective of LSCP is to minimize the number of
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facilities given all nodes are covered. Let x; be the binary decision variable which
is equal to 1 if a facility is located at node j and O; otherwise. d;; is the distance
from node j to node ¢ and N; is the set of nodes within s distance of node ¢,

N; ={j=1,...,n|dj; < s}. Then, LSCP is constructed as follows:

Minimize Y (2.1)
j=1

subject to: Z x; > 1, Vi=1,...,n, (2.2)
JEN;
z; € {0,1}, Vi=1,...,n. (2.3)

Church and ReVelle (1974) propose maximal location covering model (MCLP) that
is to maximize the number of regions covered where coverage of a region is assessed
based on the existence of a facility within a travel distance under a threshold. Let /
be the set of demand nodes, J be the set of facility sites, N; be set of facility sites that
can cover demand node ¢ under threshold travel distance s, a; be the population to be
served at demand node 7 and P be the number of facilities to be located. Let x; be the
binary decision variable which is equal to 1 if a facility is located at node j and 0 and
y; be the binary variable which is equal to 1 if demand node 7 is covered by at least

one facility. According to the parameters and decision variables, MCLP is written as

follows:

Maximize Z a;Y; 2.4)
icl

subject to: Z T; > Y, Viel, (2.5
JEN;
> x;=P (2.6)
jed
z; € {0,1}, Ve J, 2.7
y; € {0,1}, Vi e I. (2.8)

Daskin and Stern (1981)) is the first to introduce multiple coverage of the demand
regions into modeling with hierarchical objective set covering model (HOSC). In
HOSC, the number of vehicles located is minimized while maximizing the number

of times that demand regions are covered. Later, Hogan and ReVelle| (1986) propose
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backup coverage problem, BACOP 1 which maximizes the population covered twice
and BACOP 2 which maximizes the weighted average of population covered once
and covered twice given the number of vehicles. While previous multiple coverage
models use a single threshold for coverage, Gendreau et al. (1997) propose Double

Standard Model (DSM) and use double coverage and varying coverage thresholds.

Berman and Krass| (2002)) extend MCLP and propose generalized maximal location
covering model by allowing partial coverage based on distances. Drezner et al.|(2004)
propose gradual covering problem based on a linear coverage function. |[Karasakal
and Karasakal| (2004) extend MCLP and propose MCLP-P in the presence of partial
coverage where the coverage function is allowed to be continous or discrete; linear
or nonlinear. Differently from previous models, Berman et al. (2009) assume that
every vehicle can cover a region at certain levels based on the distance and a region
is covered only if the aggregate coverage provided by vehicles exceeds a certain

threshold.

2.2 Probabilistic models

Probabilistic studies mainly focus on providing coverage with a probability which
is based on a threshold response time or availability of the vehicles. |/Aly and White
(1978) handle uncertainty that is related to problem inputs in coverage criterion where
the response time for an emergency facility is a random variable and a demand is
considered as covered if the response time is less than and equal to a threshold.
Other studies focusing on the varying availability of the vehicles. Maximum
expected covering location problem (MEXCLP) by Daskin| (1983)) incorporates busy
probabilities of vehicles into the mathematical model. Let M be the number of
facilities to be located, /N be the number of nodes in the network, h;, be the demand
generated at node k, d;;, be the distance between site ¢ and node k, a; be a parameter
which is equal to 1 if a vehicle at site ¢ covers node k£ meaning d;;; < D and 0
otherwise. p states the probability that a facility is not working. Let x; be a decision
variable which is equal to 1 if a vehicle is located at site ¢, and y;;, is a decision

variable that is equal to 1 if node k is covered by at least j vehicles, O otherwise.
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Then, MEXCLP as follows:

N M

Maximize > ) (1 —p)p’ uyn (2.9)
k=1 j=1
M N

subject to: >y =Y awz <0, k=1,..,.N (2.10)
j=1 i=1
> m<M (2.11)
i€l
r; < M, integer, 1=1,... M (2.12)
yir € {0,1}, j=1,..Mk=1,..N. (2.13)

Some deterministic models are extended as well in order to introduce the uncertainties
in the system into the models. ReVelle and Hogan|(1988) extend LSCP by introducing
a reliability constraint and propose probabilistic location set covering problem
(PLSCP). The reliability constraint relies on the estimation of the probability of a
demand being covered by one the vehicles that are closer to the demand region than a
certain threshold. For the constraint, the number of vehicles that needs to be located
within the threshold radius of every region is calculated based on the estimation of

the local buys fractions of vehicles and the required reliability level.

PLSCP is as follows:

Minimize Y (2.14)
j=1

subject to: Z xj > by, Vi=1,...,n, (2.15)
JEN;
x; > 0,integer Vi=1,...,n. (2.16)

where b; is the smallest integer satisfying 1 — (F;/b;)% > «. F; is the daily fractional
workload that is shared among > jen, T many vehicles which can cover node .
Then, (F;/b;)% is the probability of all b; vehicles covering node i being busy and
1 — (F;/b;)b is the reliability level for node 7 given b;.

Later, ReVelle and Hoganl (1989)) propose the maximum availability location problem
(MALP) based on the same reliability structure of PLSCP. In MALP, the objective is

to maximize the population covered with reliability o. The version of the MALP that
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uses local busy fractions is as follows:

Maximize > fiya, (2.17)
i€l
b;
subjectto: Yy < Y a5, Viel, (2.18)
k=1 JEN;
Yik < Yik—1, k= 2a 76177’ € [a (219)
d aj=p (2.20)
JjeJ
x; > 0,integer, 1=1,... M (2.21)
vy €{0,1},  k=1,..b,iel (2.22)

where f; the population at node i, y;; is equal to 1 if there exists k& servers covering

node 7 and 0 otherwise, and b; is the smallest integer satisfying 1 — (F;/b;)% > a.

Later, several models are constructed based on the models MEXCLP and MALP.
Ball and Lin (1993) propose a reliability model by imposing an upper limit for the
probability that a demand call is not met while incorporating the randomness of
demand calls in the calculation of the probability of failure, differently from MALP.
Sorensen and Churchl (2010) propose local reliability-based maximum expected
covering location problem (LR-MEXCLP) where the maximum expected coverage
objective of MEXCLP and local reliability estimation of MALP are integrated.
El Itani et al.|(2019) propose a bi-objective model combining MEXCLP and MALP
to maximize expected coverage while minimizing the cost of using external resources

(ambulances) to increase coverage.

Another deterministic model that is extended in a way to incorporate uncertainties is
DSM by Gendreau et al. (1997). Liu et al.| (2016) propose a probabilistic DSM where
every demand region is covered at east once within the secondary coverage threshold
while ensuring some portions of the demand regions are covered with a given service

reliability level in the first and secondary coverage threshold.

Differently from previous studies, Erkut et al. (2008]) propose a new measure for the
objective function. They construct a survivability measure based on travel times and
propose maximal survival location problem where the expected number of patients

who survive is maximized. All the models mentioned utilize objective functions that
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are representative of system-wide (overall) performance such as minimum average
weighted distance, maximum number of covered location and maximum expected

coverage.

Another stream of research in probabilistic studies uses Queuing Theory to assess the
performance measures of emergency service systems. Queuing Theory is introduced
in location models by [Larson| (1974]) with the Hypercube Queuing Model (HQM).
The model analyzes vehicle location-allocation and districting in emergency response
units operated as server-to-customer services. With HQM, various performance
measures such as travel times and work-loads are obtained from the steady-state
probabilities of the system. Jarvis|(1985) proposes an approximation algorithm based
on HQM to find the performance of systems with distinguishable servers and general

service time distributions.

Several studies use HQM to measure the performance of the systems such as Sacks
and Grief| (1994)), [Brandeau and Larson|(1986]), Tannoni and Morabito|(2007)), Takeda
et al| (2007). HQM is extended for different service rates for each server by
Mendonca and Morabito| (2001) to assess the mean response time of the system. In
the studies of lannoni and Morabito| (2007) and [Takeda et al.| (2007)), service time
variations resulting from the variations in travel times to the demand location are
considered insignificant with respect to the sum of variations in set-up time, on-scene
service time and travel time back to the vehicle location. Halpern| (1977) states that the
estimations for service times in the study of Mendonca and Morabito| (2001), where
variations in the travel times are considered to be of second-order, give questionable

results where travel time is a significant part of the service time.

Saydam and Aytug (2003) use HQM in a genetic algorithm to find location-specific
server busy probabilities and employ these probabilities in the estimation of expected
coverage. lannoni et al.|(2008)) use a genetic algorithm to find the locations for EMS
servers, allowing only one server at a single location while using service rates specific
to servers. [lannoni et al.| (2009) and |lannoni et al.| (201 1)) use HQM in an optimization
environment for location and districting decisions of EMS servers on highways with
alternative objectives. |Geroliminis et al.[ (2009) extend HQM and develop a Spatial

Queuing Model (SQM) by defining non-identical service times for servers that take
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into account the demand call’s characteristics (inter-district or intra-district response).
In a different study, |Geroliminis et al. (2011)) work on a large-scale system to deploy
emergency response mobile units. They first divide the area into districts and find the
optimal locations in these districts with the help of a genetic algorithm. /Akdogan et al.
(2018) extend SQM further differentiating service rates specific to vehicle location-

demand region pairs and allowing multiple vehicles in a single location.

Approximation algorithms are studied in the location analysis of emergency service
vehicles as well. | Boyact and Geroliminis| (2015)) propose approximation algorithms
for large-scale networks with spatially distributed demand. They propose a
partitioning algorithm that is used to find optimal server locations. Atkinson et al.
(2008)) propose ad-hoc heuristics to assess the probability of loss using algorithms
based on the HQM. Budge et al.| (2009) propose an algorithm to find the dispatch
frequencies of vehicles. Differently from the previous studies, they allow locating
multiple vehicles at a single location. Neither of the studies in Atkinson et al.| (2008])
and |[Budge et al.| (2009) considers an optimization problem. Toro-Diaz et al. (2015])
focus on reducing disparities between the mean response time of different regions
while employing algorithmic approximation method for vehicle dispatch fractions by

Budge et al.| (2009) in an optimization problem.

Another stream of studies use queueing theory to estimate busy probabilities of
emergency vehicles and utilize these in previously well studied models such as
MEXCLP, PLSCP and MALP. Marianov and ReVelle (1994) extends the assumption
of server independence in the PLSCP and propose Q-PLSCP. They use queueing
theory in order to find the right hand side value in (2.15). In another study, Marianov
and ReVellel (1996) extends MALP and propose queueing maximal availability
location problem (Q-MALP) by again relaxing the server independence assumption
and calculating the right hand side in based on queueing models. Galvao et al.
(2005)) extends the classical MEXCLP and MALP by dropping the assumptions of
server independence and common workload for servers. The authors embed HQM
by |Larson (1974) into the problems and propose EMEXCLP and EMALP for which

they use local search methods to find solutions.
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2.3 Studies on Equity in EMS Vehicle Location Problem

Although various studies consider different aspects of the EMS location problem,
literature focusing on equity and fairness is scarce as it is also pointed out in two
literature review studies by |L1 et al.| (2011) and |Aringhiert et al. (2017). On equity,
no principle is commonly accepted. The studies incorporating equity have different
emphases on specific issues. |Brandeau and Larson| (1986) use inequity in ambulance
availability among regions as one of the primary performance measures in evaluating
alternative location decisions. [Drezner et al.| (2009) use a model to locate facilities,
not specific to EMS, minimizing the Gini coefficient as the equity measure. Mclay
and Mayorgal (2010) use priority ratings for emergency calls and propose a model
that maximizes the number of high priority demand calls satisfying performance
requirements and report disparities in patient survival between urban and rural areas
according to changing response time thresholds. |Chanta et al. (2014) propose bi-
objective models to reduce the disparity in covered demand between urban and rural
areas. (Chanta et al.| (2011) develop a p-envy location problem, modeling customer
dissatisfaction as a distance-based function and minimizing overall envy. [Toro-Diaz
et al. (2015) focus on reducing disparities among the mean response time of different
regions while employing the algorithmic approximation method for vehicle dispatch
fractions proposed by Budge et al.|(2009). Along with lannoni et al.| (2008), lannoni
et al. (2009) and [lannoni et al.| (2011), the study of [Toro-Diaz et al.| (2015) is one
of the few studies that uses the Queuing Theory to obtain performance measures
while considering equity. | Khodaparasti et al. (2016) propose a bi-objective model
to locate EMS facilities while maximizing the efficiency and equity of the system
where minimizing the total number of uncovered demand zones is used as the equity
criterion. Although regulations impose restrictive performance requirements for
these systems, studies in the literature are scarce addressing equity in a stochastic
environment. Our study aims to explore some conventional models in relation to

equity systematically under different network features.
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CHAPTER 3

AN ANALYSIS OF EQUITY IN STOCHASTIC EMS VEHICLE LOCATION
PROBLEM UNDER VARIOUS LOCATION MODELS AND NETWORK
FEATURES

This chapter focuses on planning emergency medical service vehicle locations
as a strategic level problem from an equity perspective by examining important
performance criteria. As it is mentioned in Chapter [2], the studies focusing on equity
in this context is scarce although emergency medical service is one of the most
crucial services within the public health system. EMS operations are regulated by
governmental bodies as in the case of NHS England that (NHS-England (2015)) uses
priority categories for the emergencies with strict target performance to be achieved
by the operators such as 90% of life-threatening incidents to be responded to within 15
minutes. However, the differences of service quality among regions (which could be
defined by neighborhoods or political divisions) under limited resources remains an
important topic. In this chapter of the thesis, we study several conventional location
models that differ in the performance measures used in the objective function or
constraints for the emergency vehicle location problem in an effort to show the effect
of modeling approaches and network features on equity. The aim of this chapter is
not to propose models but rather assess the performance of some conventional models

in terms of equity.

To discuss equity, one first needs to define how it is conceived. In the literature,
various definitions for equity are employed. [Bertsimas et al.| (2011) identify three
alternative theories for social equity: Aristotelian equity, classical utilitarianism, and
Rawlsian equity. Aristotelian equity dictates the proportional allocation of resources

according to some pre-existing claims or rights of each party. This creates a problem
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regarding the determination of these claims or rights in society. Another theory
is classical utilitarianism which was widely influential in economics during the
19th century. Allocation of resources is realized in a way to maximize the sum of
utilities of individual parties. The third theory is proposed by Rawls (1971) based
on political philosophy. Rawlsian equity gives priority to the least well-off parties
to guarantee the highest minimum utility level. The drawback of this approach is to
impose inconvenience on almost all parties. In this chapter, we approach equity from
a Rawlsian perspective and use measures to assess the disparities among demand
regions to respect individuals’ equal rights in access to emergency care resulting from

modeling approaches.

We study the emergency vehicle location problem where the problem environment
involves uncertainty in incident handling times, travel times, and the occurrence of
emergency service demand. We use models to benefit the least well-off demand
regions in addition to models with widely used system-wide (overall) performance
measures as mean response time and expected coverage in Section [3.2] Region-wise
measures that may show the difference in service quality between demand regions
are utilized to compare the models. We specifically use the variance of region-wise
mean response time, the variance of region-wise lost demand, and the Gini coefficient
by |Gini| (1912)). Regarding the uncertainty in problem parameters, we use simulation
optimization based on a fully sequential ranking algorithm, KN++, which is proposed
by |[Kim and Nelson (2006). The relationship between equity and network features
such as distribution of regions in the area, number of ambulances to be located, and

incident handling rate is investigated in the experimental study.

This chapter is organized as follows. The problem environment is further explained in
Section [3.1] and models under investigation are presented in Section [3.2] In Section
the details of the experimental study are given, results are analyzed from an equity

perspective. Lastly, concluding remarks are laid out in Section [3.4]
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3.1 Modeling Approach

We construct a mathematical model with only one set of decision variables, x;, Vi € I,
which indicates the number of vehicles located in vehicle location i. Let & be the
vector of decision variables, z;’s, representing a solution. The objective function
is defined as a function of # in the models. Different performance measures are
used in the objective function in the next section, also with the addition of different

constraints, forming alternative models to explore equity in EMS location problem.

Since the problem environment includes probabilistic aspects and the objective
function includes the average performance measures in the steady-state, there is no
closed-form formulation of the performance measures as a function of #. In order
to evaluate the performance measures of the EMS system resulting from a candidate
solution Z, one needs to find the steady-state distribution of the EMS system and
evaluate the objective function value based on those. Therefore, the objective function
of the model is defined as a function of a candidate solution without introducing

further notations.

We use one of the commonly used objective functions in the literature, mean response
time, as a base model to compare with the models introduced later on. Mean response
time is one of the most critical measures that is taken into account for the evaluation
of emergency systems and it is based on the time passed between a demand call and

arrival of a vehicle at the corresponding demand location.

Base model P4, that uses the mean response time of the system as the objective

function, is defined as follows:

(P1) Minimize R(Z) (3.1)
subject to: Z ri=N 3.2)

iel
x; > 0,integer, Vi e I. 3.3)

where R(Z) is the mean response time of the system under given solution & and (3.2)

enforces N vehicles to be located.

In the next section, we present location models that differ in objective function or
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constraints from the base model. In an experimental study, these models are examined

to understand how the equity imposed by the models changes.

3.2 Location Models

Eight different location models for EMS vehicle location problem is presented in this
section. These models are constructed considering some of the important criteria

related to the performance of emergency systems.

3.2.1 Deterministic coverage constraint for a balanced service

Using a deterministic coverage constraint based on mean travel times is a way of
incorporating equity consideration into models, which narrows down the solution
space in the meantime. The vehicle locations that can cover a specific demand region
are constrained by a time threshold. A demand region is assumed to be covered if
there is a vehicle located within the threshold time, considering the mean travel time
between the region and vehicle location. Let 7 be the threshold travel time in minutes
and w;; be the mean travel time in minutes between vehicle location ¢ and demand
region j. For every region j, we define a set WW; consisting of vehicle locations

covering demand region j as follows:

W;={iel: :w; <7}, Vjel

Let u; be the demand fraction of region j in total demand and equals A The
J ZkeJ Ak

model P below enforces that at least « fraction of total demand is covered by at least
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one vehicle.

(P2) Minimize R(Z) (3.4)
subject to: > x>y VieJ (3.5)
iEWj
Zujyj >« (3.6)
jeg
d m=N (3.7)
il
x; > 0,1nteger, Viel (3.8)
y; € {0,1}, Vj e J. (3.9)

A new decision variable is introduced to formulate the coverage criterion in Ps. y; is
a binary decision variable taking the value of one if at least one vehicle is located in
one of the vehicle locations in set I1/; and zero otherwise in for every j.
determines the regions covered in a solution and enforces the threshold coverage
where a feasible solution should cover a set of regions whose demand fractions, u;,

add up to at least « fraction of the total demand.

3.2.2 Chance constraints in assessing coverage

Notice that coverage criterion in P is utilized to define feasible solutions by means
of constraints in the model and the coverage definition is based on mean travel time
between regions. This approach is deterministic and it disregards the uncertainty in
travel times since a certain region is assumed to be covered if there is a vehicle located
in a location having mean travel time to the region less than threshold time 7. All
demand of this region is assumed to be served within the threshold time, however this
is a clear overestimation of the demand met within this threshold due the uncertainty
in travel times. In addition, some demand calls from "not-covered" regions could be
covered within threshold time based on realizations as well. It is also noted that, in
P, there is no consideration about the amount of demand that could be served from
each vehicle location, i.e. the server capacity. The assumption that a vehicle covers
the whole demand of the regions which it is the nearest cannot be justified without

any further analysis of the problem environment.
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There are regulations in place related to the concerns above, for example the one
imposed by one of the four national health service institutions of the United Kingdom,
NHS-England| (2015). This regulation requires 90% of the life-threatening medical
incidents to be responded within 15 minutes. One should make sure that such
deterministic coverage constraints serve the purpose of this requirement and it leads
to a more balanced system in terms of service quality, rather than just narrowing down

the solution space.

Due to the uncertainties involved as well as the regulations, chance constraints are
proposed to handle those concerns. Since travel times are random variables defined
by known probability distribution functions, it is possible to suggest probabilistic

constraints.

In the definition of the coverage constraint of Ps, it is required to cover « fraction of
the total demand under threshold time 7. Since the travel time from vehicle location
7 to region j is a random variable, we can bound the probability of serving time for a
demand call from region ;7 with a vehicle from location ¢ being under threshold 7 by

«. For a vehicle location 7 and region 7, the constraint is given as:

P(Ty <7)>a, (3.10)
where T;; is a random variable representing travel time between location ¢ and region
J-

Recall that 7;; is assumed to be exponentially distributed with a mean of w;;. Let Fr;,
be the cumulative distribution function of random variable 7;;. Then, (3.10) can be

written as

Fr, (1) > a.
Hence, we can further break down (3.10) into

7> —w;;In(1 — a),

T

where Fr, (1) =1 —e®is.

therefore, we can define a set V; as the set of vehicle locations that could serve region

J under threshold time 7 with probability greater than or equal to « as

‘/}:{Z'EIZWUS— },VJEI

In(l - a)
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Then, the following model, named as Ps, is constructed using this set.

(Ps) Minimize R(Z) (3.11)
subject to: Zx, > zj, vVieJ (3.12)
i€V;
d z>8 (3.13)
jeJ
 wi=N (3.14)
i€l
x; > 0,integer, Viel (3.15)
z; € {0,1}, Vj e J (3.16)

A new binary decision variable, z;, is introduced in P3. By @), z; takes the value
of one if at least one vehicle is located in one of the locations in V; meaning there exist
at least one location with a vehicle that could serve demand region j under threshold
time 7 with probability greater than or equal to .. It is zero, otherwise. (3.13) requires
that at least [ fraction of the demand regions should have access to a vehicle under
threshold time 7 with probability greater than or equal to o. Therefore, P5 accounts
for the uncertainty in travel times with the help of these constraints, and it enforces a

more realistic coverage criterion, differently from Ps.

3.2.3 Minimizing worst region-wise mean response time

The quality of service for individual regions is as important as system-wide
performance for emergency systems. The variation in mean response time among
the regions could be high, resulting in unfair service quality. In addition to coverage
constraints, region-wise mean response time could be another important measure to
include in modeling EMS vehicle location problems. We construct the model Py
based on this proposition by minimizing the maximum of mean region-wise response

times. Let R;(Z) be the mean response time for region j under solution 7, Py is given
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as follows:

(P)  Minimize  max(R;(7)) (3.17)
jE

subjectto: Y ;=N (3.18)
el

x; > 0,integer, Vi e I. (3.19)

The objective function in (3.17) is of min-max type and it puts the emphasis on the

least well-off region in line with Rawlsian equity.

3.2.4 Maximizing coverage

For a given location solution, another important measure is actual or realized
coverage, 1.e. the actual fraction of demand calls covered within threshold time 7.
The actual coverage could be incorporated into the EMS vehicle location models as

an objective function, rather than just as a constraint.

The model, Pk, is constructed to maximize the realized coverage. A demand call is
treated to be covered if the realized travel time to the demand region is shorter than
threshold time 7. Let C'(Z) be the expected fraction of total demand that is covered

under threshold time 7 for solution Z.

Py is written as follows:

(Ps) Maximize C(7) (3.20)
subject to: Z ri=N (3.21)

iel
x; > 0,integer, Viel. (3.22)

C(7) is calculated as the ratio of total number of covered demand calls based on
realized values to the total number of calls generated. Since a demand call is assigned
a vehicle if there is any available at the time of the call and assumed to be lost
otherwise, Ps takes both the uncertainty in travel times and vehicle availability into

account.
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3.2.5 Positive deviation from average region-wise mean response time

While considering the least well-off region like in P, is one way of enforcing
equity, focusing on variations in region-wise measures is another one. According
to a Rawlsian equity perspective, variations in region-wise measures are not desired.
For this reason, we introduce an objective function that minimizes the total positive
deviation of individual region-wise mean response times from the overall average
region-wise mean response time (i.e. the sample mean). By this way, it is aimed to

minimize the positive deviation and variance with a single metric.

Following the above discussion, a new model, Pg, is given as:

Ri(7
(Ps)  Minimize Y |R;(Z) — Lores BT (3.23)
, /] ;

JjeJ
subject to: Z z;, =N (3.24)

el
x; > 0,integer, Vi el (3.25)

where [ . ], = max{0,.}.

3.2.6 Positive deviation from an average threshold travel time

While minimizing the total positive deviation from the average region-wise mean
response time is meaningful in decreasing the variance of region-wise mean response
times, it does not impose any restriction on the overall mean response time of the
system. To account for the mean response time of the system in the model, we use
the threshold time 7 and construct a new objective function that penalizes based on
the mean region-wise response time values exceeding 7. In this model, the total

positive deviation of region-wise mean response time from the threshold time, 7, is

minimized.
(P;)  Minimize > [R;(7)—7], (3.26)
jedJ
subjectto: Y z; =N (3.27)
el
x; > 0,integer, Vi e l. (3.28)
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where [ . ], = max{0,.}.

+

The objective function in (3.26]) puts an indirect bound on mean response time,
R(Z), by minimizing positive deviations from the threshold. Hence, this does not
only decrease variations among regions but also considers system-wide average

performance as well.

3.2.7 Positive deviation from average region-wise lost demand

Lost demand fraction is another measure that can be evaluated from an equity
perspective. This measure corresponds to the part of the society that fails to receive
service under an EMS system in consideration. Similar to Pg, we propose an
objective function which minimizes the total positive deviation of individual region-

wise lost demand fractions from the overall average of fractions.

Let H;(Z) be the fraction of lost demand in region j under solution z. Model Py can

be expressed as:

H.(z
(Py)  Minimize Y {Hj(f) - M (3.29)
jeJ | | +
subjectto: Y ;=N (3.30)
el
x; > 0,integer, Vi e I, (3.31)

where [.], = max {0, .}.

+

3.2.8 Limiting positive deviation from threshold travel time

We introduce another model by imposing a limit on the total positive deviation of
region-wise mean response time from threshold time 7. The new constraint requires
the sum of positive deviation from 7 should be less than or equal to o € [0, 1/2]

fraction of the total deviation, hence it favors solutions with I2;’s around 7. Then,
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proposed model with the new constraint is

(Po) Minimize R(%) (3.32)
subjectto: Y z; =N (3.33)
iel
Y OIRi(@&) = 7], <oy |Ri(&) — 7| (3.34)
jed jeJ
x; > 0,1nteger, Vi e I, (3.35)
where [ . ], = max{0,.}.

(3.34) makes the problem infeasible if there exist no solutions where the total positive
deviation of region-wise mean response times from 7 is smaller than or equal to o
fraction of the total absolute deviation. Lack of such feasible solutions indicates that
the model would result in an optimal mean response time value higher than 7 without
considering where o € [0,1/2] . Through the new constraint, then, we focus
on the least well-off regions and the mean response time of the system together by

eliminating solutions that could lead to mean response time values higher than 7.

3.3 Experimental Study

To evaluate the models presented in Section an extensive experimental study is
conducted with various problem instances having different network configurations.
Problem instances are generated in a specific way to observe the effect of network
features such as geographical distribution of regions, number of vehicles, and incident
handling rate. Four performance measures are used for assessing the models; the
mean response time, the variance of region-wise mean response time, the variance of
region-wise lost demand, and the Gini coefficient. The details of the computational

framework is presented in the Section

3.3.1 Computational framework for the experimental study

The experimental study consists of two main parts as simulation module and analysis

module. In the simulation module, the best solution for a problem instance under each
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model is selected. In the analysis module, the performance measures given above for
each best solution are evaluated and an analysis of modeling approaches is performed
based on the corresponding measures. In Figure [3.1] a flowchart is given to present
the experimental study steps from the problem instance generation to the analysis of

the effect of modeling approaches and network features.

Start problem for problem
ar instances and instances
parameters per model

Selecting the best solutions

with KN ++ for each model

Simulation Module

Generate

of KN++,

Run the initial stage

feasible solutions

with all

|

Update remaining
solution set

|

remaining

Iterate simulation
model of the

by one observation

solutions

Best solutions

Analysi§ Module

Statistical Janalysis of
differenceq of models

Take 10 independent
runs for each
best solution

|

Check performance
measures for possible
confounding

|

Perform hierarchical
clustering with
the selected
performance measures

|

Update remaining
solution set

|

Determine the
sets of models to
apply MANOVA

|

Perform MANOVA
on the selected
sets of models

|

Check main effect
and interaction
effects, inspect plots

Update parameters
if necessary

N

Is
termination
condition

satisfied?

Select the
best solution
randomly from
the remaining set

Figure 3.1: Computational framework

The computational burden of the experimental study mainly lies in the simulation
module where KN++ algorithm is used to select the best solution for a problem
instance under each model (See Section [3.3.3] for the details). In the execution of

KN++ algorithm, all feasible solutions are evaluated with the simulation model for
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the initial stage in order to eliminate a set of inferior solutions. Since the simulation
runs of the remaining solutions are iterated until a termination condition is satisfied,
the computational log of the simulation run for each feasible solution such as demand
arrival time, travel time realizations and incident handling time realization has to
be stored. The computational burden of selecting the best solution under a model,
hence, depends on the model of choice and the problem instance. The number of
feasible solution that needs be assessed ranges from 66 to 38760 in the experiments.
Due to the size complexity of the data stored in the computational environment, all
data regarding the simulation run of a feasible solution is written to a separate text
file. Then, the data are read from these text files to iterate the simulation runs of the
remaining feasible solutions after the initial stage. The generation of the problem
instances used in the experimental study and the selection of the best solutions are

explained in Section [3.3.2]and [3.3.3] respectively.

3.3.2 Test bed

For the experiments, the problem instances are generated considering different
network specifications. Three distribution patterns of demand regions over the plain

are considered.

e Uniform: the regions are uniformly distributed over the area.

o Center-accumulated: there is an accumulation of regions in the center of the

plain.

e QOuter-accumulated, there is an accumulation of regions in an outer corner of

the plain.

These patterns allow us to test the models under instances with different average
pairwise distances between regions which would affect the resulting mean response

time under the best solutions.

The numbers of regions and vehicles are chosen regarding the computational burden

in the experiments. Every region is considered as a vehicle location candidate.
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Therefore, the number of feasible solutions in the models increases exponentially
with the number of vehicles and regions. All feasible solutions under a mathematical
model are evaluated using a simulation model, meaning that, computational effort
increases in the number of regions and vehicles. In accordance, the number of regions
1s set to 15 where all are defined as candidate vehicle locations, and 4, 5 or 6 vehicles

are considered to be located.

Instances for the three distribution patterns with 15 demand regions are seen in Figure

30 30 30

20 20 20

0 10 20 30 0 10 20 30 0 10 20 30

(a) Uniform (b) Center-accumulated (c) Outer-accumulated

Figure 3.2: Distribution patterns of demand regions

The incident handling rate is set to 6 and 12 incidents per hour to observe the changes
in the performance measures of the models when the proportions of the components

in service time, namely travel time and incident handling time, change.

In total, 18 instances are generated based on full factorial design using three factors:
Distribution Pattern with three levels, Number of Vehicles with three levels (4,5 and

6) and Incident Handling Rate with two levels (6 and 12).

Demand rate is assumed to be the same for every region as 0.5 unit per hour.
Following values are set as the model parameters, minimum required coverage, «,

is 0.90, the threshold time, 7, is 10 minutes, 5 in P3 is 0.5 and ¢ in Py is 0.5.

3.3.3 Selecting the best solution for a model

Since there is no closed-form formulation for the models, a simulation model is

constructed and coded in Matlab environment to simulate the emergency medical
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systems. The simulation model is constructed to simulate the system for the number
of vehicles which corresponds to a given feasible solution in a model. Discrete event
simulation is used, and performance measures of the emergency system are obtained

accordingly.

The best solution for all models are found using KN++ algorithm by Kim and
Nelson (2006) which relies on the estimates of the objective functions obtained by
simulation. KN++ is a fully sequential selection algorithm that uses indifference
zones to eliminate inferior solutions and terminates with a predefined number of
alternatives remain.The algorithm tries to guarantee to select the best system with
a predefined probability by comparing the long run average performance of the
systems. It stops when the best system is at least a given amount better than the rest
of the systems. In our context, for a given model, each feasible solution constitutes

an alternative system that needs to be evaluated against others.

The procedure starts with a first-stage sample of all systems. The initial observation
count is set by the decision-maker. Based on the first-stage sample, an estimator for
the asymptotic variance of the difference between alternative systems is calculated.
This estimator is used to find a continuation region, and the systems falling out of
this region are eliminated. Then, simulation models are run for one more observation
for each remaining system, and the objective function values are checked against the
continuation region again for possible elimination. The algorithm terminates when a

predefined number of systems remains.

Let O be the objective function value of feasible solution s after observation ¢, for
s=1,2,..,kandt = 1,2, ..., ng where n is the initial observation count, and O, (n)
is the mean of first ny observations from system s. An observation for a feasible
solution corresponds to one demand call that is satisfied. (For Pg, it corresponds to
one demand call that arrives to the system since the objective function is calculated

based on the lost demand fractions.)

KN++ uses batch means to calculate the asymptotic variance which is used to find
a continuation region. Assume n observations O, O, ..., O, are divided into b
contiguous batches, each of length m. Let Os,&m be the a'" batch mean from system

s. Then, the asymptotic variance, mV}f, that is used in the calculation of indifference
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zone can be found by the following estimator

b
mV? = b_il 3" (Ovam — Os(n))? (3.36)

a=1

where O,(n) is the mean of first n observations from system s.

The details of KN++ algorithm can be seen in Algorithm [T}

Algorithm 1 KN++
Setup:

Select confidence level 1/k < 1 — v < 1, indifference-zone parameter 6 > 0,

first-stage sample size ng > 2, initial batch size mg < ny.
Calculate n as the solution to the equation,

S (-DFH (1= LIl =c)) e e = 1 — (1 — 4)Y*=D) | where the constant ¢
may be any non-negative integer.
Initialization:

Let S = 1,2, ..., k be the set of systems in contention, and let h% = 2c7).

Obtain ng observations O, t = 1,2, ..., ng, from each system s = 1,2, ..., k.

Set observation counter r = ng and m, = my.
Update:

If m, or b, has changed since the last update, then for all s # u, s,u €
I, compute estimator m, V2 (r), the sample asymptotic variance of the difference
between systems s and u based on b, batches of size m,..

Ny, = L%J and N,(r) = max,z5 Ngu (7).

If » > maxy Ns(r) + 1, then stop and select the best system in S with the
smallest O,(r) as the best. Otherwise, go to Screening.
Screening:

Set §9 = .

S = {s:se€ 5% and O,(r) < Ou(r) + Wyu(r) Vu € S, u # s} where
W (r) = max {0, % (% — 7“) }

If |S| = 1, then stop and select the system whose index is in S as the best.
Otherwise, take one additional observation O, for each system s € S, set r =

r + 1, and go to Update.
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KN++ requires a batching sequence (m,.,b,) to introduce more updates to ensure
convergence. Kim and Nelson| (2006) use the following batching sequence from the
study of |Goldsman et al.| (2002) to update m, and b, parameters as the algorithm
continues. Let ng = bymg and r = ng + 1, m, = mg, b, = bp and f = 2, u, = /7.
Every time another observation is realized in KN+ + algorithm (for each new value of

1), m, and b, are updated with respect to Algorithm 2]

Algorithm 2 Update of parameters m, and b,
If (u, <mg&r= fng)

Set m, = m,_
Set b, = 2b,_1
Set f =2f
Else if (u, > my & u(r) is integer)
Set m, = u,

Set b, = |r/m,]

Else
Set m, = m,_
Set b, = b,_;
End if

Each instance is solved with models P; - Py using the simulation model. The best
solution for all models are found using KN++ algorithm by |Kim and Nelson| (2006).
For KN++ algorithm, first-stage sample size ng is set to 50,000 demand calls for
P, P,, P3, P5 and 100,000 calls for P, Pg and P; where steady-state behavior is
harder to reach due to the use of region-wise measures in the objective function. Initial
number of batches, by, is set to 10 for all models. The confidence level ~, indifference-
zone parameter ¢ and parameter ¢ are set to 0.05, 0.01 and 1, respectively. KN++
algorithm is terminated when the best performing alternative has a 0.1 % difference
in the objective function value from the worst performing one. Then, the best solution

is selected randomly from the remaining alternatives.
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3.3.4 Evaluation of the performance measures

After finding the best solutions for each instance under each model (by KN++
algorithm), all performance measures are estimated by running the simulation model.
A total of 550,000 demand calls is simulated for every best solution in the simulation
model, and the performance measures are reported by using batch means where the
warm-up period is selected as 50,000 calls. Ten batches are constructed from the last
500,000 calls, and the batch mean of the performance measure is found. Analysis of

the performance measures is conducted based on this experimental procedure.

Let 7* be the optimal solution with the best objective function value for a model, and
O(&*) be the corresponding batch mean value of the measure O for this solution from
the simulation run taken after choosing the best with KN++. To compare the modeling
approaches, four performance measures are used, namely the mean response time,
R(x*), the variance of region-wise mean response time, VarR;(z*), the variance of

region-wise lost demand, VarH;(Z*) and the Gini coefficient, G/(2*).

Gini coefficient is a well known measure in economics and used as an indicator
of economic inequality. It is calculated based on the line of equality and Lorenz
curve. The Lorenz curve shows the proportion of cumulative income generated by
the cumulative share of the population, and it is a non-decreasing function in the
cumulative population. On the other hand, the line of equality represents a society
in which every individual has the same income. Gini coefficient is equal to twice the

size of the area in between the Lorenz curve and the line of equality.

In our problem setting, we use the Gini coefficient to find the inequality in mean
response time among regions. Cumulative mean response time and cumulative
demand are considered to calculate the Gini coefficient for the best solution for a

model where each region is a demand source.

In Figure [3.3] twice the size of the shaded area A gives the Gini coefficient for a
representative instance with five demand regions. Each point in Figure [3.3]shows the
percent of cumulative mean response time generated by the regions whose percent

cumulative demand adds up to the coordinate in x-axis.
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Figure 3.3: Graphical representation of Gini coefficient for a problem instance with 5

demand regions

3.3.5 Results and discussion

In this section, various measures are reported for the best solution for each problem

instance under models P; - P;.

Pg is excluded from the analysis since objective function values are very small for all
feasible solutions of all instances, and KN+ + reports a different best solution in every
run. This inconsistency is attributed to the fact that demand rates for all regions are
identical, resulting in lost demand fractions close to each other for all regions in each
feasible solution since there is no queuing and prioritization of the calls. Due to the
same reason, the variance of region-wise lost demand, VarH J(f) is also excluded

from the performance measures used to assess the equity.

For Model P, it is not possible to use KN++ algorithm since constraint needs
to be assessed after every demand call met. This procedure would lead some solutions
to leave the alternative solution list and re-enter in another iteration, which is not
possible in the structure of KN++ algorithm. Instead, the best solutions reported for
P; are checked whether they are feasible for Py since both models have the same
objective function. It is seen that the best solutions for P; do not violate (3.34)), and
they are treated as the best solutions for Py as well. Since P; and Py shares the same

best solutions, Py is excluded from the further analysis.

The experimental results are reported in various ways to analyze the effects of
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network specifications and models on different performance measures. In Figure
R(Z), VarR;(Z) and G(Z) results are shown as bar charts with the first and
third quartiles for each model. (Z) is dropped from the notation of the performance

measures in the rest of the study to facilitate reading.

It is seen that Pg provides better equity among regions due to low VarRR; and G
values, whereas the mean response time, R, is higher than other models. In all 18
instances, Pg gives the highest R and the smallest G values. In thirteen instances,
it provides the smallest VarR; values. These results show that P is the model that
yields the smallest variance in service quality and betters off equity among regions the
most. As expected, this results in a substantial increase in the overall mean response

time value.

From Figure we observe that Py, P3, P5 show similar results in the performance
measures within each other. P, and Py are the other models which behave similarly.
To test the similarity and significance of the differences between models, hierarchical

clustering and statistical tests are used.

First, the performance measures used to quantify equity in the system, VarR; and G,
are checked for correlation to prevent confounding in the tests. It is seen that VarR;
and G are highly correlated with a correlation coefficient of 0.79. Since these two
measures are highly correlated, VarR; is dropped in the application of hierarchical
clustering. G is used as the equity measure since it is more sensitive to outliers than
VarR; as stated by |Yitzhaki and Schechtman| (2013), therefore it would be better in

assessing equity from a Rawlsian perspective.

Hierarchical agglomerative clustering is used to form clusters based on dissimilarity
between the models. In agglomerative clustering, each observation starts in its
own cluster, and pairs of clusters are merged based on a dissimilarity measure. In
this study, Mahalanobis distance is used as the dissimilarity measure. It considers
the correlation between multiple measures and removes the scale effect on them.

Mahalanobis distance between models P, and P, is found as follows:

—

d(Pm’ Pn) = \/(6P77L - 6P7L)S_1(OPVVL - 6Pn)T (337)
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where Op, is a row vector of (R, G), R is the average mean response time and G is
average Gini coefficient under P, over all instances and S is the covariance matrix

for the measures R and G.

As clusters emerge, single linkage is used to define the distance between the clusters.
In single linkage, the distance between clusters is taken as the distance between the
nearest neighbors of these clusters. Then, the two clusters with the smallest distance
are merged. The clusters are shown on a dendrogram which visualizes the merge
of clusters through the iterations with the corresponding dissimilarity values. The
models are clustered, starting with each model as a cluster itself, and merged with
the most similar ones until all models merged into one final cluster. The resulting

dendrogram for clustering of the models is presented in Figure[3.5]

P3

P1

R5

Models

P7

1

P4

P6

2 1 0
Single Linkage Distance

Figure 3.5: Dendrogram with Mahalanobis distance

Initially, each model is a single cluster. P; and Pjs is the most similar pair to each
other in comparison to the other pairs and these models are clustered firstly. Then, Py
is grouped with the cluster of (P;, P3). The next closest clusters are the clusters of
P, and P, so they are clustered next. Then, Ps is clustered with the cluster of (P4,
Pj;, Ps). Later, all models except Pg are clustered together before the final single

cluster. The most dissimilar model among all is Py, similar to our observation from
Figure[3.4]
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To check the statistical significance of the difference between performance measures
obtained under the best solution for models clustered together, we use full factorial
multivariate analysis of variance (MANOVA) since we have multiple response

variables as R and G.

The mathematical model, distribution pattern of regions, number of vehicles, and
incident handling rate are taken as factors. Model has a different number of levels
based on the comparison. Pattern has three levels as uniform, center-accumulated,
outer-accumulated. Number of Vehicles has three levels as 4,5 and 6, and Incident
Handling Rate has two levels as 6 and 12. For the statistical tests, we take ten

replications for each model’s best solution using the simulation model.

We apply MANOVA for four experiments where Model factor has levels of (P4,
Py), (P, Ps, Ps), (P, Pr) as the first three clusters formed, and (P, - Py;) as
all models. In all four tests, p-values for all factors and interaction terms are smaller
than 216, This result shows that Model, Pattern and Number of Vehicles, and their
interactions affect the performance measures R and G significantly in all MANOVA
models. Further details of MANOVA, and the test results for the experiment with

Model factor level (Py, Ps) as an example are given in Appendix [A]

In order to quantify the difference of models from the base model P;, we provide
the performance measures obtained under the best solutions in relative to the ones
obtained under the best solution for P2;. The mean absolute percent deviation of
measures of the models, M AP D, from base model P; is calculated for each measure.
Let k represents k" instance in the set of instances, K, then M AP D between model

P, and base model P; is found as:

Op,, (k) — Op, (k)
OP1 (k)

vApD = 10 Z

(3.38)
|K’ keK

where Op, (k) is the batch mean of measure O for the best solution in instance k£ under
Py

We report the average positive percent deviations of the mean response time, 7, of

the best solution in the models from P;. This measure for a model P, is
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100 = Op,( opl( )
avgpd(%) = | K’b%; Opl (3.39)

where K’ = {k € K : Op, (k) — Op, (k) > 0}.

The percent of instances with positive deviation, ppd(%), in R is also reported to
show the fraction of instances with positive deviation. ppd(%) for P, is calculated

as:

100 | K|

(3.40)

where K/ = {j € K : Op,(j) — Op,(j) > 0}.

For VarR; and G, the average negative percent deviation, avgnd(%), and the percent
of instances with negative deviation, pnd(%), is reported instead since equity gets
better as VarR; and G decrease. In Table [3.1] these statistics are reported to show
the changes in R, VarR,; and G.

Table 3.1: Comparison of Models P, to P; with P, in performance measures

Measure  Statistics Py Ps Py Ps Ps Pr

MAPD(%) 2.86 1.77 14.62 1.85 57.10 14.79
R ppd(%) 83.33 72.22 100.00 83.33 100.00 100.00
avgpd(%) 3.34 221 14.62 2.10 57.10 14.79

MAPD(%) 1889  7.00 4537 26.21 69.77 51.73
VarRj  pnd(%) 77.78 4444 100.00 44.44 100.00 100.00
avgnd(%) 2324 464 4537 16.71 69.77 51.73

MAPD(%) 12.68 2.60 3573 10.99 72.63 39.05
G pnd(%) 77.78 61.11 100.00 50.00 100.00 100.00
avgnd(%) 15.76 2.67 35.73 9.38 72.63 39.05

As seen in Table Ps yields the biggest changes in all three measures where Py
follows as the second. Compared to the best solutions of Py, the mean response time
(R) worsens in all the instances, and equity measures VarR; and G better off in
all instances under the best solutions of Pg. Pg has the worst R values with more

than 30% deviation in each instance and an overall average of 57%. This result is
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attributed to the objective function being analogous to minimizing the variance of
region-wise mean response time since we minimize the sum of positive deviation of
region-wise mean response time from its average. This objective function results in
the best solution with minimum VarR; in each but five instances, minimum G and
maximum R results in each instance among models. The statistics in Table 3.1 show
that the best solutions under Pj yields very small M APD in R (Ps follows it) where

others show significant deviations from P;.

Based on the results in Table 3.1, we present our findings as observations and give

additional plots in the rest of this section.

Observation 1 Coverage maximization could be an alternative objective when mean

response time is harder to derive.

Having mean response time values R almost inline under P; and P;5 implies that the
coverage maximization objective is comparable to mean response time minimization

in the resulting mean response time values under the optimal solutions.

Observation 2: Deterministic coverage constraints do not deliver as expected if used
to narrow down the solution space, while chance constraints are better at capturing

the minimum possible mean response time.

In ten out of eighteen instances, the best solutions under Pj are the same with the ones
under P;. On the other hand, Ps, which utilizes deterministic coverage constraints,
evaluates the same best solutions in five instances, and the average deviation (3.34%)
in the mean response time from P; for other instances is slightly higher than Ps.
Therefore, chance constraints for coverage as in Pj could be useful in narrowing
down the solution space if the objective is to achieve the minimum possible mean

response time.

Another measure that we are interested in is the variance of region-wise mean
response time. It could be considered a Rawlsian equity measure where one is

interested in response time differences in among regions.

In terms of Var R;, the models P», Py, Pg and P; stand out in decreasing the variance

among regions in comparison to P;.
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Observation 3: Minimizing total positive deviation of region-wise mean response
times from the average region-wise mean response time of all regions worsens mean

response time, R, while it provides better equity among the regions.

Pg has the smallest variance among instances except for five instances. However, it
has the largest (worst) R in all instances. Pg has 70% decrease in variance whereas
P, follows with 45%, P; with 52% and P, with 23% decrease in variance on the

average.

Observation 4: Deterministic coverage constraints impose better equity among
regions than chance constraints, with a small negative effect on overall mean response

time.

P; has a slight effect on R as 3% increase; however, it helps to decrease the variance
of region-wise mean response time by 23% on the average in fourteen out of eighteen
instances. Chance constraints in P could be used to narrow down the solution space
(in the expense of 2% increase in I?) since its effect on equity is substantial with
an average decrease of 5% in VarRR; in eight instances. So, incorporating chance
constraints in assessing coverage works towards the overall system performance

rather than seeking the performance from an equity perspective.

In accordance with VarR; results, models P5, Py, Ps and P; have smaller Gini
coefficients than other models have in comparison to P; according to Table[3.1} Ps is
significantly better than most of the models, whereas P5 has a closer Gini coefficient
to the base model P; than others, but it still has better equity. The average percent
negative deviation avgnd% and M APD for P», P, and Py are slightly smaller than
in VarR;. However, this does not change the general behaviour of the models in

terms of equity.

Observation S: Minimizing maximum region-wise mean response time increases

equity but worsens overall service quality.

P, worsens R by about 15% whereas G decreases by 36% on the average with respect
to P;. Py has a greater effect on G' (39% decrease) while it results in higher R values
than P; has by 15% on the average. Focusing on the least well-off region as in Py

does not result in better equity among regions than Py, where the focus in Py is on
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total region-wise positive deviation from a threshold.

Observation 6: Minimizing total region-wise positive deviation from a threshold
results in a more equitable system, and its effect on system-wide performance is

limited in comparison to its effect on equity measures.

Although P puts an indirect bound on mean response time while minimizing the
positive deviation from a threshold, it provides a better equity than P, which is
a model focusing on the region with the worst mean response time. Besides, Py
has a similar system-wide performance measure as P,. P, also balances out the
shortcoming of Pg where Py ends up putting all the emphasis on the variance of

region-wise mean response time.

The observations up to this point coincides with the results of the hierarchical
clustering analysis that (P;, P35, Ps) show similar performances, and (P, Py) are

the other models which behave similarly.

In addition to the comparison with P;, main effect and interaction effects of factors
are also explored to gather insight into the changes of performance measures. In
Figure main effect plots for factors Model, Distribution Pattern, Number of

Vehicles and Incident Handling Rate are given for three performance measures.

In the first plot of each row in Figure the main effect of Model on the
performance measures over all instances are consistent with the previous analysis

on the similarities and dissimilarities between the models.

Observation 7: Distribution of the demand regions over the plain significantly affects

system-wide average performance and equity.

Concerning the results shown in Figure 3.6] (f) & (j), it is seen that equity among
regions is better when demand regions are uniformly distributed over the plain. In
the case of accumulation of regions in some part of the plain, equity tends to worsen,

especially in Center-accumulated instances.

Observation 8: Increasing number of vehicles does not necessarily better off equity

while decreasing mean response time.
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Mean response time, R, decreases in the number of vehicles, see Figure @] (c¢). This
result is intuitive as more vehicles are available, the average travel time to demand
regions from vehicle locations could decrease. However, this does not directly result
in the increase of equity among regions as the change in GG does not show a regular

pattern while Var RR; decreases, see Figure[3.6](g) & (k).

Observation 9: Increasing incident handling rate does not necessarily better off

equity while decreasing mean response time.

The average mean response time over instances is decreased as the incident handling
rate increases as in Figure [3.6] (d). The incident handling time is one of the three
components of service time (sum of travel time to the region, incident handling time,
and travel time back to vehicle location), so an increase in incident handling rate
makes service time decrease. Due to this decrease, regions would be served by the
closest vehicle more, which would decrease the mean response time. However, the
change in the equity measures is not consistent as the average of VarR; decreases

while (G increases.

To better understand the effect of network specifications on the behavior of different
models, we present another set of analysis in Figure In this figure, the interaction

of network features with modeling approaches in performance measures can be seen.

Observation 10: The choice of modeling approach has greater importance in the

existence of accumulation of demand regions over the plain.

The change in equity measures, V ar I?; and G, are more prominent in patterns Center-
accumulated and Outer-accumulated with respect to the results in Figure (d) &
(g) while the line connecting medians of each model under Uniform pattern is flatter.
However, mean response time I? is affected similarly in all three patterns. This shows
us that the distribution of demand regions would change the scale of the effect of the
models on equity, and the preference of a mathematical model over another could be

more desirable under certain demand distribution patterns.

Only in model Ps, the effect in equity has a similar behavior as in P, irrespective
of the distribution of regions and the number of vehicles. This shows that Pj

behaves very similarly to the base model P; under different network specifications
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and reinforces the previous inference.

Observation 11: Minimizing variance results in similar equity irrespective of the

distribution of regions.

The performance measures VarR; and G are very close for P in all patterns in
Figure This might result from the fact that Py enforces the best obtainable equity

by minimizing the total positive deviation from the average in the objective function.

In Figure [3.8] interaction between factors are given in a different setting where this

time Distribution Pattern and Number of Vehicles are on the x-axis.

The scale of change in equity measures under P, , P5 and Py are easier to observe in
Figure (c) & (e). The difference between models is more prominent in the patterns

having an accumulation of demand regions in some parts of the plain.

Following the second plot in each row, it is seen that an increase in the number of
regions consistently decreases mean response time. However, this does not translate
into a consistent behavior in equity measures, as it is stated in Observation 8. It is
seen that equity worsens in our instances under P» and Pj as the number of vehicles
increases, while in other models, it tends to better off. Therefore, the change in

VarR; and G in the number of vehicles depends on the model.

Observation 12: Increasing incident handling rates worsens equity in models with

the objective of minimizing inequality among regions.

The change in equity measures is different under different incident handling rates It is
seen that the change in Var R; is dependent on the model when the incident handling
rate increases. For Py, P, P3, Ps, there is a decrease in variance from rate 6 to 12 (a
slight decrease for P5), while in the other models there seem to be slight increases. It
is also seen that (& values increase in Py, Pg and P; with rate increase. These models
are similar to each other in the objective function where the objective is to minimize
inequality among regions in general. This shows that increasing incident handling
rates worsens equity for models having this type of objective function. We would like
to point out that the incident handling time is the smaller portion of the overall service

time in the best solutions of instances under all models for both incident handling
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rates.

The change in incident handling rates affects service time differently based on the
travel times for a location solution. If the average travel time is a smaller component
of the service time, the effect of increasing incident handling rate on average service
time would be more significant. We realize that average service time depends on
the location solution; however, we construct the problem instances in a way that the
distribution of demand regions over the plain is an indicator of the average service
time, where we control demand rates, incident handling rates and number of vehicles
systematically. This is also justified by the interaction of R with distribution patterns
in Figure[3.8](a). The average pairwise distances between regions are 15.31, 12,2, and
13.58 minutes in instances with outer-accumulated, center-accumulated and uniform
patterns, respectively. It is seen that mean response time, R, has the highest values
for outer-accumulated and lowest values in center-accumulated instances for the best
solution for a given model except Py as anticipated. Therefore, another plot is
presented in Figure [3.9] to show the interaction effect of incident handling rate and

distribution of regions over the plain on the behavior of the models.

The results in Figure 3.9 show that the scale of change in R with increasing incident
handling rates is directly proportional to average pairwise distance in instances where

we observe the most significant decreases in outer-accumulated pattern.

Observation 13: The difference between modeling approaches in terms of equity

lessens as the traffic intensity of the system decreases.

The effect of incident handling rate on the equity measures changes with respect to
the distribution pattern and the models. It is seen that VarR; values are very close
to each other in uniform pattern for a given model. For the other patterns, equity
is affected based on the model of choice. As the incident handling rate increases
(which would decrease the system’s traffic intensity), the difference in Var R; among
models tends to get less prominent where the line connecting the medians gets flatter.
This change is more prominent in outer-accumulated pattern. However, G results
are similar irrespective of the incident handling rate, which could be due to the Gini

coefficient’s sensitivity to outliers.
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Lastly, we reinforce Observation 10 with the help of Figure [3.9] It could be seen
that the change in equity measures with respect to models is more prominent in
patterns with an accumulation of demand regions (center-accumulated and outer-

accumulated).

3.4 Conclusion

In this chapter, we work on various models for EMS vehicle location problem in
an effort to address issues related to equity. The motivation of this chapter is
that EMS vehicle location problem requires a more comprehensive approach with
multiple important criteria. Otherwise, decision-makers sacrifice from equity where

emergency care should be reasonably available to every member of society.

It is seen that models focusing on overall performance, such as minimization
of mean response time without any further considerations, do not perform well
in terms of equity among regions. Deterministic coverage constraints are more
promising in decreasing the disparities between regions than chance constraints. It
is also possible to improve equity by focusing on region-wise performance measures
such as mean region-wise response time. On the other hand, the use of chance
constraints is found to be more promising in narrowing down the feasible region than
deterministic constraints. In the results, it is shown that network specifications affect
the equity enforced by the models. Therefore, it is better to understand the network
specifications and incorporate them in the process of choosing the mathematical

model to be used.

In this chapter, we stick to a simulation study to evaluate the EMS systems’
performance measures since the environment involves uncertainty and the exact
queueing model is computationally expensive. One important research direction is to
obtain the performance measure via deterministic approximation models/algorithms
rather than simulation study. In the next chapter, we work on a decomposition method
to approximate the performance measure of the exact queueing model and evaluate

the performance of an EMS system.
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CHAPTER 4

DECOMPOSITION METHODS FOR ESTIMATING THE PERFORMANCE
MEASURES OF STOCHASTIC EMS SYSTEMS

In Chapter [3] we work on emergency vehicle location problem form an equity
perspective rather than developing a mathematical model for the problem. The
evaluation of alternative solutions for an EMS system is done based on discrete
event simulation which is computationally expensive. In this chapter, we study on
developing a method to evaluate performance measures of an EMS system based on

stochastic processes, which could be used to locate emergency vehicles.

The exact queueing model constructed for the problem is computationally
cumbersome as the size of the state space increases exponentially in the number
of regions and vehicles to be located. Accordingly, we work on a decomposition
method to approximate the performance measures of an EMS system under the
exact queueing model in this chapter. Instead of working on a single queueing
model as HQM by |[Larson| (1974)), the exact queueing model is decomposed into
interdependent partial queueing models whose balance equations form a non-linear
set of simultaneous equations. This decomposition enables us to work with service
rates that depend on the server location and the region. The decomposition methods
proposed are also capable of representing solutions with multiple vehicles at a single
location. Different than [Budge et al.| (2009), we distinguish the vehicles at a single
location by assigning priorities in dispatching, which allows the decision-maker to
observe the change in the busyness of a vehicle when an additional vehicle is located
at the exact location. We present an approximation method to solve the resulting
set of equations and estimate the steady-state probabilities. Once the steady-state

probabilities are evaluated, several performance measures could be obtained based
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on those.

We present two optimization problems and use the decomposition methods in the
evaluation of the objective function value. An analysis of the performance of the
decomposition methods under optimization setting is presented, which is not shown
in studies of Budge et al.| (2009) and [Toro-Diaz et al.|(2015), by employing a ranking
selection algorithm based on simulation to obtain best performing location solutions.
Since the mathematical models have no closed-form formulation, a genetic algorithm

is presented to find near-optimal solutions.

In the rest of the chapter, the problem environment is introduced in Section 4.1} and
the decomposition of the exact queueing model is explained in Section A meta-
heuristic solution algorithm for the mathematical model is given in Section 4.3| The
experimental results for the performance of decomposition methods and the meta-
heuristic algorithm are given in Section Lastly, the chapter is concluded in
Section

4.1 Problem Definition

We construct the mathematical model with only one set of decision variables, x;, Vi €
I which is the number of vehicles located in vehicle location . Let & be the vector
of decision variables, x;’s, representing a solution. The objective function, R(%),
is the mean response time of the system under solution . It is one of the most
critical measures that is taken into account for the evaluation of emergency systems
and defined as the time passed between a demand call and the arrival of a vehicle at
the corresponding demand location. As we define our problem environment based
on stochastic processes, there is no closed-form formulation of the performance

measures as a function of x; therefore, the objective function is defined as a function

of a candidate solution without introducing further notations.

We define two mathematical models Ps and P); where we allow only a single and

multiple vehicles to be located at a given location in Ps and P, respectively.
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Pg and P, are as follows:

(Ps) Minimize R(%) 4.1)
subject to: Z ;=N 4.2)

iel
z; € {0,1}, Viel. 4.3)
(Par) Minimize R(Z) 4.4)
subject to: Z i =N 4.5

icl

x; > 0,1nteger, Vi e I. (4.6)

In the next section, we propose decomposition algorithms to evaluate the objective

function values of these problems based on queueing theory.

4.2 Decomposing the Exact Queueing model

Recall the exact queueing model introduced in Chapter [I] which could be used to

evaluate the performance measures of an EMS system.

{B,t > T'} is a continuous time Markov chain with state space L, and B, is an N-

dimensional state variable defining the underlying queueing system as follows:
By = (by, b, ..., bN), t>T
where by, represents the status of the £ vehicle at time ¢ and denotes a 3-tuple as:
b = (ix,s,m), s€ JU{0}, m=0,1,2,3

where 1), represents the location that the vehicle is located, s stands for "idle" or the

region being served, and m represents the mode of the service at time .

If the vehicle is not busy, s and m are set to 0. Then, b, = (ix,0,0) represents the
state that the vehicle at location 7, is free. If the vehicle is busy serving demand region

j € J, sissetto j. When the vehicle is busy, m is set to 1,2 or 3 if the vehicle is
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en-route to demand region 7, handling the incident or en-route to the vehicle location,

respectively.

Under this definition, the size of the set of the possible statuses for every b, €
B, k = 1,...,N is equal to (3|J| + 1). Hence, the state definition results in a
state space L with (3]J] + 1)V many states, and the size of the state space increases
exponentially with the increasing number of vehicles. Therefore, we propose an
approximation method to estimate the performance measures that would result from

the exact queueing model.

The exact queueing model is decomposed into N interdependent queueing models,
each representing a single vehicle. Furthermore, we assume that the service time for
a demand call from region j by a vehicle from location ¢ is exponentially distributed
with mean that is equal to the sum of mean travel time to demand region, mean

incident handling time and mean travel time back to vehicle location (w;; + ¢; + w;;).

In the exact queueing model, the closest available vehicle is assigned to a demand
call. To approximate it with interdependent multiple queueing models, we need to
incorporate the busyness of the vehicles (sum of the steady-state probabilities of the
states where the vehicle is busy) into the queueing models. So, the demand arrival
rate from a certain region for a specific vehicle should differ concerning the rank of
this vehicle among other vehicles in proximity to that region. This means that the
demand arrival rate from certain region for a specific queueing model depends on
the sum of a set of the steady-state probabilities of other queueing models where the

corresponding vehicles are closer to that region.

We present three variations of the decomposition method. In the first method, at most
one vehicle is allowed at a single location. In the second method, we improve the
calculation of demand rates by addressing the dependency between busy probabilities
of vehicles in the exact queueing model while allowing again at most one vehicle at a
single location. In the third method, multiple vehicles are allowed at a single location

and dependency between vehicles is addressed in calculating demand rates.
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4.2.1 DMS-S : single vehicle only case

We first focus on the case where at most one vehicle is allowed to be located at a single
location as in mathematical model Ps. Let I be the set of vehicle locations with one
vehicle located under the given solution #, I' = {i € I|x; > 0}. We construct N

interdependent queueing models, denoted by QM;, for Vi € I'.

Let {b;,t > T'} be a continuous time Markov chain with state space L, for QM;. A
state b, € L;, t > T is 0 when the vehicle is free and ;7 when it is busy serving region

j at time ¢. Then, L; = J U {0} for QM;, Vi € I'.

Let 7} be the steady state probability for state j € L; of QM;. Then, 7 denotes the
probability that vehicle : is free.

Let S} be the set of vehicles that are closer to region j than i, S; =
{k € I'lwg; < w;;}. We can find the probability that all vehicles closer to region j
than vehicle ¢ are busy by using the set S; Let cé- be the probability that all vehicles

closer to region j than vehicle ¢ being busy. Then,

1 if St =0,
¢ = H (1 —nf), otherwise. @.7)
kes:

In the exact queueing model, the probability that all the closer vehicles are busy may
not be equal to the multiplication of busy probabilities of individual vehicles. Hence
we note that servers are assumed independent in building this probability, cé-, whereas

this may not be justified depending on the busyness of the system.

The transition from state j = 0 to state j € L;\ {0} is realized when a demand call
arrives from region j. For (QM;, the transition rate from state ¢ to state j is equal to
the demand rate of region j if vehicle ¢ is the closest vehicle to this region. Otherwise,
the transition rate is calculated based on both the demand rate of the region and the

busy probabilities of vehicles that are closer to this region than vehicle .

Accordingly, the transition rate from state j = 0 to state j # 0 for QM; where a

demand call arrives is \;c}.

The service rate for state j # 0 for QQM;, i.e. for region j, when served by vehicle ¢,
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is
60
¢.
Qwij + ¢j ’

if 7 =1,
4.8)
otherwise.

Example: Assume 7 = (1,0,1) where [ = {1,2,3}, J = {1,2,3} and N = 2. We
construct a queueing model for the vehicle in Region 1 as ()M, and another for the
one in Region 3 as QMj3. Then, L; = {0, 1,2,3} for QM; and Lz = {0,1,2, 3} for
QMs.

Let 7! = (w}, 7}, m3, ™) be the vector of the steady state probabilities for M, and

n? = (w5, w7, w3, 73) for QM .

Assume that Region 2 is closer to Region 1 than Region 3. So, a demand call from
Region 2 is served by vehicle at Region 3 only if the vehicle at Region 1 is busy.
Then, the queueing models could be constructed as in Figure 4.1 where (1 — 7}) and
(1 — m3) are the probabilities that the vehicle located at Region 1 and Region 3 are

busy, respectively.

The balance equations for () M; are as follows:
ToAL = Ty fiat,
Q é>\2 =T gl,uzl,

mods(1 — T3) = 3 a1

The balance equations for () M3 are as follows:
’/TS)\l(l — Wé) = W?Mlg,
Todo(1 — my) = T o3,

3y .3
ToAg = T3 [33.

By using balance equations for QM; and 7} + 7} + 73 + 73 = 1, we reformulate

steady state probabilities as follows:
A A A3(1 — 7
M1 H21 H31

which is equal to

Wé (M11M21,u31 + Aipior a1 + Aopaaprst + Ag(1 — 778)#11#21) = 1121 U31-
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(a) Rate diagram for Q M,

H13 >\2(1 - 775)

(b) Rate diagram for QQ M3

Figure 4.1: Rate diagrams for the queueing models of the given solution &

Then, the probability that the vehicle at Region 1 is free is found as

1 je{1,2,3}

’]T pry
0 >N I i+ I wp

je{1,2,3} ke{1,2,3} k#j je{1,2,3}

4.9)

where cjl- = (1 —73) is the probability that all vehicles closer to region i than location

1 is busy if S; is not an empty set.

By dividing numerator and denominator of 1Wi by [I w1, we have
j€L1\{0}

Then, (4.10) and (4.11])) give the steady state probabilities of states of ()M, in general
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form:

T = — (4.10)
> 9
jeL\{oy
i cé‘)‘j .
mh= .j € L\ {0}. 4.11)
Hji > ij;\.k +1
keL;\{0} !

Notice that (4.10) and (4.11) have the term ¢, which includes the steady state

J
probabilities of ()M3. Therefore, the set of non-linear equations for the example

that needs to be solved to find the steady-state probabilities is:

A A A3(1 — 78
pp M e ATy 4.12)
H11 H21 H31
A (1 -7 Ao(1 =7 A
M=) =) g A s (4.13)
H13 H23 33

where 0 < 7} <land 0 < 75 < 1.

It is seen that, the number of unknowns and non-linear equations that needs to be

solved are equal to the number of vehicles located. (4.12) and (.13)) could be written

in general form as follows:
, N o
w4+ > dmy=1, Viel. (4.14)
jeLafoy 17
In the next section, the calculation of demand rates are improved by changing the

estimation of the busy probability of vehicles closer than vehicle 7 to region 7, c;

4.2.2 DM-S-CF: single vehicle only case with correction factors

To estimate the EMS system’s performance measures, we decompose the exact
queueing model into separate queueing models, one for each vehicle, in DM-S. In
order to imitate the exact queueing model under solution Z, we use busy probabilities
of other vehicles in the demand rate of the region j for () M; since vehicle i responds

to a demand call only if all vehicles that are closer to region j than vehicle 7 are busy.

We calculate the probability that all vehicles closer to region j than vehicle @ is

busy by [[,cq: (1 — 7). This assumes that servers are independent; hence we could
J

62



multiply the busy probabilities of vehicles to find the probability that these vehicles
are busy at the same time. However, in the exact queueing model, this probability is
not equal to the multiplication of individual busy probabilities since servers are not

independent.

To overcome this bias in the calculation of this probability, Larson| (1975) proposes

correction factors based on M/M/N/(.) queueing systems.

Assume the general M/M/N/oco queueing system with demand rate A and service rate

w per server and p = A\/Npu < 1. Let Uy, indicate the state where k servers are busy.

For M/M/N/oo queueing system, we know that

1
P(Us) = Py = — ,
Nipi NN N

PO s (=

Nk: k
P(Uy) = P k'p P, k=12, N-1,

NNpN
P(Uy)=P

(Un)= Py Ni—p'®

Suppose, we randomly sample servers until we find the first server which is free. Let
W; be the event that j' selected server is busy and A; = W7 be the event that gt

selected server is available. We derive an expression for P(W;Ws,..W,;A;44).

By conditioning,

P(W\Wa.. WjAjr) =Y P(WiWa ... WA |Up) P (4.15)
k=0

and

P(WAWy .. . W;A; 1 |Uy)
= P(A; 1 |[WiWa . .. WU) P(W;|[WiWa..W,;_1Uy)... P(W1|U).  (4.16)

We know that P(W;|Uy) = %, PWy|[WhUy) = %
In general,
P(W;|[WiWs ... W, U)—k_@_l) i =1,2,... k+1 (4.17)
iWiWsa .. . Wi Uy _N—(i—l)’z_ 3Ly ey : .
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Similarly,

N—k
P(Aj 1 |[WAW, .. WU, = - i=0,1,2,.. k. (4.18)

N —

Then, we get the following equation by inserting (4.16), (4.17) and (#.18]) into (@.13):

P(WiWs... W;A;41) zg {ﬂ m__ﬂ L’;—_((Jj—_ll))} D\;:ﬂ P
(4.19)

When we insert Py, into (4.19) and reorder the equation, we have

P(W1W2 c. WjAj+1)

RO ()] -]

k=j

As it is seen, we now have p’(1 — p) in (4.20) and other terms in the form a multiplier
which reflects the correction factor for the probability that 7 + 1% vehicle is available
when first j is busy where independence among servers is not implied. Hence, this
multiplier, C(N, p, 7), could be used as a correction factor in the calculation of the
probability of the event that all j vehicles which are closer to a region than the vehicle

in Q) M; are busy.

P(W Wy...W;Aj1) = C(N,p,7)p* (1 — p)

J
B )

Until now, we work on an M/M/N/oco system. For the system M/M/N/N (no

queueing), the actual fraction of time p’ that a server is busy is smaller than p = A\ /Ny

since calls are lost if all servers are busy. For M/M/N/N,

p=p(l—Py)
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where

, 1
P(Ub)= Py = =
Sito T
, Nk k
P(U)=P.= 2P  k=0,1,..,N.

k!

We can derive the new correction factor as C'(N,p,j) =
PW\Wy.. . W;A;:1)/(p) (1 — p') by substituting p with p'/(1 — Py) to
obtain the term (p')?(1 — p') in P(W W,...W;A;1). Then,

P(W1W2 .. WjAj—i-l)

R st (0 )

(1 —1Pz’v)j (1 — p(fo— P]’V)> (P (1—p).

Hence, the correction factor C' (NN, p, j) can be set as follows:

C'(N, p, ) |
- LX_; (N‘j(,;_”}§fv_k) (%T) pk_j] <1 —1P;V)] <1—p(]130— PJ’V))‘

Eventually, the correction factor C'(N,p,j) is used in the calculation of the

probability cé to overcome the bias due to the assumption of servers being

independent. Let c;-i be an alternative to c;'» in ll as follows:
1 if S5 =0,

G = NC(N,p, 15 H (1 —7k), otherwise. @.21)
kes?

where ‘S’] is the size of set Si , and p is equal to the total demand rate over total

JGJ )‘]

average service rate /i,,, (Which is calculated from QM;’s ): T
avg

Hence, we rewrite the set of equations in (4.14) that need to be solved simultaneously
to find the steady-state probabilities of () M;’s according to DM-S-CF decomposition

method as follows:

: )\Z ;o ’
T+ Y em=1,  Viel. (4.22)
JeL;\{0}
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4.2.3 DM-M-CF: multiple vehicle case with correction factors

In DM-S-CF method, at most one vehicle is allowed in a single location. We extend
the DM-S-CF decomposition method in a way to handle the case where multiple
vehicles to be located at a single location. This would change the calculation of the

probability that all vehicles closer than the vehicle in () M/; to a region are busy.

In this method, the interdependent queueing models are constructed differently. In the
previous methods, each () M; is constructed for only one vehicle. Since we now allow
more than one vehicle at a single location, if we continue with one queueing model
for each vehicle, some queueing models would be very similar in transition rates. We
could allow some models to include more than one server; however, this increases
the size of the state space of the model exponentially similar to the exact queueing
model. Instead of constructing queueing models with more than one vehicle, we stick
to the previous structure by giving pseudo orders to the vehicles in the same location.
So, an interdependent queueing model is constructed for each vehicle while paying
attention to the order of vehicles at the same locations. The representation of multiple
vehicles in this method also allows one to observe the change in the busyness of a

vehicle when an additional vehicle located at the same location.

Following from the previous example, we locate another vehicle at Region 3 and
change 7 as follows: & = (1,0,2) where I = {1,2,3}, J = {1,2,3} and N = 3.
The definition of set I is redefined for DM-M-CF as follows:

I'={igliel,z; >0,k=1,...,z;}.

Then, I' = {11, 31,32} under Z. We construct a queueing model for each vehicle in
I': QM;, for the vehicle at Region 1 and QMs3,, Q Ms, for the vehicles in Region 3.

Then, the state space for all 3 queueing models are the same and equal to {0, 1,2, 3}.

Let 7r§, Vi € I', ¥j € L; be the steady-state probabilities for () }/,’s and assume that
Region 2 is closer to Region 1 than Region 3. Then, the queueing models could be

constructed as in Figure 4.2

As seen in the figure, the calculation of the probability that all vehicles closer to

region j than vehicle 7 are busy is changed since we have more than one vehicle
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31 AsC'(3,p,2)(1 —734)(1

(a) Rate diagram for Q M7,

H13 )‘20/(3’ P 1)(1 - ﬂ-él>

MO (3,p,1)(1 = mg) Hz3

33 A3

(b) Rate diagram for Q) M3,

K13 )\20/(?% P 2)<1 - Wél)(l - 7731)

)‘10/(3a P, 2)(1 - ﬂ-él)(l _ 7.‘.31 Has

33 XsC'(3,p,1)(1 = 75")

(c) Rate diagram for Q) M3,

32

Figure 4.2: Rate diagrams for the queueing models of the given solution 7
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at a location now. For the vehicle locations with more than one vehicle, the index
of the vehicle location in set I’ defines the preference order of the vehicles in this
location. Following the example, 3, responds a demand call from Region 2 only if
vehicle 1, and 3; 1s busy. Hence, the transition rate from state j = 0 to state j = 2 is

XC'(3,,2)(1 = mp")(1 — 75" for QM.

Accordingly, we redefine the set Sj as the set of vehicle that are closer to region j
than vehicle ¢ or the vehicles that are preferred to vehicle ¢ if there are more than
one vehicle at the location of i. Let Z(k) is equal to [ which is the pseudo order
of k € {iyli€l,z; >0,l=1,..,2;}. Then, we define set S} as follows: S} =
{k € I'\wyj <wi; VZ(k) < Z(i)}.

The set of non-linear equations that need to be solved simultaneously to find
the steady-state probabilities of (QM;’s is the same as the one for DM-S-
CF in where the definition of c;-i is now based on the set S} =
{kel'lwg; <wy; VZ(k) < Z(3)}.

mt Y dmy=1,  Viel (4.23)
jeLaop Mt

where I' = {izli € [,2; >0,k =1,...,2;}.

4.2.4 Approximation method for the steady-state probabilities

The proposed decomposition methods require a set of non-linear equations to be
solved to find the steady-state probabilities of the queueing models constructed for

vehicles.

Let a;; be equal to u’\— and IT be the vector of 7)’s. By inserting a;; in 4.23] we

i

write N functions that needs to solved simultaneously with N unknowns for DM-
M-CF which is the most general decomposition method allowing multiple vehicles
in a single location and incorporating correction factors for the busy probabilities as
follows:

) =m+ > aucjmy—1, Viel (4.24)
JEL\{0}
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where I' = {izli € [,2; >0,k =1,...,2;}

Then, we write [V equalities that defines a system of non-linear equations for DM-M-

CF decomposition method:

iy =0, Viel, Ielo,1]". (4.25)

Let IT* be the solution to the system of non-linear equations defined in (4.25). To

prove that such IT* exists, we use Poincaré-Miranda Theorem by |Kulpa (1997).

Theorem 1 (Poincaré-Miranda Theorem). Let I™ := [0,1]" be the n-dimensional
cube of the Euclidean space R™ and let )I™ be its boundary. For each i < n let us
denote

[F={zel": a(i)=0},IF = {z € I": (i) = 1} (4.26)
the i-th opposite faces.
Let f : I™ — R", f = (f1, ..., fu), be a continuous map such that for each i <

n, fi(I;) C (—00,0] and fi(I;7) C [0,00). Then, there exists a point ¢ € I" such
that f(c) = 0.

Proof. We show the properties of the function f; introduced in (4.24).

Let 0 and 1 be the vector of zeroes and ones which correspond to I, and I,

respectively.

By (.24), we have
f:(0) = —1, Viel, (4.27)

and,

)= > auc), Viel. (4.28)

jeLi\{0}
We know that aj; = ;\—J, making 0 < aj;, Vj € L;\ {0}, Vi € I' by definition.

Recall
1 if St =0,

€ =Y C'(N,p, Si)) H(l — ), otherwise
kes?

(4.29)
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where 5! = {k € I'|wy; < wi; V Z(k) < Z(i)}.

By (4.29), ¢ = 1, ¥(i,j) € {(kD)|keL\{0}, VeI, Si=0} and ¢] =
0, V(i,7) € {(k, )|k € L;\{0}, VI € I', S, # 0} since 1) = 1, Vi € I'". Hence,
the summation in (4.28) is positive and f;(1) > 0,Vi € I.

Therefore, we show that f;(I;) C (—o00,0] and fi(I;") C [0,00), Vi € I where
ID =0and [ = 1.

Then, there exist a solution IT* such that f(IT*) = 0 by Poincaré-Miranda Theorem.
H

IT* is said to be a nonsingular if the associated Jacobian matrix for the set of functions
in (4.24)) is nonsingular at IT*: det f'(IT*) # 0. However, to be able to say that
there exist only one solution to this system of equations, one needs to show that det

f/(IT) # 0, forall II € [0, 1]".

As we show that there exists at least one solution to the non-linear system of
equations, we propose an iterative algorithm to solve the system of equations. In
every iteration of the algorithm, we construct the queueing models by using the busy
fractions (1 — 7)) from the previous iteration. Then, we solve the balance equations
for each queueing model separately and get closer to the solution of the non-linear
set of equations in (4.24). The algorithm continues until a convergence criterion is

satisfied.

In the approximation of IT*, the correction factor C' (N, p,.) is set to 1 initially for
DM-S-CF and DM-M-CEF, then it is updated after each iteration based on the average
service rate, [i,,4, found from the steady-state probabilities of ())/;’s. For the DM-S

method, the algorithm could be used by just disregarding the correction factors.

The pseudo code in Algorithm [3[ summarizes how the steady-state probabilities, I1*,

are approximated.
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Algorithm 3 Algorithm to approximate steady-state probabilities with correction

factors

1:

2:

3:

10:

11:

12:

13:

14:

15:

initialize iteration counter: iter = (0
Si)=1,Viel, Vje L\ {0}
initialize j0, P = 0, Vi € I'

initialize ;z.,C" (N, p,

construct individual queueing models, QM;, Vi € I' by using j.,C’' (N, p, ]Sﬂ)
and using (1 — ;. P;) as the busy probability for vehicle

cater =1

solve balance equations and find 7r§-, Vj € L; for each QM,;
set o P =l Vi€ I'

. while max;c+ { |iter Py — (iter—1) Py |} >=0.001 do

calculate p and 4..C" (N, p, |S;}) based on 4., Pi, Vi € I', ¥j € L;\ {0}
construct individual queueing models, QM;, Vi € I' by using iter P
solve balance equations and find 7T§', Vj € L; for each QM;
iter = iter + 1
set jyer Py = 1)

end while

return l, Vj € L;, Vi€ I'

4.2.5 Calculation of the performance measures

Once steady-state probabilities of () M;’s are evaluated, several performance measures

for an EMS system could be estimated based on those. The mean response time

for the system is used as the objective function value in the mathematical models

in Section 4.1] In addition to this, three other performance measures that could be

obtained through steady-state probabilities of () V/;’s are listed below:

e ED(7): expected satisfied demand in unit time,
o C'D(Z): expected satisfied demand under threshold time 7,

e R;(Z): mean region-wise response time of region j.

Let £D(%) be the expected satisfied demand in unit time. £ D(Z) is found by using

the number of dispatches of vehicles to regions in unit time which is calculated based

71



on steady state probabilities and transition rates of ) M;’s.

The number of times vehicle i is dispatched to region j in unit time is equal to the
steady state probability of vehicle i being free, 7}, multiplied with the transition rate

to state 7, that is c§ A;. So, the number of dispatches in unit time from i to j is 7r60§ Aj.

Then, ED(Z) is equal to the number of dispatches from vehicle i to region j summed

over all vehicles and regions,

ED(Z) =) ) micih;. (4.30)

Jjed jer

Similarly, it is possible to estimate the expected covered demand C' D (%) of the system
under 7. Recall that 7;; is a random variable representing travel time between location
i and region j and Fr,; is the cumulative distribution function of random variable 7;;.
The expected number of demand calls satisfied in unit time that is covered under
threshold 7 from region j by vehicle 4 is given by Fr, (7)7;c;\;. Then, the expected

covered demand under Z is found as

CD(F) =) Fr,(r)miciA;. (4.31)

Jed qer

Another measure that can be evaluated based the number of dispatches is mean
region-wise response time, R;(Z), under solution Z. The region-wise mean response
time for region j is the weighted average of mean travel times to region j based on
the number of dispatches under .
D2 mHCsA Wi
R;(%) = EIE;T Vj e J, (4.32)
0G5
iel

where numerator is the weighted total travel time based on the number of dispatches

and the denominator is the total number of dispatches to region j in unit time.

Similar to mean region-wise response time, the mean response time of the system,
R(Z), is evaluated as follows:

> > TN Wi

_J&Jger

B = S~ sman,

jed jer’

(4.33)
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R(Z) is used in Pg and Py, however; performance measures can be diversified such

as E(7), C(7) and R;(Z) which are estimated based on QM;’s.

In the next section, a meta-heuristic solution algorithm is presented to be able to
find near optimal solutions for the mathematical models, Ps and Py, where R(Z)
is estimated based on the steady-state probabilities and transition rates of ()M;’s by

using the approximation algorithm in Section {.2.4]

4.3 A Genetic Algorithm for P,

In Section 4.1, we present two mathematical models, Ps and P, to locate EMS
vehicles whose objective functions are evaluated with the help of decomposition
methods proposed in Section 4.2]  Since there is no closed-form formulation
for the objective function, a genetic algorithm (GA) is constructed to find near-
optimal solutions for P, while evaluating the objective function values with the

decomposition methods.

Genetic algorithms use chromosome structure to encode different solutions and
compares their fitness function values, i.e. objective function values.They are
designed to generate a population of initial solutions and evolve toward better ones
in terms of the fitness function value. Evolution is realized through the reproduction
of the population using two main genetic operators, crossover and mutation operator,

which create the next generation for the algorithm.

A feasible solution to model Py, is the number of vehicles located in given locations.
In the chromosome structure, a solution is represented by an N-dimensional array.
Each entry of this array is called a gene and shows the location of a vehicle in the
solution. Since P,; allows multiple vehicles in one location, genes representing the
same location might show up in chromosomes more than once. The number of genes
with the same location indicates the number of vehicles located in that location. For
an instance where N = 3, the solution at hand ¥ = (1,0,2) and I = {1,2,3},
chromosome is encoded as (1|3|3). Each chromosome is called an individual, the

collection of which makes up the population of the algorithm.
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The notation used for the genetic algorithm are given in Table d.1]

Table 4.1: Notation used for Genetic Algorithm

Parameters

M Size of the population and the mating pool
O; Fitness value of individual ¢ of the population
us(7) Probability of selection of individual i

Ue Probability of crossover

c Crossover point

U, Probability of mutation

M many random individuals are generated to form the initial population. Each
individual represents a feasible solution for the model to be solved. A predefined
number of individuals, M, are copied to a mating pool to reproduce the next
generation population in the reproduction process. The selection of the individuals
is based on their fitness values. A larger probability is assigned to an individual with

a smaller fitness value.

The fitness value, O;, of an individual 7 is simply the objective function value for the
solution encoded in the chromosome. The DM-M-CF decomposition method is used

to find the objective function value of individual and is recorded as the fitness value.

The probability of selection for individual 7 is given by:
1
. O;
Us (Z) = S - 1
Zj:l O;
After constructing the mating pool with individuals from the population, parents are
selected in pairs for reproduction. This selection is random with equal probabilities

for all individuals in the mating pool.

The crossover operator is used to transfer genes from parents to children and applied
to selected pairs of individuals (as parents) with a predefined probability u.. If the
probability fails, crossover operation is not applied, the parents are duplicated, i.e.,
children are the same as the parents. If crossover were applied, one-point crossover is

used. A crossover point, c, is selected randomly between 1 and N. The first ¢ genes
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of Parent 1 are copied to Child 1 and Parent 2 to Child 2. Genes after the crossover
point, ¢, are copied from Parent 1 to Child 2 and from Parent 2 to Child 1.

As an example consider Parent 1, Parent 2 which are given below and ¢ = 2. Child 1

and Child 2 are reproduced with the crossover as follows;
Parent 1  Parent 2
(113)  (23[5)
Child1  Child 2
15y (23[3)

After reproducing children from crossover operation, every gene of a child is mutated
to diversify the solutions in the population and better search the solution space by
not restricting the search to solutions only with genes represented in a generation.
The mutation is realized with probability u,, for every gene in a child. If probability
succeeds, the child’s gene is overridden by a random location from set / with equal
probabilities (with locations that do not exist in the child if only single vehicles are

allowed in a location).

After crossover and mutation operations, 2 * ) individuals exist in the mating pool,
including the children. The next generation is constructed from the best M feasible
individuals in terms of the fitness function value from the mating pool. When
the next generation produced from a population of individuals consists of a single
chromosome represented M times, it is assumed that the population has converged.
This individual is taken as the best solution suggested by the genetic algorithm for

Py , and iteration is terminated.

This genetic algorithm could be used for Pg as well by changing the crossover and
mutation operators to maintain feasibility in the generation of the next population.

The pseudo-code of the GA for Py, is given in Algorithm 4]
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Algorithm 4 Pseudo-code of the genetic algorithm

1: Generate initial population with A/ many solutions, Pop = {p1, ..., pa }

2: Find fitness values of the solutions in initial population

3: repeat

4: Initiate mating pool, Pool = ()

5: for k. =1to M do

6: u = rand(0,1)

7: Pool = Pool U {p,;} where p; € Pop and Z;;ll us(j) <u < 22:1 us(j)
8: end for

9: for k = 1to M/2 do

10: Generate i = rand(1, M) and | = rand(1, M)
11: Parent; = m; and Parenty, = my

12: u = rand(0,1)

13: if u < u, then

14: Child, := Crossover(Parent,, Parents)
15: Childy := Crossover(Parenty, Parents)
16: else

17: Child, := Parent;

18: Childy := Parents

19: end if
20: for j =1to2do
21: forn=1to N do

22: u = rand(0,1)

23: if u < u,, then

24: Child;(n) := Mutation(Child;(n))
25: end if

26: end for

27: end for

28: Choose the best M solutions from

(Parenty, ..., Parenty, Childy, ..., Childy) to the population Pop
29: end for

30: until Termination condition is satisfied return The best individual
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4.4 Experimental Study

An experimental study is conducted to see the performance of decomposition methods
in evaluating objective function values of each feasible solution of the mathematical
models, Ps and P, given in Section The optimal solutions for Ps and P,
based on complete enumeration with decomposition methods are compared to the
best solution found based on simulation as well to check the performance under
optimization problems. The proposed decomposition methods are used to evaluate
two different objective functions from Chapter [3] Lastly, the performance of the
proposed genetic algorithm is checked in terms of the quality of solutions reported at

the end of runs.

Various problem instances having different network configurations are used in the
experiments as in Chapter In addition to toy data, decomposition methods are
tested on a real-life data set as well to check the performance of the methods under

larger size problems. The analysis performed are explained in detail below.

Three decomposition methods are used to evaluate the objective function value of a
feasible solution of the mathematical models, Ps and P, given in Section A
discrete event simulation model is constructed and coded in Matlab environment to
simulate the emergency medical systems and evaluate the mean response time of
a location solution since the exact queueing model is computationally expensive.
Then, the quality of approximation of the decomposition methods is checked by
comparing the objective function values of each feasible solution of the problem
evaluated with the simulation model and the decomposition methods based on

complete enumeration.

Differently from one-to-one comparison of feasible solutions, the quality of the
optimal solutions of the mathematical models under decomposition methods found
by complete enumeration is also analyzed by comparing them to the best solutions
obtained from a ranking selection algorithm that employs the simulation model.
Hence, the performance of the decomposition methods under optimization problems

1s tested.

In addition, the proposed decomposition methods are used to evaluate the objective
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function values of the models P4 and Py from Chapter [3| which are the models found
performing well in terms of equity. The optimal solutions for the problems are found
with complete enumeration. Then, the changes in the mean response time, variance
of the region-wise mean response time and Gini coefficient are checked similarly for
the optimal solutions of the models in order to observe whether similar equity results

are achieved when feasible solutions are evaluated with the decomposition methods.

Lastly, a design of experiments is conducted for the genetic algorithm which is

proposed to find near-optimal solutions for the mathematical models.

4.4.1 Testbed

For the experiments, the same sets of regions from Chapter [3]are used, which include

three forms with 15 demand regions as seen in Figure [4.3]

30 30 30

20 20 20

10 10 10

0 10 20 30 0 10 20 30 0 10 20 30

(a) Uniform (b) Center-accumulated (c) Outer-accumulated

Figure 4.3: Distribution of demand regions

The number of vehicles is set to 4, 5 or 6. The demand rate is assumed to be the same
for every region as 0.5 units per hour. The incident handling rate is set to 3, 6, 9 and

12.

In total, 36 instances are generated based on a full factorial design using three factors:
Form with three levels, Number of Vehicles with three levels (4,5 and 6) and Incident
Handling Rate with four levels (3, 6, 9 and 12).
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4.4.2 Selection of the best solution and evaluation of performance measures

Since there is no closed-form formulation for the models that includes stochastic
processes in the study, the discrete event simulation model constructed is again used
to simulate the emergency medical systems. In order to show the performance of the
decomposition methods under optimality, the best solution for each problem instance
for models Ps and P, are found using KN++ algorithm by Kim and Nelson| (2006)

based on this discrete event simulation model as in the previous chapter.

For KN++ algorithm, first-stage sample size ng is set to 100,000 demand calls. The
initial number of batches, b, is set to 10. The confidence level v is set to 0.05,
indifference-zone parameter ¢ to 0.01, and parameter ¢ to 1. KN++ algorithm is
stopped when the best performing alternative has a 0.1 % difference in the objective
function value from the worst performing among the remaining alternatives. Then,

the best solution is selected randomly from the remaining alternatives.

4.4.3 Performance of the decomposition methods

The performance of the proposed models is explored in two steps, by analyzing
the goodness of the approximation of the objective function value for each feasible
solution, and by comparing the optimal solutions of the models obtained using
decomposition methods based on complete enumeration to the best solutions obtained

with KN++.

The mean response times of all feasible solutions for mathematical models are
evaluated both with the decomposition methods and the simulation model for each
instance. Due to the computational burden, the batch means method is used to
estimate the performance measures with a total of 550,000 demand calls where the

warm-up period is set to 50,000 calls and ten batches of size 50,000 are used.

Let O (k) be the objective function value evaluated by the decomposition method (.),
where (.) is replaced by DM-S, DM-S-CF and DM-M-CF, and Og;,,,(k) be the mean
of the confidence interval of the objective function value evaluated by the simulation

model for the solution k& of a problem instance under any mathematical model. We
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find the mean absolute percent deviation (MAPD) of O()(k) from Og;,, (k) over all

feasible solutions of a problem instance as follows:

O) (k) = Osim(k)
Osim(k)

(4.34)

K
100
MAPD = e ’;

where K is the total number of feasible solutions compared.

In Table 4.2] we present MAPD results for 36 instances under models using DM-S,
DM-S-CF and DM-M-CF methods. Recall that DM-S method is used to evaluate
performance measures of EMS systems with at most one vehicle per location, DM-S-
CF is an extension of DM-S where we use correction factors in the calculation of the
demand rates of the queueing models, and DM-M-CF incorporates correction factors
in evaluating the performance measures of EMS systems where multiple vehicles at a
single location are allowed . Hence, we use DM-S and DM-S-CF methods to evaluate

the objective function values of the solutions of model Pg and DM-M-CF for P,,.

Table 4.2: MAPD of the objective function value under decomposition methods from

simulation evaluation overall feasible solutions in 36 instances

Model Ps Model Py

Form Nb. of Vehc.  Inc. Hand. Rate DM-S DM-S-CF DM-M-CF
Uniform 4 3 6.68 0.36 0.38
6 8.32 0.48 0.42

9 8.92 0.63 0.42

12 9.22 0.76 0.43

5 3 9.76 0.41 0.57

6 10.50 0.57 0.70

9 9.28 0.66 0.74

12 7.95 0.70 0.76

6 3 12.00 0.51 0.93

6 5.48 0.68 1.31

9 1.35 0.91 1.50

12 1.33 1.11 1.60

Center-Acc. 4 3 5.83 0.36 0.37
6 7.17 0.48 0.40

9 7.54 0.60 0.43

12 7.65 0.69 0.43

Continued on next page
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Table 4.2 — continued from previous page

Model Ps Model Py

Form Nb.of Vehc.  Incident Hand. Rate DM-S DM-S-CF DM-M-CF
5 3 8.56 0.43 0.49

6 8.72 0.61 0.61

9 7.25 0.69 0.66

12 5.92 0.75 0.69

6 3 10.47 0.52 0.73

6 4.05 0.62 0.97

9 1.43 0.63 1.12

12 1.83 0.73 1.23

Outer-Acc. 4 3 7.07 0.42 0.47
6 8.98 0.50 0.53

9 9.88 0.61 0.53

12 10.38 0.77 0.53

5 3 10.29 0.54 0.75

6 11.73 0.66 0.93

9 10.85 0.71 0.99

12 9.52 0.76 1.03

6 3 12.84 0.80 1.29

6 5.88 1.33 1.87

9 1.95 1.90 2.18

12 2.99 2.25 2.33

Average 7.49 0.73 0.87

The results show that DM-S evaluates the mean response time under a feasible
solution with up to an average of 13% deviation in some instances and with an
average of 7.5% over all. However, the quality of approximation of the mean response
significantly betters off with the inclusion of correction factors, where MAPD is

smaller than 1% in most instances under DM-S-CF and DM-M-CF.

The results show that allowing multiple vehicles at a single location increases the
average MAPD from 0.73% to 0.87%. But, the overall MAPD is very low under
models with correction factors (DM-S-CF and DM-M-CF).

In order to evaluate the decomposition methods’ ability to differentiate the feasible
solutions in line with the actual performance and deliver an optimal solution

performing close to the best solution with respect to KN++, the optimal solution
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of the mathematical models found by complete enumeration based on the evaluation

using decomposition methods and the best solution obtained with KN+ + is compared.

After finding the best solutions with KN++ algorithm and the optimal solutions
of the models based on complete enumeration for each instance, the objective
function values are estimated by running the discrete event simulation model for ten
independent replications. A total of 550,000 demand calls is simulated for every
solution at hand in the simulation model. The warm-up period is selected as 50,000
calls, and the objective function values are reported accordingly. The analysis of the
performances of the decomposition methods concerning the optimal solutions is done

based on this experiment.

Let f’(f) be the solution that gives the minimum mean response time with respect to
complete enumeration under decomposition method (.) and Osm(f’(ﬁ)) denotes the
mean of 90% confidence interval of the objective function value for this solution
based on 10 independent replications of the simulation model. Subsequently, let
T 4. represent the best solution evaluated by KN++ algorithm and O g (25 v )
denote the mean of the 90% confidence interval of the objective function value for

this solution based on 10 independent replications.

The percentage deviation from the optimal solution for an instance is denoted by

%A%, and is found by

Sim

Wi = T o

m(.) Tsim

Ogim(T5,) — Ogim (T3
}(100 S ( (,)) S ( KN++))7

OSim(f*KN ++)
where [ is the indicator function being equal to 0 if the solutions are the same.

%A, results are presented in Table for 36 instances with respect to DM-S,
DM-S-CF and DM-M-CFE. %A, values are reported as zero if the optimal solution
under a model is the same with the best solution evaluated by KN++. Suppose the
difference between objective function values of the optimal solution of a model and
the best solution by KN++ is not significant, meaning confidence intervals of the
objective function values coincide. In that case, the percentage deviation found is

marked with an asterisk in the table.
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Table 4.3: %AY,,, for the best solution for models evaluated with respect to

decomposition methods in 36 instances

Model Ps Model Py,

Form Nb. of Vehc.  Inc. Hand. Rate DM-S DM-S-CF DM-M-CF
Uniform 4 3 0 0 -0.19 *
6 0 0 -1.08

9 -0.54 -0.44 0

12 0 0 0

5 3 0 0 0

6 -0.03 * -1.15 0

9 0 0 0

12 0 0 0

6 3 -0.51 -0.31 0

6 0 0 0

9 0 -0.32 * -0.23 *

12 0 0 0

Center-Acc. 4 3 0 0.20 * 0.14 *
6 0.54 -0.10 * -0.30 *

9 0.36 0 -0.61

12 0.41 0 0

5 3 0.44 0 -1.04

6 -0.14 * -0.09 * 0

9 0 0.43 0.41

12 0.08 * 0.10 * -0.31

6 3 0 -0.41 0

6 0 0 0

9 0.21 * 022 * 0.04 *

12 0 0 0

Outer-Acc. 4 3 0 -0.22 * 0
6 0 0 0.03 *

9 0.01 * 0.04 * 0.17 *

12 1.53 0 0

5 3 1.14 0 -0.16 *

6 0 0 0

9 0 0 0

12 0.08 * 0.29 * 0

6 3 0 0 0

6 0 0 0

Continued on next page
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Table 4.3 — continued from previous page

Model Ps Model Py

Form Nb.of Vehc.  Incident Hand. Rate  DM-S  DM-S-CF DM-M-CF
9 0 0 0

12 0 0 0

In order to summarize %AY,,, results in Table , four statistics are computed as

follows:

e Number of instances for which the differences are not statistically
significant: the number of instances where the optimal solution is the same
with the best solution for Pg reported by KN++ or the optimal solutions are

not statistically different in terms of the objective function value,

e Average %A, : the average %A%, over all instances,

Sim

e Average %AY,;, over instances for which the differences are statistically
significant: the average %A%, over instances having optimal solutions that

are statistically different,

e Average absolute %A%, . over instances for which the differences are
statistically significant: the average absolute %AY,,, over instances having

optimal solutions that are statistically different.

The summary statistics for %A%, results are given in Table

The results in Table show that DM-S performs similar to other models in finding
solutions near the best solution by KN++. Remember that the average MAPD over
instances is 7.49% for DM-S from Table .2] Although DM-S evaluates the mean
response time of a solution with up to 13% deviation in some instances, it performs
as well as DM-S-CF in delivering optimal solutions close to the best solution by

KN++ where the average deviation of instances with statistically significant solutions
is 0.42% for DM-S.

In Table there are negative %A, for some instance-model pairs. These are

acceptable given that KN++ is an algorithm that is said to guarantees to find the
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Table 4.4: Summary of %AY,,, in the corresponding objective function values with

respect to KN++ best solutions in 36 instances

Model Pg Model Py,
Statistics DM-S DM-S-CF DM-M-CF
Number of instances for which the differences are not 28 31 31
statistically significant
Average %A, 0.10 -0.05 -0.09
Average %A, over instances for which the differences 0.42 -0.38 -0.52
are statistically significant
Average absolute %AY,,, over instances for which the 0.68 0.55 0.69

differences are statistically significant

best solution with a predefined probability. Therefore, there could be solutions
that perform better than the best solution evaluated by KN++. In Table 4.4], the
average %AY,,, over instances for which the differences are statistically significant
1s -0.38% for DM-S-CF and -0.52% for DM-M-CEFE. Although the averages are small,
these results show that use of DM-S-CF and DM-M-CF methods in evaluation of the
objective function value result in optimal solutions that are statistically significantly

better than the best solution obtained with KN++.

The average %A¥,,, over all instances are very low for all three methods. Therefore,
assuming server independence (as in DM-S where correction factors are not used)
does not significantly affect the ability of decomposition method in finding close
enough solutions to the best solution, although it worsens the approximation of the
mean response time where the average MAPD over instances is 7.49% for DM-S

from Table

In addition to the quality of the approximations, computation times in seconds are
reported in Table {.5] As mentioned earlier, the optimal solutions for Pg and
Py, are found by enumerating all feasible solutions and evaluating the objective
function value with methods DM-S, DM-S-CF and DM-M-CF. In Table {4.3] the
computation times spent on finding the optimal solutions under the models and the
best solution with KN++ algorithm are presented. The experiments are run on the

same workstation with Intel Xeon E2246G, a 3.6 GHz processor and 16 GB RAM.
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Table 4.5: Computational time in seconds for models in 36 instances

Model Ps Model Pnr

Form Nb. of Vehc.  Inc. Hand. Rate KN++ DM-S DM-S-CF KN++ DM-M-CF
Uniform 4 3 558 2 8 1150 18
6 460 2 11 966 22

9 586 2 11 1156 24

12 443 2 12 1069 26

5 3 984 6 30 3736 113

6 854 7 42 3469 140

9 871 8 45 3331 155

12 861 9 47 3248 157

6 3 1581 16 82 13424 604

6 1326 21 108 12793 707

9 1309 20 107 11683 708

12 1307 19 105 11697 709

Center-Acc. 4 3 526 2 8 1093 17
6 499 2 9 1004 21

9 468 2 11 1103 24

12 575 2 12 925 25

5 3 991 5 29 3590 112

6 1006 7 37 3455 134

9 836 8 42 3290 146

12 908 8 44 3443 144

6 3 1561 15 79 12733 579

6 1556 20 103 12799 651

9 1597 19 100 12267 1484

12 1439 18 97 11498 646

Outer-Acc. 4 3 658 3 13 1160 23
6 570 2 10 1027 21

9 496 2 12 1103 24

12 448 2 12 1003 25

5 3 1168 6 31 3803 119

6 865 7 39 3497 141

9 1005 8 47 3444 155

12 960 9 49 3472 160

6 3 1168 15 84 12918 604

6 1528 23 102 12580 728

9 1586 22 113 12136 745
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Table 4.5 — continued from previous page

Model Ps Model Py
Form Nb. of Vehc. Inc. Hand. Rate KN++ DM-S DM-S-CF KN++ DM-M-CF
12 1448 21 111 12182 726

In Table 4.5 the computation times for proposed methods are significantly lower
than KN++ for both single and multi-vehicle models despite complete enumeration
of feasible solutions. The required computational effort increases with the inclusion
of correction factors from DM-S to DM-S-CF. When multiple vehicles are allowed at
a single location (as in P;;), the computation time again increases since the number of
feasible solutions increases for a problem instance. However, the computation times
required for the proposed models are still significantly less than the time required for

KN++.

Based on these results, DM-S-CF and DM-M-CF methods are very promising since
they approximate the objective function value very close to the simulation model
without the need for simulation and deliver optimal solution close to the best solution
found by KN++. The required computation time is also significantly less than
KN++ where the best performing solution is obtained through the simulation of the

alternative solutions.

In the next section, we use the DM-S-CF method in Model Pg on a real-life data set,
checking the performance on problem instances with higher number of vehicles and

demand regions.

4.4.4 Performance of the methods on Edmonton Data

The data set of City of Edmonton Emergency Medical Services by Ingolfsson et al.
(2003) consists of 180 demand nodes with given demand rates and 16 stations with
specified capacities ranging from one to three. The demand rates for the nodes vary
from node to node. The means of travel time between stations and nodes are given in
the data set. The mean incident handling time is set to 45 minutes for this experiment.

Total demand calls per hour is set to 5.
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We use Ps model with DM-S-CF method to locate from 8 to 12 emergency medical
vehicles in Edmonton City, resulting in five problem instances in total. KN++
algorithm is used to select the best solutions for these instances with respect to
simulation evaluation. According to the results, the best solution (according to
KN++) in all five instances is found when DM-S-CF method is used to evaluate the
objective function value of a solution. Hence, the number of instances for which
the differences are not statistically significant is 5 out of 5 for this data set. This
shows that DM-S-CF is a good method to find near-best solutions for instances with a
higher number of vehicles as well, where the number of individual queueing models

constructed to approximate the objective function value is also higher.

The computation times required to solve the problem instances are also reported in

Table for Edmonton data.

Table 4.6: Computational time in seconds

Nb. of Vehc. KN++ Pg with DM-S-CF

8 15234 4270
9 14736 4864
10 11505 4175
11 6977 2642
12 3025 1240

It is seen that computation time for complete enumeration of Ps with DM-S-CF is
less than the time required for KN++ algorithm to evaluate the best solution. As
the number of feasible solutions under an instance increases (from 12 vehicles to 8
vehicles), the decrease in computation time in comparison to KN++ increases. This
is due to the increasing computational burden of simulation of all feasible solutions
in the initial stage of the KN++ and the increasing number of solutions that needs to

be eliminated in the iterations when the number of feasible solution increase.

88



4.4.5 Performance of DM-S-CF under P, and P,

In addition to the models Ps and P,;, we use the decomposition models to evaluate
different objective functions. For this purpose, models P, and Py are used from
Chapter[3] From the experiments in the Chapter [3] it is seen that P, and P, improves
equity in resulting optimal solutions in comparison to minimizing mean response
time. Therefore, decomposition methods are used to find optimal solutions for these

models with different objective functions from Pg and P,,.

Recall that P, minimizes the maximum mean region-wise response time while Py
minimizes the total positive deviation of mean region-wise response time from a

threshold travel time 7.

(Py) Minimize mea}c(Rj (7)) (4.35)
J
d mi=N (4.36)
el
;€{0,1}, Viel. (4.37)
(P;)  Minimize > [R;(7) - 7], (4.38)
jeJ
d m=N (4.39)
el
z;€{0,1}, Viel, (4.40)
where [ . ], = max{0,.}.

We use DM-S-CF method to evaluate the objective function value of feasible
solutions of P, and P, and find the optimal solutions for each model under each
problem instance by complete enumeration. By using KN++, the best solutions
according to the simulation study are found as well. After finding the optimal solution
by using DM-S-CF and the best solution by using KN+ +, the performance measures

for these solutions are evaluated from a separate simulation run.

Firstly, %AY,,, are found for each problem instances by comparing the objective

function values of solution found by DM-S-CF and KN++. In order to summarize
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%A, results, four statistics are computed as in Chapter and given in Table
47

Table 4.7: Summary of %AY,,, in the corresponding objective function values with

respect to KN++ best solutions in 36 instances

Statistics Py Py

Number of instances for which the differences are not 35 33
statistically significant

Average %A, -0.03 0.53

Average %AY,,, over instances for which the differences -0.79  5.04

are statistically significant

Average absolute %AY,,, over instances for which the  0.79 7.32

differences are statistically significant

It is seen that DM-S-CF evaluates the same solution with KN++ best or a solution that
the difference is not statistically significant in thirty-five instances for P, and thirty-
three instances for P;. The average %AY;,, over instances for which the differences

are statistically significant are -0.79 % and 5.04 % for P, and Py, respectively.

The average %AY,,, is relatively high for P, where this can be attributed to the
convolution of estimation errors due to the summation of region-wise measures in the
objective function. However, DM-S-CF still evaluates the same solution or a solution
that the difference is not statistically significant in thirty-three instances. Then, the
performance of DM-S-CF for these two measures is similar to its performance in

mean response time measure assessed using models Pg and Py,.

Secondly, the effect of evaluating the objective function with DM-S-CF on equity
measures of the resulting solution of P, and P is also checked. The optimal solutions
of P, and P; found by using DM-S-CF and the best solutions found by using KN++
are compared to the best solution for Pg in terms the mean response time, the variance

of region-wise mean response time and the Gini coefficient as in Chapter 3]

In order to quantify the difference of the models, the mean absolute percent deviation
of measures for the optimal solution of the models, M AP D, from Pg is calculated for
each measure over all instances. We report the average percent positive deviations,

avgpd(%), of the mean response time of the best solution in the models from Ps. The
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percent of instances with positive deviation, ppd(%), in mean response time is also

reported in order to show the fraction of instances with positive deviations. One can

refer to (3.38)),(3.39) and (3.40) for the details of the statistics, M AP D, avgpd(%)
and ppd(%).

For VarR; and G, the average percent negative deviation, avgnd(%), and the percent
of instances with negative deviation, pnd(%), are reported instead since equity gets

better as VarR; and G decrease.

In Table [4.8] these statistics are reported to show the changes in R, VarR; and G.

Table 4.8: Comparison of Models P, and P; with Ps in performance measures

P, Py
Measure ~ Statistics DM-S-CF  KN++ DM-S-CF  KN++
MAPD (%) 14.10 14.74 11.23 11.51
R ppd(%) 100 100 100 100
avgpd(%) 14.10 14.74 11.23 11.51
MAPD (%) 49.15 4997 48.31 51.24
VarRj  pnd(%) 100 100 91.67 9722
avgnd(%) 49.15  49.97 51.59  51.80
MAPD (%) 3776 38.59 3447  36.67
G pnd(%) 100 100 9722 9722
avgnd(%) 3776 38.59 3529 3748

The results show that the effect of P, and P; on the mean response time, the variance
of mean region-wise response time and the Gini coefficient does not significantly
change when DM-S-CF is used to evaluate the objective function value of the feasible
solutions. This result is said to be expected since DM-S-CF performs very well in

finding the best solutions reported by KN++ for P, and P; as mentioned earlier.

4.4.6 Performance of the proposed genetic algorithm

In this section, the performance of the genetic algorithm proposed is studied in terms
of finding the optimal solution for the mathematical models and the deviations of the

best solutions from the optimal.
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A design of experiments is constructed to see the effect of different algorithm
parameters on the performance of the genetic algorithm. These parameters are
determined as population size (M), probability of crossover (u.) and probability of

mutation (u,,). For each parameter, two levels are defined as in Table [4.9]

Table 4.9: GA parameter levels for the design of experiments

Parameter M  u, U,
Levels 50 0.80 0.05
100 0.90 0.10

Thirty-six problem instances of P, are solved using GA where the number of feasible
solutions is higher than Ps. DM-M-CF method are used to evaluate the objective
function value of a solution. Each problem instance is solved by starting GA ten
times. The best solutions, %, under KN++ and optimal solutions, f}M for
Model P,; with DM-M-CF method for these instances are known from the previous

analysis.

Two measures are reported to show the performance of the GA under different
settings. The first one is the percent of the replications of GA with different initial
populations, AOF(%), that GA found the optimal solution % =~ of an instance out
of ten independent replications. The second measure is the percent of time, OF(%),
that GA finds the optimal solution for a problem instance in at least one of the ten
replications. For these measures, solutions are not compared in terms of the objective
function values but in vehicle locations only. The averages of these measures overall

problem instances are given in Table [4.10] with respect GA parameters.

In addition, the solutions reported by GA is compared to the best solution obtained
with KN++ and previous measures are given for this comparison in Table 4.10| as

well.

According to the results, GA always finds the optimal solution, Z} , among at
M

least one of the ten independent replications when population size is set to 100.

This population size increases the likelihood of finding the best solution, Z% ., .,

in a single run (AOF for KN++) as well. More detailed results are given under
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Table 4.10: Average performance of the GA according to P, and KN++ solutions

Py Optimal KN++ Best

S Ue U, AOF(%) OF(%) AOF(%) OF(%)
50 08 0.05 45 94 28 78
0.1 57 100 34 83

0.9 0.05 43 94 25 72

0.1 56 97 34 78

100 0.8 0.05 70 100 38 67
0.1 79 100 43 69

0.9 0.05 71 100 40 75

0.1 81 100 45 67

different network specifications (form, number of vehicles and incident handling rate)

in Appendix [B]

In addition to the performance of GA in finding optimal or near-best solutions, we
also report the percent deviation %AY,;,,, and mean absolute percent deviation of the
objective function value of GA solutions from 7} ~and T, . . Every solution found
by GA is evaluated under the simulation model with ten independent replications, and
a 90% confidence interval on the objective function value is constructed to compare

objective function values.

Let f’(k.) be the solution that gives the minimum mean response time under model (.)
and O Sim(:ﬁ”(f)) denotes the mean of 90% confidence interval of the objective function

value for the solution based on 10 independent replications of the simulation model.

AL 100 il O%im (TG ar) — OSim(m(.))
R T Osim (T7)

where [ is the indicator function, K is the total number of GA replications for an

instance and equal to ten, and k indexes the corresponding statistics for the k" run of

the GA. (.) is replaced by P); and KN++ for Tables and 4.12] respectively.

O%im(TGa k) = Osim (T())

AT an) Osim (7))

K
100

MAPD = — I

o

where K is the total number of GA replications for an instance and equal to 10 and
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(.) is replaced by Py, and KN++ for Tables and 4.12} respectively.

In Tables A.11] and [4.12] the averages of those measures over all solutions and

the averages over only the solutions statistically different from the optimal or
best solution are reported under the columns Overall and Statistically Significant,
respectively.

Table 4.11: Average %A%,  and MAPD of GA results from P,; Optimal Solution

Sim

Overall Statistically Significant

S Ue U Avg %A%, (%) MAPD(%) Avg BAY,,, (%) MAPD(%)
50 0.8 0.05 0.77 0.79 1.64 1.68
0.1 0.39 0.42 1.21 1.25
09 0.05 0.80 0.81 1.48 1.50
0.1 0.48 0.51 1.27 1.31
100 0.8 0.05 0.23 0.26 1.16 1.21
0.1 0.15 0.18 0.92 0.98
09 0.05 0.22 0.25 1.10 1.15
0.1 0.13 0.17 0.95 1.03

From the results in Table 4.11}, it is seen that GA has the smallest Avg %A%, and
MAPD(%) from the Pj; optimal solution under the setting S = 100, v, = 0.90 ,

U, = 0.10 over all solutions.

Table 4.12: Average Deviation and MAPD of GA results from KN++ Best Solution

Overall Statistically Significant

S Ue  Um Avg %A%, (%) MAPD(%) Avg %A%, (%) MAPD(%)
50 0.8 0.05 0.67 0.80 1.45 1.62
0.1 0.29 0.48 0.95 1.22
09 0.05 0.69 0.83 1.26 1.45
0.1 0.37 0.55 1.03 1.26
100 0.8 0.05 0.14 0.35 0.80 1.09
0.1 0.06 0.29 0.63 1.00
0.9 0.05 0.14 0.34 0.74 1.05
0.1 0.04 0.28 0.57 0.97

In Table the smallest values for the measures are realized under the same setting
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(S = 100, u, = 0.90 , u,, = 0.10) for both of the cases: over all solutions and
statistically different solutions. Hence, parameters could be set as S = 100, u, = 0.90

, Uy, = 0.10 for the GA.

In addition to quality of the solution reported by GA, the computation time required
for GA to report a solution under the setting (S = 100, u. = 0.90 , u,, = 0.10), next
to solution times for KN++ and complete enumeration of feasible solutions of P,

with DM-M-CF method are presented in Table [4.13]

Table 4.13: Computational time in seconds for KN++, complete enumeration and GA

in 36 instances

Py with DM-M-CF

Form Nb. of Vehc.  Inc.Hand. Rate KN++ Compl. Enum. GA
Uniform 4 3 1150 18 5
6 966 22 5

9 1156 24 7

12 1069 26 6

5 3 3736 113 11

6 3469 140 14

9 3331 155 18

12 3248 157 17

6 3 13424 604 22

6 12793 707 28

9 11683 708 27

12 11697 709 26

Center-Acc. 4 3 1093 17 6
6 1004 21 6

9 1103 24 6

12 925 25 7

5 3 3590 112 11

6 3455 134 14

9 3290 146 14

12 3443 144 14

6 3 12733 579 22

6 12799 651 26

9 12267 1484 28

12 11498 646 24

Continued on next page
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Table 4.13 — continued from previous page

Py with DM-M-CF

Form Nb. of Vehc. Inc. Hand. Rate KN++ Compl. Enum. GA
Outer-Acc. 4 3 1160 23 4
6 1027 21 5

9 1103 24 5

12 1003 25 6

5 3 3803 119 9

6 3497 141 11

9 3444 155 12

12 3472 160 13

6 3 12918 604 18

6 12580 728 19

9 12136 745 21

12 12182 726 22

Together with the previous results, it is seen that the proposed genetic algorithm
finds a solution under an average of thirty seconds in all instances with very small
deviations from the objective function value of the optimal solution of P, and of the

best solution obtained with KN+ +.

4.5 Conclusion

In this chapter, the exact queueing model is decomposed into interdependent
queueing models to assess the EMS system’s performance measures due to the
exponentially increasing size of the exact queueing model with the number of
vehicles and demand regions. The decomposition method proposed results in a set of
interdependent balance equations, forming a non-linear set of simultaneous equations.
An approximation method is proposed to solve the resulting set of equations and

estimate the steady-state probabilities.

The proposed decomposition methods work on cases where multiple vehicles are
allowed at a single location and service rates are specific to vehicle location - demand
region pairs. Differently from the studies of Budge et al.| (2009), the vehicles

at a single location are differentiated by prioritizing the dispatches among them.
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Furthermore, decomposition methods are analyzed under an optimization setting
to reveal the ability in differentiating alternative solutions under a mathematical
model in line with the simulation model. A meta-heuristic algorithm to solve
the mathematical models since the mathematical models have no closed-form

formulation.

An extensive experimental study is conducted on both toy and real-life data to assess
the performance of the methods. The experiments have shown that DM-S-CF and
DM-M-CF methods are very good at approximating the mean response time of the
system by about %?2.5 deviation at the most and about 0.9% deviation on average
in the problem instances. It is also shown that near-best solutions are found by
about 0.5% deviation from the best solution obtained from a simulation study. In
addition, DM-S-CF are tested on two models P, and P; from Chapter [3 with two
different objective functions: maximum mean region-wise response time and the total
positive deviation of mean region-wise response time from a threshold. It is seen that
DM-S-CF are good at finding optimal solutions for those models where it finds the
optimal solution in thirty-five and thirty-three instances out of thirty-six for P, and

Py, respectively.

The genetic algorithm proposed is also analyzed in terms of the solutions found. It
is seen that GA always finds the optimal solution of the mathematical model and
finds the best solution obtained by simulation in 67% of instances in one of the ten
independent runs for the toy data. Although GA could not find the best solution with
respect to simulation study in some instances, the average deviation of GA solutions

from the best solution of the simulation study is very low at around 0.57%.

In this chapter, an algorithmic approach is proposed for the exact queueing model to
assess the performance measures of the EMS system. Working with queueing models
in the proposed decomposition methods allows the decision-maker to evaluate various
measures, including mean region-wise response time, coverage or lost demand.
However, the method requires algorithmic approaches in assessing the measures due
to set of nonlinear equations and in finding the optimal solutions for a mathematical

model such as meta-heuristics.

In the next chapter, we work on closed form formulations to approximate the exact
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queueing model which can be solved with package solvers, enabling one to construct

optimization problems with various performance measures.
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CHAPTER 5

MATHEMATICAL MODELS BASED ON CLOSED-FORM
APPROXIMATIONS OF PERFORMANCE MEASURES FOR STOCHASTIC
EMS VEHICLE LOCATION PROBLEM

In this chapter, mathematical models which can be solved with commercial solvers
are proposed for the EMS vehicle location problem. Closed-form formulations to
approximate the performance measures of the EMS system are developed based
on queueing models similar to the decomposition methods in Chapter 4] Hence,
objective functions and constraints are expressed as a function of decision variables
which enables one to construct several mathematical models for the EMS vehicle

location problem.

In the literature, there are various probabilistic models that can be solved with
commercial such as MEXLCP by Daskin| (1983), PLSCP by ReVelle and Hogan
(1988) and MALP by ReVelle and Hogan| (1989). Later, several studies extend
those models which includes local reliability contraints for service or multi-objective
problems, previously mentioned in Chapter 2] However, aforementioned models
and extensions require estimation of the fundamental parameter, busy probability of
vehicles, a priori. In this chapter, we propose mathematical models where the busy
probabilities of vehicles are expressed in the form of decision variables based on
queueing models. Therefore, we embed the estimation of the busy probabilities in
the models which makes the application easier for the decision makers. Another
contribution is that the busy probabilities are estimated with respect to feasible
solutions instead of using pre-computed constant busy probabilities which are not

affected by the location decisions.

In Chapter 4 a decomposition method with various variants is proposed to evaluate
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the performance measures of an EMS system. The decomposition methods relies
on the queueing models to evaluate the measures. EMS system is decomposed into
interdependent queueing models, and performance measures of the EMS system are
estimated based on the steady-state distributions of those interdependent models.
The decomposition methods proposed requires algorithmic solution approaches in
approximating the steady-state distributions. Therefore, the decomposition methods
are more computationally burdensome than closed-form mathematical models, where

commercial solvers are easily exploited to solve the models.

In this chapter, the interdependence among vehicles in serving the demand calls is
ignored. Separate queueing models are constructed for each vehicle and treated as
independent systems. Since those models are independent, the balance equations
for a model do not incorporate nonlinear terms. Then, the busy probability of each
vehicle is easily found based on the steady-state distribution of each model. The busy
probabilities of models are used to estimate several performance measures of the
EMS systems. The estimation of busy probabilities and performance measures are

expresses in the form of decision variables and embedded in mathematical models.

Several mathematical models are proposed based on the same constraints by changing
objective functions such as maximizing expected satisfied demand, maximizing
expected covered demand or minimizing mean response time. Two different way
of estimating busy probabilities are proposed. The performance of models are tested
under optimality. The models’ ability in finding near-best solution in comparison to
KN++ algorithm are evaluated. The quality of the optimal solution of the models are
evaluated with respect to solutions obtained by complete enumeration. In addition, a
commercial solver is used to solve the mathematical models and the optimality gap is
reported for the models. The experiments are done on both toy data and the real life

data set from Chapter 4]

The rest of the chapter is as follows. In Section the problem environment,
construction of the separate queueing models and estimation of the performance
measures are explained. In Section [5.2] mathematical models incorporating closed-
form formulations are presented. Experimental study is given in Section and this

chapter is concluded in Section [5.4]
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5.1 Modeling Approach and Estimation of the Performance Measures

In the decomposition methods discussed in Chapter [} the exact queueing model
is decomposed into /N interdependent queueing models, each representing a single
vehicle. Furthermore, the service time for a demand call from region j by a vehicle
from location : is assumed to be exponentially distributed with a mean that is equal to
the sum of mean travel time to demand region, mean incident handling time, and mean
travel time back to the vehicle location (w;;+¢;+w;;). In the decomposition methods,
queueing models are constructed interdependently since the closest available vehicle
is assigned to a demand call. This requires the demand rates in the queueing models
to change with respect to the busy probability of other vehicles so that the assignment
of demand calls in the exact queueing model are represented in the interdependent
queueing models. However, this structure results in a set of nonlinear equations which

need to be solved simultaneously to find steady state probabilities.

In this chapter, the interdependence among busy probabilities of vehicles is
ignored. Hence, separate independent queueing models constructed for each
vehicle. Differently from the previous chapter, the closed form formulations are only
developed for single-vehicle problems where at most one vehicle is allowed at a single

location.

Recall the queueing model for decomposition method DM-S in Chapter |4 where
{bs,t > T'} is a continuous time Markov chain with state space L; = J U {0} for
QM;, YieI,I = {i € I|xz; > 0} under given solution Z. A state b, € L;, t > T
is 0 when the vehicle is free and j when it is busy serving region j at time ¢. The
transition from state j = 0 to state j # 0 is realized when a demand call arrives and
its rate for Q) M, is \; cé where cé is the probability that all vehicles closer to region j

than vehicle 7 are busy if there is any, and 1 otherwise.

Since interdependence between vehicles is ignored in this chapter, the transition rate
from state j = 0 to state j # 0 for QM; becomes \;. The service rate y;; for state

J # 0 for QM; is kept the same as in (4.8).
Recall the example from Chapter[4].
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Example: Assume © = (1,0,1) where I = {1,2,3}, J = {1,2,3} and N = 2.
Assume that Region 2 is closer to Region 1 than Region 3. We construct a queueing
model for the vehicle in Region 1 as ()M, and another for the one in Region 3 as

QMs5. Then, L; and L are the same and equal to {0, 1,2, 3} for both models.

Then, the queueing models could be constructed as in Figure Now, none of the
transition rates from state ;7 = 0 includes the term cé differently from decomposition

method DM-S since queueing models are mutually independent now.

M1l A2 13 A2
A1 H21 A K23
31 A3 H33 A3
(a) Rate diagram for QQ M, (b) Rate diagram for Q) M3

Figure 5.1: Rate diagrams for the queueing models of the given solution 7

Recall that 7'(';- is the steady state probability for state j € B; of QM;. Then, the

probability vehicle ¢ being free, 7ré , 1s written as follows :

, 1
7l = : . (5.1)
D S
jeL\{oy "

Notice that the computation of 7 in (5.1) is different from (4.10) where the former

lacks ¢ as a multiplier of \;.

Based on the steady-state probabilities, the busy probability of vehicle ¢ under ¥ is
equal to (1—7). Now, these busy probabilities of vehicles derived from the queueing
models are used to construct closed-form formulations for performance measures of

the EMS system.

Remark. In the exact system, a vehicle responds to a demand call only if all closer
vehicles are busy. Therefore, the busy probability found by (1 — %) is an upper bound

for the busy probability of vehicle i in the exact queueing system since all vehicles are
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assumed to be mutually independent and serve the demand calls from all regions

without considering closer vehicles being available.

Following the assumption of independence, several performance measures could be
approximated by using busy probabilities of vehicles, such as expected satisfied

demand or mean response time of the system.

For the sake of brevity, let p; = (1 — 7)) be the busy probability of vehicle i under #
based on the steady state probabilities of the states of the separate queueing models.
Let v;; be the vehicle location that is the k™ closest to region j, v;1 being the closest

and v;y being the farthest location to region j with a vehicle located.
The probability that a demand call from region j is satisfied by the closest vehicle is
P <a dem. call from reg. j is satisfied by the closest Vehc.> =(1-py,). (62

Based on the assumption of independence among vehicles, the probability that a

demand call from region j is satisfied by at most the second closest vehicle is

P( a dem. call from reg. j is satf. by the cls. or the second cls. Vehc.) 5.3)
(S.

= (1 _p’Ujl) + (1 _pUjQ)pUjl'

Following (5.2)) and (5.3), the probability that a demand call from region j is satisfied

is calculated as follows:

P (a demand call from region j is satisﬁed)

N t-1 (5.4)
pvﬂ + Z pvﬂ Hpv]-k-
t=2 k=1

By using the probability given in (5.4)), the expected amount of demand satisfied in

unit time under solution ¥, £'D(Z) is estimated as follows:

f) = Z)‘J ((1 _p'Uj1> + Z(l _p’th) ﬁpvjk> : (5.5

jeJ t=2
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Similar to E'D(Z), the expected covered demand C' D(Z) under & could be estimated.

The probability that a demand call form region j is covered under threshold 7 is

P (a demand call from region j is covered under threshold T)
t-1 (5.6)

(1 pv]l ]'u 1 + Z p’U]t ]'u t Hp’l)]k

where F7;; is the cumulative distribution function of the travel time between region j

and vehicle <.

Then, the expected covered demand in unit time under  is found as

N
D(E) =)\ (( = Poy )y, ( +Z = Po) 1y, ( Hpv]k). (5.7)

jeJ t=

Another measure that can be calculated based on busy probabilities is region-wise

mean response time, R;(Z), under solution (Z).

N t—1
(1 - pvjl)wjvjl + g(l - pvjt)wj'ujt lcl:Il DPujy,
R]<£Z"> - — N — (58)

I H Pojy,
k=1

where wj,,, is the mean travel time between region j and vehicle location v;;. The
numerator in (5.8)) is the weighted total travel time based on the probabilities that the
vehicle in the corresponding location (vj;) is assigned to the demand call form region
J while the denominator is the probability that there is at least one vehicle that could

be assigned to this demand call.

In addition, the mean response time R(Z) could be calculated based on the region-

wise mean response time (R;(Z)) as follows:

N t—1
Z )‘j ((1 - pvn)wjvjl + t;(l o pvjt)wjvjt kl:ll p’”jk)

jed

R(7) = (5.9)

N t—1
£ (= po) 4 S0 =m0 T i)
j€J t=2 k=1
where the numerator is the demand weighted mean region-wise response time and the

denominator is the expected demand satisfied in unit time.
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Following the formulations for the performance measures, several mathematical
models are constructed by defining the busy probabilities of vehicles as decision

variables associated with the location solution in the next section.

5.2 Mathematical Models with Closed-form Formulations

In this section, we construct mathematical models for EMS vehicle location problem
by expressing the performance measures developed in the previous section based on

decision variables. The notation used for the mathematical models is given in Table

51

Table 5.1: Notation used for the mathematical models

Sets

I the set of vehicle locations

J the set of demand regions

Parameters

N the number of vehicles to be located

Wij mean travel time between vehicle location ¢ and demand region j
Aj demand rate of region j per unit time

I service rate for region 5 when served by a vehicle from location ¢

The mathematical models are constructed with the following decision variables in

Table

The relation between decision variables are shown with an example. Assume that
x; = 1 for given i. a;;; = 1 if it is the farthest vehicle to region j, and then y;; = w;;.

Similarly, a;;5 = 1 if it is the closest vehicle to region j, and y;n = w;;.

Recall that the probability that a demand call from region 7 is satisfied by the closest
vehicle is defined as (1 — p,,, ) where p,, is the busy probability of the vehicle which

is the closest to region j and located at v;;.

In terms of the decision variables p; and a;j, the probability that a demand call from
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Table 5.2: Decision variables used in the mathematical models

x;  a binary variable being equal to 1 if a vehicle is located at
vehicle location ¢ and 0, otherwise

Di the busy probability of vehicle located in region %

a;j,  a binary variable which takes the value of 1 if vehicle location
i is the k" farthest server location (where a vehicle is located)
to region j and 0, otherwise

y;r  mean travel time from the &' farthest vehicle to region j

region j is satisfied by the closest vehicle can be expressed as

a demand call from region j is satisfied
=1-) ayxpi  (5.10)

by the closest vehicle oy

where a;;y takes the value of 1 only for 7 = v;; for a given j by definition. Hence,

> _icr @ijkPi computes the busy probability of the k" farthest vehicle to region ;.

Based on the notation and decision variables, several mathematical models are
proposed with different objective functions as maximizing expected satisfied demand,

maximizing expected covered demand and minimizing mean response time.

5.2.1 Maximizing Expected Satisfied Demand (MESD) Model

The first model constructed is based on the measure £ D, which is the expected

amount of demand satisfied in unit time.

MESD which maximizes expected satisfied demand in unit time is as follows:

Max Z Aj ((1 - Z AiiNDi)

jed el

(5.11)

el k=t+1 el

N-1 N
+ <(1 — Zaijtpi) H Z%’jk%))
=1
1
soto: pi—=|1- —) i, Viel, (5.12)
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> =N, (5.13)

i€l
Yik = Y @ijrwij, VieJk=1,...,N, (5.14)
i€l
N
> aie < i, Vie I,VjeJ, (5.16)
k=1
> agr =1, VieJk=1,...,N, (5.17)
i€l
z; € {0,1}, Viel, (5.18)
pi >0, Viel, (5.19)
agr € {0,1}, VielNVjeJk=1,...,N, (520)
yir >0, VieJk=1,...,N. (521)

The objective function in (5.11)) maximizes expected satisfied demand in unit time.

Recall (5.5),
ED(f) = ZA] ((1 _pvjl) + Z(l _p'th) Hpvjk> )

jeJ t=
where p,;, is the busy probability of the vehicle which is the closest to region j and
located at v;1. The term (1 -3, _; a;;np;) in (5.11) corresponds to the term (1 —p,,, )
in (5.5) and ", ; a;jxp; to the busy probability of the k™ farthest vehicle to region
j. Hence, the objective function evaluates the expected satisfied demand in unit time

under solution Z.

in MESD is constructed based on the steady state probability of vehicle at
location ¢ being busy, (1 — 7)) from QM;. The multiplier of x; in right-hand side of
(5.12) is equal to (1 —7j) where 7} is substituted with (5.1). Hence, enforces p;
to be equal to the busy probability of vehicle at location : if a vehicle is located and to

0 otherwise. (5.14)) and (5.13)) sorts the vehicle locations having a vehicle located with

respect to their mean travel time (w;;) to region j. (5.16) ensures that only location
with a vehicle is included in the sorting and (5.17) allows only one location is sorted

as the k*" farthest location to region ;.
Notice that the objective function in (5.11) includes nonlinear terms that can be
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linearized. The term a;;p; is the multiplication of a binary and a continuous decision
variable. Let s;;; = a;;,p;. Then, the following constraints is added to the model to

replace a;;;p; with continuous decision variable s; .

Ogszjk Saijk, \V/iEI,VJEJ,kzl,...,N, (522)
pi—<1—aijk)§5ijk§ Pi, \V/iEI,VJEJ,kzl,...,N. (523)

Following, MESD is rewritten in the form of a mixed integer nonlinear programming

model without any nonlinear terms in the constraints as follows:

(- T+ T (0- e I Tow)) - 620

jeJ i€l i€l k=t+1 i€l

s.tor (5.12) — (5.23).

Although the term a,;.p; is linearized, the objective function in (5.24) still includes
nonlinear terms due to the multiplication of decision variables s;;;. Hence, the model

is a mixed integer nonlinear program.

5.2.2 Maximizing Expected Covered Demand (MECD) Model

Another model is constructed to maximize expected covered demand, C'D(Z). Recall

that C'D(Z) in (5.7) is estimated based on the busy probabilities as follows:
D(‘/Z‘)) = Z >\j (( pvjl ]v 1 + Z p'l)]t jv t Hp”UJk>
jeJ

where p,, is the busy probability of k'™ closest vehicle location, v;y, to region j.

Similar to the representation of p,,, based on decision variables a;;, and p;, Fr,,  (7)
is replaced with )., a;;n Fr,,(7) in the objective function. a;;y takes the value of
one for the closest vehicle location 7 to the region j (N'" farthest) where a vehicle is

located, making FTJU y (7) = > ser aisnFr, (7).

The following model is constructed similar to MESD, having expected covered

demand in the objective function.
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Model MECD is as follows:

Z >\j ((1_ Z 5ijN) Z aijNFTij (T)

jeJ el iel

+ ]jz__;l ((1 =D sigt) D ainFr, (7) ﬁ 2 Sijk)>

icl iel k=t+1 icl

(5.25)

o (12 - 629,

Similar to MESD, MECD is a mixed integer nonlinear program due to the nonlinear

terms in the objective function.

5.2.3 Minimizing Mean Response Time (MMRT) Model

In this section, a new model that minimizes mean response time is constructed. Recall
the approximation of the mean response time based on busy probabilities are

N t—1
DRV (CEVAR RS SN R (T98)

jed

(5.26)

R(@) = g :
PV (CEVARES S ()

jeJ

where wj, ., is the mean travel time between region j and vehicle location vy

Similar to the expression of Fr,, (7) in (5.25) in terms of the decision variables,

Wjv,; 10 (5.26) is expresses as > a;jnwij in the objective function in (5.27) and Model
el
MMRT which minimizes mean response time of the system is constructed as follows:

Z )\j ( 1 - ZSUN Z Qi NWij

jeJ el i€l

JjeJ

PV ((1—ZSW>+N_1(<1—ZSW> Il z))

o (12 - 6.

Model MMRT has nonlinear terms in the objective function similar to MESD and
MECD. Notice that (5.27) now includes division of decision variables in addition to
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the multiplication. Hence, Model MMRT might be harder to evaluate with package

solvers.

For the models MESD, MECD and MMRT, the objective functions are constructed
based on the assumption of vehicles’ being independent of each other. This
assumption results in busy probabilities such that they are upper bounds for the busy
probabilities of vehicles in the exact system. In the next section, we propose another
approach for the approximation of busy probabilities and estimation of performance
measures of the EMS system in the mathematical models in order to the address the

estimation of busy probabilities at the upper bounds.

5.2.4 Order of districting for the approximation of busy probabilities and

performance measures

In the approximation of the busy probabilities, p;’s, in Section [5.1] it is assumed
that a vehicle responds to all regions in line with their demand rates without any
prioritization such as the closeness to the regions in regard to other vehicles. It
is previously mentioned in Section [5.1] that this is an upper-bound on the busy
probability of this vehicle under the exact queueing model since the queueing models
are constructed assuming that the vehicle at location ¢ is the only vehicle responding
to the demand calls from all regions. However, another vehicle would respond to the

call in the exact system if it is closer and available at the time of the call.

Order of districting approach is utilized for the calculation of busy probabilities which
would better approximate the busy probabilities of the vehicles instead of estimating
the upper bounds. Let d be a parameter stating the order of districting level to be used.
Enforcing order of districting level of d assumes that a vehicle serves the regions only

if it is at most the d** closest vehicle to a demand region.

The order of districting approach could be applied only on the approximation of the
busy probabilities or applied on both the approximation of the busy probabilities and
the estimation of performance measures such as expected satisfied demand in unit
time or mean response time. We first start with applying order of districting on the

approximation of busy probability.
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Let f; be a decision variable that is equal to the probability that the vehicle located at
location i is free. This probability is estimated from the queueing models as f; = 7,

for (QM;. Then, f; could be written as follows:

1
fi=—————, Vi€l
S

jeJ

Hji

In order to apply order of districting on the estimation of the probability that a vehicle
is free, decision variable a;;;, is used in the formulation. When the order of districting

level is set to d, f; is estimated as

1

fi=

= ~ N
> 2 agris+1
jeJ k=N—d+1 J

. Yiel, (5.28)

where vehicle i is assumed to only serve regions where it is the d*" closest vehicle at

the most. With an arithmetic operation, could be expressed as
N
DY fiaijk% =1, Viel, (5.29)
jeJ k=N—d+1 Jv
where a nonlinear term, f;a,;;, appears in the equation. This term could be linearized
by defining a new decision variable, v;;;, = fia;jx. The following set of constraints
are used to replace f;a,;; with the new decision variable v;jy,.

0 < vy Zaijr, Viel,VjeJk=1,...,N, (5.30)
fi— (= aije) <wviji < fis Viel,VjeJk=1,...,N, (5.31)

Replacing f;a;;, with v;j;, in (5.29) would make the definition of f; as follows:

3
)\,
fi+ E E Uijk,u_J = T, Viel (5.32)
71

jeJ k=1

Note that the right-hand side in (5.29) is replaced with binary decision variable z;
since f; should be assigned a positive value only if there is a vehicle located at location

0.
Since we have p; = 1 — f;, (5.12) is rewritten as follows:
pi= (11— fi)z, Viel
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which could be expressed in the form of two linear inequalities in the mathematical

model as

0<p <  a Viel (5.33)
(I—fi)— Q=) <p <(1 - fi), Viel (5.34)

Eventually, MESD-P model where order of districting is applied only on the
estimation of busy probabilities is constructed with the addition of (5.30), (5.31),

(5.32)), (5.33)) and (5.34)) as follows:
Max Y\ ((1 = sin) + i ((1 = s I D2 sijk>> (5.35)

jeJ el t=1 el k=t+1 iel

.0 (513 - 629)
630 - 639,

Similarly, order of districting could be applied on the estimation of the performance
measures in the objective function as well. The objective function in (5.33)
which computes the expected satisfied demand in unit time (£ D) is reformulated

incorporating the order of districting level as follows:
N-1 N
Z >\j <(1 — Z SijN) + Z ((1 — Z Sijt) H Z Sijk>> . (536)
j€J i€l t=N—d+1 icl k=t+1 i€l

Then, the expected satisfied demand now is estimated based on the assumption that

at most the d** closest vehicle could satisfy a demand call from a region.

Assume that the order of districting level is set to 3. The expression in would

be as follows:

S (0T 3 (- TT T

jed el t=N— el k=t+1 i€l

which is equal to

Z A ((1 - Z sijn) + (1 — Z Sij(N—1)) Z SijN

jed iel iel iel
+ (1 - Z Sij(N-2)) Z SijN Z Sij(Nl)) :
il il il
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When arithmetic operations are performed, the expression above is equal to

Z Aj (1 — Z SijN + Z SijN — Z Sij(N—1) Z SijN

jeJ i€l i€l i€l i€l
+ g SijN E Sij(N-1) — E SijN g Sij(N—-1) g 3ij(N—3)>
iel iel iel iel iel

which is further reduced to

Z Aj (1 - Z SijN Z Sij(N—1) Z Sij(N—Q)) -

jeJ iel iel iel

Hence, (5.36) boils down to the following expression without loss of generality when

order of districting level is set to d:

S (1_ 1 Z)

jeJ k=N—d+1 i€l

Then, MESD-PO where order of districting is applied for both estimating the busy

probabilities and the expected satisfied demand is written in explicit form as follows

Max A (1— ﬂ Zsijk)

jed k=N—d+1 icl
s. to: Zazz =N
i€l
N ).

fi+z Z Vijh—= = Ti, Viel,

jed k=N—d+1  Hii
fi_<1_aijk)gvijk§fia V’iE[,VjEJ,kzl,...,N,
0 < v < aiu, Viel,VjeJk=1,...,N,
0<p; <uy, Vi eI,
1-fi)—Q—2) <pi < (1= f), Viel,
yjk:ZaijkWij> Vie Jk=1,...,N,

icl

Yitk+1) < Yk VieJk=1,...,N —1,
N
Zai]’kﬁlﬂi, VielI,VjeJ,
k=1
Z%‘kzl, VjelJk=1,...,N,

i€l
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OSSZ‘ijCLijk, ViEI,VjEJ,kzl,...,N,

pi — (1 —aiji) < siji < pi, Viel VjeJk=1...,N
z; €{0,1}, Viel,
pi = 0, Viel,
air € {0,1}, VielVjeJk=1,...,N,
Yjr = 0, VieJk=1,...,N.

Therefore, two variants of the model MESD are constructed by applying order of
districting, MESD-P and MESD-PO. The motivation for this is to check for the effect
of approximating only the busy probabilities with order of districting, and the effect of
approximating busy probabilities and estimating the expected satisfied demand with

order of districting on the quality of the best solution, independently.

Similarly, the variants of models MECD and MMRT with order of districting applied
both on the approximation of the busy probabilities and estimation of the objective

function are constructed as MECD-PO and MMRT-PO.

Model MECD-PO where order of districting is applied on approximation of busy

probabilities and estimation of the expected covered demand in unit time is:

Vot y (5.37)
+ Z <(1 - stt)zaijth‘j(T) H Zsmk)>
t=N—d+1 i€l el k=t+1 iel

Model MMRT-PO where order of districting at level d is applied on both

approximating the busy probabilities and estimating the mean response time of the
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system is as follows:

>N ((1— D sin) Y ainwi

JjeJ el el
N-1 N
D S CE S o2y | D 9etS )
Min t=N—d+1 leel icl k;t—i—l iel (538)
2 <(1 -2 syN) ) ((1 =2 siy) 1T 20 Sijk))
JjedJ el t=N-—d+1 el k=t+1i€l

.10 (513) - 629)
E30) - (639,

5.3 Experimental Study

An extensive experimental study is conducted with various problem instances having

different network configurations as in Chapter |3[and

The purpose of the experimental study is to check the quality of the optimal solutions
of the proposed models on toy data and real-life data, models’ performance under
package solvers, models’ performance with respect to the decomposition methods
proposed in[d]and a well-known model, MEXCLP by Daskin| (1983), from literature.
The modeling approach is tested on two additional objective functions as well,
different from the ones constructed in Section [5.2] The details of the experimental

study are as follows.

In the proposed models in Section [5.2] three performance measures are used in the
objective function: expected satisfied demand in unit time (£ D), expected covered
demand under threshold travel time in unit time (C' D) and mean response time of the
system (R). In order to check the quality of the best solutions of the proposed models,

three models having these measures in the objective function are constructed.

Let x;,Vi € I be a binary decision variable stating whether a vehicle located in
vehicle location 7 or not and & be the vector of decision variables, x;’s, representing a

solution.
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Model Pg which maximizes the expected satisfied demand in unit time is as follows:

(Pg) Maximize ED(Z) (5.39)
subjectto: > a; =N (5.40)

el
z; € {0,1}, Viel. (5.41)

Model P¢ which maximizes the expected covered demand in unit time is as follows:

(Pe) Maximize CD(Z) (5.42)
subjectto: Y z;=N (5.43)

el
z;€{0,1}, Viel. (5.44)

Model Pgr which minimizes the mean response time of the system is:

(Pr) Minimize R(Z) (5.45)
subject to: Z ;=N (5.46)

icl
x; € {0,1}, Vi e 1. (5.47)

A discrete event simulation model is constructed and coded in Matlab environment
to simulate the emergency medical systems and evaluate the objective function value
of a location solution for models Pg, Pc and Pg since the exact queueing model is

computationally expensive.

The optimal solution of MESD and MMRT models (including variants) are
compared with the best solution for Pg or Pg in order to see the performance
of models in comparison to simulation. The optimal solutions of MESD and
MMRT are found by complete enumeration of the feasible solutions. To select the
best solutions for Pg and Pgr, KN++ algorithm which utilizes the discrete event
simulation model is used. To compare the optimal solutions of the models with the
best solutions, the objective function values are estimated from a separate simulation

run.

The best solutions of the proposed models from complete enumeration are also

compared against the decomposition method DM-S-CF which is showed to perform
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very promising in finding near best optimal solution for the objective of minimizing
mean response time in Chapter ] In the experiments, DM-S-CF is used to evaluate
the objective function value of a feasible solution for models Pg and Pgr. With this
analysis, the performance of mathematical models with closed-form expressions of
performance measures are compared to an computationally cumbersome algorithmic

approach.

MECD variants are compared with Po and MEXCLP by Daskin (1983) where
busy probabilities of facilities are taken into account in estimating the performance
measure used in the objective function similar to our models. The effect of estimating
the busy probabilities specific to a feasible solution is checked in the comparsion with
MEXCLP where busy probabilities are calculated in advance and independent of any

feasible solutions.

MESD-PO, MECD-PO and MMRT-PO are also evaluated using package solver
BARON in order to report the gap in the performance measures of the optimal
solutions from complete enumeration and solver run. This is to show the performance

of the models with package solvers where objective function is nonlinear.

Similar to the analysis in Chapter {4, the proposed modeling approach are used
to construct the models P, and P; from Chapter |3| which are the models found
performing well in terms of equity. Instead of using objective functions in the
form of functions of solutions, closed form formulations are used to approximately
represent P, and P;. The changes in the mean response time, variance of the region-
wise mean response time and Gini coefficient are checked similarly for the optimal
solutions of the models in order to observe whether similar equity results are achieved
when optimal solutions are found based on the models constructed according to the

approach proposed in this chapter.

Lasty, MESD-PO, MECD-PO and MMRT-PO models are used to locate emergency
vehicles on Edmonton Data which is previously used in Chapter [ to show the

performance of models on larger problems.

The experimental study is summarized under seven main comparisons in Table[5.3]as

follows:
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5.3.1 Test bed

For the experiments, the same sets of regions from Chapter [3] and {] are used, which
include three forms Uniform, Center-accumulated and Outer-accumulated with 15

demand regions.

The number of vehicles is set to 4, 5 or 6. The demand rate is assumed to be the same
for every region as 0.5 units per hour. The incident handling rate is set to 3, 6, 9 and
12.

In total, 36 instances are generated based on a full factorial design using three factors:
Form with three levels, Number of Vehicles with three levels (4,5 and 6) and Incident
Handling Rate with four levels (3, 6, 9 and 12).

For the experiments, order of districting level (d) is set to 3, and threshold travel time

(1) 1s set to 10.

5.3.2 Selection of the best solution and evaluation of performance measures

Since there is no closed-form formulation for the exact queueing model in the study,
a discrete event simulation model is constructed to simulate the emergency medical

systems in Chapter 3]

The best solutions for each instance under models Pg, P¢ and Pg are found using
KN++ algorithm by Kim and Nelson| (2006) which uses the discrete event simulation

model to assess the objective function values.

For KN++ algorithm, first-stage sample size n is set to 100,000 demand calls. The
initial number of batches, by, is set to 10. The confidence level v is set to 0.05,
indifference-zone parameter o to 0.01, and parameter ¢ to 1. KN++ algorithm is
stopped when the best performing alternative has a 0.1 % difference in the objective
function value from the worst performing among the remaining alternatives. Then,

the best solution is selected randomly from the remaining alternatives.
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5.3.3 Performance of MESD and MMRT models

The performance of MESD and MMRT models is explored by comparing the optimal
solutions of the models to the best solutions of Pgr and Pgr obtained with KN++. The
optimal solutions of MSED models are compared with the best solutions of Pg, and

MMRT with Pkg.

In order to evaluate the models’ ability to differentiate the feasible solutions in line
with the actual performance and deliver an optimal solution performing close to the
best solution with respect to KN+ +, the optimal solutions of the mathematical models
are found by complete enumeration. After finding the best solutions with KN++
algorithm and the optimal solutions of the models based on complete enumeration
for each instance, the objective function values are estimated by running the discrete
event simulation model for 10 independent replications. A total of 250,000 demand
calls is simulated for every solution at hand in the simulation model. The warm-
up period is selected as 50,000 calls, and the objective function values are reported
accordingly. The analysis of the performances of the models concerning the optimal

solutions is done based on this experiment.

Let f’(*_) be the optimal solution under model (.) and Ogim(j”(“_)) denotes the mean
of 90% confidence interval of the objective function value for this solution based
on 10 independent replications of the simulation model. Subsequently, let 57”]2«)
represent the best solution evaluated by KN++ algorithm for model Py having the
same performance measure in the objective function with model (.) and Osl-m(:i'”},(’))
denote the mean of the 90% confidence interval of the objective function value for

this solution based on 10 independent replications.

The percent deviation from the best solution is denoted by %A¥,,, and is found by

BNy = 1 10025 T0y) ~ Osim )
0 im N o e )
S {x’(ﬁ)iw};(‘)} OSim(l‘p(A))

where [ is the indicator function being equal to O if the solutions are the same.

NAY,,, results are presented in Table for 36 instances with respect to MESD,
MESD-P and MESD-PO. %AY,, . values are reported as zero if the optimal solution
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under a model is same with the best solution for Pg evaluated by KN++. Suppose
the difference between objective function value of the optimal solution of a model
and the best solution by KN++ is not significant, meaning confidence intervals of the
objective function values coincide. In that case, the percentage deviation found is

marked with an asterisk in the table.

Table 5.4: %AY,,, in ED for the optimal solution of models based on the best solution

for Pg in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MESD MESD-P MESD-PO
Uniform 4 3 -0.10 * -0.87 0.20 *
6 -1.00 -1.29 -0.30

9 -1.49 -1.65 -0.51

12 -1.75 -1.79 -0.64

5 3 -0.36 -4.83 0.28

6 -1.03 -5.19 0.13 *

9 -1.17 -5.26 0.03 *

12 -0.97 -4.87 0.17

6 3 -0.30 -3.36 -0.88

6 -0.51 -3.07 -0.56

9 -0.49 -2.66 -0.37

12 -0.55 -243 -0.45

Center-Acc. 4 3 0.17 * -4.87 0.15 *
6 -0.17 -4.87 -0.10 *

9 0.05 * -4.35 0.15 *

12 -0.20 -4.30 -0.20

5 3 -0.04 * -5.13 0.09 *

6 0.02 * -4.34 0.26

9 0.27 -3.47 0.58

12 -0.30 -3.68 0.03 *

6 3 -0.16 * -3.86 0.08 *

6 -0.09 -1.87 0.16

9 -0.08 -1.26 0.08

12 -0.29 -1.06 -0.09

Outer-Acc. 4 3 -1.53 -4.70 -0.32
6 -2.02 -1.71 -0.08 *

9 -2.99 -8.90 -0.79

12 -3.37 -9.28 -0.87

5 3 -1.42 -5.27 0.70

Continued on next page
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Table 5.4 — continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MESD MESD-P MESD-PO
6 -3.14 -1.27 0.74

9 -4.26 -8.20 -0.02 *

12 -4.37 -8.19 -0.05 *

6 3 -2.79 -5.74 -0.86

6 -3.44 -6.18 0.05 *

9 -3.66 -6.11 -0.19

12 -3.31 -5.30 0.01 *

In order to summarize the results in Table [5.4] and make comparisons of the models

easier, four statistics are computed as in Chapter [4

e Number of instances for which the differences are not statistically
significant: the number of instances where MESD variants has an optimal
solution same with the best solution for Pg reported by KN++ or the optimal
solutions are not statistically different in terms of the expected satisfied demand

(ED),

*

e Average %A, : the average %AY,, . over all instances,

o Average %AY,,  over instances for which the differences are statistically
significant: the average %A%, = over instances having optimal solutions that

Sim

are statistically different,

e Average absolute %A%, over instances for which the differences are

*
Sim

statistically significant: the average absolute %A over instances having

optimal solutions that are statistically indifferent.

These statistics are reported in Table [5.5|for MESD variants.

According to the results in Table [5.4]and [5.5] MESD-PO is the best model in finding

solutions that are close to the best solution reported by KN++ for the objective of

maximizing expected satisfied demand where %A, is less than 1% for all instances.
In fourteen instances, MESD-PO finds a solution that has a statistically insignificant

deviation from the best solution. MESD is the second best performing model,
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Table 5.5: Summary of %AY, in ED results for the comparison of the optimal

solutions with Py in 36 instances

Statistics MESD MESD-P MESD-PO

Number of instances for which the differences are not 6 0 14
statistically significant

Average DAY -1.30 -4.53 -0.09

Sim

Average %AY,,, over instances for which the differences ~ -1.56 -4.53 -0.18

are statistically significant

Average absolute %A¥,, . over instances for which the 1.31 4.53 0.45

differences are statistically significant

whereas MESD-P has optimal solutions for which the differences are statistically

significant in all instances with an average of 4.5%.

The average deviation and average absolute deviation without insignificant results
for MESD-PO are lower than 0.5%. Therefore, it is seen that order of districting
employed in model MESD-PO (in estimation of the expected satisfied demand and
the busy probabilities) helps the model finding a close enough solution to the best.
Since a pairwise comparison is not made for each feasible solution between MESD-
PO and simulation model, it does not necessarily mean that the estimation of the
objective function gets better, however the differentiation of the feasible solutions is

better than MESD.

It is seen that MESD-P performs worse than MESD and MESD-PO which means

using order of districting for only estimation of busy probabilities are not useful.

In summay, MESD-PO is a promising model in maximizing expected satisfied

demand.

Similar to the previous experiment above, %AY,,, results for 36 instances under
MMRT and MMRT-PO are presented in Table %A, values are reported as

zero if the optimal solution under a model is the same with the best solution for Pg

evaluated by KN+ +.
The base model Pgr and the models MMRT and MMRT-PO share the same measure
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in the objective function, mean response time (). Due to the observations in Chapter
[3] where it is seen that maximizing expected satisfied demand and minimizing mean
response time are similar objectives in terms of the resulting best solution, MESD-
PO is also added to this comparison. %A%, for this model is calculated based on the
mean response time value of the optimal solution of MESD-PO where it is assessed

from 10 independent replications of the simulation model as in the other comparisons.

In Table[5.6] %A%, in R for MMRT, MMRT-PO and MESD-PO are reported.

Sim

Table 5.6: %AY,,, in R of the optimal solution of models based on the best solution

for Pg in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate  MMRT MMRT-PO MESD-PO
Uniform 4 3 0 2.30 2.45
6 0 222 2.39

9 -0.50 2.08 2.01

12 0 2.61 2.58

5 3 222 6.11 0.14 *

6 0.49 5.82 0.16 *

9 3.83 8.71 2.47

12 491 9.52 3.63

6 3 3.89 1.74 6.46

6 2.30 2.72 9.35

9 3.94 3.40 11.45

12 6.01 3.41 13.16

Center-Acc. 4 3 0 9.43 0
6 0.65 7.04 0.56

9 1.64 6.50 1.57

12 2.04 6.16 2.13

5 3 0.44 * 8.21 0

6 2.28 4.64 -0.05 *

9 3.39 3.22 0.26 *

12 4.49 2.48 0.66

6 3 0.98 15.73 -0.39

6 4.25 8.83 1.93

9 7.62 0.12 * 4.58

12 11.05 0.31 * 7.47

Outer-Acc. 4 3 0 4.62 0.72

Continued on next page
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Table 5.6 — continued from previous page

Form Nb.of Vehc. Inc. Hand. Ratet  MMRT MMRT-PO MESD-PO
6 0.99 1.36 1.56

9 1.45 0 1.83

12 3.53 0 4.06

5 3 1.05 7.22 0
6 747 7.16 0

9 11.93 5.87 0

12 14.71 5.44 0.13 *

6 3 797 3.67 6.75
6 21.24 0 3.65

9 31.75 0 4.00

12 37.15 0 4.69

Similar to the previous experiment, summary statistics for %

in Table 5.7

*
Sim

values are reported

Table 5.7: Summary of %AY,,, in R results for the comparison of the optimal

solutions with Pg in 36 instances

Statistics MMRT MMRT-PO MESD-PO
Number of instances for which the differences are not 6 7 10
statistically significant

Average %A%, 5.70 4.41 2.84
Average %A%, over instances for which the differences 6.82 5.46 3.91
are statistically significant

Average absolute %AY,,, over instances for which the 6.86 5.46 3.94

differences are statistically significant

The results in Table show that MMRT and MMRT-PO find near optimal

solutions in six and seven instances, respectively. The average %
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for which the differences are statistically significant is 6.86% for MMRT. When order
of districting is applied (MMRT-PO), this value decreases to 5.46%.

The deviations of the optimal solutions of MMRT and MMRT-PO from the best
solutions of Pgr are more significant than they are in the previous comparison for

MESD variants. Hence, it is justifiable to state that this modeling approach performs



better in terms of differentiating feasible solutions in expected satisfied demand
measure than in mean response time. Although estimation of £ and R coincide
where R has additional mean travel time multiplier in the numerator, the estimation
of R results in models with less power in differentiating feasible solutions, probably

due to mean travel time magnifying the estimation errors.

On the other hand, MESD-PO which is constructed to maximize expected satisfied
demand in unit time proves promising according to the results in Table The
mean response times of the optimal solutions of MESD-PO deviate by 2.84% on the
average from the best mean response times obtained with KN++ for Pgr. MESD-
PO finds solutions for which the differences are not statistically significant in ten
instances. This is greater than the ones for MMRT and MMRT-PO, although
they are specifically modeled to minimize mean response time. This observation
is particularly important since it shows that maximizing expected satisfied demand

(MESD-PO) performs well for the objective minimizing mean response time as well.

Overall, maximization of expected satisfied demand results in optimal solutions that
are close to the optimal solutions under mean response time minimization similar to
the previous observations. Therefore, an analytical proof is provided in Appendix [C|
for the special case of locating one vehicle showing that two objective functions are
equivalent. In addition, numerical results are reported for the case of locating two
vehicles by solving the balance equations of the queueing model for the EMS system

and finding the optimal solutions with complete enumeration.

5.3.4 Comparison of MESD-PO, MMRT-PO with DM-S-CF

In an effort to show the performances of models MESD-PO and MMRT-PO against
a more sophisticated algorithmic approach, the decomposition method DM-S-CF
proposed in Chapter [] is used to estimate the objective function value of models
Pg, and Pg. In Chapter [] it is shown that DM-S-CF is a well performing estimation
method for mean response time (1) and near optimal solutions are found in thirty-one

out of thirty-six instances when used with complete enumeration.
In the first set of experiments, the optimal solutions MESD-PO and MMRT-PO and
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the optimal solution of Pg evaluated with DM-S-CF are compared to the best solution

for Pg obtained with KN++ in expected satisfied demand (£ D).
In Table[5.8] %AY;,, in ED for MESD-PO, MMRT-PO and Pg with DM-S-CF are

reported.

Table 5.8: %AY,,, in ED of the optimal solution of models based on the best solution

for Pg in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO Pg with DM-S-CF
Uniform 4 3 0.20 * 0.25 0.81
6 -0.30 -0.22 0.53

9 -0.51 -0.60 0.08 *

12 -0.64 -0.56 0

5 3 0.28 -1.23 0.33 *

6 0.13 * -1.08 0.19

9 0.03 * -0.85 0.21

12 0.17 -0.59 0.43

6 3 -0.88 -0.23 0.36

6 -0.56 0.00 * 0.11*

9 -0.37 -0.05 * 0.12

12 -0.45 -0.15 -0.28

Center-Acc. 4 3 0.15 * -2.15 -0.08 *
6 -0.10 * -1.80 0.04 *

9 0.15 * -1.26 0.24 *

12 -0.20 -1.39 0.14

5 3 0.09 * -1.71 0.01 *

6 0.26 -0.70 0.31

9 0.58 0.03 * 0.36

12 0.03 * -0.37 -0.05 *

6 3 0.08 * -2.61 -0.11 *

6 0.16 -0.86 0.06 *

9 0.08 0.08 -0.19

12 -0.09 -0.05 -0.27

Outer-Acc. 4 3 -0.32 -1.62 0
6 -0.08 * 0.02 * 0.69

9 -0.79 0.04 * 0.09 *

12 -0.87 0.26 0.27

5 3 0.70 -1.27 0.78

127

Continued on next page



Table 5.8 — continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO Pg with DM-S-CF
6 0.74 -0.73 0.75

9 -0.02 * -1.11 0.01 *

12 -0.05 * -0.85 0.10 *

6 3 -0.86 -0.30 0.49

6 0.05 * 0.48 0.38

9 -0.19 0.06 * 0.03 *

12 0.01 * 0.16 0.19

The results in Table show that MESD-PO, MMRT-PO and DM-S-CF are good
at finding near optimal solutions in E'D in almost all instances. %A¥,  values are
smaller than 1% in all instances for MESD-PO and DM-S-CF. MMRT-PO has upto
2.6% deviation in expected satisfied demand in some instance. In Table[5.9] summary

statistics for %A%, in ED are reported.

Table 5.9: Summary of %A¥, in ED results for the comparison of the optimal

solutions with Pg in 36 instances

Statistics MESD-PO MMRT-PO Pg with DM-S-CF

Number of instances for which the differences are not 14 6

statistically significant

16

Average %A%, -0.09 -0.64 0.20
Average %AY,,,, over instances for which the differences -0.18 -0.77 0.31
are statistically significant

Average absolute %A¥, . over instances for which the 0.45 0.85 0.39

differences are statistically significant

The statistics in Table show that MESD-PO is as good as DC-S-MF where the

*
Sim

average absolute %A over instances for which the differences are statistically
significant are 0.45 and 0.39, respectively. DC-S-MF method is a decomposition
method that approximates the steady state probabilities of the exact queueing system
to estimate the objective function value. It requires an algorithmic approach to
solve nonlinear set of equations in approximating the steady state probabilities.
Considering this, the performance of MESD-PO is very promising as a mixed integer

nonlinear program with linear constraints.
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In another set of experiments, the optimal solutions of MESD-PO and MMRT-PO
based on complete enumeration, and the optimal solution of Pg evaluated with DM-
S-CF are compared to the best solution for Pg obtained with KN++ in mean response

time (R).

In Table NAE,,, in R for MESD-PO, MMRT-PO and Pg with DM-S-CF are

reported.

Table 5.10: %AY,,, in R of the optimal solution of models based on the best solution

for Pg in 36 instances

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO Pg with DM-S-CF
Uniform 4 3 245 2.30 0
6 2.39 222 0

9 2.01 2.09 -0.44

12 2.58 2.61 0

5 3 0.14 * 6.12 0

6 0.16 * 5.81 -1.16

9 2.47 8.70 0

12 3.62 9.52 0

6 3 6.46 1.75 -0.31

6 9.34 2.72 0

9 11.45 3.40 -0.32

12 13.16 3.39 0

Center-Acc. 4 3 0 9.44 0.20 *
6 0.56 7.04 -0.11 *

9 1.57 6.50 0

12 2.13 6.16 0

5 3 0 8.21 0

6 -0.05 * 4.64 -0.09 *

9 0.26 * 3.22 0.43

12 0.67 2.49 0.11*

6 3 -0.38 15.73 -0.40

6 1.93 8.83 0

9 4.59 0.13 * 0.23 *

12 7.46 0.30 * 0

Outer-Acc. 4 3 0.72 4.62 -0.22 *
6 1.55 1.36 0

9 1.82 0 0.03 *

Continued on next page
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Table 5.10 — continued from previous page

Form Nb.of Vehc. Inc. Hand. Rate MESD-PO MMRT-PO  Pr with DM-S-CF
12 4.06 0 0

5 3 0 7.22 0

6 0 7.16 0

9 0 5.88 0

12 0.13 * 5.44 0.29 *

6 3 6.75 3.67 0

6 3.65 0 0

9 4.00 0 0

12 4.69 0 0

As stated previously, near optimal solutions are found in most of the instances when
DM-S-CF is used to estimate the objective function value of Pg. It is seen in
Table [5.10] that DM-S-CF reports the same best solution with KN++ in twenty-
two and solutions that the difference is not statistically significant in eight instances.
According to the summary statistics for %A%, . in Table neither MESD-PO nor
MMRT-PO performs close enough to DM-S-CF in resulting mean response time of
the optimal solutions. This shows that the mean response time is harder to estimate
considering the simplifications in the estimation of busy probabilities of vehicles.
However, MESD-PO is still preferable to MMRT-PO if the objective is to minimize
mean response time, since maximization of expected satisfied demand with MESD-
PO results in optimal solutions that have less deviation in mean response time than
the deviation that the optimal solutions obtained by minimizing mean response time

with MMRT-PO have.

5.3.5 Performance of MECD models compared to MEXCLP

Another set of models proposed in the Section|5.2|are MECD and MECD-PO where

expected covered demand under a threshold travel time is maximized.

In an effort to compare the proposed models with a model from the literature,
MEXCLP by |Daskin| (1983) is chosen. The study is an extension of classical set
covering problems where a demand node is assumed to be covered if its distance to

a facility is less than a threshold. MEXCLP takes busy probabilities of facilities into
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solutions with Pg in 36 instances

Table 5.11: Summary of %AY,,, in R results for the comparison of the optimal

Statistics MESD-PO  MMRT-PO  Pg with DM-S-CF
Number of instances for which the 10 7 30
differences are not statistically significant

Average %A%, 2.84 441 -0.05
Average %AY,,, over instances for which 391 5.46 -0.37
the differences are statistically significant

Average absolute %AY,, . over instances 3.94 5.46 0.51

for which the differences are statistically

significant

account. Hence, there is a need for calculating the probability that a region is covered

under particular location configuration of facilities.

Recall that ); is the demand rate of region j, w;; is the mean travel time between

location ¢ and region 7, 7 is the threshold travel time used in MECD model.

Let, a;; be a parameter which is equal to 1 if a vehicle at location i covers region

J meaning w;; < 7 and O otherwise. p states the probability that a facility is not

working, analogous to being busy in our problem setting. Let z; be a decision variable

which is equal to 1 if a vehice is located at region ¢, and yy; is a decision variable that

is equal to 1 if region j is covered by at least & vehicles, 0 otherwise.

Single-vehicle version of MEXCLP where at most one vehicle is allowed at a single

location, s-MEXCLP is as follows:

N
(s-MEXCLP)  Maximize > (1= p)p T N
jeJ k=1
N
subject to: Z Yrkj — Z aj;x; <0,
k=1 el

i€l
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(5.48)

jeJ
(5.49)
(5.50)



(5.51)
yr; € {0,1}, jeJk=1,.,N.
(5.52)

s-MEXCLP maximizes expected demand covered where coverage is defined based
on mean of travel time and a threshold. Therefore, MECD and s-MEXCLP could be
compared since they are constructed in a similar fashion in terms to coverage. The
difference in MECD is that, all vehicle locations can cover all demand regions but
for only the demand calls that travel time realization for the call is under the threshold

travel time.

MEXCLP model requires busy probability p as a parameter. The busy probability
is defined identical for all facility locations in the model. To compare the effect
of modeling approaches of MECD and MEXCLP, perfect information is supplied
to MEXCLP in terms of the required busy probability parameter for each feasible
solution in the experiment. The average busy probability of vehicles are estimated for
each feasible solution of every instance from a simulation study with 50,000 demand
calls. Then, the objective function values of all feasible solutions of s-MEXCLP
model are evaluated by using the corresponding average busy probability, and the

optimal solution is selected.

The optimal solutions of MECD, MECD-PO and s-MEXCLP based on complete
enumeration are compared to the best solution for Po obtained with KN++ in
expected covered demand (C'D). In Table NAY,,, in CD for MECD, MECD-
PO and s-MEXCLP are reported.

Table 5.12: %A%, in C'D of the optimal solution of models based on the best

Sim

solution for P in 36 instances

Form Nb.of Vehc.  Inc. Hand. Ratet  MECD MECD-PO s-MEXCLP
Uniform 4 3 0.09 * -0.77 -1.38
6 0.48 * -0.82 -0.86
9 -0.26 -1.45 -0.89
12 0.55 * -0.40 * 0

Continued on next page
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Table 5.12 — continued from previous page

Form Nb.of Vehc. Inc. Hand. Ratet  MECD MECD-PO s-MEXCLP
5 3 -0.55 0.33 * 1.01
6 -0.70 * -1.13 -0.65

9 -1.21 -1.43 -0.56

12 -1.76 -2.18 -0.67

6 3 -1.75 0.53 -1.47
6 -0.71 0.16 * 0.32 *

9 -1.71 -0.72 -2.11

12 -2.22 -0.78 -1.50

Center-Acc. 4 3 0 0.04 * -2.60
6 -0.31 * -0.21 * -2.52

9 0.68 0.69 -1.48

12 -0.34 * -0.39 * 0.47 *

5 3 0.26 * 0.51 -0.45
6 -0.44 0.69 -0.64

9 -1.62 -0.17 * -2.21

12 -1.80 -0.43 -2.89

6 3 0.60 -0.05 * -2.68
6 -1.18 -0.01 * -2.71

9 -2.46 -0.69 -3.28

12 -3.11 -1.19 -1.55

Outer-Acc. 4 3 -2.67 1.11 -1.76
6 -5.88 0 -2.33

9 -6.92 0.30 * -1.83

12 -9.25 -1.19 -2.20

5 3 -5.45 1.13 -1.33
6 -11.95 0 -1.05

9 -12.88 1.04 -0.02 *

12 -7.01 -0.21 * -1.02

6 3 -4.66 -1.79 -0.97
6 -1.76 0.59 * -0.91

9 -9.76 0.64 -1.15

12 -9.99 1.03 -2.14

According to results, it is seen that MECD-PO finds solutions close to the best
solution reported by KN++ for P where expected covered demand is maximized.
In Table [5.13] summary statistics for %AY,;,, show that MECD is not good at finding

well performing solutions in terms of C'D. On the other hand, average %A%,
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for MECD-PO are better than s-MEXCLP and all of the optimal solutions for s-
MEXCLP are statistically different from the best solution by KN++. This shows that
incorporating location specific busy probabilities and the uncertainty in travel time
which is exploited in the estimation of covered demand in MECD-PQO increase the
quality of the optimal solutions. Additionally, average %AY,;,, under s-MEXCLP are

at around 1.5% in spite of the perfect information on the busy probabilities.

Table 5.13: Summary of %A%, in C'D results for the comparison of the optimal

Sim

solutions with P. in 36 instances

Statistics MECD MECD-PO s-MEXCLP

Number of instances for which the differences are not 8 14 10
statistically significant

Average %A, -3.16 -0.20 -1.33

Average %A, over instances for which the differences -4.06 -0.33 -1.52

are statistically significant

Average absolute %AY,, . over instances for which the 4.15 1.00 1.59

differences are statistically significant

In addition to the comparison of models in expected conditionally satisfied demand,
another comparison is made based on the mean response time (R) values of the
optimal solutions reported by the models. In Table WA, in R for this

comparison are reported.

Table 5.14: %AY,,, in R of the optimal solution of models based on the best solution

for Pg in 36 instances

Form Nb.of Vehc. Inc. Hand. Ratet  MECD MECD-PO s-MEXCLP
Uniform 4 3 0 247 3.13
6 0 2.13 2.65

9 -0.32 % 2.16 1.53

12 0 2.44 1.77

5 3 2.32 2.28 1.01

6 0.51 * 2.24 2.07

9 3.80 4.74 4.46

12 5.30 6.01 3.41

Continued on next page
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Table 5.14 — continued from previous page

Form Nb.of Vehc. Inc. Hand. Ratet  MECD MECD-PO s-MEXCLP
6 3 4.17 1.84 4.76

6 3.61 3.03 1.46

9 5.70 247 7.40

12 7.22 3.35 5.85

Center-Acc. 4 3 0 0.37 4.55
6 0.68 0.50 4.51

9 1.79 1.30 4.86

12 2.12 1.83 0.74

5 3 0.25 * 0 1.53

6 221 -0.14 * 2.40

9 3.53 0.41 4.70

12 4.49 0.95 6.46

6 3 0.68 * 1.33 7.19

6 4.60 0.89 8.53

9 7.71 1.88 10.36

12 11.05 4.05 5.53

Outer-Acc. 4 3 8.89 0.66 * 5.37
6 13.36 1.39 5.93

9 16.71 2.11 5.68

12 19.90 3.69 5.60

5 3 14.30 0 5.30

6 28.59 0 0.68

9 36.32 0 1.07

12 18.32 0.58 * 2.00

6 3 12.02 3.87 2.26

6 27.57 0 4.57

9 38.93 0 5.18

12 46.17 0 12.30

The summary statistics in Table [5.15] show that MECD-PO also performs well in
terms of the mean response time of the system resulting from the optimal solutions.
s-MEXCLP finds solutions for which the differences are statistically significant in
every instance whereas MECD-PO finds solutions for which the differences are not
statistically significant in ten instances. The performance of s-MEXCLP is similar to
MESD-PO (in Table where the average absolute deviation from the best mean
response time for MESD-PQO is 3.94%.
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Table 5.15: Summary of %AY,,, in R results for the comparison of the optimal

solutions with Pg in 36 instances

Statistics MECD MECD-PO s-MEXCLP

Number of instances for which the differences are not 8 10 -
statistically significant

Average DA 9.79 1.69 4.35

Sim

Average %AY,,,, over instances for which the differences 12.55 2.30 4.35

are statistically significant

Average absolute %AY, . over instances for which the 12.55 2.30 4.35

differences are statistically significant

According to the results in Table and MECD-PO outperforms MESD-PO
in several measures. The average absolute deviation for MECD-PO is 2.30% while
MESD-PO has 3.94%. The maximum deviation in mean response time increases up
to 14% in some instances under MESD-PO while MECD-PO has a more uniform
distribution in terms of the deviations in instances and the maximum deviation is
around 6%. This shows that MECD-PO which is contructed to maximize expected
covered demand is even better at finding well performing solutions in mean response

time than MESD-PO and MMRT-PO.

5.3.6 Performance under package solvers

The previous experiments are done based on complete enumeration of the feasible
solutions of the models. In an effort to show the performance of the models under
package solvers, thirty-six problem instances are solved with MESD-PO, MECD-
PO and MMRT-PO by using BARON solver on NEOS server (Czyzyk et al. (1998)),
Dolan| (2001) and Gropp and Moré€| (1997)). The computation time limit is set to
14400 seconds and the solutions reported by BARON at the end of runs are used in

the analysis.

In the experiments, BARON solver reported a solution in seven, one and eighteen out
of thirty-six instances before the time limit is invoked for MESD-PO, MMRT-PO
and MECD-PO, respectively. Based on the results, the relative optimality gap for
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each is found by comparing the objective function value of the solution reported by
the solver and the solution found by complete enumeration. Average and maximum
of the relative optimality gaps are reported in Table [5.16] along with the number of
instances that the optimal solution with respect to complete enumeration is found by

BARON solver.

Table 5.16: Summary of BARON runs for the models in 36 instances

Statistics MESD-PO  MMRT-PO MECD-PO
Number of instances optimal solution found 1 6 11
Average optimality gap 0.84 3.03 1.19
Maximum optimality gap 2.68 12.00 5.30

It is seen that BARON finds the optimal solutions in one, six and eleven
instances among thirty-six for MESD-PO, MMRT-PO and MECD-PO. The average
optimality gap is 0.84%, and the maximum optimality gap is 2.68% for MESD-
PO. MMRT-PO has the highest average and maximum optimality gap among
models although optimal solution is found in six instances. BARON finds the
optimal solutions in eleven instances for MECD-PO, but the average and maximum

optimality gap is higher than MESD-PO.

In addition, %AY,,, values of the solutions obtained with BARON solver are also
checked. %AY,,, values are found in expected satisfied demand for MESD-PO, in
mean response time for MMRT-PO and in expected covered demand for MECD-PO.
The summary statistics for %A¥;,, are given in Table for three models according
to BARON results.

It is seen that average absolute %AY, = in expected satisfied demand for MESD-PO
increases to 0.61% from 0.45% when BARON solver is used. In MMRT-PO, the
average absolute %AY,, . increases to 7.28% from 5.46%. The increase in average
absolute %AY,,, is more significant from 1.0% to 1.94% for MECD-PO, however,

the number of solutions for which the differences are not statistically significant is

twelve and it is similar to the result of fourteen under complete enumeration.

According to the results, it is seen that package solvers can be used to find good

solutions for MESD-PO although there exists decreases in the performance of the
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Table 5.17: Summary of %AY,,, in corresponding measures over 36 instances

Statistics MESD-PO MMRT-PO MECD-PO

Number of instances for which the differences are not 7 3 12

statistically significant

Average %A, -0.32 6.67 -1.03

Average %AY,,,, over instances for which the differences -0.40 7.28 -1.54

are statistically significant

Average absolute %AY,, . over instances for which the 0.61 7.28 1.94

differences are statistically significant

solutions in comparison to the solutions found by complete enumeration. The
optimality gap is significantly high for MMRT-PO and MECD-PO. For those
models, the computation time limit could be increased or other commercial nonlinear
solvers could be used to improve the quality of solutions. As an alternative to package
solvers, meta-heuristic algorithms could be used to find solutions for the proposed

models as well.

In the next section, we use MESD-PO, MECD-PO and MMRT-PO on a real-life
data set, checking the performance on problem instances with higher number of

vehicles and demand regions.

5.3.7 Performance of the models on Edmonton Data

The data set of City of Edmonton Emergency Medical Services by Ingolfsson et al.
(2003)) from the previous chapter is used to test MESD-PO, MECD-PO and MMRT-
PO, where there are 180 demand nodes with given demand rates and 16 possible
vehicle locations with specified capacities ranging from one to three. The demand
rates for the nodes vary from node to node. The mean of the travel time between
stations and nodes are given in the data set. The mean of the incident handling time
is set to 45 minutes for this experiment. The mean number of total demand calls
per hour is set to 5 and 10. We located from 8 to 12 emergency medical vehicles in

Edmonton City, resulting in ten problem instances in total.
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For all instances, KN++ is used to select the best solution and it is compared to the
optimal solutions of MESD-PO, MECD-PO and MMRT-PO based on complete
enumeration. The comparison is made on a separate simulation run. After finding the
best solutions with KN++ algorithm and the optimal solutions of the models based
on complete enumeration for each instance, three performance measures (expected
satisfied demand, expected covered demand and mean response time) are estimated
by running the discrete event simulation model for 10 independent replications. A
total of 550,000 demand calls is simulated for every solution at hand in the simulation
model. The warm-up period is selected as 50,000 calls, and the performance measures

are reported accordingly.

Based on the performance measures, %AY;,, values are found in expected satisfied
demand, expected covered demand and mean response time for the optimal solutions
of MESD-PO, MECD-PO and MMRT-PO. %A, values in expected satisfied
demand (compared to the best solution for Pg) are reported in Table for three

models.

Table 5.18: %AY,,, in ED of the optimal solution of models

Total Demand Rate  Nb.of Vehc. MESD-PO MECD-PO MMRT-PO

5 8 -0.63 -0.65 -0.45
9 -0.42 -0.42 -0.05*
10 -0.11 -0.09 -0.03*
11 0.01%* -0.01* 0.05*
12 0.02%* 0.02%* 0.06
10 8 -0.07* -0.30* -1.94
9 -0.62 -0.58 -0.74
10 -0.63 -0.86 -0.78
11 0.22% 0.25% -0.19*
12 -0.02* -0.05* -0.20*

According to the results in Table[5.18] it is seen that the difference between optimal
solution of models and the best solution reported by KN++ becomes insignificant
as the number of vehicles increases. As the number of vehicles increases, all three
models find solutions for which the difference with respect to the best solution is

not statistically significant. Although this results is valid for both levels of the
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total demand rate, average %A¥,;,, over for which the differences are statistically
significant varies in total demand rate. In Table [5.19] the number of instances for
which the differences are not statistically significant and the average %A%, over

instances for which the differences are statistically significant are reported.

Table 5.19: Summary of %A%, in ED

Sim

MESD-PO MECD-PO MMRT-PO
Total Demand Rate 5 10 5 10 5 10
Number of instances for 2 3 2 3 3 2

which the differences are not
statistically significant

Average %A%, over -039 -0.62 -0.39  -0.72 -0.19  -1.15

instances for which the
differences are statistically

significant

According to results, it is seen that the average %AY;,, over instances for which the
differences are statistically significant increases as the total demand rate increases
from 5 to 10. In the meantime, number of instances for which the differences are not
statistically significant increases from 2 to 3 for MESD-PO and MECD-PO while it
decreases from 3 to 2 for MMRT-PO. Overall, %A¥,,, values are less than 1% in all
instances but one instance for MMRT-PO, meaning that all models deliver solutions

that are close to the best solution for P reported by KN++.

The performance of MESD-PO in minimizing the expected satisfied demand on
Edmonton data is similar to its performance on toy data. The average %A¥;,, over
instances for which the differences are statistically significant on Edmonton data are
-0.39% and -0.62% under total demand rate of 5 and 10, respectively, whereas it is
-0.18% on toy data in Table[5.3]

Similar to the previous analysis, %A%, values in expected covered demand

(compared to the best solution for P ) are reported in Table for three models.

The results in Table [5.20] shows that %A, in expected covered demand from the

best solution of P reported by KN++ usually decreases as the number of vehicles
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Table 5.20: %A%, in C'D of the optimal solution of models

Sim

Total Demand Rate  Nb.of Vehc. MESD-PO MECD-PO MMRT-PO

5 8 -3.38 -3.33 -1.23
9 -4.40 -4.53 -0.23*
10 -1.79 -1.72 0.02*
11 -1.61 -1.65 0.47
12 -1.86 -1.88 0.16*
10 8 0.95 0.73 -3.66
9 -3.09 -3.08 -2.89
10 -2.84 -3.22 -2.52
11 0.07* -0.03* -1.53
12 -0.16% -0.29% -0.60

increases given total demand rate. This could be attributed to the use of order of
districting which asserts that only the closest three vehicles respond to the demand
calls of a region. As the number of vehicles increases, the traffic intensity of the

system decrease, hence the use of order districting is further justified.

In Table[5.21| the summary of %A%, = values in expected covered demand is given.

Table 5.21: Summary of %A%, in CD

MESD-PO MECD-PO MMRT-PO
Total Demand Rate 5 10 5 10 5 10
Number of instances for - 2 - 2 3 -
which the differences are not
statistically significant
Average  %AY,;,, over -2.61 -1.66 -2.62  -1.86 -0.38  -2.24

instances for which the
differences are statistically

significant

According to Table [5.21] it is seen that MESD-PO and MECD-PO has similar
NAY,,, meaning that MESD-PO performs well in delivering good solution in
expected covered demand objective although it is formulated to minimize expected

satisfied demand. The performance of MESD-PO and MECD-PO in finding a
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solution that is close the best solution of P reported by KN++ gets better as the total
demand rate increases. This effect of increasing total demand rate could be attributed
to overall increase in the busyness of vehicles. As the traffic intensity increases, the
busy probabilities of vehicles would get closer to each other since a demand call is
assigned a vehicle if there is one available at the time of the call, making the effect
of the closeness of vehicle to the regions insignificant, in return making it easier to

estimate the expected covered demand.

In summary, MECD-PO performs worse on Edmonton data than on toy data

where the average %AY,,, over instances for which the differences are statistically
significant in C'D increases from -0.33% to -2.62 and -1.86 for total demand rates of

5 and 10, respectively.

Lastly, %A¥,;,, values in mean response time (compared to the best solution for Pg)

are reported in Table for three models.

Table 5.22: %AY,,, in R of the optimal solution of models

Total Demand Rate  Nb.of Vehc. MESD-PO MECD-PO MMRT-PO

5 8 6.84 6.79 3.93
9 7.96 7.95 1.40
10 4.26 4.18 1.14
11 4.04 393 -0.41
12 4.30 4.11 0.15*
10 8 0.34 0.21 7.46
9 3.62 343 4.17
10 4.08 4.00 3.55
11 -1.48 -1.44 0.99
12 -0.13* -0.23* 0.16*

The results in Table[5.22]shows that the performance of the models in mean response
time gets better in the number of vehicles similar to the previous measures. Given
the number of vehicles, the performance of MESD-PO and MECD-PO get better
in the total demand rate, while MMRT-PO performs worse under total demand rate
of 10. Differently from the results in Section MMRT-PO performs better on
Edmonton data than on toy data, both under total demand rates of 5 and 10. In the

previous experiments, MMRT-PO model has an average %A%, . of 5.46% from the
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best solution reported by KN++ for Pkg.

In Table|5.23] the summary of %A, values in expected covered demand is given.

Table 5.23: Summary of %A%, in R

Sim

MESD-PO MECD-PO MMRT-PO
Total Demand Rate 5 10 5 10 5 10

Number of instances for - 1 - 1 1 1
which the differences are not
statistically significant

Average  %AY,,, over 548 1.64 539 1.55 1.52  4.04

instances for which the
differences are statistically

significant

With respect to the results in Table it is shown that the performance of MESD-
PO and MECD-PO gets better in finding close enough solution to the best solutions
reported by KN++ as total demand rate increases similar to their performance in the

expected covered demand measure. However, MMRT-PO performs worse.

As it is mentioned before, the busy probabilities of vehicles would get closer to each
other as the traffic intensity increases since a demand call is assigned a vehicle if there
is one available at the time of the call irrespective of its closeness in the exact system.
This could make the estimation of expected covered demand easier. However, the
composition of the probabilities that a demand region is served by a specific vehicle
location under the exact system would change depending on the traffic intensity.
This could negate the use of order districting since vehicles from farther locations
would respond to the demand calls more. In addition, small differences in the busy
probabilities of vehicles would be inflated when multiplied with mean travel times in
the objective function in MMRT-PO, differently from the expected satisfied demand
measure. However, MMRT-PO still performs better on Edmonton data than toy data.

Overall,we show that MESD-PO, MECD-PO performs relatively worse on
Edmonton data than on toy data. The performance of MMRT-PO on Edmonton

data is better than on toy data where the average %A, over instances for which the
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differences are statistically significant are down to 1.52% and 4.04% from 5.46% for
total demand rate of 5 and 10, respectively. With these results, we show that these

models can be used on larger data sets as well.

In the next section, we use the modeling approach to estimate two more performance

measures and construct two models from Chapter

5.3.8 Performance of modeling approach under P, and P;

In addition to MESD and MECD and MMRT variants, we use the modeling
approach to evaluate two different objective functions. For this purpose, models P,
and Py are used from Chapter [3] where it is seen that these models improve equity in

resulting optimal solutions in comparison to minimizing mean response time.

Remember that P, minimizes the maximum mean region-wise response time while
P; minimizes the total positive deviation of mean region-wise response time from a

threshold travel time 7.

(Py) Minimize ma}c(Rj (2)) (5.53)
Je
subjectto: > a; =N (5.54)
el
z; € {0,1}, Viel (5.55)
(P;)  Minimize > [R;(7) — 7], (5.56)
jeJ
subject to: Z z, =N (5.57)
iel
z; € {0,1}, Viel, (5.58)
where [ .|, = max{0,.}.

P, and P use region-wise mean response time in the objective function which can be

estimated based on the busy probabilities as it is mentioned in Section[5.1} Remember
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that region-wise mean response time, R, (), under solution () is found as follows:

N t—1
(1 - pUjl)ijjl + t_22<1 - pvjt)wjvjt kH Do,y

Ry(7) = ~ ——— (5.59)
(1 - pvj1) + Z(l - pvjt) kljlpvjk

t=2

where wj,,, is the mean travel time between region j and vehicle location vj;.

Similar to the construction of MMRT, w,, is replaced with > a;inw;j in|5.59and
iel
region-wise mean response time is defined as a function of the vector sof decision

variable s;;; as follows:

(1= siin) D aijnwij + NZ_:I ((1 — D Sijt) D QijtWi IJ_V[ >, Sz’jk)

i€l i€l t=1 el el k=t+1:el

R;(3) = (1= S suw) + Nz_l((l — > Sijt) INI > Sijk)

i€l t=1 i€l k=t+1i€l

Then, P, — PO and P; — PO are constructed based on R;(5) with the constraints

5.13) - (5.23) and (5.30) - (5.34) of model MESD-PO.

(P, — PO) Minimize mea,}{(Rj (5)) (5.60)
j

subject to: — (5.23),
63,

(P, —PO)  Minimize Y [R;(3) -7, (5.61)

jeJ
subject to:  (.13) — (5:23),
(6:30) — (5:34).

where [ . ], = max{0,.}.

In the experiments, the optimal solutions for Py — PO and P; — PO under each
problem instance are found by complete enumeration. The best solution for P,

and Py are found by using KN++. After finding the optimal solutions and the best

145



solutions, the performance measures for these solutions are estimated from a separate

simulation run.

NAY,,, are found for each problem instances by comparing the objective function
values of the optimal solutions of Py — PO (P; — PO) and the best solutions
found for Py (P7) by KN++. The summary statistics for %A%, results are given

in Table[5.24]

Table 5.24: Summary of %AY;,, in the corresponding objective function values with

respect to KN++ best solutions in 36 instances

Statistics Py— PO P;— PO

Number of instances for which the differences are not 10 -
statistically significant

Average NAY,;,, 5.12 176.41

Average %AY,,, over instances for which the differences 6.90 176.41

are statistically significant

Average absolute %A¥, . over instances for which the 7.08 176.54

differences are statistically significant

It is seen that proposed model P, — PO finds the same solution with KN++ best or
a solution for which the difference from KN++ is not statistically significant in ten
instances for P;. P; — PO cannot find a close enough solution in any instances. The
average %A, over instances for which the differences are statistically significant

are 6.90 % and 176.41 % for Py — PO and P; — PO, respectively.

The performance of Py — PO is close to MMRT-PO where it has an average
deviation of 5.46% over instances for which the differences are statistically
significant, however it is still the worst performing model among MESD-PO,
MECD-PO and MMRT-PO. The average %AY,;,, is very high for P, — PO. The
objective function of this model is the summation of the deviation of region-wise
mean response times from a threshold which means the estimation errors in the
region-wise mean response time measure are accumulated. Therefore, it is seen that

this modeling approach may not be useful for this type of measure which is not a

weighted average of other measures but a summation of them.
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In addition to the performance of optimal solution inn comparison to simulation
optimization, the effect of the modeling approach on the equity measures of the
optimal solutions of Py, — PO and P; — PO is also checked. The optimal solutions
of Py — PO and P; — PO found by complete enumeration and the best solutions
of P, and Py found by using KN++ are compared to the best solution for Pr (where
we minimize mean response time as in Chapter [3)) in terms the mean response time,

the variance of region-wise mean response time and the Gini coefficient.

In order to quantify the difference of the models, the mean absolute percent deviation
of measures for the optimal solution of the models, M AP D, from Pp is calculated
for each measure over all instances. We report the average percent positive deviations,
avgpd(%), of the mean response time of the best solution in the models from Pg.
The percent of instances with positive deviation, ppd(%), in mean response time
is reported in order to show the fraction of instances with positive deviations. For
VarR; and G, the average percent negative deviation, avgnd(%), and the percent
of instances with negative deviation, pnd(%),are reported instead since equity gets

better as VarR; and G decrease.

In Table [5.25] these statistics are reported to show the changes in R, VarR; and G.

Table 5.25: Comparison of Models P, and P; with Pg in performance measures

Measure  Statistics Py — PO Py P; — PO Py
MAPD(%) 22.00 14.74 4.58 11.51
R ppd(%) 100 100 94.44 100
avgpd(%) 22.00 14.74 4.82 11.51
MAPD(%) 5253  49.97 2024 5124
VarRj  pnd(%) 97.22 100 63.89 97.22
avgnd(%) 53.92 49.97 26.19 51.80
MAPD (%) 43.29 38.59 13.45 36.67
G pnd(%) 100 100 75 97.22
avgnd(%) 43.29 38.59 16.76 37.48

The results show that P; — PO does not improve equity measures as good as P
in Section [3| with respect to Pg as expected since our modeling approach does not

perform well for this objective function.
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The effect of P, — PO on the mean response time, the variance of mean region-
wise response time and the Gini coefficient are more prominent than in P;. So,
the solutions obtained Py, — PO improve equity more while sacrificing from mean
response time more in comparison to P, in Section [3] This is due to the fact that

P, — PO cannot estimate the objective function well enough in the first place.

Overall, it seems that the modeling approach is not useful in objective functions which
are constructed based on region-wise measures and the performance gets even worse
when there is a summation of region-wise measures in the objective function. With
this last experiment, we finish the experimental study and conclude this chapter in the

next section.

5.4 Conclusion

In this chapter, a modeling approach is proposed which can be used to approximate
the performance measures of the exact queueing model in closed-form. Then, these
closed form formulations are used to construct mathematical models that can be

solved with commercial package solvers.

Via an extensive experimental study, it is showed that proposed models MESD-
PO and MECD-PO are well performing with respect to the measures used in
their objective function, expected satisfied demand and expected covered demand.
Although MMRT-PO is specifically formulated to minimize mean response time,
it is seen that optimal solutions for MESD-PO and MECD-PO are better than the

optimal solutions of MMRT-PO in resulting mean response time values.

Models MESD-PO and MMRT-PO are compared to the decomposition method DM-
S-CF in two performance measures. It is seen that the performance of MESD-PO in
expected satisfied demand matches the performance of the more advanced method
DM-S-CF, but both MESD-PO and MMRT-PO fall behind DM-S-CF in minimizing

mean response time of the system.

MECD model variants are compared to s-MEXCLP which is used to find the solution

that covers the maximum demand. s-MEXCLP are provided with the average busy
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probability for each feasible solution of an instance which is estimated from a
simulation study. It is seen that MECD-PO is better than s-MEXCLP, marginally
in expected conditionally satisfied demand and significantly in mean response time of

the optimal solutions.

MESD-PO, MECD-PO and MMRT-PO models are tested under package solvers.
It is seen that the optimality gap for the solution are relatively low for MESD-
PO, MECD-PO and the performance of the models are not significantly affected.
MMRT-PO has a higher average optimality gap under BARON solver. Hence,
it is suggested to increase computation time under BARON or use meta-heuristic

algorithms to find better performing solutions for MMRT-PO.

MESD-PO, MECD-PO and MMRT-PO models are also tested on real-life data set,
Edmonton data. It is seen that MESD-PO, MECD-PO performs relatively worse on
Edmonton data than on toy data while MMRT-PO has lower deviations on Edmonton
data. With this, the applicability of models on larger data sets are shown on real-life

data set.

The modeling approach used to construct closed form formulations and mathematical
models are also employed to estimate other performance measures. Models
P, and P; from Chapter |3| are reconstructed in closed form as P, — PO and
P, — PO. The optimal solutions for those models are found via complete
enumeration. A comparison with the best solutions obtained with KN++ for P, and
Py shows that P; — PO has unacceptable deviations from the best solutions while
P, — POdelivers solutions with an average deviation of 6.90% over instances for

which the differences are statistically significant.

To conclude, the proposed models compete with more sophisticated algorithmic
approaches in finding an optimal solution for the problem instances. The models
incorporate important measures of EMS systems and are easy to apply since
performance measures of the EMS systems are expressed as a function of the
decision variables in closed form. Package solvers could be easily used to find good
solutions for the EMS vehicle location problems defined in this chapter that handle
the uncertainty in demand, travel times or incident handling times based on queueing

models.
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CHAPTER 6

CONCLUSION

In this thesis, the emergency medical service (EMS) vehicle location problem is
studied. The problem is defined based on stochastic processes addressing the
uncertainty in demand calls, travel times and incident handling times. Incorporating
uncertainties in the form of stochastic processes into the problem environment enables
one to construct queuing models to assess the performance measures resulting from a
candidate location solution for the EMS system. However, an exact queueing model
requires a state definition where the size of the state space increases exponentially
in the number of vehicles and demand regions. Hence, the exact queueing model is
not used in the evaluation of the performance measure of the system in this thesis. A
discrete event simulation model is constructed and used to evaluate the performance

measures in the rest of the study.

In Chapter [3) we work on the equity aspect in the EMS vehicle location problem
which is not extensively studied in the literature. Various location models are used to
locate emergency vehicles at candidate locations and the measures related to equity
such as the Gini coefficient and the variance of region-wise measures are checked. In
an extensive computational study based on simulation optimization is conducted. The
effect of network features and model choices on equity measures, and the trade-off

between overall performance and equity are revealed.

It is shown that equity is overlooked when overall performance measures such as
mean response time and expected satisfied demand are used in the objective function.
Deterministic coverage constraints based on mean travel time decrease the disparities
among regions. Region-wise performance measures improves equity at the most

in the expense of overall measures. It is seen that network features affect equity
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differently under different models depending on the network. Therefore, it might
be beneficial to incorporate the network specifications in the determination of the

mathematical model to be used.

Simulation of real-life systems is computationally expensive and exhaustive as the
gap between the simulation model and reality decreases. Another issue with using
simulation is the issue of selecting the best solution from alternative solutions where
simulation output analysis requires handling of randomness in the output variables.
As the number of alternative solutions increases, an algorithmic approach is needed to
select the best solution. In line with this requirement, we use a selection and ranking
algorithm, KN+ +, to select the best solution for a problem instance in Chapter 3| This
algorithm still requires running the simulation models for every feasible solution for
an initial number of demand calls to eliminate inferior alternatives. Although the
algorithm continues eliminating inferior solutions until the termination, it still uses

simulation models, and the computational burden persists.

Due to the reasons mentioned, a decomposition method with problem specific variants
is proposed in Chapter 4, The evaluation of the performance measures of an EMS
system relies on the queueing models constructed in the decomposition methods.
EMS system is decomposed into separate interdependent queueing models, and
performance measures of the EMS system are estimated based on the steady-state
distributions of those interdependent models. Differently from the literature, the
performance of the decomposition methods are checked on optimization problems.
A meta-heuristic algorithm is proposed to obtain well performing solutions for the
optimization problems by using the decomposition methods to assess the objective

function values.

The proposed decomposition methods performs very well in optimization problems
for several objective functions, regardless of the network features. The proposed
meta-heuristic algorithm is easy-to-apply, gives well performing solutions, and
the required computation time is significantly less than the time for simulation
optimization. Hence, we deliver a good approximation algorithm for the performance
measures of an EMS system based on queueing theory which can be used within

meta-heuristic algorithms to find solution to optimization problems.
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The decomposition methods proposed in Chapter [] requires algorithmic solution
approaches in approximating the steady-state distribution which is the solution to
a nonlinear set of equations. Therefore, the decomposition methods are more
computationally burdensome than closed-form mathematical models for which
commercial solvers are easily exploited to solve. So, the interdependence among
queueing models in Chapter[d]is ignored in Chapter[5]in order to develop approximate
closed form formulations for the performance measures of the EMS system. Due
to the simplifications in the problem environment, closed-form formulations for the
performance measures are constructed based decision variables which are used to
propose mixed integer nonlinear programs for the EMS vehicle location problems.
Hence, the decision makers are provided with a mathematical model that could be
solved with commercial solvers and incorporates uncertainties in the demand, travel

time and incident handling time based on queueing theory.

With an extensive computational study, it is shown that MINLP models performs well
under the objective functions, maximum expected satisfied demand and maximum
expected covered demand, on both toy and real life data. The performance of the
MINLP models varies under different objective functions, models having regional
measures in the objective functions are particularly not performing well while the
performance might be acceptable under minimum mean response time objective
regarding the simplicity of the modeling approach. Overall, the proposed closed-
form approximations can be used to maximize expected satisfied or covered demand
in EMS vehicle location problems without any need for the estimation of problem

parameters in advance as in MEXCLP.

With this thesis, we study EMS vehicle location problem in terms of equity in depth,
deliver decomposition methods that can be used to estimate the performance measures
of the EMS systems, propose MINLP models for the EMS vehicle location problems

that can be solved with commercial solvers.
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Appendix A

DETAILS OF MANOVA ANALYSIS

Multivariate analysis of variance (MANOVA) is used to test the significance of effects
of factors on multiple response variables. MANOVA requires the assumptions of
analysis of variance (ANOVA) to be satisfied and some additional assumptions. These
are the absence of multivariate outliers, absence of multicollinearity, multivariate
normality, homogeneity of covariance matrices, and linear relationship between

response variables in each treatment group.

To satisfy the absence of multicollinearity, response variables with a correlation
higher than .90 are suggested to be excluded from the test by Tabachnick and Fidell
(2013). Mardia’s test is used to assess multivariate normality, which is proposed
by Mardial (1970). Heterogeneity in covariance matrices is said to affect the test’s
significance minimally when equal sample sizes for each group are satisfied, which is
also the case in our tests. Still, we use Box M test proposed by Box! (1949) to test the
homogeneity of covariances. The existence of a linear relationship between response

variables in each group is checked visually with scatter plots.

The statistical test are conducted on R environment. We use manova function from
stat s package to apply MANOVA, boxM function for Box M test frombiotools
package, mvn function for Mardia’s test from MVN package by Korkmaz et al.|(2014)
to assess multivariate normality , Shapiro-Wilk test from MVN package to assess
univariate normality. As an example, the output of the MANOVA on R environment

where Model factor has only two levels as P; and Pj are given in Table

According to the results in Table it is seen that p-values (Pr(> F)) for all
factors and interaction terms are smaller than 0.05. So, all the terms are significant.

Therefore, we conclude that the difference between P; and Pj is statistically
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Table A.1: MANOVA results where Model has two levels as P; and Ps

Type II MANOVA Tests: Pillai test statistic Df test stat approx F num Df den Df Pr (>F)

Model 1 0.88966 1302 2 323 < 2.2e-16
Pattern 2 1.99632 87935 4 648 < 2.2e-16
Number of Vehicles 2 1.86597 2255 4 648 < 2.2e-16
Incident Handling Rate 1 0.99643 45118 2 323 < 2.2e-16
Model:Pattern 2 1.57626 603 4 648 < 2.2e-16
Model:Number of Vehicles 2 1.13732 214 4 648 < 2.2e-16
Pattern:Number of Vehicles 4 1.97014 5344 8 648 < 2.2e-16
Model:Incident Handling Rate 1 0.64860 298 2 323 < 2.2e-16
Pattern:Incident Handling Rate 2 1.92597 4215 4 648 < 2.2e-16
Number of Vehicles:Incident Handling Rate 2 1.01429 167 4 648 < 2.2e-16
Model:Pattern:Number of Vehicles 4 1.55479 283 8 648 < 2.2e-16
Model:Pattern:Incident Handling Rate 2 0.84775 119 4 648 < 2.2e-16
Model:Number of Vehicles:Incident Handling Rate 2 0.78150 104 4 648 < 2.2e-16
Pattern:Number of Vehicles:Incident Handling Rate 4 1.46324 221 8 648 < 2.2e-16
Model:Pattern:Number of Vehicles:Incident Handling Rate 4 0.57631 33 8 648 < 2.2e-16

significant, although they are found to be very similar by hierarchical agglomerative

clustering.
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Appendix B

DETAILED DOE RESULTS FOR THE GENETIC ALGORITHM

Table B.1: Percent of Time IQM-CF-E Optimum Found in a single GA run (%)

Form Nb. of Vehc. Incident Hand. Rate

S Ue  Upm Uni. C-A. O-A. 4 5 6 36 9 12
50 0.8 0.05 36 31 68 51 43 40 58 49 42 30
0.1 50 43 79 68 56 48 69 66 41 53

0.9 0.05 33 30 65 53 43 32 57 41 37 36

0.1 52 44 73 61 62 47 62 61 50 52

100 0.8 0.05 61 57 93 78 75 57 82 70 60 68
0.1 73 67 97 83 86 68 87 83 74 171

09 0.05 66 55 91 79 69 63 77 74 64 67

0.1 77 66 100 91 80 72 92 80 74 77

Table B.2: Percent of Time IQM-CF-E Optimum Found among 10 GA runs (%)

Form Nb. of Vehc. Incident Hand. Rate

S Ue U Uni. C-A. O-A. 4 5 6 3 6 9 12
50 0.8 0.05 100 83 100 100 100 83 100 100 89 89
0.1 100 100 100 100 100 100 100 100 100 100

0.9 0.05 100 83 100 92 100 92 100 100 89 89

0.1 100 92 100 100 100 92 100 100 89 100

100 0.8 0.05 100 100 100 100 100 100 100 100 100 100
0.1 100 100 100 100 100 100 100 100 100 100

0.9 0.05 100 100 100 100 100 100 100 100 100 100

0.1 100 100 100 100 100 100 100 100 100 100
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Table B.3: Percent of Time KN++ Optimum Found in a single GA run (%)

Form Nb. of Vehc. Incident Hand. Rate

S Ue  Um Uni. C-A. O-A. 4 5 6 36 9 12
50 0.8 0.05 28 22 33 33 13 36 40 27 24 19
0.1 35 28 39 37 23 42 40 33 26 37

09 0.05 27 18 30 33 18 24 37 19 23 21

0.1 39 28 34 37 23 42 40 34 27 34

100 0.8 0.05 46 28 40 43 21 49 42 33 36 40
0.1 58 28 43 42 31 57 47 44 36 46

0.9 0.05 51 29 41 43 25 53 52 37 34 38

0.1 58 35 42 48 29 58 52 40 42 44

Table B.4: Percent of Time KN++ Optimum Found among 10 GA runs (%)

Form Nb. of Vehc. Incident Hand. Rate

S Ue U Uni. C-A. O-A. 4 5 6 3 6 9 12
50 0.8 0.05 92 75 67 8 67 83 8 67 89 67
0.1 92 75 83 75 75 100 78 89 78 &9

0.9 0.05 83 75 58 75 67 5 78 78 78 56

0.1 92 75 67 67 67 100 8 67 718 78

100 0.8 0.05 83 67 50 67 50 &3 67 67 67 67
0.1 92 58 58 58 58 92 67 67 56 89

0.9 0.05 92 75 58 67 67 92 8 67 67 78

0.1 92 67 42 58 50 92 67 67 67 67

168



Appendix C

ON EXPECTED SATISFIED DEMAND AND MEAN RESPONSE TIME

Assume that there are M regions where a single vehicle is to be located with the
objective of minimizing mean response time. Let A; be the demand rate of region
7 = 1,.., M and, let the travel time between region ¢ and j be exponentially distributed
with mean w;;, and let the incident handling time for a region be exponentially

distributed with known mean ¢; for region j.

The EMS system having a single vehicle located at region :could be represented as
a queueing model as follows. {B;,t > T'} is a continuous time Markov chain with

state space L. A state B, could be one of the following:

e j; when the vehicle is responding to a call from region j and it is in the mode
k of the service at time ¢ where k is set to 1,2 or 3 if the vehicle is en-route
to demand region 7, handling the incident or en-route to the vehicle location,

respectively,
e (; when the vehicle being available at time ¢,
e i, when the vehicle is serving a demand call from the region it is located at time
t.
Then, the state space for the queueing model located at region 7 is L = {0;, is, ji.},
j=1,.. M, j#i k=123

An example transition diagram is shown in Figure where ¢, u, v are the regions

and the vehicle is located at region ¢.

Let 7, denote the steady state probability of state b € L, balance equations for the
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Figure C.1: Rate diagram for the queueing model in the example

general queueing model are written as follows:

60 60
T A= Ta s D Mo (C.1)
j=1 b =1 K
60
7r0i)\’i = ﬂ—izg (C2)
60 60 60 ) L
To )\J T, = Tjo— = T3, J :17"7M7j #Z (C3)
ij o8 Wij

To find the steady state probabilities, (C.2), (C.3) and (C.4) are solved simultaneously.

M 3
o, + Tiq + Z Zﬂjk =1. (C4)

j=1,j#i k=1

Based on the definition of steady state probabilities in (C.2)) and (C.3)), we can rewrite

(C.4) as follows:

M
Ni®i ]wl] 2 : J¢J § : wﬂ _
+7T01 60 + E . . + o, 60 =1. (CS)
J=1,j#i J=1,j#i J=1,j#i

<1+Z J¢J+ Z Jw”) —1. (C.6)

J=1j#i
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Note that the second term inside the parenthesis in (C.6}) Zj\il Aéﬁj ,1s a constant and

it is independent of the choice of vehicle location 7. Let this term be equal to p. Then,

o, for the queueing model where the vehicle is located at region % is

1
- M Nowis
L+ p+23 0500 s 50"

(C.7)

o

%

The mean response time of the system where vehicle is located at region 7 is found as

follows: u
Woi)\io + 7T0i ZjZl,j;éi )\jwij

(C.8)
To; Z]J\/il )‘j

1) =

where the numerator is the mean travel time weighted with the number assignments
in unit time to regions and the denominator is the total number of assignments in unit

time.

Simplifying [C.8] the mean response time of the system is calculated as follows:

ZM i
j=Lg#i 7

o= 23{1 Aj

(C.9)

where the denominator, Zj\il Aj, 1s a constant since it is independent form the choice

of vehicle location i. Then, the optimal vehicle location which minimizes R(i) is

: M
argmin,_; s (Zj:l,j;éi Ajwi]’)-

Note that mo, in (C.7) is maximized when > ;_, ,; Ajw;; is minimized since p is

constant. Hence, minimization of mean response time maximizes 7, in the special

case where one vehicle is located.

The expected satisfied demand in unit time is
M
ED(i) =m0, » _ A (C.10)
j=1

M . . . .
where the sum, > | =1 Aj, is again a constant. Then, the solution that minimizes mean

response time maximizes expected satisfied demand by maximizing 7, .

From the other end, one needs to maximize 7, to maximize expected satisfied
demand. 7o, is maximized when i is equal to argmin,_; (Z =1 i /\jwij> . Then,

the optimal solution 7 that maximizes expected satisfied demand also minimizes mean
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response time by minimizing Zj‘il ki Ajw;j (see (C.9)). This completes the proof for

the special case where one vehicle is to be located.

For the case where two vehicles, the balance equations does not allow for an analytical
proof where the state definition would require three entries as it is explained in the
problem definition. In an effort to show a numerical example for the case of two
vehicles, the modes of the service for a call is combined to a single mode where the
time for service completion is assumed exponentially distributed with known mean
(wij + ¢; + w;;). For this queueing model the state definition should store the state of
the vehicle, being free or busy serving a region. Therefore, B; = (k,[) where k,[ =
0,1,..., M is the state where (0, 2) states that the first vehicle is available and second
vehicle is busy serving demand Region 2 at time ¢, resulting in a total of (M + 1)2
states for the queueing model. Based on this definition, the balance equations of this

queueing system is coded in MATLAB where two vehicles are located.

The problem instances from Section 4.4| are used for this experiment. The number of
regions is set to 15, each considered a vehicle location. The demand rate is assumed
to be the same for every region as 0.5 units per hour. The incident handling rate is set
to 3, 6, 9 and 12. In total, 12 instances are generated based on a full factorial design
using two factors: Form with three levels and Incident Handling Rate with four levels

(3,6,9 and 12).

For each alternative solution of the problem instance, balance equations are solved
with the help of MATLAB and mean response time (/?) and expected satisfied demand
in unit time (£'D ) is estimated based on the steady state probabilities. By complete
enumeration, the optimal solution for each problem instance is found. It is seen
that the optimal solution minimizing R and the optimal solution maximizing £ D
are the same solutions for all twelve instances. Although it is not possible to show
analytically that two objectives are equivalent for greater number of vehicles than
one in this problem environment, they are shown to be empirically equivalent for the
two vehicle case as well by assessing the performance measures based on queueing

theory.
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