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ABSTRACT

A GENERALIZED PHASE-FIELD APPROACH FOR THE FAILURE OF
RUBBER-LIKE MATERIALS

Açıkgöz, Kemal

Ph.D., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Hüsnü Dal

February 2023, 128 pages

Dilatational failure in terms of cavity formation and distortional failure guided by

shear-type deformations are the two main failure modes of rubbery polymers. These

modes correspond to deformations associated with the energetic/volumetric and en-

tropic/shear responses under general loading conditions. This work proposes an

energy-based failure criterion with a unique split of the free-energy function in terms

of the first three invariants. Such an ansatz allows various failure modes under vol-

umetric and shear deformations. The baseline hyperelasticity is described by the ex-

tended eight-chain model. As a novel aspect, we introduce distinct degradation mech-

anisms for shear and dilatational deformations that account for the transition from

quasi-incompressible hyperelastic behavior to a porous compressible solid state prior

to macro-crack formation. Herein, separate forms of a tunable Hermitian polynomial-

based degradation function are applied to the free energy function’s dilatational and

distortional parts. The tunable nature of the Hermitian polynomials allow adjustment

of the degradation of each term separately. Utilizing two distinct degradation func-

tions for the volumetric and the entropic parts, the proposed generalized phase-field

approach is shown to allow such transition and the degradation of the Poisson’s ratio
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is captured. Furthermore, the proposed degradation function recovers the quadratic,

cubic, and quadric degradation functions from the literature as its special cases. The

aspects of the proposed energetic failure surface are discussed, and its predictive ca-

pability is demonstrated by comparing it to existing data from the literature. Apart

from separate degradations of the volumetric and entropic parts, a finitely nonlin-

ear viscoelastic theory is utilized to investigate the rate effects to the fracture. An

adjustable contribution of the viscoelastic part to the history field is adopted. Fi-

nally, experimental investigations are performed on unfilled styrene-butadiene rubber

to obtain the base material response, rate effects, and fracture behavior. The fracture

behavior is investigated with special v-shape notched specimens. Various boundary

value problems are solved and the results are compared to the experiments.

Keywords: phase-field fracture, distortional and dilatational failure, rate effects on

the fracture, multi-axial failure surface for rubber-like materials
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ÖZ

KAUÇUK TİPİ MALZEMELERİN HASARINDA GENELLEŞTİRİLMİŞ
FAZ-ALANI YAKLAŞIMI

Açıkgöz, Kemal

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Hüsnü Dal

Şubat 2023 , 128 sayfa

Kavite oluşumuna dayalı hacimsel hasar ve kesme gerilmeleri sebebiyle oluşan şekil

değiştirme tipi hasar kauçuk tipi polimerler için ana hasar mekanizmalarıdır. Genel

yükleme koşullarında bu hasar modları enerjisel/hacim ve entropik/kesme davranış-

ları ile ilişkilidir. Bu çalışma ilk üç invaryantla ilişkilendirilebilir şekilde ayrılmış

serbest-enerji fonksiyonu kullanarak enerji-tabanlı bir dayanım kriteri sunmaktadır.

Bu serbest enerji fonksiyonu ayrıştırma şekli hacimsel ve kesme tipi deformasyon-

larda farklı hasar modlarına izin vermektedir. Burada, temel hiperelastik/mekanik

davranış için genişletilmiş sekiz zincir modeli kullanılmıştır. Özgün katkı olarak,

bu çalışmada kesme ve hacimsel deformasyonlar için farklı bozunum fonksiyon-

ları kullanılmış olup, bu sayede çatlak oluşumu öncesinde sıkıştırılamaz hiperelas-

tik davranıştan boşluklu sıkıştırılabilir katı davranışına geçiş sağlanmıştır. Burada,

ayarlanabilir Hermitsel polinom tabanlı bozunum fonksiyonları türetilmiş olup ser-

best enerji fonksiyonunun hacimsel ve entropik kısımlarına uygulanmıştır, böylelikle

önerilen genelleştirilmiş faz-alanı yaklaşımı Poisson oranının bozunumunu yakalaya-

bilmektedir. Dahası, Hermitsel bozunum fonksiyonu literatürde geçen ikinci derece-
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den, üçüncü dereceden ve dördüncü dereceden bozunum fonksiyonlarına özel durum

olarak indirgenebilmektedir. Önerilen enerjisel ve entropik hasar yüzeyi incelenmiş

olup, literatürde varolan verilerle kıyaslanarak modelin tahmin özellikleri irdelenmiş-

tir. Ayrı bozunum fonksiyonlarının dışında, sonlu ve doğrusal olmayan bir viskoelas-

tik model kurama entegre edilmiş ve hızın yırtılmaya olan etkisi incelenmiştir. Bu-

rada faz-alanının deformasyon geçmişine bağlı fonksiyonuna viskoz branşların elas-

tik kısmı ayarlanabilir bir şekilde eklenmiştir. Son olarak, dolgusuz styrene-butadiene

kauçuk için baz malzeme ve yırtılma davranışını elde etmek adına deneyler yapılmış-

tır. Farklı sınır değer problemleri çözülerek deneylerle kıyaslanmıştır.

Anahtar Kelimeler: faz-alanı yırtılma modeli, hacimsel ve şekil değiştirme tipi hasar,

yırtılmada hız etkileri, kauçuk tipi malzemeler için çok eksenli hasar yüzeyi
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CHAPTER 1

INTRODUCTION, MOTIVATION, AND SCOPE

Hyperelasticity and viscoelasticity: Rubberlike materials exhibit strong rate depen-

dent response that earns rubber excellent mechanical properties highly sought in ap-

plications such as automotive, aerospace and soft robotics, just to name but a few. Vis-

coelasticity improves the fracture toughness and energy absorption capacity rendering

rubber very suitable as shock absorbers and vibration decouplers. The backbone of

finite viscoelastictiy of rubberlike materials is an accurate description of ground state

equilibrium elastic response. In this context, the hyperelastic constitutive models for

rubber can either be represented by (i) phenomenological, or (ii) micromechanically

based free energy functions. The phenomenological models are based on invariant

or principal stretch-based expressions for the free energy function that successfully

fit the experimental stress-strain curves. The invariant based models usually consist

of polynomial combinations [1, 2, 3, 4] or more sophisticated mathematical func-

tionals [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] of the first and second invariants of the

right/left Cauchy-Green deformation tensor. Various functional forms of free energy

have been proposed in terms of principal stretches e.g. [15, 16, 17, 18, 19, 20, 21].

Some material models have a mixed mathematical representation in terms of prin-

cipal stretches and invariants e.g. [22, 23]. Micromechanical models, on the other

hand, are physically-based models, considering the material microstructure by link-

ing the macroscopic mechanical behaviour to molecular structure of rubberlike mate-

rials through statistical mechanics. Herein, the force-displacement relation of a single

free-chain is obtained from a distribution function for the end-to-end distance of the

chain by making use of the concept of entropic elasticity. In this context, a Gaus-

sian distribution function for a free chain with infinite length was derived by KUHN

[24, 25]. MOONEY [2] investigated the form of free energy function in a purely math-
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ematical context applicable for ideal rubber behaviour. Later on TRELOAR [1], using

the WALL’s assumptions [26], and following Kuhn and Grün’s and Mooney’s form,

derived the neo-Hooke model. Note that neo-Hooke model is the simplest constitu-

tive model that extends the concept of linear elasticity to the geometrically nonlinear

setting. Gaussian distribution, lacks the ability to predict stress-strain behaviour at

large deformations, especially around the chain extensibility limit [27]. In order to

circumvent these drawbacks, non-Gaussian distribution functions based on Langevin

statistics are utilized in the sense of KUHN AND GRÜN [28]. Within this context,

WANG & GUTH [29] proposed the three-chain model, FLORY & REHNER [30] the

four-chain model, TRELOAR & RIDING [31] the full network model and ARRUDA &

BOYCE [32] the eight-chain model. All these models make use of a fixed relation be-

tween micro-scale and macro-scale deformations. MIEHE ET AL. [33] proposed the

non-affine micro-sphere model which extends the full-network model of TRELOAR

& RIDING [31] by introducing a non-affine average network stretch and an addi-

tional tube-constraint which accounts for the topological constraints. The notion of

tube model or tube-constraints is based on the fact that polymer chains are not free.

In three dimensional network chains not lying in the same plane causes topological

constraints on one another. For this reason, the network models that rely on the free

motion of the chains usually underestimate the stress response under biaxial defor-

mation upto moderately large stretches. The tube and the extended tube model of

KALISKE & HEINRICH [22, 23, 34], the constraint-junction model of FLORY & ER-

MAN [35, 36] and the non-affine micro-sphere model of MIEHE ET AL. [33] take

into account the topological constraints on the free motion of the polymer chains by

introducing a tube-like constraint. For an extensive overview of the aforementioned

models, we refer to the review papers [37, 38, 39, 40]. The micro-sphere model

shows an excellent fitting performance to uniaxial and (equi)biaxial tests. However,

its computational cost is considerably higher than classical invariant-based formula-

tions. The eight-chain model succesfully captures the uniaxial tensile behavior but it

lacks the ability of simultanous fitting of uniaxial and (equi)biaxial tests. It is a com-

mon practive to improve the biaxial performance of the first invariant based models

by incorporation of a second invariant term [41]. In this respect, micromechanically

motivated models based on the first invariant can be either improved by a second in-

variant based term [34] or a principal stretch based term [42, 23, 12]. The extended
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tube model of KALISKE & HEINRICH [23] and the review paper of BOYCE & AR-

RUDA [40] utilize a principle stretch based expression as a tube constraint, where

the former uses a Ogden-type term with negative power and the latter uses a con-

straint term proposed by FLORY & ERMAN [36]. Moreover, the second invariant

based models lack the convenient functional form. A rigorous analysis which es-

tablishes the relation between the tube-constraints and the second invariant has not

been treated in the literature yet. In order to resolve this issue, in this contribution,

we propose an extended eight-chain model by reinforcing the free energy function in

terms of a tube constraint part. Within this context, micro-macro transition between

the micro-kinematic tube constraint and the second invariant is established and a sim-

ple yet instrumental second invariant based term for the free energy function, which

significantly improves the biaxial response of the eight-chain model, is derived [43].

Experimental investigations of viscoelasticity in rubberlike materials are reported in,

e.g., references [44, 45, 46, 47]. The fundamentals of linear and nonlinear viscoelas-

ticity theory of polymers are reviewed in, e.g., [48, 49]. The early treatment of rubber

viscoelasticity is based on the finite linear viscoelasticity of COLEMAN AND NOLL

[50] as an extension of linear viscoelasticity. Most theories of finite viscoelasticity

exploit the general axiom of a fading memory introduced by COLEMAN [51], see also

TRUESDELL & NOLL [52]. Recent models of finite linear viscoelasticity use a stress-

type internal variables [45, 53, 54, 55]. For an excellent review, we refer to HAUPT

& LION [56] and MIEHE AND GÖKTEPE [47]. Internal variable type formulations of

finite viscoelasticity based on the multiplicative decomposition of deformation gra-

dient are outlined in [57, 58, 59, 60, 61]. An alternative kinematic representation

of finite viscoelasticity based on a Lagrangian viscous metric tensor is proposed by

MIEHE AND KECK [46]. The algorithmic implementation of internal variable type

formulations of finite viscoelasticity is shown in REESE AND GOVINDJEE [60] and

DAL & KALISKE [62] in the sense of SIMO & MIEHE [63] (for finite elastoplas-

ticity) and SIMO [64] (for viscoplasticity). Therein, a predictor-corrector algorithm

along with exponential mapping is employed for the integration and solution of the

evolution equation in a time-discrete setting, see [65, 66]. These approaches use the

unconditionally stable backward Euler scheme for the integration of the evolution

equation in a time-discrete setting. EIDEL ET AL. [67] reported a considerable speed
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up in convergence by replacing backward Euler integration scheme with higher order

Runge-Kutta methods. Another approach for finite viscoelasticity of rubberlike mate-

rials is the utilization of the micro-sphere kinematics where the three-dimensional vis-

coelasticity is obtained by integration of one-dimensional rheological constructions

via numerical quadrature over unit sphere. Within this context, MIEHE & GÖKTEPE

[47] proposed a finite viscoelasticity model depending on two micro-kinematic scalar

internal variables on discrete space orientations of the micro-sphere. In fact, two

micro-mechanisms for the relaxation process of polymer chains are introduced: The

relaxation of superimposed entanglements and the release of topological constraints

are taken into account by a spectrum of nonlinear evolution laws in the logarithmic

space of the discrete space orientations. Extension of this approach to the viscoplastic

response of uncured green rubber is achieved by DAL ET AL. [68].

Two molecular approaches for the description of the time-dependent behavior of poly-

mer chains exist. Transient network theory explains the stress relaxation phenomenon

as a consequence of breakage and reformation of the cross-links continuously. The

theory was firstly proposed by GREEN & TOBOLSKY [69] and further developed

by LODGE [70], PHAN-THIEN [71] and TANAKA AND EDWARDS [72, 73]. This

approach was also adopted to the microsphere model by LINDER ET AL. [74].

Reptation-type tube models were developed for the definition of the motion of a single

chain in a polymer gel. The constraints on the free motion of a single chain are qual-

itatively modeled as a tube-like constraint and the motion of the chain is described as

a combination of Brownian motion within and reptational motion along the tube. The

model is proposed by DE GENNES [75] and DOI & EDWARDS [76]. The reptational

motion is successfully adopted to finite viscoelasticity by BERGSTRÖM & BOYCE

[59]. Two drawbacks of their approach can be observed in the evolution equation.

That is, the creep rate function γ̇ is singular at the onset of loading leading to an ini-

tial asymptotic behavior in the relaxation curves which is not a characteristic behavior

of the rubberlike viscoelastic behavior. Incorporation of a perturbation parameter to

the kinetic term helps to overcome the singularity in the evolution law. However,

the model becomes very sensitive to the perturbation parameter leading to an extra

material parameter in the evolution equation. Moreover, incorporation of a fictitious

viscous network stretch λin to the evolution equation is not physically conceivable and
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causes problems in the derivation of the consistent tangent necessary for the finite el-

ement implementation. Recently, a rate and amplitude dependent finite viscoelastic

model based on the dynamic flocculation model for filled rubber has been proposed

by RAGHUNATH ET AL. [77].

Historical remarks, path to phase-field approach, and the state of the art: The

design and reliability of rubber components heavily depend on the prediction of fail-

ure in such materials. The crack initiation as well as propagation have to be incor-

porated as computational models into the design process. The historical development

of the classical treatment of brittle fracture starts with the works of GRIFFITH [78]

and IRWIN [79]. The kickstarting idea was to define a crack propagation criterion

based on the energy release rate. That is, the decrease of the potential energy has

to be spent on the formation of new crack surfaces, linking the existence of cracks

to surface energy. Later on, the theory has been solidified by LIEBOWITZ AND SIH

[80]. This particular approach fails to determine curvilinear crack paths, angles of

crack branching, and other complex propogation patterns. Especially, the idea has a

dramatic failure on predicting the crack initiation. There has to be an already present

crack for this approach to work [81, 82]. The field of fracture mechanics later on

flourished and literature expanded exponentially. During the late 90s, a variational

take on of the problem has been studied by FRANCFORT AND MARIGO [83] to mit-

igate the shortcomings of the classical theory. This idea, based on the energy mini-

mization, effectively allows prediction of crack initiation. Following Γ-convergence

argument for a free discontinuity problem in image segmentation context from MUM-

FORD & SHAH [84], BOURDIN ET AL. [85, 86] came up with a regularization for

the variational approach of [83]. The resulting regularization diffuses the sharp crack

topologies with the use of an auxiliary variable. This variable can be termed phase-

field, takes on continuous values within [0, 1] range, and describes a state of fracture

between the fully intact to fully broken ranges. Later on MIEHE ET AL. [81] casted

this approach to a thermodynamically consistent framework, and presented a two-

field (rate-independent) and three-field (rate-dependent with an additional dual driv-

ing force field) implementations that take only the tensile part of the energies to drive

the crack. The resulting field equations ushered a new era in fracture mechanics where

the phase-field approach becomes a solid alternative path. Furthermore, MIEHE ET
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AL. [87] implemented an operator-split based staggered algorithm with an additional

field, coined as history field. It provides a compact staggered scheme for modular ap-

plications as we also pursued in this study. The advantage of the phase-field approach

is its obvious circumvention of the necessity to track the newly formed crack sur-

faces. Instead of dealing with sharp crack discontinuities, phase-field approach casts

everything into continuously defined field PDEs, which makes it extremely easy to

implement in a finite element setting. It introduces a length-scale parameter reminis-

cent of the gradient-type materials or materials with microstructure, see [88]. Apart

from the classical treatment of phase-field approach, the implementation for rubber-

like materials came later by SCHÄNZEL ET AL. [89, 90], MIEHE & SCHÄNZEL [91],

and SCHÄNZEL [92]. The mostly rate-independent theories so far provide a transi-

tion from classical treatment of fracture and the implementability of the phase-field

approach. However, artificially viscous (or rate-dependent) settings also appear in

[81, 89, 91, 90]. The introduced viscous regularizations merely provide numerical

stability after crack initiation.

Rate-effects on fracture and rate-dependent theories regarding phase-field ap-

proach: Rubber-like materials are strongly rate-dependent in both their mechanical

response and fracture properties. The most fundamental characteristics, relevant to

the phase-field theory, is the fracture toughness or the critical energy release rate Gc,

as a material parameter. Therefore, one can, naturally, start with a phenomenological

expression for a rate dependent critical energy release rate. In [93], YIN ET AL pro-

posed a rate-dependent fracture toughness with a degradation characteristic given in

the context of phase-field fracture in terms of small-strain rates. This is an excellent

modification for the critical energy release rate Gc for varying strain-rates. However,

the theory is in small-strains setting and focuses on the evolution of fracture. Re-

sulting behavior observed on simulations where increased loads appears on fracture

for simulated load-displacement curves. [93] attributed this to the difference in chain

strength and strength of entanglements and cross-links. For the loads applied in high

strain-rates, the relaxation kinetics transfers the loads towards equilibrium, however

the chains’ relaxation is not infinitely fast and the chains become the main carriers of

the load, which require more energy to break. This theory does not require tracking

the crack propagation velocity ȧ (as in the case of [94]), since it utilizes a phase-
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field framework. LOEW ET AL. [95] directly extended the numerical stabilization

parameter (also present in our theory) of MIEHE & SCHAENZEL [96] and gave a vis-

coelastic response to the bulk, and obtained the first finite theory. The damage growth

is regularized and a rate-dependent driving force expression is obtained. This theory

incorporates the finite strains linearly viscous theory of HOLZAPFEL [97] and avoids

local history field (of [81]) altoghether. With the history variable expression, they ob-

served an unbounded growth of phase-field even though H stays constant. Therefore,

they used an active set method to stop the growth of d. The provided experiments

on EPDM rubber for SENT as well as DENT specimens validates their theory. Since

the degradation functions are an integral part of the phase-field approach, they dis-

cussed the several known degradation functions and their effects as well. Also, the

calibration of the phase-field length scale parameter l through DIC renders physi-

cally accurate results. In [98], YIN & KALISKE proposed another approach, where

they tracked the intact total free energy consisting of the summation of equilibrium

and non-equilibrium responses as the history variable in the phase-field expressions.

Their viscoelastic expressions are based on REESE & GOVINDJEE’s nonlinearly vis-

cous theory [60], and utilize neo-Hookean Maxwell branches for equilibrium as well

as non-equilibrium responses. This theory correctly captures the increase in reaction

force at fracture on a load-displacement curve at increasing rates for the SENT (sin-

gle edge notched) and DENT (double edge notched) experiments on EPDM rubber of

LOEW ET AL. [95]. SHEN ET AL. [99] used another approach to take rate-dependent

effects into the fracture process by incorporating a portion of the dissipated energy

into the dissipation inequality expression and derived the rate-dependent PDEs of the

multi-field problem. The amount of contribution is controlled with a parameter. The

postulation regards the Fig. 1.1 as mental picture where an inner highly non-linear

region (region III) and a mainly viscous driven dissipative region (region II) con-

stitute the fracture process zone. In our work, the region III is also of main concern,

where we obtained a degrading incompressibility of the bulk. However, SHEN ET

AL. considered region II as the main effect that ties the phase-field fracture and

viscous response at the bulk. Accordingly, this dissipative region is a source of self

heating which promotes the nucleation as well as propagation (altering the evolution

of crack growth rate) of fracture. Although the temperature increase is evident, a fur-

ther study is needed to quantify this increase with a thermo-mechanical coupling in
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the phase-field approach. Finally, note that the theory [99] is linear in elastic as well

as viscous branches.

I

II

III
PP

Figure 1.1: A representative schematic view of the process zone around the crack

tip [99]. I denotes the uneffected (and undamaged) region, II represents the region

where viscoelastic dissipative effects take place, finally, III shows the region where

nonlinear inelastic and irreversible processes occur, these can be counted as cavity

formation, bond or cross-link rupture.

Cavity formation, multi-axial failure surface for rubber-like materials, and the

loss of incompressibility: GENT & LINDLEY [100]’s experiments on a pancake-type

arrangement (also known as poker-chip experiments, see Fig. 1.2) showed rather un-

expected behavior of rubber-like materials, where under sufficiently large volumetric

tensile deformations cavitation occurs. This instability-like failure mode observed to

be intrinsically tied to the shear modulus, where a critical load in pancake-type experi-

ments appear to be a function of the shear modulus only. A new and elaborate analysis

of GENT & LINDLEY [100]’s poker-chip experiments appear in the work of KUMAR

& LOPEZ-PAMIES [101], where a careful discussion is put forth on whether it can

be considered as an elastic-instability or a fracture process. The elastic-instability

is mathematically shown to be the case by BALL [102] for the initiation of the cav-

ities, whereas continuum damage based theories considered it as a fracture process

[103, 104] and there appeared successful computational implementations for both

initiation and growth, see DAL ET AL. [68]. Under multi-axial deformations, the

failure surface for rubber-like materials must also predict the initiation of the cavities.

This mode of failure is named as dilatational in this thesis. The failure mode related
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to shear-type deformations is called distortional. The failure surfaces for solids are

generalized over the years, phenomenologically, and there appears quite successful

mathematical forms within this context. In metals and other energetic solids, stress-

driven failure surfaces (see KOLUPAEV [105] for an excellent review) sufficely define

the behavior. However, the rubber-like or other entropic materials favor energy based

failure surfaces, see GÜLTEKIN ET AL. [106].

P

PP

P y

x
specimen

L

H

u

Figure 1.2: Poker-chip experiments (or pancake-type loading) of GENT & LINDLEY

[100]. Due to the aspect ratio of the cylindrical specimen, the deformation in the

load-application direction changes the volume of the cylinder, causing cavitation.

Within the context of multi-axial failure surfaces for rubber-like materials, ROSENDAHL

ET AL. [107] recently put forward an equivalent strain based failure criterion. Within

this excellent work, we can see direct equivalent-strain based counterparts of the

classical equivalent-stress failure surface definitions, e.g., von-Mises, Tresca, and

more advanced ones as in Podgorski-Bigoni-Piccolroaz. The idea of equivalent-strain

based failure criterion allows the definition of complex failure criteria for rubber-like

materials. On the other hand, direct energy based failure criterion (the energy-limiters

approach) of VOLOKH [108], depending on the complexity of the underlying hyper-

elastic model, could predict the failure under biaxial as well as the hydrostatic loads.

However, this theory follows a separate path apart from phase-field approach for the

failure. A separate considerations of free-chain response and the constraint response

would allow prediction of biaxial failure more precisely. In this regard, the extended
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eight-chain model of DAL ET AL. [43], can be considered superior as it microme-

chanically quantify free-chain, and constraint part responses, as functions of I1, I2.

Therefore, we pursued a failure surface definition considering these separate terms in

this thesis.

Motivation of the thesis and the problem definition: The understanding of the pro-

cess zone for the fracture of rubber-like materials stands equally important to the met-

als. Albeit, a complete picture of the process zone is lacking, also the understanding

of the formation and propagation of cracks in rubber-like materials stay incomplete.

Much efforts have been devoted in literature to the separate investigations regarding

hyperelasticity, finite viscoelasticity, fracture, and cavity formation throughout the

years. Considering the current understanding of the process zone, depicted in Fig. 1.1,

an experimentally evident (see LE CAM ET AL. [109]) phenomenon takes place, that

yet to be modeled. This phenomenon can be described as follows. For the Mode-I

type fracture depicted in Fig. 1.1, in region III , small cavities appear just before the

propagation at the notch tip, or on the crack front. In Fig. 1.3, the process of forma-

tion of cavities and the onset of propagation of crack is portrayed. Note that, for all

intensive purposes, rubbery materials are considered incompressible or at least quasi

incompressible. However, this phenomenon suggests the loss of the incompressibility

of the base rubber specimen. In this work, we tackled the problem of degradation of

incompressibility and its adaptation within the phase-field fracture formulation. To

this end, ANG ET AL. [110] and LI & BOUKLAS [111] proposed separate degra-

dation of volumetric and isochoric parts in their associated element formulations for

stability purposes. Here, in this thesis, the extended eight-chain model provides a

stronger split called the volumetric-entropic separation, and its micro-mechanically

motivated terms can be extended to provide a multi-axial failure surface as well as a

physically motivated degradation of the incompressibility.

Furthermore, a lack of definitive micro-mechanically motivated multi-axial failure

surface for rubber-like materials hinders painting a complete picture of fracture. Fur-

thermore, regarding zone II in Fig. 1.1, rate effects are needed to be considered for

a complete picture as well. In this context, incorporation of a finite viscoelasticity

theory within the phase-field framework for the rate effects is still not mature in lit-

erature. In summary, a nonlinear inelastic (due to cavity formation at the crack tip),
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Figure 1.3: Snapshots of deformation around a notch tip (by LE CAM ET AL. [109])

portraying the formation of cavities as precursor to the propagation of cracks.

and the nonlinear rate-effects play crucial roles in the fracture process. The goals of

the thesis are as follows,

• definition of a failure surface for rubber-like materials that can take into account

(equi)biaxial or fully multi-axial loadings,

• derivation of a phase-field formulation that can presently allow multiple degra-

dation functions for the modeling of the crack tip incompressibility loss,

• incorporation of a finite viscoelasticity theory with a nonlinear evolution law

into the phase-field formalism,

• experimental validation of the theory.

Scope of the thesis: We have investigated the aforementioned aspects of failure in

rubber-like materials. The ongoing state of mind during the development up to the

finish of this work was to incorporate these aspects as consistently as possible. We

restricted ourselves to single type of material, that is, the unfilled SBR, for exper-

imental validation. The stochastic nature of the fracture of rubber-like materials is

disregarded altogether to be able to confine ourselves to the investigation of the pos-

sibilities of the current study. In the results section, we restricted ourselves to entropic

failure and kept the implied aspects of the volumetric failure to the future studies.
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Outline of the thesis: The overall structure of the thesis is as follows: In Chapter 2 we

expressed the prerequisites in terms of notation and theory, and briefly summarized

the continuum mechanics. Next, a nonlinearly viscous theory based on the extended

eight-chain model is introduced in Chapter 3. The multiphysics problem is described

in Chapter 4, where the phase-field approach, tunable degradation functions based

on Hermitian polynomials, and the degradation of incompressibility are formalized.

Based on a special transformation, in Chapter 5, generalized phase-field model’s im-

plied failure criteria is investigated, comparison with equivalent strain failure criteria

and experimental data is pursued. Next, in Chapter 6, the nonlinearly viscous theory

is incorporated into the generalized phase-field formulation in a modular sense, its

merits and comparison to literature are reported. Later on, the procedures and the

results of the experimental work on unfilled SBR are given in Chapter 7. Finally, the

results of the theory are presented on several boundary value problems in Chapter 8

and compared to both literature and in-house experimental work. Finally, the overall

conclusions on this work are given in Chapter 9.
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CHAPTER 2

FUNDAMENTALS OF CONTINUUM MECHANICS

In this chapter we briefly outline the continuum concepts and the notation related

to this work. The finite deformation requires kinematical definitions of several de-

formation measures, such as the right Cauchy-Green tensor. The concept of stress

and Cauchy’s stress theorem then explained. Next, we discussed the principles of

balance of mass, balance of linear and angular momentum, and balance of energy.

The second law of thermodynamics, the Clasius-Duhem inequality and the concept

of Coleman-Noll procedure are then explained. The chapter closes with a discussion

of hyperelasticity and constitutive equations.

In this part, we kept the definitions as compact as possible, thus, of course we re-

fer the interested reader to the monumental works of MARSDEN & HUGHES [112],

MALVERN [113], TRUESDELL & NOLL [52], HAUPT [114], and HOLZAPFEL [115].

2.1 Kinematics

Let B denote a continuum body at time t with particles P ∈ B. Consider an Eu-

clidean resolution of the coordinates of the particles, where a reference right-handed

rectangular coordinate system at origin O with orthonormal basis vectors {ea} =

{e1, e2, e3} can be introduced. As the body moves across time, the occupied region

in space changes. Let an occupied region of space at time t be called a configuration

χt. The overall motion of the body defines a continuous set of configurations χ0...χt.

With this notion at hand, one can define χ0 as an undeformed configuration at t = 0,

or the reference configuration (it doesn’t have to be undeformed). The configuration

at t = 0 is called the initial configuration, and we assume reference and initial con-
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figurations coincide. A point in the body P ∈ B can be represented by X in the

reference configuration. We can define a separate coordinate system for the refer-

ence configuration with bases {EA}, however, here, we take this coordinate system

coincident with {ea}. A configuration at any time t other than t = 0, is called the

current or deformed configuration. The position of the point P at t can be identified

with x. We refer the coordinates X and x as material (reference) and spatial (cur-

rent) coordinates of the material particle P . Let a one-to-one mapping of the particles

to the coordinates in reference frame be denoted by X = χ̂(P). Furthermore, let

x = χ̄(P, t) denote a one-to-one mapping of particles to their position in the current

configuration. Then, we can define

x = χ̄
[
χ̂−1(X, t)

]
= χ(X, t) (2.1)

where χ denotes the vector field for the motion of the body B. Its inverse (the inverse

motion) is assumed to be defined uniquely, X = χ−1(x, t). Note that we adopt the

Einsteins’s summation convention, where a vector can be represented by a = aiei

for i = 1, 2, 3. A second order tensor, then can be represented by A = Aijei ⊗ ej for

i = {1, 2, 3} and j = {1, 2, 3}, where ⊗ is the dyadic product andAij are components

of the tensor A in the right-handed orthonormal bases {ea}. We can denote A as Aij

in indicial notation, as shorthand. Next we outline some basic definitions,

displacement:

U(X, t) = x(X, t)−X and u(x, t) = x−X(x, t) (2.2)

velocity:

V (X, t) = ∂tχ(X, t) and v(x, t) = V [χ−1(x, t), t] (2.3)

acceleration:

A(X, t) = ∂2tχ(X, t) and a(x, t) = A[χ−1(x, t), t] (2.4)

in material and spatial coordinates, respectively.

material and spatial derivatives: Material time derivative (or the total derivative)

of a material field W (X, t), is the derivative of W with respect to time, keeping X

constant. It is shown by Ẇ (X, t) = D(W (X, t)/Dt. Similarly, the material time
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derivative of a spatial field w(x, t) is the time derivative of w while keeping X fixed.

It can be written as

ẇ(x, t) =
D(w(x, t))

Dt
=
∂w(x, t)

∂t
+ grad(w(x, t)) · v (2.5)

where, grad(•) = ∂(•)/∂x is the spatial gradient operator, the first part of the equa-

tion is the local time derivative of the spatial field w, while the second part is the

convective rate of change of w.

deformation gradient: As the bodyB moves, the position of a particle P ∈ B defines

a trajectory. The tangent in material coordinates to this trajectory at any point define a

local deformation measure, called the deformation gradient, which we intensely use,

that is,

F (X, t) =
∂χ(X , t)

∂X
= Gradx(X, t) (2.6)

where Grad(•) = ∂(•)/∂X is the material gradient operator. The deformation gra-

dient defines a mapping between infinitesimal line elements dX and dx. For the

parameterization of the trajectories of the particles P ∈ B and a more elaborate defi-

nition of the deformation gradient, see HAUPT [114] and HOLZAPFEL [115].

Nanson’s formula, area map, and volume map: The volume map, between material

volume (dV ) and spatial volume (dv) elements can be defined as

dv = JdV (2.7)

where J(X, t) = detF (X, t). Let the area dS in reference configuration with unit

vector N be mapped to ds in current configuration with unit vector n during the

motion. The infinitesimal volume element in current configuration can be written as,

dv = ds · dx = JdS · dX = JdV (2.8)

from where we can use dx = F dX , and obtain,

ds · F dX = JdS · dX =⇒ ds = JF−TdS (2.9)

which relates the vectorial areas dS and ds. This relationship is known as Nanson’s

formula.
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2.1.1 Deformation measures

Mapping a unit vector A in reference configuration to a in current configuration can

be defined as

a = FA (2.10)

From this definition, we can define λ = |a| as the stretch of the vector A due to the

deformation. Let us take the square of the stretch,

λ2 = a · a = FA · FA = A · F TFA = A ·CA (2.11)

where C = F TF is called the right Cauchy-Green tensor. It is a second order

symmetric positive definite tensor and extremely common measure of deformation

in material coordinates. Its counterpart in spatial coordinates, b, is called the Finger

tensor or the left Cauchy-Green tensor, comes from the definition of λ−2, square of

the inverse stretch, that is,

λ−2 = A ·A = F−1a · F−1a = a · F−TF−1a = a · b−1a. (2.12)

b = FF T is also symmetric and positive definite. If no deformation occurs, we can

see that F = I implying b = I and C = I , here I = δijei ⊗ ej is the second order

identity tensor, with Kronecker delta δij = 1 for i = j and δij = 0 for i 6= j.

rotation and stretch: The polar decomposition of the deformation gradient F reads

F = RU = vR. (2.13)

This relationship defines a decomposition of F into a pure rotation and pure stretch

parts. U and v are right- and left-stretch tensors, respectively, and have the following

properties,

U 2 = UU = C, and v2 = vv = b. (2.14)

The tensor R is a proper orthogonal tensor (detR = 1), and measures the local

rotation. Furthermore, detU = detv = J > 0.
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2.1.1.1 Spectral decomposition, eigenvalues, and eigenvectors of deformation

measures

The right stretch tensor U has the relationship

UN a = λaN a, where |N a| = 1, and a = 1, 2, 3. (2.15)

The set {N a} defines the eigenvectors of U , while λa are the eigenvalues. From

2.14,

CN a = U 2N a = λ2aN a, a = 1, 2, 3. (2.16)

Since both U and C are purely Lagrangian measures, their eigenvectors are the same,

which are called the principal axes. A similar relationship can be obtained for b using

2.14, i.e.,

bna = v2na = λ2ana (2.17)

where na = RN a for a = 1, 2, 3. This relationship shows the fact that v and b are

colinear in spatial coordinates. For λ1 6= λ2 6= λ3, the symmetric tensors U , v,C, b

can be written in their so called spectral decomposition forms

U 2 = C =
3∑

a=1

λ2aN a ⊗N a, (2.18)

v2 = b =

3∑

a=1

λ2ana ⊗ na, (2.19)

Finally, the deformation gradient can also be written as

F =
3∑

a=1

λana ⊗N a, (2.20)

which is a two-point tensor. Since F may not be symmetric λas cannot be considered

as the eigenvalues of F directly. Similarly, R =
∑3

a=1na ⊗N a is also a two-point

tensor.

Since both C and b are symmetric and positive definite, they admit 3 uniquely defined

invariants. The scalar invariants of C can be summarized as,

I1(C) = λ21 + λ22 + λ23, (2.21)

I2(C) = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3, (2.22)

I3(C) = λ21λ
2
2λ

2
3 = J2. (2.23)
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2.1.1.2 Rates of the deformation measures

The spatial velocity gradient,

l(x, t) =
∂v(x, t)

∂x
= grad(v(x, t)) (2.24)

and the material velocity gradient,

Ḟ (x, t) = Grad(V (X, t)) (2.25)

are two major deformation rate measures. l has the property,

l = grad(v(x, t)) = Ḟ F−1. (2.26)

Other valueable deformation metrics

d =
1

2

(
l + lT

)
= sym(gl), and w =

1

2

(
l − lT

)
= skew(gl) (2.27)

are the rate of deformation and spin tensors, respectively. They are the symmetric and

skew-symmetric parts of the l.

2.1.1.3 Push-forward, pull-back, and Lie time derivative

If we assume separate reference frames for the reference and current configurations,

the vectorial and tensorial quantities can be resolved in one of them, by choice. Trans-

formation between material and spatial coordinates is achieved by push-forward and

pull-back operations. These are denoted as χ∗(•) and χ∗(•), respectively. We define

the push-forward of covariant (•)♭ and contravariant (•)♯ objects

χ∗ (•)♭ = F−T (•)♭ F−1 and χ∗ (•)♯ = F (•)♯ F T . (2.28)

Similarly, the pull-back of covariant (•)♭ and contravariant (•)♯ objects read

χ∗ (•)♭ = F T (•)♭ F and χ∗ (•)♯ = F−1 (•)♯ F−T . (2.29)

Lie derivative of an Eulerian object is the push-forward of the material time derivative

of the corresponding Lagrangian object, i.e., L(•) := χ∗

(
˙

χ∗ (•)
)

, which is utilized

to obtain objective time derivatives of Eulerian objects.
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2.2 Concept of stress

da

b ∂S S
t = t(x,−n)

t = t(x,n)

−n

n

S0

∂S0B
∂B

+

Figure 2.1: Removal of a slice S from the body B, illustrating the tractions and the

normals for the slice S and the remaining part S .

Let the body B have some boundary conditions over ∂B and body forces acting on it.

Assume a slice of ∂S has been carved out as shown in Fig. 2.1. The slice S is then

subjected to the traction t and body force b in current configuration. The net forces

on slice S of body B and the remaining part S are as follows

F 1 =

∫

S
bdv +

∫

∂S
t(x,n)ds, (2.30)

F 2 =

∫

S
bdv +

∫

∂S
t(x,−n)ds. (2.31)

The net force acting on the body is F = F1 +F 2, and note that
∫

B bdv =
∫

S bdv +
∫

S bdv. These relationships yield the important equality,

∫

∂S
t(x,n)ds+

∫

∂S
t(x,−n)ds = 0 (2.32)

which can be rewritten in local form as

t(x,n) = −t(x,−n). (2.33)

This relation is known as the Cauchy’s fundamental lemma, and corresponds to the

Newton’s third law of motion. If we define a tensorial quantity σ on a point, then the

traction t at that point can be stated as

t = σ · n (2.34)
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where n is the normal to the cut surface. This relationship is known as the Cauchy’s

stress theorem. And the tensor σ is also called the Cauchy stress. Using the Nanson’s

formula 2.9, we may arrive to an important alternative stress measure,

P̃ = JσF−T = τF−T (2.35)

where P̃ is the first Piola-Kirchhoff stress and τ = Jσ is the Kirchhoff stress tensors.

The symmetric second Piola-Kirchhoff stress (S) is defined as the semi-pull-back of

the first Piola-Kirchhoff stress

S = F−1P̃ = F−1τF−T . (2.36)

2.3 Balance laws

The motion or the state of a body is not arbitrary and must obey the rules of physics.

These rules can be stated as concise balance laws, where at the end, we can come

up with field equations (or governing equations). We will briefly touch the basic

definitions of the balance laws.

2.3.1 Balance of mass

For a closed system, as in the body B, the mass per unit volume is a fundamental quan-

tity which measures the amount of material within the system. Let ρ0(X) denote the

mass density in reference configuration, while ρ(x, t) denote its spatial counterpart.

Furthermore, let the total mass of the body be defined as,

M =

∫

Ω

ρ(x, t)dv =

∫

Ω0

ρ0(X)dV (2.37)

where Ω0 and Ω denote the region of space occupied by the body B in reference

and current configurations, respectively. The conservation of mass states that over

the time, for a closed system, the total mass stays constant, that is, the material time

derivative of the total mass

Ṁ = 0 =⇒ ρ̇0 = 0. (2.38)
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This simple equation represents the balance of mass in Lagrangian description. On

equation 2.37, from the volume map, we can see,

ρ0(X) = J(X, t)ρ(x, t) (2.39)

One can apply equation 2.38 to 2.37, also using 2.39 and observe the property,

Ṁ =
D

Dt

∫

B0

ρ0(X)dV =

∫

B0

D(Jρ)

Dt
dV = 0. (2.40)

The last part of this equation, when localized, boils down to

D(Jρ)

Dt
= J̇ρ = 0. (2.41)

We can resolve the last part as,

J̇ρ = J̇ρ+ Jρ̇ = 0. (2.42)

One can derive J̇ = ˙detF = Jdivv. Using this relationship,

Jρ̇+ ρJdivv = 0 =⇒ ρ̇+ ρdivv = 0 (2.43)

is obtained. Which states the balance of mass in spatial (Eulerian) description. ρ̇ = 0

implies an important kinematical constraint on the motion, that is divv = 0. This

type of motion is called isochoric, or volume-preserving, and has intrinsic ties to the

history of the hyperelasticity for rubber-like materials, which are considered quasi-

incompressible.
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2.3.2 Balance of linear momentum

χ

χ

F

F

N
n

dV dv

X

X

x

x

dA
da

b0 b

∂S0

S0
∂S S

t = σ · n

B0

∂B0

B ∂B

Figure 2.2: Deformation as felt by a slice of region cut from the body, the traction t,

and body force b are shown as reference for the text.

Let the body B have some boundary conditions over ∂B and body forces acting on

it. Assume a slice of ∂S has been carved out as shown in Fig. 2.2. The slice S is

then subjected to the traction t and body force b in current configuration. Let the total

force acting on the slice be represented by F , that is

F =

∫

S
bdv +

∫

∂S
tds. (2.44)

The linear momentum I =
∫

S ρvdv of the slice S is conserved, that can be written

mathematically as

D(I)

Dt
= F , (2.45)

which states that the rate of change of the linear momentum is equal to the net force

acting on the slice. We can apply the Cauchy’s theorem t = σ ·n, thus, equation 2.44
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can be rewritten in Lagrangian setting as

F =

∫

S
bdv +

∫

∂S
σ · nds. (2.46)

We can apply the Gauss theorem to convert the area integral on tractions to volume

integral,
∫

∂S
tds =

∫

S
div (σ) dv =

∫

S0

Div
(

P̃
)

dV (2.47)

Using V = V [X , t] and the conservation of mass statement ρ0 = Jρ, the rate of the

linear momentum can be written in Lagrangian configuration,

I =

∫

S
ρvdv =

∫

S0

ρ0V dV =⇒ D(I)

Dt
=

∫

S0

ρ0V̇ dV (2.48)

Now, the balance of linear momentum can be written as,
∫

S0

ρ0V̇ dV =

∫

S0

b0dV +

∫

S0

Div
(

P̃
)

dV (2.49)

where b0 is the body forces in the Lagrangian configuration. When the global form

2.49 is localized as S0 → dV , one obtains

ρ0V̇ = Div
(

P̃
)

+ b0. (2.50)

In Eulerian coordinates, with the Piola identity and Reynold’s transport theorem,

ρv̇ = div (σ) + b (2.51)

is obtained.

2.3.3 Balance of angular momentum

χ

F

N
n

dV dv

X x
dA

da

b0 b

∂S0

S0

∂S S

t = σ · n

x

O
Figure 2.3: Deformation as felt by a slice of region cut from the body, the traction t,

and body force b, as well as the moment arm x are shown for reference.
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Consider the slice in Fig. 2.2 be zoomed in and shown in Fig. 2.3. The angular

momentum of the slice S can be defined as DO =
∫

S x × ρvdv, with respect to a

fixed point O. And let MO =
∫

∂S x × tds +
∫

S x × bdv be the net moment acting

on the slice S. The balance of angular momentum reads

D(DO)

Dt
= MO (2.52)

which states that the rate of change of the angular momentum with respect to O must

be equal to the net moment acting on the slice S with respect to O. Using the local

form of the mass balance ρ0 = Jρ, and the volume transformation dv = JdV ,

D(DO)

Dt
=

D

Dt

∫

S
x× ρvdv =

∫

S0

x× ρ0V̇ dV (2.53)

can be written. The moments can be transformed to the fixed domain S0 through the

Cauchy’s theorem t = σ · n, Gauss theorem, the definition of the cross-product, and

the Piola identity as

MO =

∫

S0

x× Div
(

P̃
)

dV +

∫

S0

1

2
ǫijk (σji − σij) JdV +

∫

S0

x× b0dV. (2.54)

The conservation of angular momentum statement can be rewritten with the above

transformations in the form,

∫

S0

x×
[

ρ0V̇ − Div
(

P̃
)

− b0

]

dV =

∫

S0

1

2
ǫijk (σji − σij) JdV. (2.55)

Notice that the left hand side of this equation becomes 0 from the conversation of

linear momentum equation 2.50. Which yields,

σji = σij =⇒ σT = σ (2.56)

that is, the Cauchy stress is symmetric. With some simple manipulations, we can

show that the second Piola-Kirchhoff stress is also symmetric,

ST = S. (2.57)

However, we can not make the same statement, in general, for P̃ = FS, i.e., FS 6=
SF T in general.
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2.3.4 Balance of energy

χ

F

N
n

dV dv

X x
dA

da

b

∂S0

S0

∂S S

t = σ · n

h = qn

e, r

Figure 2.4: Deformation as felt by a slice of region cut from the body, the heat flux h,

and the local thermodynamical state e and r are illustrated for reference.

The heat flux h(x, t;n) describes the thermal influence of the rest of the body to the

slice S as shown in Fig. 2.4. It can be phenomenologically written as,

h(x, t;n) = q(x, t) · n (2.58)

using the Eulerian heat flux vector q(x, t). In the Lagrangian configuration, the heat

flux vector reads

Q = JqF−T . (2.59)

The first axiom of the thermodynamics, also known as the balance of energy, de-

scribes the evolution of internal energy in a system, measuring the capacity to do

work. This balance law states that the conservation of energy is achieved by equli-

brating the rate of total energy to the sum of external mechanical and thermal power.

The total energy is the sum of kinetic energy K and internal energy E ,

T = K + E (2.60)

where,

K =

∫

S

1

2
ρv · gvdv, and E =

∫

S
edv (2.61)

in the specific form. In these definitions, e = e(x, t) denotes the internal energy

density per unit volume with the material representation e0[X, t]. The Eulerian metric
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g is necessary to be able to multiply two vs in tangent space. The external mechanical

and thermal powers are

P =

∫

S
b · gvdv +

∫

∂S
t · gvds, and Q =

∫

S
rdv −

∫

∂S
qnds (2.62)

respectively. In these definitions, similarly metric tensor g is utilized. Note that

r = r(x, t) is a given heat source per unit volume. Then, the balance of energy

statement reads

D[K + E ]
Dt

= P +Q. (2.63)

The surface integral in 2.62 can be rewritten using the spatial velocity gradient l =

∇xv and Cauchy’s theorem and reads

∫

∂S
t · gvds =

∫

S
div (σ) · gvdv +

∫

S
σ : gldv. (2.64)

Utilizing volume map J , the Piola identity and Jσ : gl = JσF−T : gḞ = gP̃ :

Ḟ = P : Ḟ we can convert the Eulerian representation given in 2.64 to the La-

grangian representation

∫

S
t · gvds =

∫

S0

Div
(

P̃
)

· gV dV +

∫

S0

P : Ḟ dV (2.65)

Substitution to the balance of energy statement 2.63 yields

ė0 = P : Ḟ + r0 − Div (Q) (2.66)

where r0 = r0[X, t] is the material representation of the local heat source. The

Eulerian counterpart of the balance of energy reads

ė = σ : gl+ r − div (q) . (2.67)
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2.3.5 Second law of thermodynamics

χ

F

N
n

dV dv

X x
dA

da

b

∂S0

S0

∂S S

t = σ · n

h = qn

θ, η

Figure 2.5: Deformation as felt by a slice of region cut from the body, the heat flux h,

and the local thermodynamical state θ and η are illustrated for reference.

If a thermodynamical system is perturbed, the second law of thermodynamics pro-

vides a direction of energy transfer by setting a major restriction on the constitutive

equations governing the material behavior. Let S =
∫

S ργdv be the entropy pro-

duction for the slice S, where γ is the local entropy production per unit current vol-

ume. The total entropy of the system is S =
∫

S ηdv, where η is the local entropy

per unit current volume. The received quantity of heat H per unit temperature is

H =
∫

S
r
θ
dv −

∫

∂S
1
θ
qnds. The second law of thermodynamics restricts the entropy

production to be positive,

S :=
D

Dt
S− H ≥ 0. (2.68)

Utilizing γ0 = γ0[X, t], and η0 = η0[X , t] as the Lagrangian counterparts of γ and

η, and the volume map J , the Lagrangian and Eulerian representations of the second

axiom of thermodynamics become

ρ0γ0 = η̇0 −
1

θ
(r0 − Div (Q))− 1

θ2
QGrad(θ) ≥ 0 (2.69)

and

ργ = η̇ − 1

θ
(r − div (q))− 1

θ2
qgrad(θ) ≥ 0 (2.70)

respectively. These two local forms restricts the direction of heat transfer from higher

to lower temperature. These inequalities are known as the Clasius-Duhem inequali-

ties in Lagrangian and Eulerian representations, respectively. Noting θ in these equa-
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tions are non-negative (measured in Kelvin), we can show an alternative more restric-

tive forms,

Dint = P : Ḟ − ė0 + θη̇0 ≥ 0 (2.71)

and

Dint = σ : gl − ė+ θη̇ ≥ 0 (2.72)

in Lagrangian and Eulerian representations, where Dint is the internal dissipation or

the local production of entropy. These stronger forms of the second axiom of ther-

modynamics are known as Clasius-Planck inequalities in Lagrangian and Eulerian

representations. Utilizing the Legendre transformation Ψ = e0 − θη0, where Ψ is

the free energy per unit reference volume, then the Clasius-Planck inequality in La-

grangian representation reads

Dint = P : Ḟ − Ψ̇− η0θ̇ ≥ 0. (2.73)

For a purely mechanical process where θ and η are omitted,

Dint = P : Ḟ − Ψ̇ ≥ 0. (2.74)

For a perfectly elastic process (where no local entropy production happens) or a at

local equilibrium, Dint = 0, we can find ψ̇ = P : Ḟ , which leads to the Coleman-

Noll procedure [116] as will be explained in hyperelasticity section.

2.4 Hyperelasticity and constitutive relations

A hyperelastic material assumes the existence of a Helmholtz free-energy function Ψ.

It is also known as strain-energy density if Ψ = Ψ(F ), i.e., it is only a function of

deformation F . If we take the rate of Ψ,

D

Dt
Ψ(F ) = ∂FΨ(F ) : Ḟ (2.75)

is obtained. Using 2.74 here, for a perfectly elastic material (Dint = 0),

Dint = P : Ḟ − Ψ̇ =

(

P − ∂Ψ(F )

∂F

)

: Ḟ = 0, (2.76)

is found. From this relationship, P = ∂Ψ(F )/∂F can be obtained. This set of

manipulations is known as the Coleman-Noll procedure.
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Rubber-like materials are modeled with a Helmholtz free-energy function, in gen-

eral. The underlying theories of the rubber elasticity come from the thermodynamical

considerations and the statistical mechanics. We can see three types of constitutive

relations for rubber-like materials in literature, namely the micro-mechanical, phe-

nomenological, and hybrid models. These has been reviewed in one of our studies

[37] and 44 hyperelastic models are compared. Among established models from lit-

erature, a specific form has been proposed in [43], which is called the compressible

extended eight-chain model. This model will be explained in detail in Chapter 3 and

the micro-mechanical derivations are provided for the second invariant term. For de-

tails of the hyperelasticty, we refer the interested reader to DAL ET AL. [37], HAUPT

[114], and HOLZAPFEL [115].

29



30



CHAPTER 3

FINITE VISCOELASTICITY AND THE EXTENDED EIGHT-CHAIN

MODEL

Elastomers or rubber-like materials demonstrate strong rate dependent effects in their

mechanical behavior. The basic hyperelasticity (and thus, existence of a Helmholtz

free energy function) assumes fully recoverable deformations, i.e. purely elastic de-

formations. This enables working with large (or finite) deformations possible in the-

ory and simulations. However, rubber-like materials and polymers in general, ex-

hibit strong inelastic/dissipative behavior as well. This corresponds to perturbations

around thermodynamic equilibrium, the intensity of which dictate the small or finite

viscoelastic considerations, i.e., linear or non-linear evolution equations. Here, we

consider a naming convention from REESE & GOVINDJEE [60] for the class of theo-

ries in the literature,

• linear viscoelasticity: linear elastic + small perturbations away from thermo-

dynamic equilibrium,

• hyper viscoelasticity: hyperelastic + small perturbations away from thermo-

dynamic equilibrium,

• finite viscoelasticity: hyperelastic + large perturbations away from thermody-

namic equilibrium.

The last type of formalism listed above is of concern in this thesis, i.e. the theory pre-

sented in this thesis is applicable to large strain rates and encompasses a non-linear

evolution law. The layout of this part is as follows, first we will introduce a multi-

plicative decomposition and its geometrical implications for deformation gradient and

define a fictitious intermediate configuration. Next a generalized Maxwell-Wiechert
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model, consistent with the multiplicative split is given for the rheology of the material.

A physically based evolution form for the relaxation kinetics of a single chain is de-

rived and linked to the network average stretch of eight chain model. The algorithmic

treatment based on elastic predictor and inelastic corrector steps for the calculation of

elastic left Cauchy-Green tensor are then established. Finally, the spatial consistent

tangent moduli is derived explicitly.

3.1 A multiplicative decomposition for deformation gradient and its geometri-

cal implications

The internal variable formulations for finite viscoelasticity concern with the definition

of internal state variables to distinguish viscous deformations and focus primarily on

the evolution equations related to these variables. A particularly successfuly approach

is to decompose the total deformation gradient F multiplicatively into viscous (F v)

and elastic (F e) parts in the sense of KRÖNER [117] and LEE [118], i.e.,

F = F eF v (3.1)

Such a decomposition defines a two step transformation between reference and cur-

rent configurations. In the first step the viscous part brings the undeformed configu-

ration to a fictitious intermediate configuration. Then, in the second step, the elastic

part transforms the intermediate configuration to the current configuration. The de-

composition requires the definition of the fictitious tangent T̄
X̄

B and co-tangent T̄ ∗
X̄

B

spaces. These two spaces are connected by the fictitious metric G̃ with the definition

G̃ : T̄
X̄

B → T̄ ∗
X̄

B. The associated transformations between Lagrangian and Eule-

rian manifolds are summarized in Figure 3.1 in terms of pull-back and push-forward

relationships for the intermediate configuration. By the help of the intermediate con-

figuration we can define elastic right Cauchy Green tensor and elastic inverse left

Cauchy Green tensor

Ce = F eTgF e and ce = F e−TG̃F e−1 (3.2)

as the pull-back of the metric tensor g into intermediate configuration and push-

forward of the intermediate metric G̃ to the current configuration, respectively. More-
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over, it can be shown that the viscous metric Cv = F TceF is the pull-back of the

inverse of left Cauchy-Green tensor to the reference configuration.

(a) (b)

TXB0TXB0 T̄
X̄

BT̄
X̄

B

T ∗
XB0T ∗

XB0 T̄ ∗
X̄

BT̄ ∗
X̄

B

Tx BTx B

T ∗
x BT ∗

x B

FF

ce = be−1
G̃Cv

F vF v F eF e

F e−TF e−T F v−TF v−T

F−TF−T

C Ce g

Figure 3.1: Push-forward and pull-back relations of the current and intermediate met-

ric tensors. (a) Pull-back of the current metric g to the Lagrangian C = F TgF and

the intermediate Ce = F eTgF e configurations. (b) Pull-back of the intermediate

metric G̃ to the Lagrangian Cv = F vT G̃F v and its push-forward to the Eulerian

configuration ce = F e−T G̃F−1.

3.1.1 Rates of deformation and stress measures

Based on the aforementioned setting and using the notation ∇X and ∇x for gradients

with respect to reference and spatial coordinates, we can establish the material and

spatial velocity gradients as

Ḟ = ∇Xẋ and l = ∇xẋ = Ḟ F−1, (3.3)

respectively. The multiplicative decomposition (3.1) renders us the ability to define

elastic : le = Ḟ
e
F e−1, (3.4a)

viscous : lv = Ḟ
v
F v−1 (3.4b)

spatial gradient parts. The total spatial velocity gradient (l) can be stated in an additive

format

l = le + l̃
v
, using l̃

v
:= F elvF e−1. (3.5)

Moreover, the spatial velocity gradient l can also be decomposed into two covariant

tensors

l = d+w, where d = sym(gl) and w = skew(gl) (3.6)
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Ψe

ψne
1

γ̇1

ψne
n γ̇n

F e
k F v

k
F = F e

kF
v
k

σσ

Figure 3.2: The generalized Maxwell-Wiechert viscoelastic solid with n elements in

total for k ∈ {1 . . . n} represented in a geometrically nonlinear setting. The nonlinear

spring Ψe accounts for the ground state elastic response, while the nonlinear spring

ψne
k and the dashpot with the associated creep rate γ̇k in each Maxwell element reflect

the non-equilibrium (viscous) response of the material considered.

are rate of deformation and vorticity tensors, respectively. Much like the approach in

(3.5), the rate of deformation tensor can also be written as

d = de + d̃
v
, where d̃

v
:= sym(̃l

v
). (3.7)

Next, we emphasize the push-forward of covariant (•)♭ and contravariant (•)♯ objects

χ∗ (•)♭ = F−T (•)♭ F−1 and χ∗ (•)♯ = F (•)♯ F T . (3.8)

Similarly, the pull-back of covariant (•)♭ and contravariant (•)♯ objects read

χ∗ (•)♭ = F T (•)♭ F and χ∗ (•)♯ = F−1 (•)♯ F−T . (3.9)

Lie derivative of an Eulerian object is the push-forward of the material time derivative

of the corresponding Lagrangian object, i.e., L(•) := χ∗

(
˙

χ∗ (•)
)

. Accordingly, the

objective Lie derivative of the Kirchhoff stress reads

Lvτ = τ̇ − lτ − τ lT , (3.10)

where τ̇ is the material time derivative of the Kirchhoff stress tensor.
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3.2 A compressible finite viscoelastic constitutive model for rubberlike materi-

als

The emphasis is placed upon the formulation of constitutive relations with regard

to the equilibrium and non-equilibrium response of rubberlike materials in the sense

of generalized Maxwell-Wiechert model under finite deformations. Besides, a new

evolution equation for the creep/relaxation rate based on the relaxation kinetics of a

single polymer chain is the subject matter of this section. Unlike the classical treat-

ment for rubberlike materials, where volumetric and isochoric response are strictly

decoupled, in what follows, we adopt a specific form of free energy density function

Ψ(g,F ,F e) = Ψe(g,F ) + Ψne(g,F e) = Ψe(C) + Ψne(Ce) , (3.11)

which reflects the standard viscoelastic solid, i.e. Maxwell elements are established

parallel to the non-linear spring characterizing the ground state elastic response. Hence,

the non-equilibrium part of the free energy in (3.11) follows from the rheological

structure presented in Fig. 3.2 that describes the generalized Maxwell-Wiechert model

with n elements,

Ψne(g,F e) =

n∑

k=1

ψne
k (g,F e

k) or Ψne(Ce) =

n∑

k=1

ψne
k (Ce

k) , (3.12)

where the index k indicates nothing but the Maxwell elements, i.e. k ∈ {1 . . . n}

incorporated into the system. Recalling (3.1), the multiplicative split of the deforma-

tion gradient for the non-equilibrium part now assumes distinct deformation process,

thereby being recast in the following form

F = F e
kF

v
k . (3.13)

Accordingly, the total Kirchhoff and second Piola-Kirchhoff stress experienced by

the viscoelastic material are given by

τ := 2∂gΨ(g,F ,F e) = τ e+τ ne and S := 2∂CΨ(C,Ce) = Se+Sne , (3.14)

with the Kirchhoff stress terms τ e and τ ne characterizing the equilibrium (elastic) and

the non-equilibrium (viscous) stresses, respectively. By the same token, the second

Piola-Kirchhoff stress terms Se and Sne indicate the equilibrium (elastic) and the

non-equilibrium (viscous) stresses, respectively.
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3.2.1 Equilibrium part of the constitutive model: Extended eight-chain model

In view of (3.14), the equilibrium part of the constitutive response can be defined as

follows

τ e := 2∂gΨ
e(g,F ) and Se := 2∂CΨ

e(C) . (3.15)

In the following sub-section, we will elaborate on the specific form of the constitutive

response in the sense of Kirchhoff stress τ e.

3.2.1.1 Micro-molecular motivation for the extended eight-chain model

The entropy describes the available conformations of a single polymer chain. Follow-

ing MIEHE ET AL. [33], the joint probability density of a single chain in a tube-like

constraint environment can be multiplicatively split into two independent events, i.e.

p(λ, ν) = pf(λ)pc(ν), where pf and pc represent the probability densities due to free

chain response and tube-constraint parts, respectively. The entropic elasticity postu-

lates

ψ(λ, ν) = −θη(λ, ν) with η = kB ln p(λ, ν) ❀ η(λ, ν) = ηf (λ) + ηc(ν) ,

(3.16)

where θ and η stand for the temperature and the entropy, respectively, while kB de-

notes the Boltzmann constant. The entropy in (3.16) additively decomposes into free

and constraint parts, i.e. ηf = kB ln pf and ηc = kB ln pc, respectively. Consequently,

the free energy function of a single chain in a tube-like constraint environment reads

ψ(λ, ν) = ψf (λ) + ψc(ν) . (3.17)

The non-Gaussian probability density function for the free chain response by KUHN

& GRÜN [28] reads

pf(λ) = p0 exp

[

−N
(

λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)

)]

, (3.18)

where L−1(λr) is the inverse Langevin function of the relative stretch λr = λ√
N

∈
[0, 1) normalized with respect to the extensibility limit

√
N characterized by the num-

ber of segmentsN . The probability density function for the tube-like constraint in the
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sense of [33, 76] is given as

pc(ν) = p0 exp

[

−α
(
r0
d0

)2

ν−1

]

, (3.19)

where r0 =
√
Nl is the mean end-to-end distance of the chain, d0 is the tube diameter,

α is a shape constant and ν−1 = (d0/d)
2 is the tube areal contraction and ν = (d/d0)

2

is the tube areal stretch. Incorporation of (3.18) and (3.19) into (3.16) leads to the free

energy functions corresponding to the free-chain

ψf (λ) = NkBθ

(

λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)

)

+ ψ0 (3.20)

and the tube-like constraint

ψc(ν) = αkBθN

(
l

d0

)2

ν−1 + ψ0 , (3.21)

respectively. The key issue in the modeling of macroscopic response of a polymer net-

work lies in the non-affine mean-kinematic variables with the affine macro-kinematic

variables. Within this context, the macroscopic free energy functions can be addi-

tively split into

Ψe(g,F ) := Ψe
f(g,F ) + Ψe

c(g,F ) (3.22)

the free-chain and tube constraint parts read

Ψe
f(g,F ) = 〈nψf (λ̄)〉 and Ψe

c(g,F ) = 〈nψc(ν̄
−1)〉 with (3.23)

with

〈(•)〉 = 1

|V |

∫

V

(•)dV, (3.24)

where n is the volume-specific chain density and the λ̄ and ν̄−1 are the micro-stretch

and the micro-tube areal contraction, respectively. The homogenized response of the

free energy of the macro-continuum can be assumed to have the following simple

form

〈nψf (λ̄)〉 = nψf (λn) and 〈nψc(ν̄
−1)〉 = nψc(νn) (3.25)

in terms of the average kinematic quantities λn and νn, see Fig. 3.3. At this point, the

average network stretch and the tube areal stretch are assumed as

λn =
2

√

λ21 + λ22 + λ23
3

=
2

√

I1
3

and νn =
3

√

ν21 + ν22 + ν23
3

=
3

√

I2
3
. (3.26)
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Herein, the network stretch is the mean-square root average of the principal stretches

λi in the sense of [32]. The mean non-affine tube areal contraction νn of the poly-

mer network in constraint environment is linked to the macroscopic areal stretches

in terms of (3.26)2. As a result, the free-chain and the tube-constraint part of the

macroscopic free energy function for the extended eight-chain model read

Ψe
f(g,F ) = µN

(

λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)

)

, and (3.27)

Ψe
c(g,F ) = µc(νn − 1) , (3.28)

where λr = λn/
√
N represents the relative average network stretch. The shear mod-

ulus µ = nkBθ is associated with the free-chain response and the µc = α(l/d0)
2nkBθ

is associated with the tube constraint part.

e1

e2

e3

r0

a0

a0

a0

A0 = d2
0

A = νnA0

N 1

N 2
N 3

λ
1
a 0

λ2a
0

λ 3
a 0

λ n
r 0

Figure 3.3: Idealization of the rubber network by eight-chain model and the linkage

between macroscopic stretches with mean streches of the representative chain, re-

spectively. N i for i = {1, 2, 3} represent the eigenvectors of the right Cauchy-Green

tensor, whereas λi are the principle stretches, i.e. C =
∑3

i=1 λ
2
iN i ⊗N i.

3.2.1.2 Compressible extended eight-chain model

The specific form of the compressible eight-chain model can be descibed as follows

Ψe(J, I1) =
χ

4
[(ln J)2 + (J − 1)2]− µ

3

3N − 1

N − 1
lnJ

+ µN

(

λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)

)

, (3.29)
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where χ = κ− 2
3
µ and µ are the first Lamé constant and the shear modulus, respec-

tively. The second expression in the free energy function is the normalization term

that enforces τ e = 0 at undeformed state. The stress expression for the compressible

eight-chain model reads

τ e = 2∂gΨ
e(J, I1) =

[χ

2
(ln J + J(J − 1))− µ̃

]

g−1 + µ̂(λn)b , (3.30)

where the two terms related to the shear modulus are given as

µ̃ =
µ

3

3N − 1

N − 1
and µ̂(λn) =

µ

3

3N − λ2n
N − λ2n

. (3.31)

For a Gaussian network where the number of segments approaches infinity, i.e. N →
∞, the parameters simplify to µ̂ → µ and µ̃ → µ in (3.31) so that one recovers

the compressible neo-Hookean model. Advancing a step forward from (3.29), an

extension to compressible eight-chain model can be achieved

Ψe(g,F ) = Ψe
v(g,F )+Ψe

f(g,F )+Ψe
c(g,F ) = Ψ̃e

v(J)+ Ψ̃e
f(λr)+ Ψ̃e

c(ν) , (3.32)

in conjunction with (3.28). Therein, the purely volumetric expression for the extended

eight-chain model reads

Ψe
v(g,F ) = Ψ̃e

v(J) =
χ

4
[(ln J)2 + (J − 1)2]− µ

3

3N − 1

N − 1
ln J − 4

9
µc ln J , (3.33)

in which the second and the third expressions are added in order to normalize the

stresses at undeformed configuration. Then, the stress expression for the compressible

extended eight-chain model is recast into the following form,

τ e = 2∂gΨ
e(g,F ) = κ̂(J)g−1 + µ̂(λn)b+

2

9

µc

ν2n
(I1b− b2) , (3.34)

where

κ̂(J) =
χ

2
(ln J + J(J − 1))− µ̃, (3.35)

µ̃ =
µ

3

3N − 1

N − 1
+

4

9
µc , and (3.36)

µ̂(λn) =
µ

3

3N − λ2n
N − λ2n

. (3.37)

The first expression in the stress equation (3.34) is the purely volumetric part, whereas

the latter two expressions are due to free chain response and the tube constraint, re-

spectively. For various volumetric free energy functions and their implementation

into fnite element method in the quasi-incompressible setting, we refer to KADAPA

& HOSSAIN [119].
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3.2.2 Non-equilibrium part of the constitutive model

In view of (3.14), the non-equilibrium part of the constitutive response can be de-

scribed as follows

τ ne := 2∂gΨ(g,F e) =

n∑

k=1

τ̂ ne
k and Sne := 2∂CeΨne(Ce) =

n∑

k=1

Ŝ
ne

k . (3.38)

Therein, the individual overstress expression for each Maxwell element is given by

τ̂ ne
k = 2∂gψ

ne
k (g,F e

k) and Ŝ
ne

k = 2∂Ceψne
k (Ce

k) , (3.39)

according to the rheology illustrated in Fig 3.2. In the following sub-section, we will

elucidate the individual contributions arisen from the particular selection of the free

energy function ψne
k (g,F e

k) in the sense of the Kirchhoff stress τ̂ ne
k . Before giving an

account of the constitutive modeling of the non-equilibrium response, we underline

that the subscript k reflecting the particular Maxwell branch in the rheological struc-

ture hereafter drops out of the relevant equations, e.g., ψne
k (g,F e

k), in order not to

make the expressions too complicated. In the sequel, the effect of the tube constraint

effect on the non-equilibrium response of the rubber network is neglected. The com-

pressible eight-chain model for a single nonlinear elastic spring part of the Maxwell

branch as follows,

Ψne(Je, Ie1) =
χv

4

[
ln Je + (Je − 1)2

]
− µv

3

3Nv − 1

Nv − 1
ln Je

+ µvNv

(

λerβ(λ
e
r) + ln

β(λer)

sinh β(λer)

)

. (3.40)

Therein, λen =
√

Ie1/3 and λer =
√

Ie1/3N
v denote the network and the relative net-

work stretches for the non-equilibrium deformations, respectively. β = L−1(λer) is

the inverse Langevin function, µv is the shear modulus of the non-equilibrium net-

work, Nv is the number of segments of the chains entangled around obstacles. Ac-

cordingly, the Kirchhoff stress expression for the compressible eight-chain model is

τ̂ ne = 2∂gψ
ne(Je, Ie1) =

[
χv

2
(ln Je + Je(Je − 1))− µ̃v

]

g−1 + µ̂v(λen)b
e , (3.41)

where the two terms related to the shear modulus read

µ̃v =
µv

3

3Nv − 1

Nv − 1
and µ̂v(λen) =

µv

3

3Nv − λe2n
Nv − λe2n

. (3.42)

40



3.2.3 Thermodynamical consistency

The second axiom of thermodynamics restricts the proposed model by the so-called

dissipation inequality

D := P − Ψ̇ ≥ 0 with P := S :
1

2
Ċ = τ : d , (3.43)

being the stress power term. The reduced form of the dissipation inequality reads

Dred = τ̂ ne : d̃
v ≥ 0 . (3.44)

The thermodynamical consistency is satisfied for the non-negative dissipation Dred.

The evolution equation for the viscous rate of deformation tensor d̃
v

must a priori

satisfy the inequality (3.44).

3.2.4 Relaxation kinetics of a single chain

r
0 rr

(a) (b) (c)

Figure 3.4: Stretch and relaxation of a single chain entangled around an obstacle: (a)

undeformed equilibrium state, (b) non-equilibrium deformed state after rapid stretch,

(c) deformed and fully relaxed state.

In this part, we elucidate the relaxation kinetics of a single free chain [120]. To this

end, we revisit the relaxation kinetics of a single chain entangled around an obsta-

cle at both sides as depicted in Fig. 3.4. In Fig. 3.4(a), a single chain entangled

around obstacles at both ends is shown at rest. The end-to-end distance is given by

r0 =
√
N0 l̂ where N0 is the number of segments between the two obstacles and l̂ de-

notes the length of a monomer unit. If the polymer chain is instantaneously stretched,

see Fig. 3.4(b), it elongates and attains a more ordered conformation decreasing its

entropy and increasing the free energy, while the internal energy of the chain is kept
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constant, see TRELOAR [27] (p. 25). The stretching of the chain triggers the move-

ment of the free ends of the chains and they retract in combination of reptational

and Brownian motion. Hence, the length of the polymer chain portion lying between

the obstacles elongates until the most favorable state, i.e. r =
√
N∞ l̂, is reached.

Fig. 3.4(c) shows not only the deformed but also the fully relaxed state in this case

with the same end-to-end distance r. Then, the number of segments at the fully re-

laxed state reads

N∞ = λ̄2N0 where λ̄ =
r

r
0

. (3.45)

Recall that unlike N0, which is a material constant, N∞ is variable dependent on

the instantaneous stretch level λ̄. Let us consider an intermediate step between rapid

deformation as seen in Fig. 3.4(b) and fully relaxed state as indicated in Fig. 3.4(c).

We define an end-to-end distance r̄(t) =
√

N(t)l̂ which is probabilistically the most

preferred state upon removal of the load maintaining the end-to-end distance r at time

t. In a deformation driven state, λ̄ is given and can be decomposed into elastic and

inelastic (viscous) parts as follows

λ̄ =
r

r0
=

r

r̄(t)

r̄(t)

r0
= λe(t)λv(t) (3.46)

where

λe(t) :=
r

r̄(t)
and λv(t) :=

r̄(t)

r0
. (3.47)

Initially at time t = 0, the end-to-end distance reads r̄(0) = r0, leading to λe(0) = λ̄

and λv(0) = 1. However, at the fully relaxed state at time t = ∞, the end-to-end

distance reads r̄(∞) = r, leading to λe(∞) = 1 and λv(∞) = λ̄. For the evolution of

the chain length in-between the two obstacles, we adopt a generic ordinary differential

equation (ODE), i.e.

Ṅ(t) =
1

τ
[N∞ −N(t)] , (3.48)

where τ designates the relaxation time. Then, the solution of the ODE reads

N(t) = (N∞ −N0)

[

1− exp

(−t
τ

)]

+N0 . (3.49)

Next, we substitute (3.49) into (3.46)3 and consider the rate of the viscous stretch

λv(t) with respect to time. This, upon some simple mathematical manipulations, lead

to the following

λ̇v(t) =
d

dt

(
r̄(t)

r0

)

=
d

dt

(√

N(t)l̂√
N0 l̂

)

=
1

2τ

1√
N0

(

N∞
√

N(t)
−
√

N(t)

)

. (3.50)
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Substitution of the relations stated below

λe =
r

r̄(t)
=

√
N∞

√

N(t)
and

√

N∞ = λ̄
√

N0 (3.51)

into (3.50), we readily obtain the rate equation

λ̇v =
1

2τ
λ̄

(

λe − 1

λe

)

=
1

2τ
λv
(

λe
2 − 1

)

. (3.52)

In order to comply with the large-strain kinematics in the Eulerian setting, the one-

dimensional logarithmic counterpart of the rate of deformation tensor is derived as

follows,

ǫ̇v =
λ̇v

λv
= γ̇0

(
λe2 − 1

)
. (3.53)

3.2.5 Evolution equation

Consistent with the reduced dissipation postulate (3.44), we propose an evolution for

the inelastic rate of the deformation tensor in the current configuration

d̃
v
:= γ̇N , (3.54)

where γ̇ denotes the effective creep rate. Note that the thermodynamical consistency

(3.44) is satisfied for γ̇ ≥ 0. The flow direction is determined by the non-equilibrium

Kirchhoff stress

N =
τ ne

‖τ ne‖ with ‖τ ne‖ :=
√
τ ne : τ ne . (3.55)

Nonlinear viscoelasticity is an energy activated process. In order to take this fact into

account and to reconcile the finite viscoelasticity with the relaxation kinetics derived

above, an additional term (τne/τ̂)m is added to the expression in (3.53). Therein, the

specific norm of the non-equilibrium stress τne is described as follows

τne =
‖τ ne‖√

2
. (3.56)

In what follows, we also replace the λe expression for a single chain by the network

stretch λen =
√

Ie1/3 of the eight-chain model where Ie1 = trCe. Finally, we end up

with the following function for the effective creep rate

γ̇ := γ̇
0
[λe2n − 1]

(
τne

τ̂

)m

. (3.57)
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In the above expression the relaxation time 1/2τ is replaced by the creep rate con-

stant γ̇
0
> 0 for the sake of convenience. Note that the term m ≥ 1 controls the

energy-activated relaxation and leads to viscoplastic material response for high val-

ues. The expression τ̂ is used merely for normalization purposes and assumed to

be τ̂ = 1 [MPa] in the subsequent treatments. In the end, we emphasize that the

nonlinear viscous flow stated in (3.57) is governed by one more additional material

parameter in comparison to the that of the finite linear viscoelasticity and reflects

from the continuum point of view the behavior of a single dashpot in the Maxwell

element as depicted in Fig. 3.2. Recall that replacing the term γ̇0[λ
e2
n − 1] → γ̇0 and

taking m = 1, we obtain the classical multiplicative finite viscoelasticity in the sense

of REESE & GOVINDJEE [60]. Moreover, taking N → ∞, one obtains the simplest

finite viscoelasticity formulation in the geometrically nonlinear setting based on mul-

tiplicative decomposition of the deformation gradient into elastic and viscous parts.

REMARK: The proper prediction of viscous flow direction requires γ̇
0
[λe2n − 1] ≥ 0.

In incompressible rubber viscoelasticity, the condition is always satisfied since the

network stretch λen is always greater than unity λe2n ≥ 1. However, for slightly com-

pressible elastomers, under purely hydrostatic pressure loading, it is possible to have

λe2n ≤ 1. To resolve this issue, the term [λe2n − 1] must be replaced by |λe2n − 1| in the

evolution equation (3.57) for the analysis of compressible elastomers.

3.3 Algorithmic setting for the constitutive model

In this section, the algorithmic setting of the model suitable for a finite element imple-

mentation will be discussed. In particular, the algorithmic framework for the Eulerian

stresses and moduli terms of the equilibrium and non-equilibrium responses will be

established. Furthermore, we will propose an efficient implicit update for the princi-

ple elastic stretches of the non-equilibrium Maxwell branches, conceptually following

the references [120, 60, 62].

In a time-discrete interval, i.e. ∆t = tn+1 − tn, the current stresses and the tangent

expressions need to be obtained where ∆t stands for the time-increment. The time-
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discrete counterpart of the continuous expression in (3.10) reads

∆τ = Calgo :
1

2
£∆ϕg +∇x(∆ϕ) τ + τ ∇T

x (∆ϕ) (3.58)

where ∇x(·) represents the spatial gradient of the term considered. Therein, Calgo

is the total algorithmic moduli and must be consistently derived for the accurate

and quadratically convergent nonlinear finite element analysis based on global itera-

tive solution algorithms, e.g., the Newton-Raphson method. Subsequently, the total

algorithmic moduli term is also additively decomposed into equilibrium and non-

equilibrium parts as follows

Calgo := C
e +Cne

algo . (3.59)

3.3.1 Stress and moduli terms for the elastic part

The computation of the equilibrium Kirchhoff stress in (3.34) requires the current

value of b at time t = tn+1 which is readily obtained at each iteration in the global

iterative solution algorithm. In the subsequent treatment, we focus on the elasticity

moduliCe in (3.59) and define

C

e := 4∂2ggΨ
e(J, I1, I2) (3.60)

which gives rise to the following explicit form of the equilibrium tangent moduli

through the particular form of the free energy (3.32),

C

e = (ŝe + p̂e)g−1 ⊗ g−1 − 2p̂eI+ n̂eb⊗ b

+ f̂ e(I1b− b2)⊗ (I1b− b2) + ĝe(b⊗ b− Ib). (3.61)

Therein, the terms in regard to the Jacobian J reads

p̂e := J
∂2Ψe

∂J2
=
χ

2
[ln J + J(J − 1)]− µ̃, and

ŝe := J2∂
2Ψe

∂J2
=
χ

2

[
J2 − ln J + 1)

]
+ µ̃ , (3.62)

while the terms associated with I1 and I2 are written as

n̂e =
4µ

9N

1

(1− λ2r)
2
, f̂ e = −8µc

81

1

ν5n
and ĝe =

4µc

9

1

ν2n
. (3.63)
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The fourth-order tensor Ib is simply the push-forward of the fourth-order identity

tensor I such that

I
ijkl =

1

2

(
δikδjl + δilδjk

)
and Ib

ijkl =
1

2

(
bikbjl + bilbjk

)
. (3.64)

In the above equation, the inverse Langevin function is computed by Padé approxi-

mation L−1(λr) ≈ λr(3− λ2r)/(1− λ2r) proposed by COHEN [121].

3.3.2 Stresses and moduli terms for the viscous part

Before we start our discussion, it needs to be mentioned that the non-equilibrium

stress and moduli terms will be calculated for a single Maxwell element, see Fig. 3.2,

in order to rid the mathematical expressions of extra subscript k. The computation of

the non-equilibrium Kirchhoff stress in (3.41) requires the current value of be at time

t = tn+1. The computation of be is contingent on the algorithmic treatment of the

evolution equation (3.54) which will be elucidated in the upcoming sub-sections.

3.3.2.1 Integration of the evolution equation:

In this sub-section, we begin with the introduction of the identity forming the basis of

the subsequent development, that is

−1

2
£νb

e · be−1 = d̃
v
. (3.65)

The integration of the evolution equation (3.54) is based on the operator split of the

material time derivative of be into an elastic predictor (E) and an inelastic corrector

step (I) such that

ḃ
e
:= lbe + belT
︸ ︷︷ ︸

E

+£νb
e

︸ ︷︷ ︸

I

. (3.66)

Both in (3.65) and (3.66) the Lie derivative of the elastic Finger tensor be is given

which can be defined as follows

£νb
e := F

d

dt

(
Cv−1

)
F T . (3.67)

During the elastic predictor step E (elastic trial step), d(Cv−1)/dt is equal to zero.

Therefore,

Elastic predictor (trial step) E : Cv−1
tr = Cv−1

tn −→ betr = FCv−1
tn F T . (3.68)
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It should be highlighted that the subscript denoting the current time step tn+1 here-

inafter drops out of the expressions for convenience. The merit of this proposal is to

circumvent the rate of inelastic metric in computation of the consistent tangent mod-

uli. Afterwards, we focus on the inelastic corrector step I. Here, the spatial velocity

gradient l is set to zero yielding ḃ
e
= £νb

e. Inserting this result into (3.65) and

substituting the evolution equation proposed in (3.54) for d̃
v
, we obtain the following

expression,

Inelastic corrector step I : ḃ
e
= −2γ̇Nbetr , (3.69)

for the evolution equation for the inelastic corrector step. The interested reader is

referred to references [120, 62], regarding integration of the equations [3.68,3.69] in

a time-discrete setting.

3.3.2.2 Algorithmic moduli for the non-equilibrium part:

In this part, we will set up a closed-form expression for the consistent tangent moduli

for the non-equilibrium (viscous) part. The spectral decomposition of the trial elastic

deformation yields

F e
tr =

3∑

a=1

λea, tr na ⊗N a . (3.70)

Subsequently, we introduce a fictitious second Piola-Kirchhoff stress tensor

S̃
ne

:= F e−1
tr τ neF e−T

tr where S̃
ne

=
3∑

a=1

s̃aN
a ⊗N a , (3.71)

in the intermediate configuration. In (3.71)2, the principal value of the fictitious sec-

ond Piola-Kirchhoff stress reads s̃a = τa/λ
e2

a, tr. With the definition (3.71)1 at hand,

the incremental rate equation can be defined as follows

∆S̃
ne

= Cne
algo : ∆Ce

tr where C

ne
algo = 2∂Ce

tr
S̃

ne
. (3.72)

Next, we consider (3.72)2 via exploiting (3.71)2 and obtain the moduli expression as

follows

C

ne
algo =

3∑

a=1

3∑

b=1

cab − 2τaδab

λe
2

a, trλ
e2

b, tr

N a ⊗N a ⊗ ∂Ce
tr
(λe

2

b, tr) (3.73)

+

3∑

a=1

2τa

λe
2

a, tr

∂Ce
tr
(N a ⊗N a) , (3.74)
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along with the respective partial derivatives with respect to the trial elastic right

Cauchy-Green tensor,

∂Ce
tr
(λe

2

b, tr) = N b ⊗N b

∂Ce
tr
(N a ⊗N a) =

3∑

b6=a

1

2(λe
2

a, tr − λe
2

b, tr)
(Gab +Gba) , (3.75)

where we have introduced Gab
IJKL := Ma

IKM
b
JL +Ma

IL +Ma
JK . This expression in

its turn consists of the following

Ma := N a ⊗N a where Ma
IJ := Na

IN
a
J . (3.76)

Upon replacing the derivatives in (3.74) by (3.75)1 and (3.75)2, we finally obtain the

compact definition of the moduli expression in the fictitious intermediate configura-

tion

C

ne
algo =

3∑

a=1

3∑

b=1

cab − 2τaδab

λe
2

a, trλ
e2
b, tr

Ma ⊗M b

+
3∑

a6=b

3∑

b=1

s̃a − s̃b

2(λe
2

a, tr − λe
2

b, tr)
(Gab +Gba) . (3.77)
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CHAPTER 4

FUNDAMENTALS OF THE MULTIPHYSICS PROBLEM

In this chapter we layed out the primary field variables for phase-field modeling of

fracture phenomenon and introduced the multi-field problem. First we describe a 1D

motivation for phase-field approach, then a 3D extension is achieved. During the

chapter, we introduced the idea of separate degradation functions for distortional and

dilatational parts of the extended eight-chain model. Next, a Hermitian polynomial

based extension for generating suitable degradation functions is discussed. Finally,

we have given several simulation results that demonstrates a gradually decreasing

Poisson’s ratio during the degradation, i.e., showcasing the loss of incompressibility

during the fracture.

4.1 Kinematics of the phase–field problem

The problem at hand involves a domain that can change shape, which is represented

by the deformation field shown in Figure 4.1(a). If the domain does not change

shape, the gradient operator can be represented simply as ∇x(•) = ∇X(•) = ∇(•).
At a fixed time t, a sharp crack surface topology is defined by a surface integral

Γ(d) =
∫

Γ
dA over a two-dimensional solid B, which is denoted by Γ(d) ⊂ R

2. The

crack phase-field approach simplifies the task of tracking these discontinuities by ap-

proximating the surface integral using a volume integral. This results in a regularized

crack surface denoted by Γl(d), as shown in Figure 4.1(b), such that

Γl(d) =

∫

B
γ(d,∇d)dV where γ(d,∇d) = 1

2l
(d2 + l2∇d · ∇d) , (4.1)

where, the isotropic crack surface density function, represented here by γ(d,∇d), is

defined in a way that it satisfies the condition γ(d,Q∇d) = γ(d,∇d), for all possible
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∇d ·N = 0P ·N=T

∂Bd

∂Bt

∂Bϕ

NN l
X ∈ BX ∈ B

dϕ

ϕ= ϕ̄

Deformation field Crack phase–field

Γl(d)

(a) (b)

Figure 4.1: Multi-field problem: (a) mechanical problem of deformation along with

Dirichlet and Neumann-type boundary conditions, that is ϕ = ϕ and P · N = T ,

respectively; (b) evolution of the crack phase–field problem with the Neumann-type

boundary condition ∇d ·N = 0.

rotations and reflections denoted by the tensor variable Q in the orthogonal group

O(3). The parameter l controls the width of the crack. This approximation can be

expanded to apply to a range of anisotropic materials as well.

Γl(d) =

∫

B
γ(d,∇d)dV, where γ(d,∇d) = 1

2l
(d2 + l2∇d · ∇d) , (4.2)

is the anisotropic crack surface density function with the condition γ(d,Q∇d) =

γ(d,∇d), ∀Q ∈ G ⊂ O(3), where G designates a symmetry group as a subset of

O(3).

4.1.1 Euler–Lagrange equations of the phase–field problem

From a purely geometrical perspective, the boundary of the domain under interest

can be decomposed into Dirichlet and Neumann-type boundaries such that ∂B =

∂Bd ∪ ∂Bq and ∂Bd ∩ ∂Bq = ∅. By considering (4.2), we can state the minimization

principle as

d(X) = Arg
{

inf
d∈W

Γl(d)
}

, (4.3)

along with the Dirichlet–type boundary constraint

W = {d | d(X) ∈ B ∧ d = d̂ on ∂Bd} . (4.4)

Whilst an already existing crack is given by d̂ = 1, the intact state is described by

d̂ = 0. Although the boundary value problem admits any meta-states d̂ ∈ [0, 1] on
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∂Bd, we confine ourselves for the two ideal states. The principle of minimization is

used to derive the Euler-Lagrange equations, which can be expressed as:

1

l
[d− l2∆d)] = 0 in B, ∇d ·N = 0 on ∂Bq, (4.5)

Here, the divergence term serves to interpolate between the intact and ruptured states

of the material, and N represents the unit surface normal oriented outward in the

reference configuration.

4.2 A framework of diffusive fracture at large strains

In this section the phase-field theory for application of different degradation functions

for volumetric and entropic parts are considered. To this end, Hermitian polynomial

based degradation functions are proposed. Finally the field equations of the coupled

problem are given.

4.2.1 Stored energy functional for the hyperelastic solid

Our focus is on finite elasticity for isotropic solids, which involves the global energy

storage functional:

E(ϕ, d) =

∫

B
Ψ(F , d)dV (4.6)

This functional is dependent on the deformation field ϕ and the fracture phase field

d. The energy storage function Ψ represents the energy stored in the bulk of the solid

per unit volume. Assuming fully isotropic constitutive behavior for the degradation

of energy due to fracture, the energy storage function can be written as:

ψ(F , d,∇d) = gv(d) Ψv(J) + gf(d) Ψf(λn) + gf(d) Ψc(νn) . (4.7)

Here, the degradation function g monotonically decreases with evolving fracture and

satisfies the following properties:

g′(d) ≤ 0 with g(0) = 1 , g(1) = 0 , g′(1) = 0 . (4.8)

The first two conditions correspond to the unbroken and fully-broken states, respec-

tively. The third condition ensures that the energetic fracture force converges to a

51



 3

 2

 4

 5

 0.5

 1.5

 2

 2.5

 3

θ = 0θ = 0

θ = 0θ = 0

θ = 1θ = 1

θ = 1θ = 1

θ = 2θ = 2

θ = 2θ = 2

θ = 3θ = 3

θ = 3θ = 3

g
(d
)

g
(d
)

−
g
′ (
d
)

−
g
′ (
d
)

dd

dd(a) (b)

(c) (d)
1 1

1

1

11

1

1

0.8 0.8

0.8

0.80.8

0.8

0.6 0.6

0.6

0.60.6

0.6

0.4 0.4

0.4

0.40.4

0.4

0.2 0.2

0.2

0.20.2

0.2

0 0
0

00
00

0

α = 2 α = 2

α = 4α = 4

Figure 4.2: (a,c) The proposed degradation function g(d) and (b) its negative deriva-

tive −g′(d) for α = 2 and various values of θ: (i) [magenta] θ = 0, g(d) =

(1 + 2d)(1 − d)2 (ii) [green] θ = 1, g(d) = (1 + d)(1 − d)2, (iii) [blue] θ = 2:

g(d) = (1− d)2 , (iv) [golden] θ = 3, g(d) = (1− d)3; and (d) its negative derivative

−g′(d) for α = 4 and various values of θ.

finite value if the damage reaches the fully-broken state d = 1. A family of admissi-

ble functions satisfying these conditions is given by:

g(d) = H1(d)− θH2(d) (4.9)

where H1 and H2 are defined as:

H1(d) = (1 + 2d)(1− d)α and H2(d) = d(1− d)α (4.10)

These expressions describe the degradation function g in terms of two terms, H1 and

H2, which depend on the damage variable d and constants α and θ.

Therein, α ≥ 2 and 0 < θ ≤ 3 is material parameters responsible for (i) the form of

the stress degradation upon crack initiation and (ii) transition of the material response

52



from quasi-incompressible state to compressible state as long as different α and θ

values assigned to bulk and shear responses, see Fig. 4.2. Recall that for θ = 0

crack cannot initiate under isochoric/volumetric deformations. The proposed ansatz

recovers the original quadratic degration function of MIEHE ET AL. [122] g(d) =

(1− d)2 for α = 2 and θ = 2, whereas the cubic form g(d) = (1− d)2 in the sense of

KUHN ET AL. [123] for α = 2 and θ = 3. The proposed functions H1(d) and H2(d)

are the first two elements of the cubic Hermite splines for α = 2, see also BORDEN

ET AL. [124]. The power form in the sense of GÜLTEKIN ET AL. [125] is recovered

for α ≥ 2 and θ = 2.

The rate of change of stored energy for a given state of deformation field ϕ and

fracture phase field d is defined as the time derivative of the energy storage functional

(4.6), which is denoted by E(ϕ̇, ḋ;ϕ, d), that is

E(ϕ̇, ḋ;ϕ, d) := d

dt
E =

∫

B
[P : Ḟ − fḋ] dV (4.11)

The stress tensor P is introduced as the derivative of the energy storage function with

respect to the deformation field,

P := ∂Fψ(F , d) = gv(d)P v + gf(d)P f + gc(d)P c (4.12)

and the energetic force is introduced as the derivative of the energy storage function

with respect to the fracture phase field, i.e.,

f := −∂dΨ(F , d,∇d) = −g′v(d) Ψv(J)−g′f (d) Ψf(λn)−g′c(d) Ψc(νn) ≥ 0 . (4.13)

The crack evolution is driven by the reference energy ψ0(F ), which describes the

local intensity of the deformation. The external mechanical loading is defined by the

external load power functional P(ϕ̇), which depends on the volume specific body

force γ̃ and the prescribed surface tractions t̃, and can be written as

P(ϕ̇) =

∫

B
γ̃ · ϕ̇ dV +

∫

∂Bt
t̃ · ϕ̇ dA . , (4.14)

4.2.2 Rate-dependent dissipation functional

In order to consider the energy lost in the continuum, the dissipation functional D is

introduced. It is represented as:

D(ḋ) =

∫

B
Gc[δdγ(d,∇d)] ḋdV, (4.15)
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Here, δdγ represents the variational derivative of the anisotropic volume-specific crack

surface γ, and Gc is referred to as the critical fracture energy. This is consistent with

the work of MIEHE ET AL. [122] and GÜLTEKIN ET AL. [126]. The second law of

thermodynamics requires that the dissipation functional be non-negative for all possi-

ble deformation processes. This means that D ≥ 0. This thermodynamic inequality is

met by a constitutive dissipation function Φ, which has a positive and convex propen-

sity. This function can be expressed using the principle of maximum dissipation

through the following constrained optimization problem:

Φ(ḋ; d,∇d) = sup
β∈E

βḋ, (4.16)

which can be solved by a Lagrange method that leads to

Φ(ḋ; d,∇d) = sup
β,λ≥0

[βḋ− λtc(β; d,∇d)], (4.17)

Here, β is the local driving force that is dual to ḋ, and λ is the Lagrange multiplier

that enforces the constraint. This has been described in the works of MIEHE AND

SCHÄNZEL [96]. Additionally, we have defined the threshold function tc delineating

a reversible domain E such that

E(β) = {β ∈ R | tc(β; d,∇d) = β − Gc[δdγ(d,∇d)] ≤ Ψcr}. (4.18)

The viscous regularization of the rate-independent modality provides stability to the

algorithmic setting, which is purely related to numerical calculations. With the aim

of achieving this specific goal, a Perzyna-type viscous dissipation functional is pre-

sented.

Dη(ḋ, β; d) =

∫

B
[βḋ− 1

2η
〈tc(β; d,∇d)〉2]dV, (4.19)

This functional, denoted by Dη(ḋ, β; d), incorporates the viscosity parameter η that

determines the influence of viscous forces on the rate of change of ḋ. The functional

involves the integral of a combination of terms, including a threshold function tc that

filters out positive values, and a ramp function 〈x〉 = (x + |x|)/2. The threshold

function defines a reversible domain E, and the functional is expressed as Πη = E +

Dη − P , where E is the elastic energy and P is the power input. On the basis of

the rate-type potential, we propose a viscous extended saddle point principle for the

quasi-static process, i.e.

{ϕ̇, ḋ, β} = Arg

{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈W

ḋ

sup
β≥0

Πη

}

, (4.20)
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with the admissible domains for the primary state variables

Wϕ̇ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ}, Wḋ = {ḋ | ḋ = 0 on ∂Bd}. (4.21)

Evaluating the variation of the potential Πη we obtain the coupled set of Euler-

Lagrange equations for the rate-dependent fracture of an anisotropic hyperelastic

solid as

1: Div(P ) + γ̃ = O,

2: β − f = 0,

3: ḋ− 1

η
〈tc(β; d,∇d)〉 = 0.

(4.22)

Substituting f into β, the explicit form of the threshold function tc recasts the equality

(4.22)3 in such a form

f = ηḋ+ Gcδdγ(d,∇d). (4.23)

When the viscosity parameter η approaches zero, the rate-independent case is ob-

tained. Introducing the Perzyna-type viscous extension causes the local driving force

β to become unbounded, allowing it to take values outside the reversible domain E in

Equation (4.18). This is explained in the work of MIEHE & SCHÄNZEL [96]. In the

rate-independent setting, the free energy in Equation (4.7) leads to the crack driving

force expressed in Equation (4.13),

f = Gcδdγl :=
Gc

l
[d− l2∆d] = −g′v(d)Ψv(J)− g′f(d) Ψf(λn)− g′c(d) Ψc(νn) > 0 .

(4.24)

By defining the functions hv(d) = −g′v(d), hf (d) = −g′f (d), and hc(d) = −g′c(d),
the crack driving force can be rewritten as

f = hv(d)Ψv(J) + hf (d) Ψf(λn) + hc(d) Ψc(νn) . (4.25)

4.2.3 History-field based representation of crack driving force

Replacing ψcr = gc/l in (4.18) by this field, we obtain the equation

[d− l2∆d] = hv(d)Hv + hf (d)Hf + hc(d)Hc , (4.26)

for the evolution of the phase field in the case of loading and unloading. Note that

this equation equips the crack topology by the local crack source on the right hand
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side. We introduce the local history field of a maximum positive reference energy of

the polymer network

Hv := max
s∈[0,t]

〈ψv(J, s)

ψv
cr

−1〉 Hf := max
s∈[0,t]

〈ψf(λn, s)

ψf
cr

−1〉 Hc := max
s∈[0,t]

〈ψc(νn, s)

ψc
cr

−1〉
(4.27)

obtained in a typical multiaxial loading scenario. The variational formulation requires

ψv
cr = ψf

cr = ψc
cr = Gc/l. Herein, distinct local evolution is foreseen for the ener-

getic and entropic response of the material. In order to (i) enforce irreversiblity, e.g.

to prevent crack healing, and (ii) to describe a distinct elastic surface, the specific

form (4.27) suppresses damage evolution below the critical energy threshold ψcr and

uses the maximum value of local crack source throughout the loading history. In

this respect, the Macaulay brackets filter out the positive values for (ψi/ψ
i
cr − 1) for

i = {v, f, c} and keeps the solid intact until the failure surface is reached. In the

above expression, free-chain and topological constraint parts of entropic response is

considered. This scenario is the most general case for the crack initiation and prop-

agation. Such an ansatz allows distinct cavitation and shear-type rupture modes. A

more specific form can be obtained if the degradation functions for the free-chain and

constraint response are identical gf(d) = gc(d) such that

[d− l2∆d] = hv(d)Hv + hf(d)He (4.28)

and a specific choice of local crack driving forces in the sense

Hv := max
s∈[0,t]

〈ψv(J, s)

ψv
cr

−1〉 and He := max
s∈[0,t]

〈ψf (λn, s)

ψf
cr

+
ψc(νn, s)

ψc
cr

−1〉 . (4.29)

The latter expression can be recast into a more elegant form

He := max
s∈[0,t]

〈ψf(λn, s) + αcψc(νn, s)

ψe
cr

− 1〉 , where αc =
ψf
cr

ψc
cr

and ψe
cr = ψf

cr

(4.30)

With this notion at hand, the proposed fracture phase field model may be reduced to

the compact two-field coupled problem.

1: DivP + ρ0γ = 0 ,

2: d− l2∆d = hv(d)Hv + hf(d)He .

(4.31)

which determine the current deformation and phase fields ϕ and d in terms of the
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Figure 4.3: (a) The intact and the degraded first Piola Kirchhoff stress P11 versus

strain ǫ = λ11 − 1 for pancake tension deformation, (b) the intact and the degraded

first Piola Kirchhoff stress P11 versus stretch λ11 under uniaxial (UT) and equibiaxial

(BT) tension deformations, respectively. (c) variation of the normalized bulk and

shear moduli and (d) the instantaneous Poisson’s with respect to damage, respectively.

The results (c,d) are identical irrespective of deformation state.

definitions (4.12), (4.28), and (4.29) This form can considered to be the most gen-

eral representation of rate-independent diffusive fracture in rubbery polymers, having

distinct energy thresholds for hydrostatic and and incompressible-entropic deforma-

tions exhibiting distinct damage degradation for each deformation mode. The rate–

dependent formulation with the definition of He can be stated as a two–field problem

with β = f

1: DivP + ρ0γ = 0 ,

2: d− l2∆d+ ηḋ = hv(d)Hv + hf (d)He .

(4.32)

The overall behavior of the presented phase-field formalism can be demonstrated on
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a material point simulation in pancake, uniaxial, and equibiaxial tension type loading

scenarios, where the results are shared in Fig. 4.3. The degradation characteristics

for these simulations is set to be, {θ = 0.01, α = 2} for entropic degradation and

{θ = 2, α = 3} for volumetric degradation. This sets a big difference in degradation

rates for entropic and volumetric parts (see Fig. 4.3(c)) which manifests itself in the

degradation of instantaneous Poisson’s ratio νinst as in Fig. 4.3(d). Since the behav-

iors in Fig. 4.3(c,d) are manifested only due to the degradation characteristics, they

are independent of the deformation state.
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CHAPTER 5

DISTORTIONAL AND DILATATIONAL FAILURE SURFACES FOR

RUBBER-LIKE MATERIALS

5.1 Dilatational and distortional failure modes: Comparison with literature

and stretch based failure criteria

In order to demonstrate the capabilities of the proposed model, uniaxial tension, bi-

axial tension, pure shear, and pancake test simulations are carried out. The ultimate

stretches for each test are plotted in a modified principal strain space. In the logarith-

mic principal strain space εi = ln(λi) (for i = 1, 2, 3), ε1 = ε2 = ε3 line describes the

hydrostatic axis, where only volumetric deformation can take place. Any deforma-

tion in a perpendicular plane to the hydrostatic axis is distortional in nature. Hence, a

useful coordinate transformation proposed by HAMDI & MAHJOUBI [127] and used

by ROSENDAHL ET AL. [107] in their studies of strain based failure criteria, can

also be utilized in the context of this study to aid the visualization of different failure

modes with the definition
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(5.1)

where ξi (i = 1, 2, 3) are modified strains. ξ1 = const. describes what is called the Π

plane. In parallel to the discussion here, the incompressibility condition J = 1 and the

critical volumetric deformation J = Jc describe two surfaces in the principal stretch

space, see Fig. 5.1(a). The compressible or nearly-incompressible rubber-like mate-

rials are bounded below with J = 1 surface for the tensile volumetric deformation

region and above with J = Jc, which describes the maximum attainable volumetric

deformations up to the onset of cavitation for the given material. The same condi-
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Figure 5.1: Incompressibility (J = 1) and critical volumetric deformation (J = Jc)

surfaces in (a) principal stretch space, and corresponding planes in (b) logarithmic

principal strain space. Note that Jc is taken non-realistically large in both figures for

visualization purposes.

tions are described between two bounding planes, i.e. ξ1 = 0 and ξ1 = ln(Jc) in the

modified strain space (denoted by Π0 and Πc in Fig. 5.1(b), respectively).

Referring to Fig. 5.1(b), on a ξ1 = const. plane, two coordinates ρ and θ can be de-

fined to describe any distortional deformation. These coordinates, along with ξ1, i.e.

(ξ1, ρ, θ), are known as Haigh-Westegaard coordinates (θ is also called Lode angle).

They are expressed in terms of the first invariant of the Hencky strain tensor H and

second and third invariants of the deviatoric part of Hencky strain tensor H ,

ξ1 =
1

2
I1, (5.2)

ρ =
√

2I ′2, (5.3)

θ =
1

3
cos−1

(

3
√
3

2

I ′3

(I ′2)
3/2

)

. (5.4)

The definition of the first invariant of H and second and third invariants of the devi-

atoric part of H (i.e., H ′ = devH ) read

I1,H = I1 = ε1 + ε2 + ε3, (5.5)

I2,H ′ = I ′2 =
1

6

(
(ε1 − ε2)

2 + (ε1 − ε3)
2 + (ε2 − ε3)

2) , (5.6)

I3,H ′ = I ′3 =

(

ε1 −
1

3
I1

)(

ε2 −
1

3
I1

)(

ε3 −
1

3
I1

)

, (5.7)

respectively.
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Figure 5.2: A typical failure surface in ξ2−ξ3-plane and (a) the associated symmetries

of the experiments due to the arbitrariness of the eigenvalues of deformation tensor

and material isotropy, (b) the corresponding ultimate stretch points on the failure

surface for uniaxial, equibiaxial, and pure shear experiments.

5.1.1 Failure data

The uniaxial tension, (equi)biaxial tension, and pure shear experiments are well-

known (or classical) experiment types for mechanical characterization of rubber-like

materials [37]. In these experiments, the point where the failure starts can readily

be accessed in terms of strains with the help of modern extensometers (e.g., video

extensometers). However, it is much more challenging to obtain the corresponding

true stresses. Therefore, two datasets, both reporting ultimate stretch values, are uti-

lized in this paper to assess the proposed failure concept. KAWABATA [128] used a

special biaxial test device where two perpendicular directions on a thin square rub-

ber specimen are stretched at prescribed values to obtain different biaxiality ratios.

On the other hand, HAMDI ET AL. [129, 130] utilized an inflation-type test appara-

tus, where a thin circular rubber specimen is fixed on top of a circular (or elliptical)

hole. A prescribed amount of pressure is applied through the hole, and the rubber

specimen is inflated while recording the amount of displacement at the apex point

through an LVDT sensor. Kawabata reported the ultimate stretch data for unfilled

natural (NR) and styrene-butadiene rubber (SBR) specimens, while HAMDI ET AL.

[129] worked with filled NR and SBR. The ultimate failure points are presented in
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Figure 5.3: Ultimate stretches projected onto the ξ2 − ξ3-plane for (a) unfilled NR

and SBR experiments of KAWABATA [128], and (b) filled NR and SBR experiments

of HAMDI ET AL. [129, 130]

modified principal strain space in Fig. 5.3, where the data is reflected with respect to

the line corresponding to the equibiaxial deformations and symmetrically repeated at

2π/3 intervals and plotted on Π0 plane, i.e. ξ1 = 0. On the figure (cf. Fig. 5.2 and

Fig. 5.3), the arbitrariness of the eigenvalues of a tensor leads the symmetries with

respect to the equibiaxial lines, and the material isotropy leads the symmetries across

the principal directions.

5.1.2 Equivalent strain failure criteria

A review of classical and modern equivalent stress based failure criteria is provided

in KOLUPAEV [105]. The idea of equivalent strain failure criteria (see ROSENDAHL

ET AL. [107]) is adopted from the well known stress based counterpart with the

phenomenological description of the failure surface φ(ε), that is

φ(ε1, ε2, ε3) = εeq(ε1, ε2, ε3)− εc = 0, (5.8)

where, εc is the critical strain. Material withstands the given deformations for the re-

gion φ(ε) < 0, and fails if φ(ε) ≥ 0. In Table 5.1, 5 classical and 1 modern strain fail-

ure criteria are listed and their equivalent strain expressions are provided. Notice that,

Rankine-like and Mariotte-like criteria are pressure sensitive, i.e., the failure surface

varies on the hydrostatic axis. However, these models’ volumetric failure predictions
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Table 5.1: List of the definitions for the classical and modern failure criteria [107].

In the expressions, ε1 ≥ ε2 ≥ ε3 is assumed, i.e., {ε1, ε2, ε3} is an ordered tuple of

principal (true) strains.

Classical criteria expression
pressure

sensitivity

Rankine-like (the maximum

normal stress hypothesis)
εeq = max

i=1,2,3
εi +

Tresca-like (the maximum

shear stress hypothesis)
εeq = ε1 − ε3 −

von Mises-like εeq =
√
3I ′

2
−

Mariotte-like εeq =
3

2

(

ε1 −
1

2
I1

)

+

Ivlev-like εeq = I1 − 3ε3 −

Modern criteria expression
pressure

sensitivity

Podgorski-Bigoni-Piccolroaz εeq = ρ cos

(

β
π

6
− 1

3
cos−1 (α cos 3θ)

)

−

were not meant to be utilized and should be used for shear type failure predictions re-

stricted to the Π0 plane. The phenomenological Podgorski-Bigoni-Piccolroaz (PBP)

criterion has two parameters which can be adjusted to obtain convex and mathemat-

ically accurate predictions. The parameters α ∈ [0, 1] and β ∈ [0, 2] are restricted

in order to preserve the convexity of the model. Furthermore, it can be reduced to

criteria; Mariotte-like for {α = 1, β = 0}, Tresca-like for {α = 1, β = 1}, Ivlev-like

for {α = 1, β = 2}, and von-Mises like for {α = 0, β ∈ [0, 2]}. The failure sur-

face predictions of the classical and PBP criteria are listed in Fig. 5.4. Notice that,

in the figures, Mariotte-like and Rankine-like criteria have similar ∇ shapes with dif-

ferent εc values, and denote the upper-convexity limit for any convex failure criteria.

Likewise, Ivlev-like criterion takes on a ∆ shape and provides the lower-convexity

limit.
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Figure 5.4: Classical and modern failure criteria predictions on HAMDI ET AL. [129,

130]. a) Rankine-like with εc = 1.95, b) Mariotte-like with εc = 2.92, c) Tresca-like

with εc = 2.95, d) von-Mises like with εc = 2.92, e) Ivlev-like with εc = 2.92, and

f) Podgorski-Bigoni-Piccolroaz with εc = 2.38, α = 0.9, β = 0.1.

5.1.3 Failure criterion fits

In this section, we demonstrate the capabilities of this contribution’s disctinct critical

reference energies in the context of failure surface predictions. Let the volumetric

free energy expression be separated as,

ψv :=







ψ+
v for J ≥ 1

ψ−
v for 0 < J < 1

(5.9)

where J ≥ 1 corresponds to volumetric tension. With this separation, the local driv-

ing forces (4.29)1 and (4.30) constitute an energetic-entropic decoupled failure sur-

face for their values,

Distinct :







ψ+
v

ψv
cr

− 1 = 0,

ψf + αcψc

ψe
cr

− 1 = 0.

(5.10)
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Figure 5.5: The parametric study of the constraint critical energy ratio αc for fixed

ψe
cr. Increase in αc reduces the ultimate stretches for equibiaxial deformations more

prominently compared to the reduction of ultimate stretches for uniaxial deforma-

tions. The increase in αc changes the Mariotte-like (upper-convexity limit) initial

shape towards von-Mises (circular failure surface) to the Ivlev-like (lower-convexity

limit) failure surfaces (cf. Fig. 5.2).

On the other hand a failure criterion in the sense that

Unified :
ψ+
v

ψv
cr

+
ψf + αcψc

ψe
cr

− 1 = 0, (5.11)

can be defined for a coupled (unified) energetic-entropic failure surface.

The entropic part of the failure criteria contains constraint critical energy ratio αc to

control the contribution of the I2 term on the failure surface. Notice that if αc = 0,

then the entropic part of the failure criteria reduces to the free-chain response. A

parametric study on the effect of constraint critical energy ratio is given in Fig.5.5.

The shape of the failure surface for different αc values between upper and lower

convexity limits passes through von-Mises like surface. For large values of αc, a ∆

shaped surface is obtained. In this case, the failure is determined mostly by equibi-

axial deformations. For multiaxial deformations, both (5.10) and (5.11) define a 3D

failure surface. The effect of using (5.11) as the failure criterion is a shrinking dis-

tortional envelope along hydrostatic axis. This approach is inline with the CUNTZE’s
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Figure 5.6: Failure surface fits for the (a,c) unfilled NR and SBR experiments of

Kawabata [128] and (b,d) filled NR and SBR experiments of HAMDI ET AL. [129,

130]. The entropic critical energies (ψe
cr) and the constraint critical energy ratios

(αc = ψe
cr/ψ

c
cr) for the associated fits are given in the legends.

Table 5.2: Extended eight-chain parameters for the failure surface fits for Hamdi et

al. [129]

µ [MPa] N [−] µc [MPa] χ [MPa]

Filled NR 0.885 15 0.74 280

Filled SBR 1.75 18.4 0.54 500
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[131, 107] failure modes concept, which can be re-stated in the context of this study

with the failure surface definition

[(
ψe(λr, νn)

ψe
cr

)m

+

(
ψ+
v (J)

ψv
cr

)m]1/m

= 1 (5.12)

where, the constant m controls the coupling between entropic and volumetric contri-

butions. Since there is no experimental evidence on the coupling term m and (5.10)

is more convenient in the phase-field theory, distinct failure criterion is chosen as the

final failure criterion which corresponds to m = ∞. Notice that, in (5.11) m = 1. In

both (5.10) and (5.11), after reaching failure surface, i.e. after the crack initiation, the

crack propagates in a way that the poisson’s ratio along the crack path reduces due to

the utilization of separate degradation functions gv(d) and gf(d).

We utilize HAMDI ET AL. [129] datasets and show the failure surface predictions on

Π0 plane. Then, a multiaxial extension is demonstrated on the modified logarithmic

principal strain space. The parameters for both filled NR and filled SBR fits are

provided in Table 8.1. The results are shown in Fig. 5.6 on Π0 fits, and Fig. 5.7 for

volumetric extension.
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Figure 5.7: Failure surface fits for filled SBR and NR data of HAMDI ET AL. [129]

in modified principal strains space with (a) unified and (b) distinct failure criteria,

respectively. The ξ1 axis is scaled and the volumetric critical energy for SBR is ψv
cr =

0.02 [MPa/m3].

In Fig.5.6, the ultimate stretch points for equibiaxial experiments of HAMDI ET AL.

[129] are captured by setting appropriate αc values. On the other hand, the ultimate
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stretches for equibiaxial points of Kawabata [128] dataset fall outside of upper con-

vexity limit of the model, thus αc’s are set to 0 for both experiments of [128].
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CHAPTER 6

INTERPLAY BETWEEN VISCOELASTICITY OF THE BULK AND

PHASE-FIELD APPROACH TO FRACTURE

Rubber-like materials are strongly rate-dependent in both their mechanical response

and fracture properties. The key constitutive relations are established in the previ-

ous chapters for hyperelastic and viscoelastic responses of rubber-like materials, and

a generalized phase-field approach is provided in detail. In this chapter, we cou-

ple these theories to represent rate-dependent characteristics of fracture. Beside this

coupling, the afforementioned phase-field theory brings about the idea of degrading

Poisson’s ratio. In this chapter, the interplay between the extended eight-chain model

and the nonlinearly viscous theory is of concern for the present phase-field approach.

The most fundamental characteristics, relevant to the presented phase-field theory, is

the fracture toughness or the critical energy release rate Gc, as a material parameter.

Therefore, one can, naturally, start with a phenomenological expression for a rate de-

pendent critical energy release rate. In [93], YIN ET AL proposed a rate-dependent

fracture toughness with a degradation characteristic given in the context of phase-field

fracture, i.e., in small-strain rates (in terms of ε̇)

Gc = G0
c (1 + α g(d)ε̇ : ε̇) . (6.1)

In this expression, G0
c is base or undegraded critical energy release rate, α is a pa-

rameter to scale the contribution of strain-rates to the expression and g(d) is utilized

as to penalize the effects of rates for already fractured (large values of d) regions

and to focus the expression on the regions where crack may propagate. This is an

excellent modification for the critical energy release rate Gc for varying strain-rates.

However, the theory is in small-strains setting and focuses on the evolution of frac-

ture. Furthermore, [93] attributed this to the difference in chain strength and strength
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of entanglements and cross-links. For the loads applied in high strain-rates, the relax-

ation kinetics transfers the loads towards equilibrium, however the chains’ relaxation

is not infinitely fast and they become main carriers of the load, which require more

energy to break. This theory does not require tracking the crack propagation veloc-

ity ȧ (as in the case of [94]), since it utilizes a phase-field framework. LOEW ET

AL. [95] directly extended the numerical stabilization parameter (also present in our

theory) of MIEHE & SCHAENZEL [96] and gave a viscoelastic response to the bulk,

and obtained the first finite theory. The damage growth is regularized and a rate-

dependent driving force expression is obtained. This theory incorporates the finite

strains linearly viscous theory of HOLZAPFEL [97] and avoids local history field (of

[81]) altoghether. With the history variable expression, they observed an unbounded

growth of phase-field even though H stays constant. Therefore, they used an active

set method to stop the growth of d. The provided experiments on EPDM rubber for

SENT as well as DENT specimens validates their theory. Since the degradation func-

tions are an integral part of the phase-field approach, they discussed the several known

degradation functions and their effects as well. Also, the calibration of the phase-field

length scale parameter l through DIC renders physically accurate results. Although

we follow the same line of thinking (see [95, 132, 133, 134, 135]), our approach

defines a generic multi-axial failure surface and fully express the critical energy ex-

pressions, i.e., ψcr = Gc/l without splitting Gc and l. Further investigation for a

decoupling of these as separate material parameters is required and not addressed in

the present dissertation. In [98], YIN & KALISKE proposed another approach, where

they tracked the intact total free energy consisting of the summation of equilibrium

and non-equilibrium responses as the history variable in the phase-field expressions,

i.e.,

H = Max
τ≤tn+1

ψ+
0 (F , τ) (6.2)

where, ψ+
0 with a volumetric-isochoric split, was given in the form,

ψ+
0 = ψ+

vol + ψeq,+
iso + ψne,+

iso (6.3)

with + sign denoting tensile part of the respective energy components,i.e., volumetric

(ψ+
vol), isochoric equilibrium (ψeq,+

iso ), and isochoric non-equilibrium (ψne,+
iso ) energies,

respectively. Their viscoelastic expressions are based on REESE & GOVINDJEE’s

nonlinearly viscous theory [60], and utilize neo-Hookean Maxwell branches for equi-
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librium as well as non-equilibrium responses. This theory correctly captures the in-

crease in reaction force at fracture on a load-displacement curve at increasing rates

for the SENT and DENT experiments on EPDM rubber of LOEW ET AL. [95].

However, we encountered an increase in displacement at fracture (see Fig. 6.4) for

increasing loading rates in our v-shape DENT (vDENT) experiments (similar to ones

given in [136]) of unfilled SBR. SHEN ET AL. [99] took a different approach to in-

corporate rate-dependent effects into the fracture process. They included a portion of

the dissipated energy into the dissipation inequality expression and used this to derive

the rate-dependent partial differential equations (PDEs) for the multi-field problem.

The contribution of the dissipated energy is controlled using a parameter, and they

suggested a mental picture of the fracture process zone, shown in Fig. 6.1. They

focused on the highly non-linear region (region III) and the mainly viscous-driven

dissipative region (region II) in the process zone. In our work, we also focused on

region III , where we observed a degrading incompressibility of the bulk. However,

SHEN ET AL. [99] considered region II to be the main factor connecting the phase-

field fracture and viscous response in the bulk. They suggested that this dissipative

region generates self-heating, which promotes both the nucleation and propagation

of fractures and alters the evolution of crack growth rate. Although the tempera-

ture increase is evident, further research is needed to quantify this increase with a

thermo-mechanical coupling in the phase-field approach. Finally, note that the theory

proposed by SHEN ET AL. [99] is linear in both the elastic and viscous branches.

6.1 A direct coupling of viscous stored energy into the disctinct failure criterion

In light of the afforementioned works, we can favor the approach by [98] (also see

DAMMASS ET AL. [137, 138]) in the following sense within our distinct failure

criterion 5.10,

distinct viscous :







ψ+
v

ψv
cr

− 1 = 0,

ψf + αcψc + βvψ
ne
f

ψe
cr

− 1 = 0,

(6.4)

and omitted the volumetric-viscoelastic effects altogether. In this expression, ψne
f

refers to the total free-chain part of non-equilibrium. As in the SHEN ET AL. [99]
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I
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III
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Figure 6.1: A representative schematic view of the process zone around the crack

tip [99]. I denotes the uneffected (and undamaged) region, II represents the region

where viscoelastic dissipative effects take place, finally, III shows the region where

nonlinear inelastic and irreversible processes occur, these can be counted as cavity

formation, bond or cross-link rupture.

we included a control parameter βv, but for the viscous stored part to be able to adjust

the viscous contribution. The effect of incorporating the viscous stored energies into

the entropic driving expression will be discussed next. Note that, different from [98],

this expression provides a direct alteration of the entropic failure surface with respect

to the amount of activations of the viscous branches. The modified total free energy

expression then becomes

Ψ = (gv(d) + k)ψe
v + (ge(d) + k)ψe

e + ge(d)ψ
ne
f . (6.5)

This expression leads to the thermodynamical force expression,

f := −∂dΨ = −g′v(d)ψe
v − g′e(d)ψ

e
e − g′e(d)ψ

ne
f (6.6)

where, using 6.4, the entropic history field can be rewritten as,

He := max
s∈[0,t]

〈
ψf (λn, s) + αcψc(νn, s) + βvψ

ne
f (Ie1 , s)

ψe
cr

− 1

〉

, (6.7)

which ensures the irreversibility, and protects the thermodynamical consistency be-

cause of the use of the Macaulay brackets.

Consider a generic rubber material with a single Maxwell branch, whose parame-

ters provided in Table 6.1. With this material, the effect of 6.4 can be demonstrated
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Table 6.1: A generic rubber specimen with a single Maxwell branch for demonstra-

tion. Simulation parameters as well as degradation functions are listed.

Equilibrium part

χ [MPa] µ [MPa] N [-] µc [MPa]

462 0.34 90 0.9

Non-equilibrium part

χv [MPa] µv [MPa] Nv [-] γ̇0/τ̂m [MPa−ms−1] m [-]

462 0.34 90 1 1

Phase-field related

ψe
cr [MPa/m3] ψv

cr [MPa/m3] l ∼ [mm] αc [-] η [-] k [-]

1 ∞ 1 1 0 0

Degradation behavior

α θ

Volumetric degradation 2 3

Entropic degradation 2 10−2

with single element simulations on a unit cube (1mm × 1mm × 1mm) in uniaxial

deformation mode at different strain-rates. Since the length scale parameter is also

taken as l = 1 [mm], i.e., unity, we can consider this study as material point simu-

lation. Before giving the associated results, we would like to mention that numerical

viscosity η terms from the rate-dependent formulation 4.19 is ignored and artificial

stiffness k is taken 0 (all in all, these parameters were only conceived for quasi-static

phase-field simulations). Thus their effects are not present. This is firstly due to pre-

venting adulteration of the results and to show stable behavior of the simulation with

bulk viscoelasticity, i.e., it shows numerically improved results. However, with the

inclusion of viscoelasticity, ∆t becomes important and we observed a limiting stable

value for it, for instance, in these simulations, for u̇ = 100 [mm/min], ∆t should

be equal or below 10−3 [s]. Finally note that, ψv
cr is also taken a large value, where

1 [MPa/mm3] in this case corresponds to no volumetric fracture, the range of change

in J is extremely small in this simulation, therefore ψv
cr is shown as ∞ in Table 6.1,
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thus we concentrated only on the entropic fracture and rate-effects related to it.
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Figure 6.2: Varying rates of u̇i = {0.1, 1, 10, 100} [mm/min] on material point simu-

lations for the parameters listed in Table 6.1, comparing βv = 0 and βv = 1.

First, we changed the strain-rate in a uniaxial tension setting for fracture simulation

and observed the behavior of the model, with βv = 1 against the original distinct

failure criterion 5.10 (which can be obtained by setting βv = 0). Considered rates

are u̇ = {0.1, 1, 10, 100} [mm/min] in a displacement driven regime. These results

are given in Fig 6.2. A quick glance over the results reveals an increased stress and

decreased stretch at failure for increased strain rates. Similar behavior was also re-

ported in [98, 94, 95, 99]. Finally, we provided a parametric study for varying βv

for the values βv = {±1,±0.75,±0.5,±0.25, 0}, and shown the results in Fig. 6.3.

Negative βv values seem to cause proportional resistance to the crack nucleation, an

interesting result, where the viscous effects can also be negatively contributing to the

fracture through dissipation of the energy normally going into the fracture in viscous

processes. This can further be explained by the relaxation taking precedence over

fracture; instead of rupturing the chains of stretched molecules (which requires larger

energies compared to slip the chains through entanglements), a forced and rapid re-
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laxation might be happening.
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Figure 6.3: Effect of varying beta values at u̇ = 10 [mm/min] constant speed on

material point simulations for the parameters listed in Table 6.1, exhibiting stable

behavior for negative values of βv.

One of the main advantages of such a modification is the unaltered degradation of

rubber’s incompressibility. Therefore, this approach preserves the region II behavior

depicted schematically in Fig. 6.1. Bulk viscous effects in region III is directly con-

tributing to the critical energy release rate. Therefore, both region II and region III

are covered. Note that, the µv value is equal to the µ of the ground-state behavior in

Table 6.1, which is rather a large value. This causes the viscous effects to be more

pronounced on the point of fracture.

We chose explicitly to degrade the viscous contribution to the free-energy with the en-

tropic degradation function. However, a further study would allow a separate degra-

dation of the viscous part as well, which we haven’t pursued in this dissertation work.

For instance, a faster or slower degradation of the viscous part would allow alteration

of the crack propagation behavior as well. This has the potential utilization in fatigue
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Figure 6.4: Load-displacement curves for the fracture experiments at different rates

on die cut unfilled SBR specimens with the symmetric vDENT geometry given in

Fig 8.2. The increased rates postpones the fracture. I , II , and III show the shrinking

span in displacement axis with increased rates.

crack growth studies. The inclusions as well as inhomogeneous constituents due to

rubber production process causes varying critical energy release rates within the sam-

ples, which has the utmost importance to the fatigue crack growth. On this regard

see the excellent work of WU ET AL. [139]. This variations cause a more smeared

fracture for slow loading rates compared to more abrubt failure at high strain rates.

We provided a supporting evidence in Fig. 6.4 here from our experimental work (dis-

cussed in the next section) on unfilled SBR rubber fracture specimens cut with sharp

dies to the symmetric vDENT geometry given in Fig. 8.2a). The span of the fracture

process (shown as I , II , and III in Fig. 6.4 for u̇i = {2.5, 25, 250} [mm/min] load

rates, respectively) in displacement axis on the given load-displacement curves show

this behavior clearly. Also, we noted much smoother crack surfaces in higher rates

(cf. [136]). As the loading rates gets smaller, the fracture process takes much longer.
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We conducted several laser cut experiments as well and observed much delayed be-

havior, and extremeley fast and abrubt failures. This can be attributed to an arti-

ficial increase of Gc for the laser-cut lines on the specimens (see the results sec-

tion for details). Furthermore, also notice a slope in the propagation regime on

u̇ = 250 [mm/min] curve in Fig 6.4. This is evidently supporting a variable prop-

agation characteristic for this rubber specimen in this rate. The effect is almost not

present in u̇i = {2.5, 25} [mm/min] experiments. We conclude that, this slope is

not related to the inhomogeneous character of the specimens, but due to viscous ef-

fects.
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CHAPTER 7

VALIDATION EXPERIMENTS ON UNFILLED STYRENE-BUTADIENE

RUBBER

In order to validate the theory presented in this thesis, we must explicitly avoid rub-

ber specimens exhibiting strong Mullin’s effect [140] or strain crystallization [141].

Both can be mitigated by the choice of unfilled styrene butadiene rubber (SBR) in

the experiments. We first characterized the specimens by uniaxial and equibiaxial ex-

periments in quasi-static regime. Furthermore, volumetric compression tests are also

conducted to identify bulk modulus. Then, we conducted several relaxation and creep

experiments to identify nonlinear viscous model parameters. These conclude the set

of experiments required to mechanically identify the specimens. Then, a series of

fracture experiments with custom notch geometries are arranged both in quasi-static

and high strain rate settings. Notch length is varied in a set of geometrically symmet-

ric fracture specimens, and used for proving the consistencies of criticial energies.

Finally, these critical energies are validated on an asymmetric notched specimen ge-

ometry in Chapter 8. The fracture specimens utilize a v-type notch as outlined in

HEYDARI-MEYBODI ET AL. [136] in a symmetric and asymmetric double edge ar-

rangement. Hence, we named these specimens vDENT. V-type notch increases (due

to blunting) the fracture loads and creates a uniaxial stress state at the notch tip for

Mode-I type loading. The SBR specimens are provided by Bayrak Lastik Sanayi ve

Ticaret A.Ş. company in 240× 140 × 2 [mm×mm×mm] batches produced from the

same mold. Furthermore, these geometries are cut using both a punch type die-cutter

and a laser-cutter. Since the fracture loads significantly change due to these cutting

types, we reported both results. The variability of the results and the fracture loads

are much higher for laser-cut specimens. The data of both cutting methods are re-

ported in this work since the author is not aware of a similar experimental work in
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literature taking the type of geometry preparation into account. Rupture tests for SBR

comprised of three boundary velocities for each geometry and two cutting methods

just discussed. Using SONY ZV-E10 video camera with 100 FPS capture settings,

we managed to capture the rupture behaviour of asymmetrical and symmetrical spec-

imens for 2.5 mm/min boundary velocity. These snapshots are reported in Chapter 8

for side-by-side comparison to the analyses.

These experimental studies are conducted on a modular Zwick/Roell Z010 universal

testing machine with two video extensometers dedicated specifically to uniaxial and

equibiaxial tests. The TestXpert III software associated with the test machine is used

in implementing experimental protocols, measurements, and control of the testing

machine. In the tests, pneumatic grips are utilized and they are mounted between the

Zwick/Roell XForceP series load cell with 10 [kN] nominal force capacity.

Basic parameters for the compressible extended eight-chain model and the nonlin-

early viscous theory are given in this section for the experiments. Fracture related

analyses will be discussed and elaborated in Chapter 8.

7.1 Mechanical characterization

In this section, uniaxial tension, equibiaxial tension, and volumetric compression re-

sults of in-house experiments on unfilled SBR rubber are given. The experimental

procedures are explained in detail.

In the uniaxial tests (Fig.7.2a)), three ISO37 Type 2 [142] geometries are prepared

from SBR sheets with 2 [mm] thickness and loaded until rupture. For the equibiaxial

tests (Fig.7.2b)), from the same batch, three flower shaped specimens with 2 [mm]

thickness are prepared according to the geometry by Axel Physical Testing Services

[142]. Dimensions and the geometries are given in Fig. 7.3. Both uniaxial and equib-

iaxial geometries are cut using die-cutters. For both uniaxial and equibiaxial tests 2.5

[mm/min] position controlled test speed is utilized with video extensometer based

strain measurements. The value of speed utilized here corresponds to quasi-static

behavior (see [43]) for the studied rubber specimens. The experiment results are av-

eraged for uniaxial tension tests. On the other hand, experiment corresponding to the
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Figure 7.1: (Left) uniaxial and (right) equibiaxial tension experiments at 2.5

[mm/min] speed and their average values.

largest stretch value for the equibiaxial test is considered for the fits, this is for si-

multaneous fits where the uniaxial and equibiaxial tests are fitted together as in DAL

ET AL. [37]. Fig. 7.1 contains the raw data of the (left) UT experiments and (right)

ET experiments with confidence bounds and the averages. In the figures, result of the

experiments are documented in the sense of stress (first Piola-Kirchhoff stress) versus

stretch values.

a) b)

Figure 7.2: Loading for the specimens at a) uniaxial and b) equibiaxial arrangements.

The volumetric compression tests utilizes small φ = 6.5 [mm] cylindrical specimens

with 2 [mm] thicknesses. With this geometry, three specimens from the same batch

of SBR sheet are cut with a punch cutter. A diagram showing the custom apparatus

used in the experiments is given in Fig. 7.5 a). The apparatus, specimen, and slid-
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Figure 7.3: The geometries for a) ISO37 Type 2, and b) equibiaxial tests [142]. Thick-

ness of the specimens are 2 [mm].
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Figure 7.4: Extended eight-chain model fits for uniaxial and equibiaxial tests.
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Table 7.1: Extended eight-chain parameters for the experiments on unfilled SBR.

µ [MPa] N [−] µc [MPa] χ [MPa]

Unfilled SBR 0.34 90.14 0.91 462

ing pin are placed in between fixed and moving cross-heads of the test device. The

applied force squeshes the specimens while the amount of stretch and the load are

recorded. This loading arrangement forces the material to change volume by restrict-

ing the side expansion of the specimens. Since the diameter of the specimens cannot

be exactly matching the diameter of the apparatus hole, side expansion on the spec-

imens occur which result in an initial shear-like deformations until the specimen is

loaded sufficiently high. After the initial shape-change, the specimens can no longer

expand sideways and start to deform volumetrically. The experiment results are pro-

vided in Fig. 7.5 b). The measurements result in a steep slope after initial shear-like

deformations due to material’s near incompressible behavior. Since we expect higher-

and-higher loads for increased compression, we ended the experiments at 200 [N] by

setting an upper force limit from TestXpert III software. This region of the experi-

ments are averaged and fitted with extended eight-chain model. Finally the extended

eight-chain model parameters are given in Table 7.1 and the fit results are shown in

Fig. 7.4.

7.2 Creep and relaxation tests

The viscous characteristics of the SBR material can be obtained by a series of creep

and relaxation tests. In these experiments, uniaxial test specimens are used comply-

ing to, again, the ISO37 Type 2 [142] geometry. In the experiments, we utilized the

video extensometer of the test machine. In the creep and relaxation experiments, a

sharp step like loading is applied until the set stress or stretch values reached, re-

spectively. However, in the physical experiments, the test machine has a speed and

acceleration/deceleration limit. In our case, cross-head speed limit is approximately

600 [mm/min], to stay in the safe limit, we utilized a 450 [mm/min] cross-head speed

in the tests. For each experiment, the specimen is slowly loaded at 2.5 [mm/min] until
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Figure 7.5: a) Specimen geometry and test apparatus, b) the volumetric compression

experiment results and extended eight-chain model fit with κ = 463 [MPa] for un-

filled SBR.

the 75 % of the ultimate sresses or stretches according to the test type. This is mainly

to cancel the Mullin’s effect that could alter the results. Then the 450 [mm/min] step

input is applied for the given set value of the experiments.

Creep experiments: For the creep experiments, P11 = {0.3, 0.6, 0.9, 1.2} [MPa]

stress set values are adjusted. After the first slow loading, each set stress is achieved

with 450 [mm/min] position controlled speed, and the material holded at the set stress

for 10 [min]. Between each test we waited for 15 [min]. A set of 3 experiments are

conducted in total for each set value.

Relaxation experiments: For the relaxation experiments, λ = {1.5, 2, 2.5, 3} [-

] stretch set values are adjusted. After the first slow loading, each set stretch is

achieved with 450 [mm/min] position controlled speed, and the material holded at

the set stretch for 10 [min]. Between each test we waited for 15 [min]. A set of 3

experiments are conducted in total for each set value.

The results of the experiments and the fits are given in Fig 7.6 and Fig 7.7 for relax-

ation and creep respectively. For parameter optimization, the ground state behavior

is fixed from UT and ET experiments as given in Table 7.1. Then, the viscous pa-

rameters are fitted manually over the creep and relaxation data. In order to carry out
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Table 7.2: Viscous parameters for the unfilled SBR material. These parameters si-

multaneously fit 4 creep and 4 relaxation set values.

Parameters for the Maxwell branches.

χv [MPa] µv [MPa] Nv [-] γ̇0/τ̂m [MPa−ms−1] m [-]

1st Maxwell branch 462 0.12 90 150 1

2nd Maxwell branch 462 0.05 90 1 3

the fits, a script file has been generated where the set viscous parameters are tested

over 4 creep and 4 relaxation set levels simultaneously. A single Maxwell branch

was not enough, therefore, we utilized two Maxwell branches. The number of seg-

ments are taken equal to the ground state number of segments to reduce the number

of parameters. The optimized parameters are given in Table 7.2.

λ = 1.5 [-] exp.

λ = 2.0 [-] exp.

λ = 2.5 [-] exp.

λ = 3.0 [-] exp.
λ = 1.5 [-] fit

λ = 2.0 [-] fit

λ = 2.5 [-] fit

λ = 3.0 [-] fit

6005004003002001000
0

1.4

1.2

1

0.8

0.6

0.4

0.2

time [s]

P
1
1

[M
P

a]
[-

]

Figure 7.6: Relaxation tests at set stretch values of λ = {1.5, 2.0, 2.5, 3.0} [-] and the

simultaneous fit results for the parameters given in Table 7.2.
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P11 = 0.3 [MPa] exp.

P11 = 0.6 [MPa] exp.

P11 = 0.9 [MPa] exp.

P11 = 1.2 [MPa] exp.
P11 = 0.3 [MPa] fit

P11 = 0.6 [MPa] fit

P11 = 0.9 [MPa] fit

P11 = 1.2 [MPa] fit

6005004003002001000

3.5

3

2.5

2

1.5

1

time [s]

λ
[-

]

Figure 7.7: Creep tests at set stress values of P11 = {0.3, 0.6, 0.9, 1.2} [MPa] and the

simultaneous fit results for the parameters given in Table 7.2.

7.3 Fracture tests for symmetric and asymmetric geometries

As we would like to calibrate Ψe
cr values, we have conducted fracture experiments

on two different geometries. The symmetric geometry, see Fig. 7.8 a), serves as the

calibration tests where the notch length is varied. The asymmetric geometry, see

Fig. 7.8 b), on the other hand, is tested for validation. In these experiments, 2.5

[mm/min] test speed is applied to obtain quasi-static condition. The geometries are

obtained through both laser-cutting and die-cutting. The laser-cut geometries are

obtained in 3 cycles at 80% load with 100 [mm/min] speed in an 80 [Watt] CO2-

laser. Special press type dies are used for die-cutting. The experiment results for both

cutting methods are given in this section. Furthermore, to validate the viscous failure

criterion given in 6.4, two different clamp velocities (or cross-head speeds) are used

for symmetric specimen geometry given in Fig. 7.8 a). These set values are taken as

10 times, and 100 times of the quasi-static case, i.e., u̇ = {25, 250} [mm/min] and

repeated three times. These high strain rate tests are conducted only on specimens

obtained by die-cutting.
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Figure 7.8: a) Symmetric simple notched test specimen dimensions. Dashed lines

are symmetry axes. The notch lengths are taken to be ai = {16, 20, 24}. In the

simulations only the half the thickness of the first quarter is considered by utilizing

symmetries. b) The same sized specimen with asymmetrically placed notches. All

units are in [mm]. The angle α is kept constant at tan−1(1/4).

Symmetric geometry obtained by laser For these experiments, 2.5 [mm/min] clamp

velocity is utilized. The results encompasses 3 notch lengths ai = {16, 20, 24} [mm]

as given in Fig. 7.8 a), each repeated 3 times. The load-displacement curves for these

experiments are given in Fig. 7.9(a).

Asymmetric geometry obtained by laser: For these experiments, 2.5 [mm/min]

clamp velocity is utilized. The geometry is as given in Fig. 7.8 b). These are repeated

3 times. The load-displacement curves for these experiments are given in Fig. 7.9(c).

Symmetric geometry obtained by die-cutting: For these experiments, 2.5 [mm/min]

clamp velocity is utilized. The results encompasses 3 notch lengths ai = {16, 20, 24}
[mm] as given in Fig. 7.8 a), each repeated 3 times. The load-displacement curves for

these experiments are given in Fig. 7.9(b).

Asymmetric geometry obtained by die-cutting: For these experiments, 2.5 [mm/min]

clamp velocity is utilized. The geometry is as given in Fig. 7.8 b). These are repeated

3 times. The load-displacement curves for these experiments are given in Fig. 7.9(d).
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Figure 7.9: Load-displacement curves of fracture experiments for (a) symmetric

laser-cut specimens with notch lengths ai = {16, 20, 24}, (b) symmetric die-cut

speciments with notch lengths ai = {16, 20, 24}, (c) asymmetric laser-cut, and (d)

asymmetric die-cut specimens. Each experiment type is repeated three times.

High strain rate tests with die-cut symmetric geometries: For these experiments,

u̇ = {25, 250} [mm/min] clamp velocities are utilized. Each repeated three times.

The load-displacement curves for these experiments are given in Fig. 7.10.

REMARKS: These conclude the set of experiments for the study. The following re-

marks are experimental observations and encountered phenomena.

• The laser-cut specimens exhibit much larger fracture toughness, as can be seen

from both symmetric and asymmetric test results Fig. 7.9(a, c) compared to

Fig. 7.9(b, d), respectively.
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Figure 7.10: Load displacement curves for die-cut symmetric specimens at u̇ =

{2.5, 25, 250} [mm/min] clamp speed.
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Figure 7.11: Load displacement curves for die-cut symmetric unfilled NBR speci-

mens at u̇ = {2.5, 25, 250} [mm/min] clamp speed.
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• The laser-cut specimens exhibit extremely abrubt failure. The fracture initiates

at one of the notches and suddenly proceeds to around the other notch with-

out allowing failure at the other notch. The failure is catastrophic and almost

instantaneous.

• In the die-cut experiments fracture initiates at one of the notches, proceeds con-

siderably slowly and sometimes stagnant for a while. Before complete failure,

fracture also initiates at the other notch. In both symmetric and asymmetric

geometries, late initiation of fracture at one of the notches results in complex

crack paths. The secondary crack initiation is more evident in die-cut asymmet-

ric specimens and exhibits itself in load-displacement curves Fig. 7.9(d) with a

late long-lasting ductile behavior before complete failure.

• The crack paths observed in die-cut symmetric specimens are jagged and do

not follow a straight path. This indiciates a non-homogeneous distribution of

energy release rate within the specimen, yet these specimens are high quality

and the material is unfilled. We can observe such behavior in HOCINE ET

AL. [143]. Material does not catastrophically fail instantly, shows a behavior

similar to ductile fracture. This behavior is extremely important for fatigue

crack growth simulations with phase-field approach.

• We note that, v-type double edge notch geometries (vDENT) provide quite the

opposite results of double edge straight notch specimens of LOEW ET AL.

[95]. vDENT specimens show significant increase in displacement at fracture

as the clamp-velocity increases. In a double edge straight notch geometry,

the crack tip blunting effects won’t be significant to alter the viscous behav-

ior. However, vDENT geometries have significant blunting before the crack

propagation and this effect seems to be pronounced as the clamp-velocity in-

creases and results in a delayed crack formation. In order to make sure that

this effect is only about the geometry and not related to material, we conducted

u̇ = {2.5, 25, 250} [mm/min] experiments on unfilled NBR as well, whose

load-displacement curves are give in Fig.7.11. The vDENT geometry seems to

be the main reason. However, for this very reason the blunting takes effect at

material level in our theory, as it is not resolved in geometry for simulations,

and forces the theory to utilize negative βv values in 6.4. With positive βv
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values, the theory can capture the experimental results of LOEW ET AL. [95].
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CHAPTER 8

REPRESENTATIVE BOUNDARY VALUE PROBLEMS AND RESULTS

In this section, we demonstrate the utility of the proposed phase-field approach by

solving several boundary value problems (BVP). The contribution’s performance is

assessed through comparison with not only the in-house experiments, but also the

experiments from literature. The experiments themselves are considered as BVPs

since the geometries of the specimens in the experiments are representative enough

for this assessment. The following cases are considered as simulations in that regard,

• experiments on symmetrically notched specimens by HOCINE ET AL. [143] to

validate the theory on an established dataset from literature,

• in-house fracture experiments on symmetrically notched die-cut and laser-cut

specimens with varying notch lengths,

• in-house fracture experiments on asymmetrically notched die-cut and laser-cut

specimens,

• in-house fracture experiments on varying strain rates for symmetrically notched

die-cut specimens.

In the simulations of these boundary value problems, an academic Finite Element

Analysis Program (FEAP) [144] is utilized. A material routine for compressible ex-

tended eight-chain model along with the nonlinearly finite viscoelastic theory DAL ET

AL. [43] has been implemented. For the phase-field part, a Q1 ([145]) based formu-

lation has been implemented as element routine and coupled with the material routine

through stress and tangent modulus degradation. The ease of use and extendability

of FEAP allowed faster theory implementation in this thesis, for instance, that would
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be otherwise as compared to commercial alternatives, e.g., ABAQUS ([146]). We

utilized the toolbox presented in DAL ET AL. [37] to identify the material parameters

in compressible extended eight-chain model.

8.1 Double edge notched specimens by HOCINE ET AL. [143]

The critical fracture energies for a double edge notched specimens (DENT) for SBR

were reported by HOCINE ET AL. [143]. In their work, symmetric DENT spec-

imens’ load-displacement curves are provided for tensile experiments at different

notch lengths. These experiments can be used as a benchmark for the behavior of

the generalized phase field model under entropic fracture conditions. In the experi-

ments, they considered w = 80 [mm] width by h = 200 [mm] length specimens with

3 [mm] thicknesses.

In the simulations the geometry is modeled by considering symmetries and only 1/8th

of the total geometry is meshed. For this material, in the extended eight-chain model

µ = 0.175 [MPa], N = 500, and µc = 0.465 [MPa] are taken. κ is set to 150µ

during the simulations to prevent volumetric locking. The degradation function for

the entropic part is taken as θ = 0.01, and α = 2 while the volumetric part is set

to α = 3, and θ = 2. The overall geometry is meshed with 1400 elements in 3D

for 1/8th (quarter of the surface and half the thickness) of the geometry, where in

the critical fracture area, the average mesh size h = 0.03 [mm] is obtained. The

length scale parameter l is set to 0.1 which corresponds to approximately 3 elements

in the direction perpendicular to crack path. The critical entropic energy is fitted as

ψe
cr = 2.15 [MPa/m3]. The load displacement curves and the generalized phase-field

model fits are shown in Fig. 8.1 for all notch lengths.

In these experiments, the notch geometry is different in comparison to the ones we

utilized. In their set of experiments, the notches were created by hand using a scalpel.

We can see a platau before catastrophic failure in the load-displacement curves given

in Fig. 8.1. This is much to our surprise, as investigated further in the next sections,

due to varying critical energy release rate over the specimen,i.e., due to inhomo-

geneities. We conducted our set of experiments similar to HOCINE ET AL. [143]
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using specially designed die cutters with the geometries given in Fig. 8.2. For the

experiments, in order to punctuate the robustness of the theory presented in this the-

sis, we utilized a laser cutter to obtain the same geometries. Therefore, we present

two sets of data, one for die-cut geometries, and one for laser-cut. The laser-cut

specimens exhibit considerably larger ψe
cr values when fitted. Therefore, they present

larger displacements before rupture and can be used to show the effectiveness of the

theory. We utilized l = 1 [mm] for the length scale in the rest of the simulations.

Thus, we use ψe
cr as material parameter instead of Ge

c throughout this section.
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Figure 8.1: Symmetric DENT specimen geometry for [143] experiments where w =

80 [mm] and h = 200 [mm]. The notch lengths are ai = {12, 16, 20, 24, 28}. In the

simulations only the half the thickness of the first quarter is considered by utilizing

symmetries.

8.2 Simulation results for custom vDENT experiments

In this section, we analyzed a set of simulations on both die-cut and laser-cut speci-

mens and compared the results to the corresponding experiments. The striking differ-

ence on the cricital entropic energy values for these two types of experiments show

that, the generalized phase-field model can capture the varying notch-length simula-

95



tion results once we fit one of the notch lengths through simulations for both cases.

The considered custom geometries are given in Fig. 8.2. The symmetric geometry has

three different notch lengths, i.e., ai = {16, 20, 24} [mm]. Asymmetrically notched

vDENT geometry has only one notch length and it is used to provide a further condi-

tion of proving the theory.

ai
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α

α

8080

4040Quarter I

2 [mm] thickness2 [mm] thickness

16

16

16

a) b)

Figure 8.2: a) Symmetric simple notched test specimen dimensions. Dashed lines

are symmetry axes. The notch lengths are taken to be ai = {16, 20, 24}. In the

simulations only the half the thickness of the first quarter is considered by utilizing

symmetries. b) The same sized specimen with asymmetrically placed notches. All

units are in [mm]. The angle α is kept constant at tan−1(1/4).

We named these experiments vDENT (v-shape double edge notched tensile) and pre-

ferred the v-shape notches (see [136]) since they provide a more homogeneous re-

sponse around the notch tip or the process zone, compared to a straight edge notch

(as in [143]). Also note that we used special cutting dies for each notch length and

asymmetric geometry and a press to have consistent notches across all the specimens.

The laser-cut geometries are obtained in 3 cycles at 80% load with 100 [mm/min]

speed in an 80 [Watt] CO2-laser. The extended eight-chain model parameters for the

rest of the simulations are summarized in Table 8.1. Note that, these values are fitted

from UT and ET experiments simultaneously using the framework provided in [37].

The simultaneous fits have the advantage of exhibiting meaningful (or non-diverging)

stretch-stress responses under both UT and ET loading conditions, which is a prereq-
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uisite for this theory to work in multiaxial loading conditions.

Table 8.1: Extended eight-chain parameters for the experiments on unfilled SBR.

µ [MPa] N [−] µc [MPa] χ [MPa]

Unfilled SBR 0.34 90.14 0.91 462 (50)

Also note that all the geometries in Fig. 8.2 have 10 [mm] additional space at top and

bottom to create holding surfaces for the pneumatic grips of the test machine.

Rupture tests for SBR comprised of three boundary velocities (clamp velocities) for

each geometry and two cutting methods for specimen preperation. Using SONY

ZV-E10 video camera with 100 FPS capture settings, we managed to capture the

rupture behaviour of asymmetrical and symmetrical specimens under 2.5 mm/min

boundary velocity. For the symmetrical geometry, we observed that crack propagated

at t = 1284.93[s]. Propagation of the crack occured under a second, as shown in

Fig. 8.3(e). Post-mortem state of the specimen exhibited a straight line pattern, in

agreement with the simulation results shown in Fig. 8.7. For the asymmetrical laser-

cut specimen, propagation began at t = 1372.71[s] (Fig. 8.4). Similar to the sym-

metrical geometry, crack propagated almost instantly and advanced in 3 miliseconds,

eventuating catasthropic failure. Due to the difference in critical entropy between

sides, we observed that the crack propagated from one side to the other. Since the

failure is catasthropic, it is not within reach to conceive the propagation of the crack

from the other side. According to Fig. 8.5 and Fig. 8.6, die-cut specimens differed

from the laser-cut specimens both in terms of propagation pattern and duration. Crack

propagation of the symmetrical die-cut specimen began at t = 381.09 [s], which is

significantly earlier than the laser-cut counterpart. A reason for the difference can

be due to the boundary acting as a barrier because of the cauterizing effect of heat

provided by the laser. Another reason can be the irregularities created by the die

blade, resulting in microcracks rendering the specimens susceptible to early failure.

After crack propagation starts, it is seen that cracks at both notches propagate from

their respective sides, although not equal in size and shape because of the difference

between critical entropies. Crack propagation took remarkably longer, since catas-
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(a) (b) (c) (d) (e) (f)

Figure 8.3: The snapshots for the crack propagation of laser-cut symmetric specimen

under tensile rupture test at 2.5 mm/min boundary velocity, showing specimen (a) at

undeformed state t = 0, (b) just before rupture t = 1284.93 [s], (c) at t = 1284.94 [s],

(d) at t = 1284.95 [s], (e) at t = 1284.96 [s], and (f) post-mortem picture.

(a) (b) (c) (d) (e) (f)

Figure 8.4: The snapshots for the crack propagation of laser-cut asymmetric spec-

imen under tensile rupture test at 2.5 mm/min boundary velocity, showing speci-

men (a) at undeformed state t = 0, (b) just before rupture t = 1372.71 [s], (c) at

t = 1372.72 [s], (d) at t = 1372.73 [s], (e) at t = 1372.74 [s], and (f) post-mortem

picture.

trophic failure occured in later stages. As the propagation in the die-cut specimens

occured continuously, it is also observed that the crack sometimes acted in such a way

that it did not propagate for relatively long durations. Propagation patterns were dif-

ferent from that of laser-cut specimens. Due to inclusions present in the SBR, crack

occured in comparatively irregular patterns. In our point of view, this phenomenon

must be investigated as it stands extremely important to fatigue crack growth. One

way of approaching such a problem would be an elaborate extension of the present
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theory (see [139]) with a stochastically defiend ψe
cr field. However, such an endeavor

has not been pursued in this study.

(a) (b) (c) (d) (e) (f)

Figure 8.5: The snapshots for the crack propagation of die-cut symmetric specimen

under tensile rupture test at 2.5 mm/min boundary velocity, showing specimen (a) at

undeformed state t = 0, (b) just before rupture t = 381.09 [s], (c) at t = 423.05 [s],

(d) at t = 478.06 [s], (e) at t = 486.95 [s], and (f) post-mortem picture.

(a) (b) (c) (d) (e) (f)

Figure 8.6: The snapshots for the crack propagation of die-cut asymmetric specimen

under tensile rupture test at 2.5 mm/min boundary velocity, showing specimen (a) at

undeformed state t = 0, (b) just before rupture t = 418.82 [s], (c) at t = 469.94 [s],

(d) at t = 499.49 [s], (e) at t = 530.42 [s], and (f) post-mortem picture.

8.2.1 Symmetric vDENT specimens with varying notch lengths

In this simulation, the custom notch geometry given in 8.2 where a1 = 16 [mm] is

simulated and crack is propagated up to complete rupture. In the simulations, the

unfilled SBR material parameters are utilized as given in Table 8.1.However, the bulk
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modulus is taken roughly as κ = 150µ to prevent volumetric locking of the elements.

Half of the thickness of the quarter of the geometry is meshed with 1400 elements,

where in the critical fracture area, the average mesh size h = 0.15 [mm] is obtained.

The length scale parameter is adjusted to be l = 1 corresponding to approximately

7 elements in the direction perpendicular to crack path. For the simulation, a pro-

portional displacement is applied at the top surface and the bottom surface is fixed

utilizing symmetry conditions. We relaxed the mesh at top and bottom surfaces in

thickness direction to avoid finer mesh quality around load application surface. In

this simulation, entropic critical energies ψe
cr = 2.3 [MPa/m3] for laser-cut specimens

and ψe
cr = 0.32 [MPa/m3] for die-cut specimens are fitted based on the experiments

of varying notch lengths (16, 20 and 24 [mm]). The degradation function for the en-

tropic part is taken as θ = 0.01, and α = 2 while the volumetric part is set to α = 3,

and θ = 2. The crack path evolution in Lagrangian and Eulerian meshes are provided

in Fig. 8.7. The corresponding load displacement curve for the simulation is given in

Fig. 8.8(a).

d

(a) (b) (c) (d) (e) (f)

(i) (ii) (iii) (iv) (v) (vi)

0 1

Figure 8.7: Snapshots of rupture simulation results for symmetric laser-cut specimens

(a− f) in Lagrangian, and (i− vi) in Eulerian configurations.

Since the equibiaxial experiments with the in-house universal testing machine cannot

provide accurate conditions for rupture, the true ultimate stretches by our equibiaxial
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Figure 8.8: Model predictions for (a) symmetric laser-cut specimens with notch

lengths ai = {16, 20, 24}, (b) symmetric die-cut speciments with notch lengths

ai = {16, 20, 24}, (c) asymmetric laser-cut, and (d) asymmetric die-cut specimens.

test device cannot be obtained and αc parameter cannot be determined. In order to

obtain accurate ultimate stretches in equibiaxial loading, an inflation type test appa-

ratus is needed (see [130] and [128]). The equibiaxial tests, in this study, therefore,

are utilized only for material parameter optimization for extended eight-chain model.

With this in mind, an αc value of 1 is chosen for the phase-field part, which represents

equal amount of contributions of free-chain and constraint parts to the total entropic

free energy. In the simulations, an artificial stiffness of k = 10−4 is used to provide

better convergence after crack initiation. The artificial viscosity parameter is set to

η = 10−6. The test speed for the corresponding experiments meant to be quasi-static

and chosen as low as possible, i.e., 2.5 [mm/min]. Thus, the viscoelastic part in the

simulation code is negligible. Note that the overall geometry is recovered in Fig. 8.7
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by symmetry through postprocessing. The fits as load-displacement curves for the rest

of the notch lengths are given in Fig. 8.8(a) for laser-cut specimens and in Fig 8.8(b)

for die-cut specimens along with this simulation for comparison. All parameters are

taken equal for varying notch length simulations. We note the difference of ψe
cr values

of aforementioned HOCINE ET AL. [143] simulation and our die-cut simulation. This

is mainly due to taking l = 0.1 [mm] in the previous simulation. In comparison to

[143], this is expected also as we factor in the specimens’ notch shapes, heights, and

thickness differences.

In our laser-cut experiments, we observe more abrubt (or brittle) fractures in load-

displacement curves (cf. Fig. 8.1 to Fig. 8.8(a) and Fig. 8.8(b)). We can attribute

this to laser cutting, which makes the notches artificially more stiff (compared to a

die-cut geometry where micro notches and grooves can be introduced which would

make it easier to initiate fracture) and offsets the crack initiation point further on the

displacement axis which results in more energy storage until rupture, in turn we can

see more abrubt ruptures in our laser-cut experiments.

8.2.2 Asymmetric vDENT specimens

In this part, the custom asymmetrically notched geometry given in Fig. 8.2 b) is sim-

ulated and crack is propagated up to complete rupture. In the simulations, the unfilled

SBR material parameters are utilized as given in Table 8.1 and κ is similarly set to

150µ. In the simulations k = 10−3 is used to provide numerical stability during crack

propagation. As in the previous section, η = 10−6 is taken. In this simulation, half of

the thickness of full geometry is meshed with 2950 elements. Around the crack path

average mesh size of h = 0.13 [mm] is obtained. Length scale parameter is taken as

l = 1 [mm]. Since we conducted experiments of this simulation at 2.5 [mm/min], the

effect of viscoelastic part on the simulations is negligible.

Here, we considered two scenarios; (i) in the first scenario, ψe
cr is taken 2.3 [MPa/m3]

based on the symmetric calibration tests given in the previous section and same ev-

erywhere throughout the entire geometry, and (ii) in the second scenario, we applied a

different ψe
cr (twice as large, i.e., as 4.6 [MPa/m3]) value at around one of the notches

as shown in Fig. 8.9. Based on the experiments, it can be deduced that the fracture
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r

Figure 8.9: The asymmetric geometry where a different ψe
cr is applied within the

marked region of radius r = 1 [mm].

characteristics at both notch tips are not equal. Therefore, crack initiates from one of

the notches earlier and prevents rupture from the other notch as the rupture is quite

sudden due to the effect of cutting the geometry by laser, an interesting phenomenon,

which we explored in the second scenario. Note that, in the following two examples,

we utilized the same mesh. For both simulations, the load-displacement character-

istics are the same and as shown in Fig. 8.8(c). However, the crack path changes

drastically. Interestingly, we observed the same crack path as in 2nd scenario in ex-

periments for laser cut geometry. The crack paths for blade cut geometry is more

representative for 1st scenario and we can see in the snapshots that cracks are initiated

at both notches, however, it seems there still exists a difference for ψe
cr on the notches,

thus fracture instantiates at one of the notches earlier. These scenarios are aggreable

to experiments both in terms of crack path and load-displacement curves. Finally, we

provided the blade cut experiment data and its fits for comparison in Fig. 8.8(d).

(i) homogeneous ψe
cr for entire geometry The die-cut geometries exhibit close (with

respect to laser cut geometries) notch tip ψe
cr values according to the experiments. The

cracks are initiated at both notches throughout the experiments. The base behavior of

the theory presented in this thesis is tested in this simulation. The simulation results

for these are shown in Fig. 8.10 where the cracks emerges from both sides simulta-

neously and meets at the geometric center of the specimen. The load-displacement

curve is as given in Fig.8.8(c), the snapshots of one of the experiments is given in

Fig. 8.6.
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Figure 8.10: Snapshots of rupture simulation results for asymmetric laser-cut speci-

mens for homogeneous ψe
cr distribution (a−f) in Lagrangian, and (i−vi) in Eulerian

configurations.
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Figure 8.11: Snapshots of rupture simulation results for asymmetric laser-cut spec-

imens for twice as large ψe
cr at right notch (a − f) in Lagrangian, and (i − vi) in

Eulerian configurations.
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Figure 8.12: Simulation results and post mortem pictures for symmetric (left) and

asymmetric (right) specimens.

(ii) different ψe
cr at around one of the notches In the experiments of laser cut speci-

mens for the asymmetric geometry, we observed a crack forming at one of the notches

and follow a catastrophic path without crack initiation at the other notch. This behav-

ior is expected since the critical energies at the notches are higher compared to die-cut

geometries and also the difference (as crack resistance) between the notches is sig-

nificantly large. The following simulation is aiming at capturing this behavior. In

order to simulate this behavior, a large difference of ψe
cr is given to the neighborhood

of one of the notches as in Fig. 8.9. The simulation results are given in Fig. 8.11 in

Lagrangian and Eulerian configurations, clearly showing the crack path starting from

one of the notches. Since the critical energy is the same at the other notch with the 1st

scenario, we observe the same load-displacement curve as in Fig. 8.8(c). Here, the

post-mortem picture of the laser cut specimen is added in Fig. 8.12 for comparison of

the crack path.

8.3 Assesment of rate effects

The parameters for ground-state and viscous branches are summarized in Table 8.1

and Table 8.2, respectively. These were obtained in experimental validation chapter

(Chapter 7). In this section, we present the simulations for u̇ = 25, 250 [mm/min]

clamp velocities. The load-displacement curves and the associated fits are given in
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Table 8.2: Viscous parameters for the unfilled SBR material. These parameters si-

multaneously fit 4 creep and 4 relaxation set values.

Parameters for the Maxwell branches.

χv [MPa] µv [MPa] Nv [-] γ̇0/τ̂m [MPa−ms−1] m [-]

1st Maxwell branch 462(50) 0.12 90 150 1

2nd Maxwell branch 462(50) 0.05 90 1 3

(a) (b)

250 [mm/min] exp. 1
250 [mm/min] exp. 2
250 [mm/min] exp. 3

25 [mm/min] exp. 1
25 [mm/min] exp. 2
25 [mm/min] exp. 3

xp. 1

250 [mm/min] sim.25 [mm/min] sim.
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Figure 8.13: Load displacement curves for symmetric 16 [mm] notch length specimen

simulation results for (a) u̇ = {25} [mm/min] and (b) u̇ = {250} [mm/min] loading

rates on die-cut geometry’s experimental data.

Fig. 8.13. The degradation characteristics is as the previous simulations. These simu-

lations are fitted using the rate experiments of die-cut specimens with the final critical

entropic value of ψe
cr = 0.25 [MPa/m3] (cf. value for quasi-static case ψe

cr = 0.32).

We note that, v-type double edge notch geometries (vDENT) provide quite the oppo-

site results of double edge straight notch specimens of LOEW ET AL. [95]. vDENT

specimens show significant increase in displacement at fracture as the clamp-velocity

increases. In a double edge straight notch geometry, the crack tip blunting effects

won’t be significant to alter the viscous behavior. However, vDENT geometries have
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significant blunting before the crack propagation and this effect seems to be pro-

nounced as the clamp-velocity increases and results in a delayed crack formation.

As discussed in the experiments chapter, this aspect is proven with experiments on

vDENT unfilled NBR specimens. The vDENT geometry seems to be the main rea-

son. Thus, for this very reason the blunting takes effect at material level in our theory,

as it is not resolved in geometry for simulations, and forces the theory to utilize neg-

ative βv values in 6.4. Therefore, the value of βv for these simulations is accepted as

−4. As with the other simulations, we set κ = 150µ to prevent volumetric locking

for the viscous branches as well. Over the load-displacement curves, we can clearly

see the viscous overstress effects where the load at fracture increases as the rate of

loading increases.

REMARKS: Experimental measurements of the cricital energy release rate highly de-

pend on the type of the experiments and loading. One of the most accurate critical

energy release rate measurements can be achieved with a pure shear type loading on a

thin rubber specimen with varying notch lengths. Original investigations by RIVLIN

& THOMAS [147] revieled accurate predictions for energy release rate for pure shear

geometry, yet, the equation for the energy release rate for the SENT specimens pre-

dict erronous results. ROUCOU ET AL. [148, 149] investigated the different load-

ing types and their effects on the resulting critical energy release rate calculations.

According to their findings, the SENT specimens with notch lengths smaller than

one fifth of the width of the geometry do not allow classical Griffith type analysis,

where the unnotched geometry and notched geometries (until fracture) have almost

identical load-displacement behavior. The notches larger than the one fifth of the

original width of the SENT geometry allow such an analysis but causes non-uniaxial

or mixed-loading state around the notch tip due to structural bending, leading to er-

ronous calculations. There appears corrections in ROUCOU ET AL. [149] according

to the determination of where the catastrophic failure starts after the initial steady

crack growth using the post mortem pictures of the fracture surface of ruptured spec-

imens. After the catastrophic failure, the fractured surfaces are mirror like, while the

region where quasi-static crack growth happens exhibit jagged and un-smooth sur-

faces. However, the exact determination of the point of catastrophic failure is proved

difficult ROUCOU ET AL. [149]. Instead, in this study, we utilized v-type notches,
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which provide less structural bending before the failure, and creates relatively more

homogeneous uniaxial tension state around the notch tip, effectively allowing larger

notch lengths to determine relatively better critical energy release rates. The double

edge arrangement alleviates this problem further due to symmetry, HOCINE ET AL.

[143]. However, a tedious Griffith type analysis is not provided, and the physical ac-

curacy of these rates are not assumed. Therefore, with relatively similar mesh sizes

for different geometries (as in symmetric and asymmetric tests of the present study),

and the length scale parameter of the phase-field model is being fixed, the energy

content at fracture is utilized as critical entropic energy in the simulations. On die-cut

vDENT specimens of the present study, the large notches creates rough propagation

patterns as commented out in ROUCOU ET AL. [148]. Interestingly, the laser cut

specimens showed brittle and sudden failure even with the same large notch lengths

with the die-cut specimens. The resulted simulations with the same mesh coarse-

ness around the propagation path, proved the theory viable in vDENT simulations.

Nonetheless, a more accurate critical energy release rate calculation is still needed,

and calibration of the length scale parameter has to be pursued with a DIC system

[95]. Another aspect of the SENT, DENT, vDENT, and pure shear type fructure ex-

periments is the stochasticity of the initial steady crack growth phase, which indicate

the coupled nature of loss of incompressibility and material’s inhomogenities. This

is important for a fatigue crack growth study using phase-field approach. The cyclic

loading around critical levels of a specimen does not always initiate catastrophic fail-

ure, and progressive crack growth is almost always in the beginning steady crack

growth regime for each cycle. Modeling of the behavior in this regime is half-way

treated in the present study by utilizing different degradation functions for volumet-

ric and entropic degradations, and stochasticity is left for a future study. Finally, the

captured behavior of laser-cut specimens are shown side by side with post mortems

of experiments and simulations in Figure 8.12.
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CHAPTER 9

CONCLUSION

In this work, we proposed several extensions to the phase-field approach based on

the novel compressible extended eight-chain model. The extended eight-chain model

provides distinct terms related to I1, I2, I3. The non-dilatational response is decou-

pled and consists of free-chain and constraint responses. It is called the entropic part

throughout the thesis, since it encompasses all entropic behaviors of rubber-like ma-

terials. The advantage of distinct terms of the extended eight-chain model allows

separate degradation of each term. The degradation functions can be produced with

the novel tunable Hermitian polynomials. The tunable nature of the Hermitian poly-

nomials allow adjustment of the degradation of each term separately. This unique

feature is then showed to capture an experimental behavior, where at the crack front,

cavity like formations occur before the propagation. This phenomenon weakens the

crack front and makes the rubber transition from quasi-incompressible hyperelastic

behavior to a porous compressible solid state prior to macro-crack formation. Uti-

lizing two distinct degradation functions for the volumetric and the entropic parts,

the proposed generalized phase-field approach is shown to allow such transition and

the degradation of the Poisson’s ratio is captured. The forms of the history fields

for separate terms of the extended eight-chain model allow definition of multi-axial

failure surface for rubber-like materials. This approach is shown to agree with the

experimental results on the Π0-plane, where no hydrostatic deformation takes place.

Furthermore, it is shown that, the proposed surface is capable of providing 3D failure

bounds, also capturing the point of cavitation on the hydrostatic axis. Its capability

of simultaneously fitting both the failure surfaces for entropic and volumetric failure

modes is shown by comparing to data from the literature. This whole approach pro-

vides a unique multi-axial failure surface for rubber-like materials, where only the

109



phenomenological equivalent-strain based approaches has provided such accuracy so

far. The separate I2 term, which is related to the constraint part, is elegantly rep-

resented with an additional parameter αc, provides tuning the failure surface for the

biaxial loads. This parameter is shown to produce counterparts of the well-known

stress-based failure criteria, such as von-Mises, Mariotte, and Ivlev. This unique

feature comes directly from the micro-mechanical definition of I2 term. With the

proposed generalized phase-field approach, both the crack initiation in a multi-axial

deformation state and crack propagation in the sense that a rubber-like material’s in-

compressibility also degrades along the crack path can be taken into account in a

simulation. Next, a nonlinearly viscous theory is coupled with the generalized phase-

field approach in an ad-hoc manner, where good agreement on high strian rate frac-

ture experiments also observed. The general tendancy of the increased stresses at

fracture, and decreased strains observed as in literature. A parameter βv is introduced

in the failure criterion definition to adjust the contribution of the viscous branch’s

stored energies into the failure criterion. In this work, we conducted several in-house

experiments on unfilled SBR material for validation. These encompasses uniaxial,

equibiaxial, volumetric compression, creep, and relaxation tests for the mechanical

characterization and several symmetric and asymmetric custom fracture geometries

for validation. The custom vDENT geometries for the fracture experiments are ob-

tained by laser and die cutting as separate batches. It is evident from the experiments

that, the crack initiation in the laser-cut specimens is much more difficult than the

die-cut specimens. Also in the symmetric experiments three different notch lengths

are considered. It is shown that, by fitting the critical entropic energy to one of the

notch lengths captures the behavior on the rest of the notch lengths, also on the asym-

metric geometry. From the experiments, it is obvious that, the fracture is a stochastic

process. The crack paths are jagged and diverges from the expected straigth-path for

the die-cut symmetric experiments. This suggest, even for an unfilled rubber, the pro-

duction method and the additives cause inhomogenities on the critical energies with

the geometry. A stochastic distribution of the entropic critical energies within the ge-

ometry would allow capturing this behavior and it is extremely important for fatigue

crack growth studies. This theory allows such an extension, however it is not pursued

in this thesis.
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