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ABSTRACT 

 

A PANEL FINITE ELEMENT WITH DISTORTIONAL MODES FOR THE 

ANALYSIS OF OPEN SECTION THIN WALLED BEAMS 

 

 

 

Ontaç, Suat 

Doctor of Philosophy, Mechanical Engineering 

Supervisor: Prof. Dr. Süha Oral 

 

 

February 2023, 64 pages 

 

In this thesis, a panel finite element is developed for the analysis of the isotropic, 

open section, thin walled beams. In this study, the axial deformation, Euler-Bernoulli 

bending, Vlasov torsion and Kirchoff shell theories are combined to determine the 

displacements including in-plane and out-of-plane distortions in the cross sections 

of open section thin walled beams. 

The open section thin walled beam element is obtained by the assembly of panel 

elements. This element has two nodes each having 15 degrees of freedom. A 

MATLAB computer code is developed for the panel finite element anaysis to 

calculate the displacements and stresses at any point in the beam. The results 

obtained are compared to the results taken from literature and ANSYS software. 

Keywords: Open Section Thin Walled Beam, Panel Finite Element Method, 

Distortion 
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ÖZ 

 

AÇIK KESİTLİ İNCE CİDARLI KİRİŞLERİN ANALİZİ İÇİN ÇARPILMA 

MODLARI İÇEREN BİR PANEL SONLU ELEMANI 

 

 

 

Ontaç, Suat 

Doktora, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Süha Oral 

 

 

Şubat 2023, 64 sayfa 

 

Bu tezde, izotropik, açık kesitli, ince cidarlı kirişlerin analizi için bir panel sonlu 

elemanı geliştirilmiştir. Bu çalışmada, açık kesitli ince cidarlı kirişlerde, düzlem içi 

ve düzlem dışı çarpılmaları da içeren deplasmanları elde etmek için, eksenel 

deformasyon, Euler-Bernoulli eğilme, Vlasov burulma ve Kirchoff kabuk teorileri 

birleştirilmektedir. 

Açık kesitli ince cidarlı çubuk elemanı panel elemanlarının birleştirilmesiyle elde 

edilmektedir. Bu eleman her biri 15 serbestlik derecesi bulunan iki düğüm noktasına 

sahiptir.  

Bu çalışmada, kiriş üzerindeki herhangi bir noktada oluşan deplasman ve gerilim 

değerini hesaplayan bir MATLAB bilgisayar kodu geliştirilmiştir. Elde edilen 

sonuçlar literatürden ve ANSYS yazılımından alınan sonuçlarla karşılaştırılmıştır.              

Anahtar Kelimeler: Açık Kesitli İnce Cidarlı Kiriş, Panel Sonlu Elemanlar Metodu, 

Çarpılma
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CHAPTER 1  

1 INTRODUCTION 

1.1 Thesis Overview 

A beam is called thin walled if its cross section consists of simply or multiply 

connected walls in which the wall thicknesses are very small compared to the 

dimensions of the cross section.  

The thin walled beams are commonly used in engineering applications, such as 

aerospace structures, ship hulls, vehicle structures, bridges and various load carrying 

members due to their high stiffness-to-mass ratio and convenience to design and 

manufacture. Significant amount of material saving can be obtained if thin walled 

beams are used instead of solid or thick-walled beams. 

The thin walled beam cross sections are represented by the centerlines of the walls 

which are called edges. The end points of an edge are called vertices. The section is 

called open section if the edges are simply connected, and closed section if the edges 

are multiply connected. In this thesis, only open section beams are studied. 

The displacements of beams are the sum of rigid and elastic motions of the beam 

cross sections.  In a solid section beam, the elastic motions are negligible and the 

displacements can accurately be defined in terms of the rigid motions. However, in 

a thin walled beam, the elastic motions cannot be neglected. Therefore, the kinematic 

behavior of solid and thin walled beams are considerably different and the 

conventional beam theories of Euler–Bernoulli and Timoshenko cannot be used to 

analyse thin walled structures accurately. In the Vlasov beam theory, the out-of-

plane distortion in torsion is included but the in-plane distortions of the cross section 

are neglected. 
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1.2 Thesis Objective 

The objective of this thesis is to develop a cost effective method for the analysis of 

open section thin walled beams by considering rigid, in-plane and out-of-plane 

elastic modes of deformation in the cross sections. 

1.3 Thesis Scope 

This thesis consists of five chapters. The starting chapter is Chapter 1 which 

introduce the study outline, thesis objective, and thesis scope. In Chapter 2, a 

literature survey which includes the previous studies is given. In Chapter 3, a panel 

finite element for open section thin walled beams is formulated. In Chapter 4, 

different test problems are solved and the results are compared with the shell 

solutions obtained from ANSYS commercial finite element analysis package. 

Chapter 5 is the conclusion for the present study and also contains recommendations 

for future work on this topic. 
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CHAPTER 2  

2 LITERATURE REVIEW 

The theory of thin walled beams have been subject to extensive research for years. 

Especially in the recent years, researches are focusing on the the cross section 

deformation including in-plane distortion. The other aim is minimizing the 

calculation time and effort for the analyses. 

The first study for modelling the kinematics of thin walled beams was done by 

Vlasov [1]. He studied and developed the theory of sectorial area assuming the non-

uniform torsion along the beam axis contributing to out-of-plane warping of the 

cross-section. In this theory, it is assumed that the cross-section is rigid in its own 

plane and there is no shear deformation along the profile mid-line. 

The research community globally accepted Vlasov’s analytical model and made 

some extention studies over the years in order to take into account for the other 

effects like geometric non-linearities in longitudinal deformations caused by large 

cross sectional rotation, shear deformations along the wall thickness, variable cross 

sections (stepped or tapered), curved axis beams or nonlinear warping effects. 

Capurso [2] proposed a generalized description of warping and revised Vlasov 

theory so that shear deformation over the cross-section is included.  

Schardt [3] proposed a generalized beam theory in which the in and out-of-plane 

distortions are considered. In this study, first-order analysis of prismatic members 

with thin walled simple open or cylindrical cross sections have been performed by 

superposing a number of cross-sectional natural modes whose magnitudes varies 

along the beam span. A second-order analysis for the generalized beam theory has 

also been presented by Schardt [4]. These studies have been translated into English 

in later years [5]. 
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Andreassen [6] presented a novel mode-based method which considers the distortion 

of the cross section with a limited number of degrees of freedom by using a semi-

discretized approach including the geometric stiffness terms.  

Jönsson [7] made a study which generalizes the classical thin walled beam theory for 

open and closed cross sections to include one distortional deformation mode. For 

this purpose, distortional cross section parameters are defined and a normalization 

technique is introduced. Finally, the theoretical formulations for torsion and 

distortion are constructed and three different cross sections are illustrated in order to 

verify the method and show the effects of the theoretical parameters. 

Hansen and Jönsson [8] introduced a novel one dimensional beam model in order to 

analyse deformable section thin walled beams. In this model, for the derivation of 

the three dimensional diplacement modes, the natural modes of the cross section are 

determined. This cross section determination process can be used to obtain both rigid 

body modes and distortions modes of the beam with exponential and polynomial 

variations along the beam span. All these displacement modes enable a formulation 

for an advanced thin walled beam element. 

Zhang, Zhu, Ji and Peng [9] presented a simplified approach in order to identify the 

cross sectional deformation modes of prismatic thin walled structures. This provides 

the formation of a higher order beam model for the dynamic analyses.  In this study, 

the displacement field is assumed as a linear superposition of basis functions whose 

amplitudes changes along the beam span. These basis functions are obtained from 

the nodal displacements of the beam cross section which is discretized on the 

midline, by using interpolating polynomials.  In order to produce the primary 

deformation modes, the basis deformation modes are superposed. And then, the final 

set of the sectional deformation modes are assembled to the primary deformation 

modes which are used to update the basis functions in the higher order beam model. 

Zhang, Ji and Zhu [10] presented an alternative approach to obtain the cross section 

deformation modes of a thin walled beam. In this study, the preliminary deformation 
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modes considering their participations in free vibration modes are assembled and 

integrated in the governing equations of higher order model.  

Ghose [11] developed a three noded isoparametric beam finite element which is 

based on Benscoter theory. The autor states that the classical beam theories assume 

that the warping is proportional to the twist rate, while the Benscoter’s theory 

assumes the warping is proportional to the warping function, which is an independent 

quantity. Also, the use of Benscoter’s theory has an advantage since the effects of 

secondary shear strains are taken into consideration which are negligable in 

classsical beam theories. 

Lin and Hsiao [12] develoed an analytical formulation for torsional warping in order 

to analyse open-section thin walled beams. This analytical formulation is a 

combination of the Vlasov beam theory and Kirchhoff plate/shell theory. They 

emphasise that Vlasov and Timoshenko considered only primary warping, while, 

Goodier and Gjelsvik considered both primary and secondary warping. For this 

reason, they used Goodier’s theory for the approximation of torsional warping of an 

open-section thin walled beam. The authors, then, constructed and presented a more 

general expression for the analysis of an open-section thin walled beam including 

the torsional warping. 

Heo, Kim and Kim [13] showed that a distortional rigidity affects the cross section 

of a thin walled closed beam as well as torsional and bending rigidities. The autors 

states that there are many investigations in order to analyze distortional and warping 

deformations, but their article is perhaps the first study showing how the additional 

consideration of the distortional rigidity affects the design of the thin walled beam 

cross section shape. 

Sapountzakis and Mokos [14] presented the dynamic analysis of 3-dimensional 

beam elements which are fixed at their edges and under distributed dynamic twisting, 

bending, transverse and longitudinal loading. For this purpose, a boundary element 

method is developed for the beam element stiffness matrix, which is a 14x14 matrix 

and is taking the warping and shear deformation effects into consideration. Free and 
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forced transverse vibrations and longitudinal or torsional vibrations are considered, 

taking the  transverse, longitudinal, rotatory, torsional and warping inertia and 

damping resistance into account. Also, especially, the influence of the warping effect 

is examined in open form cross sections. 

Murin and Kutis [15] developed a finite element with constant stiffness for the 

analysis of open and closed section thin walled beams including torsion with 

warping. In this study, the local element stiffness matrix is derived by using the 

torsion with warping and the second order beam theory including the deformations 

due to shear. The warping part of the first derivative of the twist angle are added to 

the degree of freedom vector in each node of the beam finite element. 

Li and Luo [16] derived a stiffness matrix of a thin walled beam element considering 

the distortion effects by using generalized coordinate method and stationary 

principle potential energy. The autors developed a finite element program for 

computing the thin walled box steel beams by using the derived stiffness matrix. This 

program takes the section distortion and warping effects into consideration and 

analyses the influences and the distributions of the stresses occured. 

Ferradi, Cespedes and Arquier [17] presented a new beam finite element including 

an accurate representation of normal stresses caused by shear lag or restrained 

torsion. Warping modes are superposed in order to represent cross-section warping 

and are defined as warping functions for the kinematics of the beam. The exact 

solution of the equilibrium equations is presented for a predetermined number of 

warping modes while the elastic deformations are mesh-independent totally. 

Genoese, Genoese, Bilotta and Garcea [18] presented a linear model for thin walled 

beams with heterogeneous anisotropic materials. The autor uses Ritz-Galerkin 

approximation using independent description of displacement and stress fields. 

These fields are obtained from a preliminary semi-analytical solution based on a 

finite element formulation of the beam cross section. The displacement and stress 

definition includes both the generalized Saint Venant solution and additional effects 

due to out-of-plane warping and cross section distortions.  
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Vieira, Virtuoso and Pereira [19] presented a higher order model for the prismatic 

thin walled structures considering the cross section warping together with the cross 

section in-plane flexural deformation. In this model, the displacement field on the 

beam cross section is considered as a set of linear independent basis functions. The 

beam governing equations are derived considering the displacement field assumption 

and causing a set of 4th order differential system of equations. 

Gao [20] developed a 3-dimensional beam finite element with deformable cross 

section adding the strain components neglected in the beam theories so that the 3-

dimensional stress/strain constitutive relations are to be applicable. 

Garcea, Gonçalves, Bilotta, Manta, Bebiano, Leonetti, Magisano and Camotim [21] 

compared two approaches, which are the method of generalized eigenvectors and the 

generalized beam theory in order to obtain the cross section deformation modes of 

deformable section thin walled beams. In this comparison, the autors reviewed both 

approaches, underlying their similarities and differences. 

Latalski and Zulli [22] studied curvilinear cross section thin walled beams by 

defining the kinematic properties of the walls and made an assumption that the 

displacement of a point on the wall is a linear combination of unknown amplitudes 

and preformed trial in-plane and out-of-plane warping functions. Then, they derived 

the governing equations by using Hamilton’s method and compared the analytical 

results to the results of finite element analysis. 

Kim, Choi, Kim and Jang [23] are presented a new systematic approach in order to 

obtain the deformation modes of an arbitrary thin walled beam cross section in the 

frame of the higher order beam theory. Warping and distortion modes are derived 

from the lowest mode set as a new higher order mode set. Warping modes are derived 

from the shear stress of in-plane modes, distortion modes are derived from out-of-

plane modes by using the Poisson’s effect. The autors built the higher order modes 

as a combination of the integrated functions of lower order modes.  
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CHAPTER 3  

3 PANEL FINITE ELEMENT 

3.1 Introduction 

Consider an open section thin walled beam along the beam axis 𝑥. The cross 

sectional coordinate system are shown in Fig-3.1 where the dashed line represents 

the wall centerline of an edge. (𝑦, 𝑧) are the Cartesian coordinates. The centroid and 

shear center of the cross section are 𝐶(0,0) and 𝑂(𝑦𝑜 , 𝑧𝑜), respectively.  (𝑠, 𝑛) are 

the edge coordinates, and  𝜔 is the sectorial coordinate of a point 𝑏 with respect to 

point 𝑎 on the wall centerline. 𝑥𝑦𝑧, 𝑥𝑠𝑛 are right handed coordinate systems. 

 

Figure 3.1. Coordinate systems of a thin walled beam 

The transformation between 𝑦𝑧 and 𝑠𝑛 is 

[
𝑦
𝑧
] = [

𝑦𝑖

𝑧𝑖
] + [

𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
𝑠
𝑛
] (3.1) 

The beam displacements at a point (𝑥, 𝑦, 𝑧) are 𝑈𝑥(𝑥, 𝑦, 𝑧), 

𝑈𝑦(𝑥, 𝑦, 𝑧) and 𝑈𝑧(𝑥, 𝑦, 𝑧). 𝑈𝑥, 𝑈𝑦, 𝑈𝑧 can be expressed as a combination of the rigid 
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and elastic deformation modes of the cross section. The displacements on the beam 

axis are 𝑢𝑥(𝑥) = 𝑈𝑥(𝑥, 0,0), 𝑢𝑦(𝑥) = 𝑈𝑦(𝑥, 0,0), 𝑢𝑧(𝑥) = 𝑈𝑧(𝑥, 0,0). The rotations 

of a cross section at 𝑥 are 𝜃𝑥(𝑥), 𝜃𝑦(𝑥) = −𝑢𝑧′(𝑥), 𝜃𝑧(𝑥) = 𝑢𝑦′(𝑥) about 𝑥, 𝑦, 𝑧 

axes.  

3.1.1 Euler-Bernoulli Theory 

In the Euler-Bernoulli theory, the displacements are assumed as 

𝑈𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥(𝑥) − 𝑦𝑢𝑦
′ (𝑥) − 𝑧𝑢𝑧′(𝑥) 

(3.2) 𝑈𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦(𝑥) − (𝑧 − 𝑧𝑜)𝜃𝑥(𝑥) 

𝑈𝑧(𝑥, 𝑦, 𝑧) = 𝑢𝑧(𝑥) + (𝑦 − 𝑦𝑜)𝜃𝑥(𝑥) 

where 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 are due to rigid translations of the cross section in 𝑥, 𝑦, 𝑧 directions, 

−𝑦𝑢𝑦
′, −𝑧𝑢𝑧

′ are due to rigid rotations of the cross section about 𝑧, 𝑦 axes, 

−(𝑧 − 𝑧𝑜)𝜃𝑥, (𝑦 − 𝑦𝑜)𝜃𝑥 are due to rigid rotation of the cross section about 𝑥 axis. 

It is seen that the displacement field of the Euler-Bernoulli theory is based on rigid 

modes only. 

3.1.2 Axial Deformation and Bending 

The governing equation of axial deformation is  

𝐸𝐴𝑢𝑥′′ + 𝑓𝑥 = 0 (3.3) 

The governing equations of bending in the Euler-Bernoulli beam theory are 

𝐸(𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2)𝑢𝑦

𝑖𝑣 = 𝐼𝑦𝑓𝑦 + 𝐼𝑦𝑧𝑓𝑧  

(3.4)  

𝐸(𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2)𝑢𝑧

𝑖𝑣 = 𝐼𝑧𝑓𝑧 + 𝐼𝑦𝑧𝑓𝑦  

where 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 are the intensities of distributed loads in 𝑥, 𝑦, 𝑧 directions. 
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The normal stress in axial loading is 

𝜎𝑥 =
𝑁

 𝐴
 (3.5) 

where 

𝐴 = ∫𝑡𝑑𝑠

 

𝑐

    𝑁 = 𝐸𝐴𝑢𝑥
′  (3.6) 

The normal stress in bending is 

𝜎𝑥 =
1

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2 [(𝐼𝑦𝑧𝑀𝑦 − 𝐼𝑦𝑀𝑧)𝑦 + (𝐼𝑧𝑀𝑦 − 𝐼𝑦𝑧𝑀𝑧)𝑧] (3.7) 

where 

𝐼𝑦 = ∫𝑧2𝑡𝑑𝑠

 

𝑐

 

(3.8)  𝐼𝑧 = ∫𝑦2𝑡𝑑𝑠

 

𝑐

 

𝐼𝑦𝑧 = −∫𝑦𝑧𝑡𝑑𝑠

 

𝑐

 

𝑀𝑦 = 𝐸(𝐼𝑦𝑧𝑢𝑦
′′ − 𝐼𝑦𝑢𝑧

′′) 

(3.9) 

𝑀𝑧 = 𝐸(𝐼𝑧𝑢𝑦
′′ − 𝐼𝑦𝑧𝑢𝑧

′′) 

The shear stress in bending is 

𝜏𝑥𝑠  = −
1

𝑡(𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2)

[(𝐼𝑧𝑆𝑧 + 𝐼𝑦𝑧𝑆𝑦)𝑄𝑦 + (𝐼𝑦𝑆𝑦 + 𝐼𝑦𝑧𝑆𝑧)𝑄𝑧] (3.10) 

where 
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𝑆𝑦 = −𝑀𝑧
′  

(3.11) 

𝑆𝑧 = 𝑀𝑦
′  

𝑄𝑦 = ∫𝑧𝑡𝑑𝑠 

(3.12) 

𝑄𝑧 = ∫𝑦𝑡𝑑𝑠 

3.1.3 Vlasov Theory 

The above treatment are valid in the Vlasov beam theory. However, the torsional 

deformation is formulated by including the effect of warping which is the out-of-

plane distortion of the cross section under torsional loads and this effect is much 

more pronounced in thin walled sections compared to that in solid sections. 

In this case, the displacements along an edge are assumed as  

𝑈𝑥(𝑥, 𝑠) = 𝑢𝑥(𝑥) − 𝑦(𝑠)𝑢𝑦
′ (𝑥) − 𝑧(𝑠)𝑢𝑧′(𝑥) + 𝜔(𝑠)𝜃𝑥

′(𝑥) 

(3.13) 𝑈𝑦(𝑥, 𝑠) = 𝑢𝑦(𝑥) − (𝑧(𝑠) − 𝑧𝑜)𝜃𝑥(𝑥) 

𝑈𝑧(𝑥, 𝑠) = 𝑢𝑧(𝑥) + (𝑦(𝑠) − 𝑦𝑜)𝜃𝑥(𝑥) 

where 𝜔 is the warping function and 𝜔𝜃𝑥
′
 is the warping displacement in torsion. In 

this case, the cross section does not remain plane but distorts in 𝑥-direction. 

Therefore, this is an elastic mode.  
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3.1.4 Torsion 

Under torsional loads, a section at 𝑥 twists about the shear center 𝑂(𝑦𝑜 , 𝑧𝑜) by a 

twist angle 𝜃𝑥(𝑥) and undergoes warping 𝑈𝑥(𝑥, 𝑦, 𝑧). 

 

Figure 3.2. Out-of-plane distortion in torsion 

The transverse displacement during twisting is 

𝜹𝑷 = 𝜃𝑥𝒊𝒙 × 𝒓 = 𝑈𝑦𝒊𝒚 + 𝑈𝑧𝒊𝒛 (3.14) 

where 

𝒓 = (𝑦 − 𝑦𝑜)𝒊𝒚 + (𝑧 − 𝑧𝑜)𝒊𝒛 (3.15) 

𝑈𝑦 = −(𝑧 − 𝑧𝑜)𝜃𝑥 

(3.16) 

𝑈𝑧 = (𝑦 − 𝑦𝑜)𝜃𝑥 

The displacements in 𝑠𝑛 are 

[
𝑈𝑠

𝑈𝑛
] = [

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
𝑈𝑦

𝑈𝑧
] (3.17) 
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Define  

ℎ𝑠 = 𝒓 ∙ 𝒊𝑛 
(3.18) 

Then 

𝑈𝑠 = −ℎ𝑠𝜃𝑥 (3.19) 

The shear strain is 

𝛾𝑥𝑠 =
𝜕𝑈𝑥

𝜕𝑠
+

𝜕𝑈𝑠

𝜕𝑥
=

𝜕𝑈𝑥

𝜕𝑠
− ℎ𝑠𝜃𝑥

′
 (3.20) 

Then 

𝜕𝑈𝑥

𝜕𝑠
= 𝛾𝑥𝑠 −

𝜕𝑈𝑠

𝜕𝑥
=

𝜏𝑥𝑠

𝐺
+ ℎ𝑠𝜃𝑥

′  → 𝑈𝑥 = 𝜃𝑥′ ∫ℎ𝑠𝑑𝑠 (3.21) 

since ∫ 𝜏𝑥𝑠𝑑𝑠 = 0 in open sections where 𝜏𝑥𝑠 varies linearly along 𝑛-axis and is 

zero along the wall centerline. 𝑈𝑥 can be written as 

𝑈𝑥 = 𝜔𝜃𝑥′ (3.22) 

Where 

𝜔(𝑠) = ∫ℎ𝑠𝑑𝑠 (3.23) 

is the warping function. 

The governing equation of torsion is 

𝐸𝐼𝑤𝜃𝑥
𝑖𝑣 −  𝐺𝐽𝜃𝑥

′′ = 𝑚𝑥 (3.24) 

where 𝑚𝑥 is the intensity of distributed torque. 
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The resultant of the shear stresses in twisting is the St.Venant torque 𝑇𝑠. Normal and 

additional shear stresses are caused by warping if 𝜃𝑥′ ≠ 0. Resultant of normal and 

shear stresses in warping are the warping moment 𝑀𝑤 and the warping torque 𝑇𝑤.  

The shear stress in warping is  

𝜏𝑥𝑠  = −
2𝑇𝑠

𝐽
𝑛 (3.25) 

where 

𝐽 =
1

3
∑ 𝐿𝑛

𝑁

𝑛=1

𝑡𝑛
3 (3.26) 

𝑇𝑠 = 𝐺𝐽𝜃𝑥′ (3.27) 

The normal stress in warping is 

𝜎𝑥 =
𝑀𝑤

 𝐼𝑤
𝜔 (3.28) 

where 

𝐼𝑤 = ∫𝜔2𝑡𝑑𝑠

 

𝐴

 (3.29) 

𝑀𝑤 = 𝐸𝐼𝑤𝜃𝑥
′′

 (3.30) 

The shear stress in warping is 

𝜏𝑥𝑠 =
𝑇𝑤

𝐼𝑤𝑡
𝑄𝜔 (3.31) 

where 

𝑄𝜔 = ∫𝜔𝑡𝑑𝑠 (3.32) 

𝑇𝑤 = −𝐸𝐼𝑤𝜃′′′ (3.33) 
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3.2 Panel Finite Element Formulation 

The thin walled beams are shell structures and the most accurate results are obtained 

by the shell finite element models. However, the shell analysis is prohibitively costly 

and a special thin walled beam element is a necessity. The Vlasov beam element is 

a good approximation. However, it neglects the elastic modes other than torsional 

warping. Its accuracy can be improved by considering the elastic modes under other 

loading conditions. This is accomplished by studying shell deformations under axial 

and flexural loadings and additional elastic modes are added to the beam 

displacement field.  

3.2.1.1 Axial Loading 

 

Figure 3.3. Axial loading elastic modes 

The necessary elastic modes are 

𝑠2𝑈𝑥
𝑠𝑠 → 𝑦2𝑢𝑥

𝑦𝑦
+ 𝑧2𝑢𝑥

𝑧𝑧 

(3.34) 

𝑠𝑈𝑠
𝑠 → 𝑦𝑢𝑦

𝑦
, 𝑧𝑢𝑧

𝑧 

for 𝑈𝑥 and 𝑈𝑠, respectively. 
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3.2.1.2 In-plane Bending 

 

Figure 3.4. In-plane transverse loading elastic modes 

In this case, rigid modes give sufficiently accurate results and elastic modes are not 

necessary. 

3.2.1.3 Out-of-plane Bending 

 

Figure 3.5. Out-of-plane transverse loading elastic modes 

An elastic mode 

𝑠2𝑈𝑛
𝑠𝑠 → 𝑦2𝑢𝑦

𝑦𝑦
+ 𝑧2𝑢𝑦

𝑧𝑧, 𝑦2𝑢𝑧
𝑦𝑦

+ 𝑧2𝑢𝑧
𝑧𝑧 (3.35) 

is necessary for 𝑈𝑛.  

Then, the Vlasov displacements can be modified as 
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𝑈𝑥(𝑥, 𝑠) = 𝑢𝑥(𝑥) − 𝑦(𝑠)𝑢𝑦
′ (𝑥) − 𝑧(𝑠)𝑢𝑧′(𝑥) + 𝜔(𝑠)𝜃𝑥

′(𝑥)

+ 𝑦2(𝑠)𝑢𝑥
𝑦𝑦(𝑥) + 𝑧2(𝑠)𝑢𝑥

𝑧𝑧(𝑥) 
(3.36) 

𝑈𝑦(𝑥, 𝑠) = 𝑢𝑦(𝑥) − [𝑧(𝑠) − 𝑧𝑜]𝜃𝑥(𝑥) + 𝑦(𝑠)𝑢𝑦
𝑦(𝑥) + 𝑦2(𝑠)𝑢𝑦

𝑦𝑦(𝑥)

+ 𝑧2(𝑠)𝑢𝑦
𝑧𝑧(𝑥) 

(3.37) 

𝑈𝑧(𝑥, 𝑠) = 𝑢𝑧(𝑥) + [𝑦(𝑠) − 𝑦𝑜]𝜃𝑥(𝑥) + 𝑧(𝑠)𝑢𝑧
𝑧(𝑥) + 𝑦2(𝑠)𝑢𝑧

𝑦𝑦(𝑥)

+ 𝑧2(𝑠)𝑢𝑧
𝑧𝑧(𝑥) 

(3.38) 

In this study, a thin walled beam is divided into beam finite elements along the beam 

axis and each beam element is divided into panel finite elements along the contour 

of the cross section. The number of element degrees of freedom is independent of 

the number of panels. Consider a rectangular panel of a thin walled beam. 𝐶(0,0) is 

the centroid and 𝑂(𝑦𝑜 , 𝑧𝑜) is the shear center of the beam cross section.  

 

Figure 3.6. A panel element 𝑖𝑗 of beam element and its coordinates 

Define 

𝑝 = 𝑐𝑜𝑠𝜙 =
𝑦𝑗 − 𝑦𝑖

𝑏
 (3.39) 

𝑞 = 𝑠𝑖𝑛𝜙 =
𝑧𝑗 − 𝑧𝑖

𝑏
 (3.40) 

𝑟 =
𝜔𝑗 − 𝜔𝑖

𝑏
 (3.41) 
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Then 

[
𝑦
𝑧
] = [

𝑦𝑖

𝑧𝑖
] + [

𝑝 −𝑞
𝑞 𝑝 ] [

𝑠
𝑛
] 

(3.42) 

[
𝑠
𝑛
] = [

𝑝 𝑞
−𝑞 𝑝] [

𝑦 − 𝑦𝑖

𝑧 − 𝑧𝑖
] 

At the wall centerline: 

𝑦 = 𝑦𝑖 + 𝑝𝑠 

(3.43) 𝑧 = 𝑧𝑖 + 𝑞𝑠 

𝜔 = 𝜔𝑖 + 𝑟𝑠 

Assume the displacements as 

𝑢𝑥 = 𝝓𝒅𝑢𝑥
     𝑢𝑦 = 𝝋𝒅𝑢𝑦

     𝑢𝑧 = 𝝋𝒅𝑢𝑧
     𝜃𝑥 = 𝝋𝒅𝜃𝑥

 

(3.44) 

𝑢𝑥
𝑦𝑦

= 𝝓𝒅𝑢𝑥
𝑦𝑦      𝑢𝑥

𝑧𝑧 = 𝝓𝒅𝑢𝑥
𝑧𝑧 

𝑢𝑦
𝑦

= 𝝓𝒅𝑢𝑦
𝑦       𝑢𝑦

𝑦𝑦
= 𝝓𝒅𝑢𝑦

𝑦𝑦      𝑢𝑦
𝑧𝑧 = 𝝓𝒅𝑢𝑦

𝑧𝑧 

𝑢𝑧
𝑧 = 𝝓𝒅𝑢𝑧

𝑧       𝑢𝑧
𝑦𝑦

= 𝝓𝒅𝑢𝑧
𝑦𝑦      𝑢𝑧

𝑧𝑧 = 𝝓𝒅𝑢𝑧
𝑧𝑧 

where 

𝝓 =
1

𝑎
[(𝑎 − 𝑥) 𝑥] (3.45) 

𝝋 =
1

𝑎3
[(𝑎 + 2𝑥)(𝑎 − 𝑥)2 𝑎𝑥(𝑎 − 𝑥)2 𝑥2(3𝑎 − 2𝑥) 𝑎𝑥2(𝑥 − 𝑎)] (3.46) 

and 
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𝒅𝑢𝑥
= [

𝑢𝑥1

𝑢𝑥2
]         𝒅𝑢𝑦

=

[
 
 
 
𝑢𝑦1

𝑢𝑦1′
𝑢𝑦2

𝑢𝑦2′]
 
 
 

          𝒅𝑢𝑧
= [

𝑢𝑧1

𝑢𝑧1′
𝑢𝑧2

𝑢𝑧2′

]           𝒅𝜃𝑥
=

[
 
 
 
𝜃𝑥1

𝜃𝑥1′
𝜃𝑥2

𝜃𝑥2′]
 
 
 
  

(3.47) 

𝒅𝑢𝑥
𝑦𝑦 = [

𝑢𝑥1
𝑦𝑦

𝑢𝑥2
𝑦𝑦]       𝒅𝑢𝑥

𝑧𝑧 = [
𝑢𝑥1

𝑧𝑧

𝑢𝑥2
𝑧𝑧]   

𝒅𝑢𝑦
𝑦 = [

𝑢𝑦1
𝑦

𝑢𝑦2
𝑦 ]        𝒅𝑢𝑦

𝑦𝑦 = [
𝑢𝑦1

𝑦𝑦

𝑢𝑦2
𝑦𝑦]       𝒅𝑢𝑦

𝑧𝑧 = [
𝑢𝑦1

𝑧𝑧

𝑢𝑦2
𝑧𝑧]   

𝒅𝑢𝑧
𝑧 = [

𝑢𝑧1
𝑧

𝑢𝑧2
𝑧 ]       𝒅𝑢𝑧

𝑦𝑦 = [
𝑢𝑧1

𝑦𝑦

𝑢𝑧2
𝑦𝑦]        𝒅𝑢𝑧

𝑧𝑧 = [
𝑢𝑧1

𝑧𝑧

𝑢𝑧2
𝑧𝑧] 

Define 

𝒅 = [𝑢𝑥1 𝑢𝑦1 𝑢𝑧1 𝜃𝑥1 𝜃𝑦1 𝜃𝑧1 𝜃𝑥1
′ … 

         𝑢𝑥1
𝑦𝑦

𝑢𝑥1
𝑧𝑧 𝑢𝑦1

𝑦
𝑢𝑦1

𝑦𝑦
𝑢𝑦1

𝑧𝑧 𝑢𝑧1
𝑧 𝑢𝑧1

𝑦𝑦
𝑢𝑧1

𝑧𝑧 … 

         𝑢𝑥2 𝑢𝑦2 𝑢𝑧2 𝜃𝑥2 𝜃𝑦2 𝜃𝑧2 𝜃𝑥2
′ … 

         𝑢𝑥2
𝑦𝑦

𝑢𝑥2
𝑧𝑧 𝑢𝑦2

𝑦
𝑢𝑦2

𝑦𝑦
𝑢𝑦2

𝑧𝑧 𝑢𝑧2
𝑧 𝑢𝑧2

𝑦𝑦
𝑢𝑧2

𝑧𝑧] 

(3.48) 

Then  

[

𝑈𝑥

𝑈𝑦

𝑈𝑧

] = [

𝜴𝑥

𝜴𝑦

𝜴𝑧

] 𝒅 (3.49) 

The displacements in 𝑥𝑠𝑛 are 

[
𝑈𝑥

𝑈𝑠

𝑈𝑛

] = [
1 0 0
0 𝑝 𝑞
0 −𝑞 𝑝

] [

𝑈𝑥

𝑈𝑦

𝑈𝑧

] = [
1 0 0
0 𝑝 𝑞
0 −𝑞 𝑝

] [

𝜴𝑥

𝜴𝑦

𝜴𝑧

] 𝒅 = [

𝜴𝑥

𝜴𝑠

𝜴𝑛

] 𝒅 = 𝜴𝒅 (3.50) 

In the panel finite element, shell strain definitions are used: 
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𝜀𝑥 =
𝜕𝑈𝑥

𝜕𝑥
− 𝑛

𝜕2𝑈𝑛

𝜕𝑥2
 

(3.51) 𝜀𝑠 =
𝜕𝑈𝑠

𝜕𝑠
− 𝑛

𝜕2𝑈𝑛

𝜕𝑠2
 

𝛾𝑥𝑠 =
𝜕𝑈𝑥

𝜕𝑠
+

𝜕𝑈𝑠

𝜕𝑥
− 2𝑛

𝜕2𝑈𝑛

𝜕𝑥𝜕𝑠
 

Then 

𝜺 = [

𝜀𝑥

𝜀𝑠

𝛾𝑥𝑠

]

 

=

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0 −𝑛

𝜕2

𝜕𝑥2

0
𝜕

𝜕𝑠
−𝑛

𝜕2

𝜕𝑠2

𝜕

𝜕𝑠

𝜕

𝜕𝑥
−2𝑛

𝜕2

𝜕𝑥𝜕𝑠]
 
 
 
 
 
 

𝜴𝒅 = 𝑩𝒅 (3.52) 

The total potential energy of the panel is 

π𝑝 =
1

2
∫𝜺𝑇𝑪𝜺𝑑𝑉

 

𝑉

− ∫ 𝒖𝑇𝒑𝑑𝑥

 𝑎

𝑜

=
1

2
∫𝒅𝑇𝑩𝑇𝑪𝑩𝒅𝑑𝑉

 

𝑉

− ∫ 𝒅𝑇𝜴𝑇𝒑𝑑𝑥

 𝑎

0

 (3.53) 

where  𝒑 is the intensity of distributed loading and 

𝑪 = 
𝐸

1 − 𝜈2
 [

1 𝜈 0
𝜈 1 0

0 0
1 − 𝑣

2

] (3.54) 

is the material matrix. Define  

𝒌𝑝 = ∫𝑩𝑇𝑪𝑩𝑑𝑉

 

𝑉

= ∫ ∫ ∫ 𝑩𝑇𝑪𝑩𝑑𝑛𝑑𝑠𝑑𝑥

𝑡/2

−𝑡/2

𝑏

0

𝑎

0

 (3.55) 

𝒇𝑝 = ∫𝜴𝑇𝒑𝑑𝑥

 

𝐴𝑓

 
(3.56) 
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where 𝒌𝑝 is the stiffness matrix, and 𝒇𝑝 is the force vector of the panel. Then 

π𝑝 =
1

2
𝒅𝑇𝒌𝑝𝒅 − 𝒅𝑇𝒇𝑝 (3.57) 

Consider a case in which a beam is initially stressed by an axial force and is subjected 

to flexural and/or torsional loads. Let the initial stresses be 𝜎𝑥0, 𝜎𝑠0 and 𝜏𝑥𝑠0. A stress 

stiffness matrix is necessary to determine the effect of the axial force in flexural 

and/or torsional response. It is obtained by evaluating the work done by the 

membrane forces during transverse displacements. In the present case, the transverse 

displacement is 𝑈𝑛 and the associated membrane strains are the quadratic Green 

strains which are: 

𝜀𝑥 =
1

2
(
𝜕𝑈𝑛

𝜕𝑥
)
2

 

(3.58) 𝜀𝑠 =
1

2
(
𝜕𝑈𝑛

𝜕𝑠
)
2

 

𝛾𝑥𝑠 =
𝜕𝑈𝑛

𝜕𝑥

𝜕𝑈𝑛

𝜕𝑠
 

Then, the work done by the initial stresses is 

π𝑝0 = ∫(𝜀𝑥𝜎𝑥0 + 𝜀𝑠𝜎𝑠0 + 𝛾𝑥𝑠𝜏𝑥𝑠0)𝑑𝑉

 

𝑉

 

        =
1

2
∫ [

𝜕𝑈𝑛 𝜕𝑥⁄

𝜕𝑈𝑛 𝜕𝑠⁄
]
𝑇

[
𝜎𝑥0 𝜏𝑥𝑠0

𝜏𝑥𝑠0 𝜎𝑠0
] [

𝜕𝑈𝑛 𝜕𝑥⁄

𝜕𝑈𝑛 𝜕𝑠⁄
] 𝑑𝑉

 

𝑉

=
1

2
∫𝒈𝑇𝝀𝒈𝑑𝑉

 

𝑉

 

(3.59) 

𝒈 can be expressed as 𝒈 = 𝑮𝒅. 

 

 



 

 

 

22 

Then 

π𝑝0 =
1

2
∫𝒅𝑇𝑮𝑇𝝀𝑮𝒅𝑑𝑉

 

𝑉

=
1

2
𝒅𝑇𝒌𝜎𝒅 (3.60) 

where 

𝒌𝜎𝑝 = ∫𝑮𝑇𝝀𝑮𝑑𝑉

 

𝑉

= ∫ ∫ ∫ 𝑮𝑇𝝀𝑮𝑑𝑛𝑑𝑠𝑑𝑥

𝑡/2

−𝑡/2

𝑏

0

𝑎

0

 (3.61) 

is the stress stiffness matrix of the panel and 

π𝑝0 =
1

2
𝒅𝑇𝒌𝜎𝑝𝒅 (3.62) 

The stiffness matrix and force vector of a beam element consisting of 𝑀𝑝 panels are 

obtained by assembling the panel stiffness matrices and force vectors as 

𝒌 = ∑𝒌𝑝𝑖

𝑀𝑝

𝑖=1

      𝒌𝜎 = ∑𝒌𝜎𝑝𝑖

𝑀𝑝

𝑖=1

      𝒇 = 𝒇𝑃𝐹 + ∑𝒇𝑝𝑖

𝑀𝑝

𝑖=1

 (3.63) 

where 𝒇𝑃𝐹 is the force vector due to point forces 𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 , 𝑇,𝑀𝑦, 𝑀𝑧 as 

𝒇𝑃𝐹 = 𝐹𝑥𝜴𝑥
𝑻 + 𝐹𝑦𝜴𝑦

𝑻 + 𝐹𝑧𝜴𝑧
𝑻 + 𝑇𝜴𝜃𝑥

𝑻 − 𝑀𝑦𝜴𝑧
′𝑻 + 𝑀𝑧𝜴𝑦

′𝑻
 (3.64) 

and 𝜴𝜃𝑥
 is 𝜹𝜃𝑥

 expanded to (1 × 15) size. 

Then, the matrices and vectors of a beam having 𝑀𝑒 elements and 𝑁 nodes are 

assembled as 

𝑲 = ∑𝒌𝑖  

𝑀𝑒

𝑖=1

    𝑲𝜎 = ∑𝒌𝜎𝑖 

𝑀𝑒

𝑖=1

       𝑭 = ∑𝒇𝑖  

𝑁

𝑖=1

       𝑫 = ∑𝒅𝑖  

𝑁

𝑖=1

 (3.65) 

Note that the total potential energy of the beam is 
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Π = ∑∑(π𝑝𝒊
+ π𝑝0𝑖

)
𝒋

𝑀𝑝

𝑖=1

𝑀𝑒

𝑗=1

=
1

2
𝑫𝑇(𝑲 + 𝑲𝜎)𝑫 − 𝑫𝑇𝑭 (3.66) 

Setting the first variation 𝛿Π = (𝜕Π 𝜕𝑫⁄ )𝛿𝑫 = 0, the panel equilibrium equations 

are obtained as 

(𝑲 + 𝑲𝜎)𝑫 = 𝑭 (3.67) 

3.2.1.4 Stress   Calculation 

The normal stresses and the shear stress due to St.Venant torque and the elastic 

modes can be calculated as 

[

𝜎𝑥

𝜎𝑠

𝜏𝑥𝑠

] = 𝑪𝑩𝒅 (3.68) 

The expressions for shear stresses due to transverse shear forces and the warping 

torque contain the third derivatives 𝑢𝑦
′′′, 𝑢𝑧

′′′, 𝜃′′′ which do not appear in the 

formulation. Therefore, they must be calculated separately for each panel as follows: 

3.2.1.4.1 𝝉𝒙𝒔 due to transverse shear forces 

(𝜏𝑥𝑠)𝑆 =
𝐸

𝑡
(𝑄𝑧𝑢𝑦

′′′ + 𝑄𝑦𝑢𝑧
′′′) 

             =
𝐸𝑄𝑧

𝑎3𝑡
[12 6𝑎 −12 6𝑎] [

𝑢𝑦1

𝜃𝑧1
𝑢𝑦2

𝜃𝑧2

] 

                +
𝐸𝑄𝑦

𝑎3𝑡
[12 −6𝑎 −12 −6𝑎] [

𝑢𝑧1

𝜃𝑦1

𝑢𝑧2

𝜃𝑦2

] 

(3.69) 
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3.2.1.4.2 𝝉𝒙𝒔 due to warping torque 

(𝜏𝑥𝑠)𝑇𝑤
= −

𝐸

𝑡
𝑄𝜔𝜃′′′ = −

𝐸𝑄𝜔

𝑎3𝑡
[12 6𝑎 −12 6𝑎]

[
 
 
 
𝜃𝑥1

𝜃𝑥1′
𝜃𝑥2

𝜃𝑥2′]
 
 
 
 (3.70) 

where 

𝑄𝑦 = ∫(𝑧𝑖 + 𝑞𝑠)𝑡𝑑𝑠

𝑠

0

 

(3.71) 𝑄𝑧 = ∫(𝑦𝑖 + 𝑝𝑠)𝑡𝑑𝑠

𝑠

0

 

𝑄𝜔 = ∫(𝜔𝑖 + 𝑟𝑠)𝑡𝑑𝑠

𝑠

0
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CHAPTER 4  

4 NUMERICAL EXAMPLES 

In this section, numerical test problems are given in order to compare the results of the 

panel finite element (PFE) method with those of ANSYS shell models and the beam 

theories. The panel finite element is implemented as a MATLAB code.  

In the first five examples,  PFE is tested against analytical beam results and a single 

ANSYS shell element solution to validate the shell-like behavior of the present 

element. The remaining four examples are thin walled beams with different sections 

under different loading conditions. The results obtained by PFE are compared with 

ANSYS shell models with fine mesh.  

In the given examples, the dimensions are in millimeters (mm), the forces are in 

Newton (N) and the stresses are in Megapascal (MPa) unless otherwise specified. 

4.1 Example-1 

300 𝑚𝑚 × 100 𝑚𝑚 × 2 𝑚𝑚 𝑝𝑙𝑎𝑡𝑒, 𝐸 = 200000 𝑁 𝑚𝑚2⁄ , 𝜈 = 0.3 

 

Figure 4.1. Example-1 Graphical Representation 
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This is an axial deformation problem. In the following, the results obtained by a single 

PFE are compared with the beam solution and a single ANSYS shell finite element. 

The beam solution gives 𝑈𝑥 and 𝜎𝑥 only. ANSYS and PFE give 𝑈𝑥, 𝑈𝑦, 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦. 

Table 4.1. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = −50 𝑚𝑚 for Example-1 

 Ux Uy 

Beam Theory 0.090000 0.0 

ANSYS Shell Element 0.095863 0.005285 

Panel Finite Element 0.095338 0.007168 

Table 4.2. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 0 𝑚𝑚 for Example-1 

 Ux Uy 

Beam Theory 0.090000 0.0 

ANSYS Shell Element 0.085794 0.0 

Panel Finite Element 0.084858 0.0 

Table 4.3. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 50 𝑚𝑚 for Example-1 

 Ux Uy 

Beam Theory 0.090000 0.0 

ANSYS Shell Element 0.095863 -0.005285 

Panel Finite Element 0.095338 -0.007168 

Table 4.4. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-1 

 σx σs τxs 

Beam Theory 60.00 0.0 0.0 

ANSYS Shell Element 60.01 12.53 3.46 

Panel Finite Element 69.84 20.95 1.84 
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Table 4.5. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-1 

 σx σs τxs 

Beam Theory 60.00 0.0 0.0 

ANSYS Shell Element 60.01 12.53 0.0 

Panel Finite Element 62.17 18.65 0.0 

Table 4.6. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-1 

 σx σs τxs 

Beam Theory 60.00 0.0 0.0 

ANSYS Shell Element 60.01 12.53 -3.46 

Panel Finite Element 69.84 20.95 -1.84 

Table 4.7. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-1 

 σx σs τxs 

Beam Theory 60.00 0.0 0.0 

ANSYS Shell Element 60.01 1.95 -14.13 

Panel Finite Element 65.12 5.20 -14.29 

Table 4.8. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-1 

 σx σs τxs 

Beam Theory 60.00 0.0 0.0 

ANSYS Shell Element 60.01 1.95 0.0 

Panel Finite Element 57.44 2.90 0.0 

Table 4.9. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-1 

 σx σs τxs 

Beam Theory 60.00 0.0 0.0 

ANSYS Shell Element 60.01 1.95 14.13 

Panel Finite Element 65.12 5.20 14.29 
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4.2 Example-2 

300 × 100 × 2 𝑚𝑚 𝑝𝑙𝑎𝑡𝑒, 𝐸 = 200000 𝑁 𝑚𝑚2⁄ , 𝜈 = 0.3 

 

Figure 4.2. Example-2 Graphical Representation 

This is an in-plane bending problem. In the following, the results obtained by a single 

PFE are compared with the beam solution and a single ANSYS shell finite element. 

The beam solution gives 𝑈𝑥, 𝑈𝑦 and 𝜎𝑥, 𝜏𝑥𝑦. ANSYS and PFE give 𝑈𝑥, 𝑈𝑦, 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦. 

Table 4.10. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = −50 𝑚𝑚 for Example-2 

 Ux Uy 

Beam Theory 0.135000 0.540000 

ANSYS Shell Element 0.128740 0.544220 

Panel Finite Element 0.130575 0.511142 

Table 4.11. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 0 𝑚𝑚 for Example-2 

 Ux Uy 

Beam Theory 0.0 0.540000 

ANSYS Shell Element 0.0 0.540030 

Panel Finite Element 0.0 0.506851 
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Table 4.12. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 50 𝑚𝑚 for Example-2 

 Ux Uy 

Beam Theory -0.135000 0.540000 

ANSYS Shell Element -0.129760 0.543800 

Panel Finite Element -0.130575 0.511142 

Table 4.13. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-2 

 σx σs τxs 

Beam Theory 180.00 0.0 0.0 

ANSYS Shell Element 178.74 53.61 10.07 

Panel Finite Element 180.00 54.00 1.1 

Table 4.14. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-2 

 σx σs τxs 

Beam Theory 0.0 0.0 15.00 

ANSYS Shell Element 0.0 0.0 9.97 

Panel Finite Element 0.0 0.0 12.79 

Table 4.15. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-2 

 σx σs τxs 

Beam Theory -180.00 0.0 0.0 

ANSYS Shell Element -178.73 -53.63 9.87 

Panel Finite Element -180.00 -54.00 1.10 

Table 4.16. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-2 

 σx σs τxs 

Beam Theory 90.00 0.0 0.0 

ANSYS Shell Element 89.43 10.92 10.05 

Panel Finite Element 90.00 9.83 1.10 
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Table 4.17. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-2 

 σx σs τxs 

Beam Theory 0.0 0.0 15.00 

ANSYS Shell Element 0.0 0.0 9.97 

Panel Finite Element 0.0 0.0 12.79 

Table 4.18. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-2 

 σx σs τxs 

Beam Theory -90.00 0.0 0.0 

ANSYS Shell Element -89.45 -10.88 9.89 

Panel Finite Element -90.00 -9.83 1.10 

4.3 Example-3 

300 × 100 × 2 𝑚𝑚 𝑝𝑙𝑎𝑡𝑒, 𝐸 = 200000 𝑁 𝑚𝑚2⁄ , 𝜈 = 0.3 

 

Figure 4.3.Example-3 Graphical Representation 

This is an out-of-plane bending problem. In the following, the results obtained by a 

single PFE are compared with the beam solution and a single ANSYS shell finite 

element. The beam solution gives 𝑈𝑧 and 𝜎𝑥 only. ANSYS and PFE give 

𝑈𝑧 , 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦. 
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Table 4.19. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = −50 𝑚𝑚 for Example-3 

 Uz 

Beam Theory -27.000000 

ANSYS Shell Element -24.639000 

Panel Finite Element -24.873884 

Table 4.20. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 0 𝑚𝑚 for Example-3 

 Uz 

Beam Theory -27.000000 

ANSYS Shell Element -24.742000 

Panel Finite Element -24.990764 

Table 4.21. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 50 𝑚𝑚 for Example-3 

 Uz 

Beam Theory -27.000000 

ANSYS Shell Element -24.639000 

Panel Finite Element -24.873884 

Table 4.22. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-3 

 σx σs τxs 

Beam Theory 180.00 0.0 0.0 

ANSYS Shell Element 178.43 52.01 5.15 

Panel Finite Element 180.00 54.00 2.40 

Table 4.23. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-3 

 σx σs τxs 

Beam Theory 180.00 0.0 0.0 

ANSYS Shell Element 178.43 52.01 0.0 

Panel Finite Element 180.00 54.00 0.0 



 

 

 

32 

Table 4.24. Stresses at 𝑋 = 0 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-3 

 σx σs τxs 

Beam Theory 90.00 0.0 0.0 

ANSYS Shell Element 88.96 17.84 1.29 

Panel Finite Element 90.00 17.64 2.40 

Table 4.25. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-3 

 σx σs τxs 

Beam Theory 90.00 0.0 0.0 

ANSYS Shell Element 88.96 17.84 1.29 

Panel Finite Element 90.00 17.65 2.40 

Table 4.26. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-3 

 σx σs τxs 

Beam Theory 90.00 0.0 0.0 

ANSYS Shell Element 88.96 17.84 0.0 

Panel Finite Element 90.00 17.65 0.0 

Table 4.27. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-3 

 σx σs τxs 

Beam Theory 90.00 0.0 0.0 

ANSYS Shell Element 88.96 17.84 -1.29 

Panel Finite Element 90.00 17.65 -2.40 
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4.4 Example-4 

300 × 100 × 2 𝑚𝑚 𝑝𝑙𝑎𝑡𝑒, 𝐸 = 200000 𝑁 𝑚𝑚2⁄ , 𝜈 = 0.3 

 

Figure 4.4. Example-4 Graphical Representation 

This is a torsion problem. In the following, the results obtained by a single PFE are 

compared with the beam solution and a single ANSYS shell finite element. The beam 

solution gives 𝑈𝑧 and 𝜏𝑥𝑦 only. ANSYS and PFE give 𝑈𝑧 , 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦. 

Table 4.28. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = −50 𝑚𝑚 for Example-4 

 Uz 

Beam Theory -6.327592 

ANSYS Shell Element -6.752600 

Panel Finite Element -6.318812 

Table 4.29. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 0 𝑚𝑚 for Example-4 

 Uz 

Beam Theory 0.0 

ANSYS Shell Element 0.0 

Panel Finite Element 0.0 
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4.30. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 50 𝑚𝑚 for Example-4 

 Uz 

Beam Theory 6.327592 

ANSYS Shell Element 6.752600 

Panel Finite Element 6.318812 

Table 4.31. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-4 

 σx σs τxs 

Beam Theory 0.0 0.0 -74.79 

ANSYS Shell Element 5.41 7.44 -67.23 

Panel Finite Element 13.49 4.05 -83.05 

Table 4.32. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-4 

 σx σs τxs 

Beam Theory 0.0 0.0 -74.79 

ANSYS Shell Element 0.0 0.65 -69.20 

Panel Finite Element 0.0 0.0 -83.05 

Table 4.33. Stresses at 𝑋 = 150 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 1 𝑚𝑚 for Example-4 

 σx σs τxs 

Beam Theory 0.0 0.0 -74.79 

ANSYS Shell Element -5.38 -6.14 -71.17 

Panel Finite Element -13.49 -4.05 -83.05 
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4.5 Example-5 

300 × 100 × 2 𝑚𝑚 𝑝𝑙𝑎𝑡𝑒, 𝐸 = 200000 𝑁 𝑚𝑚2⁄ , 𝜈 = 0.3 

 

Figure 4.5. Example-5 Graphical Representation 

This is a distortion problem which cannot be solved by beam theories since the net 

loading on the beam is zero. In the following, the results obtained by a single PFE and 

a single ANSYS shell finite element are compared. 

Table 4.34. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = −50 𝑚𝑚 for Example-5 

 Ux Uy 

ANSYS Shell Element -0.000881 -0.007299 

Panel Finite Element -0.007168 -0.004801 

Table 4.35. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 0 𝑚𝑚 for Example-5 

 Ux Uy 

ANSYS Shell Element 0.000304 0.0 

Panel Finite Element -0.006270 0.0 

Table 4.36. Displacements at 𝑋 = 300 𝑚𝑚 𝑎𝑛𝑑 𝑌 = 50 𝑚𝑚 for Example-5 

 Ux Uy 

ANSYS Shell Element -0.000881 0.004801 

Panel Finite Element -0.007168 0.007299 
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Table 4.37. Stresses at 𝑋 = 300 𝑚𝑚, 𝑌 = −50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-5 

 σx σs τxs 

ANSYS Shell Element 0.0 9.80 1.19 

Panel Finite Element 4.37 30.51 0.89 

Table 4.38. Stresses at 𝑋 = 300 𝑚𝑚, 𝑌 = 0 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-5 

 σx σs τxs 

ANSYS Shell Element 0.0 9.80 0.0 

Panel Finite Element 5.03 30.71 0.0 

Table 4.39. Stresses at 𝑋 = 300 𝑚𝑚, 𝑌 = 50 𝑚𝑚 𝑎𝑛𝑑 𝑍 = 0 𝑚𝑚 for Example-5 

 σx σs τxs 

ANSYS Shell Element 0.0 9.80 -1.19 

Panel Finite Element 4.37 30.51 -0.89 

4.6 Example-6 

An L-beam is subjected to a torque which creates twisting and a transverse force which 

creates bending in two planes. 

L-beam: 100 × 50 𝑚𝑚, 𝑡 = 2 𝑚𝑚, 𝐸 = 200000, 𝜈 = 0.3. 

 

Figure 4.6. Example-6 Graphical Representation 
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The displacement and stress results obtained by using the PFE are compared with the 

beam theory and the ANSYS shell finite element modelling. In this example, a 

convergence analysis for the ANSYS solutions is performed in order to decide on the 

optimum element size to be used in the ANSYS shell models in this and the 

forthcoming examples. 

The convergence study is performed using meshes with element sizes of 50x50, 

25x25, 16.67x16.67, 12.5x12.5 and 10x10 mm. The displacement and normal stress 

magnitudes are as follows in Table 4.40. 

Table 4.40. Displacement Results for Cantilever L-Beam 

# of Elements 
Element size 

(mm x mm) 

𝑼𝒛 
(𝑋 = 300 𝑚𝑚,  
𝑌 = −8.33 𝑚𝑚, 
𝑍 = 33.33 𝑚𝑚) 

𝝈𝒙 
(𝑋 = 0 𝑚𝑚,  

𝑌 = −8.33 𝑚𝑚, 
𝑍 = 33.33 𝑚𝑚) 

36 50x50 -0.155640 33.86 

144 25x25 -0.156640 36.02 

324 16.67x16.67 -0.156940 37.62 

564 12.5x12.5 -0.157110 38.98 

868 10x10 -0.157130 39.10 

The displacement and stress results converged as the mesh density increased. In order 

to select an optimum element size, we prepared a percentage change table and obtain 

a percentage change which is less than 1%, which is 10 mm x 10 mm, as shown in 

Table 4.41. 

Table 4.41. Shell Modelling Convergence Analysis (Percentage Changes) 

Number, n 
Element size 

(mm x mm) 
Δ𝑼𝒛  

% 

Δ𝝈𝒙 

% 

1 50x50 - - 

2 25x25 0.64 6.38 

3 16.67x16.67 0.19 4.45 

4 12.5x12.5 0.11 3.61 

5 10x10 0.01 0.31 
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Also, the displacement (𝑈𝑧) and stress (𝜎𝑥) results are tabulated as graphs in order to 

show the mesh convergence, as shown below: 

 

Figure 4.7. Displacement (𝑈𝑧) plot for shell mesh convergence analysis 

 

Figure 4.8. Stress (𝜎𝑥) plot for shell mesh convergence analysis 

Therefore, in the Examples 6-9, a square shell element of size 10 mm x 10 mm is used 

in the shell models. As an exception, in the Example-7 where the half length of the 

flanges in the I-section is 25 mm, the shell element size will be 5 mm x 5 mm. 

The numbers of elements and degrees of freedom of the shell model and PFE are 

tabulated below for comparison: 
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Table 4.42. No. of Elements and DOFs for Example-6 

 Number of Elements Number of DOFs 

ANSYS Shell 868 5550 

PFE 6 105 

The 3D deformation shapes with total displacement color graphics, the displacements 

and the stress results are given in the next figures for Example-6. 

 

Figure 4.9. ANSYS shell deformation shape for Example-6 

 

Figure 4.10. Panel finite element method deformation shape for Example-6 
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Figure 4.11. Comparison of Ux displacements for Example-6 

 

Figure 4.12. Comparison of Uy displacements for Example-6 
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Figure 4.13. Comparison of Uz displacements for Example-6 

 

Figure 4.14. Comparison of σx normal stresses for Example-6 
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Figure 4.15. Comparison of σs normal stresses for Example-6 

 

Figure 4.16. Comparison of τxs shear stresses for Example-6 
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4.7 Example-7 

The bending of an I-beam is analyzed considering the effect of stress stiffening caused 

by the axial force.  

I-beam: 50 × 100 × 50 𝑚𝑚, 𝑡 = 2 𝑚𝑚, 𝐸 = 200000, 𝜈 = 0.3.  

 

Figure 4.17. Example-7 Graphical Representation 

The numbers of elements and degrees of freedom of the shell model and PFE are 

tabulated below for comparison: 

Table 4.43. No. of Elements and DOFs for Example-7 

 Number of Elements Number of DOFs 

ANSYS Shell 4718 28950 

PFE 6 105 

The displacement and stress results obtained by using the PFE are compared with the 

beam theory and the ANSYS shell finite element modelling. The 3D deformation 

shapes with total displacement color graphics, the displacements and the stress results 

are given in the next figures for Example-7. 
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Figure 4.18. ANSYS shell deformation shape for Example-7 

 

Figure 4.19. Panel finite element method deformation shape for Example-7 
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Figure 4.20. Comparison of Ux displacements for Example-7 

 

Figure 4.21. Comparison of Uy displacements for Example-7 
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Figure 4.22. Comparison of Uz displacements for Example-7 

 

Figure 4.23. Comparison of σx normal stresses for Example-7 
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Figure 4.24. Comparison of σs normal stresses for Example-7 

 

Figure 4.25. Comparison of τxs shear stresses for Example-7 
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4.8 Example-8 

The U-beam is subjected to distributed transverse force which bending and torsion. 

The axial force creates extension, bending, twisting and warping. The stress stiffening 

effect of the axial force is included. 

U-beam: 50 × 100 × 50 𝑚𝑚, 𝑡 = 2 𝑚𝑚, 𝐸 = 200000, 𝜈 = 0.3.  

 

Figure 4.26. Example-8 Graphical Representation 

The numbers of elements and degrees of freedom of the shell model and PFE are 

tabulated below for comparison: 

Table 4.44. No. of Elements and DOFs for Example-8 

 Number of Elements Number of DOFs 

ANSYS Shell 1156 7272 

PFE 6 105 

The displacement and stress results obtained by using the PFE are compared with the 

beam theory and the ANSYS shell finite element modelling. The 3D deformation 

shapes with total displacement color graphics, the displacements and the stress results 

are given in the next figures for Example-8. 
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Figure 4.27. ANSYS shell deformation shape for Example-8 

 

Figure 4.28. Panel finite element method deformation shape for Example-8 
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Figure 4.29. Comparison of Ux displacements for Example-8 

 

Figure 4.30. Comparison of Uy displacements for Example-8 
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Figure 4.31. Comparison of Uz displacements for Example-8 

 

Figure 4.32. Comparison of σx normal stresses for Example-8 
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Figure 4.33. Comparison of σs normal stresses for Example-8 

 

Figure 4.34. Comparison of τxs shear stresses for Example-8 
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4.9 Example-9 

A Z-beam is subjected to a transverse force which creates bending in two planes and 

an axial force which creates twisting and warping. The effect of stress stiffening due 

to axial force is included. 

Z-beam: , .  

 

Figure 4.35. Example-9 Graphical Representation 

The numbers of elements and degrees of freedom of the shell model and PFE are 

tabulated below for comparison: 

Table 4.45. No. of Elements and DOFs for Example-9 

 Number of Elements Number of DOFs 

ANSYS Shell 1190 7488 

PFE 6 105 

The displacement and stress results obtained by using the PFE are compared with the 

beam theory and the ANSYS shell finite element modelling. The 3D deformation 

shapes with total displacement color graphics, the displacements and the stress results 

are given in the next figures for Example-9. 
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Figure 4.36. ANSYS shell deformation shape for Example-9 

 

 

Figure 4.37. Panel finite element method deformation shape for Example-9 
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Figure 4.38. Comparison of Ux displacements for Example-9 

 

Figure 4.39. Comparison of Uy displacements for Example-9 
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Figure 4.40. Comparison of Uz displacements for Example-9 

 

Figure 4.41. Comparison of σx normal stresses for Example-9 
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Figure 4.42. Comparison of σs normal stresses for Example-9 

 

Figure 4.43. Comparison of τxs normal stresses for Example-9 
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CHAPTER 5  

5 CONCLUSIONS 

In this thesis, a finite element for the analysis of open section thin walled beams has 

been developed. In this formulation, rigid and in-plane and out-of-plane elastic 

motions of the cross section are considered by adding elastic modes of deformation to 

the Vlasov displacement field assumption. The displacement components are assumed 

by linear or quadratic polynomials. The beam finite element is the assembly of panel 

finite elements and the number of element degrees of freedom is independent of the 

number of panels. The stress stiffening due to axial loads is also taken into account. 

The accuracy of the present method is higher than that of Vlasov finite element and is 

lower than that of shell finite elements as expected. The computational cost of the 

present formulation is incomparably lower than a shell analysis. Hence the objective 

of this thesis has been fulfilled. 

The majority of the studies in this field are based on superposing natural modes  of the 

beam cross section to assume displacements (NMM). In the present study (PFE), this 

approach has not been used due to following reasons: 

i) NMM requires solution of an eigenvalue problem to determine the natural 

modes of the cross section. If the cross section is nonuniform, then a number 

of eigenvalue analyses are necessary for each different cross section in the 

beam. In PFE, there is no need for eigenvalue analysis and nonuniformity does 

not present any difficulty since each finite element may be composed of 

different number of panels having different geometries. 
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ii) The selection of natural modes in NMM is not straightforward. If the beam 

geometry and loading are simple, then a few lowest natural modes are 

sufficient to assume the displacement field. However, in more complicated 

cases, higher modes are necessary and it is difficult to choose the right ones. 

iii) In NMM, the number of element degrees of freedom is dependent on the 

number of natural modes considered. This causes a difficulty in programming. 

In PFE, the number of element degrees of freedom is 30 and is independent of 

the number of panels. 

The present method can be extended to the analysis of closed section thin walled 

beams, dynamic analysis under transient  loadings, advanced material beams and 

problems with material and geometric nonlinearities. 
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