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ABSTRACT

INFORMATION RECOVERY-BASED MODEL REFERENCE ADAPTIVE
CONTROL FOR FAST ADAPTATION AND IMPROVED TRANSIENTS

WITH AEROSPACE APPLICATIONS

Yayla, Metehan

Ph.D., Department of Aerospace Engineering

Supervisor: Assist. Prof. Dr. Ali Türker Kutay

February 2023, 152 pages

This thesis proposes improvements to Filter-based Model Reference Adaptive Control

(MRAC) architectures for uncertain dynamical systems. Standard MRAC cannot

guarantee closed-loop stability in the presence of bounded perturbations without

restrictive persistent excitation of system signals. Robust modifications have been

introduced to increase the robustness of standard MRAC and/or guarantee stability

without persistent excitation, but little improvement has been achieved in guaranteed

transient response. Recently, filter-based solutions have been introduced, among

which CMRAC has gained a significant reputation due to its simplicity in application,

superior adaptation performance to external disturbances, and improvements on

transient performance. However, filter-based methods suffer from losing information

during filtering, which can degrade adaptation performance, and assume the

uncertainty lies in the span of the control input, which may not hold for many

practical systems. This thesis proposes a method to recover information lost during

filtering in filter-based adaptive controllers, extending it to cover systems with

unknown control effectiveness, and introducing a command governor-based adaptive

controller architecture to guarantee strict tracking performance in the presence of
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unmatched uncertainty. The proposed information recovery-based model reference

adaptive controller (IR-MRAC) is illustrated with an energy-based longitudinal

flight controller architecture, which successfully decouples velocity and altitude

responses while benefiting from all the advantages of an energy-based controller. The

proposed command governor-based adaptive controller is extended to the lateral flight

control problem to achieve the desired tracking performance in the presence of both

matched and unmatched uncertainties. Closed-loop stability analyses of all proposed

methods are illustrated through rigorous Lyapunov’s stability analysis, with numerical

examples and software-in-the-loop simulations used to validate the proposed methods

in a more realistic environment.

Keywords: filter-based adaptive control, closed-loop stability, guaranteed transient

performance, low-pass filter, robustness, unmatched uncertainty, command governor
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ÖZ

HIZLI ADAPTASYON VE GELİŞTİRİLMİŞ GEÇİŞ PERFORMANSI İÇİN
BİLGİ KURTARMA TABANLI MODEL REFERANS UYARLAMALI

KONTROL VE HAVACILIKTAKİ UYGULAMALARI

Yayla, Metehan

Doktora, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ali Türker Kutay

Şubat 2023 , 152 sayfa

Bu tez, belirsiz dinamik sistemler için filtre tabanlı Model Referans Uyarlamalı

Kontrol (MRUK) mimarilerinde iyileştirmeler önermektedir. Standart MRUK,

bozucu etkilerin varlığında sistem sinyallerinin sürekli uyarımını gerektirmeden

kapalı döngü kararlılığını garanti edemez. Gürbüz modifikasyonlar, standart

MRUK’un gürbüzlük seviyesini artırmak ve sürekli uyarım gerektirmeden kararlılığı

garanti etmek için tanıtılmıştır, ancak garanti edilen geçiş performansına az bir

iyileştirme sağlanmıştır. Son zamanlarda filtre tabanlı çözümler tanıtılmıştır. Bunların

arasında Kompozit MRUK (KMRUK), basit uygulama, harici bozuculara karşı üstün

adaptasyon ve başarılı geçiş performansı noktalarında iyileştirmeler sağladığı için

önemli bir itibar kazanmıştır. Ancak, filtreleme sırasında kaybedilen bilgi nedeniyle

adaptasyon performansının azalabileceği ve belirsizliğin kontrol girdisi aralığında

olduğunu varsaydığından, filtre tabanlı yöntemler birçok pratik sistem için geçerli

olmayabilir.

Bu tez, filtre tabanlı uyarlamalı kontrolcülerde filtreleme sırasında kaybedilen bilgiyi
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kurtarmak için bir yöntem önermektedir. Bu yöntem, bilinmeyen kontrol etkililiği

olan sistemleri de kapsayacak şekilde genişletilmiştir. Ayrıca, eşleşmeyen belirsizlik

durumunda üstün takip performansını garanti etmek için bir komut yöneticisi tabanlı

uyarlamalı kontrol mimarisi tanıtmaktadır. Önerilen bilgi kurtarma tabanlı model

referans uyarlamalı kontrolcü (BK-MRUK), enerji tabanlı bir uzunlamasına uçuş

kontrol mimarisi ile gösterilmekte olup, hız ve irtifa yanıtlarını başarıyla ayırmakta

ve enerji tabanlı bir kontrolörün tüm avantajlarından yararlanmaktadır. Önerilen

komut yöneticisi tabanlı uyarlamalı kontrolcü, eşleşen ve eşleşmeyen belirsizliklerin

birlikte olduğu durumlarda, istenen takip performansını elde etmek için yanlamasına

uçuş kontrolü problemine genişletilmiştir. Tüm önerilen yöntemlerin kapalı döngü

kararlılık analizleri, Lyapunov kararlılık analizi ile gösterilmekte olup, önerilen

yöntemlerin daha gerçekçi bir ortamda doğrulanması için sayısal örnekler ve

yazılım-döngü simülasyonları kullanılmaktadır.

Anahtar Kelimeler: filtre tabanlı uyarlamalı kontrol, kapalı döngü kararlılık,

geçiş performansı, alçak geçirgen filtre, gürbüzlük, eşleşmemiş belirsizlik, komut

düzenleyici
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to 46104+ victims of Gaziantep-Kahramanmaras-Hatay earthquakes
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and Prof. İlkay Yavrucuk for their valuable opinions on the progress of the thesis.

Their ideas enlightened and encouraged me to make the problem definitions clearly,

and search for the most appropriate solution for them. I would also like to thank

my committee members Prof. Ozan Tekinalp and Prof. Coşku Kasnakoğlu for their
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Literature

In this section, three main issues are highlighted in adaptive control to be addressed

in the thesis; i) Lost information during low-pass filtering in Composite/Combined

Model Reference Adaptive Control, ii) High adaptive learning rates for better

tracking performance, iii) Control of uncertain systems with a state-dependent

unmatched uncertainty.

1.1.1 Filter-based Adaptive Controller

Model Reference Adaptive Control (MRAC) architectures achieve a desired level

of closed-loop stability and performance for uncertain dynamical systems with

online adaptive weight update laws. Without restrictive persistent excitation

(PE) of system signals, Standard MRAC framework cannot guarantee closed-loop

stability in the presence of bounded perturbations using only instantaneous data

[1, 2]. To increase the robustness of standard MRAC and/or guarantee stability

without PE, well-established robust modifications are introduced in literature [3–9].

Although these modifications improve the robustness of the adaptive controller, little

improvements are achieved in the guaranteed transient response. This is an expected

result as most of these modifications accommodate only the tracking error in the

adaptation. However, it has been widely studied that including the uncertainty

estimation error in the adaptive law enhances the transient performance significantly.

A few modifications extracting additional information on the uncertainty estimation

error are introduced in the literature such as Composite MRAC [10] with its
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extension to MIMO systems [11], Concurrent Learning MRAC (CL-MRAC) [12],

and q-modification [13]. Motivating from these studies, many other modified adaptive

laws have been introduced in the literature. Specifically, Glushchenko et al [14]

employs Recursive Least Squares (RLS)-based system identification algorithm in

adaptive control architecture. Yet, they assume the existence of state derivative

information as direct measurement, which is usually not available for feedback.

It is also the main deficiency of Concurrent Learning Model Reference Adaptive

Control (CL-MRAC) [12]. In order to overcome this drawback, filter-based solutions

are utilized, and information about uncertainty estimation error is extracted using

low-pass filters [15–23]. In addition, filter-based methods can successfully limit the

frequency range in the control signals. However, it is important to note that filtering

methods may suffer from losing information during filtering if the low-pass filters are

poorly designed. Hence, the designer should be careful about selecting the bandwidth

of the filters.

1.1.2 High Adaptive Gain for Better Tracking

It is well practiced that high-adaptation gains in the adaptive control improve the

tracking performance. Thus, it is always desired to set the adaptive gain as high

as possible. However, high adaptation gains also decrease the robustness of the

closed-loop system in the presence of time-delays, unmodeled dynamics, actuation

constraints, and external disturbances with relatively high-frequency (e.g. turbulence,

gust). Many studies are introduced in the literature to highlight this fact and

suppress the resultant undesired behavior. Yucelen and Haddad [24] introduced a

low-frequency learning modification to the standard model reference adaptive control

so that the estimated parameters are enforced to stay bounded around their low-pass

filtered signals. In this way, high-frequency oscillations in the adaptive input are

limited in control, which allows using higher adaptation gains. In the optimal

control modification [6], high adaptive gains are allowed at the expense of sacrificed

performance. The authors illustrated the efficacy of the proposed method with larger

time-delay margins in the presence of high adaptive gains. Unlike these modifications

having constant learning rate, there are studies in which the adaptation gain is adjusted

with time [14, 25] that improves the tracking performance for uncertain systems
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with input delay and unmodeled dynamics. In these methods, however, learning

rate vanishes if the basis is not sufficiently and/or persistently exciting. Thus, the

adaptation is terminated.

1.1.3 Systems with Unmatched Uncertainty

Many MRAC frameworks in the literature (e.g. [3–10, 13]), including all the

aforementioned studies, have been restricted to systems with uncertainties lying on

the span of the control input, which are called matched uncertainties. However, this

assumption may not hold for many practical systems with unmatched uncertainties

(e.g. magnetic levitation [26]). Although the original nonlinear system does not have

an unmatched uncertainty, a nominal linear system (possibly obtained by linearization

of the nonlinear model) may introduce an unmatched content if the nominal system

is incorrect. In fact, this scenario is highly likely to occur if the the actual plant

is not modeled using high-fidelity tools. For instance, in case the system matrix

A and input matrix B are unknown for a linear system ẋ = Ax + Bu, it is not

possible to guarantee the matching conditions hold, which might induce unmatched

uncertainty to be handled in the controller. In practice, if the nature of the uncertainty

upon the system is not only matched but also unmatched (e.g., a portion of the

uncertainties that are not reachable with the control input), then vast majority of

the works on adaptive control does not necessarily guarantee stability (unless the

effect of unmatched uncertainties are sufficiently small and/or ignorable), and hence,

desired performance cannot be strictly achieved. A few notable contributions are

available addressing this point including, for example, [27–38]. Specifically, the

authors of [27] and [28] utilize the controller gain optimization using the linear matrix

inequality (LMI) tools in the controller design to satisfy the desired boundedness

constraints of the tracking errors. Similarly, the authors of [29] use LMI tools

to analyze the performance and stability of the adaptive control framework. They

investigate the tolerable unmatched uncertainty by the control input and degradation

in the performance due to unmatched uncertainty upon the system. The authors

of [30] combine the adaptive backstepping technique with the sliding mode control

method for output tracking in semi-strict feedback systems. Furthermore, the

authors of [31] propose an integral sliding surface that benefits from the radial
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basis functions (RBF) neural networks. With the proposed method, their integral

sliding mode controller partially suppresses the effects of the unmatched uncertainty

and enhances overall system robustness. The authors of [32] utilize a different

adaptive control framework based on low-pass filtered input command and fast state

estimation scheme. The authors of [33] present an indirect certainty equivalence

adaptive control (CEAC) framework that uses fast identification model and command

filtered backstepping controller. Authors of [39] claim that they achieved guaranteed

parameter convergence for the systems with an unmatched uncertainty. However,

their results are far-fetched from the truth as so-called ‘unmatched uncertainty’ lies

in the range space of control input in their system description. In study [40], another

CEAC solution is proposed to deal with unmatched uncertainties. Yet, their solution

is restricted to nonlinear systems with relative degree two. In studies [32] and [33],

high adaptation gains may need to be employed to effectively suppress the effects of

uncertainties since they only rely on instantaneous data, which can be highly prone to

issues such as poor closed-loop system performance or even instability in the presence

of unmodeled dynamics, actuation constraints, or measurement noise to name but a

few examples. Authors of [34] introduce an uncertainty identification method for

both matched and unmatched uncertainties. They utilize a hybrid adaptive control

architecture for a class of unmatched uncertainties. However, tracking performance

is not guaranteed before the identification phase. Furthermore, in studies [32] and

[34], there are no performance recovery mechanisms which leads to performance

degradation as the unmatched uncertainty is increased. In addition, the proposed

method in [33] covers the systems with single input, only. Authors of [35] proposed

a command governor-based adaptive controller to suppress the undesired effects

of unmatched disturbances using backstepping control method. Similarly, authors

of [37] proposes a disturbance observer-based hybrid control system to deal with

unmatched disturbances. In both studies [35] and [37], authors considered only

bounded time-varying unmatched disturbances, which is a simpler and easier problem

to solve compared to state-dependent unmatched uncertainties. Lastly, authors of

[38] introduces a robust control method to deal with unmatched uncertainties using

fuzzy-set theory with deterministic control robust control input. As there is no

performance recovery mechanism in this study, performance degradation may arise

in the presence of large unmatched uncertainties.
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1.1.4 Energy-based Longitudinal Flight Control

For the last decades, many automatic flight control systems (AFCS) have been

designed relying on the classical control theory which uses Single Input-Single

Output (SISO) design methods (see [41–46]). In traditional SISO controllers, each

control channel is reserved to the control of one flight variable. Hence, the overall

control approach is able to realize only one function at a time. Furthermore, SISO

design methods inherently assume that the controlled states are barely coupled. In

a conventional longitudinal flight controller, autothrottle is assigned to control the

airspeed using thrust and autopilot is responsible for the flight path angle control (or

altitude hold) using the elevator. Such a task sharing causes a basic conceptual flaw

in autothrottle control system that one of the most important state variables -flight

path angle- is left out in determining the required thrust. In addition, the autopilot

control system has the basic deficiency of not knowing the airplane’s steady state

climb and descent limits. One solution to suppress the effects of cross-couplings

could be using high feedback gains which may result in excessive control activity

and high fuel consumption [47]. Yet, under certain flight conditions, autopilot may

cause speed instabilities during flight path control at constant throttle. Similarly,

autothrottle may result in unstable flight path response at constant elevator deflection.

Because of these reasons, a desired flight path and airspeed responses can only be

achieved if both autothrottle and autopilot work in coordination. However, it requires

a significant amount of man-hours and flight testing to the coordinated co-operation

of autopilot and autothrottle [48]. Another issue with the SISO AFCS designs is their

inability to control the energy-state of the aircraft. Satisfactory energy-management is

possible with fully integrated longitudinal flight control algorithm taking the aircraft

performance and flight envelope into account. As depicted earlier, traditional SISO

AFCS designs suffer from coordination between autothrottle and autopilot control

systems, and insufficiency of envelope protection covering the entire flight regime.

Sadly, this was a contributing factor in an Airbus A330 crash (see [49,50] for details).

Even the latest generation SISO designs have not satisfactorily solved the energy

management, flight envelope protection, and control coupling issues. Recognizing

that, NASA and Boeing has developed an energy based flight controller, Total Energy

Control System (TECS), to offer solutions to these problems [51].
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Unlike conventional SISO AFCS designs, TECS employs Multi Input-Multi Output

(MIMO) control to achieve the desired flight performance in a much simpler manner.

MIMO TECS strategy relies on the Hamiltonian and Lagrangian of the aircraft.

Note that the Hamiltonian corresponds to total mechanical energy of the aircraft

if the generalized coordinates are expressed in the inertial frame. In that case, the

Hamiltonian can be stated as the summation of kinetic energy and potential energy of

the aircraft. It can be depicted from the aircraft performance considerations that the

engine is the only source to adjust the required power, which is necessary to realize

the desired longitudinal acceleration and flight path commands. Hence, the throttle

channel is assigned to the control of the total energy of the aircraft. Assuming that the

additional drag due to elevator deflection is negligible, the elevator has a conservative

effect on the aircraft total energy. So, the elevator is assigned to distribute the total

energy between kinetic and potential energy. Since the elevator has a conservative

effect on the aircraft energy whereas the thrust directly affects it, it can be inferred

that the elevator and throttle command responses are orthogonal to each other in

terms of total energy and its distribution. Therefore, it becomes quite possible to

achieve desired decoupled speed and flight path responses as the control of the aircraft

total energy and its distribution are decoupled, as well. A few success of the TECS

architecture over the conventional SISO AFCS design can be listed as follows: i)

Functional overlap is eliminated. ii) generic and reusable design with minimal aircraft

specific information is achieved. iii) Consistent operation at each flight condition and

over combination of flight modes is ensured. iv) Pilot-like control strategy is achieved

with efficient energy management strategy. Block diagram representation of TECS

core architecture is shown in Figure 1.1.

Total Energy-based Control System (TECS) first introduced by Lambregts to address

the problems with conventional SISO AFCS designs [52]. In the later studies, the

author described the engine control unit integration into TECS architecture [53].

Also in [54], operational aspects of the TECS such as operational design objectives,

operational features, operation with limited control variables are discussed. Unlike

other energy based flight control methods (e.g. [55]), TECS does not require aircraft

specific information at its core part. Efficiency, simplicity, and success of the TECS

has been shown experimentally with several studies. Specifically, a small UAV
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Figure 1.1: TECS Core Architecture

platform is used in [56] to validate the performance of the basic TECS architecture.

Furthermore, flight test results for Boeing 737 has been presented in [57]. Wang et al.

employed TECS algorithm in a fault-tolerant control scheme [58]. Brigido et al. uses

TECS in conjunction with adaptive control to compensate the discrepancy in trimmed

thrust values due to erroneous drag estimation [59], and present their experiment

results in [60]. They are able to achieve better throttle management with their

proposed architecture. Lamp et al. accommodate the airbrakes into TECS concept,

and tested the modified scheme on a motor glider [61]. Another experimental study

is conducted by Chudy et al. on a general aviation aircraft [62] to show the simplicity

of implementation of the basic TECS architecture over the conventional SISO AFCS.

Lamp et al. modified the fundamental TECS Core by adding an airbrake, changing the

speed and flight path prioritization, and converting the structure from PI-control to

P -control to improve the automatic landing performance via maintaining the desired

glide slope [63]. Apart from these experimental studies, Lai and Ting proposed an

optimal energy control system for a fixed wing UAV [64]. They combine the the

pilot-like energy management property of TECS scheme and LQG optimal control
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theory, and presented their results on a flight simulator software X-plane. Shevchenko

integrated a drag correction unit into TECS structure [65] through energy balance

equation. With their modified TECS structure, a better energy-management strategy

under atmospheric disturbances is achieved which reduces the risks at terminal

flight phases such as takeoff and landing. Kurdjukov et al proposed a modified

TECS core architecture with a correction unit to handle the cases with highly

nonlinear aerodynamics such as presence of substantial wind gusts [47]. Degaspare

and Kienitz successfully extended the basic TECS structure by incorporating the

engine parameters into throttle control channel, and investigates the robustness and

performance characteristics of their architecture in the presence of engine model

uncertainties [66]. Lastly, Argyle and Beard extends the standard linear TECS

formulation to the nonlinear formulation [67]. Furthermore, they include an adaptive

element to improve the accuracy of the aerodynamics model.

Although TECS started a new era of the flight control solutions, designing controller

gains are usually performed using classical design methodologies. Yet, there exist few

works on designing TECS more systematically. Voth and Ly proposed constrained

parameter optimization based low-order robust and optimal controller design method

for the inner loop of the TECS [68]. Nuriwati and Sasongko investigate the

effects of TECS Core gains on the altitude and velocity tracking performances,

and compared their results on the simulation with a conventional SISO AFCS

[69]. Faleiro and Lambregts applied the eigenstructure assignment method to the

TECS core [49]. Viswanathan et al. proposed an adaptive TECS architecture by

combining the L1-adaptive output feedback control and basic TECS architecture [70].

Although desired transient performance in the energy rate is achieved in [70], their

solution suffers from the high filter gains in L1-adaptive control. This can also be

observed from unacceptably high rates in the throttle and elevator control commands.

Looye proposed a multi-objective optimization based robust controller design using

nonlinear dynamic inversion for the TECS [71,72]. Rysdyk and Agarwal proposed an

approximate dynamic inversion based adaptive TECS in which they apply adaptation

to eliminate the effects of residual errors due to approximate inversion [73].

Decoupled altitude and velocity control over the entire flight regime is attainable

with TECS architecture if and only if the Hamiltonian and Lagrangian control loops
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operate at the same bandwidth. Otherwise, energy will be added and subtracted due

to asynchronous control from the variable that is commanded to be held constant.

If this point is addressed properly, the elevator and thrust control becomes perfectly

coordinated, which yields fully decoupled velocity and altitude command responses.

Although in theory, the TECS gains can be selected freely so that the energy and

energy distribution dynamics are identical, it is evident that these will alter from

their nominal values during the operation due to presence of unmodeled dynamics,

uncertainties in the plant model, external disturbances (e.g. wind, turbulence, gust).

Briefly, for an ideal energy state management of an aircraft in the presence of

uncertainties, the controller should

• successfully suppress the effects of uncertainties on the energy states of the

aircraft

• ensure the Hamiltonian and Lagrangian control loops operate at the same

bandwidth

Although there exist several works incorporating adaptive control in TECS

architecture [59,70,73], the attention was on the compensation of the erroneous drag

estimation, not on the coordinated longitudinal control.

1.2 Motivation

In general, desired tracking performance in standard model reference adaptive control

is achievable with high adaptive gains. However, robustness of the closed-loop

system against time-delay and unmodeled dynamics is usually degraded. Filter-based

MRAC approaches offer a solution to this problem by incorporating the uncertainty

estimation into adaptive law provided that the low-pass filter bandwidth is properly

adjusted. If not, the lost information during filtering will cause degradation in the

tracking and adaptation performances. Furthermore, a vast majority of the adaptive

control studies in the literature focus on the systems with matched uncertainties, only.

Hence, the motivation of the thesis becomes to introduce an adaptive controller that

• recovers the lost information in filter-based adaptive controllers

• achieves the desired tracking performance without high adaptation gains
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• handles the systems with both matched and unmatched uncertainties

with illustrations on the aerospace applications. Furthermore, the coordinated

longitudinal flight problem with energy-based controllers is addressed. As mentioned

earlier, no controller architecture is studied in the literature that ensures the

coordinated aircraft energy management in the presence of system uncertainties.

1.3 Contributions and Novelties

To this extent, an information recovery-based model reference adaptive controller

(IR-MRAC) is proposed that achieves better tracking even if the low-pass filter is

poorly designed with an inadequate bandwidth in filter-based methods. With the

proposed architecture, the high frequency content of the uncertainty estimation is

included into the adaptation to recover the lost information due to low-pass filtering.

Simultaneously, a non-vanishing time-varying learning rate is introduced to eliminate

the adverse effects of included high-frequency signals. In this respect, time-varying

learning rate works as a stability augmentation system that suppresses the undesired

high-frequency oscillations in the adaptive control input. One may include the

high-frequency content by simply increasing the bandwidth of the low-pass filter in

the conventional filter-based adaptive controllers. In that case, the signals with high

frequencies have the same level of importance as those with low frequencies, which

might result in undesired oscillations in the closed-loop response. On the other hand,

IR-MRAC allows to adjust the contributions from low-frequency and high-frequency

contents, separately. Hence, high-frequency signals are included in the adaptation

in a frequency-selective framework. With this flexibility, the designer may adjust

the weight of high-frequency signals on the adaptation. To the best knowledge of

the author, there is no study addressing the lost information recovery in filter-based

adaptive controllers.

In addition, a new Command Governor-based Model Reference Adaptive Control

architecture is introduced and analyzed for uncertain dynamical systems with not

only matched but also unmatched uncertainties. Using the unmatched uncertainty

approximation obtained through RBF neural networks, the command governor
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signal is designed to achieve the desired command following performance of the

user-defined subset of the accessible states. With this Command Governor-based

MRAC, the tracking error of the selected states can be made arbitrarily small

by judiciously tuning the design parameters. In addition to the analysis of the

closed-loop system stability using methods from Lyapunov theory, findings are

also illustrated through numerical examples. Specifically, the major contribution

is the guaranteed tracking performance for arbitrary state-dependent matched and

unmatched uncertainties.

Next, an adaptive energy-based longitudinal flight control framework is proposed.

Uncertainties on the Lagrangian channel is eliminated with an adaptive element

in the pitch stability augmentation system, in which the fast system states are

regulated. Thus, uncertainties in the energy distribution channel is successfully

removed, and short period mode characteristics are improved. For the coordination

between Hamiltonian and Lagrangian controls, an adaptive outer energy management

loop is designed. Remaining uncertainties on the energy sources and/or energy

draining components are addressed in this controller. Furthermore, bandwidth of both

Lagrangian and Hamiltonian control loops are determined with a reference model.

As a result, proper suppression of uncertainties immediately results in the desired

decoupled airspeed and altitude responses. The main contribution is to introduce

an adaptive energy management module ensuring that the energy is added to (or

subtracted from) the system and remaining energy is distributed properly to achieve

the desired and decoupled tracking performance.

Lastly, the aircraft lateral flight control problem is re-visited. Specifically, it is

allowed that the nominal system to be freely chosen without any concern on the

matching assumption in model reference adaptive controller. Proposed command

governor-based MRAC approach is utilized to eliminate the effects of matched and

unmatched uncertainties. As a result, the same command tracking performance is

achieved throughout the entire flight envelope with a single reference model and

nominal controller. Thus, necessity for the gain scheduling is eliminated and the

effects of uncertainties are suppressed successfully. Specifically, with this form of

lateral flight controller, assumptions on the system reduce to: i) Controllability of the

system and ii) Sign of the control gain.
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1.4 The Outline of the Thesis

Chapter 2 presents the notation and definitions used in the thesis. Furthermore, a

review for standard MRAC is included. In addition, Composite/Combined MRAC

architecture is revisited as the contributions of the thesis are mainly based on these

two frameworks. In Chapter 3, a new adaptive control architecture is proposed

to recover the lost information in filter-based adaptive controllers. Chapter 4

extends the Information Recovery-based MRAC (IR-MRAC) to cover the systems

with unknown control effectiveness. In Chapter 5, a command-governor based

adaptive control framework is introduced for the dynamical systems with matched

and unmatched uncertainties. In Chapter 6, a nonlinear energy-based flight controller

is presented. Well-known Total Energy Control System (TECS) is extended to

nonlinear formulation for coordinated longitudinal flight. In Chapter 7, lateral flight

control problem is re-visited with relaxed matching assumption, and hence, allowing

unmatched content in the adaptive control system. Command governor-based MRAC,

which is proposed in Chapter 5, is utilized as a command following performance

recovery mechanism. Lastly, Chapter 8 concludes the thesis.
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CHAPTER 2

PRELIMINARIES

2.1 Notation and Definitions

Notation used in this thesis is fairly standard. Specifically, R+ denotes the set of

strictly positive real numbers, ‘,’ denotes equality by definition, A � 0 denotes that

A is a positive definite matrix, (·)−1 denotes inverse, (·)T denotes transpose,
(
·
)†

denotes the Moore–Penrose inverse, ‘vec
(
·
)
’ denotes the column stacking operator,

‘tr
(
·
)
’ denotes the trace operator, λmin

(
A
)

returns the minimum eigenvalue of matrix

A, and σmax

(
A
)

returns the maximum singular value of matrix A. Furthermore, for

the vector x =
[
x1 · · · xn

]T ∈ Rn and matrix A = [aij]
∣∣∣i=1,··· ,m
j=1,··· ,n

∈ Rm×n with

aij ∈ R, the Euclidean vector norm ‖x‖, the induced matrix norm ‖A‖, and Frobenius

matrix norm ‖A‖F are defined as

‖x‖ ,

√√√√
n∑

i=1

x2
i , ‖A‖F ,

√
tr
(
ATA

)
.

‖A‖ ,
√
λmax

(
ATA

)
= σmax(A)

Kronecker product is denoted by ‘⊗’ and ‘∧’ denotes the logical ‘AND’ operator.

For the vector θ ∈ Rk and convex function f : Rk → R, the gradient operator

∇f(θ) is ∇f(θ) =
[
∂f(θ)
∂θ1

· · · ∂f(θ)
∂θk

]T
. Lastly, ‘�’ indicates the completion of

a mathematical proof. N (·) denotes the null space, for δ ∈ R+, the set Nδ(y(t))

denotes the δ-neighborhood of the signal y(t) ∈ Rn

Nδ(y(t)) = {x(t) ∈ Rn : ‖x(t)− y(t)‖ ≤ δ} .

Finally, definition of the projection operator is presented. For this purpose, let the

Boolean Lpr be Lpr , f(θ) > 0 ∧ yT∇f(θ) > 0. Then, the projection operator for
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the vectors θ, y ∈ Rk is

Proj(θ, y) ,




y − ∇f(θ)(∇f(θ))T

‖∇f(θ)‖2 yf(θ) if Lpr is true

y otherwise .

In this thesis, the convex function f (·) is taken as

f(θ) ,
(εθ + 1) θT θ − θ2

max

εθθ2
max

,

where θmax ∈ R+ is a projection norm bound imposed on θ ∈ Rn and εθ ∈ R+ is a

projection tolerance bound.

Fb
(
C; ~u

(b)
1 , ~u

(b)
2 , ~u

(b)
3

)
denotes the frame Fb with its unit vectors ~u (b)

1 , ~u
(b)
2 , ~u

(b)
3 which

has an origin at point C. ~u
(b)
i denotes ith unit vector of frame Fb. Ĉ(a,b) denotes

the transformation matrix from frame Fb to frame Fa. Representation of vector
~X in frame Fb is denoted by

[
~X
](b)

= X̄(b). ū
(a/b)
j =

[
~u

(a)
j

](b) corresponds

to representation of jth unit vector of frame Fa in frame Fb. Representation of

every unit vector in its own frame is always the same; i.e. ū
(a/a)
j = ū

(b/b)
j = ūj .

~VA/Fo(B) = Do~rA/B denotes the derivative of position vector ~rA/B with respect to

frameFo. cpm(ω̄(b)) = ω̃(b) denotes the cross-product matrix generated by ω̄(b) which

is column-matrix representation of vector ~ω in frame Fb. σmin(·) and σmax(·) return

the minimum and maximum singular value of inside argument, respectively.

Definition 2.1. [Persistent Excitation] The signal ω(t) ∈ Rn is said to be persistently

exciting over an excitation period of τ if and only if there exist positive constants

τ, β ∈ R+ such that the following inequality holds:
∫ t

t−τ
ω(s)ωT (s)ds � βIn×n, ∀t ∈ R+

for ∀t ∈ R+ where In×n is the n× n identity matrix.

Definition 2.2. [Sufficient Excitation] The signal ω(t) ∈ Rn is said to be sufficiently

exciting at time t = Te if there exists a positive constant β ∈ R+ such that the

following inequality holds:
∫ t

t0

ω(s)ωT (s)ds � βIn×n, t = Te ∈ R+
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2.2 Standard Model Reference Adaptive Control

In this section, mathematical background of the standard model reference adaptive

control is briefly described. Consider the following nonlinear uncertain system:

ẋ(t) = Ax(t) +B
[
u(t) + ∆

(
x(t)

)]
, x(t0) = x0 (2.1)

where x(t) ∈ Dx ⊂ Rn denotes the state vector, u(t) ∈ Du ⊂ Rm is the control

input, system matrix A ∈ Rn×n and input matrix B ∈ Rn×m are known constant

matrices. Furthermore, the pair (A,B) is assumed to be controllable and input matrix

B has full column rank. Dx is sufficiently large compact set, Du is admissible control

set, and ∆ : Rn → Rm is the mapping for the unknown matched uncertainty. In

addition, full state measurement is available for feedback control, and the plant is not

over-actuated; that is n ≥ m.

The main objective in model reference adaptive controllers is to achieve the desired

state tracking performance, which is characterized by the reference model:

ẋr(t) = Arxr(t) +Brr(t), xr(t0) = xr0 (2.2)

where xr(t) ∈ Rn is the reference state vector, r(t) ∈ Rq is the bounded and

piecewise continuous reference command signal with its dimension being less than

or equal to that of the control input; i.e. q ≤ m. Br ∈ Rn×q denotes the reference

model input matrix, and system matrix Ar ∈ Rn×n is designed to be Hurwitz.

Assumption 2.1. [Matching Condition] Reference model system matrix Ar and input

matrix Br satisfies the relations:

Ar = A−BKx

Br = BKr

with Kx ∈ Rm×n and Kr ∈ Rm×q being feedback and feedforward controller gains,

respectively.

Remark 2.1. Assumption 2.1 is a well-known and widely accepted assumption in

model reference adaptive control theory [1, 74, 75]. Since the system matrices A and

B are known, it is possible to design feedback gain Kx and feedforward gain Kr so
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that the desired closed-loop system performance is achieved for the nominal system.

Assumption 2.2. [Structured Matched Uncertainty] The uncertainty ∆(x) in the

plant dynamics in Eq 2.1 can be represented by the linear combination of known

basis vector-function φ : Rn → Rs as:

∆(x) = W Tφ(x)

where W ∈ Rs×m is the unknown constant weight matrix.

Remark 2.2. Many uncertainties in physical systems can be parametrized as in

Assumption 2, (e.g. nonlinear wing-rock dynamics [76]). However, for the case

where the basis vector-function φ(x) is unknown, Assumption 2.2 can be relaxed

using universal approximators such as Radial Basis Functions (RBF) [77] as follows:

∆(x) = W Tφ(x) + ε(x)

where the residual ε(x) can be made arbitrarily small by increasing the size of the

regressor RBF vector-function φ(x); i.e. ‖ε(x)‖ ≤ ε0, ∀x ∈ Dx with arbitrarily

small residual bound of ε0. Thus, the proposed algorithm can be readily extended for

unstructured matched uncertainties.

As the reference model system matrix Ar is Hurwitz, the following Lyapunov

equation holds for any given positive definite matrix Q = QT � 0:

ATr P + PAr = −Q (2.3)

with P = P T � 0 being positive definite solution [78].

Nominal control input un(t) has feedback and feedforward parts given as follows:

un(t) = −Kxx(t) +Krr(t) (2.4)

The overall control input consists of the nominal controller in Eq 2.4 and adaptive

controller to be in the following form:

u(t) = un(t)− uad(t) (2.5)

where the adaptive control input uad(t) is given by

uad(t) = Ŵ T (t)φ(x) (2.6)
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with Ŵ (t) ∈ Rs×m being online estimation of unknown constant weight W ∈ Rs×m.

Combining Eq 2.4, Eq 2.5, and Eq 2.6 yields the resultant control input as follows:

u(t) = −Kxx(t) +Krr(t)− Ŵ T (t)φ(x) (2.7)

Substituting the control input in Eq 2.7 into the uncertain system dynamics with

Assumption 2.2 results in the following closed-loop system dynamics:

ẋ(t) = Ax(t) +B
[
u(t) + ∆

(
x(t)

)]

ẋ(t) = Ax(t) +B
[
−Kxx(t) +Krr(t)− Ŵ T (t)φ(x) +W Tφ(x)

]

ẋ(t) = Arx(t) +Brr(t) +BW̃ T (t)φ(x)

(2.8)

where W̃ (t) , W −W (t) is the online weight estimation error. State tracking error

e(t) is defined to be the difference between the reference model states and plant states;

that is, e(t) , xr(t) − x(t), ∀t ≥ t0. Then, the state tracking error dynamics can be

obtained using Eq 2.2 and Eq 2.8 as the following:

ė(t) = ẋr(t)− ẋ(t)

ė(t) = Are(t)−BW̃ T (t)φ(x)
(2.9)

Finally, the weight update law in standard model reference adaptive control

formulation is given by:

˙̂
W (t) =

˙̂
Wb(t) = −Γφ(x)e(t)TPB (2.10)

where Γ = ΓT � 0 is the user-defined learning rate matrix with Γ ∈ Rs×s.

Remark 2.3. The closed-loop stability of the standard model reference adaptive

control system can be shown using radially unbounded Lyapunov function

Vb
(
e, W̃

)
= eTPe + tr

(
W̃ TΓ−1W̃

)
> 0 with V̇b

(
e, W̃

)
= −eTQe ≤ 0 using the

system trajectories along Eq 2.9 and Eq 2.10. Note that Vb
(
0, 0
)

= 0 and Vb
(
e, W̃

)
>

0, for all
(
e, W̃

)
6= (0, 0), ∀t ∈ R+. Since Vb

(
e, W̃

)
is lower-bounded by zero, and

its derivative V̇b
(
e, W̃

)
≤ 0 is less than or equal to zero, Lyapunov function Vb

(
e, W̃

)

approaches to a finite limit as t→∞. Hence, the boundedness of tracking error e(t)

and weight estimation error W̃ (t) is guaranteed. Since e(t) and xr(t) are bounded,

system states x(t) and basis vector-function φ(x) immediately become bounded. With

bounded e(t), x(t), φ(x), and W̃ (t), time derivative of tracking error dynamics ė(t)
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becomes bounded which ensures the boundedness of V̈b
(
e, W̃

)
= −2eTQė, ∀t ∈ R+.

It then follows from Barbalat’s Lemma [79] that limt→∞ V̇b
(
e(t), W̃ (t)

)
= 0 which

implies the asymptotic stability of tracking error e(t); that is, limt→∞ e(t) = 0. If

the basis vector-function φ(x) is persistently exciting, then the estimated parameters

converge to their ideal values, as well; that is, Ŵ (t) → W as t → ∞. Readers may

refer to Ref [74] for the details.

Remark 2.4. If the structure of the uncertainty is unknown and universal

approximators are used to parametrize the uncertainty as suggested in Remark 2.2,

the boundedness of the online weight estimations is not guaranteed by the standard

MRAC. To increase the robustness (e.g. in the unstructured uncertainty case),

many robust modifications are introduced in the literature including but not limited

to σ-modification [3], e-modification [4], optimal control based modification [6],

Kalman filter modification [9], and q-modification [13]. Furthermore, it is common

practice to include the projection operator [80] to bound the parameters within the

prescribed convex set.

2.3 Combined/Composite Model Reference Adaptive Control

It is well known that the standard MRAC requires high learning rates for fast

adaptation. Although adaptive control with high gains enables fast adaptation, it

might degrade the transient performance by inducing high-frequency oscillations

in the system and even cause instabilities in the presence of large uncertainties

and sudden changes in the system dynamics. That’s why improving the transient

performance in adaptive control has always been an attractive problem [6, 11,

24, 81–85]. As seen from these studies, and references therein, including the

uncertainty estimation error in the adaptation law enhances the transient performance

significantly. This fact was first utilized in the study of Slotine and Li [10], called

‘Composite Model Reference Adaptive Control’. Almost at the same time, quite a

similar approach was introduced by Duarte and Narendra [86] as ‘Combined Model

Reference Adaptive Control’. Later in Lavretsky’s work [11], these two approaches

are generalized to cover the multi-input multi-output systems. In this section,

improved formulation of Composite/Combined MRAC proposed by Lavretsky [11]
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is revisited. As Lavretsky does in his study, these two methods are called as CMRAC

to acknowledge both studies.

2.3.1 Filtering System Dynamics

Basically, CMRAC starts with filtering the uncertain system dynamics in Eq 2.1 as:

ẋf (x, t) = Axf (x, t) +B [uf (t) + ∆f (x, t)] (2.11)

with subscript ‘f ’ indicating that the signal is filtered through the low-pass filters:

ẋf = ωf
(
x− xf

)
, xf (t0) = x(t0)

u̇f = ωf
(
u− uf

)
, uf (t0) = u(t0)

ṙf = ωf
(
r − rf

)
, rf (t0) = r(t0)

φ̇f = ωf
(
φ− φf

)
, φf (t0) = φ(x0)

ψ̇f = ωf
(
ψ − ψf

)
, ψf (t0) = ψ(x0)

(2.12)

where ωf ∈ R+ is the cut-off frequency that determines the bandwidth of the low-pass

filters, r(t) is bounded and piecewise continuous exogenous reference signal. Basis

function ψf is introduced in Chapter 5. Wherever appropriate, the arguments ‘t’ for

time dependency and ‘x’ for state dependency are dropped consistently for ease of

exposition. Rearranging Eq 2.11 yields:

B† [ẋf − Axf ]− uf = ∆f = W Tφf (2.13)

with B† denoting the left-pseudo inverse of input matrix B. Note that the signals xf ,

uf , φf , ẋf and φ̇f are all accessible through Eq 2.12.

2.3.2 CMRAC Update Law

Once the low-pass filters are applied to the uncertain system dynamics, the

low-frequency content of uncertainty, ∆f , becomes an available signal for control

purposes as all the signals in the left-hand side of Eq 2.13 are available. The idea in

CMRAC is to use the low-frequency content of the matched uncertainty in the update
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law by constructing its estimation as follows:

∆f = W Tφf = B† [ẋf − Axf ]− uf
∆̂f = Ŵ Tφf

(2.14)

where Ŵ (t) is the online estimation of unknown constant weight matrix W . Then,

one can define the low-frequency uncertainty estimation error as the following:

∆̃f , ∆f − ∆̂f = W Tφf − Ŵ Tφf = W̃ Tφf (2.15a)

∆̃f = B† [ẋf − Axf ]− uf − Ŵ Tφf (2.15b)

The modified update law in CMRAC is given by

˙̂
W = Γ

[
− φeTPB + γcφf∆̃

T
f

]
(2.16)

where ∆̃f is available with Eq 2.15b and γc ∈ R+ is a positive scalar learning rate.

Remark 2.5. Asymptotic stability of the closed-loop system with CMRAC weight

update law in Eq 2.16 can be shown as the following. Time derivative of the radially

unbounded Lyapunov function Vc
(
e, W̃

)
= 1

2
eTPe + 1

2
tr
(
W̃ TΓ−1W̃

)
along the

system trajectories in Eq 2.9 and Eq 2.16 is given by V̇c
(
e, W̃

)
= −1

2
eTQe −

γctr
(
W̃ Tφfφ

T
f W̃

)
which is also equal to V̇c

(
e, W̃

)
= −1

2
eTQe − γc‖∆̃f‖2

F ≤
−1

2
eTQe − γc‖∆̃f‖2. With this result, boundedness of the Lyapunov function Vc

is guaranteed which implies the boundedness of the state tracking error e(t) and

weight estimation error W̃ (t). Next, following the similar discussions made in

Remark 2.3, one can show the boundedness of V̈c
(
e, W̃

)
= −1

2
eTQė − γc∆̃

T
f

(
−

˙̂
W Tφf + W̃ T φ̇f

)
using Eq 2.12 and Eq 2.16. It then follows from Barbalat’s

Lemma [79] that limt→∞ V̇c
(
e(t), W̃ (t)

)
= 0 which implies the asymptotic stability

of the state tracking error e(t) and filtered uncertainty estimation error ∆̃f (t); that

is, limt→∞ e(t) = 0 and limt→∞ ∆̃f (t) = 0. Comparing CMRAC result with that of

standard adaptive control in Remark 2.3, it can be realized that CMRAC modification

enhances the stability since V̇c ≤ V̇b ≤ 0. However, it should be emphasized that

the parameter convergence is still not guaranteed with CMRAC since the asymptotic

stability of ∆̃f does not imply the asymptotic stability of weight estimation error W̃

unless the basis function φ is persistently exciting.
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Remark 2.6. Contribution of the CMRAC weight update law in Eq 2.16 is three fold:

• Adaptive parameters are updated in the direction that minimizes the

low-frequency estimation of the uncertainty ∆f . In that respect, the CMRAC

modification can be considered analogous to q-modification [13].

• CMRAC update law enforces the adaptive estimation to be a low-frequency

signal. Hence, CMRAC works similar to low-frequency learning-based

adaptive control [24] as the high frequency content in the adaptive parameters

is suppressed in both frameworks.

• Since the signals in CMRAC mainly contain low-frequency content, it allows

to use relatively high gains in the modification term which accelerates the

adaptation as in the optimal control based adaptive control modification [6]

and low-frequency learning MRAC [24].

2.3.3 CMRAC Extension to Systems with Unknown Control Effectiveness

In this case, the nonlinear uncertain dynamical system of interest is as follows:

ẋ(t) = Ax(t) +BΛ
[
u(t) + ∆

(
x(t)

)]
, x(t0) = x0 (2.17)

where Λ is a diagonal positive definite constant matrix that represents the unknown

control effectiveness. The matched uncertainty is assumed to be structured and can

be represented as in Assumption 2.2. For the same reference model in Eq 2.2, the

tracking error dynamics becomes:

ė(t) = Are(t)−BΛW̃ T (t)φ(x) (2.18)

Filtering the uncertain system dynamics yields:

ẋf (x, t) = Axf (x, t) +BΛ
[
uf (t) + ∆f (x, t)

]

= Axf (x, t) +BΛ
[
uf (t) +W Tφf (x, t)

]

Manipulating and rearranging the resultant equation gives:

Y , Λ
[
uf +W Tφf

]
= B†

[
ẋf − Axf

]
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with B† being pseudo-inverse of B. Its estimated form is defined as:

Ŷ , Λ̂
[
uf + Ŵ Tφf

]

where Λ̂ and Ŵ are being online estimations of unknown control effectiveness matrix

Λ and unknown ideal matched weight matrix W , respectively. Corresponding error is

eY , Y − Ŷ = Λ
[
uf +W Tφf

]
− Λ̂

[
uf + Ŵ Tφf

]

= Λ̃uf + ΛW Tφf − Λ̂Ŵ Tφf ± ΛŴ Tφf

= Λ̃
(
uf + Ŵ Tφf

)
+ ΛW̃ Tφf

Then, the update laws for the evolution of Λ̂ and Ŵ are given as in the following

bilinear predictor form [11]:
˙̂
W = −Γ

[
φeTPB − γcφfeTY

]

˙̂
Λ = ΓΛγceY

(
uf + Ŵ Tφf

)T (2.19)

with γc ∈ R+ being positive scalar constant and ΓΛ being a positive definite matrix.

Remark 2.7. Stability of the closed-loop system with dynamics in Eq 2.17, control

input in Eq 2.7, and adaptive weight update laws in Eq 2.19 can be illustrated using

the following Lyapunov function:

V =
1

2
eTPe+

1

2
tr
(
W̃ TΓ−1W̃Λ

)
+

1

2
tr
(
Λ̃TΓ−1

Λ Λ̃
)

Its time derivative along the system trajectories in Eq 2.18 and Eq 2.19 results in:

V̇ =eTPAre− eTPBΛW̃ Tφ+ tr
(
W̃ TΓ−1 ˙̃WΛ

)
+ tr

(
Λ̃TΓ−1

Λ
˙̃Λ
)

=− 1

2
eTQe− tr

(
ΛW̃ TφeTPB

)
− tr

(
ΛW̃ TΓ−1 ˙̂

W
)
− tr

(
Λ̃TΓ−1

Λ
˙̂
Λ
)

=− 1

2
eTQe− tr

(
ΛW̃ TφeTPB

)
+ tr

{
ΛW̃ T

[
φeTPB − γcφfeTY

]}
− tr

(
Λ̃TΓ−1

Λ
˙̂
Λ
)

=− 1

2
eTQe− γctr

(
ΛW̃ Tφfe

T
Y

)
− tr

(
Λ̃TΓ−1

Λ
˙̂
Λ
)

=− 1

2
eTQe− γctr

(
eY e

T
Y

)

≤− 1

2
λmin(Q)‖e‖2

2 − γc‖eY ‖2
2 ≤ 0

which implies the uniform ultimate boundedness of the error signals e(t), W̃ (t), and

Λ̃(t), ∀t ≥ t0. It can also be shown using Barbalat’s Lemma [79, 87] that e(t) and

eY (t) converge to zero asymptotically; that is, e(t), eY (t) → 0 as t → ∞. Since the

Lyapunov function is radially unbounded, these results hold globally. Readers may

also refer to Ref [11] for the detailed proof.
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2.4 The Projection Operator

Definition 2.3. A set D ⊂ Rk is a convex set if:

λx+ (1− λ)y ∈ D, ∀x ∈ D, ∀y ∈ D, 0 ≤ λ ≤ 1

Thus, for any chosen points x, y ∈ D, all the points on the line connecting x and y

are also in the set D.

Definition 2.4. A function f : Rk → R is convex function if:

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), 0 ≤ λ ≤ 1

Lemma 2.1. Let f : Rk → R be a convex function. Then, the subset Ωβ is convex for

any constant β > 0 such that Ωβ :=
{
θ ∈ Rk : f(θ) ≤ β

}
(Lemma 3 in [88]).

The projection operator for vectors θ, y ∈ Rk is given by [80]:

Proj(θ, y, f) =





y if f(θ) < 0

y if f(θ) ≥ 0 ∧ yT∇f(θ) ≤ 0

y − ∇f(θ)(∇f(θ))T

‖∇f(θ)‖2 yf(θ) otherwise

(2.20)

where ∇f(θb) :=
(
∂f(θ)
∂θ1

∂f(θ)
∂θ2

· · · ∂f(θ)
∂θk

)T
is evaluated at θb. It can equivalently

be expressed as:

Proj(θ, y, f) =




y − ∇f(θ)(∇f(θ))T

‖∇f(θ)‖2 yf(θ) if f(θ) > 0 ∧ yT∇f(θ) > 0

y otherwise
(2.21)

Lemma 2.2. Let θ ∈ Rk be a vector, f : Rk → R be a convex function, Ω0 be

a convex set such that Ω0 :=
{
θ ∈ Rk : f(θ) ≤ 0

}
, Ω1 be a convex set given by

Ω1 :=
{
θ ∈ Rk : f(θ) ≤ 1

}
. Projection operator is given as in Eqn. (2.20). Further,

let θ0 := θ(t = 0) be the initial value for θ(t) such that θ0 ∈ Ω0. If the vector θ(t) is

updated according to the law θ̇(t) = Proj (θ, y, f), then θ(t) is bounded and ensured

to be θ(t) ∈ Ω1, ∀t ≥ 0. (Lemma 9 in [80]).
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In this thesis, the convex function f(·) is chosen to be:

f(θ) =
‖θ‖2 − υ2

2ευ + ε2
(2.22)

where ε > 0 and υ > 0 are scalar constants which determine the boundaries of convex

sets Ω0 and Ω1. An illustrative trajectory for Lemma 2.2 is given in Figure 2.1 where

θ∗ is a point on the boundary of the convex set Ω1; i.e. f(θ∗) = 1.

Figure 2.1: An Example to Trajectory Behavior Under Projection

Remark 2.8. From Lemma 2.2, θ(t) ∈ Rk satisfies the following condition:

‖θ(t)‖ = ‖θ(t)‖F ≤ ε+ υ, ∀t ≥ 0 (2.23)

provided that the initial value θ0 is such that θ0 ∈ Ω0. Hence, the vector θ(t) is

uniformly ultimately bounded.

Lemma 2.3. Let f(·) : Rk → R be a continuously differentiable convex function.

Consider the convex set Ω1 :=
{
θ ∈ Rk : f(θ) ≤ 1

}
. Let θ∗ be an interior point of

the convex set Ω1; i.e. f(θ∗) < 1. Then,

(θ∗ − θ)T (y − Proj(θ, y, f)) ≤ 0, ∀θ ∈ Ω1

Readers may refer to Ref [80] for the details.
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CHAPTER 3

INFORMATION RECOVERY IN FILTER-BASED MODEL REFERENCE

ADAPTIVE CONTROL

3.1 Problem Definition

In this chapter, following uncertain dynamical systems are considered:

ẋ(t) = Ax(t) +B
[
u(t) + ∆

(
x(t)

)]
, x(t0) = x0

Chapter 2 highlighted both Standard MRAC and Combined/Composite MRAC

frameworks for the uncertain systems of interest. Superiority of CMRAC over

Standard MRAC has been stated in Remark 2.6. Although CMRAC and its further

modifications (e.g. Refs [15, 16, 20, 85, 89]) contributed a lot to the robustness

and performance , all these filter-based solutions suffer from losing information

during filtering. Thus, the adaptation performance might be degraded if the system

experiences high-frequency variations such as abrupt changes in the weight (e.g.

payload drop for an aircraft), actuator failures, and so on. Furthermore, a relatively

small cut-off frequency ωf for low-pass filters in Eq 2.12 may cause problems such as

instabilities due to time-delay because of the nature of low-pass filters. In this chapter,

these issues are addressed, and a new model reference adaptive control architecture is

proposed that compensates the information lost during filtering by incorporating the

high-frequency content of the filtered signals into adaptation.

It is important to note that this chapter builds on Section 2.3. A few definitions

and formulations which are already available in Chapter 2 are omitted to avoid the

repetitions. Hence, readers strongly advised to visit Chapter 2 before attempting this

chapter.
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3.2 Proposed Solution

Similar to the aforementioned studies, the low-frequency content of the uncertainty,

∆f , is utilized in the adaptation to improve the transient behavior. Consider the

following optimization problem:

min
Ŵ
J

J (Ŵ ) =
1

2
‖W Tφf (x)− Ŵ T (t)φf (x)‖2 =

1

2
‖∆f − ∆̂f‖2 =

1

2
‖∆̃f‖2

(3.1)

where the gradient of the cost function in Eq 3.1 is given by:

∇JŴ (Ŵ ) = −φf
[
∆f (x)− Ŵ T (t)φf (x)

]T
= −φfφTf W̃ = −φf∆̃T

f

Remark 3.1. Negative gradient of the cost function constructs the modification term

in CMRAC as it is a typical approach in gradient-descent based optimization. That

is, the modification term in CMRAC architecture can be written as

˙̂
Wcmrac = −γ∇JŴ (Ŵ ) = γφf∆̃

T
f = γφfφ

T
f W̃

In that respect, the dynamics of the modification term is analogous to an integrator

system with the input being a proportional feedback of the gradient term.

Assumption 3.1. Basis function φ ∈ Rs is a sufficiently exciting signal. Hence, there

exists positive constants α, Te ∈ R+, t0 ∈ R such that the following inequality holds:
∫ t

t0

φ(τ)φT (τ)dτ � αIs×s, t = Te > t0

Remark 3.2. Assumption 3.1 ensures that basis function φ contains as many spectral

lines as there are unknown parameters. Note that basis function φ is an exogenous

signal to the low-pass filter system in Eq 2.12 with the transfer function of G(s) ,
ωf
s+ωf

. Then, filtered basis function φf has also the same number of spectral lines with

less energy than that of the original basis φ since G(s) is stable, minimum phase, and

strictly proper transfer function [87]. This implies the following:
∫ t

t0

φf (τ)φTf (τ)dτ � βIs×s, t = Te
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with 0 < β ≤ α. The degradation in the richness of the signal (which is equivalent to

how small is β than α) depends on the cutoff frequency ωf and spectrum of the basis

φ. Let the spectral measure of φ is given by Sφ([ω1 ω2]) with ω1 < ω2. Choosing the

filter design parameter ωf to be larger than ω2 leads to relatively small degradation

in the richness of φf with β being closer to α. To give a practical example, one can

consider the longitudinal dynamics of an aircraft with basis being the system states;

i.e. φ(x) = x. In this case, choosing the cutoff frequency ωf to be larger than the

natural frequency of the short period mode will be sufficient to preserve the richness

of the filtered basis φf = xf . Note that this is generally possible as prior information

about possible spectrum of the states are available from the nominal aircraft model.

Low-frequency content of the matched uncertainty ∆f is manipulated as follows:

∆fφ
T
f = W Tφfφ

T
f

MT ,
∫ t

t0

∆fφ
T
f dξ =

∫ t

t0

W Tφfφ
T
f dξ = W T

∫ t

t0

φfφ
T
f dξ

Note that the signalM is accessible as the low-frequency content of the uncertainty

∆f is available from Eq 2.14. Then, estimated form M̂ and corresponding error M̃
are defined as:

M̂T , Ŵ T

∫ t

t0

φfφ
T
f dξ

M̃ ,M−M̂ =
(∫ t

t0

φfφ
T
f dξ
)

︸ ︷︷ ︸
,Φ

W̃ = ΦW̃
(3.2)

It should also be noted that the signal M̃ is also available since bothM and M̂ are

accessible. Having defined the error signal M̃, the weight update law is decomposed

to have the following form:

˙̂
W =

˙̂
Wb +

˙̂
Wm, with ˙̂

Wb = −
(
Γ−1 + γmφfφ

T
f

)−1
φeTPB

where ˙̂
Wb is the standard adaptive law with time-varying learning rate, ˙̂

Wm is the

proposed modification in the weight update law. Using the auxiliary error signal M̃
in Eq 3.2, the following modification term is proposed:

˙̂
Wm =

(
Γ−1 + γmφfφ

T
f

)−1(
γmφ̇f∆̃

T
f + γ1φf∆̃

T
f + γ2M̃

)
(3.3)
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where γ1, γ2, γm ∈ R+ are user-defined design variables. Constructive proof of the

proposed weight update law will be provided in Theorem 3.1. Then, overall weight

update law becomes:

˙̂
W =

(
Γ−1 + γmφfφ

T
f

)−1(− φeTPB + γmφ̇f∆̃
T
f + γ1φf∆̃

T
f + γ2M̃

)
(3.4)

Theorem 3.1. Consider the uncertain system dynamics given in Eq 2.1, uncertainty

parametrization in Assumption 2.2, reference model dynamics in Eq 2.2, control input

in Eq 2.7, filter states in Eq 2.12, and adaptive law in Eq 3.4. Then, the state tracking

error e(t) is asymptotically stable for the closed-loop system. Furthermore, all the

closed-loop signals are bounded. If the basis function φ is sufficiently exciting, then

the zero-solution
(
e, W̃ , ∆̃f

)
=
(
0, 0, 0

)
is globally asymptotically stable.

Proof. Consider the following radially unbounded Lyapunov function:

V
(
e, W̃ , ∆̃f

)
=

1

2
eTPe+

1

2
tr
(
W̃ TΓ−1W̃

)
+

1

2
∆̃T
f γm∆̃f

=
1

2
ηT P̄ η

(3.5)

with η ,
[
eT vec

(
W̃
)T

∆̃T
f

]T and P̄ , diag
(
P, Im×m ⊗ Γ−1, γm

)
. Note that

V
(
0, 0, 0

)
= 0 and V

(
e, W̃ , ∆̃f

)
6= 0 for all

(
e, W̃ , ∆̃f

)
6=
(
0, 0, 0

)
, ∀t ∈ R+. The

time derivative of Lyapunov function V
(
e, W̃ , ∆̃f

)
along the system trajectories in

Eq 2.9 and Eq 3.4 is given as the following:

V̇ =eTP ė+ tr
(
W̃ TΓ−1W̃

)
+ ∆̃T

f γm
˙̃∆f

=eTPAre− eTPBW̃ Tφ+ tr
(
W̃ TΓ−1 ˙̃W

)
+ γmtr

[
∆̃T
f

( ˙̃W Tφf + W̃ T φ̇f
)]

Since the ideal weights are constant, the equality ˙̃W = − ˙̂
W holds. Then,

V̇ =eTPAre− eTPBW̃ Tφ− tr
(
W̃ TΓ−1 ˙̂

W
)

+ γmtr
[
∆̃T
f

( ˙̃W Tφf + W̃ T φ̇f
)]

=− 1

2
eTQe− tr

(
W̃ TφeTPB

)
− tr

(
W̃ TΓ−1 ˙̂

W
)

− γmtr
(
∆̃T
f

˙̂
W Tφf

)
+ γmtr

(
∆̃T
f W̃

T φ̇f
)

=− 1

2
eTQe− tr

(
W̃ TφeTPB

)
− tr

(
W̃ TΓ−1 ˙̂

W
)

− γmtr
(
W̃ Tφfφ

T
f

˙̂
W
)

+ γmtr
(
W̃ T φ̇f∆̃

T
f

)

=− 1

2
eTQe− tr

[
W̃ T

(
φeTPB − γmφ̇f∆̃T

f

)]
− tr

[
W̃ T

(
Γ−1 + γmφfφ

T
f

) ˙̂
W
]
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Substituting the update law in Eq 3.4 and using Assumption 3.1 and Remark 3.2, the

time derivative of the Lyapunov function can be upper-bounded by:

V̇ =− 1

2
eTQe− γ1tr

(
W̃ Tφfφ

T
f W̃

)
− γ2tr

(
W̃ TΦW̃

)

≤− 1

2
λmin(Q)‖e‖2 − γ1‖∆̃f‖2 − γ2λmin(Φ)‖W̃‖2

=− 1

2
λmin(Q)‖e‖2 − γ1‖∆̃f‖2 − γ2β‖W̃‖2

≤− µ1‖η‖2 < 0

(3.6)

with µ1 , min
{

1
2
λmin(Q), γ1, γ2β

}
∈ R+. Positive definite Lyapunov function

V(η) > 0, ∀η 6= 0, with its negative definite time derivative V̇(η) < 0, ∀η 6= 0,

implies the zero solution η(t) ≡ 0 is asymptotically stable; i.e. η(t) → 0 as t → ∞.

Specifically, for the positive definite Lyapunov candidate V
(
e, W̃ , ∆̃f

)
given in Eq

3.5, the inequality V̇
(
e, W̃ , ∆̃f

)
< 0 holds for all

(
e, W̃ , ∆̃f

)
6=
(
0, 0, 0

)
ensuring

that Lyapunov function V
(
e, W̃ , ∆̃f

)
approaches to zero as t → ∞. Hence, the

asymptotic stability of state tracking error e(t) and weight estimation error W̃ (t) is

constructed. Furthermore, asymptotic convergence of the weight estimation error W̃

yields ∆̃ =
(
∆ − ∆̂

)
→ 0 as t → ∞. Since the Lyapunov function is radially

unbounded, this result is global, and that completes the proof of global asymptotic

stability of the zero-solution
(
e, W̃ , ∆̃f

)
=
(
0, 0, 0

)
.

�

Remark 3.3. If Assumption 3.1 is not satisfied, i.e. α = β = 0, the closed-loop

stability of the proposed adaptive control system can be shown using radially

unbounded Lyapunov function given in Eq 3.5. Since V
(
e, W̃ , ∆̃f

)
is lower-bounded

by zero, and inequality V̇
(
e, W̃ , ∆̃f

)
≤ 0 holds for its derivative for β = 0, Lyapunov

function V
(
e, W̃ , ∆̃f

)
approaches to a finite limit as t→∞. Hence, the boundedness

of tracking error e(t), weight estimation error W̃ (t), and low-frequency uncertainty

estimation error ∆̃f (t) is guaranteed. Since e(t) and xr(t) are bounded, system states

x(t) and basis vector-function φ(x) immediately become bounded. Note that low-pass

filters in Eq 2.12 are BIBO stable dynamical systems. Thus, the filtered states xf (t)

and φf (t) are also bounded. With bounded signals e(t), x(t), φ(x), xf (t), φf (t), and

W̃ (t), state tracking error rate ė(t) and adaptive weight estimation error rate ˙̃W (t)

are bounded, which ensures the boundedness of V̈
(
e, W̃ , ∆̃f

)
, ∀t ∈ R+. It then
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follows from Barbalat’s Lemma [79] that limt→∞ V̇
(
e(t), W̃ (t), ∆̃f

)
= 0 which

implies the asymptotic stability of tracking error e(t) and low-frequency uncertainty

estimation error ∆̃f (t); that is, limt→∞ e(t) = 0 and limt→∞ ∆̃f (t) = 0. All in

all, without sufficient excitation of filtered basis vector-function φf , zero solution
(
e(t), ∆̃f (t)

)
=
(
0, 0
)

is asymptotically stable, and adaptive weight estimation

matrix Ŵ (t) is uniformly ultimately bounded. Since the Lyapunov function is radially

unbounded, these results hold globally.

Lemma 3.1. Convergence rate for the augmented error signal η(t), ∀t ≥ t0, is given

by the following inequality:

‖η(t)‖ ≤ e
−

min

{
1
2λmin

(
Q

)
,γ1,γ2β

}
max{λmax(P ),λmax(Γ−1),γm} (t−t0)

√
max {λmax(P ), λmax(Γ−1), γm}
min {λmin(P ), λmin(Γ−1), γm}

‖η(t0)‖

Proof.

Lyapunov function in Eq 3.5 can be bounded as follows:

1

2
λmin

(
P̄
)
‖η(t)‖2 ≤ V (η(t)) ≤ 1

2
λmax

(
P̄
)
‖η(t)‖2, ∀t ≥ t0 (3.7)

Wherever appropriate, the arguments ‘t’ for time dependency and ‘x’ for state

dependency are dropped consistently for ease of exposition. Next, using Eq 3.7,

lower-bound for the error vector η can be expressed as

‖η‖2 ≥ 2V
λmax

(
P̄
)

Let µ2 ∈ R+ be defined as µ2 ,
2µ1

λmax(P̄)
. Also, recall the time derivative of the

Lyapunov function in Eq 3.6:

V̇ ≤ −µ‖η‖2 ≤ − 2µ

λmax

(
P̄
)V ⇒ V̇ ≤ −αV

Using Comparison Lemma [79], one can obtain:

V(t) ≤ e−α(t−t0)V(t0)
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Eventually, the following inequality is obtained:

1

2
λmin

(
P̄
)
‖η(t)‖2 ≤ V(t) ≤ e−µ2(t−t0)V(t0)

e−µ2(t−t0)V(t0) =
1

2
e−µ2(t−t0)ηT (t0)P̄ η(t0) ≤ 1

2
e−µ2(t−t0)λmax

(
P̄
)
‖η(t0)‖2

=
1

2
e−µ2(t−t0)ηT (t0)P̄ η(t0) ≤ 1

2
e−µ2(t−t0)λmax

(
P̄
)
‖η(t0)‖2

λmin

(
P̄
)
‖η(t)‖2 ≤ e−µ2(t−t0)λmax

(
P̄
)
‖η(t0)‖2

‖η(t)‖ ≤ e−
µ2
2

(t−t0)

√
λmax

(
P̄
)

λmin

(
P̄
) ‖η(t0)‖, ∀t ≥ t0

(3.8)

where the positive constants λmax

(
P̄
)
, λmin

(
P̄
)
, µ, and µ2 are given by:

λmax

(
P̄
)

= max
{
λmax(P ), λmax(Γ−1), γm

}
= max

{
λmax(P ),

1

λmin(Γ)
, γm

}

λmin

(
P̄
)

= min
{
λmin(P ), λmin(Γ−1), γm

}
= min

{
λmin(P ),

1

λmax(Γ)
, γm

}

µ = min

{
1

2
λmin (Q) , γ1, γ2β

}

µ2 =
2 min

{
1
2
λmin (Q) , γ1, γ2β

}

max {λmax(P ), λmax(Γ−1), γm}
(3.9)

Substituting the variables in Eq 3.9 into Eq 3.8 results in:

‖η(t)‖ ≤ e
−

min{ 1
2λmin(Q),γ1,γ2β}

max{λmax(P ),λmax(Γ−1),γm} (t−t0)

√
max {λmax(P ), λmax(Γ−1), γm}
min {λmin(P ), λmin(Γ−1), γm}

‖η(t0)‖

That concludes the convergence rate derivation for the augmented error signal η(t).

�

Lemma 3.2. Transient performance bounds for state tracking error e(t), adaptive

weight estimation error W̃ (t), and low-frequency uncertainty estimation error ∆̃f (t)

are given for ∀t ≥ t0 as follows:

‖e(t)‖2 ≤ 1

λmin

(
P
)
[
λmax

(
P
)
‖e(t0)‖2 + λmax

(
Γ−1
)
‖W̃ (t0)‖2

F + γm‖∆̃f (t0)‖2
]

‖W̃ (t)‖2 ≤ λmax

(
Γ
) [
λmax

(
P
)
‖e(t0)‖2 + λmax

(
Γ−1
)
‖W̃ (t0)‖2

F + γm‖∆̃f (t0)‖2
]

‖∆̃f (t)‖2 ≤ 1

γm

[
λmax

(
P
)
‖e(t0)‖2 + λmax

(
Γ−1
)
‖W̃ (t0)‖2

F + γm‖∆̃f (t0)‖2
]
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Proof.

Lyapunov function in Eq 3.5 can be bounded as follows:

1

2
λmin (P ) ‖e(t)‖2 +

1

2
λmin

(
Γ−1
)
‖W̃ (t)‖2 +

1

2
γm‖∆̃f (t)‖2 ≤ V(t), t ≥ t0

which gives the following relations:

1

2
λmin (P ) ‖e(t)‖2 ≤ V(t)

1

2
λmin

(
Γ−1
)
‖W̃ (t)‖2 ≤ V(t)

1

2
γm‖∆̃f (t)‖2 ≤ V(t)

(3.10)

From Theorem 3.1 and Remark 3.3, if the sufficient excitation condition does not

hold (i.e. α = β = 0), V̇(t) ≤ 0 yields 0 ≤ V(t) ≤ V(t0). Note that the initial value

of the Lyapunov function satisfies the following:

V(t0) ≤ 1

2
λmax (P ) ‖e(t0)‖2 +

1

2
λmax

(
Γ−1
)
‖W̃ (t0)‖2

F +
1

2
γm‖∆̃f (t0)‖2 (3.11)

Finally, combining the results from Eq 3.10 and Eq 3.11 with λmax

(
Γ
)

= 1

λmin

(
Γ−1
)

results in:

‖e(t)‖2 ≤ 1

λmin (P )

[
λmax (P ) ‖e(t0)‖2 + λmax

(
Γ−1
)
‖W̃ (t0)‖2

F + γm‖∆̃f (t0)‖2
]

‖W̃ (t)‖2 ≤ λmax

(
Γ
) [
λmax (P ) ‖e(t0)‖2 + λmax

(
Γ−1
)
‖W̃ (t0)‖2

F + γm‖∆̃f (t0)‖2
]

‖∆̃f (t)‖2 ≤ 1

γm

[
λmax (P ) ‖e(t0)‖2 + λmax

(
Γ−1
)
‖W̃ (t0)‖2

F + γm‖∆̃f (t0)‖2
]

This concludes the proof of Lemma 2.

�

Remark 3.4. This remark elaborates the contributions and important aspects of

the proposed modification in Eq 3.4. First, it should be noted that the proposed

adaptive law acquires all the benefits of CMRAC listed in Remark 2.6. Additionally,

the proposed method exhibits significant improvements in terms of robustness.

Specifically,

• The term ‘γ1φf∆̃
T
f = γ1φfφ

T
f W̃ ’ adds a new update direction that minimizes

the low-frequency content of the uncertainty estimation error. One can show
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this through the following optimization problem:

min
Ŵ
J , J (Ŵ ) =

1

2
‖W Tφf − Ŵ Tφf‖2 =

1

2
‖∆f − ∆̂f‖2 =

1

2
‖∆̃f‖2

Gradient of the cost function to be used in a simple gradient descent

optimization framework is given by:

∇JŴ (Ŵ ) = φf

[
∆f − Ŵ Tφf

]T
= φfφ

T
f W̃ (3.12)

where the signal ∆f is available with Eq 2.14, Ŵ is the online estimation of the

unknown weight matrix W , and low-pass filtered basis function φf is computed

using Eq 2.12. Note that a few variations of this gradient descent-based term

appears in the literature, as well [14, 20, 90, 91].

• As the design parameter γm tends to zero, modification term learning rate
(
Γ−1 + γ−1

m φfφ
T
f

)−1 tends to Γ. Furthermore, with γ2 = 0, the entire proposed

modification term approaches to the solution of optimizing solution in Eq 3.12,

which results in CMRAC in Eq 2.16. Hence, the proposed adaptive law can be

considered as a generalized form of CMRAC. That is,

if γ2 = γm = 0 ⇒
˙̂
Wm = γ1Γφfφ

T
f W̃

˙̂
W = Γ

[
− φeTPB + γ1φfφ

T
f W̃

]

• Time derivative of gradient of the cost function in Eq 3.12 is given by

d

dt

(
∇JŴ

)
= 2φ̇fφ

T
f W̃ − φfφTf ˙̂

Wb − φfφTf ˙̂
Wm (3.13)

It can be observed that proposed update law in Eq 3.4 contains the entire

derivative information given in Eq 3.13. Adding such a derivative information

to the traditional gradient-descent based optimization allows to shape the

transient behavior and increases the robustness of the optimization just like

the derivative action in traditional PID controllers. Each term contributes to

the robustness of the proposed solution in different manners. Specifically, the

term in Eq 3.13, ‘φ̇f∆̃T
f ’, compensates the information lost while filtering the

basis function φ. Thus, high-frequency content of the basis vector-function φ is

included in the adaptation. Then, ‘φfφTf
˙̂
Wb’, regulates the standard adaptive

law through design parameter γm. In that respect, this term can be considered

as proportional feedback control for the standard adaptive law behaving like a
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stability augmentation system. This is equivalent to re-adjusting the learning

rate Γ so that the large values in the basis function φ does not affect the

adaptation adversely. The last term, ‘φfφTf
˙̂
Wm’, regulates the learning rate of

the modification term in a similar way to the regulation in the standard model

reference adaptive law. Time varying learning rate in Eq 3.4 contains these

regulation information in compact form.

• Last but not the least, term ‘γ2M̃’ plays a vital role in ensuring the parameter

convergence; i.e. Ŵ (t) → W as t → ∞. In that respect, this term acts like

an integral action in a traditional PID controllers as it analogously allows to

remove the steady state error in the weight estimations.

3.3 Inverse-free Weight Update Law

One may realize that the proposed update law in Eq 3.4 requires to take the inverse of

a (possibly large) matrix during the online operation. Clearly, this will introduce an

additional computational cost and cause practical issues. In order to eliminate these

drawbacks, an inverse-free form of the learning rate is introduced.

Lemma 3.3. Given Γ = ΓT � 0 is positive definite matrix, γm ∈ R+ is a positive

constant, and φf ∈ Rs, the matrix (Γ−1 + γmφfφ
T
f ) is invertible and its inverse is:

(
Γ−1 + γmφfφ

T
f

)−1
= Γ− γm

1 + tr
(
γmφfφTf Γ

)Γφfφ
T
f Γ � 0

Proof. Note that Γ = ΓT � 0 and γmφfφTf � 0 with γm > 0. This fact implies

(Γ−1 + γmφfφ
T
f ) is also a positive definite matrix; i.e. (Γ−1 + γmφfφ

T
f ) � 0. Then,

(Γ−1 + γmφfφ
T
f ) is always invertible. Now, let E , γmφfφ

T
f . Note that E has rank

one. In addition, let the inverse of
(
Γ−1 + E

)
be in the form of Γ − νΓγmφfφ

T
f Γ.
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Then,
(
Γ−1 + E

)(
Γ− νΓEΓ

)
= I

I − νEΓ + EΓ− νEΓEΓ = I

νEΓ− EΓ + νEΓEΓ = 0

(3.14)

Recall that EΓE = tr
(
EΓ
)
E. This fact can be shown as follows:

EΓE = γmφfφ
T
f Γγmφfφ

T
f = γmφf

[
γmφ

T
f Γφf

]
φTf =

[
γmφ

T
f Γφf

]
γmφfφ

T
f =

[
γmφ

T
f Γφf

]
E

with
(
γmφ

T
f Γφf

)
= γmtr

(
φTf Γφf

)
= tr

(
γmφfφ

T
f Γ
)

= tr
(
EΓ
)
. Hence,

EΓE = tr
(
EΓ
)
E

Substituting these results into Eq 3.14 results in:

νEΓ− EΓ + νtr
(
EΓ
)
EΓ =

[
ν − 1 + νtr

(
EΓ
)]
EΓ = 0

which can be satisfied for ν , 1
1+tr(EΓ)

. Eventually, the inverse of
(
Γ−1 + E

)

becomes:

(
Γ−1 + E

)−1
= Γ− νΓEΓ = Γ− 1

1 + tr
(
EΓ
)ΓEΓ

Substituting E = γmφfφ
T
f yields:

(
Γ−1 + γmφfφ

T
f

)−1
= Γ− γm

1 + tr
(
γmφfφTf Γ

)Γφfφ
T
f Γ

This completes the proof. Reader may also refer to Refs [92], [93] for more detailed

information.

�

Block diagram of the proposed architecture can be seen in Figure 3.1.

3.4 Numerical Examples

Aircraft wing-rock dynamics [76] is considered as a numerical example:

ẋ =

[
0 1

0 0

]
x+

[
0

1

]
[u(t) + ∆(x)]

∆(x) = 0.2314x1 + 0.6918x2 − 0.6254|x1|x2 + 0.095|x2|x2 + 0.214x3
1
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M̃ =
∫ t

t0
φf∆

T
f dξ −

(∫ t

t0
φfφ

T
f dξ

)
Ŵ

uad(t)

ŴT (t)φ(x) ∆f = B† [ẋf −Axf ]− uf

e(t)

Adaptive Law

−

−

−

+

+

uff(t)

ufb(t)

x(t)

x(t)

xr(t)

xr(t)

r(t)
Reference Model

ẋr(t) = Arxr(t) +Brr(t)

u(t)
Uncertain System

ẋ(t) = Ax(t) +B[u(t) + ∆(x)]

Kx

Kr

˙̂
W = −ΓφeTPB +

(
Γ−1 + γ−1

m φfφ
T
f

)−1(
γ−1
m φfφ

T
f Γφe

TPB + γ−1
m φ̇f ∆̃

T
f + γ1φf ∆̃

T
f + γ2M̃

)

Low-pass Filters

φ̇f = ωf (φ− φf )

u̇f = ωf (u− uf )

ẋf = ωf (x− xf )

Figure 3.1: Block Diagram of the Proposed Adaptive Controller

where control input u is the aileron deflection, states x1 and x2 are roll angle and

roll rate, respectively. Reference model is constructed with feedback gain Kx =
[
2.46 2.22

]
and feedforward gainKr = 2.46. In addition, simulation parameters are

as follows: Lyapunov design matrix Q = In×n, and low-pass filter cut-off frequency

ωf = 8 rad/s. All the states are initialized from zero. Simulation sampling frequency

is set to be 100 Hz.

Nominal controller response in the presence of uncertainties (without time delay)

is given in Figure 3.2. As seen from the figure, state tracking performance of the

nominal controller is not satisfactory.

In this section, three simulation cases are considered as numerical examples:

1. Simulations with the proposed adaptive controller with no time delay

2. Simulations comparing the proposed adaptive controller with the standard

adaptive controller and CMRAC

3. Simulations highlighting the effects of design parameters

3.4.1 Proposed adaptive controller with no time delay

Figure 3.3 illustrates the state tracking performance of the proposed adaptive control

architecture. Also, the control input and tracking error norm are given in Figure 3.4.
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Figure 3.2: State Tracking Performance of the Nominal Controller in Eq 2.4 with no

time delay

Figure 3.3: State Tracking Performance of the Proposed Method in Eq 3.4 for Γ = 10,

γ1 = 1, γ2 = 40, and γm = 20 with no time delay

Evolution of the adaptive weights is illustrated in Figure 3.5. As seen clearly, adaptive

parameters converge to their ideal values. It can be seen in Figure 3.4 that the tracking

error converges to zero. Hence, the results are consistent with Theorem 3.1.
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Figure 3.4: Control Input and Tracking Error with the Proposed Method in Eq 3.4 for

Γ = 10, γ1 = 1, γ2 = 40, and γm = 20 with no time delay

Figure 3.5: Adaptive Weight Estimation Performance of the Proposed Method in Eq

3.4 for Γ = 10, γ1 = 1, γ2 = 40, and γm = 20 with no time delay (Dashed lines

indicate ideal values of unknown parameters W )
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3.4.2 Comparison in the presence of time delay

In this case, an input time delay is introduced so that the system dynamics becomes:

ẋ =


0 1

0 0


x+


0

1


 [u(t− td) + ∆(x)]

∆(x) = 0.2314x1 + 0.6918x2 − 0.6254|x1|x2 + 0.095|x2|x2 + 0.214x3
1

with td ∈ R+ being time-delay.

Standard MRAC update law in Eq 2.10, CMRAC update law in Eq 2.16, and the

proposed update law in Eq 3.4 can be re-written as follows:

˙̂
W =

˙̂
Wb =− ΓφeTPB (3.15a)

˙̂
W =

˙̂
Wb +

˙̂
Wc =− ΓφeTPB + Γγcφf∆̃

T
f (3.15b)

˙̂
W =

˙̂
Wb +

˙̂
Wc +

˙̂
Wr =− ΓφeTPB + Γγ1φf∆̃

T
f + Y (x, t) (3.15c)

where Y (x, t) is defined as

Y (x, t) , − γm

1 + γmtr
(
φfφTf Γ

)Γφfφ
T
f Γ
(
− φeTPB + γmφ̇f∆̃

T
f + γ1φf∆̃

T
f + γ2M̃

)

Eqns 3.15a-3.15c illustrate that CMRAC adds a modification term to the standard

adaptive law, and the proposed modification adds another term, Y (x, t), to CMRAC

update law. In the comparative Figure 3.6, common adaptive gains in the update laws

3.15a-3.15c are kept the same to make a fair comparison.

In Figure 3.6, state tracking response of the proposed method is compared with

those of Standard MRAC and CMRAC in the presence of time delay of td = 0.28

seconds. As seen from the figure, both CMRAC and Standard MRAC fails whereas

the proposed adaptive controller performs quite satisfactorily.

Lastly, for the design parameters Γ = 10, γ1 = γc = 1, γ2 = 40, and γm = 20,

time-delay margins of the adaptive control systems composed of weight update laws

in Eqns 3.15a-3.15c are given in Table 3.1.

3.4.3 Stabilization with γm

In this example, the effect of γm on the closed-loop stability is investigated. As

shown in Eq 3.4, design parameter γm regulates the learning rate of both standard
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Figure 3.6: State Tracking Performance Comparison for Γ = 10, γ1 = γc = 1,

γ2 = 40, and γm = 20 with time delay of td = 0.28 seconds (Unstable behavior with

Standard Adaptive Control in Eq 2.10 and CMRAC in Eq 2.16)

Table 3.1: Time Delay Margins for Adaptive Systems

Standard CMRAC Proposed

(td)max 0.0865 0.1241 0.2872

adaptive law and modification term. In that respect, γm behaves like a stability

augmentation that improves the robustness of the closed-loop system. Furthermore, it

is stated in Remark 3.3 that the proposed adaptive architecture converges to CMRAC

if γm = γ2 = 0. Thus, two simulations with γm = 20 and γm = 50 are compared

to illustrate the contribution that comes with design parameter γm. It should be noted

that increasing γm increases the feedback contribution in the regulated learning rates

(see Eq 3.4) as it is proportional to the corresponding feedback gain. Hence, a stable

response is achieved with larger γm as illustrated in Figure 3.7.
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Figure 3.7: Tracking Comparison for Γ = 10, γ1 = γc = 1, and γ2 = 40 with time

delay of td = 0.28 seconds

3.5 Software-in-the-Loop Simulations

In this section, software-in-the-loop (SITL) simulation results are presented to show

the efficacy of the proposed method with more realistic examples. To this end, an

adaptive flight controller is designed for the lateral dynamics of F-4 Phantom II

fighter aircraft, and simulations are performed on X-Plane flight simulator. The flight

scenario is to bank to the left and right by 30 degrees, successively.

Left Bank Right Bank
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3.5.1 X-Plane Flight Simulator

The principle of operation of X-Plane is based on the blade element theory. In the

physics engine, the velocity components on each blade element are computed. The

sources of these velocity components could be rotational motion, free-stream velocity,

propeller inflow (propwash), downwash and wake due to aerodynamic surfaces and

fuselage. Then, forces and moments on each element are calculated and converted

to translational and rotational accelerations which are used to generate the velocity

and position responses. As all these complexities are reflected in X-Plane, it makes

X-Plane a Federal Aviation Administration (FAA) certified flight simulator [94].

3.5.2 Unstructured Matched Uncertainty with RBF Approximation

In this example, Assumption 2.2 is relaxed with a matched uncertainty

parametrization using RBF approximators as noted in Remark 2.2. That is,

∆(x) = W TΦ(x) + ε(x)

with ‖ε(x)‖ ≤ ε0, ∀x ∈ Dx, where the residual bound ε0 can be made arbitrarily

small by increasing the size of RBF Neural Networks. The basis Φ : Rn → Rn+s is

constructed by augmenting the state vector and radial basis functions (RBfs) as:

Φ(x) =
[
x1 . . . xn φ1(x) φ2(x) . . . φs(x)

]T
,

where φi(x) ∈ R for i = 1, . . . , s is given by

φi(x) =





1 , for i = 1

exp
(
−‖x(t)−c̄i‖2

2µ̄2
i

)
, for i = 2, . . . , s

with c̄i ∈ Rn being the center of an RBF unit and µ̄i ∈ R+ being the width of the

ith kernel node [77]. State vector is added to the basis function to capture the linear

behavior in the uncertainty whereas the Radial Basis Functions are reserved for the

nonlinearities. For the unstructured parametrization of the matched uncertainty, 16

RBF elements are used. The centers c̄i for RBF are uniformly distributed over the

expected range of the x1 − x2 − x3 − x4 space [−2, 2]× [−2, 2]× [−2, 2]× [−2, 2],

and width of the kernel unit is uniformly set to µ̄i = 1 for i = 2, . . . , s = 16. The

first element φ1(x) is reserved for the bias unit; i.e. φ1(x) = 1.
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3.5.3 Linear Lateral Dynamics of F-4 Phantom II

Linear equations of motion for the lateral dynamics of F-4 Phantom II at steady

wings-level trim conditions with true airspeed of V∞ = 186 m/s and altitude of

h = 24000 ft are obtained using ‘Athena Vortex Lattice’ [95] as:



β̇

ṗ

ṙ

φ̇




=




−1.47 0.0 −1.0 0.075

−18.85 −7.52 2.89 0.0

15.15 0.56 −7.61 0.0

0.0 1.0 0.0 0.0




︸ ︷︷ ︸
,Ap




β

p

r

φ




︸︷︷︸
,xp

+




0.0 −0.15

8.48 −0.96

−0.18 3.94

0.0 0.0




︸ ︷︷ ︸
,Bp


δa
δr




︸ ︷︷ ︸
,u

yp =


β
φ


 =


1 0 0 0

0 0 0 1


xp = Epxp

where β is angle of sideslip [rad], p is roll rate [rad/s], r is yaw rate [rad/s], and φ

is roll angle [rad]. δa ∈ [−1, 1] and δr ∈ [−1, 1] are aileron and rudder deflections,

respectively. Note that the control surface deflections are normalized using maximum

deflection of 20 degrees.

3.5.4 Nominal Controller Design

In order to increase the robustness and improve the tracking performance, integrator

states are introduced as follows:

ż(t) =


βcmd(t)
φcmd(t)


−


β(t)

φ(t)




ż(t) = r(t)− yp(t) = r(t)− Epxp(t)
Then, augmented system dynamics can be expressed as follows:


ẋp
ż


 =


 Ap 0

−Ep 0




︸ ︷︷ ︸
,A


xp
z




︸ ︷︷ ︸
,x

+


Bp

0




︸ ︷︷ ︸
,B


δa
δr


+


0

I




︸︷︷︸
,Br


βcmd
φcmd




ẋ = Ax+Bu+Brr

Reference model that captures the desired closed-loop behavior is defined as

ẋr = Arxr +Brr
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where the system matrixAr satisfies the matching conditionAr = A−BK. Feedback

gain matrix K in the nominal controller un(t) = −Kx(t) is designed to be:

K =


 1.14 1.15 −0.81 4.14 −3.25 −3.02

−0.58 −0.69 0.09 −1.32 4.76 0.97




Fastest mode of the lateral dynamics is the roll subsidence with frequency of 7.66

rad/s. Hence, the cutoff frequency of the low-pass filters is chosen to be ωf = 8 rad/s.

3.5.5 SITL Simulation Results

In this section, SITL simulation results are presented for the lateral dynamics of F-4

Phantom fighter aircraft. The scenario is to perform successive bank maneuvers to

the left and right while keeping the sideslip close to zero in order to maintain the

coordinated flight. adaptation is not activated for the first 70 seconds, and only

nominal controller is employed. The proposed adaptive law is activated at t = 70 s.

In Figure 3.8, state tracking performance is illustrated. It is clear that the coordinated

flight is achieved once the desired tracking performance (specifically in roll and yaw

rate channels) is maintained with activating the adaptation.

Figure 3.8: State Tracking Performance for X-Plane SITL Simulation with Γ =

2In×n, γm = 20, γ1 = 1, and γ2 = 20
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Note that the exact uncertainty ∆(x) is not available since the physics engine of the

flight simulator is unknown. However, one can still compute its filtered uncertainty

∆f (x, t) through Eq 2.14. In Figure 3.9, filtered uncertainty ∆f (x, t) and estimated

uncertainty ∆̂(x, t) are presented for comparison purposes. As shown in the figure,

the estimated uncertainty successfully captures the filtered uncertainty in all control

channels. Furthermore, one can observe that the estimated uncertainty ∆̂(x, t) is

ahead of the filtered uncertainty ∆f (x, t) in time, which is an expected result due to

time lag nature of the low-pass filter.

Figure 3.9: Uncertainty Estimation for X-Plane SITL Simulation with Γ = 2In×n,

γm = 20, γ1 = 1, and γ2 = 20

Figure 3.10 illustrates the evolution of the adaptive weight estimations Ŵ (t). As it

can be seen, the adaptive parameters quickly stay bounded around nearly constant

values without any high-frequency oscillations thanks to fast adaptation capability

of the proposed architecture. Lastly, Figures 3.11-3.12 present the commanded and

actuated control history. As the adverse effects of the uncertainties are successfully

suppressed, high-frequency content in the aileron input is reduced as shown in Figure

3.11. Thus, one can deduce that the proposed controller performed satisfactorily well

in the presence of the actuator dynamics.
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Figure 3.10: RBF NN Weight Estimation for X-Plane SITL Simulation with Γ =

2In×n, γm = 20, γ1 = 1, and γ2 = 20

Figure 3.11: Aileron Control for X-Plane SITL Simulation with Γ = 2In×n, γm = 20,

γ1 = 1, and γ2 = 20
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Figure 3.12: Rudder Control for X-Plane SITL Simulation with Γ = 2In×n, γm = 20,

γ1 = 1, and γ2 = 20
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CHAPTER 4

EXTENSION TO SYSTEMS WITH UNKNOWN CONTROL

EFFECTIVENESS

4.1 Problem Definition

In Chapter 3, an information recovery method in filter-based model reference

adaptive controllers is introduced for a class of uncertain nonlinear systems. The

information lost during filtering is recovered by including the high-frequency

content in the adaptation. Furthermore, a time-varying learning rate is proposed as

stability augmentation to suppress the undesired high-frequency oscillations in the

adaptation. However, the offered solution assumes the perfect knowledge of the

control effectiveness, which is not the case in general. In this chapter, the information

recovery results are extended to cover the uncertain systems with unknown control

effectiveness. Specifically, the following form of the uncertain dynamical systems

with unknown control effectiveness is considered:

ẋ(t) = Ax(t) +BΛ
[
u(t) + δ

(
x
)]
, x(t0) = x0 (4.1)

where x(t) ∈ Dx ⊂ Rn denotes the state vector, u(t) ∈ Du ⊂ Rm is the control input,

system matrix A ∈ Rn×n and input matrix B ∈ Rn×m are known constant matrices.

Unknown control effectiveness matrix Λ ∈ Rm×m is assumed to be constant with

Λ = ΛT � 0. Furthermore, the pair (A,B) is assumed to be controllable and input

matrix B has full column rank; i.e. rank(B) = m. Dx is sufficiently large compact

set, Du is admissible control set, and δ : Rn × R+ → Rm is the mapping for the

unknown matched uncertainty. In addition, full state measurement is available for

feedback control, and the plant is not over-actuated; that is, n ≥ m.

The contol objective is to track the reference model in Eq 2.2 while achieving the
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uniform ultimate boundedness of all the closed-loop system signals. Furthermore,

the matched uncertainty δ(x) is assumed to structured as in Assumption 2.2 and

expressed as the following:

δ(x) = wTφw(x) (4.2)

where w ∈ Rs×m is constant unknown weight matrix, φw(x) ∈ Rs is the known

basis vector-function. Lastly, it should be stated that the arguments ‘t’ and ‘x’

denoting time and state dependency (resp) are omitted from the equations whenever

it is appropriate.

Remark 4.1. The uncertain systems in the form of

ẋ(t) = Ax(t) +B
[
Λu(t) + δ

(
x
)]

can be expressed as in Eq 4.1 by replacing δ(x) with δ̄(x) , Λ−1δ(x), which yields

ẋ(t) = Ax(t) +BΛ
[
u(t) + δ̄

(
x
)]

4.2 System Description

Adding and subtracting ‘Kxx(t)’ and ‘Krr(t)’ to the uncertain system dynamics in

Eq 4.1 results in:

ẋ =
(
A−BKx

)
x+BKrr +BΛ

[
u+ Λ−1Kxx− Λ−1Krr + δ

(
x
)]

= Arx+Brr +BΛ
[
u+ Λ−1Kxx− Λ−1Krr + δ

(
x
)]

= Arx+Brr +BΛ
[
u+ Λ−1Kxx− Λ−1Krr + wTφw(x)

]

which can be re-written as

ẋ = Arx+Brr +BΛ
[
u+ ∆

(
x
)]

(4.3)

where the aggregated uncertainty ∆(x) is defined as

∆(x) =
[
Λ−1Kx −Λ−1Kr wT

][
xT (t) rT (t) φTw(x)

]T

, W Tφ(x, t)
(4.4)

with W T ,
[
Λ−1Kx −Λ−1Kr wT

]
and φ(x, t) ,

[
xT rT φTw

]T .
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Reference model that characterizes the desired closed-loop performance is given by

ẋr(t) = Arxr(t) +Brr(t), xr(t0) = xr0 (4.5)

where Hurwitz reference system matrix Ar and input matrix Br satisfy the matching

conditions in Assumption 2.1, and r(t) is an exogenous bounded reference tracking

command. The control input is chosen to be

u(t) = −Ŵ T (t)φ(x) (4.6)

with Ŵ being an online estimation of unknown weight matrix W . Then, denoting the

state tracking error e , xr − x, the tracking error dynamics can be obtained using Eq

4.3, Eq 4.5, and Eq 4.6 as follows:

ė(t) = Are(t)−BΛW̃ Tφ(x) (4.7)

Next, low-pass filters in Eq 2.12 are applied to the uncertain system in Eq 4.3:

ẋf = Arxf +Brrf +BΛ
[
uf + ∆f

]
(4.8)

with filtered uncertainty being ∆f (x, t) = W Tφf (x, t). Rearranging the equation by

collecting all the known terms on the same side results in

Y (x, t) , Λ
[
uf (t) +W Tφf (x, t)

]

= B†
[
ẋf (x, t)− Arxf (x, t)

]
−Krrf (t)

(4.9)

Eq 4.9 can also be written as

Y =
[
Λ ΛW T

][
uTf φTf

]T
, ΘTΦf (x, t) (4.10)

Note that filtered aggregated basis function Φf is low-pass filtered form of the basis

function Φ ,
[
uT φT

]T . Next, following the idea in Ref [11], the estimated form Ŷ

is introduced as follows

Ŷ (t) , Λ̂(t)
[
uf (t) + Ŵ T (t)φf (x, t)

]

= Θ̂TΦf

(4.11)

The estimation error eY , Y − Ŷ is expressed as

eY = B†
[
ẋf (x, t)− Arxf (x, t)

]
−Krrf (t)− Λ̂(t)

[
uf (t) + Ŵ T (t)φf (x, t)

]

= Λ
[
uf (t) +W Tφf (x, t)

]
− Λ̂(t)

[
uf (t) + Ŵ T (t)φf (x, t)

]

= Λuf − Λ̂uf + ΛW Tφf − Λ̂Ŵ Tφf + ΛŴ Tφf − ΛŴ Tφf

= Λ̃
[
uf + Ŵ Tφf

]
+ ΛW̃ Tφf = Θ̃TΦf

(4.12)
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where the error signals W̃ , Λ̃, and Θ̃ are defined as

W̃ , W − Ŵ

Λ̃ , Λ− Λ̂

Θ̃ , Θ− Θ̂

4.2.1 Secondary (Indirect) Weight Update Law

Assumption 4.1. Aggregated basis function Φ ∈ Rs̄ is a sufficiently exciting signal

with s̄ = s + n + q + m. Hence, there exists positive constants τ, α, Te ∈ R+ such

that the following inequality holds:

∫ t

t0

Φ(τ)ΦT (τ)dτ � αIs̄×s̄, t = Te

Remark 4.2. Assumption 4.1 ensures that aggregated basis function Φ contains as

many spectral lines as there are unknown parameters. Note that basis function Φ is

an exogenous signal to the low-pass filter system in Eq 2.12 with the transfer function

of G(s) , ωf
s+ωf

. Then, filtered basis function φf has also the same number of spectral

lines with less energy than that of the original basis φ since G(s) is stable, minimum

phase, and strictly proper transfer function [87]. This implies the following:

∫ t

t0

Φf (τ)ΦT
f (τ)dτ � βIs̄×s̄, t = Te

with 0 < β ≤ α. The degradation in the richness of the signal (which is equivalent to

how small is β than α) depends on the cutoff frequency ωf and spectrum of the basis

Φ. Let the spectral measure of φ is given by Sφ([ω1 ω2]) with ω1 < ω2. Choosing the

filter design parameter ωf to be larger than ω2 leads to relatively small degradation

in the richness of Φf with β being closer to α.

Multiplying Eq 4.10 from the right by aggregated filtered basis Φf yields

Y ΦT
f = ΘTΦfΦ

T
f

MT ,
∫ t

t0

Y ΦT
f dξ =

∫ t

t0

ΘTΦfΦ
T
f dξ = ΘT

∫ t

t0

ΦfΦ
T
f dξ
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Note that the signalM is accessible as the signal Y is available from Eq 4.9. Then,

estimated form M̂ and corresponding error M̃ are defined as:

M̂T , Θ̂T

∫ t

t0

ΦfΦ
T
f dξ

M̃ ,M−M̂ =
(∫ t

t0

ΦfΦ
T
f dξ
)

︸ ︷︷ ︸
,M

Θ̃ = M Θ̃
(4.13)

It should also be noted that the signal M̃ is also available since bothM and M̂ are

accessible through Eq 4.9 and Eq 4.13, respectively. Having defined the error signal

M̃, the secondary weight update law is proposed to have the following form:

˙̂
Θ =

(
Γ−1

Θ + γyΦfΦ
T
f

)−1(
γyΦ̇fe

T
Y + γ1Φfe

T
Y + γ2M̃

)
(4.14)

where γ1, γ2, γy ∈ R+ are user-defined scalar design parameters, and ΓΘ = ΓTΘ � 0

is the positive definite learning rate.

Theorem 4.1. Consider the unknown signal Y in Eq 4.9-4.10 and its estimation Ŷ in

Eq 4.11. Assume Assumption 4.1 holds. Then, weight update law in Eq 4.14 results

in global exponential stability of the zero solution
(
eY , Θ̃

)
(t) ≡ 0.

Proof. Consider the following Lyapunov function

V(eY , Θ̃) =
γy
2
eTY eY +

1

2
tr
(
Θ̃TΓ−1

Θ Θ̃
)

(4.15)

Its time derivative becomes:

V̇ =eTY γyėY − tr
(
Θ̃TΓ−1

Θ
˙̂
Θ
)

=tr
(
eTY γyėY

)
− tr

(
Θ̃TΓ−1

Θ
˙̂
Θ
)

=tr
[
eTY γy

( ˙̃ΘTΦf + Θ̃T Φ̇f

)]
− tr

(
Θ̃TΓ−1

Θ
˙̂
Θ
)

=tr
(
eTY γy

˙̃ΘTΦf

)
+ tr

(
eTY γyΘ̃

T Φ̇f

)
− tr

(
Θ̃TΓ−1

Θ
˙̂
Θ
)

=− tr
(
eTY γy

˙̂
ΘTΦf

)
+ tr

(
eTY γyΘ̃

T Φ̇f

)
− tr

(
Θ̃TΓ−1

Θ
˙̂
Θ
)

=− tr
(
ΦT
f

˙̂
ΘγyeY

)
+ tr

(
eTY γyΘ̃

T Φ̇f

)
− tr

(
Θ̃TΓ−1

Θ
˙̂
Θ
)

=− γytr
(
Θ̃TΦfΦ

T
f

˙̂
Θ
)

+ γytr
(
Θ̃T Φ̇fe

T
Y

)
− tr

(
Θ̃TΓ−1

Θ
˙̂
Θ
)

=γytr
(
Θ̃T Φ̇fe

T
Y

)
− tr

[
Θ̃T
(
Γ−1

Θ + ΦfΦ
T
f

) ˙̂
Θ
]

Substituting the secondary update law in Eq 4.14 results in

V̇(eY , Θ̃) = −γ1e
T
Y eY − γ2tr

(
Θ̃TM Θ̃

)
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Using Assumption 4.1 and Remark 4.2, time derivative of the Lyapunov function can

be bounded as:

V̇(eY , Θ̃) ≤ −γ1‖eY ‖2 − βγ2‖Θ̃‖2
2 ≤ −µV(eY , Θ̃) < 0

with µ , min{γ1,−βγ2} > 0. Positive definite Lyapunov function with its negative

definite derivative ensures the exponential stability of the zero solution
(
ey, Θ̃

)
≡ 0.

Since the Lyapunov function is radially unbounded, this result holds globally.

�

Remark 4.3. If Assumption 4.1 does not hold (i.e. β = 0), time derivative of the

Lyapunov function becomes negative semi-definite:

V̇(eY , Θ̃) = −γ1e
T
Y eY ≤ 0

which ensures the asymptotic stability of the error signal eY ; i.e. eY (t) → 0 as

t → ∞. However, asymptotic stability eY does not ensure the convergence of the

estimated weight matrix Θ̂ to its ideal value.

Lemma 4.1. Given ΓΘ = ΓTΘ � 0 is positive definite matrix, γy ∈ R+ is a positive

constant, and Φf ∈ Rs̄, the matrix (Γ−1
Θ + γyΦfΦ

T
f ) is invertible and its inverse is:

(
Γ−1

Θ + γyΦfΦ
T
f

)−1
= ΓΘ −

γy

1 + tr
(
γyΦfΦT

f ΓΘ

)ΓΘΦfΦ
T
f ΓΘ � 0

Proof. The proof can be constructed by following the same steps in proof of Lemma

3.3. Hence, it is omitted here.

Remark 4.4. If Assumption 4.1 does not hold (i.e. β = 0), the boundedness of Θ̂ may

not be guaranteed in the presence of external disturbances. This is also the case if the

structure of the uncertainty is not known and universal approximators are employed

in the unstructured uncertainty framework. Hence, the Projection operator is utilized

as a robust modification to prevent the parameter drift:

˙̂
Θ = Proj

{
Θ̂,
(
Γ−1

Θ + γyΦfΦ
T
f

)−1(
γyΦ̇fe

T
Y + γ1Φfe

T
Y + γ2M̃

)}
(4.16)

It can be shown that the results of Theorem 4.1 are not affected by the projection.

Remark 4.5. Assuming the aggregated basis function Φ is sufficiently exciting, as

stated in Assumption 4.1, estimated parameters Θ̂ converge to their ideal values Θ

54



exponentially. That is, Θ̂(t)→ Θ as t→∞. From Θ =
[
Λ ΛW T

]T , it is clear that

the parameter convergence is also equivalent to the identification of the unknown

control effectiveness matrix Λ. Thus, one can obtain the online estimation of the

unknown control effectiveness matrix by taking the firstm row of the estimated weight

matrix Θ̂. This linear operation is simply denoted as follows:

Λ̂ = HΛ

(
Θ̂
)

where the extraction operatorHΛ : Rs̄×m → Rm×m returns the firstm row of its input

argument. Once can also identify the product N1 , WΛT in a similar manner using

the operator HW : Rs̄×m → R(s̄−m)×m with N1 = HW (Θ). Hence, the estimation

N̂1 is reachable from the following:

N̂1 = HW (Θ̂) (4.17)

One can produce a gradient-descent based adaptive weight update law using the

estimation N̂1 as follows:

˙̂
NW = −ΓWProj

{
N̂W ,

(
N̂1 − N̂W Λ̂T

)
Λ̂
}

(4.18)

where ΓW = ΓTW � 0 is a user-defined positive definite learning rate. With this update

law, the estimated weight matrix N̂W is updated in the direction that minimizes the

following cost function:

J = ‖N̂1 − N̂W Λ̂T‖2
2

Lemma 4.2. Consider the results of Theorem 4.1, linear operator HW in Eq 4.17,

and update law in Eq 4.18. If Assumption 4.1 is satisfied, then the zero solution
(
N̂W (t)−W

)
≡ 0 is asymptotically stable.

Proof. Consider the following Lyapunov function:

V =
1

2
tr
[(
W − N̂W

)T
Γ−1
W

(
W − N̂W

)]

Let Λ̃ , Λ − Λ̂, Ñ1 , N1 − N̂1. Then, time derivative of the Lyapunov function
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along the trajectory in Eq 4.18 (with Lemma 2.3 being incorporated) results in:

V̇ ≤ −
(
W − N̂W

)T (
N̂1 − N̂W Λ̂T

)
Λ̂

=−
(
W − N̂W

)T (
N̂1 −N1 +N1 − N̂W Λ̂T + N̂WΛT − N̂WΛT

)
Λ̂

=
(
W − N̂W

)T
Ñ1Λ̂ +

(
W − N̂W

)T
N̂W Λ̃T Λ̂−

(
W − N̂W

)T (
N1 − N̂WΛT

)
Λ̂

Now, consider the last term only:
(
W − N̂W

)T (
N1 − N̂WΛT

)
Λ̂ =

(
W − N̂W

)T (
WΛT − N̂WΛT

)
Λ̂

=
(
W − N̂W

)T (
WΛT − N̂WΛT

)(
Λ− Λ̃

)

=
(
W − N̂W

)T (
W − N̂W

)(
ΛTΛ− ΛT Λ̃

)

Combining the results gives:

V̇ ≤
(
W − N̂W

)T
Ñ1Λ̂ +

(
W − N̂W

)T
N̂W Λ̃T Λ̂

−
(
W − N̂W

)T (
W − N̂W

)
ΛTΛ +

(
W − N̂W

)T (
W − N̂W

)
ΛT Λ̃

(4.19)

It is important to note that N̂W is uniformly ultimately bounded due to projection

operator (see Lemma 2.2). Hence, adaptive law for Λ̂ (will be stated later in Eq

4.21) ensures the boundedness of Λ̂ from well-known σ−modification [3]. Since

unknown matrices W and Λ are constant, corresponding error matrices W̃ and Λ̃ are

also constant. Thus, one can always find a constant upper-bound ϑ̄ ∈ R+ that satisfies

tr
[(
W − N̂W

)T (
Ñ1Λ̂ + N̂W Λ̃T Λ̂ +

(
W − N̂W

)
ΛT Λ̃

)]
, ϑ(t) ≤ ϑ̄

which yields:

V̇ ≤ −tr
[(
W − N̂W

)T (
W − N̂W

)
ΛTΛ

]
+ ϑ

= −tr
[
Λ
(
W − N̂W

)T (
W − N̂W

)
ΛT
]

+ ϑ
(4.20)

Boundedness of ϑ ensures the boundedness of the error signal
(
W − N̂W

)
ΛT , as

well. Furthermore, if Assumption 4.1 is satisfied, ϑ → 0 as t → ∞ from the results

of Theorem 4.1; that is,

Θ̃(t)→ 0 ⇒ Λ̃(t)→ 0, Ñ1(t)→ 0 ⇒ ϑ(t)→ 0 as t→∞

Asymptotic stability of the error signal
(
W − N̂W

)
ΛT ensures N̂W (t)→ W as t→ 0

since positive definite diagonal matrix Λ has full column rank. Finally, this result

constructs the asymptotic stability of the zero solution
(
N̂W (t)−W

)
≡ 0.

�
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4.2.2 Primary (Direct) Weight Update Law

In this section, the results from secondary weight update law is integrated into a

direct adaptation to suppress the effects of matched uncertainty ∆(x, t) and unknown

control effectiveness Λ. With the secondary adaptive law in Eq 4.16, an online

estimation Λ̂ of unknown control effectiveness Λ can be achieved by extracting the

first m row as stated in Remark 4.5. However, an online estimation of unknown

weight matrixW is not available from the indirect adaptation. Although an estimation

for the product ΛW T is available from Θ̂T =
[
Λ̂ Λ̂W T

]
, one cannot reach the

estimation Ŵ T = Λ̂−1Λ̂W T since Λ̂ is not guaranteed to be invertible for ∀t ≥ t0.

Hence, a direct-indirect hybrid adaptive law is introduced to construct the control

input in Eq 4.6 with estimated weight Ŵ and ensure the closed-loop stability of the

uncertain dynamical system in Eq 4.3.

The following weight update laws are proposed for online estimations Ŵ and Λ̂:

˙̂
W = −ΓProj

{
Ŵ , φeTPB − γλφfeTY − γ4

(
N̂W − Ŵ

)}

˙̂
Λ = γλΓΛ

[
eY
(
uf + Ŵ Tφf

)T − γ3

(
Λ̂− N̂Λ

)]

˙̂
NW = −ΓWProj

{
N̂W ,

(
N̂1 − N̂W Λ̂T

)
Λ̂
}

(4.21)

where γλ, γ3, γ4 ∈ R+ being scalar design parameters, Γ = ΓT � 0, ΓΛ = ΓTΛ � 0,

and ΓW = ΓTW � 0 are user-defined positive definite learning rates, basis function φ

is as in Eq 4.4, error signal eY is as in Eq 4.12, filtered signals uf , φf are available

from Eq 2.12, P � 0 is the symmetric positive definite solution to Lyapunuv equation

2.3, N̂Λ , HΛ

(
Θ̂
)

is obtained using the extraction operatorHΛ(·) defined in Remark

4.5, and N̂1 is given by Eq 4.17.

Theorem 4.2. Consider the uncertain dynamical system in Eq 4.1, reference model in

Eq 4.5, control input in Eq 4.6, secondary weight update law in Eq 4.14, and primary

weight update laws in Eq 4.21. Then, all the system signals are uniformly ultimately

bounded. Furthermore, the zero solution
(
e, eY , W̃ , Λ̃

)
≡
(
0, 0, 0, 0

)
is semi-globally

asymptotically stable if Assumption 4.1 holds.
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Proof. Consider the following Lyapunov function

V
(
e, W̃ , Λ̃

)
=

1

2
eTPe+

1

2
tr
[(
W̃Λ1/2

)T
Γ−1
(
W̃Λ1/2

)]
+

1

2
tr
(
Λ̃TΓ−1

Λ Λ̃
)

=
1

2
ηT P̄ η

(4.22)

where η ,
[
eT vec

(
W̃Λ1/2

)T vec
(
Λ̃
)T ]T denotes the aggregated error vector and

corresponding positive definite matrix is P̄ , diag
(
P, I1⊗Γ−1, I2⊗Γ−1

Λ

)
with I1 and

I2 being identity matrices of appropriate dimensions. Let N̂W , W −∆N̂W . Then,

time derivative of the Lyapunov function along the system trajectories in Eq 4.7 and

Eq 4.21 yields:

V̇ =eTP
(
Are−BΛW̃ Tφ

)
− tr

(
W̃ TΓ−1 ˙̂

WΛ
)
− tr

(
Λ̃TΓ−1

Λ
˙̂
Λ
)

=− 1

2
eTQe− tr

(
W̃ TφeTPBΛ

)
− tr

(
W̃ TΓ−1 ˙̂

WΛ
)
− tr

(
Λ̃TΓ−1

Λ
˙̂
Λ
)

=− 1

2
eTQe− γλtr

(
W̃ Tφfe

T
Y Λ
)
− γ4tr

(
W̃ T W̃

)
+ γ4tr

(
W̃ T∆N̂W

)
− tr

(
Λ̃TΓ−1

Λ
˙̂
Λ
)

=− 1

2
eTQe− γλtr

(
eY e

T
Y

)
− γ4tr

(
W̃ T W̃

)
+ γ4tr

(
W̃ T∆N̂W

)
+ γλγ3tr

[
Λ̃T
(
Λ̂− N̂Λ

)]

Now, consider the last term, only:

tr
[
Λ̃T
(
Λ̂− N̂Λ

)]
=tr
[
Λ̃T
(
Λ̂− N̂Λ − Λ + Λ

)]

=− tr
(
Λ̃T Λ̃

)
+ tr

[
Λ̃T
(
Λ− N̂Λ

)]

Substituting results in

V̇ =− 1

2
eTQe− γλtr

(
eY e

T
Y

)
− γ4tr

(
W̃ T W̃

)
− γλγ3tr

(
Λ̃T Λ̃

)

+ γλγ3tr
[
Λ̃T
(
Λ− N̂Λ

)]
+ γ4tr

(
W̃ T∆N̂W

)

≤− 1

2
λmin(Q)‖e‖2

2 − γλ‖eY ‖2
2 − γ4‖W̃‖2

2 − γλγ3‖Λ̃‖2
2

+ γλγ3‖Λ̃‖2‖Λ− N̂Λ‖2 + γ4‖W̃‖2‖∆N̂W‖2

From Young’s inequality [96],

‖Λ̃‖2‖Λ− N̂Λ‖2 ≤ k1‖Λ̃‖2
2 +

1

4k1

‖Λ− N̂Λ‖2
2

Similarly,

‖W̃‖2‖∆N̂W‖2 ≤ k2‖W̃‖2
2 +

1

4k2

‖∆N̂W‖2
2

Next, consider the term ‘‖Λ− N̂Λ‖2’ only:

‖Λ− N̂Λ‖2 = ‖HΛ(Θ)−HΛ(Θ̂)‖2 = ‖HΛ(Θ̃)‖2
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Combining these results gives

V̇ ≤ − 1

2
λmin(Q)‖e‖2

2 − γλ‖eY ‖2
2 − γλγ3(1− k1)‖Λ̃‖2

2 − γ4(1− k2)‖W̃‖2
2

+
γλγ3

4k1

‖HΛ(Θ̃)‖2
2 +

γ4

4k2

‖∆N̂W‖2
2

which ensures the boundedness of errors e, eY , W̃ , and Λ̃ for k1, k2 ∈ (0, 1).

Furthermore, these error signals asymptotically converge to compact sets as

summarized in Table 4.1.

Table 4.1: Compact Sets at which the Error Signals Converge Asymptotically

Error Compact Set

e De :=
{
e(t) : ‖e‖2

2 <
2γλγ3

4k1λmin(Q)
‖HΛ(Θ̃)‖2

2 + 2γ4

4k2λmin(Q)
‖∆N̂W‖2

2

}

eY DY :=
{
eY (t) : ‖eY ‖2

2 <
γλγ3

4k1γλ
‖HΛ(Θ̃)‖2

2 + γ4

4k2γλ
‖∆N̂W‖2

2

}

Λ̃ DΛ :=
{

Λ̃(t) : ‖Λ̃‖2
2 <

γλγ3

4k1γλγ3(1−k1)
‖HΛ(Θ̃)‖2

2 + γ4

4k2γ4(1−k2)
‖∆N̂W‖2

2

}

W̃ DW :=
{
W̃ (t) : ‖W̃‖2

2 <
γλγ3

4k1γ4(1−k2)
‖HΛ(Θ̃)‖2

2 + γ4

4k2γ4(1−k2)
‖∆N̂W‖2

2

}

It should be noted from Theorem 4.1 that ‖HΛ(Θ̃)‖2 and ‖∆N̂W‖2 asymptotically

converge to the origin if Assumption 4.1 holds. Hence, compacts sets De,DY ,DΛ,

and DW asymptotically shrink to the set {0}, which ensures the asymptotic stability

of e, eY , Λ̃, and W̃ . That concludes the asymptotic stability of the zero solution
(
e, eY , Λ̃, W̃

)
≡
(
0, 0, 0, 0

)
.

�

4.3 Numerical Examples

4.3.1 Uncertain Roll Dynamics with Loss of Aileron Control

In this example, the first order roll dynamics of an aircraft [97] is considered:

ṗ(t) = Lpp(t) + LδΛ
[
u(t) + ∆(p)

]
, p(t0) = p0 (4.23)

where p(t) is the roll rate, u(t) is the aileron input, dynamic stability derivative Lp

denoting the roll damping is Lp = −1, input matrix is Lδ = 1, and the uncertainty
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is given by ∆(p) = 0.2 + p|p|, which yields φ(p) =
[
1 p|p|

]T and w =
[
0.2 1

]T .

Unknown control effectiveness is represented by Λ. This numerical example can be

regarded as incorrect characterization of the roll mode time constant and existence of

constant wind disturbance trying to roll the aircraft. Unknown control effectiveness

is chosen to be Λ = 0.2 meaning that the aircraft experiences 80% loss in aileron

control. Reference model is constructed with Ar = −2 and Br = 2. Positive definite

solution P is determined using Q = 2. Low-pass filter cutoff frequency is ωf = 1

rad/s. Sampling frequency is 100 Hz. In this example, 4 controllers are applied:

- (Nominal) Nominal controller in Eq 2.4

- (Std-MRAC) Standard MRAC in Eq 2.10

- (CMRAC) CMRAC in Eq 2.19

- (IR-CMRAC) Proposed CMRAC with Information Recovery in Eq 4.21

where the controller parameters are summarized in Table 4.2.

Table 4.2: Controller Parameters (N/A: Not Available)

Nominal Std-MRAC CMRAC IR-CMRAC

Kx 1 1 1 1

Kr 2 2 2 2

Γ N/A 1 1 1

ΓΘ N/A N/A N/A I5×5

γy N/A N/A N/A 1

γ1 N/A N/A N/A 1

γ2 N/A N/A N/A 1

γ3 N/A N/A N/A 1

γ4 N/A N/A N/A 1

γλ N/A N/A 10 10

ΓΛ N/A N/A 1 1

ΓW N/A N/A N/A 10

Figure 4.1 illustrates the response of nominal controller in Eq 2.4. As seen in the

figure, nominal controller is not able to track the command as desired.
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Figure 4.1: Example 1: Response of Nominal Controller in Eq 2.4

Then, adaptation is activated with standard MRAC law in Eq 2.10. Figure 4.2 shows

that better tracking performance is achieved with standard MRAC law. Although

parameters slowly converge to their ideal values, online estimation of unknown

control effectiveness is not available with standard MRAC. It is important to note

that this convergence is because of the persistent excitation of the regressor signal φ.

Figure 4.2: Example 1: Response of Standard MRAC in Eq 2.10
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In Figure 4.3, adaptation is achieved with CMRAC update law in Eq 2.19. As denoted

by Remark 2.7, error signal eY asymptotically converges to zero (see Figure 4.4). It

is important to note that main contribution of CMRAC law over standard MRAC

vanishes as eY converges to zero. That is, evolution of Λ̂ freezes and CMRAC

modification term becomes trivial with eY ∼= 0 (see update laws in Eq 2.19). It is

also important to highlight that Λ̂ evolves completely in the wrong direction.

Figure 4.3: Example 1: Response of CMRAC in Eq 2.19

Figure 4.4: Example 1: Parameter Estimation Error with CMRAC in Eq 2.19
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Next, the proposed adaptive law in Eq 4.21 is employed. Figure 4.5 shows the ideal

state tracking performance (top left) and ideal parameter characterization (bottom

two subfigures) with the proposed method. As opposed to CMRAC framework,

asymptotic convergence of eY does not prevent the estimated parameter to evolve

in the desired direction.

Figure 4.5: Example 1: Response of the Proposed Controller in Eq 4.21

Figure 4.6: Example 1: Weight Estimation Error with Proposed Controller in Eq 4.21
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4.3.2 Systems with Integrator Dynamics

It is well-known that the standard MRAC suffers from degraded performance if the

system has an augmented integrator dynamics. In this example, the first order roll

dynamics in Eq 4.23 is considered with the following uncertainty:

∆(p) = 0.2 + p|p| (4.24)

The integrator state xi(t) is augmented to the system as follows:

 ṗ(t)
ẋi(t)


 =


Lp 0

−1 0




 p(t)
xi(t)


+


Lδ

0


Λ
[
u(t) + ∆(p)

]
+


0

1


 r(t)

The nominal controller is designed to be:

un(t) = −Kxp(t) +Kixi(t) = −
[
Kx −Ki

]
x(t) , −Kx(t)

with Kx = 1.5 being a feedback gain and Ki = 3 being an integral gain. 80% loss of

aileron control is assumed with Λ = 0.2. Reference model is designed by applying

the nominal controller to the nominal system without any uncertainty:

ẋr(t) =


Lp − LδKx LδKi

−1 0


xr(t) +


0

1


 r(t) (4.25)

Figure 4.7 presents the simulation results obtained through Standard MRAC with

two difference gains; Γ = 10 and Γ = 1000. As clearly seen, increasing the

learning rate Γ does not improve the tracking performance, instead it induces high

frequency oscillations to the system. This result supports the initial statement that

the standard MRAC has poor adaptation performance for the systems having an

augmented integrator.

Figure 4.8 illustrates the tracking response of the nominal controller in Eq 2.4.

Compared to the nominal controller response in Figure 4.1, adding an integrator

slowly eliminates the steady state error, as expected. Yet, the command following

performance is still not acceptable.
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Figure 4.7: Example 2: Performance Comparison for Standard MRAC

Figure 4.8: Example 2: Response of Nominal Controller in Eq 2.4

Next, standard MRAC is employed for the integrator augmented uncertain system.

It has been previously shown in Figure 4.7 that large learning rates induces

high-frequency oscillations in system states and control input. Hence, a relatively

small learning rate of Γ = 1 is applied as indicated in Table 4.2. Figure 4.9 presents

the state tracking performance with standard MRAC. As seen in the figure, command

following performance is improved compared to nominal controller. However, it is

not possible to reach an estimation of unknown control effectiveness. In addition, fast
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adaptation is not achieved as the overshoot in the response vanishes slowly.

Figure 4.9: Example 2: Response of Standard MRAC in Eq 2.10

Slow adaptation can also be visualized from Figure 4.10 as the estimated parameters

converge to their ideal values slowly. It is important to note that parameter

convergencec with standard MRAC is achieved in this example, just because the

regressor Φ is persistently exciting.

Figure 4.10: Example 2: Response of Standard MRAC in Eq 2.10
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Next, CMRAC is applied to the integrator augmented uncertain system. Low-pass

filter cutoff frequency is chosen to be ωf on purpose. This is to show CMRAC suffers

from losing information due to filtering. As clearly seen from Figure 4.11, CMRAC

slightly improves the damping in the response. However, not much improvement is

achieved in terms of command following performance.

Figure 4.11: Example 2: Response of CMRAC in Eq 2.19

In addition, parameter estimation performance is also far away from the desired one

(see Figure 4.12). As aforementioned, CMRAC update law in Eq 2.19 turns into

standard MRAC law in Eq 2.10 as the error signal eY (t) converges to zero as t→∞.

Note that eY (t) ∼= 0 for t ≥ 10 as seen from Figure 4.15.

Then, the numerical simulation results are presented with the proposed information

recovery-based adaptive controller. Figure 4.13 illustrates the state tracking

performance. As seen, ideal command following is achieved with fast-adaptation

feature of the proposed controller. In Figure 4.13, evolution of the adaptive weights

is shown. Both estimated parameters Ŵ and Λ̂ converge to their ideal values as

theoretically shown by Theorem 4.2.
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Figure 4.12: Example 2: Response of CMRAC in Eq 2.19

Figure 4.13: Example 2: Response of Proposed Controller in Eq 4.21

Lastly, Figure 4.15 highlights the improved parameter estimation performance of the

proposed controller against Composite MRAC. It is obvious from the figure that

Information Recovery-based CMRAC (IR-CMRAC) outperforms the conventional

CMRAC by achieving the parameter convergence even in the presence of small LPF

cutoff frequency of ωf = 1 rad/s.
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Figure 4.14: Example 2: Response of Proposed Controller in Eq 4.21

Figure 4.15: Example 2: Response of Proposed Controller in Eq 4.21
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CHAPTER 5

COMMAND GOVERNOR-BASED ADAPTIVE CONTROL FOR THE

SYSTEMS WITH MATCHED AND UNMATCHED UNCERTAINTIES

5.1 Introduction

In this chapter, a command governor-based adaptive control architecture is proposed

for stabilizing uncertain dynamical systems with not only matched but also

unmatched uncertainties and achieving desired command following performance of

a user-defined subset of the accessible states. In the proposed solution, composite

model reference adaptive control with information recovery is employed to attenuate

the effects of matched and unmatched uncertainties. Specifically, the matched

uncertainty is identified and its effect upon the system behavior is entirely suppressed.

Moreover, using the unmatched uncertainty approximation obtained through radial

basis function neural networks, the command governor signal is designed to achieve

the desired command following performance of the user-defined subset of the

accessible states. With this command governor-based Model Reference Adaptive

Control architecture, the tracking error of the selected states can be made arbitrarily

small by judiciously tuning the design parameters. In addition to the analysis of the

closed-loop system stability using methods from Lyapunov theory, the findings are

also illustrated through numerical examples.

Model Reference Adaptive Control (MRAC) architectures achieve a desired level of

closed-loop stability and performance for uncertain dynamical systems with online

adaptive weight update laws. Many MRAC frameworks rely on the matching

assumption between the reference model and plant to track the desired reference

command. Without restrictive persistent excitation (PE) of system signals, standard
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MRAC framework cannot guarantee closed-loop stability in the presence of bounded

perturbations using only instantaneous data [1, 2]. To increase the robustness

of standard MRAC and/or guarantee stability without PE, well-established robust

modifications are introduced in literature [3]- [9]. Yet, these MRAC frameworks

have been restricted to uncertainties lying on the span of the control input, which

are called matched uncertainties. However, this assumption may not hold for many

practical systems with unmatched uncertainties, unmodeled dynamics and external

disturbances (e.g. magnetic levitation [26]). In this chapter, the motivation is to

guarantee the desired tracking performance in the presence of uncertainties lying

outside the span of the control input.

5.2 Problem Formulation

In this chapter, the following uncertain dynamical systems are considered:

ẋ(t) = Ax(t) +B
[
u(t) + ∆

(
x(t)

)]
+D∆u

(
x(t)

)
, x(t0) = x0 (5.1)

where x(t) ∈ Dx ⊂ Rn is the state vector where Dx is sufficiently large compact set,

system matrix A ∈ Rn×n and input matrix B ∈ Rn×m are known, control input

is u(t) ∈ U ⊂ Rm where U is the admissible control set, ∆
(
x(t)

)
∈ Rm and

∆u

(
x(t)

)
∈ Rmu are the Lipschitz continuous functions representing the unknown

matched and unmatched uncertainties, respectively. D ∈ Rn×mu lies in the left

null space of B; that is, D ∈ N (BT ), BTD = DTB = 0. Note that D may not

necessarily be the orthogonal complement of B; i.e. 1 ≤ mu ≤ (n−m).

Assumption 5.1. Throughout this chapter, the following assumptions are made:

a. The structure of the matched uncertainty is known. Hence, it can be

parameterized by the linear combinations of known basis functions as

∆
(
x(t)

)
= W Tφ

(
x(t)

)
,

where W ∈ Rs×m is the unknown constant weight matrix, the known

vector-function φ
(
x(t)

)
∈ Rs is Lipschitz continuous over Dx.

b. The structure of the unmatched uncertainty is unknown. But, it can be
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approximated by an RBF NN as [77]

∆u

(
x(t)

)
= W T

u ψ
(
x(t)

)
+ ε
(
x(t)

)
,

where Wu ∈ Rsu×mu is the unknown constant weight matrix, the known basis

vector-function ψ
(
x(t)

)
∈ Rsu is Lipschitz continuous over Dx, and ε

(
x(t)

)
is

the residual error with
∥∥ε
(
x(t)

)∥∥ ≤ ε0, ∀x(t) ∈ Dx.

As standard [77], the basis vector-function ψ(x) is constructed using RBFs as

ψ(x) =
[
ψ1(x) ψ2(x) . . . ψsu(x)

]T
,

where ψi(x) ∈ R for i = 1, . . . , su is given by

ψi(x) =





1 , for i = 1

exp
(
− ‖x(t)−c̄i‖2

2µ̄2
i

)
, for i = 2, . . . , su

with c̄i ∈ Rn being the center of an RBF unit and µ̄i ∈ R+ being the width of the ith

kernel node. Under Assumption 5.1, uncertain system in Eq 5.1 can be re-written as:

ẋ(t) = Ax(t) +B
[
u(t) +W Tφ(x)

]
+DW T

u ψ(x) +Dε(x, t) (5.2)

Assumption 5.2. Basis function φ is sufficiently exciting signals. Hence, there exist

positive constants α, Te ∈ R+ that satisfies:
∫ t

t0

φ(τ)φT (τ)dτ � αI, t = Te

As elaborated in Remark 3.2, filtered signal φf is also sufficiently exciting with the

following inequality:
∫ t

t0

φf (τ)φTf (τ)dτ � βI, t = Te, 0 < β ≤ α

The ideal reference model that captures the desired closed-loop command following

performance is given by

ẋr(t) = Arxr(t) +Brr(t), xr(t0) = xr0 , (5.3)

where xr(t) ∈ Rn is the ideal reference state vector,Ar ∈ Rn×n is the Hurwitz system

matrix, Br ∈ Rn×k is the input matrix, and r(t) ∈ Rk is a bounded and piecewise

continuous reference signal with k ≤ m, ‖r(t)‖ ≤ r0, ∀t ≥ t0.
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In order to analyze the effects of unmatched uncertainty upon the system behavior,

an auxiliary reference model is designed based on unmatched uncertainty estimation.

To this end, better unmatched uncertainty estimation allows better understanding the

effects of unmatched uncertainty on the control response. Hence, the information

recovery-based adaptive control architecture (proposed in Chapter 3) is employed for

fast adaptation with improved transient response. Next, the auxiliary reference model

is defined as the following:

ẋm(t) =Arxm(t) +Br

[
r(t) + z(t)

]
+DŴ T

u (t)ψ(x)− kλe(t), (5.4)

where xm(t) ∈ Rn is the auxiliary reference state vector, Ŵu(t) ∈ Rsu×mu is the

online estimation of Wu, z(t) ∈ Rr is the command governor signal, kλ ∈ R+ is

a constant, and e(t) , xm(t) − x(t) is the tracking error signal. Reference model

system matrix Ar and input matrix Br are chosen such that Ar = A − BKx and

Br = BKr. The error feedback term in the auxiliary reference model in Eq 5.4

improves the transient performance (see, for example, [81, 83, 98–100] that employ

similar reference model modifications).

Assumption 5.3. Unknown weight matrix Wu lies inside the convex set Ωc on which

unmatched estimations Ŵu(t) are constrained by the projection operator [88].

Remark 5.1. Let γ ∈ R+ be the projection norm bound to be used in projection

operator. Then, by Assumption 5.3, the existence of following bound is ensured:
∥∥Ŵu(t)

∥∥ ≤
∥∥Ŵu(t)

∥∥
F ≤ rank

(
Ŵu(t)

)∥∥Ŵu(t)
∥∥ ≤ rank

(
Ŵu(t)

)
γ ≤ min

(
su,mu

)
γ

thus→ Wu,
∥∥Ŵu(t)

∥∥,
∥∥Ŵu(t)

∥∥
F ≤ min

(
su,mu

)
γ , γ0.

The nominal control input consisting of a feedback part ufb(t) , Kxx(t) and a

feedforward part uff(t) , Krr(t) is given by

un(t) = −Kxx(t) +Krr(t) (5.5)

The overall control input with an adaptive part uad(t) , Ŵ T (t)φ(x) and a command

governor part ug(t) , Krz(t) is given by

u(t) = un(t)− Ŵ T (t)φ(x) +Krz(t)

u(t) = −Kxx(t) +Krr(t)− Ŵ T (t)φ(x) +Krz(t).
(5.6)
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Using Eq 5.6 with the matched weight estimation error W̃ (t) , W −Ŵ (t), uncertain

dynamical system Eq 5.1 can be written as

ẋ(t) =Arx(t) +Br

[
r(t) + z(t)

]
+BW̃ T (t)φ(x) +D

[
W T
u ψ(x) + ε(x, t)

]
(5.7)

Now, let em(t) , xr(t) − xm(t) be the auxiliary tracking error. Then, its dynamics

can be obtained using Eq 5.3 and Eq 5.4 as

ėm(t) =Arem(t)−Brz(t)−DŴ T
u (t)ψ(x) + kλe(t). (5.8)

Furthermore, one can write the tracking error dynamics using Eq 5.4 and Eq 5.7 as

ė(t) =
(
Ar − kλI

)
e(t)−BW̃ T (t)φ(x)−DW̃ T

u (t)ψ(x)−Dε(x) (5.9)

Remark 5.2. As the positive constant kλ increases, robustness of the error dynamics

in Eq 5.9 increases against uncertainty estimation. This is because of the fact that the

eigenvalues of Hurwitz matrix Ar shift to the left by amount of kλ.

5.3 Filtering System Dynamics

In this section, a set of low-pass filters is applied to the system dynamic to reach the

low-frequency content of matched and unmatched uncertainties separately. First, the

uncertain system dynamics in Eq 5.1 is multiplied by the left pseudo inverse of input

matrix B from the left:

B−1
left ẋ(t) = B−1

leftAx(t) +
[
u(t) + ∆(x)

]
(5.10)

Note that the left pseudo inverse of B is given by B−1
left =

(
BTB

)−1
BT , which yields

B−1
leftD =

(
BTB

)−1
BTD = 0 since DTB = BTD = 0. Next, the low-pass filters in

Eq 2.12 is applied to get the following:

∆f (x, t) = W Tφf (x, t) = B−1
left ẋf (t)−B−1

leftAxf (t)− uf (t) (5.11)

Similarly, multiplying the uncertain system by D−1
left =

(
DTD

)−1
DT from the left

and applying the same low-pass filters yield:

∆u,f (x, t) = W T
u ψf (x, t) + εf (x, t) = D−1

left ẋf (t)−D−1
leftAxf (t) (5.12)
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5.4 Adaptive Laws

From this point forward, the information recovery in Chapter 3 is exploited to the

adaptive law for the matched parameters:

˙̂
W =

(
Γ−1 + γmφfφ

T
f

)−1(
γmφ̇f∆̃

T
f + γ1φf∆̃

T
f + γ2M̃ − φeTPB

)
(5.13)

As it can be seen, weight update law for the matched parameters is kept the same as

in Eq 3.4. Then, a new adaptive weight update law is introduced for the unmatched

parameters as:

˙̂
Wu = Proj

{
Ŵu,

(
Γ−1
u + µmψfψ

T
f

)−1(
µmψ̇f∆̃

T
u,f + µ1ψf∆̃

T
u,f − ψeTPD

)}
(5.14)

where Γu = ΓTu � 0 is positive definite learning rate, µm, µ1 ∈ R+ are user-defined

positive scalar design parameters, and Ŵu is the online estimation of unknown

unmatched weight matrix Wu. In addition, ∆̃uf is stated as follows:

∆̃uf , ∆uf − ∆̂uf

with ∆̂uf being defined as ∆̂uf , Ŵ T
u ψf .

For the uncertain dynamical system Eq 5.1 subject to Assumption 5.1, the goal is

to drive the user-defined subset of the accessible states y(t) = Cx(t) to a close

neighborhood of that of the reference model yr(t) = Cxr(t); y(t) ∈ Nδ

(
yr(t)

)
.

To achieve this, both matched and unmatched uncertainties are estimated in the

adaptive control framework and the command governor signal is designed based on

backstepping technique using the unmatched estimations. The overall block diagram

is given in Figure 5.1.

Theorem 5.1. Consider the uncertain dynamical system in Eq 5.1, auxiliary reference

model in Eq 5.4, weight update laws in Eq 5.13 and Eq 5.14, and control input in Eq

5.6. Then, the tracking error e(t), and weight estimation errors W̃ (t) and W̃u(t) are

uniformly ultimately bounded.

Proof.

Let η ,
[
eT vec(W̃ )T vec(W̃u)

T ∆̃T
f ∆̃T

uf

]T be the aggregated error vector.

Wherever appropriate, the arguments ‘t’ for time dependency and ‘x’ for state

dependency are dropped consistently over an entire for ease of exposition.
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Command Governor
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)t, x(u∆̂

Figure 5.1: Block diagram for command governor-based adaptive control for

unmatched uncertainties.

Consider the Lyapunov candidate

V1 =
1

2
eTPe+

1

2
tr
(
W̃ TΓ−1

m W̃
)

+
1

2
tr
(
W̃ T
u Γ−1

u W̃u

)
+

1

2
∆̃T
f γm∆̃f +

1

2
∆̃T
ufµm∆̃uf

=
1

2
ηTPη

where P , diag
(
I1 ⊗ P, I2 ⊗ Γ−1

m , I3 ⊗ Γ−1
u , γm, µm

)
with I1, I2, I3 being identity

matrices of appropriate dimensions. Note that V1(0) = 0, V1(η) > 0,∀η 6= 0, and

V1(η) is radially unbounded. Time derivative of the Lyapunov function along system

trajectories in Eq 5.8, Eq 5.13, and Eq 5.14 is given by:

V̇1 =− 1

2
eTQe− kλeTPe+ tr

[
W̃ T

(
− φeTPB + γmφ̇f∆̃

T
f

)]

− tr
[
W̃ T

(
Γ−1 + γmφfφ

T
f

) ˙̂
W
]

+ tr
[
W̃ T
u

(
− ψeTPD + µmψ̇f∆̃

T
u,f

)]

− tr
[
W̃ T
u

(
Γ−1
u + µmψfψ

T
f

) ˙̂
Wu

]
+ eTPDε

Substituting the adaptive laws in Eq 5.13-Eq 5.14 and applying Lemma 2.3 yields:

V̇1 =− 1

2
eTQe− kλeTPe− γ1tr

(
∆̃f∆̃

T
f

)
− γ2tr

(
W̃ TΦW̃

)

− µ1tr
(
∆̃u,f∆̃

T
u,f

)
+ eTPDε

≤−
(

1

2
λmin(Q) + kλλmin(P )

)
‖e‖2 − γ1‖∆̃f‖2 − γ2λmin(Φ)‖W̃‖2

− µ1‖∆̃u,f‖2 + eTPDε

One can bound the last term by applying the Young’s inequality [96] to get the
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following:

eTPDε ≤ ‖e‖‖PD‖ε0 ≤ k3‖e‖2 +
1

4k3

‖PD‖2ε2
0 (5.15)

with k3 ∈
(
a, b
)
. Then, time derivative of the Lyapunov function can be bounded by:

V̇1 =−
(

1

2
λmin(Q) + kλλmin(P )− k3

)
‖e‖2 − γ2λmin(Φ)‖W̃‖2

− µ1‖∆̃u,f‖2 − γ1‖∆̃f‖2 +
1

4k3

‖PD‖2ε2
0

(5.16)

where positive constant k3 is an arbitrary scalar with k3 ∈
(
0, 1

2
λmin(Q)+kλλmin(P )

)
.

With this result, boundedness of error signals e(t), W̃ (t), ∆̃f (t), and ∆̃u,f (t) is

guaranteed. By the definition W̃ (t) = W − Ŵ (t), matched parameter estimation

Ŵ (t) becomes bounded since ideal weight matrix W is constant. Furthermore,

unmatched parameter estimation Ŵu(t) is ensured to be bounded within a convex

set due to projection operator, which results in boundedness of unmatched weight

estimation error W̃u(t).

�

Remark 5.3. Theorem 5.1 ensures that the tracking error e(t) = xm(t) − x(t)

is uniformly ultimately bounded. However, boundedness of the states x(t) is not

guaranteed since the auxiliary reference states xm(t) are not bounded, yet.

5.5 Design of Command Governor

In Remark 5.3, it is noted that the auxiliary reference model states need to be bounded

to ensure boundedness of the actual states. In this section, a command governor

input procedure is systematically shown using backstepping technique to guarantee

boundedness of the auxiliary reference model. In return, boundedness of all the

system signals is established.

Let the unmatched uncertainty estimation be defined as ∆̂u(t, x) , Ŵ T
u (t)ψ(x).
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Then, multi-level low-pass filter structure that is used in this chapter is given by
˙̂

∆uf,1(t, x) = Γf

[
∆̂u(t, x)− ∆̂uf,1(t, x)

]

˙̂
∆uf,2(t, x) = Γf

[
˙̂

∆uf,1(t, x)− ∆̂uf,2(t, x)
]

˙̂
∆uf,3(t, x) = Γf

[
˙̂

∆uf,2(t, x)− ∆̂uf,3(t, x)
]

...
˙̂

∆uf,p(t, x) = Γf

[
˙̂

∆uf,p-1(t, x)− ∆̂uf,p(t, x)
]

(5.17)

where ∆̂uf,1(t0, x0) = ∆̂u(t0, x0), ∆̂uf,i(t0, x0) = 0 for i = 2, . . . , p, diagonal matrix

Γf � 0 is chosen such that λmax(Γf) ≤ Γf,max, with Γf,max being a design parameter.

This low-pass filter structure in command governor design allows to suppress the

undesired high-frequency oscillations possibly contained in estimated unmatched

signals which may cause problems if directly used in the control input such as rate

saturation of actuators and/or exciting unmodeled dynamics.

5.5.1 Command Governor Design for Second Order Systems

Consistent with the existing literature (e.g., see chapter 10 of [101]), the backstepping

design here starts with the second order system. Then, following the similar steps

in [35, 36], it is extended to the higher order systems, recursively. Without loss of

generality, it can be assumed that the reference model matrices Ar and Br are in

controllable canonical form. Hence,

Ar =


 0 1

−a1 −a2


 , Br =


 0

br


 , D =


d1

0


 ,

where a1, a2 ∈ R+, and br, d1 ∈ R \ {0}. The objective is to drive the system state

x1(t) to a close neighborhood of the reference state xr1(t); i.e. x1(t) → Nδ (xr1(t)).

Hence, the matrix C pointing out the user-defined subset of accessible states becomes

C =
[
1 0

]
. Next, auxiliary tracking error dynamics Eq 5.8 in open-form is

ėm1(t) =em2(t)− d1∆̂u(t, x) + kλe1(t) + Γ0em1(t)− Γ0em1(t) + d1∆̂uf,1 − d1∆̂uf,1

ėm2(t) =− a1em1(t)− a2em2(t)− brz(t) + kλe2(t).

Remark 5.4. Boundedness of unmatched weight estimations Ŵu(t) is guaranteed

with Theorem 5.1. Furthermore, the basis vector-function ψ(x) with Gaussian
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kernel units is bounded which results in boundedness of the unmatched uncertainty

estimation ∆̂u(t, x). Since the low-pass filter given in Eq 5.17 is BIBO stable, the

low-pass filtered signal ∆̂uf,1(t, x) is bounded. From Eq 5.17, it follows that its time

derivative ˙̂
∆uf,1(t, x) is also bounded.

Let E1(t) , em2(t) − d1∆̂uf,1 + Γ0em1(t) be the new state variable. Then, state

dynamics for ζ(t) ,
[
em1(t) E1(t)

]T can be written as

ėm1(t) =− Γ0em1(t) + E1(t)− d1q̃1

Ė1(t) =− a1em1(t)− a2em2(t)− brz(t) + kλe2(t)

+ Γ0 (−Γ0em1(t) + E1(t)− d1q̃1)− d1
˙̂
∆uf,1 + Γ1E1(t)− Γ1E1(t)

(5.18)

where error q̃1 is q̃1 ,
(

∆̂u − ∆̂uf,1 − kλ
d1
e1(t)

)
. Note that q̃1 is bounded since ∆̂u and

∆̂uf,1 are bounded from Remark 4 and tracking error e1(t) is bounded from Theorem

5.1, ∀t ≥ t0. Choosing the command governor signal z(t) as

z(t) ,b−1
r

{
em1(t)

(
−a1 + a2Γ0 − Γ2

0

)
+ E1 [Γ0 + Γ1 − a2]

+ kλe2(t)− d1

[
˙̂

∆uf,1 + a2∆̂uf,1 + Γ0q̃1

]} (5.19)

simplifies Eq 5.18 to the compact form given by

ζ̇(t) =


ėm1(t)

Ė1(t)


 =


−Γ0 1

0 −Γ1




em1(t)

E1(t)


+


d1

0


 q̃1.

Remark 5.5. With suitable design parameters Γ0 and Γ1, boundedness of the state

vector ζ(t) is guaranteed since the non-vanishing perturbation q̃1 is bounded [101].

With the bounded state ζ(t), boundedness of the auxiliary reference model states

xm(t) is guaranteed. From Theorem 5.1, the tracking error e(t) = xm(t) − x(t)

is bounded. Hence, with the command governor input Eq 5.19, boundedness of the

actual system states x(t) is established.

5.5.2 Generalizations to Higher Order Systems

Command governor design can be recursively employed for the higher order systems

as this is a standard procedure in backstepping technique. In the 3rd order system
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case, for instance, the low-pass filter structure is employed up to 2nd level; i.e. p = 2.

Remark 5.6. From Remark 5.4, the signal ∆̂uf,1 is bounded. Then, cascaded low-pass

filter signals ∆̂uf,2 and ˙̂
∆uf,2 are also bounded by following similar discussions made

in Remark 4. Hence, recursive composition of low-pass filter signals to any level

yields bounded filter signals.

Now, consider the following matrices that characterizes the auxiliary tracking error

dynamics Eq 5.8

Ar =




0 1 0

0 0 1

−a1 −a2 −a3


 , Br =




0

0

br


 , D =




d1

d2

0


 ,

where a1, a2, a3 ∈ R+, and br, d1, d2 ∈ R \ {0}. Again, the goal is to drive x1(t) to a

close neighborhood of xr1(t); i.e. x1(t)→ Nδ (xrm1(t)). Thus, C =
[
1 0 0

]
.

Auxiliary tracking error dynamics in open-form is

ėm1(t) =em2(t)− d1∆̂u + kλe1(t) + d1∆̂uf,1 − d1∆̂uf,1 + Γ0em1(t)− Γ0em1(t)

ėm2(t) =em3(t)− d2∆̂u + kλe2(t)

ėm3(t) =− a1em1(t)− a2em2(t)− a3em3(t)− brz(t) + kλe3(t).

With the command governor signal z(t)

z ,b−1
r

{
em1

(
−a1 + a2Γ0 − a3Γ2

0 + Γ3
0

)
+ kλe3

+ E1

(
−a2 + a3(Γ0 + Γ1)− Γ2

0 − Γ1 (Γ0 + Γ1)
)

+ E2 (−a3 + (Γ0 + Γ1 + Γ2)) + d1

(
−a2∆̂uf,1 − a3∆̂uf,2 − ˙̂

∆uf,2
)

+ d2

(
−a3∆̂uf,1 − ˙̂

∆uf,1
)
− Γ2

0q̃1 + (Γ0 + Γ1) q̃2

}

and state choices

E1(t) ,em2(t)− d1∆̂uf,1 + Γ0em1(t) (5.20a)

E2(t) ,em3(t)− d2∆̂uf,1 − d1∆̂uf,2 − Γ2
0em1(t) + (Γ0 + Γ1)E1(t), (5.20b)

the dynamics for ζ(t) ,
[
em1(t) E1(t) E2(t)

]T becomes

ėm1(t) =− Γ0em1(t) + E1(t) + q̃1

Ė1(t) =− Γ1E1(t) + E2(t) + q̃2

Ė2(t) =− Γ2E2(t).

(5.21)
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In compact form, Eq 5.21 can be stated as




ėm1(t)

Ė1(t)

Ė2(t)


 =




−Γ0 1 0

0 −Γ1 1

0 0 −Γ2







em1(t)

E1(t)

E2(t)


+




d1q̃1

d2q̃2

0


 ,

where the bounded errors q̃1 and q̃2 are

q̃1 ,− d1

(
∆̂u − ∆̂uf,1

)
+ kλe1(t)

q̃2 ,kλe2(t) + Γ0q̃1 − d2

(
∆̂u − ∆̂uf,1

)
− d1

(
˙̂

∆uf,1 − ∆̂uf,2

)
.

Remark 5.7. With suitable design parameters Γ0, Γ1 and Γ2, boundedness of state

ζ(t) is guaranteed since perturbations q̃1 and q̃2 are bounded [101].

Remark 5.8. From Remark 5.7, em1(t) is bounded. Boundedness of the signals E1(t),

∆̂uf,1, and em1(t) guarantees the boundedness of the signal em2(t) from Eq 5.20a.

Furthermore, with the bounded signals E2(t), ∆̂uf,1, ∆̂uf,2, em1(t), and E1(t), the signal

em3(t) is bounded from Eq 5.20b. Hence, boundedness of the auxiliary tracking error

em(t) = xrm(t) − xm(t) is established. Since xrm(t) is bounded, auxiliary states

xm(t) are also bounded. From Theorem 1, the tracking error e(t) = xm(t) − x(t) is

bounded. All in all, the system states x(t) become bounded with bounded xm(t).

5.6 Numerical Examples

5.6.1 A Second-Order System

Consider the uncertain nonlinear dynamical system

ẋ(t) =


0 1

2 4


x(t) +


0

1


 [u(t) + ∆(x)] +


1

0


∆u(x)

y(t) = x1(t),

(5.22)
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where the system uncertainties are characterized by

∆(x) = W Tφ(x)

W =
[
−1.23 0.78 −0.62 1.02

]T

φ(x) =
[
1 |x1|x2 |x2|x2 x3

1

]T

∆u(x) = −0.65x2
1 + 0.8sin(x2) + 0.3x1.

Ideal reference model that characterizes the desired closed-loop behavior with the

natural frequency of ωn = 2 and damping ratio of ξ = 1.4 is designed as

ẋr(t) =


 0 1

−ω2
n −2ξωn


xr(t) +


 0

ω2
n


 r(t)

yr(t) = xr1(t).

Numerical simulation parameters are as follows. Adaptive learning rates are Γ =

Γu = 1 and γm = γ1 = γ2 = µ1 = 1, low-pass filter gain is Γf = 10, command

governor parameters are Γ0 = Γ1 = 10, and simulation sampling frequency is set to

100 Hz. Square reference command is passed through first order low-pass filter with

the filter gain of 1. All the system states, ideal and modified reference model states,

matched and unmatched weight estimations are initialized from zero.

Without command governor design, the system is unstable. This result emphasizes

the significance of command governor signal. Thus, the effects of matched and

unmatched weight estimations on the reference command following performance are

investigated.

Nominal controller in Eq 5.5 exhibits an unstable behavior for the uncertain system

as shown in Figure 5.2.

Figure 5.3 indicates the unstable response with standard MRAC in Eq 2.10. Hence, it

is clear from the figure that the unmatched uncertainty should be handled properly to

ensure the closed loop stability.

In order to suppress the effects of the unmatched uncertainty upon the system

behavior, the proposed command governor-based method is employed. The unknown

unmatched uncertainty ∆u(x) is approximated by RBF NN. The centers c̄i for RBF
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Figure 5.2: Unstable Closed-loop Response with the Nominal Controller in Eq 5.5

Figure 5.3: Unstable Closed-loop Response with Standard MRAC with Eq 2.10

are uniformly distributed over the space of [−4, 4]× [−4, 4], and width of the kernel

unit is uniformly set to µ̄i = 0.5, i = 2, . . . , su = 24. Figure 5.4 illustrates the

distribution with a 1D example. The first element ψ1(x) is reserved for the bias unit;

i.e. ψ1(x) = 1. Lastly, auxiliary reference model in Eq 5.4 is designed with kλ = 15.

In Figure 5.5, reference command following performance is illustrated for the
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Figure 5.4: Visualization of Radial Basis Functions with µ̄ = 0.5

proposed command governor-based adaptive control architecture. As it can be seen,

the user-defined subset of accessible states y(t) = x1(t) can satisfactorily follow the

reference signal yr(t) = xr1(t).

Figure 5.5: Tracking performance and control input u(t) with the Proposed Command

Governor-Based Adaptive Controller

The auxiliary tracking error em(t) and tracking error e(t) are given in Figure 5.6.

The tracking error e(t) stays in the close neighborhood of zero with the matched

parameter identification and unmatched parameter approximation. Furthermore,

reference command following error em1(t) is in close neighborhood of zero. Hence,
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reference command following is achieved satisfactorily; i.e. y(t)→ Nδ (yr(t)).

Figure 5.6: Tracking error e(t) and auxiliary tracking error em(t) with the Proposed

Command Governor-Based Adaptive Controller

The evolution of the adaptive matched weights is given in Figure 5.7. Dashed

lines indicate the ideal unknown matched parameters whereas the solid lines are the

corresponding estimations. Figure 5.7 clearly illustrates that the estimated weights

are closely bounded around their ideal values. From Theorem 5.1, this bound can

be made arbitrarily small by decreasing the RBF residual bound ε0, which can be

achieved by increasing the size of basis function ψ.

Figure 5.8 illustrates the evolution of the unmatched weights. Since the unmatched

uncertainty is parametrized by RBF, ideal weights are not known. Hence, only the

adaptive weight evolution is shown in the figure. As seen, there is no high-frequency

oscillation in the estimations while achieving the satisfactory uncertainty estimation

as seen in Figure 5.9. With (almost) convergence in matched weights, matched

uncertainty is identified and estimations overlap with the actual uncertainty.
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Figure 5.7: Adaptive matched weight evolution

Figure 5.8: Adaptive unmatched weight evolution
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Figure 5.9: Adaptation performance for both matched and unmatched uncertainties

5.6.2 A Third-Order System Case

Consider the uncertain dynamical system given by

ẋ(t) =




0 1 0

0 0 1

2 1 1


x(t) +




0

0

1


 [u(t) + ∆(x)] +




1

0

0


∆u(x)

y(t) = x1(t).

where the system uncertainties are characterized by

W =
[
−1.2 0.8 −0.6 1.0 0.4

]T

φ(x) =
[
1 x1x2 x2

2 x3
1 x2x

2
3

]T

∆u(x) = −0.26x2
1 − 0.32x2x3 − 0.12x1x

2
3

Nominal controller gains are chosen to be Kx =
[
12.2 16.2 7.6

]
and Kr = 10.2,

where the reference model matrices are Ar = A − BKx, Br = BKr. Closed-loop

reference model gain is chosen to be kλ = 25.

Simulation parameters are as follows. Adaptive controller gains are Γ = Γu = 1,

Γ0 = 2, Γ1 = 5, Γ2 = 10, γ2 = γm = µm = 0.1, γ1 = µ1 = 1. Furthermore, low-pass

filter cut-off frequencies are ωf = 4, Γf = 10. Simulation sampling frequency is set
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to 100 Hz. All the system states, ideal and modified reference model states, matched

and unmatched weight estimations are initialized from zero. Centers c̄i are uniformly

distributed over x1−x2−x3 space of [−5, 5]× [−5, 5]× [−5, 5], and width of kernel

unit is uniformly set as µ̄i = 0.3, i = 1, . . . , su = 38. 1D visualization of the selected

RBF structure is given in Figure 5.10. Bias unit is ψ1(x) = 1.

Figure 5.10: Visualization of Radial Basis Functions with µ̄ = 0.3

Figure 5.11: Tracking performance and control input u(t).

Without command governor, the closed-loop system is unstable as in the 2nd order

example. Thus, the simulation results are only given for the command governor

89



employed cases. In Figure 5.11, the tracking performance is illustrated. The selected

system state y(t) = x1(t) can satisfactorily follow the desired one yr(t) = xr1(t).

The corresponding tracking errors are in Figure 5.12.

Figure 5.12: Tracking error e(t) and auxiliary tracking error em(t).

The evolution of the adaptive matched weights is given in Figure 5.13. Dashed

lines indicate the ideal unknown matched parameters whereas the solid lines are the

corresponding estimations. Figure 5.13 clearly illustrates that the estimated weights

are closely bounded around their ideal values. From Theorem 5.1, this bound can

be made arbitrarily small by decreasing the RBF residual bound ε0, which can be

achieved by increasing the size of basis function ψ. With (almost) convergence in

matched weights, matched uncertainty is identified and estimations overlap with the

actual uncertainty. This result can be seen in Figure 5.15.

Figure 5.14 illustrates the evolution of the unmatched weights. Since the unmatched

uncertainty is parametrized by RBF, ideal weights are not known. Hence, only the

adaptive weight evolution is shown in the figure. As seen, there is no high-frequency

oscillation in the estimations while achieving the satisfactory uncertainty estimation

as seen in Figure 5.15.
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Figure 5.13: Adaptive matched weight evolution.

Figure 5.14: Adaptive unmatched weight evolution.
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Figure 5.15: Adaptation performance for both matched and unmatched uncertainties.
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CHAPTER 6

ENERGY-BASED ADAPTIVE FLIGHT CONTROLLER FOR IMPROVED

COORDINATED LONGITUDINAL CONTROL

6.1 Introduction

In this chapter, an adaptive energy-based longitudinal flight control framework is

proposed. Uncertainties on the Lagrangian channel is eliminated with an adaptive

element in the pitch stability augmentation system, in which the fast system states

are regulated. Thus, uncertainties in the energy distribution channel is successfully

removed, and short period mode characteristics are improved. For the coordination

between Hamiltonian and Lagrangian controls, an adaptive outer energy management

loop is designed. Remaining uncertainties on the energy sources and/or energy

draining components are addressed in this controller. Furthermore, bandwidth of both

Lagrangian and Hamiltonian control loops are determined with a reference model.

As a result, proper suppression of uncertainties immediately results in the desired

decoupled airspeed and altitude responses. Block diagram of the proposed control

architecture is given in Figure 6.1.

cmdV

cmdh
Energy

Management

s,desH

s,desL
Outer

Adaptive
Control

sH sL

cmdγ

th,cmdδ

Flight Path
Angle Control

γ

cmdθ

Aircraft

Inner Adaptive
Pitch SAS

u, θ, w, q

e,cmdδ

Figure 6.1: Block Diagram of the Proposed Longitudinal Flight Control Algorithm
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6.2 System Description

Nonlinear equations of motion for the longitudinal dynamics of an aircraft written in

its body frame are given by:

ḣ = V∞ sin(γ) = u sin(θ)− w cos(θ)

u̇ =
1

m
[T −D cos(α) + L sin(α)−W sin(θ)]− qw

θ̇ = q

ẇ =
1

m
[−D sin(α)− L cos(α) +W cos(θ)] + qu

q̇ =
1

Ixx
[Mctrl +Mpitch]

(6.1)

where L is the lift force, D is the drag force, T is the thrust, Mctrl is the pitching

moment generated by the deflected elevator, Mpitch is the pitching moment when no

control surfaces are deflected. These forces and moments are explicitly given as:

L = q∞SrefCL

D = q∞SrefCD

Mctrl = q∞SrefCmδeδec̄

Mpitch = q∞SrefCmc̄

where q∞ is the dynamic pressure, Sref is the reference wing area, CL, CD, and Cm

are lift, drag, and pitching moment coefficients (resp.), Cmδe is the non-dimensional

control derivative, δe is the elevator deflection, and c̄ is the mean aerodynamic chord.

Wind frame states such as angle of attack α, flight path angle γ, and airspeed V∞ are

given in terms of body frame states as follows:

α = atan2(w, u), γ = θ − α, V∞ =
√
u2 + w2

The objective is to design an energy-based flight control algorithm to enhance the

coordination between the elevator and thrust controls so that the velocity and altitude

responses are satisfactorily decoupled and desired command following performance

is reached. First, an inner stability augmentation system (SAS) is designed to

improve the short period mode characteristics. Next, flight path angle control loop

is augmented. Finally, an energy-based velocity and altitude controllers close the

loops.
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6.3 Controller Design

6.3.1 Short Period Stability Augmentation

In the longitudinal dynamics of an aircraft, there are typically two oscillatory modes

which are separated in terms of time scale by an order. The slow one is called

the Phugoid mode whereas the faster one is the Short period. During the Phugoid

oscillations, it is commonly assumed the angle of attack (α) of the aircraft remains

constant while the pitch attitude (θ) and airspeed (V∞) are changing. Since the

oscillatory motion is slow, body pitch rate q stays considerably small. On the other

hand, short period oscillations result in large body pitch rate q which needs to be

damped by an external stability augmentation system (SAS), namely pitch SAS. In

the 2nd order approximation of the short period mode, the states can be chosen as

body pitch rate and angle of attack. One may also add the pitch attitude to short

period mode approximation to improve the quality of the pitch SAS [42]. In this

thesis, a 3rd order approximated system is picked with the states xsp =
[
α θ q

]T ,

and outputs ysp =
[
θ q

]T :

ẋsp = Aspxsp +Bspδe

ysp = Cspxsp

where the system matrix Asp, input matrix Bsp, and output matrix Csp are known

matrices for approximated short period dynamical system with their appropriate

dimensions. Note that for the given inputs, states, and outputs, the matrices Bsp,

Csp, and CspBsp are full rank matrices.

6.3.1.1 Nominal Controller Design

In the inner loop control, main concern is to achieve a desired damping and adequate

natural frequency in the pitch motion of the aircraft which is expressed by the

following dynamics:

θ̈d + 2ζsp,dωsp,dθ̇d + ω2
sp,dθd = ω2

sp,dθcmd (6.2)

In order to damp the short period mode oscillations effectively, it is important to select

the desired natural frequency ωsp,d to be larger than the natural frequency of the short
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period mode. Then, the desired pitch dynamics is used to construct the reference

model with its specific structure:

ẋsp,d = Asp,dxsp,d +Bsp,dθcmd

ysp,d = Csp,dxsp,d

Asp,d =




· · ·
0 0 1

0 −ω2
sp,d −2ζsp,dωsp,d


 , Bd =




·
0

ω2
sp,d




(6.3)

where Asp,d is a Hurwitz matrix, ysp,d =
[
θ̇d q̇d

]T is the reference output, and

unspecified entries in Asp,d and Bsp,d are chosen to satisfy the following matching

conditions:

Asp,d = Asp −BspKsp, Bsp,d = Bspkr

Then, inner loop nominal elevator control is design through dynamic inversion of the

short period dynamics:

ẏsp = Cspẋsp = Csp [Aspxsp +Bspδe] = CspAspxsp + CspBspδe = ẏd

where ẏd is generated according to the desired pitch dynamics in Eq 6.2. Solving for

the elevator input results in nominal control:

δe,n =
(
CspBsp

)†
[ẏd − CspAspxsp] (6.4)

with (·)† denoting the pseudo-inverse of its inner argument. The matrix

(CspBsp)
T (CspBsp) is nonsingular and (CspBsp) has a unique pseudo-inverse matrix.

Note that with the designed elevator control in Eq 6.4, the unspecified entries in the

reference model (Eq 6.3) are immediately determined.

6.3.1.2 Inner Loop Adaptive Controller Design

So far, the perfect knowledge of the system is assumed which results in the nominal

control in Eq 6.4. Now, the system uncertainties and nonlinearities are introduced as

follows:

ẋ = Ax+B
[
u+ ∆(x)

]
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where the system state is x =
[
u w θ q

]T , u =
[
δth δe

]T is the vector of control

inputs, A and B are known matrices of appropriate dimensions, B =
[
B1 B2

]

with Bi’s have full column rank for i = 1, 2, and ∆(x) is the Lipschitz continuous

functions representing the unknown matched uncertainties. In the adaptive controller

design, the altitude is excluded from the system states as the heave mode of the aircraft

is negligibly slow compared to Phugoid and short period modes.

Assumption 6.1. The uncertainty ∆(x) can be expressed as linear combination of

known basis functions:

∆(x) = WTΦ(x)

where W ∈ Rs×2 is unknown constant weight matrix, and Φ(x) ∈ Rs×1 is known

basis vector function.

Remark 6.1. Many nonlinear matched uncertainties can be parametrized as in

Assumption 6.1 (e.g. nonlinear wing-rock dynamics [102]). However, for the

case where the basis vector-function φ(x) is unknown, the matched uncertainty

parametrization in Assumption 6.1 could be relaxed by considering ∆(x) =

W T
nnφnn(x)+εnn(x), ∀x(t) ∈ Dx withDx being sufficiently large compact set. Thus,

the proposed algorithm can be readily extended for unstructured uncertainties.

Since the engine actuators are considerably slow compared to pitch dynamics, the

elevator input is going to be used to adapt all the system uncertainties as long as they

are reachable by the elevator control. So, the control inputs are separated as follows:

ẋ = Ax+B1

[
δth + δ1(x)

]
+B2

[
δe + δ2(x)

]

Some part of the uncertainty in the throttle channel δ1(x) can be suppressed directly

by the elevator as the same uncertainty may lie in the range space of B2. Further

decomposition of the uncertainty δ1(x) yields

B1δ1(x) = B2δ12(x) +B⊥2 δ11(x) (6.5)

where B⊥2 = B2u is the orthogonal complement of the elevator input matrix B2; i.e.

BT
2 B2u = 0. Note that there may exists an uncertainty δ12(x) where the source is the

throttle, but the effect can directly be suppressed by the elevator. An example could

be the misalignment of the vertical position of the engine and center of gravity of the
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aircraft. In such a case, the thrust will cause a pitch up/down motion which can be

directly controlled with the elevator control. Then, the uncertainty decomposition in

Eq 6.5 is substituted into system dynamics as follows:

ẋ = Ax+B1δth +B2

[
δe + δ2(x) + δ12(x)

]
+B2uδ11(x)

Next, the elevator control is designed with nominal control δe,n in Eq 6.4 and an

adaptive part vad:

δe = δe,n + vad

Applying the elevator control the system yields

ẋ =Amx+B1δth +B2,mθcmd +B2

[
vad + ∆2(x)

]
+B2u∆1(x)

=Amx+Bmr +B2

[
vad + ∆2(x)

]
+B2u∆1(x)

(6.6)

where the reference command is r =
[
δth θcmd

]T , and the uncertainties are ∆2(x) ,

δ2(x)+δ12(x) and ∆1(x) , δ11(x). From now on, the uncertainties ∆1(x) and ∆2(x)

are called as unmatched and matched uncertainties with respect to elevator control,

respectively. This is because the uncertainty ∆1(x) lies in the null space of BT
2 which

means it cannot be suppressed directly via elevator control. Due to Assumption 6.1,

the uncertainties ∆1(x) and ∆2(x) can be expressed by

∆1(x) = W T
u ψ(x)

∆2(x) = W Tφ(x)

where W ∈ Rs2×1 and Wu ∈ Rs1×1 represents the constant weight matrices for

matched and unmatched uncertainties, respectively. Next, consider the following

reference model that characterizes the desired closed-loop performance:

ẋm = Amxm +Bmr (6.7)

where the Hurwitz system matrix Am and input Bm satisfy the following relations:

Am = A−B2K
∗
x

Bm = B2K
∗
r

for some unknown matrices K∗x and K∗r . Note that this relations is well-known

matching condition in model reference adaptive control literature [74]. In the inner
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loop stability augmentation control, the objective is to design an inner loop adaptive

controller so that the desired command following performance of the pitch response

of the uncertain system is achieved. That is, a subset of the system states y = Cx = θ

is desired to track the subset of the reference model states ym = Cxm = θd in the

presence of uncertainties.

The adaptive input vad is designed to suppress the undesired effects of matched

uncertainty ∆2(x) as follows:

vad(t) = −Ŵ T (t)φ(x) (6.8)

where Ŵ (t) is the online estimation of unknown matched parameters W . The

tracking error e(t), weight estimation errors W̃ (t) and W̃u(t), and an auxiliary error

e2(t) are defined as follows:

e , xm − x

W̃ , W − Ŵ

W̃u , Wu − Ŵu

e2 , BT
2 e

Then, the tracking error dynamics can be expressed using Eq 6.6 - 6.8 as:

ė(t) = Ame(t)−B2W̃
T (t)φ(x)−B2u∆1(x)

Multiplying from the left by BT
2 yields the auxiliary error dynamics

BT
2 ė(t) = BT

2 Ame(t)−BT
2 B2W̃

T (t)φ(x) (6.9)

Now, consider the following Lyapunov candidate:

V(t) =
1

2
eT2 P2e2 +

1

2
tr
(
W̃ TΓ−1W̃

)
(6.10)

where P2 = P T
2 � 0 is a positive definite constant matrix of appropriate dimensions.

In addition, consider the following Lyapunov equation:

ATmP + PAm = −Q (6.11)

with P = P T � 0 being the unique solution for any Q = QT � 0. Positive definite

matrix P2 in Eq 6.10 is chosen to satisfy the following:

B2P2B
T
2 = P (6.12)
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Note that B2 has full column rank. Hence, the unique P2 can be obtained using left

pseudo inverse of B2 and right pseudo-inverse of BT
2 using Eq 6.11 and Eq 6.12.

Time derivative of Lyapunov candidate in Eq 6.10 becomes:

V̇(t) = eTPAme− eTPB2W̃
Tφ(x)− tr

(
W̃ TΓ−1 ˙̂

W
)

(6.13)

Choosing the adaptive weight update law as

˙̂
W = −Γφ(x)eTPB2

result in the following inequality:

V̇(t) ≤ −1

2
λmin(Q)‖e‖2 � 0

Remark 6.2. With positive definitive Lyapunov function having a negative

semi-definite time derivative, asymptotic stability of the auxiliary error is ensured,

i.e. e2 → 0 as t → ∞. However, boundedness of the adaptive parameters

is not guaranteed, yet. In order to bound the matched adaptive parameters,

a robust modification can be applied from the literature such as σ-modification

[3], e-modification [4], projection operator [5, 80], and optimal control based

modification [6]. Well-known optimal control modification is chosen as it allows

to use high adaptation gains without causing high-frequency oscillations. Hence, the

adaptive weight update law becomes

˙̂
W = −Γφ(x)

[
eTP − νφT ŴBT

2 PA
−1
m

]
B2

where the optimal control modification term adds a damping to the update law, and

ν > 0 is a tuning parameter.

6.3.2 Outer Loop Control

As shown in the block diagram in Figure 6.1, reference altitude and velocity

commands are converted to flight path angle and throttle commands using the energy

principles. In this control loop, the objective is to design a control augmentation

system to track the desired flight path angle using the transfer function γ(s)
γcmd(s)

. For

this purpose, PI-controller is designed as follows:

θcmd =

(
Kp +

Ki

s

)
γ̃, γ̃ , γcmd − γ.
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With the proposed outer control loop for flight path tracking, a zero is introduced

in the closed loop dynamics at the location z = −Ki
Kp

. Controller gains Ki and Kp

should be chosen such that the introduced zero cancels a slow pole (if any), and outer

loop dynamics have a loop frequency at least five times smaller than that of pitch

dynamics ωsp,d [103].

6.3.3 Energy Management and Outer-most Loop Control

6.3.3.1 PI Navigation Controller

In traditional SISO control architectures, altitude hold controller is closed over the

flight path angle loop, and velocity control loop is connected to the throttle channel.

As aforementioned, such a SISO assignment of the elevator and thrust may cause

catastrophic failures in aircraft operation. So far, only elevator channel is used

by closing the flight path angle control loop over the pitch SAS augmented plant

dynamics. Different from the SISO classical theory based literature, the altitude

and velocity loops are closed considering them together in an energy-based control

framework.

Regarding the aircraft as a point mass, the Hamiltonian functionH becomes the total

mechanical energy of the aircraft if the generalized coordinates are expressed in the

inertial frame. Then, the Hamiltonian function coincides the total mechanical energy

function Etot of the aircraft, and it is defined as the summation of kinetic energy Ekin

and potential energy Epot:

H = Etot =
1

2
mV 2 +mgh

Since the energy consuming and contributing factors in an aircraft are related to aerial

conditions, the velocity V can be replaced with airspeed V∞.

Specific total energy (also known as energy height) is given by:

Hs ,
H
mg

=
V 2
∞

2g
+ h

Furthermore, the Lagrangian is expressed as the difference between kinetic energy
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and potential energy:

L =
1

2
mV 2 −mgh

Similar to the Hamiltonian, the specific Lagrangian is defined as:

Ls ,
L
mg

=
V 2
∞

2g
− h

Note that for a conservative system, total time-derivative of the Lagrangian along the

generalized coordinates is constant. Kinetic energy and potential energy may change,

but the Lagrangian remains the same. This fact implies that the aircraft cannot change

its energy height without adding or subtracting energy. Under the mild assumption

that the elevator deflection does not consume any energy, the Lagrangian can readily

be related to the elevator control as the system remains conservative. With flight path

angle control loop being closed, γcmd becomes available to distribute the existing total

energy between kinetic energy and potential energy. Next, the specific total energy

rate and specific energy distribution rate are obtained as:

Ḣs = mV∞V̇∞ +mgḣ

L̇s = mV∞V̇∞ −mgḣ

where

ḣ = V∞ sin(γ)

V̇∞ =
1

m
[T cos(α)−D]− g sin(γ)

(6.14)

Now, having stated some necessary terminology, the navigation loop controller

design is initiated in which the flight path angle command and throttle command

are generated. First, the airspeed and altitude commands are converted to the specific

total energy and and specific Lagrangian commands as follows:

Hs,cmd =
V 2
cmd

2g
+ hcmd

Ls,cmd =
V 2
cmd

2g
− hcmd

Using small perturbations around the equilibrium point and Eq 6.14, one can obtain

the linear dynamics for the specific total energy rate and specific total energy
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distribution rate as the following:

Ḣs
∼= V0

mg
∆T = kthV0δth

L̇s ∼=
V0

mg
∆T − 2V0∆γ = kthV0δth − 2V0∆γ

(6.15)

where

T = T0 + ∆T, γ = γ0 + ∆γ, V∞ = V0 + ∆V, ∆T = kthδth(mg)

For simplicity, the perturbed thrust is expressed as ∆T = kthδth(mg) where kth is the

ratio of the maximum achievable thrust to aircraft weight, and δth denotes the percent

usage of the available thrust. This relation indicates that the additional thrust ∆T is

equal to δth percent of the available thrust.

Eq 6.15 will be the starting point of the energy-based navigation loop controller

design. Re-writing the Eq 6.15 in compact form yields:

ẋout =


Ḣs

L̇s


 =


0 0

0 0


xout +


kthV0 0

kthV0 −2V0




δth,cmd

∆γcmd




ẋout = Aoutxout +Boutuout

(6.16)

where the state xout consists of the desired specific energy rate and specific energy

rate distribution states.

Remark 6.3. The system in Eq 6.16 indicates a few important features:

• Total energy of the aircraft can only be increased or decreased with the throttle

command δth,cmd.

• If the existing total energy is going to be distributed without adding or

subtracting any energy, it can be achieved by flight path angle command ∆γcmd.

• If the energy is going to be added or subtracted, and simultaneously distributed

between altitude and airspeed channels, they need to take place through

identical loop dynamics. This is because the throttle appears in both control

channels, but only responsible for changing the energy height of the aircraft.

Hence, the flight path angle command should work in synchronization with

throttle command.
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In order to achieve a desired coordinated longitudinal control, an outer reference

model is introduced to be tracked by the outer system states. Consider the following

reference model:

ẋr =


Ḣs,des

L̇s,des


 =


−ωH 0

0 −ωL




︸ ︷︷ ︸
,Ar


Hs,des

Ls,des


+


ωh 0

0 ωL




︸ ︷︷ ︸
,Br


∆Hs,cmd

∆Ls,cmd




︸ ︷︷ ︸
,rout

(6.17)

where ∆Hs,cmd and ∆Ls,cmd are given by:

∆Hs,cmd = Hs,cmd −H0

∆Ls,cmd = Ls,cmd − L0

One can immediately realize that the outer reference model is an aggregated two

distinct low-pass filters with cutoff frequencies ωH and ωL. Ideally, these cutoff

frequencies should be equal to ensure the coordinated control of elevator and throttle.

However, if there exists a difference between specific energy rate and specific energy

distribution rate loop frequencies, ωH and ωL may be set different than each other to

compensate that difference. As it is a rule of thumb in successive loop closure control

design method, cutoff frequencies ωH and ωL should be at least five times smaller

than that of engine dynamics and flight path angle control loop.

Using the outer system model in Eq 6.16 and reference model in Eq 6.17, one can

generate the throttle command and flight path angle command as follows:

δth,cmd

∆γcmd


 = −Kx,out


Hs

Ls


+Kr,out


∆Hs,cmd

∆Ls,cmd


+Ki,zz (6.18)

with the integrator state z being

ż = eout

eout ,


Hs,des

Ls,des


−


Hs

Ls




and integral gain Ki,z is given by:

Ki,z = (PoutBout)
†Kz

It should be noted that Kz = KT
z � 0 is a symmetric positive definite design matrix

with diagonal entries, and Pout is the unique symmetric positive definite solution to
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the Lyapunov equation

ATr Pout + PoutAr = −Qout

for any Qout = QT
out � 0. Furthermore, feedback controller gain Kx,out and

feedforward controller gain Kr,out should satisfy the following matching conditions:

Ar = Aout −BoutKx,out

Br = BoutKr,out

6.3.3.2 Outer Loop Adaptive Control

In the inner loop, an adaptive controller is employed only for the elevator channel to

adjust the short period mode characteristics as desired. It is also shown that some

uncertainties in the throttle channel can be projected onto elevator channel and can

be effectively suppressed by the elevator control. It should also be noted that such

uncertainties have relatively faster effects on the system response. Since the elevator

servo actuation takes place much faster than that of the throttle, it is effective to

suppress these uncertainties with elevator. However, there still exists an uncertainty

that is orthogonal to the elevator control. In this section, an outer loop adaptive

controller is designed to address the solution to eliminate these uncertainties.

Unsuppressed uncertainty is mainly acting on the velocity channel since the

remaining portion is handled in the inner loop adaptive controller. Hence, effect of the

uncertainty in the velocity channel will directly be visible in the total specific energy

and specific energy distribution states.

Considering the outer loop system model in Eq 6.16 and outer reference model in Eq

6.17, the uncertainty is introduced in the following manner:

ẋout = Aoutxout +Bout [Λuout + ∆(xout)]

where the matrix Λ represents the unknown control effectiveness matrix with diagonal

entries λi ∈ R+, and ∆out(xout) denotes the system uncertainty. Adding and

subtracting BoutKx,outxout and BoutKr,outrout yields:

ẋout = Arxout +Brrout +BoutΛ [uout + ∆out(xout)] (6.19)
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where ∆out(xout) = ΘTσ(xout, rout) with unknown matrix of ΘT =
[
Λ−1W T

out, Λ−1Kx,out, −Λ−1Kr,out

]T and known basis vector function of

σ(xout, rout) =
[
ψT (xout), xTout, rTout

]T . Note that the outer uncertain system

dynamics in Eq 6.19 and outer reference model in Eq 6.17 form the standard adaptive

control structure [74]. Similar to the inner loop adaptive controller, the weight update

law is applied with optimum control modification as follows:

˙̂
Θ = −Γoσ

[
eToutPout − νσT Θ̂BT

outPoutA
−1
r

]
Bout

where Γo � 0 is the adaptation gain, and ν > 0 is a design parameter.

Remark 6.4. Proposed outer energy control loop can be applied to any flight control

architectures that takes the commanded pitch/flight path angle and commanded

throttle as inputs. Such a control architecture covers a large class of longitudinal

flight controllers. To give examples; in a typical SISO architecture, error in the

altitude response converted either into flight path angle command or into pitch

command in the inner loops. Furthermore, the error in the airspeed is converted

into commanded throttle (see [41–43]). Similarly, TECS architecture generates a

commanded pitch and a commanded thrust as inputs to the pitch SAS augmented

inner loop (see Figure 1.1). Hence, the proposed architecture can easily be connected

as an outer-most loop for these flight control architectures.

Remark 6.5. Although the proof for the closed loop system stability is omitted in

this work, readers may refer to references [104–108] for the necessary tools and

strategies to design a stable hierarchical nonlinear adaptive controller.

6.4 Numerical Simulation

In the simulations, the nonlinear equations in Eq 6.1 are applied with the following

non-dimensional aerodynamic coefficients:

CL = a0 + a1α + a2α
2 + a3α

3 + a4q

CD = b0 + b1α + b2α
2

Cm = c0 + c1α + c2α
2 + c3q
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with ai = {0.65, 6.03, −0.56, −20.9, −0.18} for i = 0, . . . , 4, bi =

{0.05, 0.13, 1.42} for i = 0, . . . , 2, and ci = {−0.07, −1.18, −1.32, 0.17}
for i = 0, . . . , 3 being constant parameters which are obtained by CFD simulations.

The aircraft is trimmed at steady, straight, and level flight conditions at V∞ = 28 m/s

and flight level of h = 15000 ft. Thrust perturbation is ∆T = δth500 N. Resulting

linear dynamical system is as follows:



u̇

θ̇

ẇ

q̇

ḣ




=




−0.005 −9.696 0.378 −4.384 0

0 0 0 1.000 0

−0.531 −1.471 −1.120 28.884 0

0.071 0 −0.418 −1.329 0

0.150 28.000 −0.989 0 0







u

θ

w

q

h




+




4.91 −0.33

0 0

0 −0.05

−0.64 14.41

0 0





δth
δe




In addition to linearization errors, additional uncertainty is introduced in the following

form:

∆(x) =


 β5q + β6u

β0 + β1q + β2θ + β3α + β4α
2


 (6.20)

with βi =
{

0.016, 1.3, −1.2, 1.3, 4.1, −0.08, 0.12
}

for i = 0, . . . , 6 being

constant uncertainty parameters. It is important to note that all the simulation results

are presented as the difference between trim values. That is, the velocity response in

Figure 6.3 is the additional velocity on the trim velocity of 28 m/s.

In Figure 6.2 and Figure 6.3, the performance of the nominal controllers in Eq 6.4

and Eq 6.18 is illustrated in the absence of the uncertainty function in Eq 6.20.

Yet, uncertainties due to linearization still exist during the simulation with nonlinear

plant model. As seen in the figure, outer loop controller cannot adequately decouple

the velocity and altitude response, and an undesired motion is induced on the other

channel. On the other hand, short period mode is satisfactorily damped by the inner

control.

Once the uncertainty is introduced to the system, the closed-loop system becomes

unstable as seen in Figure 6.4 and Figure 6.5.

Now, only inner loop adaptation is activated in Figure 6.6 and Figure 6.7. Altitude

response is highly related to flight path angle management which is connected to
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Figure 6.2: Inner Loop Short Period Mode States of the Nominal Closed Loop System

without the Uncertainty

Figure 6.3: Outer Loop Command Tracking Performance of the Nominal Closed

Loop System without the Uncertainty

the elevator channel. Since the inner loop adaptation successfully suppress the

uncertainties that is achievable by the elevator, altitude response in Figure 6.7 gets

pretty much closer to the nominal response in Figure 6.5. However, there exists a

significant difference between velocity tracking performance as the uncertainty in the

throttle channel is not completely addressed, yet. This is an expected result though,

as the major effects of the uncertainty in throttle channel appears dominantly in the
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Figure 6.4: Unstable Response for the Inner Loop Short Period Mode States with the

Nominal Controller in the Presence of the Uncertainty

Figure 6.5: Unstable Outer Loop Command Tracking Performance with the Nominal

Controller in the Presence of the Uncertainty

velocity response.

As the last case, both inner and outer loop adaptive controllers are activated.

Corresponding tracking performance is illustrated in Figure 6.8 and Figure 6.9. As

clearly seen, outer loop adaptive controller cancels out the uncertainty left over the

throttle channel, and desired tracking performance is achieved at the outer loop states.
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Figure 6.6: Inner Loop Short Period Mode States with Only Inner Loop Adaptation

Activated in the Presence of the Uncertainty

Figure 6.7: Outer Loop Command Tracking Performance with Only Inner Loop

Adaptation Activated in the Presence of the Uncertainty

Furthermore, no high frequency short period oscillations are observed in the pitch

response.

Figure 6.10 compares the control inputs between the following cases: i) nominal

controller without the uncertainty in Eq 6.20, ii) only inner loop adaptation activated
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Figure 6.8: Inner Loop Short Period States with both Inner and Outer Adaptation

Figure 6.9: Outer Loop Tracking Performance with both Inner and Outer Adaptation

in the presence of uncertainty in Eq 6.20, iii) both inner and outer adaptations

activated in the presence of uncertainty in Eq 6.20.

6.5 Conclusion

In this chapter, an adaptive longitudinal flight control architecture is proposed based

on the energy principles. In the proposed flight control solution, elevator and
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Figure 6.10: Input comparison between nominal control, inner adaptation only, and

both inner and outer adaptation

thrust controls used together in a MIMO framework to control the energy state of

the aircraft in the presence of uncertainties. Eventually, satisfactory velocity and

altitude command following and decoupling performances are achieved. Specifically,

an outer loop adaptive controller is designed to regulate the energy state of the

aircraft. In the energy management module, commanded velocity and altitude are

converted into total specific energy and specific energy distribution states. Then, the

outer adaptive controller ensures that the aircraft energy state is able to track the

reference model that enforces the Hamiltonian and Lagrangian control loops operate

at the same bandwidth. Also, adaptation in the outer loop enhances the closed

loop system stability by eliminating the uncertainties on the Hamiltonian state of

the aircraft. Then, in order to distribute the total specific energy effectively over

the velocity and altitude channels, a sequence of flight path angle controller and

inner adaptive controller are designed. With these controllers, first, the commanded

flight path angle is converted to pitch attitude command. Then, adaptive pitch

stability augmentation system is utilized to track the commanded pitch despite the

plant uncertainties. Eventually, satisfactory velocity and altitude command following

performance is achieved with coordinated elevator and throttle control, short period

mode characteristics are improved, and effects of uncertainties upon the system
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behavior is effectively suppressed. Numerical simulations illustrate the efficacy

of the proposed control algorithm in terms of command following and decoupling

performances.
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CHAPTER 7

ADAPTIVE CONTROLLER DESIGN WITH IMPROVED TRANSIENTS

FOR THE LATERAL DYNAMICS OF A FIXED WING AIRCRAFT

7.1 Introduction

In this chapter, the gain scheduled lateral flight control problem is revisited in the

presence of system uncertainties. Basically, the gain scheduling control is a powerful

method to control nonlinear and/or parameter varying systems using well-developed

linear controller design tools. Gain scheduling makes it possible to respond quickly

to the variations in the operating conditions. However, typical gain scheduling

approach is not suitable for uncertain nonlinear systems as the linearization carry

little information about the plant dynamics [109]. A few notable contributions are

available in the literature [110–113]. Specifically, Fujimori et al [110] proposes a

fuzzy gain scheduled controller based on LMI optimization of an observer-based

dynamic controller. The authors of [111] eigenvalue assignment problem is revisited

for linear parameter varying systems in the context of gain scheduling. In both studies

[110] and [111], a linear system is considered without any uncertainty, which makes

them inapplicable to nonlinear systems with arbitrarily large uncertainties. To address

this, Jang et al [112] propose an adaptive gain scheduling controller for time-varying

systems. In their study, adaptive element is introduced to suppress the undesired

effects of unknown control effectiveness matrix. Other than control anomalies that

are captured by unknown control effectiveness matrix, no uncertainty exists upon

the system dynamics. Furthermore, plant dynamics is assumed to be known for

the nominal control effectiveness. Lastly, Zhang et al [113] propose an indirect

adaptive controller to solve the online identification of gain scheduling coefficients

and controller design problem. In their study, uncertain effects of structural damage
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and external disturbances are assumed to be bounded and independent from the

system states. This assumption restricts the class of applicable systems. In this study,

the variations in the plant dynamics are allowed to be state and parameter dependent,

time-varying, and switching. It is important to note that this chapter focuses on the

gain scheduling problem. However, re-formulated system dynamics can readily be

applied to parameter varying systems and switching systems.

7.2 Problem Formulation

Consider the uncertain nonlinear dynamical systems of the form

ẋ(t) = A(x, t)x(t) +B
[
u(t) + δ

(
x
)]
, x(t0) = x0 (7.1)

where x(t) ∈ Dx ⊂ Rn is the state vector where Dx is sufficiently large compact set,

the system matrix A(x, t) ∈ Rn×n and input matrix B ∈ Rn×m are unknown. System

matrix A(x, t) is Lipschitz continuous in x and C1 continuous in time, and input

matrix B is constant. The control input is u(t) ∈ U ⊂ Rm where U is admissible

control set. The system is assumed to be underactuated; hence, m < n. δ
(
x
)
∈ Rm

representing the unknown matched uncertainty is Lipschitz continuous in x. The pair

(A,B) is assumed to be controllable ∀x ∈ Dx, and full state measurement is available

for feedback. Input matrix B has full column rank.

Unknown system and input matrices are decomposed as the following:

A(x, t) = A0 + δA(x, t)

B = B0Λ
(7.2)

where A0 ∈ Rn×n and B0 ∈ Rn×n are known nominal values of system matrix

A(x, t) and input matrix B, respectively. δA(x, t) represents the unknown part of

the system matrix. In addition, Λ = diag
(
λ1 λ2 · · · λm

)
denotes the unknown

control effectiveness matrix with λi ∈ R+.

Then, the uncertain dynamical system in Eq 7.1 can be re-written as follows:

ẋ(t) = A0x(t) + δA(x, t)x(t) +B0Λ
[
u(t) + δ(x)

]
(7.3)
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Furthermore, the term ‘δA(x, t)x(t)’ is decomposed as follows:

δA(x, t)x(t) = B0v1(x, t) +D0v2(x, t)

with D0 denoting the orthogonal complement of nominal input matrix B0; that is,

BT
0 D0 = DT

0 B0 = 0. Manipulating yields:

BT
0 B0v1(x, t) = BT

0 δA(x, t)x(t) ⇒ v1(x, t) =
(
BT

0 B0

)−1
BT

0 δA(x, t)x(t)

DT
0 D0v2(x, t) = DT

0 δA(x, t)x(t) ⇒ v2(x, t) =
(
DT

0 D0

)−1
DT

0 δA(x, t)x(t)

It should be noted that BT
0 B0 is an invertible matrix since B0 has full column rank.

In addition, its orthogonal complement D0 ∈ Rn×(n−m) also has full column rank

with rank(D0) = n −m > 0. Hence, DT
0 D0 is also invertible. One can realize that

(
BT

0 B0

)−1
BT

0 and
(
DT

0 D0

)−1
DT

0 are equivalent to left pseudo inverses ofB0 andD0,

respectively. For the rest of this chapter, the Moore Penrose inverses ofB0 andD0 are

defined as B†0 =
(
BT

0 B0

)−1
BT

0 and D†0 =
(
DT

0 D0

)−1
DT

0 , respectively. Substituting

these into Eq 7.3 yields:

ẋ = A0x+B0Λ
[
u+ δ(x) + Λ−1B†0δA(x, t)x

]
+D0D

†
0δA(x, t)x (7.4)

Nominal control input un(t) is designed to be

un(t) = −Kxx(t) +Krr(t) +Krz(t) (7.5)

where Kx is constant feedback gain, Kr is constant feedforward gain, z(t) is the

command governor signal (generated by following Section 5.5), and r(t) is bounded

piecewise continuous reference signal with ‖r(t)‖ ≤ r0, ∀t ≥ t0. Overall control

input consisting a nominal part un(t) and an adaptive part uad(t) is given by

u(t) = un(t) + uad(t) (7.6)

Reference model that characterizes the ideal tracking performance is defined as

ẋr(t) = Arxr(t) +Brr(t), xr(t0) = xr0 (7.7)

where the reference system and input matrices are designed using feedback gain Kx

and feedforward gain Kr as:

Ar = A0 −B0Kx

Br = B0Kr
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with Ar being Hurwitz reference system matrix and Br being reference input matrix

of appropriate dimensions. Manipulating uncertain system dynamics in Eq 7.4 by

adding and subtracting ‘B0un(t)’ results in:

ẋ(t) = A0x(t) +B0un(t) +B0Λ
[
uad(t) +

(
I − Λ−1

)
un(t) + δ(x) +

Λ−1B†0δA(x, t)x(t)
]

+D0D
†
0δA(x, t)x(t)

(7.8)

Defining the matched uncertainty ∆m and unmatched uncertainty ∆u as

∆m(x, t) , δ(x) +
(
I − Λ−1

)
un(t) + Λ−1B†0δA(x, t)x(t)

∆u(x, t) , D†0δA(x, t)x(t)
(7.9)

simplifies the uncertain dynamical system representation as

ẋ(t) = A0x(t) +B0un(t) +B0Λ
[
uad(t) + ∆m(x, t)

]
+D0∆u(x, t) (7.10)

Assumption 7.1. Uncertainty component ‘Λ−1B†0δA(x, t)x(t)’ can be approximated

by linear combinations of RBFs as

Λ−1B†0δA(x, t)x(t) = θT (t)φθ(x) + εm(x, t)

where θ(t) is unknown time-varying weight matrix with appropriate dimensions and

satisfying the following bounds: ‖θ(t)‖F ≤ θ̄, ‖θ̇(t)‖F ≤ ˙̄θ, ∀t ≥ t0 for unknown

positive scalars θ̄, ˙̄θ ∈ R+. Nonlinear mapping φθ : Rn → Rsθ is known and consists

of the following RBF elements:

φθ(x) = exp

(
−‖x(t)− c̄θ,i‖2

2µ̄2
θ,i

)

with c̄θ,i ∈ Rn being the center of an RBF unit and µ̄θ,i ∈ R+ being the width

of the ith kernel node for i = 1, 2, . . . , sm. For the residual εm(x, t), it holds that

‖εm(x, t)‖ ≤ εm0 ∈ R+, ∀x ∈ Dx, ∀t ≥ t0, where the residual bound εm0 can

be made arbitrarily small by increasing the size of the RBF. Furthermore, matched

uncertainty δ(x) is assumed to be structured, and has the following form:

δ(x) = W T
δ φδ(x)

where Wδ is constant unknown weight matrix and φδ : Rn → Rsδ is known basis

vector-function of appropriate dimensions.
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With Assumption 7.1, aggregated uncertainty ∆m in Eq 7.9 can be expressed as:

∆m(x, t) = W T
m(t)φm(x) + εm(x, t)

with unknown weight and known basis being W T
m(t) ,

[
W T
δ

(
I − Λ−1

)
θT (t)

]

and φm(x) ,
[
φTδ uTn φTθ

]T , respectively.

Assumption 7.2. Unmatched uncertainty ∆u(x, t) in Eq 7.9 can be approximated by

linear combinations of known radial basis functions (RBF) as

∆u(x, t) = W T
u (t)φu(x) + εu(x, t)

where Wu(t) ∈ Rsu×m is unknown time-varying weight matrix satisfying the bounds

‖Wu(t)‖F ≤ w̄u, ‖Ẇu(t)‖F ≤ ˙̄wu with w̄u, ˙̄wu ∈ R+ being unknown positive scalars.

Known nonlinear mapping φu : Rn → Rsu consists of following RBF elements:

φu(x) = exp
(
−‖x(t)− c̄u,i‖2

2µ̄2
u,i

)

with c̄u,i ∈ Rn being the center of an RBF unit and µ̄u,i ∈ R+ being the width

of the ith kernel node for i = 1, 2, . . . , su. For the residual εu(x, t), it holds that

‖εu(x, t)‖ ≤ εu0 ∈ R+, ∀x ∈ Dx, ∀t ≥ t0, where the residual bound εu0 can be

made arbitrarily small by increasing the size of the RBF.

With Assumption 7.1 and Assumption 7.2, uncertain dynamical system in Eq 7.10

can be re-written as:

ẋ = A0x+B0un +B0Λ
[
uad +W T

mφm + εm
]

+D0

[
W T
u φu + εu

]
(7.11)

Then, adaptive controller uad(t) is designed to be:

uad(t) = −Ŵ T
m(t)φm(x)

Applying the control input in Eq 7.6 to uncertain system in Eq 7.11 results in:

ẋ = Arx+Br

[
r + z

]
+B0Λ

[
W̃ T
mφm + εm

]
+D0

[
W T
u φu + εu

]
(7.12)

where W̃m(t) , Wm − Ŵm(t) is the matched parameter estimation error. Next, the

auxiliary reference model is defined similar to Eq 5.4 as the following:

ẋm(t) =Arxm(t) +Br

[
r(t) + z(t)

]
+D0Ŵ

T
u (t)φu(x)− kλe(t), (7.13)
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Let e(t) , xm(t)− x(t) be the auxiliary tracking error. Then, its dynamics becomes:

ė =
(
Ar − kλI

)
e−B0ΛW̃ T

mφm −B0Λεm −D0W̃
T
u φu −Dεu (7.14)

where I ∈ Rn×n is the identity matrix, W̃u(t) , Wu−Ŵu(t) is the unmatched weight

estimation error. In addition, the tracking error is defined as em(t) , xr(t) − xm(t).

Then, one can write the corresponding error dynamics as:

ėm(t) =Arem(t)−Brz(t)−D0Ŵ
T
u (t)φu(x) + kλe(t). (7.15)

7.2.1 Adaptive Laws

Following the similar steps in Section 5.3, applying low-pass filter to uncertain system

dynamics in Eq 7.10 gives

B†0ẋf (t) = B†0A0xf (t) + un,f (t) + Λ
[
uad,f (t) + ∆m,f (x, t)

]

D†0ẋf (t) = D†0A0xf (t) + ∆u,f (x, t)
(7.16)

yielding

Y , Λ
[
uad,f(t) + ∆m,f (x, t)

]
= B†0ẋf (t)−B†0A0xf (t)− un(t)

∆u,f (x, t) = D†0ẋf (t)−D†0A0xf (t)
(7.17)

where the filtered signals are available from Eq 2.12 and followings:

φ̇m,f = ωf
(
φm − φm,f

)

φ̇u,f = ωf
(
φu − φu,f

)

u̇n,f = ωf
(
un − un,f

)

u̇ad,f = ωf
(
uad − uad,f

)

(7.18)

Assumption 7.3. Let F(s) be the transfer function for the low-pass filter in Eq 7.18.

Let ∆m,f = F(s){∆m} where ∆m = W T
mφm + εm as given in Assumption 7.1. Then,

the following entity is bounded:

‖∆m,f −W T
mφm,f‖F = ‖%m‖F ≤ δ̄m

where δ̄m ∈ R+ is an unknown positive scalar constant. Similarly, the following

bound for the filtered unmatched uncertainty holds with unknown constant δ̄u ∈ R+:

‖∆u,f −W T
u φu,f‖F = ‖%u‖F ≤ δ̄u
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Remark 7.1. Assumption 7.3 implies that time-varying learning weight matrices

Wm(t) and Wu(t) have relatively low frequency content. Although it sounds

restrictive, Assumption 7.3 generally holds in many practical systems. For a gain

scheduling problem in aircraft flight control, for instance, scheduling parameters are

usually velocity, altitude, and mass of the aircraft [ref], which are varying slowly.

Furthermore, if the unknown weight matrices Wm and Wu were to be constant, the

inequalities in Assumption 7.3 become equalities with δ̄m = 0 and δ̄u = 0. Hence,

presented assumption already covers the uncertain systems that are parametrized by

unknown constant parameters.

Under the Assumption 7.3, Eq 7.17 can be re-written as:

Y , Λ
[
uad,f +W T

mφm,f + %m
]

= B†0ẋf −B†0A0xf − un
W T
u φu,f + %u = D†0ẋf −D†0A0xf

(7.19)

Next, the estimations of Y and W T
u φu,f are defined as the followings:

Ŷ , Λ̂
[
uad,f + Ŵ T

mφm,f
]

Ŵ T
u φu,f , D†0ẋf −D†0A0xf

(7.20)

where Ŷ , Λ̂, Ŵm, and Ŵu are online estimations of Y,Λ,Wm, and Wu, respectively.

Adaptive laws for Λ̂, Ŵm, and Ŵu are given by:

˙̂
Wm = ΓmProj

{
Ŵm,−φmeTPB + γ1φm,fe

T
Y

}

˙̂
Wu = ΓuProj

{
Ŵu,−φueTPD + µ1φu,f∆̃

T
u,f

}

˙̂
Λ = γ1ΓΛProj

{
Λ̂,
[
eY
(
uad,f + Ŵ T

mφm,f
)T ]}

(7.21)

where the error signals eY and ∆̃u,f are defined as

eY , Y − Ŷ = Λ̃
(
uad,f + Ŵ T

mφm,f
)

+ ΛW̃ T
mφm,f + Λ%m

∆̃u,f , ∆u,f − Ŵ T
u φf,u = W̃ T

u φf,u + %u
(7.22)

Theorem 7.1. Consider the uncertain dynamical system in Eq 7.1 with decomposition

in Eq 7.2, control input in Eq 7.6, ideal reference model in Eq 7.7, auxiliary reference

model in Eq 7.13, and adaptive laws in Eq 7.21. Then, under Assumption 7.1, system
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signals e(t), eY (t), Ŵm(t), W̃m(t), Ŵu(t), W̃u(t), Λ̂(t), Λ̃(t), and z̃u , W̃ T
u φf,u are

uniformly ultimately bounded.

Proof. Consider the following Lyapunov function:

V =
1

2
eTPe+

1

2
tr
(
W̃ T
mΓ−1

m W̃mΛ
)

+
1

2
tr
(
W̃ T
u Γ−1

u W̃u

)
(7.23)

Its time derivative along the system trajectories in Eq 7.14 and Eq 7.21 can be

bounded as

V̇ ≤ −
(1

2
λmin(Q) + kλλmin(P )− k1 − k2

)
‖e‖2 − γ1‖eY ‖2 − µ1

(
1− k3

)
‖z̃u‖2

+
‖PB0Λ‖2

F ε
2
m0

4k1

+
‖PD0‖2

F

4k2

ε2
u0 +

δ̄2
u

4k3

+ w∗m
˙̄θ‖Γ−1

m ‖F‖Λ‖F + w∗u ˙̄w‖Γ−1
u ‖F‖Λ‖F

with z̃u , W̃ T
u φf,u, ‖W̃m‖F ≤ w∗m, ‖W̃u‖F ≤ w∗u. which can be simplified as

V̇ ≤ −
(1

2
λmin(Q) + kλλmin(P )− k1 − k2

)
‖e‖2 − γ1‖eY ‖2 − µ1

(
1− k3

)
‖z̃u‖2 + c

where positive scalar constant c is c , ‖PB0Λ‖2F ε
2
m0

4k1
+
‖PD0‖2F

4k2
ε2
u0 + δ̄2

u

4k3
+

w∗m
˙̄θ‖Γ−1

m ‖F‖Λ‖F + w∗u ˙̄w‖Γ−1
u ‖F‖Λ‖F . In addition, k3 ∈ (0, 1) and positive scalars

k1, k2 ∈ R+ satisfy k1 + k2 < 1
2
λmin(Q) + kλλmin(P ). This result ensures the

boundedness of error signals e(t), eY (t), and z̃u(t).

�

Remark 7.2. Theorem 7.1 ensures that the tracking error e(t) = xm(t) − x(t) is

uniformly ultimately bounded. However, boundedness of the states x(t) cannot be

guaranteed since the auxiliary reference state xm(t) is not bounded, yet. This is also

the case in Chapter 5. In order to guarantee the boundedness of system states x(t),

it is necessary to bound auxiliary state vector xm(t). Hence, the command governor

input is designed as in Section 5.5. It is important to note that the command governor

signal is designed using ideal reference model in Eq 7.7 and auxiliary reference

model in Eq 7.13, which are exactly the same as the ones in Chapter 5. It means

the command governor input design will be the same as in Section 5.5, as well. Thus,

the details of command governor design is omitted to avoid the repetitions.
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7.3 Linearized Aircraft Lateral Dynamics

Linearized equations of motion for lateral dynamics of an aircraft can be stated as [42]




β̇

ṙ

φ̇

ṗ




︸︷︷︸
,ẋp

=




Yβ −1 g
U0

0

N ′β N ′r 0 N ′p

0 tan θ0 0 1

L′β L′r 0 L′p




︸ ︷︷ ︸
,Ap




β

r

φ

p




︸︷︷︸
,xp

+




Y ∗δr 0

N ′δr N ′δa

0 0

L′δr L′δa




︸ ︷︷ ︸
,Bp


δr
δa




︸ ︷︷ ︸
,u

(7.24)

with

Y ∗δr =
Yδr
U0

L′β = Lβ +
Ixz
Izz

Nβ

L′p = Lp +
Ixz
Izz

Np

L′r = Lr +
Ixz
Izz

Nr

L′δa = Lδa +
Ixz
Izz

Nδa

L′δr = Lδr +
Ixz
Izz

Nδr

N ′β = Nβ +
Ixz
Ixx

Lβ

N ′p = Np +
Ixz
Ixx

Lp

N ′r = Nr +
Ixz
Ixx

Lp

N ′δa = Nδa +
Ixz
Ixx

Lδa

N ′δr = Nδr +
Ixz
Ixx

Lδr

where β is sideslip angle [rad], r is angular velocity about body zb-axis [rad/s], φ

is roll angle [rad], p is angular velocity about body xb-axis, θ0 is pitch angle [rad]

at trim condition, U0 is body velocity along xb-axis [m/s], δa is aileron control

input [rad], δr is rudder control input [rad], Ixz, Ixx, Izz are components of inertia

matrix, and Y∗, L∗, N∗ are dimensional stability derivatives. It is important to note

that both static and dynamic stability derivatives vary with respect to system states

and scheduling parameters such as airspeed, altitude, dynamic pressure, weight, etc.

Hence, matrices Ap and Bp vary with the flight condition. These variations are

considered unknown, and only constant nominal system matrix Ap0 and input matrix

Bp0 are known for controller synthesis. In addition, actual nonlinear plant dynamics

involve nonlinear uncertainties such as modeling errors, linearization, etc. Hence, the

matched uncertainty δ is introduced to represent these nonlinearities:

ẋp(t) = Ap(xp, t)xp(t) +Bp

[
u(t) + δ(xp)

]
(7.25)
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with δ(xp) = W T
δ φδ, where the matched uncertainty δ(xp) is defined as

δ(xp) =




−0.31 −0.03

−0.09 0.056

0.23 0.018

0.17 −0.023

0.04 −0.19

−0.013 0.11

0.036 0.14

0.09 −0.23




T 


|β|r
|r|r
|φ|r
sin β

|φ|p
|p|p
|φ|r
sinφ




(7.26)

7.3.1 State Transformation

In Chapter 5, command governor-based adaptive controller is designed assuming the

reference model is in controllable canonical form. In this way, backstepping control

implementation becomes more straight-forward due to integral chain structure of the

controllable canonical form (CCF). However, the pair (Ap, Bp) in Eq 7.24 is not in

CCF. Thus, it is challenging to find a reference model in CCF that still satisfies the

matching condition in Assumption 2.1.

Applying the matrix decomposition in Eq 7.2 and using the uncertainty definitions in

Eq 7.9 yields:

ẋp(t) = Ap0xp(t) +Bp0un(t) +Bp0Λ
[
uad(t) + ∆m(xp, t)

]
+D′0∆u(xp, t) (7.27)

which is equivalent to uncertain system representation in 7.10. Next, the state

transformation x , Txp is applied to get CCF representation [114]:

ẋ = TAp0T
−1

︸ ︷︷ ︸
,A0

x+ TBp0︸ ︷︷ ︸
,B0

un + TBp0︸ ︷︷ ︸
,B0

Λ
[
uad + ∆m(xp, t)

]
+ TD′0︸︷︷︸
,D0

∆u(xp, t) (7.28)

where A0, B0, and D0 are in the following forms:

A0 =




0 1 0 0

−a21 −a22 −a23 −a24

0 0 0 1

−a41 −a42 −a43 −a44



, B0 =




0 0

1 0

0 0

0 1



, D0 =




0 1

0 0

1 0

0 0



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Ideal reference model is designed to be in the following form:

Ar =




0 1 0 0

−ω2
1 −2ξ1ω1 0 0

0 0 0 1

0 0 −ω2
2 −2ξ2ω2



, Br =




0 0

ω2
1 0

0 0

0 ω2
2




(7.29)

where ω1, ω2 ∈ R+ are desired natural frequencies and ζ1, ζ2 ∈ R+ are desired

damping coefficients.

One can realize that the reference model selection in Eq 7.29 results in two decoupled

tracking error dynamics from Eq 7.15:

Subsys 1. ξ̇1 =


 0 1

−ω2
1 −2ζ1ω1


 ξ1 −


 0

ω2
1


 z1 −


1

0


 ∆̂u2 + kλ


e1

e2




Subsys 2. ξ̇2 =


 0 1

−ω2
2 −2ζ2ω2


 ξ2 −


 0

ω2
2


 z2 −


1

0


 ∆̂u1 + kλ


e3

e4




(7.30)

Hence, command governor input design for 2nd order systems in Section 5.5.1 is

directly applied for z(t) =
[
z1 z2

]T .

7.4 Numerical Simulation

7.4.1 System Description

For a typical flight control problem, forces and moments acting on the aircraft are

highly dependent on the dynamic pressure, which is a function of airspeed and air

density. Neglecting the effects of humidity, it is mostly possible to replace the air

density with flight altitude using standard atmosphere model [115]. Hence, one can

safely pick the airspeed and altitude as the scheduling variables to reflect the changes

in the plant dynamics as operating conditions change. In this example, the flight

altitude is kept (almost) constant at 2000 m. Nonlinear model of the aircraft shown

in Figure 7.1 is trimmed and linearized at steady, straight, level flight conditions for

different velocities ranging from 24 m/s to 38 m/s with a velocity increment of 1 m/s.

Hence, there exist 15 different linear models for the shown aircraft. Corresponding

system and input matrices are given in Appendix A.
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Figure 7.1: Isometric View of Simulation Aircraft

Nominal linear model is chosen to be the middle one, which is obtained at calibrated

airspeed (CAS) of 30 m/s. Corresponding matrices Ap0 and Bp0 are as follows:

Ap0 =




−0.2 −1.0 0.3 0.03

3.5 −0.89 0 −2.2

0 0.03 0 1

−1.9 4.2 0 −9.9



, Bp0 =




−0.11 −0.004

10.2 0.74

0.0 0.0

−3.94 24.83




Transformation matrix T for x = Txp is given by

T =




−0.0964 −0.0010 −0.0021 0.0

0.0156 0.0973 −0.0289 −0.0029

−0.0141 −0.0002 0.0399 0.0

0.0023 0.0154 −0.0042 0.0398




yielding

A0 =




0.0 1.0 0.0 0.0

−3.61 −0.38 −0.92 −5.39

0.0 0.0 0.0 1.0

0.32 3.24 1.26 −10.62



, B0 =




0 0

1 0

0 0

0 1



, D0 =




0 1

0 0

1 0

0 0




Reference model design parameters that determine the desired closed-loop behavior

are chosen as ω1 = ω2 = 1.6 rad/s, and ζ1 = ζ2 = 0.86. Then, feedback gain Kx and
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feedforward gain Kr become:

Kx =


−1.05 2.37 −0.92 −5.39

0.32 3.24 3.82 −7.87




Kr =


2.56 0.0

0.0 2.56




Adaptive control gains utilized in the numerical simulations are as follows: kλ =

Γf = Γm = γ1 = µ1 = 10, ωf = Γ0 = 5, Γ1 = 15, and Γu = ΓΛ = 1.

Simulation sampling frequency is set to 100 Hz. All the estimated and filtered signals

are initialized from zero.

7.4.2 Results

In this part, a fighter aircraft performing successive bank maneuvers to the left and

right while experiencing an undamped Phugoid oscillations with period of Tphugoid =

30 seconds is considered. Corresponding velocity profile is illustrated in Figure 7.2.

Since the velocity of the aircraft varies during Phugoid oscillations, linearized model

will differ at each velocity since aircraft velocity is one of the scheduling parameters.

Figure 7.2: Velocity Variation during Phugoid Oscillations
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Nominal controller tracking response to roll commands is given in Figure 7.3. As

seen from the figure, the roll tracking performance is not acceptable.

Figure 7.3: Command Tracking Performance of the Nominal Controller

Next, the standard MRAC is applied to suppress the effects of matched uncertainties,

while leaving the unmatched part of the uncertainty as it is. Figure 7.4 presents

the corresponding command tracking performance. Although the roll state tracks

the command better, it is not still within the acceptable limits. Furthermore,

excessive sideslip angles are encountered during bank maneuvers, which results in

uncoordinated turn maneuvers.

In Figure 7.5, estimated matched uncertainty is illustrated with Standard MRAC. It

is clear from the figure that estimated matched uncertainty is considerably aligned

with the actual matched uncertainty (see top two plots). However, undesired

high-frequency variations appear here and there in the matched uncertainty estimation

with Standard MRAC. In the presence of time-delays and/or actuation constraints,

these high-frequency variations may result in instability.

As the third controller, CMRAC is applied to the problem of interest. Corresponding

command tracking results and matched uncertainty estimation performance are

illustrated in Figure 7.6 and Figure 7.7, respectively. High-frequency oscillations that
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Figure 7.4: Command Tracking Performance of the Standard MRAC

Figure 7.5: Matched Uncertainty Estimation for the Standard MRAC

are encountered in Standard MRAC are gone with the CMRAC as seen in Figure 7.7.

In addition, it is clear from the figure that estimated matched uncertainty overlaps with

the actual unknown uncertainty in CMRAC, which yields smooth systems signals. As

opposed to Standard MRAC, the success of CMRAC in suppressing the error signal
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eY is evident from the figure. However, the tracking performance is not acceptable

even with (almost) perfect estimation of the matched uncertainty due to presence

of unmatched uncertainties. Furthermore, bank maneuvers still induce unacceptably

large sideslip angles (see Figure 7.6).

Figure 7.6: Command Tracking Performance of the CMRAC

Figure 7.7: Matched Uncertainty Estimation for the CMRAC
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Lastly, the simulation results for the proposed Command Governor-based MRAC

(CG-MRAC) framework are presented. Figure 7.8 illustrates the corresponding

command tracking performance. As seen from the figure, desired tracking is

achieved as soon as the unmatched uncertainties are taken into account with command

governor. In addition, one can immediately observe that induced sideslip angles are

drastically decreased compared to aforementioned controllers.

Figure 7.8: Command Tracking Performance of the Proposed CG-MRAC

Figure 7.9 compares the transformed states x, auxiliary reference model states xm,

and ideal reference model states xr. As seen from the figure, transformed system

states overlap with the auxiliary reference model states. Additionally, auxiliary

reference model satisfactorily follows the ideal reference model in the controlled

output channels (sideslip and roll). Figure 7.10 illustrates the matched uncertainty

estimation performance of the Command Governor-based MRAC. One of the driving

errors for the weight update law in Eq 7.21 is the error signal eY . Hence, it

is expected from the adaptive law that error eY successfully suppressed. Indeed,

this is the case as seen in Figure 7.10. However, matched uncertainty estimation

performance is relatively degraded. Because, the driving tracking error in the

adaptive law is the difference between auxiliary reference states and system states

where it was the ideal reference model in standard MRAC and CMRAC. Yet,

131



Figure 7.9: Transformed State Tracking Performance of the Proposed CG-MRAC

having relatively small error eY , eY ∼= 0, is sufficient to reach the desired tracking

response. Figure 7.11 presents the unmatched uncertainty estimation performance

for CG-MRAC. Estimated unmatched uncertainty is almost aligned with the actual

unmatched uncertainty. In fact, the success in the unmatched uncertainty estimation

is the main reason to obtain the desired command tracking in Figure 7.8.

Figure 7.10: Matched Uncertainty Estimation for the Proposed CG-MRAC
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Figure 7.11: Unmatched Uncertainty Estimation for the Proposed CG-MRAC
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CHAPTER 8

CONCLUSION

8.1 Concluding Remarks

The intent of this thesis is to introduce improvements to filter-based adaptive

controllers and novel adaptive control architectures. For this purpose, first an

information recovery system is presented in Chapter 3 for Combined/Composite

Model Reference Adaptive Controllers (CMRAC), called Information

Recovery-based Model Reference Adaptive Control (IR-MRAC). In the presence

of a poorly designed low-pass filter with an inappropriate bandwidth, command

tracking performance of CMRAC is degraded as the low-pass filter suppresses the

useful content for adaptation. With the proposed method, adverse effects of excessive

filtering is eliminated by including the high-frequency signals in the adaptation.

Furthermore, a time-varying learning rate is introduced to the adaptive laws that

works as stability augmentation systems for the uncertainty estimation dynamics.

Hence, undesired effects of included high-frequency signals are attenuated by the

time-varying gain. In addition, new directions are added to weight update laws

to achieve faster adaptation and parameter convergence without persistency of

excitation. In order to show the efficacy of IR-MRAC, both numerical and software

in-the-loop simulations are conducted, showing that it is practical and tractable in

real applications. Then, IR-MRAC is extended to cover the underactuated systems

with unknown control effectiveness in Chapter 4. Asymptotic stability of tracking

error and parameter estimation error is ensured by separate identification of unknown

control effectiveness and uncertain weight matrices with an indirect-direct adaptive

control architecture. Chapter 5 introduces a new adaptive control framework to deal

with systems having not only matched but also unmatched uncertainties. Specifically,
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a command governor input is designed for the command tracking performance

recovery that is affected by the unmatched uncertainty. Unlike the examples from the

literature, the proposed Command Governor-based MRAC (CG-MRAC) is capable

of dealing with arbitrary state-dependent matched and unmatched uncertainties,

which is much harder and general case than bounded unmatched time-varying

perturbations. CG-MRAC can also address the model reference adaptive control

problems with ideal reference models that does not satisfy the matching condition.

In this way, desired command tracking performance can be defined with more

flexible reference systems. Chapter 6 highlights the major issues in energy-based

longitudinal flight control problems. Specifically, energy management of the aircraft

should be properly carried out to achieve the desired and decoupled airspeed and

altitude responses. Contributions from the previous chapters to filter-based adaptive

controllers are applied to energy-based longitudinal flight control problem to ensure

both Hamiltonian and Lagrangian dynamics operate at the same bandwidth. As a

result, desired tracking performance is achieved in the presence of uncertainties.

Improvements with the proposed energy-based adaptive controller is illustrated

through high-fidelity nonlinear simulations of an unmanned aircraft (UAV). Lastly,

contributions to unmatched systems in Chapter 5 are exploited to solve the gain

scheduled lateral flight control problem in the presence of uncertainties in Chapter 7.

Mathematical representation of nonlinear uncertain system dynamics is re-formulated

assuming very little information is available for the aircraft model. In fact, the only

assumption appears to be known sign of the control gain. With CG-MRAC being

applied to the re-formulated uncertain system dynamics, the desired command

following performance is achieved. Although the chapter is mainly concentrated on

gain scheduling problem, new formulation of the system dynamics allows that the

proposed method can readily be extended for parameter varying nonlinear systems

and switched systems. The proposed lateral flight controller is also applied to a

nonlinear parameter varying dynamics of a UAV to emphasize the contributions of

the chapter. As a result, this dissertation has contributed a few improvements to

filter-based adaptive control theory for fast adaptation and parameter convergence,

and exemplified the contributions with real applications from the aerospace industry.

Efficacy of the proposed methods are illustrated through numerical simulations, and

rigorous closed-loop stability is established by Lyapunov’s stability theorem.
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8.2 Future Research Directions

Following studies could be the future research directions:

• The results can be extended to output feedback adaptive control.

• A rigorous mathematics can be carried out to tune newly introduced design

parameters. For instance, to what extend the high-frequency content should be

involved in the adaptation? With further transient analysis, the choice of newly

introduced learning rates can be clarified.

• An immediate extension to presented works becomes the adaptive control

uncertain systems with time-varying ideal parameters. In that regard, Swapping

Lemma can be used to extract more information about the time-varying

weights.

• Efficacy of the proposed method in the presence of unknown control

effectiveness is illustrated with several examples. These results can be extended

to cover the overactuated systems. This extensions opens new research

directions in the adaptive control allocation field.

• Results of Chapter 5 on unmatched systems can be extended to cover nonlinear

parameter varying systems and switching systems. A real world example could

be a damage in the aircraft structure.
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Appendix A - Scheduled Lateral Matrices

Ap0,CAS24 =




−0.17 −1.0 0.37 0.12

3.0 −1.35 0.0 −2.35

0.0 0.12 0 1.0

−0.05 6.4 0.0 −6.04



, Bp0,CAS24 =




−0.08 −0.003

6.42 0.79

0.0 0.0

−2.48 13.34




Ap0,CAS25 =




−0.18 −1.0 0.35 0.09

3.1 −1.25 0.0 −2.34

0.0 0.09 0.0 1.0

−0.25 5.98 0.0 −6.96



, Bp0,CAS25 =




−0.08 −0.004

7.01 0.82

0.0 0.0

−2.72 15.3




Ap0,CAS26 =




−0.19 −1.0 0.34 0.08

3.17 −1.17 0.0 −2.32

0.0 0.08 0.0 1.0

−0.51 5.56 0.0 −7.93



, Bp0,CAS26 =




−0.09 −0.004

7.58 0.82

0.0 0.0

−2.95 17.2




Ap0,CAS27 =




−0.20 −1.0 0.33 0.065

3.24 −1.08 0.0 −2.29

0.0 0.065 0.0 1.0

−0.8 5.17 0.0 −8.78



, Bp0,CAS27 =


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0.0 0.0

−3.18 19.07
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

Ap0,CAS28 =




−0.20 −1.0 0.32 0.052

3.32 −1.02 0.0 −2.26

0.0 0.05 0.0 1.0

−1.14 4.79 0.0 −9.42



, Bp0,CAS28 =




−0.1 −0.004

8.85 0.80

0.0 0.0

−3.44 20.97




Ap0,CAS29 =




−0.21 −1.0 0.306 0.04

3.39 −0.94 0.0 −2.22
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