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We explore the chaotic dynamics of the mass-deformed Aharony-Bergman-Jafferis-Maldacena model.
To do so, we first perform a dimensional reduction of this model from 2þ 1 to 0þ 1 dimensions,
considering that the fields are spatially uniform. Working in the ’t Hooft limit and tracing over ansatz
configurations involving fuzzy 2-spheres, which are described in terms of the Gomis–Rodriguez-Gomez–
Van Raamsdonk–Verlinde matrices with collective time dependence, we obtain a family of reduced
effective Lagrangians and demonstrate that they have chaotic dynamics by computing the associated
Lyapunov exponents. In particular, we focus on how the largest Lyapunov exponent, λL, changes as a
function of E=N2. Depending on the structure of the effective potentials, we find either λL ∝ ðE=N2Þ1=3 or
λL ∝ ðE=N2 − γNÞ1=3, where γNðk; μÞ are constants determined in terms of the Chern-Simons coupling k,
the mass μ, and the matrix level N. Noting that the classical dynamics approximates the quantum theory
only in the high-temperature regime, we investigate the temperature dependence of the largest Lyapunov
exponents and give upper bounds on the temperature above which λL values comply with the Maldacena-
Shenker-Stanford bound, λL ≤ 2πT, and below which it will eventually be not obeyed.
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I. INTRODUCTION

Studies on exploring the structure of chaotic dynamics
emerging from the matrix quantum mechanics have
been continuing with growing interest for quite some-
time [1–14]. Early investigations on the chaotic dynamics
of Yang-Mills (YM) gauge theories dates back to the
1980s [15–17] and in the context of the Banks-Fischler-
Shenker-Susskind (BFSS) model [18] to the work Arefeva
et al. [19]. Recent studies are especially motivated by a
result due to Maldacena-Shenker-Stanford (MSS) [6],
which briefly states that, under rather general conditions
met by a physical system, the largest Lyapunov exponent
(which is a measure of chaos in both classical and quantum
mechanical systems) for quantum chaotic dynamics is
controlled by a temperature-dependent bound and given
by λL ≤ 2πT. It is conjectured that systems which are
holographically dual to the black holes are maximally
chaotic, meaning that they saturate this bound. This is
already demonstrated for a particular fermionic matrix

model, namely, the Sachdev-Ye-Kitaev [7] model and
expected to be so for other matrix models which have a
holographic dual such as the BFSS [18] model. The latter
and the Berenstein-Maldacena-Nastase (BMN) model [20]
are supersymmetric SUðNÞ gauge theories, describing the
dynamics of the N-coincident D0-branes in the flat and
spherical backgrounds, respectively, and also appear in
the Discrete Light Cone Quantization (DLCQ) of M theory
in the flat and the pp-wave backgrounds [18,20–25]. It is
well known that the gravity dual of the BFSS model is
obtained in the ’t Hooft limit and describes a phase in which
D0-branes form a so-called black brane, i.e., a string
theoretical black hole [24–26].
Classical dynamics of YMmatrix models provide a good

approximation of the high-temperature limit of the quantum
theory. Although this regime is distinguished from that in
which the gravity dual is obtained (i.e., the low-temperature
limit), early numerical studies conducted in Refs. [27,28]
gave no indication of an occurrence of a phase transition
between the low- and high-temperature limits, which
makes it quite plausible that some features like fast
scrambling [1] of black holes in the gravity dual and
temperature dependence of chaotic dynamics may be
retained to a certain extent at the high-temperature limit,
too. For instance, the numerical results obtained in Ref. [2]
by exploiting the classical dynamics of the BMN model
results in a fast thermalization. In Ref. [4], classical chaotic
dynamics of the BFSS models is studied, and there it is
found that the largest Lyapunov exponent is given as
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λL ¼ 0.2924ð3Þðλ0t HooftTÞ1=4. Therefore, the MSS bound
is not obeyed only at temperatures below the critical
temperature Tc ≈ 0.015, while it remains parametrically
smaller than 2πT for T > Tc. In Ref. [14], we have studied
chaos in massive deformations of the SUðNÞ Yang-Mills
gauge theories in 0þ 1-dimensions, with the same matrix
content as that of the bosonic part of the BFSS model, by
making use of ansatz configurations involving both fuzzy
2- and 4-spheres. Our numerical results have shown very
good agreement with the λL ∝ ðE=N2Þ1=4-type functional
behavior of the largest Lyapunov exponent with energy,
which, together with the application of the virial and the
equipartition theorems, allowed us to put upper bounds on
the critical temperature, Tc. Depending on the values of the
mass parameters, our estimates for Tc were around twice or
about an order of magnitude larger than that obtained for
the BFSS model in Ref. [4]. In the present paper, we extend
and apply the methods we have developed in Ref. [14] to
another interesting gauge theory, namely, the massive
deformation of the Aharony-Bergman-Jafferis-Maldacena
(ABJM) model [29–31]. Before focusing our attention in
this direction, let us also note that not only the BFSS and
the BMN matrix models but even their subsectors at small
values of N are quite nontrivial many-body systems, which
escape a complete solution to this day. Nevertheless, the
chaotic dynamics of the smallest YM matrix model
composed of two 2 × 2 Hermitian matrices with SUð2Þ
gauge and SOð2Þ global symmetries has recently been
explored in Ref. [5] (see also Refs. [32,33] in this context)
with the chaotic phase, corresponding to a toy model for a
black hole, being controlled by the angular momentum
associated to the rigid SOð2Þ symmetry. In Ref. [34], two of
us explored the minimal Yang-Mills-Chern-Simons matrix
model and analyzed the effect of the Chern-Simons (CS)
coupling on the chaotic dynamics.
As is well known, the ABJM model is a 2þ 1-

dimensional N ¼ 6 supersymmetric SUðNÞ × SUðNÞ
CS gauge theory at the CS level ð−k; kÞ [29] and describes
the dynamics of N coincident M2-branes [29,35].
This model consists of four complex scalar fields CI

(I∶1; 2; 3; 4), as would be expected due to the eight trans-
verse directions to the M2-branes, and four Majorana
fermions ψ I to match the bosonic and fermionic degrees
of freedom as a minimal requirement for the presence of
supersymmetry. These fields are coupled bifundamentally
to the SUðNÞ CS gauge fields Aμ and Âμ; i.e., they carry the
ðN; N̄Þ representation of the SUðNÞ × SUðNÞ group. The
model has the R-symmetry group Uð1Þ × SUð4Þ under
which both the complex scalars and the fermions transform
in the four-dimensional fundamental representation of
SUð4Þ and carry þ1 charge under the Uð1Þ factor. The
ABJM model is dual to type-IIA string theory on AdS4 ×
S7=Zk (this becomes AdS4 × CP3 in the k → ∞ limit) via
the AdS=CFT correspondence [29,35], and it possesses a
massive deformation due to Hosomichi et al. [30] and

Gomis et al. (GRVV) [31], preserving all the supersym-
metry, but breaking the R symmetry. It is this model on
which we focus our attention in the present paper. The
vacuum configurations in this model are given by the
GRVV matrices, which describe fuzzy 2-spheres as a
somewhat intricate analysis demonstrates [31,35]. This
feature is similar and comparable to the BMN model,
which also has fuzzy spheres as the vacuum solutions. Our
aim here is to explore the chaotic dynamics emerging from
this model at the classical level as an approximation to the
quantum theory in the high-temprature regime using both
analytic and numeric techniques and determine upper
bounds on the temperature of the system at consecutively
higher matrix levels, above which the MSS bound is
satisfied and below which it will eventually not be obeyed.
The latter is naturally expected to occur, since, as we
already noted, the classical treatment of the model could
approximate the dynamics of the full quantum theory only
at sufficiently high temperatures. Toward this aim, we first
perform a dimensional reduction of this model from 2þ 1
to 0þ 1 dimensions by considering that the fields are
spatially uniform. We work in the ’t Hooft limit and focus
on two distinct ansatz configurations both involving fuzzy
2-spheres, which are described in terms of the GRVV
matrices. These configurations have collective time
dependence, which are introduced by real functions of
time multiplying the latter. Tracing over these configura-
tions yields a family of reduced effective Lagrangians, and
we demonstrate that they have chaotic dynamics by
computing their Lyapunov exponents. In particular, we
direct our attention to examine how the largest Lyapunov
exponent, λL, changes as a function of E=N2. It turns out
that, depending on the structure of the effective potentials,
we find that either λL ∝ ðE=N2Þ1=3 or λL ∝ ðE=N2 − γNÞ1=3,
where γNðk; μÞ is a constant determined in terms of the CS
coupling k, the mass μ, and the matrix level N. This power-
law response of λL to energy is also anticipated and
supported by the exact scaling symmetry possessed by
the model in the massless limit as will be discussed in the
next section. Making use of our numerical results, and
evoking the virial and equipartition theorems, we explore
the implications for the aforementioned MSS conjecture in
the context of this model. The main outcomes are the upper
bounds we obtain on the temperatures above which largest
Lyapunov exponents comply with the MSS bound and
below which it will eventually be not obeyed. At the same
time, we demonstrate that with increasing matrix level, i.e.,
with better numerical approximation of the ’t Hooft limit,
estimates of Tc display a decreasing trend; put differently,
the temperature range in which the MSS bound is valid
expands gradually.
The paper is organized as follows. In Sec. II, we outline

and review the various features of the massive deformation
of the ABJM model and obtain its reduction from 2þ 1 to
0þ 1 dimensions by assuming spatially uniform fields. In
Sec. III, we introduce our first ansatz configuration, obtain
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the reduced effective actions, and present the results of the
numerical analysis leading to the modeling of the energy
dependence of the largest Lyapunov exponent. This is
followed by the discussion explaining how we extract the
temperature dependence and relate our findings to the MSS
conjecture. In Sec. IV, results of an analysis following
mainly the same steps of Sec. III are presented for another
ansatz configuration. Several details of the calculations are
relegated to Appendixes A and B. We conclude in Sec. V

by briefly summarizing our results and indicating some
directions for future studies.

II. REDUCTION OF MASS-DEFORMED ABJM
MODE TO 0+1 DIMENSIONS

We start with writing out the action for the bosonic part
of the mass-deformed ABJM model. This is given
as [30,31]

SABJM ¼
Z

d3x
k
4π

ϵμνλTr

�
Aμ∂νAλ þ

2i
3
AμAνAλ − Âμ∂νÂλ −

2i
3
Âμ Âν Âλ

�
− TrjDμQαj2 − TrjDμRαj2 − V; ð2:1Þ

where Aμ and Âμ (μ∶0; 1; 2) are two distinct gauge fields transforming under the SUðNÞk and SUðNÞ−k gauge
transformations, respectively. The subscripts �k ∈ Z label the level of the Chern-Simons terms associated to these
gauge fields. The potential term is given as

V ¼ TrðjMαj2 þ jNαj2Þ; ð2:2Þ

where

Mα ¼ μQα þ 2π

k
ð2Q½αQ†

βQ
β� þ RβR†

βQ
α −QαR†

βR
β þ 2QβR†

βR
α − 2RαR†

βQ
βÞ;

Nα ¼ −μRα þ 2π

k
ð2R½αR†

βR
β� þQβQ†

βR
α − RαQ†

βQ
β þ 2RβQ†

βQ
α − 2QαQ†

βR
βÞ: ð2:3Þ

In this expression, ðQα; RαÞ ≔ CI with (α∶1; 2) and
(I∶1; 2; 3; 4) are complex bifundamental scalar fields;
i.e., they transform as Qα → ULQαUR, Rα → ULRαUR,
where ðUL;URÞ ∈ SUðNÞk × SUðNÞ−k. The covariant
derivatives are given as

DμQα ¼ ∂μQα þ iAμQα − iQαÂμ;

DμRα ¼ ∂μRα þ iAμRα − iRαÂμ; ð2:4Þ

and μ stands for the mass of the fields ðQα; RαÞ. eiSABJM is
invariant under the gauge group SUðNÞk × SUðNÞ−k,
provided that k ∈ Z. The latter is the level quantization
of the Chern-Simons couplings in the action. In (2.3), we
use the notation

Q½αQ†
βQ

β� ¼ QαQ†
βQ

β −QβQ†
βQ

α; ð2:5Þ

and likewise for Rα’s.
The ABJM model has the global SUð4ÞR ×Uð1ÞR

R-symmetry group, which is broken down to SUð2Þ ×
SUð2Þ × Uð1ÞA ×Uð1ÞB × Z2 by the mass deformation
terms given inMα and Nα. If there is no mass deformation,
it is suitable to formulate the theory in terms of the

complex scalar fields CI, which transform under the
four-dimensional fundamental representation of the
SUð4ÞR factor and carry Uð1ÞR charge þ1. In the mass-
deformed model, Qα transform under the first and Rα

transform under the second of the SUð2Þ factors of the R-
symmetry group, and under Uð1ÞA, they have the charges
1;−1, respectively, while under Uð1ÞB, they both have
charge 1, and the Z2 factor serves to exchange Qα and Rα.
To dimensionally reduce SABJM to 0þ 1 dimensions, we

declare that all fields are independent of the spatial
coordinates and depend on time only. Consequently, all
partial derivatives with respect to the spatial coordinates
vanish. We may introduce the notation Aμ ≡ ðA0; XiÞ, Âμ ≡
ðÂ0; X̂iÞwith (i ¼ 1; 2). Spatial and time components of the
covariant derivative are then

DiQα ¼ iXiQα − iQαX̂i; DiRα ¼ iXiRα − iRαX̂i;

D0Qα ¼ ∂0Qα þ iA0Qα − iQαÂ0;

D0Rα ¼ ∂0Rα þ iA0Rα − iRαÂ0; ð2:6Þ

and the action takes the following form:
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SABJM−R ¼ N
Z

dt
k
4π

Trð−ϵijXi
_Xj þ iϵijA0½Xi; Xj�Þ −

k
4π

Trð−ϵijX̂i
_̂Xj þ iϵijÂ0½X̂i; X̂j�Þ

þ TrðjD0Qαj2Þ − TrðjDiQαj2Þ þ TrðjD0Rαj2Þ − TrðjDiRαj2Þ − V: ð2:7Þ

Expressing the Chern-Simons parts of this action in terms of the covariant derivatives D0Xi ≔ ∂0Xi − i½A0; Xi�, and
D̂0X̂i ≔ ∂0X̂i − i½Â0; X̂i�, we may as well write

SABJM−R ¼ N
Z

dt −
k
4π

TrðϵijXiD0XjÞ þ
k
4π

TrðϵijX̂iD̂0X̂jÞ þ TrðjD0Qαj2Þ

− TrðjDiQαj2Þ þ TrðjD0Rαj2Þ − TrðjDiRαj2Þ − V: ð2:8Þ

In (2.7) and (2.8), it is understood that all fields depend on
time only.We have readilywritten the reduced action in the ’t
Hooft limit. The latter is defined as follows. While reducing
from 2þ 1 to 0þ 1 dimensions, we have integrated over the
two-dimensional space whose volume may be denoted, say,
byV2. Therefore, wemay introduce1λ0t Hooft ≔ N

V2
and require

that it remains finite in the limit V2 → ∞ and N → ∞. In
SABJM−R, we have scaled λ0t Hooft to unity. If needed, it is
possible to restore λ0tHooft back in SABJM−R by performing
the scalings Xi → λ−1=2Xi, X̂i → λ−1=2X̂i, A0 → λ−1=2A0,
Â0 → λ−1=2Â0, Qα → λ−1=4Qα, Rα → λ−1=4Rα, μ → λ−1=2μ,
and t → λ1=2t. Let us note also that SABJM−R is manifestly
gauge invariant under the SUðNÞk × SUðNÞ−k gauge
symmetry.2

The ground states of this reduced model are the same as
that of the original model and given by configurations
minimizing the potential V in (2.2). Since the latter is
positive definite, its minimum is zero and is given by the
configuration

Mα ¼ 0 ¼ Nα: ð2:9Þ

There are two immediate solutions to (2.9), which are
given as

Rα ¼ cGα; Qα ¼ 0;

Rα ¼ 0; Qα ¼ cGα; ð2:10Þ
where Gα are the GRVV matrices [31,35] defining a fuzzy

2-sphere [38] at the matrix level N and c ¼
ffiffiffiffi
kμ
4π

q
. Let us

note in passing that c ¼ 0 gives a trivial solution in which
both the fields Qα and Rα vanish and is of no interest to us
in what follows. Explicitly, Gα are given as [31]

ðG1Þmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m − 1

p
δm;n;

ðG2Þmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N −m

p
δmþ1;n;

ðG†
1Þmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m − 1

p
δm;n;

ðG†
2Þmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N − n

p
δnþ1;m; ð2:11Þ

with m; n ¼ 1;…; N, and they fulfill the relation

Gα ¼ GαG†
βG

β − GβG†
βG

α: ð2:12Þ

We may notice at this stage that it is possible to work in
the gauge with A0 ¼ 0 and Â0 ¼ 0. Evaluating the varia-
tions of SABJM−R with respect to A0 and Â0, we find the
Gauss-law constraint is given by the two equations

k
2π

½X1; X2� þ _QαQ†
α −Qα _Q†

α þ _RαR†
α − Rα _R†

α ¼ 0;

−
k
2π

½X̂1; X̂2� −Q†
α _Qα þ _Q†

αQα − R†
α _Rα þ _R†

αRα ¼ 0:

ð2:13Þ
It is also useful to note that the Hamiltonian takes the

form

H ¼ Tr

�
1

N
jPα

Qj2 þ
1

N
jPα

Rj2 þ NjDiQαj2 þ NjDiRαj2
�

þ NV; ð2:14Þ

1Note that in the original model, i.e., in 2þ 1 dimensions, the
’t Hooft coupling is identified as λ0t Hooft ¼ N

k held fixed with
N; k → ∞ [35]. In the reduced model, too, we may define
λ̃0t Hooft ≔ N

kV2
¼ λ0 t Hooft

k held fixed with N; V2 → ∞, while, in

contrast, k can remain finite. In this case, scaling λ̃0t Hooft to
1
k

is the same as scaling λ0t Hooft to unity.
2In particular, let us note that pure CS action is indeed

manifestly gauge invariant in 0þ 1 dimensions as opposed to
the non-Abelian CS action in 2þ 1 dimensions, which is not. The
latter gives rise to the level quantization of the CS coupling, i.e.,
k ∈ Z. In fact, after the reduction of the CS terms to 0þ 1
dimensions but prior to introducing the ’t Hooft parameter λ0t Hooft,
the effective CS coupling is simply κ ≔ 1

4π kV2 and is no longer an
integral multiple of 1

4π due to the arbitrary volume V2 of the two-
dimensional compact space we have integrated over. This is
consistent with the fact that CS term in 0þ 1 dimensions is gauge
invariant and therefore its coupling is not level quantized. The
latter also follows from the fact that π1ðSUðNÞÞ ¼ 0 and the
general considerations on the gauge symmetry properties of eiSCS
which may be found, for instance, in Refs. [36,37].

K. BAŞKAN, S. KÜRKÇÜOĞLU, and C. TAŞCI PHYS. REV. D 107, 066006 (2023)

066006-4



where

Pα
Q ¼ ∂L

∂ _Qα
¼ N _Qα†; Pα

R ¼ ∂L

∂ _Rα
¼ N _Rα† ð2:15Þ

are the conjugate momenta associated to Qα and Rα,
respectively. It is straightforward to see that the
Hamiltonian for the CS part of the action vanishes
identically as expected [37].
Let us consider the scaling transformation

ðQα; RαÞ → ðρ−1=2Qα; ρ−1=2RαÞ;
ðXi; X̂iÞ → ðρ−1Xi; ρ−1X̂iÞ; t → ρt; ð2:16Þ

where ρ is an arbitrary positive constant. Under this
transformation, we have ðPα

Q; P
α
RÞ → ðρ−3=2Pα

Q; ρ
−3=2Pα

RÞ
and Vjμ¼0 → ρ−3Vjμ¼0. Therefore, the energy scales as
E → ρ−3E. Since the Lyapunov exponent has the dimen-
sions of inverse time, we see that it scales as

λL ∝ E1=3; ð2:17Þ

in the massless limit. In the ensuing sections, we will see
that this scaling of the Lyapunov exponents with energy is
essentially preserved after taking the mass deformations
into account.
We are now in a position to propose ansatz configura-

tions, through which we will be able to explore the
emerging chaotic dynamics. We will consider two different

ansatz configurations involving the GRVV matrices and
satisfying the Gauss-law constraints. Both of these ansatz
configurations involve collective time dependence and are
introduced via real functions of time.

III. ANSATZ I AND THE EFFECTIVE ACTION

The first matrix configuration we focus on is specified as

Xi ¼ αðtÞdiagððAiÞ1; ðAiÞ2;…; ðAiÞNÞ;
X̂i ¼ βðtÞdiagððBiÞ1; ðBiÞ2;…; ðBiÞNÞ;
Qα ¼ ϕαðtÞGα; Rα ¼ 0; ð3:1Þ

where ðAiÞm, ðBiÞm are constants and i ¼ 1; 2, m ¼
1; 2;…; N and α ¼ 1; 2. Thus, Xi and X̂i are taken as
diagonal matrices. No sum over the repeated index α is
implied in the last line of (3.1). Here, ϕαðtÞ, αðtÞ, and βðtÞ
are real functions of time, and the Gauss-law constraint
given in Eq. (2.13) is easily seen to be satisfied by this
choice of the matrices.
Evaluating the equations of motion for αðtÞ and βðtÞ,

we find that the emerging coupled equations have only
one possible real solution and that is the trivial solution
given simply as αðtÞ ¼ βðtÞ ¼ 0. This result is proved in
Appendix A. Henceforth, setting Xi and X̂i to zero,
inserting last line of (3.1) in the action (2.8), and perform-
ing the traces over the GRVVmatrices at the level ofN × N
matrices, we obtain the reduced Lagrangian

LN ¼ N2ðN − 1Þ
�
1

2
_ϕ2
1 þ

1

2
_ϕ2
2 −

1

2
μ2ðϕ2

1 þ ϕ2
2Þ −

8πμ

k
ϕ2
1ϕ

2
2 −

8π2

k2
ϕ4
1ϕ

2
2 −

8π2

k2
ϕ2
1ϕ

4
2

�
: ð3:2Þ

The corresponding Hamiltonian is

HNðϕ1;ϕ2; pϕ1
; pϕ2

Þ ¼ p2
ϕ1

2N2ðN − 1Þ þ
p2
ϕ2

2N2ðN − 1Þ

þ N2ðN − 1Þ
�
1

2
μ2ðϕ2

1 þ ϕ2
2Þ þ

8πμ

k
ϕ2
1ϕ

2
2 þ

8π2

k2
ϕ4
1ϕ

2
2 þ

8π2

k2
ϕ4
2ϕ

2
1

�

¼ ∶
p2
ϕ1

2N2ðN − 1Þ þ
p2
ϕ2

2N2ðN − 1Þ þ VNðϕ1;ϕ2Þ; ð3:3Þ

where VNðϕ1;ϕ2Þ introduced in the second line denotes the
potential of this reduced system and defined by the relevant
expression in the first line. For k > 0, we see that
VNðϕ1;ϕ2Þ is clearly positive definite, while for k < 0

this is not manifest, but it is indeed so since VNðϕ1;ϕ2Þ is
obtained from V in (2.2). Hence the minimum of
VNðϕ1;ϕ2Þ is zero in both cases.
Let us note that, in the μ → 0 limit, we have HN →

ρ−3HN under the scaling ðϕ1;ϕ2Þ → ðρ−1=2ϕ1; ρ−1=2ϕ2Þ

and t → ρt, as can be readily expected in view of the
discussion given at the end of the previous section.
To explore the dynamics of the model, we calculate the

Hamilton’s equations of motion. These take the form

_ϕ1 −
pϕ1

N2ðN − 1Þ ¼ 0; ð3:4aÞ

_ϕ2 −
pϕ2

N2ðN − 1Þ ¼ 0; ð3:4bÞ
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_pϕ1
þN2ðN − 1Þ

×

�
μ2ϕ1 þ

16πμ

k
ϕ1ϕ

2
2 þ

16π2

k2
ϕ1ϕ

4
2 þ

32π2

k2
ϕ3
1ϕ

2
2

�
¼ 0;

ð3:4cÞ

_pϕ2
þN2ðN − 1Þ

×

�
μ2ϕ2 þ

16πμ

k
ϕ2
1ϕ2 þ

16π2

k2
ϕ4
1ϕ2 þ

32π2

k2
ϕ2
1ϕ

3
2

�
¼ 0:

ð3:4dÞ

In what follows, we will explore the dynamics emerging
from the equations at μ ¼ 1 at several different matrix
levels N and the CS coupling k.
To gain some immediate information on the system, it is

useful to explore its fixed points and also investigate the
stability around these points at the linear level. Details of
this analysis are provided in Appendix B. In brief, for
k > 0, the only fixed point of this Hamiltonian system is
given as ðϕ1;ϕ2; pϕ1

; pϕ2
Þ≡ ð0; 0; 0; 0Þ with a vanishing

fixed-point energy. Analysis in Appendix B shows that
this fixed point is of borderline type, meaning that the
linear level analysis is inconclusive to identify it as either
stable or unstable character, and we do not attempt to
perform a higher-order analysis. For k < 0, we find that
there are several fixed points, some of which are still of
borderline type. Nevertheless, the set of fixed points given

as ð�ð∓Þ
ffiffiffiffi
−k

p
2
ffiffiffiffi
3π

p ;�
ffiffiffiffi
−k

p
2
ffiffiffiffi
3π

p ; 0; 0Þ is of unstable type with

energies EF ¼ N2ðN − 1Þ 5jkμ3j
108π (for kμ < 0), as calculated

in Appendix B. This may be taken as the first indication to
expect the dynamics of HN to be chaotic, since the latter is
usually associated to the presence of unstable fixed points
in the phase space [39–42]. In fact, the systems do not tend
to exhibit any appreciable chaos at energies below that of
the unstable fixed points, and depending on the structure of
the potential, even at energies exceeding the latter, phase
space may have a comparable number of quasiperiodic and
chaotic trajectories; i.e., at low energies, chaos and qua-
siperiodic motion can coexist. In particular, a randomly
picked initial condition may correspond to either a quasi-
periodic or a chaotic trajectory. Therefore, it is important to
pay attention to this fact in the computation of the
Lyapunov exponents, and we will do so in the ensuing
sections.

A. Chaotic dynamics and the Lyapunov exponents

Lyapunov exponents are useful to determine the
sensitivity of a system to given initial conditions.
More precisely, they measure the exponential growth
in perturbations and therefore give a reliable way to
establish the presence of chaos in a dynamical system
[39–42]. For a Hamiltonian system, if we denote the

perturbations in the phase-space coordinates gðtÞ≡
ðg1ðtÞ; g2ðtÞ;…; g2NðtÞÞ by δgðtÞ, then we may con-
clude that the system is chaotic if, at large t, δgðtÞ
deviates exponentially from its initial value at t ¼ t0:
jjδgðtÞjj ¼ eλðt−t0Þjjδgðt0Þjj. Here, λ are called the
Lyapunov exponents, and there are 2n of them for a
phase space of dimension 2n. Let us also note that this
description is in parallel with the statement that even
slightly different initial conditions give trajectories in the
phase space, which are exponentially diverging from each
other and hence lead to chaos. In a dynamical system, the
presence of at least one positive Lyapunov exponent is
sufficient to conclude the presence of chaotic motion. In
Hamiltonian systems, due to the symplectic structure of
the phase space, Lyapunov exponents appear in λi and
−λi pairs, and a pair of the Lyapunov exponents vanishes,
as there is no exponential growth in perturbations along
the direction of the trajectory specified by the initial
condition and the sum of all the Lyapunov exponents is
zero as a consequence of Liouville’s theorem. These facts
are well known, and their details may be found in many
of the excellent books on chaos [39–42]. The phase space
for the Hamitonians HN considered in this paper are all
four dimensional. From the general considerations sum-
marized above, it is clear that the emerging chaotic
dynamics of these models are governed by the largest
(and only) positive Lyapunov exponent at given values of
the parameters k, μ, and N.
To give a certain effectiveness to the random initial

condition selection process, we adapt and use the simple
approach we have developed in Ref. [14]. We briefly
explain this next. Let us denote a generic set of initial
conditions at t ¼ 0 by ðϕ1ð0Þ;ϕ2ð0Þ; pϕ1

ð0Þ; pϕ2
ð0ÞÞ. First

of all, we generate four random numbers and denote three
of them as ωi (i ¼ 1; 2; 3) and define Ωi ¼ ωiffiffiffiffi

ω2
i

p ffiffiffiffi
E

p
, where

E is the energy of the system. We denote the last random
number as ω4. Clearly, we have

P
3
i¼1Ω2

i ¼ E. With the
help of this relation and the energy functional, i.e.,
Hamiltonian given in (3.3), initial conditions are picked
randomly in the form

pϕ1
ð0Þ ¼�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 1Þ

p
Ω1; pϕ2

ð0Þ ¼�N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 1Þ

p
Ω2;

VNðϕ1ð0Þ;ϕ2ð0ÞÞ ¼Ω2
3: ð3:5Þ

Finally, we select either ϕ1ð0Þ or ϕ2ð0Þ as ω4. Since VN is
invariant under ϕ1 ↔ ϕ2 exchange, which one of the two
we select is immaterial. In our calculations, we take
ϕ2ð0Þ ¼ ω4; then, ϕ1ð0Þ is given by the solution of

VNðϕ1ð0Þ;ω4Þ −Ω2
3 ¼ 0: ð3:6Þ

For some randomly picked values of ω4, Eq. (3.6) may not
have a real solution. However, the code runs and randomly
picks another ω4 until a real solution for ϕ1ð0Þ is obtained.
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Similar to the analysis performed for the Yang-Mills
matrix models with massive deformations presented in
Ref. [9], we set up and run a MatLab code, which numeri-
cally solves the Hamilton equations of motion given in
(3.4) at different matrix levels. We run this code 40 times
for k ≥ 1 and 100 times for k ≤ −1 with randomly selected
initial conditions at a given energy value E and matrix level
N and calculate the average for each and every Lyapunov
exponent from all runs a the final time. In the simulation,
we take a time step of 0.25 and run the code from time 0 to
3000. Our code checks if the largest Lyapunov exponent
has a value below a certain threshold at t ¼ 3000 and does
not include it in the averaging over the initial conditions. In
our computations, we picked this threshold as 0.05 after a
number of numerical trials.3 Let us note that Lyapunov
exponents below this threshold at large time (t ¼ 3000 in
our simulations) correspond essentially to the quasiperiodic
trajectories in the phase space, which do not exhibit chaos
but may have comparatively small or large periods and
therefore usually have very small but nonvanishing
Lyapunov exponents at large time,4and in the manner just
described, we exclude them in order to obtain more precise
values for the largest Lyapunov exponents of the chaotic
trajectories in the phase space. In particular, we focus on
HN for N ¼ 5, 10, 15, 20, 25 at several different values of
the energy.

B. Dependence of the largest Lyapunov
exponent on energy

Since we are working in the ’t Hooft limit, it is useful to
consider the dependence of the largest Lyapunov exponent,
λL, on E=N2 rather than on E, to capture the main features
of the chaotic dynamics emerging from the family of
Hamiltonians HN and subsequently relate it to the temper-
ature of these systems via the use of virial and equipartition
theorems.

1. Case i: k ≥ 1

In this case, to capture the λL ∝ E1=3 dependence of the
Lyapunov exponent anticipated by the scaling argument
given in Sec. II, we find that it is sufficient to choose E=N2

in the interval (0,100). Lyapunov exponent data and the
best-fitting curves of the form λL ¼ αNð E

N2Þ1=3 are given in
Fig. 1 for k ¼ 1 and N ¼ 5; 10; 15; 20; 25. For k ¼ 2, at
sufficiently low matrix levels, the E=N2 interval can still
be taken as (0,100), while for N > 20, it turns out to be

better to stretch it to a wider range, and in Fig. 2(c), we take
it to be (0,500). Lyapunov exponent data and the best-
fitting curves of the form λL ¼ αNð E

N2Þ1=3 are given
in Fig. 2.
If we further increase the k value, we also need to

inspect the dependence of λL to E=N2 in a sufficiently
large range of the latter. For instance, in Fig. 3, we depict
the Lyapunov data for 0 ≤ E=N2 ≤ 500, at the matrix
level N ¼ 10 and for k ¼ 5; 10. At higher matrix levels N
and/or larger values of k, it is necessary to further
increase the range of E=N2 in order to clearly observe
the E1=3 dependence of λL via the best-fitting curves in
the form λL ¼ αNð E

N2Þ1=3. Coefficients αN for the fitting
curves in Figs. 1–3 are provided in Tables I–III given in
the next subsection.

2. Case ii: k ≤ − 1

In this case, we seek best-fitting curves of the form
λL ¼ αNð E

N2 − γNÞ1=3 to the Lyapunov data. Motivations
for considering this function of E=N2 are twofold. For
one, as noted earlier, the energies of the unstable fixed
points are nonvanishing in this case and given by

EF ¼ N2ðN − 1Þ 5jkμ3j
108π . Since no significant chaos is present

for E ≤ EF, we expect λL’s to vanish at energies below EF
(indeed, all our numerical computations show that λL are
vanishingly small for E ≤ EF). This suggests then that

γð1ÞN ≔ EF
N2, and it is determined in terms of N, k, and μ. In

Sec. III. C, we will see that the application of the virial
theorem to this family of systems motivates the same form

for the dependence of λL on E=N2 with γð2ÞN ≔
ðN − 1Þ 2

27π jkμ3j via (3.9) and (3.18). The numerical values

of γð1ÞN and γð2ÞN are comparable, and for the evaluation of the
coefficients αN of the fitting curves, we use the latter as they
tend to produce slightly better fits.
Both for k ¼ −1 and k ¼ −2, we find that the (0,500)

interval for E=N2 is sufficiently well suited to capture
the energy dependence of λL. This is corroborated by the
best-fitting curves of the form λL ¼ αNð E

N2 − γNÞ1=3 given
in Figs. 4 and 5. Coefficients αN for the fitting curves in
Figs. 4 and 5 and the respective values of γN are provided in
Tables IV and V in the next subsection.

C. Temperature dependence
of the Lyapunov exponent

In Ref. [4], temperature dependence of the Largest
Lyapunov exponent of the BFSS matrix model in the ’t
Hooft limit was determined using dimensional analysis to
be of the form λL ∝ ðλ0tHooftTÞ1=4 since λ0t Hooft and the
temperature are the only dimensionful parameters of the
model. Let us note that this result is consistent with
the fact that for the BFSS model the potential is purely
quartic and the system has a scaling symmetry implying

3Except for the case k ¼ −2, N ¼ 10, for which we picked the
threshold as 0.1.

4The number of such trajectories is very few for the configu-
ration due to ansatz I and essentially becomes zero with
increasing energy, while for ansatz II, roughly ≈1=5 to ≈1=10
of the initial conditions lead to quasiperiodic orbits at low
energies, but their number also becomes zero with increasing
energy.
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FIG. 1. Largest Lyapunov exponent and the best-fitting curves in the form λL ¼ αNð E
N2Þ1=3 at k ¼ 1.

K. BAŞKAN, S. KÜRKÇÜOĞLU, and C. TAŞCI PHYS. REV. D 107, 066006 (2023)

066006-8



that λL ∝ E1=4 and hence λL ∝ T1=4 temperature depend-
ence by evoking the equipartition theorem. In Ref. [14],
we focused on a mass-deformed Yang-Mills matrix
theory, with the same matrix content as the bosonic part
of the BFSS model, and a similar analysis is consi-
dered where the effects of the mass deformations were
taken into account in a simple way. For the present
matrix model, a similar approach can also be followed.
We may expect that λL ∝ ðλ0t HooftTÞα, where α is a
constant that needs to be determined. As we noted in
Sec. II, we may take λ0t Hooft ¼ N

V2
, where V2 is the volume

of the two-dimensional space we have integrated over
in going from 2þ 1 to 0þ 1 dimensions. From this
definition of λ0t Hooft, we see that it has the dimension of
½Length�−2, while we already know that each of λL and T

have the dimension ½Length�−1. Putting these fact
together, we have the equation for α,

½L�−1 ¼ ½L−2L−1�α ¼ ½L−3�α; ð3:7Þ

and therefore we find α ¼ 1=3. Thus, we may expect that
λL ∝ ðλ0tHooftTÞ1=3. In view of the equipartition theorem,
this is consistent with the λL ∝ E1=3 based on the scaling
symmetry as discussed in the previous section. Shortly,
we will see the circumstances under which the remaining
dimensionful parameter, namely, the mass, may effect the
relation between the energy and temperature upon the
application of the virial and the equipartition theorems.
To prepare for the latter, let us first obtain the total
number of independent degrees of freedom (d.o.f.) of the

FIG. 2. Largest Lyapunov exponent and the best fitting curves in the form λL ¼ αNð E
N2Þ1=3 at k ¼ 2.
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ABJM matrix model described by the action (2.1). Here,
we have both Xi and X̂i as N × N Hermitian matrices
with i ¼ 1; 2. Each has N2 real degrees of freedom, and
therefore these give 4N2 d.o.f. in total. We also have the
fields Qα and Rα with α ¼ 1; 2 as N × N complex
matrices, and each has 2N2 real d.o.f. leading to 8N2

real d.o.f. Therefore, the number of d.o.f. involved in
the constituents of (2.8) is 4N2 þ 8N2 ¼ 12N2 before
taking the global gauge symmetry and the constraints
into account. Since the action is invariant under the
R-symmetry group SUð2Þ × SUð2Þ ×Uð1Þ × Uð1Þ × Z2,
each SUð2Þ factor gives three and each Uð1Þ factor gives
one, and thus in total eight real relations, while each of
the equations in the Gauss-law constraint (2.13) gives

N2 real relations among the unconstrained real degrees
of freedom. Subtracting these from the latter, we find
the independent d.o.f. count to be 12N2 − 2N2 − 8 ¼
10N2 − 8.
For the ansatz I in (3.1), there is a further reduction of the

independent d.o.f., which comes about as follows. Since Xi

and X̂i are null matrices due to vanishing of αðtÞ and βðtÞ as
the only admissible on-shell solution as argued in Sec. III
and demonstrated in Appendix A, we need to subtract out a
factor of 4N2. Additionally, because Rα ¼ 0 in this ansatz,
we need to subtract another factor of 4N2 d.o.f.. Finally, we
also need to note that two equations of the Gauss-law
constraint reduce to the same equation upon integrating by
parts and taking the Hermitian conjugate of one or the
other. Thus, the Gauss-law constraint imposes only N2 real
relations in this case. These facts bring the total number of
d.o.f. count to 10N2 − 8 − 8N2 þ N2 ¼ 3N2 − 8. For large
N, we may take nd:o:f: ≈ 3N2.
Let us now apply the virial theorem to the Hamiltonian in

(3.3). Since the potential VNðϕ1;ϕ2Þ is not a homogeneous
polynomial of its arguments, there is no exact proportion-
ality relation linking the average kinetic and potential
energies. Instead, we have

2hKi ¼ 2hVNi þ 2N2ðN − 1Þ

×
�
8πμ

k
ϕ2
1ϕ

2
2 þ

16π2

k2
ϕ2
1ϕ

4
2 þ

16π2

k2
ϕ4
1ϕ

2
2

�
≕ 2hVNi þ ṼNðϕ1;ϕ2Þ; ð3:8Þ

where the relevant expression in the first line provides the
definition of ṼNðϕ1;ϕ2Þ introduced in the second line. The
latter is positive definite for k > 0 (assuming that μ > 0,
too, indeed we set μ ¼ 1), but this is not so for negative k.
In fact, the minimum of ṼNðϕ1;ϕ2Þ is given as

FIG. 3. Largest Lyapunov exponent and the best-fitting curves in the form λL ¼ αNð E
N2Þ1=3 for N ¼ 10 at k ¼ 5; 10.

TABLE I. αN and Tc values at k ¼ 1.

N ¼ 5 N ¼ 10 N ¼ 15 N ¼ 20 N ¼ 25

αN 0.9522 0.713 0.6092 0.5448 0.499
Tc 0.1022 0.0662 0.0523 0.0442 0.0388

TABLE II. αN and Tc values at k ¼ 2.

N ¼ 5 N ¼ 15 N ¼ 25

αN 0.7845 0.4788 0.3958
Tc 0.0764 0.0364 0.0274

TABLE III. αN and Tc values for N ¼ 10 at 5,10.

k ¼ 5 k ¼ 10

αN 0.4168 0.3338
Tc 0.0296 0.0212
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FIG. 4. Largest Lyapunov exponent and the best-fitting curves in the form λL ¼ αNð E
N2 − γNÞ1=3 at k ¼ −1.
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MinðṼNðϕ1;ϕ2ÞÞ ¼
�
0 if both k and μ have the same sign;

N2ðN − 1Þ 4kμ3
27π if k and μ have the opposite sign:

ð3:9Þ

Applying the equipartition theorem to the kinetic energy
yields

hKi ¼ 1

2
ð3N2 − 8ÞT ≈

3

2
N2T; ð3:10Þ

where the approximation is valid at large N.

1. Case i: k ≥ 1:

In this case, ṼNðϕ1;ϕ2Þ is positive definite, and therefore
we have from (3.8) the inequality hKi ≥ hVNi. This and

(3.10) together imply that hEi ¼ hKi þ hVNi ≤ nd:o:fT ≈
3N2T. We can express this inequality in the form

E
N2

≤ 3T; ð3:11Þ

where we have also dropped the brackets on energy for ease
in notation.
Since we expect that λL ∝ E1=3 due to the scaling

properties of the model and also that λL ∝ T1=3 as implied
by the pure dimensional analysis, albeit both holding exact

FIG. 5. Largest Lyapunov exponent and the best-fitting curves in the form λL ¼ αNð E
N2 − γNÞ1=3 at k ¼ −2.
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only in the massless limit, we are, nevertheless, led to
examine the best fitting curves of the form

λL ¼ αN

�
E
N2

�
1=3

; ð3:12Þ

to profile the variation of the largest Lyapunov exponent as
a function of E=N2. The fitting curves are plotted in Fig. 1
for k ¼ 1, N ¼ 5; 10; 15; 20; 25, in Fig. 2 for k ¼ 2 at the
matrix levels N ¼ 5; 15; 25, and in Fig. 3 for k ¼ 5; 10 at
the matrix level N ¼ 10. We observe that these fits
represent the variation of the largest Lyapunov exponent
with respect to E=N2 quite well.
In fact, to evaluate the goodness of the fits in explaining

the variation of λL with respect to E=N2, we may inspect
the square of the multiple correlation coefficient, R squared
(we use Rsq for short in what follows), and the residual sum
of squares (SSE), which are usual statistical measures used
for this purpose. The former takes a value between 0 and 1,
with R squared close to 1 indicating better fits; i.e., a
greater portion of the variance in the data is accounted for
by the fitting curve, while the latter could take any positive
value, with values close to zero indicating better fits. In the
present context, Rsq measures the correlation between the
λL values of the data and those predicted from the fitting
curve, while SSE represents the total deviation of the
predicted values from the fitting curve to the data. We find
that for k ≥ 1 the fits given in Figs. 1–3 have Rsq ≥ 0.97
and with an average Rsq ≈ 0.979, i.e., the fitting curves
accounting for the variation of the λL with respect to E=N2

around ≈98% and average SSE values ≈0.43. Coefficients
of αN for the fitting curves are provided in Tables I–III.
We are now in a position to compare and relate our result

to the MSS bound λL ≤ 2πT on the Largest Lyapunov
exponent for quantum chaos [6]. This bound is conjectured
to be satisfied in systems which are holographically dual to
gravity, and it is shown in Ref. [7] that it is saturated for the
Sachdev-Ye-Kitaev fermionic matrix model. In Ref. [4],
chaotic dynamics of the BFSS matrix models are studied at
the classical level, which provides an approximation to the

quantum theory only in the high-temperature limit, and it
was shown that the largest Lyapunov exponent disobeys the
MSS bound only at sufficiently low temperatures. The
authors of Ref. [4] estimated the latter to be ≈0.015. In
Ref. [14], we study a deformation of the bosonic sector of
the BFSS via two mass terms, and investigating the chaos
in this model via reduced effective Lagrangians, we were
able to put upper bounds on the critical temperature above
which MSS inequality is satisfied and below which it will
eventually be not obeyed. In Refs. [11,12], a so-called
Gaussian state approximation (GSA) is introduced to inves-
tigate the quantum chaotic dynamics of the BFSS and
related Yang-Mills matrix models. Results obtained in
Refs. [11,12] demonstrate that the largest and all the other
Lyapunov exponents tend to zero at a nonzero value of the
temperature and therefore comply completely with the MSS
conjecture at all temperatures. Nevertheless, it remains an
open problem to show if and how the BFSS model saturates
the MSS bound.
As we noted in the Introduction, the ABJM model

has a gravity dual [35] via the AdS=CFT correspondence.
Therefore, we may expect the MSS conjecture to hold for
quantum chaotic dynamics of the ABJM model, too. In this
article, we are investigating the dynamics of the mass-
deformed ABJM model only at the classical level, as an
approximation of the quantum theory in the high-temper-
ature limit, so we should expect that the MSS bound
eventually be not obeyed at sufficiently low temperatures.5

In other words, we expect the classical chaotic dynamics to
comply with theMSS bound to a very large extent, while we
also expect it to be insufficient to capture all the quantum
features at low temperatures. Indeed, using (3.11) and (3.12),
we find that there is a critical temperature, which we may
denote as Tc and is given by solving the equation

αNð3TÞ1=3 ¼ 2πTc; ð3:13Þ

which yields

Tc ¼
ffiffiffi
3

p �
αN
2π

�
3=2

: ð3:14Þ

From this result, we understand that for T ≥ Tc the present
model complies with the MSS bound on λL, while for
T ≤ Tc, there is a temperature at and below which MSS
bound is not respected. Thus, we may say that Tc is an
upper bound for the critical temperature at or below
which MSS bound will eventually not be obeyed by our
model. The estimated Tc values at the matrix levels

TABLE IV. αN , γN , Tc values at k ¼ −1.

N ¼ 5 N ¼ 10 N ¼ 15 N ¼ 20 N ¼ 25

αN 0.8884 0.633 0.5529 0.5018 0.4648
γN 0.0943 0.2122 0.3301 0.4480 0.5659
Tc 0.0920 0.0533 0.0452 0.0390 0.0348

TABLE V. αN , γN , Tc values at k ¼ −2.

N ¼ 10 N ¼ 15 N ¼ 25

αN 0.4944 0.4281 0.357
γN 0.4244 0.6602 1.132
Tc 0.0382 0.0308 0.0234

5Let us note in passing that the presence of mass terms may
keep the system away from saturating the MSS bound even if the
full quantum dynamics could be studied. However, mass defor-
mations lead to nontrivial vacuum solutions in the form of fuzzy
sphere matrix configurations and provide us a good departure
point to probe the chaotic dynamics as we do in the present paper.
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N ¼ 5; 10; 15; 20; 25 are given in Tables I and II for k ¼ 1
and k ¼ 2, respectively, and in Table III at N ¼ 10 level for
k ¼ 5; 10. We observe from the values of Tc in these tables
that with increasingmatrix size, their values tend to decrease,
which is in agreement with the fact that the ’t Hooft limit is
better emulated with increasing matrix size. From Table III,
we also infer that Tc values tend to decrease with increasing
values of k; i.e., the models with larger CS coupling tend to
comply with theMSS conjecture within a wider range of the
temperature.

2. Case ii: k ≤ − 1:

In this case, Ṽðϕ1;ϕ2ÞN is not positive definite as we
have already noted; its minimum is negative and given by
the expression in the second line of (3.9). Adding and
subtracting jMinðṼ2Þj to the (3.8), we may write

2hKi ¼ 2hVNi þ ṼNðϕ1;ϕ2Þ þ jMinðṼNÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≥0

− jMinðṼNÞj;

ð3:15Þ

which implies that

hKi ≥ hVNi −
1

2
jMinðṼNÞj: ð3:16Þ

We may therefore write

E ¼ hKi þ hVNi −
1

2
jMinðṼNÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≤nd:o:f:T

þ 1

2
jMinðṼNÞj: ð3:17Þ

Using hKi ≈ 3
2
N2T at large N, this leads to the inequality

E
N2

− γN ≤ 3T; γN ≔
jMinðṼNÞj

2N2
: ð3:18Þ

In view of this relation, we conjecture to use best fitting
curves of the form

λN ¼ αN

�
E
N2

− γN

�
1=3

: ð3:19Þ

These curves are given in Fig. 4 for N ¼ 5; 10; 15; 20; 25 at
k ¼ −1 and in Fig. 5 for N ¼ 10; 15; 25 at k ¼ −2. Similar
to the previous case, they represent the variation of the
largest Lyapunov exponent with respect to E=N2 quite well,
with Rsq ≥ 0.96, with an average Rsq ≈ 0.972 for the fitting
curves in Figs. 4 and 5 and average SSE values ≈1.005.
By the same line of reasoning discussed in the previous

case, using (3.18) and (3.19), we find that the critical
temperature is given again as (3.14), and the numerical
estimates using the αN values of the fitting curves at several
different matrix levels are listed in Tables IV and V for
k ¼ −1 and k ¼ −2, respectively.
Viewing the results of the cases i and ii together, we

conclude that Tc values decrease with increasing N and/or
jkj; i.e., the MSS bound is respected in a wider range of the
temperature at matrix levels which better capture the ’t
Hooft limit and/or at larger values of the CS coupling.

IV. ANSATZ II

We would like to introduce another ansatz configuration
with nonzero Rα and Qα matrices and examine the ensuing
dynamics. We consider the ansatz

Q1 ¼ qðtÞG1; R1 ¼ rðtÞG1;

Q2 ¼ qðtÞG2; R2 ¼ rðtÞG2; ð4:1Þ
while we still take Xi and X̂i as arbitrary diagonal matrices
as given in (3.1). This configuration satisfies the Gauss-law
constraints given in (2.13), as can easily be checked, and
the equations of motion for αðtÞ and βðtÞ yield the only real
solution as the trivial solution αðtÞ ¼ βðtÞ ¼ 0 as shown in
Appendix A. Thus, in this case, too, we set Xi ¼ 0 ¼ X̂i in
what follows.
Substituting the matrix configuration (4.1) into the action

(2.8) and performing the trace over the GRVV matrices, we
obtain the effective Lagrangian as

LNðqðtÞ; rðtÞÞ ¼ N2ðN − 1Þ
�
_q2 þ _r2 − μ2q2 − μ2r2 −

8πμ

k
q4 þ 8πμ

k
r4 þ 12π2

k2
q4r2 þ 12π2

k2
q2r4 −

16π2

k2
q6 −

16π2

k2
r6
�
:

ð4:2Þ
The corresponding Hamiltonian is

HNðqðtÞ; rðtÞÞ ¼
p2
q

4N2ðN − 1Þ þ
p2
r

4N2ðN − 1Þ þ N2ðN − 1Þ
�
μ2q2 þ μ2r2 þ 8πμ

k
q4

−
8πμ

k
r4 −

12π2

k2
q4r2 −

12π2

k2
q2r4 þ 16π2

k2
q6 þ 16π2

k2
r6
�

≔
p2
q

4N2ðN − 1Þ þ
p2
r

4N2ðN − 1Þ þ VNðq; rÞ; ð4:3Þ
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FIG. 6. Largest Lyapunov exponent and the best-fitting curves in the form λL ¼ βNð E
N2 − γNÞ1=3 at k ¼ �1.
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where VNðq; rÞ is the effective potential defined by the
relevant terms in the first two lines of (4.3). A few remarks
regarding the structure of VNðq; rÞ are now in order. Let us
first note that this potential is not positive definite for either
k > 0 or k < 0, while its minimum is at zero. Next, we
easily see that VNðq; rÞ is symmetric under the exchange of
q and r. For k ↔ −k, the two terms which are proportional
to 1

k change sign, but this can be compensated by exchang-
ing q and r. Thus, we conclude that the dynamics due to
this potential is independent of the sign of k.
Hamilton’s equations of motion are easily obtained and

are given below:

_q −
pq

N2ðN − 1Þ ¼ 0; ð4:4aÞ

_r −
pr

N2ðN − 1Þ ¼ 0; ð4:4bÞ

_pq þ N2ðN − 1Þ
�
2μ2qþ 32πμ

k
q3

−
48π2

k2
q3r2 −

24π2

k2
qr4 þ 96π2

k2
q5
�

¼ 0; ð4:4cÞ

_pr þ N2ðN − 1Þ
�
2μ2r −

32πμ

k
r3

−
24π2

k2
q4r −

48π2

k2
q2r3 þ 96π2

k2
r5
�

¼ 0: ð4:4dÞ

To gain more insight about this Hamiltonian system, we
explore its fixed points and their stability at the linear order.
The details of this analysis are relegated to Appendix B. We

find that for real values of μ either the set ð0;�
ffiffiffiffi
kμ

p
2
ffiffiffiffi
3π

p ; 0; 0Þ
or the set ð�

ffiffiffiffiffiffi
−kμ

p
2
ffiffiffiffi
3π

p ; 0; 0; 0Þ gives unstable fixed points for

kμ > 0 and kμ < 0,respectively, while the remaining fixed
points are of borderline type. The corresponding energies in
either case are

EF ¼ N2ðN − 1Þ jkμ
3j

27π
; ð4:5Þ

and the system is likely to exhibit dynamical evolution
which is chaotic at and above these energies. This sug-

gests that we may consider an offset γð1ÞN ≔ EF=N2 ¼
ðN − 1Þ jkμ3j

27π for the fitting curves of the form λL ¼
αNð E

N2 − γNÞ1=3. In the next subsection, we compare this
with the values of γN implied upon the use of the virial and
equipartion theorems.

A. Dependence λL on energy and temperature

To obtain the profile of the mean largest Lyapunov
exponent λL with respect to the variation of E=N2, we
numerically solve the Hamilton equations (4.4) and evalu-
ate the mean of λL by averaging out the largest Lyapunov
exponents over 100 runs of the code with randomly

selected initial conditions. For this ansatz, numerical
aspects of the initial condition selection turn out to be
somewhat more conveniently handled by setting qð0Þ ¼ 0.
Using three random numbers ωi (i ¼ 1; 2; 3) and writing
Ωi ¼ ωiffiffiffiffi

ω2
i

p ffiffiffiffi
E

p
as in the case of ansatz I, we generate the

initial conditions in the form

pqð0Þ ¼ �2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − 1Þ

p
Ω1; prð0Þ ¼ �2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − 1Þ

p
Ω2;

VNðqð0Þ ¼ 0; rð0ÞÞ ¼ Ω2
3; ð4:6Þ

where the last equation in (4.6) takes the explicit form

N2ðN − 1Þ
�
μ2rð0Þ2 − 8πμ

k
rð0Þ4 þ 16π2

k2
rð0Þ6

�
−Ω2

3 ¼ 0

ð4:7Þ
and its real roots are used to pick rðtÞ at t ¼ 0, i.e., the
rð0Þ value.
Applying the virial theorem, we find that

2hKi ¼ 2hVNi þ ṼNðq; rÞ; ð4:8Þ
where

ṼNðq; rÞ ¼ N2ðN − 1Þ
�
16πμ

k
q4 −

16πμ

k
r4 −

48π2

k2
q4r2

−
48π2

k2
q2r4 þ 64π2

k2
q6 þ 64π2

k2
r6
�
: ð4:9Þ

Evaluating the minimum of ṼNðq; rÞ, we find that it is
given as

MinðṼNðq; rÞÞ ¼ −N2ðN − 1Þ64jkμ3j
135

ffiffiffi
5

p
π

: ð4:10Þ

Following the same line of development and steps as in
Sec. III C, we have

E
N2

− γN ≤
nd:o:f:T
N2

; γð2ÞN ≔
jMinðṼNðq; rÞÞj

2N2
: ð4:11Þ

From this consideration as well as the energies of the
unstable fixed points, we are led to consider best-fitting
curves of the form

λL ¼ βN

�
E
N2

− γN

�
1=3

ð4:12Þ

TABLE VI. βN , γN and Tc values at k ¼ �1.

N ¼ 5 N ¼ 10 N ¼ 15 N ¼ 20 N ¼ 25

βN 0.6035 0.463 0.4005 0.3621 0.3355
γN 0.1350 0.3037 0.4724 0.6411 0.8098
Tc 0.0787 0.0529 0.0425 0.0366 0.0326
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to the λL versus E=N2 data. Values of γð1ÞN and γð2ÞN are
comparable, and in what follows, we use the latter, as they
tend to work slightly better with the fitting curves.
Let us recall once again that, depending on the

structure of the potential, chaos and quasiperiodic motion
can coexist and may fill comparable hypervolumes of the
phase space at a given energy. For the model emerging
from ansatz II, we also let our code check if the largest
Lyapunov exponent has a value below a certain threshold

at the final time (here, we continue to use a time step of
0.25 and run the code from time 0 to 3000) and do not
include it in the averaging over the initial conditions.
From numerics, we found that roughly ≈1=5 to ≈1=10 of
the initial conditions lead to quasiperiodic orbits at low
energies, but their number also tends to zero with
increasing energy. Applying this process allows us to
evaluate the average λL value at a given energy with high
precision, which is otherwise only obtained with rela-
tively large root-mean-square errors. In our computations,
we picked this threshold as 0.05 after a number of
numerical trials.6TABLE VII. βN , γN and Tc values at k ¼ �2.

N ¼ 5 N ¼ 15 N ¼ 20 N ¼ 25

βN 0.4809 0.3183 0.2873 0.2659
γN 0.2699 0.9448 1.2822 1.620
Tc 0.0560 0.0302 0.0258 0.0230

FIG. 7. Largest Lyapunov exponent and the best-fitting curves in the form λL ¼ βNð E
N2 − γNÞ1=3 at k ¼ �2.

6Except for the cases jkj ¼ 2; ðN ¼ 25Þ, jkj ¼ 5; 10; ðN ¼ 10Þ
for which we picked the thresholds as 0.075,0.1, and 0.2,
respectively.
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For all cases of interest, it appears sufficient to use E=N2

in the range (0,100). For jkj ¼ 1, the data points and the
fitting curves are depicted in Fig. 6 for the matrix levels
N ¼ 5; 10; 15; 20; 25, and the βN coefficients of the fits are
given in Table VI.
To profile the variation of λL at larger values of CS

coupling, we first inspect the case k ¼ �2. Data points and
fitting curves are given in Fig. 7, and the corresponding βN
values are listed in Table VII.
At k ¼ �5;�10, the data for λL and the corresponding

best fitting curves are provided in the Fig. 8 with βN
coefficients listed in Table VIII.
From the plots provided in Figs. 6–8, we observe that the

fitting curves represent the Lyapunov data almost perfectly.
We find that all the fitting curves given in these figures
Rsq ≥ 0.99, while the SSE values generally vary around
≈0.002 to≈0.007, except for a few cases (k ¼ �2,N ¼ 25,
and k ¼ �5;�10, N ¼ 10) for which they are around
≈0.02. Thus, the fitting curves capture the variation of the
λL with respect to E=N2 around ≈99%.
To obtain critical upper bound temperatures, Tc, using

the coefficients βN of the fitting curves, we need to count
the independent degrees of freedom of the matrices given in
(4.1). In contrast to our first ansatz (3.1), in this case, Rα

matrices are no longer zero. Thus, we need to note that Rα

(α ¼ 1; 2) contribute 4N2 degrees of freedom in total, while
the two equations of the Gauss-law constraint (2.13) imply

the same condition upon integration by parts of one or
the other equation. Thus, the Gauss law imposes only N2

real constraints in this case, too. We therefore have
nd:o:f: ¼ 7N2 − 8, which in the large-N limit is given as
nd:o:f: ≈ 7N2. Therefore, Eq. (4.11) immediately leads to
the inequality

E
N2

− γN ≤ 7T: ð4:13Þ

We find that the critical temperature is obtained by solving

βNð7TÞ1=3 ¼ 2πT; ð4:14Þ

and this yields

Tc ¼
ffiffiffi
7

p �
βN
2π

�
3=2

: ð4:15Þ

Our estimates for the critical temperatures are given in
Tables VI–VIII. Let us note that classical chaotic dynamics
of the family of effective Hamiltonians, HN , comply with
the MSS bound for T > Tc, while they will eventually not
obey it at or below Tc values. Similar to the result obtained
for ansatz I, we notice that with increasing matrix size
and/or CS coupling values k critical temperatures decrease.
In particular, it is interesting to note that Tc ≈ 0.0167 for
N ¼ 10 and k ¼ �10, which is comparably close to
≈0.015 found in Ref. [4] for the BFSS model, although
the two models are quite different in terms of the power-law
dependence of λLs on energy (∝ E1=3 for the ABJM model
and ∝ E1=4 for the BFSS model).

V. CONCLUSIONS AND OUTLOOK

In this paper, we performed a detailed study of the
chaotic dynamics of the mass-deformed ABJM model.

TABLE VIII. βN , γN values at N ¼ 10 at k ¼ �1;�5;�10.

k ¼ �1 k ¼ �5 k ¼ �10

βN 0.463 0.2714 0.2145
γN 0.3037 1.5184 3.0369
Tc 0.0529 0.0237 0.0167

FIG. 8. Largest Lyapunov exponent and the best-fitting curves in the form λL ¼ βNð E
N2 − γNÞ1=3 for N ¼ 10 at k ¼ �5;�10.

K. BAŞKAN, S. KÜRKÇÜOĞLU, and C. TAŞCI PHYS. REV. D 107, 066006 (2023)

066006-18



Working in the ’t Hooft limit, and assuming that all the
fields are spatially uniform and introducing ansatz con-
figurations involving fuzzy spheres in the form of GRVV
matrices with collective time dependence, we have
obtained effective models and computed their Lyapunov
exponents using numerical algorithms. Our results clearly
indicate that these models possess chaotic dynamics. In
particular, we directed our attention to the profile of the
largest Lyapunov exponent and found that, depending on
the form of the effective potential, either λL ∝ ðE=N2Þ1=3 or
λL ∝ ðE=N2 − γNÞ1=3, where γNðk; μÞ is a constant deter-
mined in terms of the Chern-Simons coupling k, the mass μ,
and the matrix level N. They represent the result of the
numerical findings considerably well as it is observed from
Figs. 1–8 and also further corroborated by the λL ∝ E1=3

power-law dependence due to the scaling symmetry of the
model in the massless limit. Upon the use of the virial and
the equipartition theorems, we were able to examine the
temperature dependence of the λL’s and derived critical
upper bounds, Tc, on the temperature abovewhich the MSS
inequality, λL ≤ 2πT, is respected and below which it will
eventually not be obeyed. Our numerical finding for these
Tc values are presented in the tables given in Secs. III and
IV, from which it is also observed that the Tc values display
a decreasing trend with increasing matrix size, i.e., with the
better numerical emulation of the ’t Hooft limit, as well as
with the increasing values of the CS coupling k.
We strongly feel that the next step is to devise new

methods to go beyond the classical analysis presented in the
present paper and explore the quantum dynamics of these
models. The latter appears to be quite a formidable task.
Nevertheless, inspired by the methods used in quantum
chemistry in approaching many-body problems, recently a
new real-time method,7which can be named the Gaussian
state approximation, was developed and thoroughly applied
to the BFSS model [11,12]. In its simplest form, GSA aims
at incorporating the quantum corrections by considering a
larger but a truncated set of observable whose Heisenberg
equations of motion are obtained via the use of a Gaussian
density matrix. Application of this method to the BFSS
model demonstrated that all the Lyapunov exponents tend
to zero at a nonvanishing temperature, implying that the
quantum description of the BFSS model within the GSA
approximation is fully compliant with the MSS inequality.
However, given that it is still only an approximation of the
full quantum dynamics, it falls short of providing an explicit
saturation of the MSS bound by the largest Lyapunov
exponent, in contrast to the result for the Sachdev-
Ye-Kitaev model obtained in Ref. [7] and expected for all
models with holographic duals according to the MSS

conjecture. We think that it will be extremely useful to
attempt to apply the GSA to the ABJM model as well to the
family of effective Hamiltonians introduced in the present
manuscript, not only to test theusefulness ofGSAbeyond the
BFSSmodel but also to probe the quantum chaotic dynamics
of the ABJM model. We hope to report on the possible
developments along this direction elsewhere.
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APPENDIX A: EQUATIONS OF MOTION
FOR αðtÞ AND βðtÞ

1. Ansatz I

With the ansatz configuration given as

Xi ¼ αðtÞdiagððAiÞ1; ðAiÞ2;…; ðAiÞNÞ ≔ αðtÞAi;

X̂i ¼ βðtÞdiagððBiÞ1; ðBiÞ2;…; ðBiÞNÞ ≔ βðtÞBi;

Qα ¼ ϕαðtÞGα; Rα ¼ 0; ðA1Þ

and working in the A0 ¼ 0, Â0 ¼ 0 gauge, we immediately
see that CS part of the action vanishes identically:

−
k
4π

TrðϵijXi
_XjÞ þ

k
4π

TrðϵijX̂i
_̂XjÞ;

¼ −
k
4π

α _αTr½A1; A2� þ
k
4π

β _βTr½B1; B2�;
¼ 0: ðA2Þ

Next, we evaluate TrjDiQ1j2 þ TrjDiQ2j2. We have

ðDiQαÞab ¼ iðXiQαÞab − iðQα
bXiÞab;

¼ iðXiÞacðQαÞcb − iðQαÞacðQαÞcb; ðA3Þ

where the indices a; b∶1;…; N. Using (2.11), we obtain,
for α ¼ 1,

ðDiQ1Þab ¼ iðXiQ1Þab − iðQ1
bXiÞab;

¼ iðXiÞacðϕ1G1Þcb − iðϕ1G1Þacð bXiÞcb;
¼ iαðtÞϕ1ðtÞðAiÞac

ffiffiffiffiffiffiffiffiffiffiffi
c − 1

p
δcb

− iβðtÞϕ1ðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p
δacðBiÞcb;

¼ iαϕ1

ffiffiffiffiffiffiffiffiffiffiffi
b − 1

p
ðAiÞab − iβϕ1

ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p
ðBiÞab;

¼ iϕ1ð
ffiffiffiffiffiffiffiffiffiffiffi
b − 1

p
Xi −

ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p bXiÞab;
¼ iϕ1

ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p
ðXi − bXiÞab; ðA4Þ

where the last line follows since Xi and X̂i are diagonal.
The corresponding Hermitian conjugate is

7Most of the earlier investigations as well as some recent
studies [43–47] have been aimed at investigating the phase
structure of these models in the Euclidean time formulation
using both analytical and Monte Carlo methods.
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ðDiQαÞ†ab ¼ −iϕ1

ffiffiffiffiffiffiffiffiffiffiffi
a − 1

p
ðXi − bXiÞba: ðA5Þ

These give

TrjDiQ1j2¼TrðDiQ1Þ†ðDiQ1Þ¼ðDiQ1Þ†abðDiQÞba;
¼ϕ2

1ða−1ÞððX2
i ÞaaþðX̂i

2Þaa−2ðXiX̂iÞaaÞ;

¼ϕ1
2
XN
a¼1
i¼1;2

ða−1Þ½α2ðAi
aÞ2þβ2ðBi

aÞ2−2αβAi
aBi

a�;

¼ϕ1
2
XN
a¼1
i¼1;2

ða−1ÞðαAi
a−βBi

aÞ2: ðA6Þ

Similarly, for α ¼ 2,

ðDiQ2Þab ¼ iðXiÞacϕ2ðG2Þcb − iðϕ2G2ÞacðX̂iÞcb; ðA7Þ

¼ iϕ2

ffiffiffiffiffiffiffiffiffiffiffiffi
N − c

p
ðXiÞacδcþ1;b − iϕ2

ffiffiffiffiffiffiffiffiffiffiffiffi
N − a

p
δaþ1;cðX̂iÞcb;

¼ iϕ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − bþ 1

p ðXiÞa;b−1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
N − a

p
ðX̂iÞaþ1;bÞ;

¼ iϕ2

ffiffiffiffiffiffiffiffiffiffiffiffi
N − a

p
ððXiÞa;b−1 − ðX̂iÞaþ1;bÞ; ðA8Þ

with the Hermitian conjugate given as

ðDiQ2Þ†ab ¼ −iϕ2

ffiffiffiffiffiffiffiffiffiffiffiffi
N − a

p ððXiÞb−1;a − ð bXiÞb;aþ1Þ: ðA9Þ

These give

TrjDiQ2j2 ¼ ϕ2
2ðN − aÞððX2

i Þa−1;a−1 þ ðX̂iÞaþ1;aþ1

− ðXiÞa;b−1ðX̂iÞb;aþ1 − ðX̂iÞaþ1;bðXiÞa;b−1Þ;

¼ ϕ2
2

XN
a¼1
i¼1;2

ðN − aÞ½α2ðAi
a−1Þ2

þ β2ðBi
aþ1Þ2 − 2αβAi

aBi
aþ1�: ðA10Þ

We therefore have

TrjDiQ1j2 þ TrjDiQ2j2 ¼ α2S1 þ β2S2 − 2αβS3; ðA11Þ

where

S1 ¼ ϕ2
1

XN
a¼1
i¼1;2

ða− 1ÞðAi
aÞ2 þϕ2

2

XN
a¼1
i¼1;2

ðN − aÞðAi
a−1Þ2;

S2 ¼ ϕ2
1

XN
a¼1
i¼1;2

ða− 1ÞðBi
aÞ2 þϕ2

2

XN
a¼1
i¼1;2

ðN − aÞðBi
aþ1Þ2;

S3 ¼ ϕ2
1

XN
a¼1
i¼1;2

ða− 1ÞAi
aBi

a þϕ2
2

XN
a¼1
i¼1;2

ðN − aÞAi
aBi

aþ1: ðA12Þ

The equation of motion for α and β take the form

αS1 − βS3 ¼ 0; βS2 − αS3 ¼ 0; ðA13Þ

which yields

ðS1S2 − S23Þα ¼ 0: ðA14Þ
Since S1S2 − S23 ≠ 0, as one can see readily see by
inspection (this is also verified using Mathematica at
several different choices of N), therefore, the only solution
to the equations of motion is the trivial solution,

αðtÞ ¼ 0; βðtÞ ¼ 0; ðA15Þ
as we intended to show.

2. Ansatz II

In this case, we immediately see by inspection from (4.4)
and (A12) that

TrjDiQ1j2 þ TrjDiQ2j2 þ jDiR1j2 þ TrjDiR2j2
¼ α2T1 þ β2T2 − 2αβT3; ðA16Þ

where

T1 ¼ ðq2 þ r2Þ
�
ðN − 1ÞðAi

NÞ2 þ ðN − 2Þ
XN−1

a¼1
i¼1;2

ðAi
aÞ2

�
;

T2 ¼ ðq2 þ r2ÞN
XN
a¼2
i¼1;2

ðBi
aÞ2;

T3 ¼ ðq2 þ r2Þ
�XN

a¼1
i¼1;2

ða − 1ÞAi
aBi

a þ
XN
a¼1
i¼1;2

ðN − aÞAi
aBi

aþ1

�
:

ðA17Þ
with the equations of motion implying that

ðT1T2 − T2
3Þα ¼ 0: ðA18Þ

Since T1T2 − T2
3 ≠ 0, by inspection, the only solution to

the equations of motion is, once again, the trivial solution
αðtÞ ¼ 0 ¼ βðtÞ.

APPENDIX B: FIXED POINTS
OF THE REDUCED LAGRANGIANS

AND THEIR STABILITY

1. Ansatz I

Fixed points of a Hamiltonian system are defined as the
stationary points of the phase space [14]. For the reduced
dynamical system obtained using ansatz I, these points are
given by the solutions of the equations

ð _ϕ1; _ϕ2; _pϕ1
; _pϕ2

Þ ¼ ð0; 0; 0; 0Þ: ðB1Þ
Combining (B1) and the equations of motion given in (3.4)
leads to four algebraic equations, two of which are trivially
solved by ðpϕ1

; pϕ2
Þ≡ ð0; 0Þ. The remaining two give us

the coupled algebraic equations, which are expressed as
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N2ðN − 1Þ
�
μ2ϕ1 þ

16πμ

k
ϕ1ϕ

2
2 þ

16π2

k2
ϕ1ϕ

4
2 þ

32π2

k2
ϕ3
1ϕ

2
2

�
¼ 0; ðB2Þ

N2ðN − 1Þ
�
μ2ϕ2 þ

16πμ

k
ϕ2
1ϕ2 þ

16π2

k2
ϕ4
1ϕ2 þ

32π2

k2
ϕ2
1ϕ

3
2

�
¼ 0: ðB3Þ

Fixed points may be determined by solving these
equations.
Linear stability of the system may be inspected around a

given fixed point, in order to determine whether it is a stable
or unstable fixed point. A similar analysis was performed in
Ref. [14], and we follow it in what follows. For simplicity,
let us introduce the notation

ðq1; q2; q3; q4Þ≡ ðϕ1;ϕ2; pϕ1
; pϕ2

Þ: ðB4Þ

From qα and _qα, we may form the Jacobian matrix

J ≡ ½J�αβ ¼
∂ _qα
∂qβ

: ðB5Þ

The explicit form of J is given as

J ¼

0
BBBBB@

0 0 1
N2ðN−1Þ 0

0 0 0 1
N2ðN−1Þ

J31 J32 0 0

J41 J42 0 0

1
CCCCCA; ðB6Þ

where

J31 ¼−N2ðN − 1Þ
�
μ2þ 96π

k2
ϕ2
1ϕ

2
2þ

16π2

k2
ϕ4
2þ

16πμ

k2
ϕ2
2

�
;

J32 ¼−N2ðN − 1Þ
�
64π2

k2
ϕ3
1ϕ2þ

64π2

k2
ϕ1ϕ

3
2þ

32πμ

k
ϕ1ϕ2

�
;

J41 ¼−N2ðN − 1Þ
�
μ2þ 96π

k2
ϕ2
1ϕ

2
2þ

16π2

k2
ϕ4
1þ

16πμ

k2
ϕ2
1

�
;

J42 ¼−N2ðN − 1Þ
�
64π2

k2
ϕ3
1ϕ2þ

64π2

k2
ϕ1ϕ

3
2þ

32πμ

k
ϕ1ϕ2

�
:

ðB7Þ

Eigenvalues of J allow us to determine characteristic of a
given fixed point. As was summarized in Ref. [14], a fixed
point is unstable if the Jacobian has at least one real positive
eigenvalue. It may be that all the nonvanishing eigenvalues
can be purely imaginary. The latter case is a fixed point of
borderline type for which the first order stability analysis is
inconclusive and considerations beyond first order are
necessary to decide on the characteristic of such a point.
At μ ¼ 1, for k > 0, the only real solution of the system

given in (B3) is the trivial solution ðϕ1;ϕ2Þ≡ ð0; 0Þ. Thus,
the only fixed point of this Hamiltonian system is given as
ðϕ1;ϕ2; pϕ1

; pϕ2
Þ≡ ð0; 0; 0; 0Þ with vanishing energy; i.e.,

we have EFð0; 0; 0; 0Þ ¼ 0. We find that the eigenvalues of
Jð0; 0; 0; 0Þ are given as f�i;�ig. Thus, this fixed point is
of borderline type. We will not perform a higher-order
analysis for this fixed point.
For k < 0, the fixed points of the system are given as

ðϕ1;ϕ2; pϕ1
; pϕ2

Þ ¼
�
ð0; 0; 0; 0Þ;

�
�ð∓Þ

ffiffiffiffiffiffiffiffiffi
−kμ

p
2

ffiffiffi
π

p ;�
ffiffiffiffiffiffiffiffiffi
−kμ

p
2

ffiffiffi
π

p ; 0; 0

�
;

�
�ð∓Þ

ffiffiffiffiffiffiffiffiffi
−kμ

p

2
ffiffiffiffiffiffi
3π

p ;�
ffiffiffiffiffiffiffiffiffi
−kμ

p

2
ffiffiffiffiffiffi
3π

p ; 0; 0

��
: ðB8Þ

Eigenvalues of the Jacobian at these fixed points are given as

Jð0; 0; 0; 0Þ → fiμ; iμ;−iμ;−; iμg;

J

�
�ð∓Þ

ffiffiffiffiffiffiffiffiffi
−kμ

p
2

ffiffiffi
π

p ;�
ffiffiffiffiffiffiffiffiffi
−kμ

p
2

ffiffiffi
π

p ; 0; 0

�
→ f2iμ; 2iμ;−2iμ;−2iμg;

J

�
�ð∓Þ

ffiffiffiffiffiffiffiffiffi
−kμ

p

2
ffiffiffiffiffiffi
3π

p ;�
ffiffiffiffiffiffiffiffiffi
−kμ

p

2
ffiffiffiffiffiffi
3π

p ; 0; 0

�
→

�
−
2μffiffiffi
3

p ;
2μffiffiffi
3

p ;−
2

3
i

ffiffiffi
5

p
μ;
2

3
i

ffiffiffi
5

p
μ

�
: ðB9Þ

Thus, the unstable fixed points are ð�ð∓Þ
ffiffiffiffiffiffi
−kμ

p
2
ffiffiffiffi
3π

p ;�
ffiffiffiffiffiffi
−kμ

p
2
ffiffiffiffi
3π

p ; 0; 0Þ, since their Jacobians have a positive eigenvalue, while the
remaining are of borderline type. The energy of the system at the unstable fixed point is evaluated to be

EF ¼ N2ðN − 1Þ 5jkμ
3j

108π
; kμ < 0: ðB10Þ
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2. Ansatz II

Using the equations of motion given in (4.4), we find that the fixed points are determined by ðpq; prÞ ¼ ð0; 0Þ and the
solutions of the equations �

2μ2qþ 32πμ

k
q3 −

48π2

k2
q3r2 −

24π2

k2
qr4 þ 96π2

k2
q5
�

¼ 0;�
2μ2r −

32πμ

k
r3 −

48π2

k2
q2r3 −

24π2

k2
q4rþ 96π2

k2
r5
�

¼ 0: ðB11Þ

We find that, for kμ > 0, they are given as

ðq; r; pq; prÞ ¼
��

0;�
ffiffiffiffiffi
kμ

p
2

ffiffiffi
π

p ; 0; 0

�
;

�
0;�

ffiffiffiffiffi
kμ

p

2
ffiffiffiffiffiffi
3π

p ; 0; 0

�
; ð0; 0; 0; 0Þ

�
; ðB12Þ

while for kμ < 0, they are

ðq; r; pq; prÞ ¼
��

�
ffiffiffiffiffiffiffiffiffi
−kμ

p
2

ffiffiffi
π

p ; 0; 0; 0

�
;

�
�

ffiffiffiffiffiffiffiffiffi
−kμ

p

2
ffiffiffiffiffiffi
3π

p ; 0; 0; 0

�
; ð0; 0; 0; 0Þ

�
: ðB13Þ

The Jacobian matrix is again of the form given in (B6), where now

J31 ¼ −N2ðN − 1Þ
�
480π2

k2
q4 −

144π2

k2
q2r2 −

24π2

k2
r4 þ 96πμ

k
q2 þ 2μ2

�
;

J32 ¼ −N2ðN − 1Þ
�
96π2

k2
q3rþ 96π2

k2
qr3

�
;

J41 ¼ −N2ðN − 1Þ
�
96π2

k2
q3rþ 96π2

k2
qr3

�
;

J42 ¼ −N2ðN − 1Þ
�
480π2

k2
r4 −

144π2

k2
q2r2 −

24π2

k2
q4 −

96πμ

k
r2 þ 2μ2

�
: ðB14Þ

Eigenvalues of the Jacobian matrix at the fixed points are

Jð0; 0; 0; 0Þ → f−i
ffiffiffi
2

p
μ;−i

ffiffiffi
2

p
μ; i

ffiffiffi
2

p
μ; i

ffiffiffi
2

p
μg; ðB15Þ

J

�
0;�

ffiffiffiffiffi
kμ

p
2

ffiffiffi
π

p ; 0; 0

�
→

�
−

iμffiffiffi
2

p ;
iμffiffiffi
2

p ;−2
ffiffiffi
2

p
iμ; 2

ffiffiffi
2

p
iμ

�
;

J

�
0;�

ffiffiffiffiffi
kμ

p

2
ffiffiffiffiffiffi
3π

p ; 0; 0

�
→

�
−2

ffiffiffi
2

3

r
μ; 2

ffiffiffi
2

3

r
μ;−i

ffiffiffiffiffi
11

6

r
μ; i

ffiffiffiffiffi
11

6

r
μ

�
; ðB16Þ

J

�
�

ffiffiffiffiffiffiffiffiffi
−kμ

p
2

ffiffiffi
π

p ; 0; 0; 0

�
→

�
−

iμffiffiffi
2

p ;
iμffiffiffi
2

p ;−2
ffiffiffi
2

p
iμ; 2

ffiffiffi
2

p
iμ

�
;

J

�
�

ffiffiffiffiffiffiffiffiffi
−kμ

p

2
ffiffiffiffiffiffi
3π

p ; 0; 0; 0

�
→

�
−2

ffiffiffi
2

3

r
μ; 2

ffiffiffi
2

3

r
μ;−i

ffiffiffiffiffi
11

6

r
μ; i

ffiffiffiffiffi
11

6

r
μ

�
: ðB17Þ

Therefore, for real values of μ, we have either the set ð0;�
ffiffiffiffi
kμ

p
2
ffiffiffiffi
3π

p ; 0; 0Þ or the set ð�
ffiffiffiffiffiffi
−kμ

p
2
ffiffiffiffi
3π

p ; 0; 0; 0Þ as unstable fixed points for
kμ > 0 and kμ < 0, respectively, while the remaining fixed points are of borderline type. The corresponding energy value at
these points are

EF ¼ N2ðN − 1Þ jkμ
3j

27π
: ðB18Þ

Let us finally observe that for purely imaginary values of μ (i.e., for tachyonic mass values) all these fixed points are of
unstable type.
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