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Abstract: There is a huge family of recurrent functions, which starts with equilibria and ends with
Poisson stable functions. They are fundamental in theoretical and application senses, and they
admit a famous history. Recently, we have added the unpredictable functions to the family. The
research has been performed in several papers and books. Obviously, theoretical and application
merits of functions increase if one provides rigorously approved efficient methods of construction
of concrete examples, as well as their numerical simulations. In the present study, we met the
challenges for unpredictability by considering functions of two variables on diagonals. Algorithms
have been created, and they are both deterministic and random. Characteristics are introduced to
evaluate contributions of periodic and unpredictable components to the dynamics, and they are
clearly illustrated in graphs of the functions. Definitions of non-periodic compartmental functions
are provided as suggestions for the research in the future.

Keywords: unpredictable functions; compartmental unpredictable functions; degree of periodicity;
functions determined deterministically and randomly; numerical simulations
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1. Introduction

Oscillations and recurrence play a special role in the study of dynamics of processes
occurring in nature and industry. In the literature, numerous results have been obtained
for periodic, quasi-periodic, and almost periodic functions due to the established valuable
mathematical methods and important applications [1–5]. On the other hand, recurrent and
Poisson stable functions are also crucial for the theory of oscillations [6–10]. The theory
of non-linear dynamics, [1,2,6,11,12], was focused mainly on periodic motions. Func-
tions, which can be still be considered as “periodic” and are sufficiently convenient for
strict mathematical analysis, are quasi-periodic functions introduced and investigated
by P. Bohl [13,14] and E. Esclangon [15], independently. The fundamental papers of
H. Bohr [16–18] are about basics of almost periodic functions. Different theories of almost-
periodicity were constructed by N.N. Bogolyubov [19], A.S. Besicovitch [20], S. Bochner [21],
and V.V. Stepanov [22]. Those functions are of great importance for the development of
harmonic analysis of groups, including the Fourier series. The concepts of recurrent mo-
tions and Poisson stable points are central in the qualitative theory of dynamical systems.
They were considered by H.Poincare [11] and G. Birkhoff [6] as the main ingredients of
complexity in celestial dynamics.

Currently, chaos theory is being widely developed, and the classical functions are not
any longer sufficient to describe the dynamics of complex systems. It requires not only new
models and new solutions of models, but also new functions. This is why the unpredictable
and compartmental Poisson stable have been introduced in our recent papers [23–26]. Accord-
ingly, a new method of included intervals for the existence of unpredictable and Poisson stable
solutions of discrete and differential equations was suggested. Since the unpredictability
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leads to chaos, the role of unpredictable functions is very important in applications. The new
functions are especially important for studying the dynamics of neural networks. Due to the
complexity and non-linearity of neural networks, their behaviour is not confined to regular
functions. In our papers, unpredictable oscillations in Hopfield-type neural networks [27],
as well as shunting inhibitory cellular neural networks [28,29], were investigated.

It is indisputable that, when considering functions in applications, one should enlarge
the number of methods of construction and numerical presentations of them, starting with
simple algebraic operations and finalizing with Fourier series and the theory of operators.
In the present study, a new way of the unpredictable function construction is suggested,
which is rooted at compartmental functions. It starts with functions of two variables, which
are unpredictable in one of them, and in another are either periodic, quasi-periodic, or
almost-periodic and even recurrent or Poisson stable. Then, domains of the functions
are narrowed to the diagonals of the coordinate spaces, where the arguments are ranged.
The method of diagonals is the routine one, known, for instance, for quasi-periodic func-
tions or almost-periodic functions [5,20], but, in the study, the diagonalization is made
for dynamics, which are on essentially different new level, since the dependence on the
different variables is essentially different. Correspondingly, it is an interesting problem
to find such conditions that the functions on diagonals admit the unpredictability. In the
present research, the problem is provided with a particular solution for the case of periodic-
ity. So-called compartmental periodic unpredictable functions are in the focus. Beside the
general problem, elements of algebra for the unpredictable functions and unpredictability
of compositions have been discussed.

Working on the new types of recurrence, we have learnt, surprisingly, that, despite
numerous papers on almost periodic and Poisson stable functions, there are no any prints of
numerical examples and simulations, neither for the functions nor solutions of differential
equations, if they are not quasi-periodic. In the same time, the needs of industry and, excep-
tionally, neuroscience, artificial intelligence, and other modern areas, demand numerical
presentation of motions, which already have been supported seriously in theories. Our
research comprehensively meets the challenges, since we have constructed samples of
Poisson stable and unpredictable functions utilizing solutions of the logistic equation, as
well as determining them randomly through realizations of Bernoulli schemes and Markov
chains. That is, deterministic, as well as stochastic routs for the functions, have been paved.
One should emphasize that, even for Poisson stable functions, which are in the research for
about a century, samples of the concrete functions appeared in our papers [24,25] for the
first time. The numerical experiments are advantageous, since they are accompanied with
newly developed strong instruments of the functions simulations. For instance, they are
suitable for synchronization of chaos, namely, Delta synchronization, which works for gas
discharge-semiconductor systems [30], where even the generalized synchronization [31]
is not effective. A numerical test for the unpredictable dynamics has been suggested [32],
which discovers strange attractors, when conservative methods do not work [33]. Moreover,
we have developed algorithms, which allow us to observe contributions of periodicity and
the unpredictability for the compartmental dynamics. The algorithms are based on the
concept of the degree of periodicity. We have learnt that very similar time series can be seen
in several industrial experiments [34–38], and this is a strong argument for the application
of our results. One can believe, also, that the research of the compartmental functions can
give more insights into the problem of the transition from quasi-periodicity to chaos [39,40].

In Preliminaries and Definitions, one can find basic information on functions, which are in
the focus of the present research. The Section 3 contains conditions on the novel parameters,
sufficient to guarantee the unpredictability of compartmental functions with a periodic
component. The properties are utilized in the central theoretical part of the article, Section 4,
where a new class of unpredictable functions is described. The reader is invited to consider
Theorem 1 as the source of weakened conditions for the unpredictability. The Section 5
contains examples of concrete compartmental periodic unpredictable functions, which are
constructed by applying irregular features of dynamics in the logistic equation. The results
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are rigorously approved by the method of included intervals. The degree of periodicity is
considered in Section 6. Its role for the analysis is carefully illustrated through several
numerical simulations. The rout for construction of unpredictable functions by Markov
chains is discussed in Section 7. In the final part, Miscellanea, definitions of compartmental
quasi-periodic, almost periodic, recurrent, and Poisson stable functions are presented
to complete the presentation. Moreover, theorems are proved on the unpredictability
of functions being subdued to simple algebraic operations. The section is closed with
an example of a compartmental quasi-periodic unpredictable function, which confirms
potentials of the research when a diagonalized function is not necessary unpredictable.

2. Preliminaries and Definitions

Throughout the paper, N, Z, and R, respectively, stand for the sets of natural numbers,
integers, and real numbers. Moreover, for vectors, we use a Euclidean norm.

Definition 1. A bounded function f (t) : R → Rn is said to be Poisson stable if there exists a
sequence tk, tk → ∞ as k→ ∞, such that the sequence of functions f (t + tk) uniformly converges
to f (t) on each bounded interval of the real axis.

Definition 2 ([23]). A bounded function f : R → Rn is unpredictable if there exist positive
numbers ε0, δ and sequences tk, sk, both of which diverge to infinity, such that ‖ f (t + tk) −
f (t)‖ → 0 as k → ∞ uniformly on compact subsets of R and ‖ f (t + tk)− f (t)‖ > ε0 for each
t ∈ [sk − δ, sk + δ] and k ∈ N.

A sequence tk, k = 1, 2, . . . , in Definitions 1 and 2 is said to be the Poisson or convergence
sequence of the function f (t). We call the uniform convergence on compact subsets of R,
the convergence property, and the existence of the sequence sk and positive numbers ε0, δ is
called the separation property.

Remark 1. It follows, from the last two definitions, that we consider not only continuous, but also
discontinuous unpredictable and Poisson functions. The convergence and separation properties are
valid regardless to the continuity. Duo to this comment, we shall use examples with continuous and
discontinuous functions. The definition of continuous Poisson stable functions can be found in [7].

Definition 3. A bounded function f (t, x) : R × D → Rn, D ⊂ Rn is a domain, which is
unpredictable in t, uniformly, with respect to x ∈ D, if there exist positive numbers ε0, δ and
sequences tk, sk, both of which diverge to infinity, such that sup

D
‖ f (t + tk, x)− f (t, x)‖ → 0 as

k → ∞ uniformly on bounded intervals of t and x ∈ D, and ‖ f (t + tk, x)− f (t, x)‖ > ε0 for
t ∈ [sk − δ, sk + δ], x ∈ D and k ∈ N.

Definition 4. A function f (t) : R → Rn is said to be a compartmental periodic unpredictable
function if f (t) = G(t, t),, where G(u, v) is a continuous bounded function, periodic in u uniformly
with respect to v, and unpredictable in v uniformly with respect to u,, i.e., there exist positive
numbers ω, ε0, δ and sequences tk, sk, both of which diverge to infinity, such that G(u + ω, v) =
G(u, v) for all u, v ∈ R, sup

u∈R
‖G(u, v + tk)− G(u, v)‖ → 0 as k → ∞ uniformly on bounded

intervals of v, and ‖G(u, v + tk)− G(u, v)‖ > ε0 for v ∈ [sk − δ, sk + δ], u ∈ R and k ∈ N.

Definition 5. A function f (t, x) : R × D → Rn, D ⊂ Rn is a domain, which is said to be
compartmental periodic unpredictable in t uniformly for x ∈ D function, if f (t, x) = G(t, t, x),
where G(u, v, x) is a bounded function, periodic in u uniformly with respect to v ∈ R, x ∈ D, and
unpredictable in v uniformly with respect to u ∈ R and x ∈ D.

Remark 2. What we use as functions on diagonals is the routine technique of multi-periodicity
known for almost periodic functions [18]. If the number of periods is finite and they are in-
commensurate, the quasi-periodic functions as a subset of almost-periodic functions is shaped.
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In Definitions 3 and 4, functions differently depend on two variables since periodicity is not the
unpredictability. That is, we consider a more sophisticated case of the technique this time. It is
clear that the compartmental functions are already assumed to be irregular, but to clarify precisely
the phenomenon as irregular, we provide conditions for the unpredictability of the functions on
diagonals. The next section is devoted to the kappa property, which plays the role of the periods
relation in almost-periodicity theory. The property guarantees that the unpredictability in a single
variable is inherited by the function on the diagonal of the arguments space. This is why we say that
the new results is a next step in application of the technique.

3. Kappa Property of Unbounded Sequences

Consider a sequence of positive real numbers tk, tk → ∞ as k→ ∞. Below, the follow-
ing two simple lemmas will be of use. They are rather general results adapted to the needs
of the present paper.

Lemma 1. For an arbitrary sequence of positive real numbers tk, k = 1, 2, · · · , and a positive
number ω, there exist a subsequence tkl

, l = 1, 2, · · · , and a number τω, 0 ≤ τω < ω, such that
tkl
→ τω(mod ω) as l → ∞.

Proof. Consider the sequence τk, such that tk ≡ τk(mod ω), and 0 ≤ τk < ω for all k ≥ 1.
The boundedness of the sequence τk implies that there exists a subsequence τkl

, which
converges to a number τω [41].

For fixed ω > 0, by the last lemma, there exist a subsequence tkl
and a number τω , such

that tkl
→ τω(mod ω) as l → ∞. In what follows, considering applications for unpredictable

and Poisson stable functions, we shall call the number τω as the Poisson shift with respect
to the ω. The set of all Poisson shifts Tω is not empty. It can consist of several or even an
infinite number of elements. The number κω = in f Tω, 0 ≤ κω < ω, is said to be Poisson
number with respect to the number ω. If κω = 0, then we say that the sequence tk satisfies
kappa property with respect to the number ω. The following assertion is useful in the next part
of the paper.

Lemma 2 ([24]). κω ∈ Tω.

Proof. Assume on the contrary that κω is not in Tω . Then, there exists a strictly decreasing
sequence τm, m ≥ 1, in Tω, such that τm → κω. For each natural m, denote by tm

i a
subsequence of tk, such that tm

i → τm(mod ω) as i→ ∞.
Fix a sequence of positive numbers εn, which converges to the zero. One can find

numbers in, n = 1, 2, . . . , such that |tn
in − τn| < εn(mod ω). It is clear that tn

in → κω(mod ω)
as n→ ∞.

Next, examples are provided to demonstrate how rich the set of sequences is with
respect to the kappa property.

Example 1. Let us take the unbounded sequence tk = (k−1)ω
m , k ∈ N, where m ∈ N, ω > 0 are

fixed numbers. If m = 1 then tk ≡ 0(mod ω), k ∈ N, and there exists a unique Poisson shift,
τω = 0. If m = 2 then tk ≡ 0(mod ω) for even numbers k, and tk ≡ ω

2 (mod ω), if k is an odd
number. There is no other Poisson shifts, therefore, Tω ={0, ω

2 }. Generally, one can find that the
set of Poisson shifts is Tω ={0, ω

m , 2ω
m , · · · , (m−1)ω

m }. Thus, we procure, for any m = 1, 2, · · · , the
sequence tk satisfies the kappa property with respect to ω.

Example 2. Now, consider the sequence tk = kω + µk, 0 < µk < ω, k = 1, 2, · · · , µk, where the
sequence µk is determined as follows,

µ2l−l =
ω

2l , µ2l−l+1 =
2ω

2l , · · · , µ2l+1−l−2 =
(2l − 1)ω

2l , l = 1, 2, · · · .
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Thus, the sequence µk, k = 1, 2, · · · , is obtained, and each element of the section [0, ω] is a Poisson
shift. So, the example when Tω is an uncountable set of numbers is considered, and the sequence tk
satisfies the kappa property with respect to the number ω.

4. Unpredictability of Compartmental Periodic Functions

This part is of main theoretical achievements of the paper. Theorem 1 discusses
the most weak sufficient conditions for the unpredictability of compartmental functions
with the periodic component, and it is more theoretical than results of the following
Theorems 2–4, which are constructive to determine unpredictable functions in examples
and experiments.

Theorem 1. Assume that G(u, v, x) : R×R× D → Rn, D ⊂ Rn is an open and bounded set,
which is a continuous function, and ω−periodic in u uniformly with respect to v and x. Then, the
function g(t, x) = G(t, t, x), is unpredictable in t, uniformly with respect to x, if the following
conditions are valid:

(i) for each ε > 0 there exists a positive number η such that ‖G(t + s, t, x)− G(t, t, x)‖ < ε if
|s| < η, t ∈ R, x ∈ D;
there exist sequences tk, sk both of which diverges to infinity as k→ ∞, and positive numbers
ε0, δ such that

(ii) the sequence tk satisfies the kappa property with respect to the period ω;
(iii) sup

I×D
‖G(t, t + tk, x)− G(t, t, x)‖ → 0 on each bounded interval I ⊂ R;

(iv) inf
[sk−δ,sk+δ]×D

‖G(t, t + tk, x)− G(t, t, x)‖ > ε0, k ∈ N.

Proof. Let us fix a positive number ε, and a bounded interval I ∈ R. Since the sequence tk
satisfies the kappa property, one can write, without loss of generality, that tk → 0(mod ω)
as k→ ∞. Therefore, by conditions (i) and (iii), the following inequalities are valid:

sup
R×D
‖G(t + tk, t, x)− G(t, t, x)‖ < ε

2
(1)

and

sup
I×D
‖G(t, t + tk, x)− G(t, t, x)‖ < ε

2
, (2)

for sufficiently large k.
Using inequalities (1) and (2), we obtain:

‖g(t + tk, x)− g(t, x)‖ = ‖G(t + tk, t + tk, x)− G(t, t, x)‖ ≤
‖G(t + tk, t + tk, x)− G(t, t + tk, x)‖+ ‖G(t, t + tk, x)− G(t, t, x)‖ <
ε

2
+

ε

2
= ε,

for all t ∈ I, x ∈ D. That is, g(t + tk, x) converges to g(t, x) on each arbitrary bounded
time interval uniformly for x ∈ D. Moreover, conditions (i) and (ii) imply that sup

R×D
‖G(t +

tk, t, x)− G(t, t, x)‖ < ε0

2
for sufficiently large k. Applying assumption (iv), one can obtain:

‖g(t + tk, x)− g(t, x)‖ = ‖G(t + tk, t + tk, x)− G(t, t, x)‖ ≥
‖G(t + tk, t + tk, x)− G(t + tk, t, x)‖ − ‖G(t + tk, t, x)− G(t, t, x)‖ >

ε0 −
ε0

2
=

ε0

2
,

for all t ∈ [sk − δ, sk + δ], x ∈ D, k ∈ N. The lemma is proved.
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The following assertion is a corollary of the Theorem 1.

Theorem 2. Assume that a continuous and bounded function G(u, v) : R × R → Rn, is
ω−periodic in u. The function f (t) = G(t, t) is unpredictable if the following conditions are valid,

(i) for each ε > 0 there exists a positive number η such that ‖G(t + s, t) − G(t, t)‖ < ε if
|s| < η, t ∈ R;
there exist sequences tk, sk both of which diverges to infinity as k→ ∞, and positive numbers
ε0, δ, such that

(ii) the sequence tk satisfies kappa property with respect to the period ω;
(iii) ‖G(t, t + tk)− G(t, t)‖ → 0, uniformly on each bounded interval I ⊂ R of t;
(iv) inf

[sk−δ,sk+δ]
‖G(t, t + tk)− G(t, t)‖ > ε0, k ∈ N.

Remark 3. Conditions (iii) and (iv) in the Theorem 2 are satisfied if G(t, u) is unpredictable in
the second argument by Definition 4.

Theorem 3. Assume that a function G(t, u) : R× D → Rn, D ⊆ Rn, is ω−periodic in t and
satisfies the inequalities L1‖u1 − u2‖ ≤ ‖G(t, u1)− G(t, u2)‖ ≤ L2‖u1 − u2‖, where L1, L2 are
positive constants, for all t ∈ R, u1, u2 ∈ D. If υ(t) : R→ D is an unpredictable function, such
that the convergence sequence tk admits the kappa property with respect to period ω, then G(t, υ(t))
is an unpredictable function.

Proof. Consider the function F(t, u) = G(t, υ(u)). We shall prove that F(t, u) is unpre-
dictable in u. Let us fix positive number ε and a bounded interval I. Since of the kappa

property, for a sufficiently large number k, we have ‖υ(u + tk)− υ(u)‖ <
ε

L2
for u ∈ I.

That is why,

‖F(t, u + tk)− F(t, u)‖ = ‖G(t, υ(u + tk))− G(t, υ(u))‖

≤ L2‖υ(u + tk)− υ(u)‖ ≤ L2
ε

L2
≤ ε,

for all t ∈ R, and u ∈ I. On the other hand, there exist a sequence sk and positive numbers
ε0, δ such that ‖υ(u + tk)− υ(u)‖ > ε0 for t ∈ [sk − δ, sk + δ]. Therefore, we have:

‖F(t, u + tk)− F(t, u)‖ = ‖G(t, υ(u + tk))− G(t, υ(u))‖
≥ L1‖υ(u + tk)− υ(u)‖ > L1ε0,

for each t ∈ [sk − δ, sk + δ]. Thus, one can conclude that the function G(t, υ(t))
is unpredictable.

Theorem 4. Assume that a function G(t, u) : R× D → Rn, D ⊆ Rn, is a domain, it is unpre-
dictable in t uniformly with respect to u, and it satisfies the inequality ‖G(t, u1)− G(t, u2)‖ ≤
L‖u1 − u2‖, t ∈ R, u1, u2 ∈ D, where L is positive constant. If υ(t) : R→ D is a Poisson stable
function with the Poisson sequence tk common with that for G(t, u), and 2L supt∈R ‖υ(t)‖ <
ε0, where ε0 is a separation constant for G(t, u) then the composition G(t, υ(t)) is an unpre-
dictable function.
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Proof. Let us fix a positive number ε, and a bounded interval I. Since G(t, υ(t)) is unpre-
dictable in t, and υ(t) is a Poisson stable function, there exists sufficiently large k, such that:

‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖ <
ε

2
, and ‖υ(t + tk)− υ(t)‖ < ε

2L
for t ∈ I. That is,

‖G(t + tk, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+
‖G(t, υ(t + tk))− G(t, υ(t))‖ ≤ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖+

L‖υ(t + tk)− υ(t)‖ ≤ ε

2
+ L

ε

2L
≤ ε,

for all t ∈ I. Thus, G(t + tk, υ(t + tk)) → G(t, υ(t)) uniformly on each bounded interval
of the real axis. Under assumptions of the theorem, we have that there exists a sequence
sk and positive numbers ε0, δ such that ‖G(t + tk, υ(t + tk)) − G(t, υ(t + tk))‖ > ε0 for
t ∈ [sk − δ, sk + δ]. We obtain:

‖G(t + tk, υ(t + tk))− G(t, υ(t))‖ ≥ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖ −
‖G(t, υ(t + tk))− G(t, υ(t))‖ ≥ ‖G(t + tk, υ(t + tk))− G(t, υ(t + tk))‖ −
L‖υ(t + tk)− υ(t)‖ > ε0 − 2L sup

t∈R
‖υ(t)‖ > 0,

for t ∈ [sk − δ, sk + δ], and the function G(t, υ(t)) is unpredictable.

5. Unpredictable Functions Related to the Logistic Equation

In this part of the paper, examples of two unpredictable functions are presented.
They have the unpredictability, and additional constructive properties, which significantly
increase the use of the functions. Lemmas 3–6 make strong theoretical basis for future
research in industrial and neuroscience problems. The approach covers both deterministic
and stochastic potentials.

Let us consider the logistic map:

λi+1 = νλi(1− λi), i ∈ Z. (3)

In [23], it was proved that, for each ν ∈ [3 + (2/3)1/2, 4], the Equation (3) admits an
unpredictable solution µi, i ∈ Z. That is, there exist a positive number ε0, and the sequences
ζk, ηk, k ∈ N, of positive integers, both of which diverge to infinity, such that |µi+ζk −µi| → 0
as k → ∞ for each i in a bounded interval of integers and |µζk+ηk − µηk | > ε0 for each
k ∈ N.

Lemma 3. Assume that ξ(t) : (0, h]→ Rn, where h is a positive number, is a bounded function.
Then, the function π(t) = µiξ(t− ih), t ∈ (ih, (i + 1)h], i ∈ Z, is Poisson stable in the sense of
Definition 2.

Proof. Let us fix an interval of real numbers (α, β) and a number i ∈ Z such that (α, β) ⊂
[(i − 1)h, (i + s + 1)h], where s is a natural number. Then, for tk = ζkh, k ∈ N, and
t ∈ (jh, (j + 1)h], i − 1 ≤ j ≤ i + s,, we have t + ζkh ∈ ((j + ζk)h, (j + ζk + 1)h], and
ξ(t− (j + ζk)h) = ξ(t− jh).

Denote M = supt∈(0,h] ‖ξ(t)‖. For a fixed positive number ε, and sufficiently large
number k, it is true that |µj+ζk − µj| < ε

M , i− 1 ≤ j ≤ i + s. Therefore, for t ∈ (lh, (l + 1)h],
where l is a fixed integer number from i− 1 to i + s, one can obtain that

‖π(t + tk)− π(t)‖ = ‖π(t + ζkh)− π(t)‖ = ‖µl+ζk
ξ(t− (l + ζk)h)− µlξ(t− lh)‖ =

|µl+ζk
− µj|‖ξ(t− lh)‖ ≤ |µl+ζk

− µl |M < ε.

The last inequality is valid for all i− 1 ≤ l ≤ i + s. Consequently, ‖π(t+ tk)−π(t)‖ <
ε if t ∈ (α, β). Thus, the function π(t) is Poisson stable.
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Lemma 4. The function π(t) = µiξ(t− ih), t ∈ (ih, (i + 1)h], i ∈ Z, is unpredictable if the
following condition is satisfied,

(A) there exists a positive number ε1 such that ‖ξ(t)‖ > ε1 for each t ∈ (0, h].

Proof. By Lemma 3, the sequence of functions π(t + tk) uniformly converges to π(t) on
compact subsets of R. It remains to show that the function π(t) satisfies the separation
property. Due to the unpredictability of the sequence µi, there exist a positive number ε0,
and the sequence ηk, ηk → ∞ as k→ ∞, such that |µζk+ηk − µηk | > ε0 for each k ∈ N.

For tk = ζkh, k = 1, 2, · · · , and t ∈ (ηkh, (ηk + 1)h] we have that t + tk = t + ζkh ∈
((ζk + ηk)h, (ζk + ηk + 1)h]. That is why ξ(t + tk) = ξ(t− (ζk + ηk)h) = ξ(t− ζkh) for all
t ∈ (ηkh, (ηk + 1)h]. So, by using condition (A), we obtain:

‖π(t + tk)− π(t)‖ = ‖µζk+ηk ξ(t− (ζk + ηk)h)− µηk ξ(t− ζkh)‖ =
|µζk+ηk − µηk |‖ξ(t− ζkh)‖ > ε0ε1 > 0, (4)

for all t ∈ (ηkh, (ηk + 1)h], k = 1, 2, · · · . Thus, the function π(t) is unpredictable with with
positive numbers ε∗ = ε0ε1, δ = h

2 , and sequences tk = ζkh, sk = ηkh + h
2 , k ∈ N.

Lemma 5. The function π(t) = µiξ(t− ih), t ∈ (ih, (i + 1)h], i ∈ Z, is unpredictable if the
following condition is valid,

(B) there exist positive numbers δ, s and ε1 such that [s− δ, s + δ] ⊂ (0, h] and ‖ξ(t)‖ > ε1 for
each t ∈ [s− δ, s + δ].

Proof. The convergence property of the function π(t) is proved in Lemma 3. Let us show
that the function π(t) satisfies the separation property. There exist a positive number ε0,
and the sequence ηk, ηk → ∞ as k→ ∞, such that |µζk+ηk − µηk | > ε0 for each k ∈ N.

From tk = ζkh, k = 1, 2, · · · , and t ∈ (ηkh + s− δ, ηkh + s + δ] it follows that t + tk =
t + ζkh ∈ ((ζk + ηk)h + s− δ, (ζk + ηk)h + s + δ]. Therefore, ξ(t + tk) = ξ(t− (ζk + ηk)h) =
ξ(t− ηkh), k = 1, 2, · · · . Applying condition (B), we obtain:

‖π(t + tk)− π(t)‖ = ‖µζk+ηk ξ(t− (ζk + ηk)h)− µηk ξ(t− ζkh)‖ =
|µζk+ηk − µηk |‖ξ(t− ηkh)‖ > ε0ε1 > 0, (5)

for all t ∈ (ηkh+ s− δ, ηkh+ s+ δ], k = 1, 2, · · · . So, one can conclude that the function π(t)
is unpredictable with positive numbers ε∗ = ε0ε1, δ, and sequences tk = ζkh, sk = ηkh + s,
k = 1, 2, · · · .

Now, let us define a continuous function Ξ(t) : R→ Rn, such that:

Ξ(t) =
∫ t

−∞
e−α(t−s)π(s)ds, (6)

where α is a positive real number, and π(t) is the unpredictable function, which satisfies
one of the conditions (A) or (B). The function Ξ(t) is bounded on the whole real axis, such
that supt∈R ‖Ξ(t)‖ ≤

Mπ
α , where Mπ = supt∈R ‖π(t)‖. By applying the unpredictability of

the function π(t) with condition (B), we will prove the following lemma. One can see that
the condition (B) implies the condition (A).

Lemma 6. The function Ξ(t) is unpredictable.

Proof. Consider a fixed bounded and closed interval [a, b], of the axis and a positive
number ε. Now, applying the method of included intervals [24], we will show that the
sequence Ξ(t + tk) uniformly converges to Ξ(t) on [a, b]. Let us fix a positive number
ξ and a number c < a, which satisfy the following inequalities 2Mπ

α e−α(a−c) < ε
2 and
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ξ
α [1− e−α(b−c)] < ε

2 . Let k be a large enough number, such that ‖π(t + tk)− π(t)‖ < ξ on
[c, b]. Then, for all t ∈ [a, b], we obtain:

‖Ξ(t + tk)− Ξ(t)‖ = ‖
∫ t

−∞
e−α(t−s)(π(s + tk)− π(s))ds‖ =

‖
∫ c

−∞
e−α(t−s)(π(s + tk)− π(s))ds +

∫ t

c
e−α(t−s)(π(s + tk)− π(s))ds‖ ≤∫ c

−∞
e−α(t−s)2Mπds +

∫ t

c
e−α(t−s)ξ ds

≤ 2Mπ

α
e−α(a−c) +

ξ

α
[1− e−α(b−c)] <

ε

2
+

ε

2
= ε.

Thus, ‖Ξ(t + tk)− Ξ(t)‖ → 0 as k→ ∞ uniformly on the interval [a, b].
According Lemma 5, we have ‖π(t + tk) − π(t)‖ > ε∗ for t ∈ [sk − δ, sk + δ]. Fix

a natural number k and positive δ1 < δ, such that 2Mπδ1
α [1− e−αδ1 ] < ε∗

3α . Consider two
alternative cases: (i) ‖Ξ(tk + sk)− Ξ(sk)‖ < 2δ1ε∗

3α , (ii) ‖Ξ(tk + sk)− Ξ(sk)‖ ≥ 2δ1ε∗

3α .
It is easily seen that the following relation holds:

Ξ(t + tk)− Ξ(t) = Ξ(tk + sk)− Ξ(sk) +
∫ t

sk

e−α(t−s)(π(s + tk)− π(s))ds. (7)

(i) From the last relation, we obtain:

‖Ξ(t + tk)− Ξ(t)‖ ≥ ‖
∫ t

sk

e−α(t−s)(π(s + tk)− π(s))ds‖ − ‖Ξ(tk + sk)− Ξ(sk)‖ >∫ t

sk

e−α(t−s)ε∗ds− 2δ1ε∗

3α
≥ δ1ε∗

α
− 2δ1ε∗

3α
=

δ1ε∗

3α
(8)

for t ∈ [sk − δ1, sk + δ1].

(ii) Using the relation (7) we get that

‖Ξ(t + tk)− Ξ(t)‖ ≥ ‖Ξ(tk + sk)− Ξ(sk)‖ − ‖
∫ t

sk

e−α(t−s)(π(s + tk)− π(s))ds‖ >

2δ1ε∗

3α
−
∫ t

sk

e−α(t−s)2Mπds ≥ 2δ1ε∗

3α
− 2Mπδ1

α
[1− e−αδ1 ] >

δ1ε∗

3α
(9)

for t ∈ [sk − δ1, sk + δ1]. Thus, the inequalities (8) and (9) prove finally that the function
Ξ(t) is unpredictable with positive numbers ε1 = δ1ε∗

3α , δ1 and sequences tk, sk.

6. Degree of Periodicity and Numerical Simulations

In this part of the paper, a quantitative characteristic, the degree of periodicity, is
introduced for functions with the kappa property. Examples with graphs of compartmental
unpredictable functions related to the logistic equation are presented. The dependence of
their trajectories on the degree of periodicity is discussed.

To illustrate the dynamics of the compartmental unpredictable function, we will
use the function Ξ(t), which is defined by (6), with α = −3, and the function π(t) =
µiξ(t− ih), t ∈ (ih, (i + 1)h], i ∈ N, where ξ(t) ≡ 1. The function Ξ(t) is bounded, such that
supt∈R |Ξ(t)| ≤

1
3 , and is the exponentially stable unpredictable solution of the differential

equation Ξ′ = −3Ξ + π(t). This is why, for the numerical simulations of the function, we
will use solutions of the equation.

The number h is said to be the length of step of the functions π(t) and Ξ(t). For compart-
mental unpredictable functions, the ratio of the period and the length of step, ∇ = ω/h, is
called the degree of periodicity.

Next, we shall construct the function, which is a compartmental one and unpredictable
due to the kappa property.
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Consider the following function, G(t, u) = (5 sin2(0.1t)+ 0.1) arctan(Ξ(u))+ 0.5Ξ(u)3,,
which is 10π−periodic in t, uniformly with respect to u. The function arctan(u) satisfies
Lipschitz conditions with L1 = 3/4 and L2 = 1, if |u| ≤ 1

3 . This is why, according
Theorems 6 and 7, the component-functions arctan(Ξ(u)) and 0.5Ξ3(u) are unpredictable.

Consider the function

f1(t) = G(t, t) = (5 sin2(0.1t) + 0.1) arctan(Ξ(t)) + 0.5Ξ3(t). (10)

where h—the length of step is a parameter.
We will show that the assumptions of Theorem 2 are valid for the function f1(t). The

uniform continuity of G(t, u) implies the condition (i) Since of ω = 10π, one can consider
the function Ξ(t) with the convergence sequence and separation sequences tk = ζkh,
sk = ηkh + s, k = 1, 2, · · · . such that condition (ii) is valid. Let us fix a bounded interval
I ⊂ R. The sequence Ξ(t + tk) uniformly converges to Ξ(t) on the interval. This is why,

|G(t, t + tk)− G(t, t)| ≤ |5 sin2(0.1t) + 0.1|| arctan(Ξ(t + tk))− arctan(Ξ(t))|+
0.5|Ξ(t + tk)− Ξ(t)||Ξ2(t + tk) + Ξ(t + tk)Ξ(t) + |Ξ2(t)| ≤ 5.27|Ξ(t + tk)− Ξ(t)|,

and the sequence of functions G(t, t + tk) converges to G(t, t) uniformly on I. That is,
condition (iii) is satisfied.

According Lemma 6, for t ∈ [sk − δ1, sk + δ1], we have |Ξ(t + tk)− Ξ(t)| > ε1, k =
1, 2, . . . That is,

|G(t, t + tk)− G(t, t)| =
∣∣∣(5 sin2(0.1t) + 0.1) arctan(Ξ(t + tk)) + 0.5Ξ(t + tk)−

sin2(0.1t) arctan(Ξ(t))− 0.5Ξ(t)
∣∣∣ ≥ |5 sin2(0.1t) + 0.1|L1|Ξ(t + tk)− Ξ(t)| −

0.5|Ξ2(t + tk) + Ξ(t + tk)Ξ(t) + |Ξ2(t)||Ξ(t + tk)− Ξ(t)| ≥

(5.1L1 −
0.5
3
)|Ξ(t + tk)− Ξ(t)| > 3.65|Ξ(t + tk)− Ξ(t)| > 3.65ε1.

The last inequality implies that condition (iv) is valid. Thus, all conditions of Theorem 2
are correct, and the function f1(t) is unpredictable. Moreover, the arguments of Theorem 2
indicates that f1(t) is a compartmental unpredictable function.

In Figure 1 the graph of function f1(t), where the length of step h = 0.1π, and degree
of periodicity ∇ = 200, is shown.

Figure 1. The graph of compartmental periodic unpredictable function f1(t). The length of step
h = 0.1π, and degree of periodicity ∇ = 200.

Similarly to the function f1(t), it can be shown that the compartmental periodic
unpredictable function, f2(t) = G(t, t), where G(t, u) = (5 sin2(0.5t) + 0.1) arctan(u) +
0.5u3, and u = Ξ(t), is unpredictable. The function G(t, u) is 2π− periodic in t, uniformly
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with respect to u. Figure 2 depicts the graph of function f2(t) with length of step h = 8π,
so that the degree of periodicity ∇ = 0.25.

Figure 2. The graph of function f2(t) with the length of step h = 8π, and the degree of periodicity
∇ = 0.25.

Compartmental periodic unpredictable function f3(t) = (5 sin2(t)+ 0.1) arctan(Ξ(t))+
0.5Ξ3(t), with the period π and the length of step h = π is presented in Figure 3. According
Theorem 2, the function f3(t) is unpredictable.

Figure 3. The graph of compartmental periodic unpredictable function f3(t). The degree of periodicity
∇ = 1.

Issuing from the results of the last three simulations, let us make observations how
the value of the degree of periodicity effects the shape of graphs of compartmental periodic
unpredictable functions. Observing the graphs in Figure 1, when ∇ > 1, we see that the
solution admits clear periodic shape, which is enveloped by the irregularity with small
amplitude. Oppositely, if ∇ ≤ 1, one can see in Figures 2 and 3 that the periodicity lost its
dominance and unpredictability prevails. More precisely, periodicity appears only locally
on separated intervals, if ∇ < 1. That is, the periodicity envelopes the unpredictability
this time. The periodicity is not seen at all for ∇ = 1 in Figure 3. So, the unit is the
boundary value between dominance of regularity and irregularity, which are present with
periodicity and the unpredictability respectively. The conclusions can be useful for analysis
of experiments [34–38].

7. Randomly Determined Compartmental Unpredictable Functions

In this section, we demonstrate algorithms how to construct unpredictable functions
by using Markov chains with finite state spaces. They will be used in the Miscellanea for
compartmental quasi-periodic unpredictable functions.

A Markov chain is a stochastic model, which describes a sequence of possible events,
such that the probability of each event depends only on the state attained in the previous
one [42–44].
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Since we expect for the unpredictable dynamics realizations to be bounded, the special
Markov chain with boundaries is constructed below. Let the real-valued scalar dynamics be:

Xn+1 = Xn + Yn, n ≥ 0, (11)

be given such that Yn = {−0.5; 0.5} is a random variable. The probability distribution
P(0.5) = P(−0.5) = 1/2, if Xn 6= 1, 4, and certain events Yn = −0.5, if Xn = 4, and
Yn = 0.5, if Xn = 1. To satisfy the construction of the present research, we will make the
following agreements. First of all, denote s0 = 1, s1 = 1.5, s2 = 2, s3 = 2.5, s4 = 3, s5 = 3.5,
s6 = 4. Consider the state space of the process S = {s0, s1, s2, s3, s4, s5, s6}, and the value
Xn ∈ S is the state of the process at time n. The Markov chain is a random process, which
satisfies the property P{Xn+1 = sj|X0, . . . , Xn} = P{Xn+1 = sj|Xn} for all si, sj ∈ S and
n ≥ 0. Moreover, P{Xn+1 = sj|Xn = si} = pij, where pij is the transition probability that
the chain jumps from state i to state j. It is clear that ∑6

j=0 pij = 1 for all i = 0, . . . , 6. The
unpredictability of infinite realizations of the dynamics is approved by Theorem 2.2 [45].

Next, we shall introduce randomly determined unpredictable function ρ(t) = Xnξ(t−
nh), if t ∈ [hn, h(n + 1)), where ξ(t) : (0, h]→ R, is a bounded function. In Figures 4 and 5,
the graph of the function ρ(t) with ξ(t) ≡ 1 and ξ(t) = sin(t− 0.5nπ), respectively, for all
t ∈ [hn, h(n + 1)), is drawn.

Figure 4. The graph of the piecewise constant unpredictable function ρ(t) = Xnξ(t − nh), t ∈
[hn, h(n + 1)), n = 0, 1, 2, . . . The vertical lines are drawn for better visibility.
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Figure 5. The graph of the piecewise continuous unpredictable function ρ(t) = Xn sin(t-0.5nπ),
t ∈ [hn, h(n + 1)), n = 0, 1, 2, . . . The vertical lines are drawn for better visibility.

Now, let us show construction of continuous unpredictable functions through the
Markov process. Consider the ordinary differential equation:

W ′(t) = αW(t) + tanh(ρ(t)), (12)
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where α is a negative number. The Equation (12) admits a unique exponentially stable
unpredictable solution [45]. It is impossible to specify the initial value of the solution,
but, by applying the property of exponential stability, one can consider any solution as
arbitrarily close. In Figure 6, the graph of the solution, W(t), W(0) = 0.4 of Equation (12),
where the parameter α is equal to −2.5, and ρ(t) = Xn for t ∈ [n, n + 1), is shown.

Figure 6. The solution W(t) of Equation (12) with initial value W(0) = 0.4 exponentially approaches
the unpredictable Markovian function.

8. Miscellanea

In the beginning of this part, two theorems are provided for construction of the unpre-
dictable functions by using simple algebraic operations. The assertion of unpredictability
of a composition is another result of the section. To provide information for next devel-
opment of the study, several new definitions of compartmental unpredictable functions
are presented. One can be invited to use the definitions to find conditions, which imply
that the functions on diagonals are unpredictable in the sense of Definition 2. The irregular
behaviour is demonstrated with numerical simulation in an example for a compartmental
quasi-periodic unpredictable function.

Theorem 5. If the function ψ(t) : R→ Rn is unpredictable, then the sum ψ(t) + C, where C is a
constant, is also unpredictable.

Proof. Denote f (t) = ψ(t) + C. We have that ‖ f (t + tk)− f (t)‖ = ‖ψ(t + tk)− ψ(t)‖, this
is why, f (t + tk) → f (t), as k → ∞ uniformly on compact subsets of R and ‖ f (t + tk)−
f (t)‖ > ε0 for each t ∈ [sk − δ, sk + δ] and k ∈ N.

Theorem 6. Assume that ψ(t) : R → Rn is an unpredictable function. Then, the function
ψ2m+1(t), m ∈ N, is unpredictable.

Proof. There exists numbers ε0, δ > 0 and sequences tk, sk, both of which diverge to
infinity, such that ψ(t + tk) converges to ψ(t) as k → ∞ uniformly on compact subsets
of R and ‖ψ(t + tk) − ψ(t)‖ > ε0 for each [sk − δ, sk + δ] and k ∈ N. The proof of the
Poisson stability of ψ2m+1(t) is not difficult, since it follows from uniformly continuity of
ψ2m+1(t) on a compact set. Now, we will show that ‖ψ2m+1(t + tk)− ψ2m+1(t)‖ > ε(ε0)
for some positive number ε(ε0) and t ∈ [sk − δ, sk + δ]. Fix a natural number m. Consider
the function F(x, y) = x2m+1 − y2m+1 for |x− y| ≥ ε0. By using the method of Lagrange
multipliers, one can find that the minimum of F(x, y) occurs at the points x0, y0 with |x0| =
|y0| = ε0

2 . Therefore, ‖ψ2m+1(t + tk)− ψ2m+1(t)‖ ≥ ε2m+1
0
22m for m ∈ N, t ∈ [sk − δ, sk + δ].

Thus, the function ψ2m+1(t) is unpredictable with sequences tk, sk and positive numbers δ

and ε <
ε2m+1

0
22m .
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Remark 4. An unpredictable function to an even degree is not necessary unpredictable. This can be
shown by considering the function G(x, y) = x2m − y2m, m = 1, 2, · · · . Let us write the function
G(x, y) in the form G(x, y) = (x− y)(x + y)g(x, y). Despite |x− y| ≥ ε0, the sum x + y may
be arbitrary small, and the separation property will not be satisfied.

Theorem 7. Assume that bounded function f (u) : Rn → Rn, satisfies the inequalities L1‖u1 − u2‖ ≤
‖ f (u1)− f (u2)‖ ≤ L2‖u1 − u2‖, where L1, L2 are positive constants, for all u1, u2 ∈ Rn. Then,
the function f (ψ(t)) is unpredictable, provided that ψ(t) : R→ Rn is an unpredictable function.

Proof. Consider the function g(t) = f (ψ(t)). Let us fix positive number ε and a bounded
interval I. One can find sufficiently large k it is true that ‖ψ(t + tk)− ψ(t)‖ < ε

L2
for t ∈ I.

This is why,

‖g(t + tk)− g(t)‖ = ‖ f (ψ(t + tk))− f (ψ(t))‖ ≤ L2‖ψ(t + tk)− ψ(t)‖ < ε,

for all t ∈ I. Moreover, there exist a sequence sk and positive numbers ε0, δ, such that
‖ψ(t + tk)− ψ(t)‖ > ε0 for t ∈ [sk − δ, sk + δ]. Then, we obtain:

‖g(t + tk)− g(t)‖ = ‖ f (ψ(t + tk))− f (ψ(t))‖ ≥ L1‖ψ(t + tk)− ψ(t)‖ > L1ε0,

for all t ∈ [sk − δ, sk + δ].

For further researches, it is important to consider the most general definitions of a
Poisson stable and unpredictable functions, excluding their continuity.

Definition 6 ([3]). A continuous function f (t) : R → Rn is called quasi-periodic with periods
2π/ω1, 2π/ω2, · · · , 2π/ωm if for every positive ε there exists a positive number δ such that a num-
ber ρ satisfies the inequality supt∈R ‖ f (t + ρ)− f (t)‖ < ε, provided that |ωkρ| < δ(mod 2π),
k = 1, 2, · · · , m.

Definition 7. A function f (t) : R→ Rn is said to be compartmental quasi-periodic unpredictable,
if f (t) = G(t, t), where G(u, v) is a continuous bounded function, quasi-periodic in u uniformly
with respect to v ∈ R, and unpredictable in v uniformly with respect to u ∈ R.

Definition 8 ([4]). A continuous function f (t) : R→ Rn is said to be almost periodic if, for any
positive ε, the set S( f , ε) = {ω : ‖ f (t + ω)− f (t)‖ < ε for all t ∈ R} is relatively dense.

Definition 9. A function f (t) : R→ Rn is said to be compartmental almost periodic unpredictable,
if f (t) = G(t, t), where G(u, v) is a continuous bounded function, almost periodic in u uniformly
with respect to v ∈ R, and unpredictable in v uniformly with respect to u ∈ R.

Definition 10 ([46]). A continuous function f (t) : R→ Rn is called recurrent if for any positive
ε there can be found a positive number L, such that for each real number t and any interval I of
length L there exists a number τ ∈ I, which satisfies ‖ f (t + τ)− f (t)‖ < ε.

Definition 11. A function f (t) : R → Rn is said to be compartmental recurrent unpredictable,
if f (t) = G(t, t), where G(u, v) is a function recurrent in u uniformly with respect to v ∈ R, and
unpredictable in v uniformly with respect to u ∈ R.

Definition 12. A function f (t) : R→ Rn is said to be compartmental Poisson stable unpredictable,
if f (t) = G(t, t), where G(u, v) is a Poisson stable in u uniformly with respect to v ∈ R, and
unpredictable in v uniformly with respect to u ∈ R.

Next, we formulate definitions of specific compartmental functions.
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Definition 13. A sum φ(t) + ψ(t) is said to be modulo periodic (quasi-periodic, almost-periodic,
recurrent, Poisson stable) unpredictable function, if φ(t) is a continuous periodic (quasi-periodic,
almost-periodic, recurrent, Poisson stable) function and ψ(t) is an unpredictable function.

Definition 14. A product φ(t)ψ(t) is said to be factor periodic (quasi-periodic, almost-periodic,
recurrent, Poisson stable) unpredictable function, if φ(t) is a continuous periodic (quasi-periodic,
almost-periodic, recurrent, Poisson stable) and ψ(t) is an unpredictable functions.

It is important to remark that the Definitions 7, 9, 11 and 12, are provided without any
theoretical consequences within the present research. We consider them as a reason for
open problems, such that conditions can be looked for the unpredictability of the functions,
similar to the kappa property. Nevertheless, this time, we suggest the next simulation result
to illustrate the irregularity as well possibility to see contribution of quasi-periodic and the
unpredictable components to the composed dynamics. The graphs of quasi-periodic and
compartmental quasi-periodic unpredictable function are shown in Figure 7. According
to Theorem 7, the component 0.5 tanh(W(t)) is unpredictable with Lipschitz constants
L1 = 0.43 and L2 = 0.5, since supt∈R |W(t)| < 2

5 . Thus, f (t) = sin(0.2t) + cos(0.1
√

2t) +
0.5 tanh(W(t)) can be accepted as modulo quasi-periodic unpredictable function. One can
see that the irregular graph of the unpredictable function f (t) envelopes the graph of the
quasi-periodic function g(t) = sin(0.2t)+ cos(0.1

√
2t), such that contribution of both quasi-

periodicity and irregularity are clearly seen in the dynamics of compartmental function.
Obviously, an analogue of the degree of periodicity can be looked for the quasi-periodicity,
and the contributions of the components are discussed more deeply.

Figure 7. The red curve is the graph of quasi−periodic function g(t) = sin(0.2t) + cos(0.1
√

2t), and
the blue curve is the graph of the randomly determined compartmental quasi−periodic unpredictable
function f (t) = sin(0.2t) + cos(0.1

√
2t) + 0.5 tanh(W(t)).
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