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Self-bound quantum droplets form when the mean-field tendency of the gas to collapse is stabilized
by the effectively repulsive beyond mean-field fluctuations. The beyond mean-field effects depend
on Rabi-frequency ωR and quadratic Zeeman effect q for the Rabi-coupled Bose mixtures and the
spinor gases, respectively. The effects of varying ωR and q on the quantum droplet have recently
been examined for unpolarized Rabi-coupled Bose mixture with zero detuning δ = 0 and unpolarized
spinor gas with 〈Fz〉 = 0. In this paper, we theoretically explore the stability of the droplet phase for
polarized δ 6= 0 Rabi-coupled Bose mixture and 〈Fz〉 6= 0 spinor gas. We calculate the Lee-Huang-
Yang corrections for both gases with polarized order parameters and obtain the phase diagram
of the droplets on the parameter space of ωR-δ and q-p for Rabi-coupled mixture and spinor gas,
respectively. Finally, we highlight the similarities and differences between the two systems and
discuss their experimental feasibility.

I. INTRODUCTION

Theoretical prediction and experimental realization of
the bosonic droplets strikingly highlight the significance
of the beyond mean-field (MF) effects which generally
give minor corrections. Self-trapping of a Bose-Einstein
condensate (BEC) that is otherwise collapsing is only
possible if the beyond MF fluctuations are taken into ac-
count [1, 2]. In a trapped single component BEC with
attractive interactions, the MF interaction energy scales
with −N2|a|/R3, where N is the number of particles, R is
the radius of the condensate, and a is the s-wave scatter-
ing length (a < 0). The trapping potential ∝ NR2 and
kinetic energy ∝ N/R2 of the condensate may balance
this attractive MF interaction and yield a metastable
BEC only if the particle number is below some maxi-
mum value [3]. The situation is drastically different in
the case of self-bound droplets. There, the MF collapse is
stabilized by the beyond mean-field (BMF) quantum fluc-
tuations even without a confining potential [1, 2, 4–16],
and droplets exhibit a minimum particle number below
which the gas is no longer stable [2]. As particle number
N decreases,the kinetic energy eventually dominates and
causes the gas to expand.

In addition to these constraints in the particle num-
ber, the gas is also required to be in the dilute regime
in which the Bogoliubov theory is still valid to achieve
droplet formation. Therefore, stability of droplets de-
pends on the interaction parameters. Consider the three
different classes of Bose droplets: dipolar [1], binary mix-
ture [2], and spinor [16]. For the dipolar droplets, the
dipole εdd and contact interactions as; for binary mix-
tures, intraspecies a11 and a22 and interspecies a12 con-
tact interactions; for spin-1 gas, the total spin-0 channel
a0 and total spin-2 channel a2 interactions are the funda-
mental interaction parameters to be considered. These
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parameters should be fine-tuned to drive the MF energy
of the system towards collapse and balance the collapse
with the BMF energy. Requirement of such stringent
fine-tuning motivates a search for additional probes to
adjust droplet formation in cold atom experiments.

Recently, the Bose mixtures with the Rabi-coupling
between the hyperfine states of the particles attracted
attention due to interesting many-body effects, such as
effective tunable three-body interactions [8, 17–19]. The
coupling between the two levels of the system makes the
BMF energy depend on the Rabi frequency ωR [18] and
provides an additional mechanism to tune the droplet
density. Similar to a critical particle number, there is
a critical Rabi frequency ωc above which the droplet is
no longer self-trapped [8]. For the spinor droplets, the
quadratic Zeeman energy-dependent LHY correction of
the spinor gas plays an analogous role with a maximum
quadratic Zeeman energy qc above which the droplet
expands [16]. Additionally, when non-zero quadratic
Zeeman energy or Rabi-frequency is introduced, one of
the gapless Bogoliubov modes becomes gapped for both
spinor and Rabi-coupled mixtures. The MF energies can
be controlled by the detuning δ for Rabi-coupled gases
and linear Zeeman energy p for spinor gases. These simi-
larities prompt us to investigate their droplet states com-
paratively.

Previously, both the Rabi-coupled binary mixture
droplets [8] and the spinor gas droplets [16] are studied
for zero net polarization. For the Rabi-coupled droplets,
the detuning δ is assumed to be zero, which yields an un-
polarized ground state order parameter within the MF
picture. Similarly, for the spinor droplet [16], the MF
ground states is studied with zero magnetization 〈Fz〉.
In this paper, we theoretically explore the droplet forma-
tion for the polarized Rabi-coupled binary mixture and
the spin-1 gas. We examine how the non-zero polariza-
tion affects the MF and BMF energies and discuss the
feasibility of the droplet phases under finite polarization.
For the Rabi-coupled binary mixtures, the non-zero de-
tuning δ leads to an asymmetry in the particle number
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of the two levels within the MF ground state. Finite
polarization alters both the MF and BMF interaction
energies. For a given Rabi-frequency ωR, there is a crit-
ical value of the detuning δc above which the droplet is
not self-trapping. Similarly, for the spin-1 droplet, finite
magnetization alters the MF and BMF interactions and
a critical magnetization exists p̃c for given quadratic Zee-
man energy q. Using these critical values, we obtain the
droplet phase boundary of the Rabi-coupled mixture and
spinor gas in the ωR-δ and q-p planes, respectively.

This paper is organized as follows. In Section II, we
summarize the Bogoliubov Theory of Rabi-coupled bi-
nary mixtures and discuss the possible MF ground states
and mechanical stability of the mixture. In Section III,
we develop the formulation of the polarized Rabi-coupled
droplet, present our numerical results on the droplet
phase boundary in the ωR-δ plane. In Section IV, we
summarize the Bogoliubov Theory of polarized spin-1
gas and discuss the mean-field order parameters for anti-
ferromagnetic interactions c1 > 0. In Section V, we de-
velop the formulation of the polarized spinor droplet and
present the droplet phase boundary in the p − q plane.
In Section VI, we discuss the experimental feasibility of
the proposed phenomena and highlight the similarities
and differences between the polarized Rabi-coupled and
spinor droplets.

II. RABI-COUPLED BOSE MIXTURES:
BOGOLIUBOV THEORY

We consider a BEC consisting of N atoms in two in-
ternal states, m = 1, 2 with the corresponding s-wave
scattering lengths a11, a22 and a12. The internal states
are coupled through a Rabi frequency ωR and detuning
δ. Applying the rotating wave approximation to elim-
inate the explicit time dependence, the Hamiltonian of
this Rabi-coupled binary mixture is given by [18]:

Ĥ=

∫
dx

{ ∑
m=1,2

Ψ̂†m(x)

(
−~2∇2

2M

)
Ψ̂m(x)

+
∑
m,m′

(gmm′
2

Ψ̂†m(x)Ψ̂†m′(x)Ψ̂m′(x)Ψ̂m(x)
)

−~ωR
(

Ψ̂†1(x)Ψ̂2(x) + Ψ̂†2(x)Ψ̂1(x)
)

−~δ
2

(
Ψ̂†2(x)Ψ̂2(x)− Ψ̂†1(x)Ψ̂1(x)

)}
(1)

where gmm′ = 4πamm′~2/M are the coupling constant
of the s-wave interaction among the atoms of mass M
within the internal states m and m′. Ψ̂†m(x) and Ψ̂m(x)
are the field operators that create and annihilate the par-
ticle with internal state m at position x, respectively.

We obtain the MF energy and BMF fluctuations using
the Bogoliubov theory in the Hamiltonian (1). Assuming
a homogenous gas, we express the field operators in terms
of Fourier modes Ψ̂m(x) = V −1/2

∑
k âk,me

ikx, and write

FIG. 1. Mean-field phase diagram of Rabi-coupled Bose
mixture as a function of Rabi-frequency ~ωR

ḡn
and detuning ~δ

ḡn

for g12
g
< −1, and g > 0. The shade (color bar) indicates the

ratio r =
√
N1/N2 in the MF ground state (3). The dashed

(red) line indicates the boundary above or below which the
total MF two-particle interaction forces the gas to expand or
collapse, respectively, which is drawn for the scattering length
ratio of a12/a = −1.5 The solid (red) line is the boundary of
the self-trapped droplet phase.

the operators âk,m = â0,m+
∑

k6=0 âk,m keeping only the
terms up to the quadratic order in âk 6=0,m. We replace

the operators with the classical number â0,m ≈
√
N0,m,

where N0,m is the number of particles with internal state
m in the k = 0 state. The Hamiltonian (1) becomes:

Ĥ= −2~ωR
√
N1N2 −

~δ
2

(N2 −N1) +
∑
m,m′

gmm′NmNm′

2V

+
∑
k6=0

{(
εk + g11n1 + ~ωR

√
N2

N1

)
â†k,1âk,1

+

(
εk + g22n2 + ~ωR

√
N1

N2

)
â†k,2âk,2

+
g11n1

2

(
â†k,1â

†
−k,1 + âk,1â−k,1

)
+
g22n2

2

(
â†k,2â

†
−k,2 + âk,2â−k,2

)
+g12

√
n1n2

(
â†k,1â

†
−k,2 + âk,1â−k,2

)
+ (g12

√
n1n2 − ~ωR)

(
â†k,1âk,2 + â†k,2âk,1

)}
(2)

where εk = ~2k2

2M is the free particle dispersion. The first
line of (2) is the MF energy of the Rabi-coupled binary
mixture gas, while the rest of the terms account for the
quantum fluctuations that constitute the BMF energy.

In order to understand the ground state order parame-
ter within the MF picture and how it differs from the bi-
nary mixture without Rabi-coupling, we focus on the MF
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energy and assume that intra-species scattering lengths
are equal for both internal states, i.e. g11 = g22 = g for
simplicity. The MF energy from (2) is given by [19]:

EMF

N
= −~ωR sin θ − ~δ

2
cos θ +

gN

2V
− ḡN

2V
sin2 θ (3)

where ḡ = g−g12
2 and the wavefunctions of the conden-

sate components (ψ1 ψ2) =
√
n(sin θ/2 cos θ/2) with θ ∈

[0, π]. Assuming the total number of particles N fixed,
the problem of determining the MF ground state becomes
finding θ that minimizes the energy (3). The ground

state MF order parameter r ≡
√
N1/N2 = tan(θ/2) for

any g12/g with δ = 0 can be found in [8]. Here, we are
interested in the parameter space for δ 6= 0. Since our
purpose is to examine the order parameters in which the
system can collapse within the MF picture, we assume
g12/g < −1 and g > 0, which gives collapse without
phase separation. The ratio between the particle num-
bers r within the MF ground state for various ωR and
δ values are shown in Fig. 1. For any ωR with δ = 0,
the MF energy is minimized by θ = π/2 or r = 1. This
is exactly the order parameter to which Salasnich et al.
[8] restrict their droplet analysis. As detuning δ becomes
non-zero, the MF ground state becomes polarized r 6= 1.
The polarization becomes sharper, i.e. r → 0 or θ → 0,
as either ωR → 0 or δ → ∞. The order parameter
r = tan(θ/2), and θ ∈ [0, π/2] changes smoothly over
the parameter space (See Fig.1).

Now let us discuss how the two-body interaction part

( gN2V −
ḡN
2V sin2 θ) of the MF energy (3) changes with the

detuning δ. On the ωR-axis, the MF ground state yields
r = 1 or θ = π/2 which gives the two-body interaction ∝
(g− ḡ)n2 = (g+ g12)n2/2. Since g/g12 < −1, the density
collapse is expected within the MF picture. However, on
the δ-axis, the MF ground state yields r = 0 or θ = 0
for ~δ/ḡn > 2. Hence, the MF two-body interaction is
∝ gn2. Since g > 0, the gas expansion is expected within
the MF picture. Note that as detuning δ is increased from
zero to infinity, the MF order parameter θ changes from
π/2 and approaches to zero. As a consequence, we expect

a value of θ = sin−1
√
g/ḡ, below or above which the MF

picture predicts a collapse or expansion, respectively. For
g12/g = −1.5, the line that separates the density collapse
and expansion within the MF picture is shown with the
dashed red line in Fig.1.

Below, the free parameters of the Rabi-coupled mix-
ture will be taken as ωR, r, g12, g, and N . Furthermore,
the dimensionless parameters ω̃ = ~ωR

gn and γ = g12/g

will be used when appropriate. The results will be pre-
sented as functions of parameter set (ω̃,r) which then can
be mapped to the parameter plane (ωR,δ) when neces-
sary.

We calculate the BMF energy to analyse the possibil-
ity of droplet phase for various values of ωR and r. By
applying a Bogoliubov transformation on the quadratic
Hamiltonian (2), one can obtain the Bogoluibov modes
of the Rabi-coupled binary mixture [18]:

E±,k =

√√√√Dk ±
√
D2

k − εk
(
εk + ~ωR

(
r +

1

r

))[(
εk + 2gn1 + ~ωR

1

r

)
(εk + 2gn2 + ~ωRr)− (2g12

√
n1n2 − ~ωR)

2

]
Dk =

1

2

∑
m=1,2

[(
εk + ~ωR

√
nm̄
nm

)(
εk + 2gnm + ~ωR

√
nm̄
nm

)
− ~ωR(2g12

√
n1n2 − ~ωR)

]
(4)

where m̄ = 3 −m, n1 = r2

r2+1n and n2 = 1
r2+1n. These

Bogoliubov modes reduce to the results of Salasnisch et
al. [8] for r = 1 and non-zero ωR and they recover
the usual Bose mixture results without Rabi coupling for
ωR = 0 and r = 1.

We calculate the BMF energy of each correspond-
ing Bogoluibov mode separately using E±BMF =
1
2

∑
k

(
E±k − limk→∞E±k

)
, which gives:

E±BMF

V
= α(gn)5/2I±(ω̃, γ, r) (5)

where α = m3/2
√

2π2~3
, and we neglect one of the modes con-

taining imaginary part. See Appendix (A) for I±(ω̃, γ, r).
In the limit ω̃ → 0 and r = 1, this result recovers

the BMF energy of the Bosonic mixture without Rabi-
coupling. The limit r → 1 for any ω̃, the E±BMF expres-
sions of Salasnich et.al. [8] are recovered for both modes.

For more general cases (r 6= 1), we calculate the I+ nu-
merically for various r values. For any r ∈ [0.6, 1], I+ is
a monotonically increasing function of both ω̃ and r so
that BMF energy of the Rabi-coupled mixture increases
with these parameters.

III. RABI-COUPLED BOSE MIXTURE
DROPLET

We now discuss the possibility of self-trapping and ne-
glect the ‘soft’ Bogoliubov mode contribution E−k , as in
Refs. [2, 11, 16]. We first consider the infinite, homoge-
neous Rabi coupled Bose mixture. The pressure of the
gas is calculated from P = −∂

(
EMF + E+

BMF

)
/∂V as
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FIG. 2. The ground state wavefunctions of the Rabi-coupled Bose mixture in polar phase for various values of ω̃ and ratio r.
(Left) The wavefunctions for δ = 0, i.e. r = 1 and different values of ω̃. Above ω̃c droplet is no longer self trapped. (Right)
The wavefunctions for fixed ω̃ = 0.25 and varying ratio r, which shows self-bound droplet until a critical value of rc ≈ 0.7. The
total particle number Ñ = 500 for both plots.

follows:

P =
g(1 + r4) + 2g12r

2

2(r2 + 1)2
n2 + α (gn)

5/2
f(ω̃) (6)

where f(ω̃) = 3
2I+(ω̃)−ω̃I ′+(ω̃). For any g12/g, there is a

value of r ∈ [0, 1] above which the pressure due to the MF
energy is negative. Furthermore, this negative pressure
can be stabilized by a positive contribution from BMF
energy, since g > 0 and f(ω̃) is positive for any value
of ω̃. Under these circumstances, the vanishing pressure
P = 0 condition can be reached. We obtain an implicit
equation for the equilibrium density:

n0 =

[
g(1 + r4) + 2g12r

2
]2

4(r2 + 1)4α2g5f2(ω̃0)
(7)

where ω̃0 = ~ωR
gn0

. If ωR = 0 and r = 1, this equilibrium

density becomes n
(1)
0 = 25|δg|2

16α2g5(1+|γ|)5 , where δg ≡ g12 +

g. Here, n
(1)
0 also approximates the density of the finite

droplets in which the kinetic energy is negligible. As
the Rabi-frequency ω̃ is increased for a fixed ratio r, the
function f(ω̃) and BMF energy becomes greater, which
in turn decreases the equilibrium density of the droplet.

We study the feasibility of the finite droplet more quan-
titatively by obtaining the governing Gross-Pitaevskii
Equation (GPE). We use locked-in approximation for the
different components of the mixture and assume a droplet
wavefunction Ψ(r) = ψ(r)(τ1 τ2)T , where τ1/τ2 = r and
|τ1|2 + |τ2|2 = 1. We express the energy functional of the
droplet using n(r) = |Ψ(r)|2 as

E [ψ∗, ψ] =
~2

2M
|∇ψ|2 +

(
−2~ωRr
r2 + 1

− ~δ(1− r2)

2(1 + r2)

)
|ψ|2

+

(
g

2
− 2ḡr2

(1 + r2)2

)
|ψ|4

+ αg5/2I+

(
~ωR
g|ψ|2 , γ, r

)
|ψ|5 (8)

and write the wavefunction in dimensionless form ψ(r) =√
n

(1)
0 φ(r). We minimize the total energy in the grand

canonical ensemble E =
∫
d3rE [ψ∗, ψ] − µN where the

chemical potential is fixed by the total number of parti-
cles N =

∫
d3r|ψ|2. The resulting modified GPE is given

by:

µ̃φ = −1

8

(
r +

1

r

)2

∇̃2φ

+

[
2α4|φ|2 +

5α5

2
I+

(
ω̃

(1)
0

|φ|2 , r, γ
)
|φ|3

− α5ω̃
(1)
0 I

′
+

(
ω̃

(1)
0

|φ|2 , r, γ
)
|φ|
]
φ (9)

where ω̃
(1)
0 = ~ωR

gn
(1)
0

, α4 = 3
2|δg|

(
(r2+1)2g

2r2 − 2ḡ
)

, and

α5 = 15
8(1+|γ|)5/2

(
r + 1

r

)2
. The equation (9) is written

in the dimensionless form r̃ = r/ξ, with ξ =
√

6~2

M |δg|n(1)
0

and the total particle number is scaled by Ñ = N/n
(1)
0 ξ3.

This modified GPE reduces to the form obtained by
Petrov [2] when ωR = 0 and r = 1, as α4 = −3/2 and
α5I+(0, 1, γ) = 1 in this limit. Below, we fix the scatter-
ing length ratio γ = −1.5, as in Salasnich et al. [8].

We numerically solve the modified GPE (9) by imag-
inary time evolution and obtain the ground state wave-
function. For a fixed total particle number Ñ = 500,
we find the critical value of ω̃ above which the droplet
expands to infinity. This expansion occurs with a mecha-
nism different from the expansion due to decreasing total
particle number Ñc. In the latter case, the decreasing
number of particles causes the droplet radius to shrink
so that the increasing kinetic energy causes expansion to
infinity. In the case of increasing ω̃ at fixed ratio r, the
droplet radius increases due to a stronger BMF energy
which makes kinetic energy comparable to both MF and
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BMF energies, and causes the droplet to expand. As an
example, for Ñ = 500 and δ = 0, or r = 1, the critical
frequency is ω̃c = 0.9. Fig. (2) shows the increase in the
droplet radius with increasing ω̃ up to the critical ω̃c in
the left panel. As r decreases, the MF interaction energy
(α4 term in Eq. 3) first decreases then acts repulsive for
r < 0.62. BMF energy (5) also decreases with r but since
MF energy shrinks with a higher rate, we expect ω̃c to
become smaller with decreasing r.

As r changes from 1 to 0.7, ω̃c changes from 0.9 to 0,
and we do not observe a droplet phase below r = 0.7.
We show the droplet wavefunction for various ratio r for
fixed Ñ = 500 and ω̃ = 0.5 on the right panel of Fig.(2).

We numerically obtain the critical ω̃c values for differ-
ent r and fixed Ñ = 500 to obtain the boundary of the
droplet phase as shown in Fig.(1).

IV. SPIN-1 GASES: BOGOLIUBOV THEORY

In previous work [16], we studied the spin-1 gas with
vanishing magnetization 〈Fz〉 = 0 and found that the
spinor droplet is possible in the polar and antiferromag-
netic phases if density interaction is negative c0 < 0 and
spin interaction is positive c1 > 0. The quadratic Zeeman
energy q in spinor gas is analogous to the Rabi-frequency
ωR in Bose mixtures and both can tune the density of
the droplet. As q increases, the BMF energy causes the
droplet to expand and beyond a critical level of q, the gas
cannot self-bind. Similarly, the detuning δ in the Rabi-
coupled mixture is analogous to the linear Zeeman shift
p in the spinor gas.

Here, we extend our spinor droplet discussion to in-
clude the effects of non-zero magnetization p 6= 0. The
ground state order parameter changes only for the anti-
ferromagnetic phase (See Fig.(3)) and it gives a constant
shift in the MF energy for polar phase [20–22].

Spin-1 BEC with s-wave interactions and a uniform
magnetic field along the z-axis is described by the fol-
lowing Hamiltonian:

Ĥ=

∫
dx

{
Ψ̂†m(x)

(
−~2∇2

2M
+ qm2 − pm

)
Ψ̂m(x)

+
c0
2

Ψ̂†m(x)Ψ̂†m′(x)Ψ̂m′(x)Ψ̂m(x) (10)

+
c1
2

Ψ̂†m(x)Ψ̂†m′(x) Fmn · Fm′n′Ψ̂n′(x)Ψ̂n(x)

}

where Ψ̂†m(x) and Ψ̂m(x) create and annihilate spin-
1 atom in the magnetic quantum state m = −1, 0, 1,
Fmm′ = (F xmm′ , F

y
mm′ , F

z
mm′) are the spin-1 matrices in

z-axis basis, and summation convention is used for m in-
dices, p = −gLµBBeff is the product of Landé gL-factor,
the Bohr magneton µB and the effective magnetic field
Beff . The quadratic Zeeman energy q = qB + qMW can

be tuned using both an external static field qB = (gµBB)2

∆Ehf

and microwave field qMW . Interactions in the density and

spin channels are parametrized by coupling constants c0
and c1. With the Bogoliubov approximation, this Hamil-
tonian reduces to quadratic form [23]:

Ĥeff =
V n2

2
(c0 + c1〈F〉2) + qN〈F 2

z 〉 − pN〈Fz〉

+
∑
k6=0

{ [
εk − nc1〈F〉2 + qm2 − q〈F 2

z 〉
]
â†k,mâk,m

+nc1〈F〉 · Fmm′ â†k,mâk,m′

+
nc0
2

(2D̂†kD̂k + D̂kD̂−k + D̂†kD̂
†
−k)

+
nc1
2

(2F̂†kF̂k + F̂kF̂−k + F̂†kF̂
†
−k)
}

(11)

where εk = ~2k2/2M is the free particle dispersion,
〈F〉 ≡∑m,m′ Fmm′τ

∗
mτm′ is the expectation value of the

spin-1 order parameter, D̂k ≡
∑
m τ
∗
mâk,m and F̂k ≡∑

m,m′ Fmm′τ
∗
mâk,m′ are the density and spin fluctua-

tion operators, N0 is the number of particles in the k = 0
state, τ is the ground state order parameter in the spin-1
manifold.

The MF energy of spin-1 BEC obtained from (11) is

EMF

V
=
n2

2
(c0 + c1〈F〉2) + qn〈F 2

z 〉 − pn〈Fz〉 (12)

whereas all the other terms within the summation con-
stitute the quantum fluctuations. The MF ground state
order parameter τ is determined by minimizing the en-
ergy (12). We consider the magnetic orders when the
spin coupling constant is positive c1 > 0 as shown in
Fig.(3). For p = 0, the order parameter is τP = (0 1 0)

if q > 0, or τAF = 1/
√

2(1 0 1) if q < 0. When q > 0,
introducing non-zero p does not make any difference in
τP around the q-axis. However, if q < 0, the MF en-
ergy is minimized by a p dependent order parameter
τAF = 1/

√
2(
√

1 + p̃ 0
√

1− p̃), where p̃ ≡ p/nc1. Note
that 〈Fz〉 = p̃, hence, τAF is defined for −1 ≤ p̃ ≤ 1.
Outside this interval, the order parameter becomes fer-
romagnetic. In this paper, we focus on this p̃ dependent
τAF to analyze how the spinor droplets in the antiferro-
magnetic phase are affected when non-zero magnetization
p̃ is introduced.

The order parameter τAF gives 〈F 2
z 〉 = 1, 〈Fz〉 = p̃,

and 〈F〉 = p̃êz and the resulting quadratic Hamiltonian
is:
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Ĥ = EAF0 +
∑
k6=0

{
(εk − q + c1n) â†k,0âk,0

+
c1nβ

2

(
â†k,0â

†
−k,0 + âk,0â−k,0

)
+
∑
m=±1

[
εk +

(c0 + c1)n(1 +mp̃)

2

]
â†k,mâk,m

+
∑
m=±1

[
(c0 + c1)n(1 +mp̃)

4

](
â†k,mâ

†
−k,m + âk,mâ−k,m

)
+

(c0 − c1)nβ

4

(
2â†k,−1âk,1 + â†k,−1â

†
−k,1 + â†k,1â

†
−k,−1

+ 2â†k,1âk,−1 + âk,−1â−k,1 + âk,1â−k,−1

)}
(13)

where β =
√

1− p̃2, and EAF0 is the MF energy. Disper-
sion of three distict Bogoliubov modes are found as

Ek,±1 =
√
εk[εk+(c0 + c1)n(1± κ)] (14)

Ek,0 =
√

(εk − q + (1− β)c1n) (εk − q + (1 + β)c1n)

where κ ≡
√

1− 4β2c0c1
(c0+c1)2 . We add the renormalization

terms for each mode by using the T-matrix approach up
to the second order [23] and obtain the following energy
density including both MF and BMF energy:

E0

V
= (q − p̃p)n+

(c0 + c1p̃
2)n2

2

+
8
√

2

15
α(c1n)5/2I0(q̃, β)

+
8
√

2

15
α ((c0 + c1)n)

5/2
[I+(κ) + I−(κ)] (15)

where q̃ = q
nc1

, I± = (1±κ)5/2

4
√

2
and I0(q̃, β) can be approx-

imated as (See Appendix B):

I0(q̃, β) ≈ 15πβ2

32
√

2

[√
−q̃ + 1− β2

32

1

(−q̃ + 1)3/2

]
(16)

The first line in (15) is the MF energy density for
the order parameter τAF with non-zero p̃, the second
and third lines are the BMF energy contributions from
the three different Bogoliubov modes. This expression
reproduces the results given in Ref. 16 for p̃ = 0 and
τAF = 1/

√
2 (1 0 1).

Notice that when p̃ = 0, the MF density favors collapse
if c0 < 0. Interestingly, MF energy decreases in magni-
tude as |p̃| increase, and if p̃ >

√
|c0|/c1, it becomes

repulsive, which leads an expansion of the gas above a
critical level shown with dotted lines in Fig.3.

In the collapse regime p̃ <
√
|c0|/c1, the contribution

of the BMF energy is repulsive since c1 > 0, and it can
stabilize the gas. The hard modes given above by E+ and
E0 dispersion provide such stabilization whereas the soft
mode E− containing imaginary part can be neglected,
similar to previous droplet studies [2, 16].

Ferromagnetic

τ = (1 0 0)

Ferromagnetic

τ = (0 0 1)

Polar

τ = (0 1 0)

Antiferromagnetic

τ = 1√
2

(
√

1 + p̃ 0
√

1− p̃)

Droplet

MF Expansion

MF Collapse

q
nc1

p
nc1

-4 -3 -2 -1 0 1

-1

-0.5

0.5

1

FIG. 3. Mean-field phase diagram of spin-1 gas as a func-
tion of quadratic q/nc1 and linear p/nc1 Zeeman energies.
The orange region corresponds to the antiferromagnetic order
τAF = 1/

√
2(
√

1 + p̃ 0
√

1− p̃). MF theory predicts an ex-
pansion of the gas outside the dashed (blue) lines |p̃| > 0.44,
and density collapse inside |p̃| < 0.44. The droplet phase
boundary is shown with solid (purple) line where the gas can
be stabilized by BMF fluctuations. The total particle number
Ñ = 500 and c1/c0 = −5 with c0 < 0.

V. POLARIZED AF SPIN-1 DROPLET

In the parameter regime c0 < 0 and c1 > 0, the pres-
sure of the gas is calculated using the thermodynamic
identity P = −∂E/∂V with the total energy given by
E = EMF + E+

BMF + E0
BMF which gives:

P =

(
c0 + p̃2c1

2

)
n2 +

4
√

2

15
α(c1n)5/2 h(q̃, β) (17)

where h(q̃, β) = 3I0(q̃, β) + 3 (c0/c1 + 1)
5/2

I+(κ) −
2q̃I

′
0(q̃, β). Here, prime on I0 denotes the partial deriva-

tive with respect to q̃. The equilibrium density for the
infinite homogeneous droplet can be found from the van-
ishing pressure

n0 =
225

128

(c0 + p̃2c1)2

c51 h
2(q̃, β)

(18)

which is equivalent to the equilibrium density result of
Ref. 16 for zero magnetization p̃ = 0. We take the limit

q → 0 to obtain a density scale n
(1)
0 = 25|c0|2

512α2|c1|5 and use it

to express the dimensionless modified GPE. Since h(q̃, β)
is a monotonically increasing function of q̃, the equilib-
rium density decrease with increase of the quadratic Zee-
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FIG. 4. The ground state wavefunctions of the spinor gas in AF phase for various values of quadratic Zeeman q̃ and linear
Zeeman p̃ energy. The total particle number Ñ = 500 and c1/c0 = −5 with c0 < 0 for both plots. (Left) The wavefunctions for
|q̃| = 1 and different values of p̃. Above p̃c droplet is no longer self trapped. (Right) The wavefunctions for fixed p̃ = 0.2 and
varying q̃. Similarly, above q̃c, self-bound droplet cannot be formed.

man energy q̃. Larger q̃ provides stronger BMF fluctua-
tions and the system can stabilize at lower densities.

We use the locked-in approximation Ψ(r) = ψ(r)τAF

with τAF = 1/
√

2
(√

1 + p̃ 0
√

1− p̃
)

and write the en-
ergy functional

E [ψ∗, ψ] =
~2

2M
|∇ψ|2

+ (q − p̃p) |ψ|2 +

(
c0 + c1p̃

2

2

)
|ψ|4 (19)

+
8
√

2

15
α
[
(c1n)5/2I0(q̃, β) + ((c0 + c1)n)

5/2
I+(κ)

]
|ψ|5.

Using ψ(r) =

√
n

(1)
0 φ(r), we minimize the total energy

E =
∫
d3rE [ψ∗, ψ]− µN with the total number of parti-

cles N =
∫
d3r|ψ|2 which yields the modified GPE

µ̃φ = −1

2
∇̃2φ (20)

+

{
−3

(
1 +

c1
c0
p̃2

)
|φ|2 +

5

4
I0

(
q̃0

|φ|2 , β
)
|φ|3

+
5

4

(
c0
c1

+ 1

)5/2

I+(κ)|φ|3 − q̃0

2
I
′
0

(
q̃0

|φ|2 , β
)
|φ|
}
φ

where q̃0 = q

n
(1)
0 c1

, r̃ = r/ξ, ξ =

√
6~2/M |c0|n(1)

0 . In

the limit p̃ → 0, we recover the GPE of the unpolarized

AF gas τAF = 1/
√

2(1 0 1) with I+(κ) →
(

c1
c0+c1

)5/2

,

which is expected to give a droplet phase up to a critical
|q̃| ≈ 4.4 for Ñ ≈ 500 and c1/c0 = −5 [16].

When |p̃| ≥
√
c1/|c0| ≈ 0.45, blue dashed line in

Fig.(3), MF interaction becomes repulsive, the gas goes
through expansion and BMF fluctuations provide correc-
tions for further repulsion. When |p̃| <

√
c1/|c0| the MF

drives a density collapse while BMF interactions are still
effectively repulsive. Typically, effect of p̃ is much more
pronounced in the MF terms than the BMF corrections
whereas effect of |q̃| is small in MF interactions, but it
strengthens the BMF fluctuations for given p̃.

We display the droplet wavefunctions obtained from
the numerical solution of modified GPE for q̃ = 1 with
varying p̃ on the left, and for p̃ = 0.2 with varying q̃ on
the right panel of Fig.(4). For a fixed p̃, larger q̃ gives
stronger BMF repulsion, which widens the droplet radius.
For p̃ = 0.2, after q̃c ≈ −2.2, the gas cannot form a
droplet. For a fixed q̃, greater magnetization means both
lower MF attraction and lower BMF repulsion. But even
a small BMF repulsion is sufficient to expand the gas,
since the MF attraction becomes much weaker. After a
critical level of p̃c ≈ 0.3 for q̃ = 1, the gas cannot bind
into a droplet. We obtain the critical levels for each q̃
and p̃ within the parameter region of interest and show
the droplet phase boundary in Fig.(3) with the solid red
curve.

VI. DISCUSSION OF EXPERIMENTAL
REALIZATION AND CONCLUSION

The parameters of the phase diagrams discussed above
are within current experimental capabilities for the Rabi
coupled gas. Consider a mixture of 39K atoms in the
hyperfine states |F = 1,mF = 0〉 and |F = 1,mF = −1〉.
The Feshbach resonance around B ≈ 54.5 G can be
used to tune the intracomponent scattering lengths as
a11 = a22 = 40aB and the intercomponent scattering
length a12 = −60aB [8], where aB is the Bohr radius.
The ratio of interactions give γ = g

g12
= −1.5. In the

absence of detuning and Rabi coupling, N ≈ 23, 000 par-
ticles gives a droplet of radius 0.4 µm with a peak den-
sity n0 = 4.12 × 1016cm−3. For zero detuning δ = 0,
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one can introduce a Rabi-coupling ωR = 2πfR up to the
level fR ≈ 51 kHz. As the Rabi coupling frequency in-
creases, the droplet expands to a radius r ≈ 0.65 µm
and the density at the center of the droplet decreases to
n0 ≈ 0.8 × 1016cm−3. Above 51 kHz, the droplet will
not be self-bound. The role of non-zero detuning can be
tested by setting the Rabi-frequency to fR = 10.2 kHz
for the same number of particles. The critical level of de-
tuning for these parameters is δc = 41 kHz, which give
density n0 = 3.75× 1016cm−3 and radius 7.4 µm beyond
which it is no longer self bound.

Experimentally realized spinor BECs so far are not
favorable for obtaining a spinor droplet since they are
all mechanically stable c0 > 0 [21, 24–27]. While the
use of Feshbach resonance is not possible, the spinor
BEC scattering lengths may be tuned using theoreti-
cally proposed optical Feshbach resonances in future cold
atom settings [28, 29]. The scattering lengths that favor
droplet formation can be estimated considering an atom
with scattering lengths a0 = −50aB in spin-0 channel and
a2 = 20aB in spin-1 channel with Landé factor gL = 1/2
(s = 1/2, l = 0, I = 3/2) which gives c1/c0 = −5 with
c0 < 0. For zero linear and quadratic Zeeman energies,
the spinor droplet with density 8.3× 1016 cm−3 and ra-

dius 0.6 µm can be formed with total particle number
N ≈ 130, 000. This droplet will be self-bound until a
critical level of quadratic Zeeman energy q ≈ 680 kHz.
For an initial magnetization per particle p̃ = 0.2, the gas
will be stable until the quadratic Zeeman energy exceeds
320 kHz where the density of the droplet at its center
will be around 2.1× 1016 cm−3 and the radius 0.95 µm.

In conclusion, Rabi-coupled Bose mixture and spinor
gas are similar to each other in the following ways:
(i) The BMF energies are Rabi-frequency or quadratic
Zeeman energy dependent, (ii) one of the Bogoluibov
modes become gapped when non-zero Rabi-frequency or
quadratic Zeeman energy is introduced, and (iii) the po-
larization, hence the effective mean-field energy, can be
significantly changed using the detuning or linear Zeeman
energy. Therefore, droplet formation and its properties
are highly affected by the linear and quadratic Zeeman
energies in spinor gases, the Rabi-frequency, and the de-
tuning in the Bosonic mixtures.

Appendix A: The integral expression for I±(ω̃, r, γ)

The integral expression for the function I±(ω̃, r, γ)
within the BMF energy (5) is given by:

I±(ω̃, γ, r) ≡
(

r2

r2 + 1

)5/2 ∫ ∞
0

dyy2

{√
(y4 + β2y2 + β0)±

√
(β2

2 + 2β0 − z4)y4 + (2β0β2 − z6)y2 + β2
0

− y2

1 +
β2±
√
β2
2+2β0−z4
2y2 +

β0± β0β2−z6/2√
β22+2β0−z4

−
(β2±
√
β22+2β0−z4)2

4

2y4


 (A1)

where

β0 ≡
(r2 + 1)2

r4

[
2rω̃

r2 + 1
(1− γ) + ω̃2 +

ω̃2

2r2
+
ω̃2r2

2

]
(A2)

β2 ≡
(

1 +
1

r2

)(
1 +

ω̃

r
+ ω̃r

)
(A3)

z4 ≡
(

2 +
ω̃(r2 + 1)

r3

)(
2

r2
+
ω̃(r2 + 1)

r

)
+ ω̃

(r2 + 1)3

r5

(
2 +

ω̃(r2 + 1)

r

)
−
(

2γ

r
− ω̃(r2 + 1)

r2

)2

(A4)

z6 ≡ ω̃
(r2 + 1)2

r3

[(
2 +

ω̃(r2 + 1)

r3

)(
2

r2
+
ω̃(r2 + 1)

r

)
−
(

2γ

r
− ω̃(r2 + 1)

r2

)2
]

(A5)

where gn1y
2 ≡ εk, ω̃ = ~ωR

gn , the particle number ratio

r =
√

N1

N2
, and scattering length ratio γ = g12

g . Check

Fig.5 to see how I+(ω̃, γ, r) behaves for various r values
as ω̃ changes.

Appendix B: Analytical approximation for I0(q̃, β)

The integral that determines the LHY energy for Ek,0
mode reads:

I0(q̃, β) =
15

8
√

2

∫ ∞
0

dx x2

×
[√

(x2 − q̃ + 1)2 − β2 − (x2 − q̃ + 1) +
β2

2x2

]
(B1)
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FIG. 5. The integral I+ in (A1) as a function ω̃ for various r
and fixed g12/g = −1.5.

where εk ≡ c1nx2 substitution is done.
We use a change of variable y ≡ x2−q̃+1 in the integral

(B1) and expand
√

1− β2/y2 in Taylor series up to the

second order in the domain x ≥ 0 and q̃ ≤ 0 and obtain

I(t)= − 15β2

16
√

2

∫ ∞
0

dx

(
(q̃ − 1)

x2 + t+ 1
+

β2x2

4(x2 + t+ 1)3

)
(B2)

Each term above can be calculated to give:

I(t) ≈ 15πβ2

32
√

2

[√
−q̃ + 1− β2

32

1

(−q̃ + 1)3/2

]
. (B3)

Higher order terms in the expansion of
√

1− β2/y2 im-
proves the accuracy but we numerically checked that the
second order expansion is sufficient to achieve less than
one percent error for all q̃ values.
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