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Pan-cancer clinical impact of latent drivers from
double mutations
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Here, we discover potential ‘latent driver’ mutations in cancer genomes. Latent drivers have

low frequencies and minor observable translational potential. As such, to date they have

escaped identification. Their discovery is important, since when paired in cis, latent driver

mutations can drive cancer. Our comprehensive statistical analysis of the pan-cancer

mutation profiles of ~60,000 tumor sequences from the TCGA and AACR-GENIE cohorts

identifies significantly co-occurring potential latent drivers. We observe 155 same gene

double mutations of which 140 individual components are cataloged as latent drivers. Eva-

luation of cell lines and patient-derived xenograft response data to drug treatment indicate

that in certain genes double mutations may have a prominent role in increasing oncogenic

activity, hence obtaining a better drug response, as in PIK3CA. Taken together, our com-

prehensive analyses indicate that same-gene double mutations are exceedingly rare phe-

nomena but are a signature for some cancer types, e.g., breast, and lung cancers. The relative

rarity of doublets can be explained by the likelihood of strong signals resulting in oncogene-

induced senescence, and by doublets consisting of non-identical single residue components

populating the background mutational load, thus not identified.
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Cancer is a disease of uncontrolled cell proliferation driven
by molecular alterations. The impact of these alterations
diffuses into the molecular interaction network and

changes signaling pathways and transcriptional regulation in the
cell. Not all alterations equally contribute to a growth advantage
of cancer cells. Some mutations are drivers; others are
passengers1. Whereas it is generally believed that passenger
mutations do not bestow proliferative effects on the disease
phenotype, their properties, and possible roles are not fully
understood2. Cancer genomics and evolution studies suggest that
the accumulation of ‘slightly’ deleterious passenger mutations can
slow cancer progression, and this could be exploited for ther-
apeutic purposes3. Lately, another class of mutations was defined,
dubbed “latent” or “mini-drivers”4–6. Even though not identified
as drivers since the effect that latent drivers generate is marginal,
when coupled with other activating mutations, latent mutations
can additively intensify the signal. Their detection may help
forecast cancer progression and improve personalized treatment
strategies5. Curated driver genes and mutations have been
deposited in multiple databases7–9 and used to develop compu-
tational approaches to predict driver genes and driver
mutations10–15. These methods, including frequency-based
methods, subnetwork identification methods, and 3D mutation
search methods, have been comprehensively compared16–20. One
of the concerns with frequency-based approaches is that prohi-
bitively large sample sizes are needed to identify infrequently
mutated driver genes. Thus, in frequency-based approaches, there
is a risk of generating biased results due to background mutation
rates21,22. There are various resources and web servers that
examine the effect of missense mutations on protein stability,
protein–protein interactions, and the underlying molecular
mechanisms23,24. However, frequency-based approaches fail in
the identification of rare drivers which can be tissue-specific25. A
recent multidimensional analysis of cancer driver genes in
IntOGen showed that some drivers are cancer-wide whereas
others are specific to a limited number of cancer types12.

Even a single mutation in a gene can be considered as a prognostic
marker and change the global genome and protein expression,
eventually altering the signaling pathways26. However, it has been
estimated that the contribution of a single driver mutation to cancer
progression is very small and needs additional mutations over time27.
Despite DNA repair, somatic mutations accumulate and different
genotypes in individual tissues are generated. This mechanism, called
‘somatic mosaicism’, offers driver, or synergistic mutations an
advantage in cancer cells28. Recently, the combination of single fre-
quent mutations with a rare, or weak mutation in the same gene was
shown to have a substantial advantage in tumor progression and
influence treatment response. These double mutations in cis in
PIK3CA were shown to be more oncogenic, and more sensitive to
inhibitors compared to a single mutation29. A recent work cataloged
‘composite mutations’ of multiple genes having more than one non-
synonymous mutation in the same tumor30. Saito et al. demonstrated
the functional implications of multiple driver mutations in the same
oncogene with an emphasis on PIK3CA31,32.

Here, aided by informatics techniques, we systematically screen
somatic mutations in pan-cancer data across ~60,000 patient tumors.
We aim to find co-occurring patterns that are predominantly present
in specific tissues and tumor types. Our screening reveals tumor-type
specific double mutations in the same gene which may promote
tumorigenesis and alter the response to treatments. It also reveals that
tumors having at least one double mutation pair may lead to changes
in response to drugs. We cataloged the components of double
mutations as latent mutations if their co-occurrence is statistically
significant and not yet labeled as a cancer driver. This led us to
uncover 140 latent driver mutations. The oncogenic activation of the
protein may be through a single, or multiple additive contributions of

the mutations. Although the existence of a set of driver genes is
considered cancer-wide, we show that having double mutations in
those genes is cancer-specific. Same gene double mutations are
relatively rare; however, their impact is elevated in tumor progression.

Results
Discovery of latent drivers through double mutations. Multiple
mutations in a single gene rarely co-occur in patient tumors. Vasan
et al. examined the PIK3CA-mutant cancer genomes and reported
that 12–15% of breast cancers and other tumor types harbor multiple
PIK3CA mutations, the majority of which (95%) are double
mutations29. Similarly, Saito et al. performed a pan-cancer study to
check the presence of multiple mutations in a subset of oncogenes
among ~60,000 tumors. They discovered 20 oncogenes with a higher
rate of multiple mutations than expected where 9% of samples with
at least one mutation in these oncogenes had multiple mutations31,32.
Despite their relative scarcity, when multiple mutations are together
in the same gene, they may cause dramatic phenotypic differences
and can be signatures of specific tumor tissues or cancer types29–31.
For example, double mutations in PIK3CA increase the sensitivity to
PI3K inhibitors in breast cancer29, while double mutations in EGFR
predominantly exist in lung cancer33. We defined latent driver
mutations as mutations that have not been associated with tumor
development due to their unobservable translational or structural
effects. However, when combined with other alterations, can con-
tribute to cancer progression and drug resistance5. Some mutations
cataloged as passengers may belong to this category. The collective
action of latent driver mutations in oncogenes (OGs) can switch the
protein ensemble to an active state; in tumor suppressor genes
(TSGs) the inactive state. When the mutations are on the same allele
(i.e., in cis), a latent driver mutation could couple with driver
mutations; two or more latent driver mutations can also collaborate.
In either case, the outcome can have a stronger effect. Along similar
lines, a strong driver may couple with a weak driver or a latent driver,
strengthening the pathological impact. Our definition of latent
mutations applies only to mutations in cis. That is, in the same
protein molecule (i.e., multiple same-allele driver mutations). Allos-
teric effects cannot be applied in trans, that is, to mutations in two
different molecules, where one molecule has one mutation and the
other has the second.

We exploited the mutation profiles from TCGA and GENIE
pan-cancer cohorts to discover latent drivers (Fig. 1a). We
included all non-synonymous mutations, including missense,
nonsense, nonstop, and frameshift mutations. We excluded
frameshifts (insertions or deletions) that alter more than one
position in a protein. We also excluded variants where the wild
type and/or mutant residues are not specified. Finally, we filtered
out the mutations that have VAF (Variant Allele Frequency) less
than or equal to 0.125 to assure that the mutations are present
approximately in 25% of the sequenced tumor cells.

We identified potential double mutations from proteins having
two or more mutations at different positions in the pan-cancer
data. Pairwise combinations of mutations in the same gene are
pooled and evaluated as potential double mutations. As a result,
we obtained 2,230,203 potential double mutations to be tested
among 62,567 tumors.

To assess the significance of all potential double mutations
(2,230,203 doublets), we constructed a 2 × 2 contingency table for
each pair of mutations in each gene (12,724 genes). We built the
tables according to the number of samples where constituents of a
double mutation are present together, only one of the constituents is
present, and none of them are present. (see “Methods” section).
Applying Fisher’s Exact Test followed by multiple testing correction
(Benjamini–Hochberg, q < 0.1) resulted in 11,532 significant pairs.
Then, we filtered out the doublets if both of the mutation constituents
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are nonsense (411 double mutations were filtered out of which 49
and 4 were in APC and PTEN, respectively; the rest scattered across
190 different proteins). A component in downstream of a nonsense
mutation in a doublet is either a false positive (chance passenger with
no functional consequence), or in trans (not a true double mutation
affecting the same protein). Thus, we also filtered these significant

double mutations out (1377 doublets where 80 and 15 are in APC
and PTEN, respectively; the rest are on 552 different proteins). Then,
we applied a stringent filtering to the rest to ensure that co-existing
mutations are not erroneously identified. Given a mutation pair (i, j),
if mutation i is present in xi% cells and mutation j is in xj% cells and
the total of xi and xj is greater than 100%, it is highly likely that
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double mutation components truly overlap in the cells. After filtering
statistically significant doublets based on the proportion of nonsense
mutations in double-mutant tumors and total VAF value of each
double mutation in the corresponding tumor, 7252 significant
doublets were identified, 155 of which were present in three or more
tumors. We labeled the constituents true co-existing mutations and
retained 155 double mutations for further analysis (“Methods”
section, Fig. S1, and Supplementary Data 1).

We labeled double mutation components as known driver (D)
if it is a validated oncogenic mutation in Cancer Genome
Interpreter9; and otherwise potential latent driver (d). We
classified a known driver mutation as a strong driver if it is
present in more than 10% of the gene-mutant tumors; otherwise,
it is a weak driver. Similarly, we dubbed a potential latent driver
mutation as a strong latent driver if it is present in more than 1%
of the gene-mutant tumors; otherwise, we classified it as a weak
latent driver. Here, we propose that combinations of two strong
latent driver mutations can act like a known driver, whereas weak
latent drivers can only potentiate the effects of weak driver
mutations. We classified mutation pairs as co-occurring based on
the odds ratio (OR, log2(OR) > 0), and the rest as mutually
exclusive. As a result, we identified 148 co-occurring and 7
mutually exclusive double mutations. The mutually exclusive
doublets are composed of known driver mutations, i.e., the
constituents are either weak- or strong- driver mutations.

We examined the cis/trans occurrences of the double mutation
components. We used publicly available supplementary data from
Saito et al., Gorelick et al., and Vasan et al. since raw data or
allelic configuration information for the GENIE data, which
constitutes around 90% of our dataset, is unavailable29–31. With
the availability of raw data or allelic configuration information, it
would be possible to enlarge the set of double mutations that are
in cis. The analysis identified 36 tumor samples carrying double
mutations matching our data. As a result, we could find cis and
trans information in our double mutation dataset for only 19
doublets accumulated in six genes. For each of the 19 doublets, if
the cis occurrence is higher among the double mutant group, we
labeled it as cis, and trans otherwise. In total, 8 (5 cis, 3 trans) of
these doublets are in the TSGs PTEN and TP53, the remaining 11
doublets are in OGs EGFR, ERRB2, KRAS, and PIK3CA where 10
are in cis; and one of them is inconclusive due to the equal
number of cis and trans occurrence.

Recently, the frequency of driver genes was analyzed together
with the maximum prevalence of their mutations, distinguishing
cancer-specific drivers versus cancer-wide drivers13. We applied a
similar analysis to our dataset composed of double mutations in
the same gene where we obtained the ratio of the number of
tissues carrying double mutations (Tdouble) and single mutations
(Tsingle). We also calculated the prevalence of double mutations
compared to single mutations. For example, KRAS double
mutations are observed in tumors in four tissues (bowel,
pancreas, skin, lung), but single mutations of KRAS can be seen
in tumors from 30 different tissues. Thus, the tissue specificity,
Tdouble/Tsingle, of KRAS is ~0.13. Prevalence of KRAS is the ratio of
the number of double mutant tumors (n= 8) to the number of all

KRAS-mutant tumors (n~8000), which is ~0.001. Values closer to
the origin on the x-axis indicate tissue specificity since for each
gene the number of double mutations carrying tissues is smaller
compared to the number of single mutations carrying tissues.
Larger numbers on the y-axis represent the multitude of patients
with double mutations on the gene. Hence, double mutations of
KRAS can be considered as tissue specific with a low prevalence.
As a result, although some genes and their single mutant states
have been previously cataloged cancer-wide, we found sets of
double mutations that are cancer tissue-specific. Examples
include double mutations in BRCA1, EGFR, and KRAS (Fig. 1b).

Double mutation components that are not known drivers can
be considered as ‘potential latent driver’ mutations. In a doublet,
the components can be known drivers or potential latent drivers,
so each doublet is cataloged as DD, Dd, and dd. That is, DD is a
known driver-known driver doublet, Dd is a known driver-
potential latent driver and dd is a doublet consisting of two
potential latent drivers. Among the 155 same gene double
mutations, there are 54 DD, 29 Dd, 72 dd. The 155 same gene
double mutations are composed of a pairwise combination of 213
mutations of which 73 are known drivers and 140 are latent
drivers. Thus, our analysis can capture rare mutations that are
potential latent driver candidates.

The 155 significant double mutations are composed of 213
mutations in 53 different genes. These 53 genes harbor 34,011
mutations that are observed in at least one tumor. Therefore, the
fraction of double mutation components among all mutations (in
53 genes carrying at least one same gene double mutation) is
~0.6%. When we evaluate all mutations on 53 genes that are
observed in at least three patients, the total number of such
mutations is 6245 and the fraction is ~3.4% (Fig. S2).

When we solely examine the double mutations in genes
classified as OG or TSG, the number of doublets of type DD, Dd,
dd is 37, 12, 6, and 17, 17, 38 in the 13 OGs and 25 TSGs,
respectively. We observe that OGs have significantly more DD
mutations than TSGs (p-value < 10−7, two-sided Fisher’s Exact
Test) and the fraction of double mutation components among all
mutations in these 13 OGs (~1.2%) is almost two times higher
than the fraction of double mutation components among all
mutations in these 25 TSGs (~0.5%; Fig. 1c). This result implies
that becoming more oncogenic requires mostly co-occurrence of
two frequent mutations while suspending tumor suppressor
activities may involve rare mutations coming together.

In the pan-cancer dataset, same gene double mutations
accumulate in 53 genes, of which 25 are TSGs, 13 are OGs, 2
are both OG and TSG, and the rest (13 genes) are in other
functional categories. There are 821 double mutant tumors
carrying at least one double mutation in these 53 genes. In total,
the number of tumors having at least one double mutation in an
OG and TSG is 468 and 307, respectively. Patient tumors that
have at least one double mutation in any TSG have a significantly
higher passenger mutation load compared to patient tumors
having at least one double mutation in an OG (p-value < 10−30,
two-sided Mann–Whitney U test, Fig. 1d). Given that only ~2%
of the 41,734 tumors (having at least one mutation in the 53

Fig. 1 Overall statistics of the data, mutation load, and analysis of the significant double mutations. The data is filtered with variant allele frequency
(VAF > 0.125). a Total number of tumors, alterations, cancer types in the union of TCGA and AACR GENIE studies (n= 62,567 tumor samples). Windrose
plot shows the number of same gene double mutant (blue) tumors and without any significant double mutation (green) across 33 tissues on the log-scale
axis. b Tissue specificity of same gene double mutations compared to their single mutant counterparts. Genes having cancer-specific double mutations are
red and cancer-wide double mutations are in blue (25 TSGs with 72 double mutations, 13 OGs with 55 double mutations, and the remaining 15 are labeled
as both or neither). c Composition of the double mutations based on known driver (D) and potential latent driver (d) labels in tumor suppressor genes and
oncogenes where D is already known frequent driver mutations, d is relatively rare potential latent drivers (p-val < 10−7, two-sided Fisher’s Exact Test).
d Box plot showing passenger mutation load in OGs and TSGs (p-val < 10−30, two-sided Mann–Whitney U test). e Tumor count distributions of known
driver and potential latent driver mutations (p-val < 10−10, two-sided Mann–Whitney U test).
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genes) carry a double mutation, double mutations are comprising
a very small portion of gene-mutant tumors. Especially, TSGs
require a very high mutation load for two coexisting mutations in
a single gene. Based on the mutation load, and in line with our
previous result, loss of function through double mutations in
TSGs requires considerably higher mutational load compared to
gain of function in OGs. We further compared the mutation load
of TCGA and GENIE cohorts separately, taking into account the
differences in coverage between the sequencing technologies
(Figure S3). There are 63 and 69 tumors with at least one double
mutation in an OG and TSG, respectively, in TCGA. Similarly,
GENIE has 405 and 238 tumors with at least one double mutation
in an OG and a TSG, respectively. Our finding that tumors with
at least one double mutation in any TSG have a significantly
higher passenger mutation burden is preserved in both the TCGA
and GENIE datasets (two-sided Mann–Whitney U test, p-values
0.003 and 10−30, respectively). In addition, comparing passenger
mutation loads among all tumors from TCGA (9588 tumors) and
GENIE (52,979 tumors) revealed that TCGA tumors have a larger
passenger mutation load (Fig. S3A, B).

Among the sample group harboring at least one double
mutation in a TSG, both passenger and passenger+driver
mutation loads are higher than in OGs (Figs. 1d and S4).
Moreover, there are 43 known-driver and 22 latent driver
mutations in OGs; and 30 known-driver and 74 latent driver
mutations in TSGs when we compare the counts of the known-
driver and potential latent driver mutations contributing to the
formation of significant double mutations.

Double mutations in TSGs are more enriched in latent driver
mutations compared to OGs. This abundance could be due to the
higher passenger mutation load among tumors with double
mutations in TSGs. Despite the small number of samples with cis/
trans information, the double mutations in TSGs mainly occur in
trans.

Despite several genes with a high rate of single mutations
among double mutant genes in different tissues, there are few
double-mutant genes that are tissue-specific. Additionally, in
contrast to TSGs, the doublets in OGs are mainly comprised of
known driver mutations. Double-mutant tumors with at least one
TSG doublet have a higher passenger mutation load. These could
be attributed to different mechanisms in elevating oncogenic
signaling and lowering tumor-suppressive signaling through
double mutations among OGs and TSGs, as well as their
biological impact. Here, the task is to decide whether latent driver
mutations in TSGs are functional or they are false positives due to
the passenger mutation burden. There is a need for pre-clinical
models such as patient-derived xenografts or cell lines containing
double mutations in cis in TSGs. To inspect the role of such latent
drivers, it would be enlightening to perform a comparative
analysis of tumor growth or drug response in wild type, single
and double mutant (in cis) pre-clinical models.

Functional interpretation of double mutations by using the
characteristics of their constituents and double mutant tumors.
To interpret the functional consequences of double mutations, we
elaborated on the frequencies of the mutations forming the sig-
nificant pairs, the chemical properties of the wild-type and
mutant residues, or the relationships of the double mutation
components with mutational signatures. Known driver mutations
have a higher frequency than potential latent driver mutations
(Fig. 1e). The median values of tumor count for known driver and
potential latent driver mutations are 70 and 9, respectively (p-
val < 10−10, two-sided Mann–Whitney U test). Potential driver
mutations are relatively rare, and their pathological impact can be
dramatic when they couple with another mutation. Therefore, we

cataloged all potential latent driver mutations that contribute to a
significant doublet in the same gene as strong or weak latent
drivers. The list of 140 latent drivers can be found in Supple-
mentary Data 1.

Next, we followed a bottom-up approach to obtain the spatial,
chemical, and pathway level organization of the double muta-
tions. We used the pan-cancer mutation clusters deposited in
3DHotspot where each cluster represents the set of mutations that
are spatially close to each other34. We found that components of
the doublets in the same gene are usually spatially distant from
each other. The simultaneous presence of two strong spatially
close driver mutations is rare in a patient tumor; there are only 15
doublets belonging to the same cluster accumulated in EGFR,
KRAS, PIK3CA, and TP53. However, some weak drivers are
proximal to either a strong driver or another weak driver, as in
the cases of mutations at positions R130/R173 in PTEN. Spatially
close residues may form potent allosteric couples, which may
enhance proliferation.

There are four rare (significant double mutations observed in
less than three tumors) BRAF doublets (Supplementary Data 1).
Here, the mechanisms of BRAF mutations were classified into
those suggested to be activated as monomers (Class 1), acting as
constitutive active dimers (Class 2), and those having impaired/
dead kinase activity (Class 3)35. There are two doublets having a
mutation from Class 2 (K601, L597). These rare double mutations
are still kept when we apply a more stringent threshold for total
VAF value (up to 40%).

During the formation of double mutations, we had assumed all
mutations at a specific position in a protein as the same mutation.
We traced back to the mutation positions and obtained wild type and
mutated amino acid types to obtain the chemical class changes. A
comparison of the fraction of chemical classes of the wild type and
mutant residues revealed that Charged>Polar and Charged>Charged
switches are more dominant among TSGs and OGs, respectively (p-
values ~0.009, 0.04 respectively, two-sided Fisher’s Exact Test,
p= 0.05; Supplementary Note and Fig. S5A). Similarly, for the
double mutation components that are known Driver [D] or potential
latent driver [d], we compared the chemical class alterations of the
mutations. Hydrophobic>Hydrophobic changes are more common
among tumors carrying potential latent drivers. Charged>Polar and
Charged>Charged changes are prominent among tumors carrying
known drivers (Fig. S5B).

In total, the number of tumors having at least one double
mutation in an OG and TSG are 468 and 307, respectively. The
distribution of variant classifications among the tumors carrying
at least one double mutation in an OG is as follows: missense
+missense (~99%), missense+frameshift (<1%), missense+ non-
sense (<1%; Fig. S6A). Doublets with both mutation components
being missense mutations predominate among these tumors. On
the other hand, we see a more diffuse result when we analyze the
tumors harboring at least one double mutation in a TSG
(Fig. S6B). These tumors have variant classifications as mis-
sense+missense (50%), frameshift+frameshift (~30%), missense
+nonsense (~10%), missense+ frameshift (~3%), and frame-
shift+ nonsense (~0.48%). The sample-specific details related to
variant classifications of double mutations in OGs and TSGs are
provided in Supplementary Data 1.

During post-processing, we identified 3519 tumors as hyper-
mutated out of 62,567 samples with at least one point-mutation
with a Q3+ 8 x IQR threshold (see “Methods” section). First, we
used Fisher’s Exact Test (p < 0.05) to test the robustness of the
155 double mutations against hyper-mutated samples. Hyper-
mutated samples carry 19 doublets in several genes including
APC, KMT2D, ZNF442, and ZNF678; therefore, we excluded
these doublets from the subsequent analyses. Among the
remaining 136 doublets, one is not significant according to
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Fisher’s exact test (p < 0.05) evaluated in the non-hyper-mutated
tumor group (Supplementary Data 2).

Then, we performed a permutation test (p < 0.01) using the
non-synonymous mutation burden of the double-mutant and
single-mutant tumors (see “Methods” section). For each double
mutation, we tested the null hypothesis that the double mutant
tumors (labeled “Double”) have a mean mutation burden less
than or equal to the mean mutation burden of the remaining
gene-mutant tumors (labeled “Single”). We can reject the null
hypothesis for 7 doublets since the p-values obtained with the
permutation test are <0.01. For the remaining 129 significant
doublets the evidence is not sufficient to conclude that the double
mutant tumor samples have a lower or equal mean observed
mutation load on the basis of failure to reject this as a null
hypothesis (Supplementary Data 2)

We next conducted single base substitutions (SBS) signature
analysis of double mutations to explore if components of doublets
have common or different signatures (a.k.a. contexts). There are
96 single base substitutions (SBS) of the trinucleotide context
where the mutated base is in the middle in square brackets
expanded with 5’ and 3’ bases36 (e.g. T[G > A]A). We only
considered missense mutations in SBS analysis. As a result, we
analyzed 711 records (tumor-specific information for each
doublet) from 115 doublets in 649 tumors. Within this set, the
majority of the double mutations are of different contexts (630
records), and all of these records match with one of the 96
contexts (see “Methods” section). There are 81 records (com-
posed of 17 doublets in 77 tumors) where the double mutations
are of the same context. The contexts T[G > A]A, C[G > A]A,
C[A > G]T, and A[G > T]A are dominant and are present in 40,
13, 5, and 5 records, respectively. Doublets from the same context
are mostly located in PIK3CA (Supplementary Note and
Supplementary Data 3).

Taken together, double mutations are exceedingly rare
phenomena and do not positively correlate with the tumors’
mutation burden. The components of the doublets that have been
classified as latent driver mutations also occur far less frequently
than known driver mutations. The chemical classes of the wild-
type and mutant amino acids as well as the variant classes of the
doublet constituents are different among the double mutations in
OGs and TSGs.

Doublets in the same gene are rare but are a signature for some
cancer types. After identifying the doublets that are significant at
the pan-cancer level, we also assembled tissue-specific sets of
double mutations since tissues differ in sample size and are
enriched in different genes and mutations. Identification of
tissue-specific double mutations are particularly essential because
they may point to the tissue of origin of the preclinical models to
evaluate drug responses and tumor growth patterns. As shown in
Fig. 2a, co-occurring double mutations in the same gene are
relatively rare, with varied frequencies across tissues. In
some tissues, doublets are present in the same gene in up to 10%
of the patient tumors (e.g., bowel and breast tissues). However,
same gene doublets are either extremely rare or not present
in other tissues, such as the pancreas, ovary, liver, kidney, and
biliary tract.

Since double mutations are significantly less common than single
mutations (t-test, p-value~0.006), tissue-specific double mutations
can have important roles to predict sensitivity/resistance to specific
inhibitors. Here, we aimed to determine the fraction of tumors with
at least one double mutation in the corresponding gene among all
gene mutants in each tissue or cancer type. Fig. 2a illustrates the
tissue-specific prevalence of double mutations in the same gene. TP53
and its double mutations are cancer wide. PIK3CA double mutations

are quite common in breast and uterus tumors. Among lung tumors,
EGFR, and among bowel tumors, PIK3CA double mutations are
ahead by far. Bowel, breast, and lung tissues are enriched with double
mutations in specific genes whereas brain tissue has significant but
rare double mutations in multiple genes such as FGFR1, IRS2, POLE,
and TP53. LUAD (Lung Adenocarcinoma) is enriched with EGFR
double mutations. COAD (Colon Adenocarcinoma) is enriched with
B2M, PTEN, and RNF43 double mutations. We note that PIK3CA
double mutations are relatively more dominant in BRCA, IDC (Breast
Invasive Ductal Carcinoma), ILC (Breast Invasive Lobular Carci-
noma), COAD, and UEC (Uterine Endometrioid Carcinoma)
subtypes (Fig. 2b).

The most frequent mutation, G12D on KRAS, is rarely coupled
with another mutation in KRAS (Supplementary Data 1). The
mutational mosaic of KRAS is distinguishable among different
cancer types. G12D is predominantly present in pancreatic, lung,
and colorectal cancers. KRAS mutations are context specific, and
a mutation may act differently in different cancer types.

PIK3CA has three driver mutations- H1047, E45, and E542-
mostly accompanied by a group of rare mutations that are
potential latent driver mutations. Along the same lines, the driver
mutations L858, T790, G719 on EGFR; R130 and R173 in PTEN
have rare potential latent driver mutation companions (Fig. 2c).

Thus, even though rare, doublets on the same gene can be a
signature for some cancer types, e.g., bowel, breast, and lung cancers.

Linking double mutations to clinical data using cancer cell
lines and xenografts. We next explored the potential clinical
association of the significant same gene double mutations. Since the
patient-specific clinical and treatment data are sparse, we computa-
tionally screened differences in cell lines and patient-derived xeno-
grafts (PDXs) from the experimental datasets. We used cancer cell
lines from the DepMap project and PDX samples provided in Gao
et al.37. In both datasets, mutation profiles and response to a panel of
hundreds of drugs are available. Double mutations are rare in the
patient tumor samples. We notice the same pattern: Despite scanning
hundreds of cancer cell lines, double mutations in the same gene are
rare. Among 155 same gene double mutations only 23 double
mutations are present in at least one cell line in Cell Model
Passports38. The intersection between the significant double muta-
tions and their presence in the cell lines led us to pursue a detailed
analysis on the genes PIK3CA and EGFR.

PIK3CA has both strong drivers (e.g., H1047R, E545K), and
weak drivers (e.g., R88Q, E453K, M1043I) which are components of
23 significant double mutations in the patient cohort. Despite PTEN,
TP53, EGFR and the rest (53 genes in total) have a higher single
mutation load compared to PIK3CA, their double mutation load is by
far less (Fig. S7). Full activation of oncogenic PIK3CA is through at
least two drivers acting in different, albeit complementary mechan-
isms, or enhancing each other. One well example of how the co-
occurrence of in cis mutations might promote cancer is PI3Kα29,31.
Moreover, crystal structures and experimental research have shown
the activation mechanism at the atomic scale, and the role of frequent
or rare driver mutations on this mechanism is widely discussed39–43.
E542K, E545K, and H1047R are hotspot helical and kinase domain
mutations that can activate PI3Kα, but they can also have additive
effects when combined with the moderate mutations E453K/Q,
E726K, and M1043V/I25,43. Sporadic and weak activating mutations
in PI3Kα are also present. The weak mutations cause conformational
changes that lead to PI3Kα activation. These weak mutations include
E726K and M1043V/I in the kinase domain, N345K, C420R, and
E453K/Q in the C2 domain, and R38H/C, R88Q, R93Q, R108H, and
G118D in the ABD domain43. Thus, the pathological impact of a
single driver may be insufficient44. One well-known example is
H1047 and E545 double mutation enhancing proliferation. However,
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Fig. 2 Same gene double mutations are specific to some tissues or cancer subtypes. Bubble plots show number (node size) and frequency (node color)
of double-mutant tumors among gene-mutant tumors across different tissues and cancer subtypes (Oncotree). For the 53 genes with significant same
gene double mutations, node size represents the number of patients carrying at least one doublet in a gene in a tissue or cancer type. a Presence of same
gene double mutations across different cancer tissues where at least three tumors carry at least one same gene double mutation in one of the 53 genes.
b Presence of same gene double mutations across different cancer subtypes. The cancer subtypes where at least five tumors carry at least one double
mutation are listed on the y-axis. c Representation of mutations in genes to compose a doublet as a circular diagram. The strips from one residue to another
represent significant double mutations with size of strips indicating frequency of each double mutation.
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E545 and E542 double mutations do not make PIK3CA reach the
fully activated level. A combination of two strong latent driver
mutations – but likely not two weak mutations –may act like a driver
mutation. The frequency of double mutation components in PIK3CA
is shown in Fig. 3a where many doublets are composed of one
frequent and one rare mutation39,44.

Our frequency-based analysis revealed that E726 is a potential
strong latent driver while N107, R357, E418, and H1048 might be
weak latent drivers coupled with a weak or strong driver
mutation. PIK3CA double mutations are also tissue- and
context-specific as shown in Fig. 3b. Most are in breast tissue.
An exception involves doublets consisting of R88Q which are
depleted in breast but frequent in uterus tumors. Their structural
location is shown in Fig. 3c. Kinase mutations work by
destabilizing the inactive or stabilizing the active state. These
are better captured by their detailed conformational alterations. A
detailed analysis of the folding free energy (ΔΔG) upon double or
single mutation with DynaMut45 shows the increased impact of
several double mutations in the protein stability (Supplementary
Note and Fig. S8).

The impact of co-occurring mutations in the same gene is mostly
additive but can be also cooperative. When the double mutant
phenotype incorporates traits from the single mutants, it can be
regarded as additive. Additivity is considered to be a sign that there is
no functional link between the driver mutations under evaluation.
When the combined effect of two mutations on the phenotypes is
greater than the total of each mutation’s individual effects, they are
referred to as cooperative (also known as synergistic, positive
epistasis, or more-than-additive). But rather than just adding up the
impacts of two mutations, it is possible to obtain a lesser effect
(suppressed, negative epistasis)32,46,47. There are seven allosteric
mutations at positions 83, 88, 365, 539, 542, 603, 629 in PIK3CA in
BRCA as cataloged in Allosteric DB48. In total, 13 out of 23 PIK3CA
double mutations are harbored by at least one breast tumor and there
are 215 double mutant tumors. The doublet P539/H1047 in PIK3CA
is composed of one strong driver (at position 1047) and one weak
driver mutation (at position 539) which is allosteric. Their effects are
additive.

We found a breast cancer cell lines with cismutations29 in PIK3CA
belonging to the BRCA subtype: BT-20 has P539/H1047 double

Fig. 3 A detailed analysis of PIK3CA double mutation profile, 3D structure, and clinical implications. a Paired dot plot of the 23 double mutations in
PIK3CA, and the number of tumors carrying them. Colors indicate type of a mutation, strong driver (purple), weak driver (orchid), strong latent driver
(blue), and weak latent driver (sky blue). Line sizes connecting the dots are proportional to the number of tumors with double mutations. b Presence of
PIK3CA same gene double mutations across different cancer tissues. Dots are scaled based on the number of tumors having double mutations, and color
corresponds to the percentage of double mutant tumors among single mutants. c 3D structure of PIK3CA (PDB: 4OVV) with H1047, E726, E542, E545,
R88, R93, and P539 mutations. d Response of PIK3CA breast cancer cell line BT-20 with double mutations in cis to drugs in network representation. Dashed
lines connecting cell line nodes (hexagon) to mutation nodes (diamond) indicates that the cell line harbor the corresponding mutations. Green and red
lines connecting cell line nodes (hexagon) to drug nodes (V-shaped) represent sensitivity and resistance of the cell line to the corresponding drugs,
respectively. Dashed lines between the drug nodes (V-shaped) and pathway nodes (rectangle) indicate that the drugs have target(s) in the corresponding
pathways. e PIK3CA mutation doublets in breast cancer and the associated violin plot illustrating response to PI3Kɣ inhibitors. f Tumor volume changes of
single and double PIK3CA mutant xenografts without any treatment. g Tumor volume comparison of the single and double mutant xenografts without any
treatment and with BYL719 (Alpelisib) treatment. h Comparing tumor volume changes of the double PIK3CAmutant xenografts without any treatment and
with BYL719 and BYL719+ LJM716 treatment.
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mutation. H1047R is a frequent driver. However, P539 is a rare
mutation in the pan-cancer data, making it a potential weak driver.
To illustrate the difference between the double mutations and single
mutations in terms of drug response, a network of cell lines to drugs
and target pathways is constructed (Fig. 3d) where drugs are linked to
each cell line which has altered response compared to their single
mutant counterparts. Indeed, there is a difference in the response to
PIK3α inhibitors in double-mutant cell line BT-20 compared to
single mutant cell line counterparts (p-value= 0.015). Additionally,
a double mutant BT-20 cell line is remarkably sensitive to the PIK3γ
inhibitor CZC24832 while the single mutant MFM-223 (H1047) cell
line does not show a remarkable response (Fig. 3e). Despite factors
contributing to the drug sensitivity including other single point
mutations and gene copy numbers, double mutations in PIK3CA
may be still an important contributor as evidenced by increasing its
oncogenic activity described in the literature. Therefore, we further
explored PDX data to compare double mutant and single mutant
PIK3CA tumors in terms of the tumor volume changes and drug
responses. We found two PDXs having double PIK3CA mutations
(E726/H1047, R88/T1025). In PDX X-2524 with doublet H1047R/
E726K, a strong known driver/strong latent driver combination, the
volume change of the tumor between days 0 and 10 is more than
1700 mm3, while single mutant tumors X-3077 and X-3078 (with
mutation H1047R) have volume change of ~200mm3 in the first
10 days reaching ~400 mm3 at around 35 days (Fig. 3f). The double
mutant PDX tumor has a dramatically higher growth rate. We
compared the growth pattern of double mutant PDX with only single
H1047 mutant PDX since there was not any single E726 mutant
PDX within the data set.

Tumor growth rate data of these three PDX tumors are also
available for drug treatment. BYL-719 (Alpelisib) treatment, a
selective PI3Kα inhibitor, diminishes tumor volume by 88%
(~1600 mm3) in the first 10 days in the double mutant PDX (X-
2524) which is dramatically higher than the single mutant PDXs
(X-3077 and X-3078) implying increased drug sensitivity (Fig. 3g).
Drug combination of BYL-719 with LJM716, an anti-HER3
monoclonal antibody, is even more effective in reducing tumor
volume than BYL-719 treatment alone because of the HER3
alteration in this PDX (Fig. 3h). In cis E726K/H1047R doublet
may be a potential strong driver of faster tumor growth rate and
better response to PI3K inhibitor Alpelisib; however, no causal
conclusions can be drawn without functional data for these cell
lines and PDXs. Several factors may lead to this difference in
tumor growth rate and response to PI3K inhibitor. Despite other
alterations, these PDX models have only one known driver
mutation (cataloged in Cancer Genome Interpreter) at position
1047 in PIK3CA and common in all three xenografts (X-2524:
PIK3CA 1047/726 double mutant, X-3077 and X-3078: PIK3CA
1047 single mutant). Another factor is the copy number of the
genes in PI3K/Akt/mTOR pathway which could affect PIK3CA
activity, and drug response. The copy number values (the median
values for individual exons called by ExomeCNV37) of PIK3R1
and AKT3 in the double mutant xenograft are two-fold higher
than the single mutant samples (double mutant: 2.41, single
mutants:1.34, 1.41). PIK3R1 functions as a negative regulator of
PIK3CA. Increased level of PIK3R1 may negatively regulate the
excessive activity of double mutant PIK3CA.

On the other hand, not all tumors having double mutation in
PIK3CA show a similar pattern. For example, growth rate of the
tumor (X-3093) with R88/T1025 is slower than of the tumor
having a single mutation (at position R88), because both
mutations are potential weak drivers and mutations in PTEN
(E7 and R130*) in addition to other alterations. A tumor with
only the R88 mutation is more responsive to PI3K inhibitors
compared to that with R88/T1025 (Fig. S9A–H). PTEN is a tumor
suppressor and PIK3CA is an oncogene. Active PI3K

phosphorylates signaling lipid PIP2 to PIP3. This activates a
cascade of protein kinases leading to the cell cycle. PTEN
suppresses cancer by dephosphorylating PIP3 back to PIP2. Loss
of function at PTEN and gain of function at PIK3CA ascends PIP3
levels in the cells49. PTEN is a negative regulator of the PI3K/Akt/
mTOR signaling pathway. Overactivation of PIK3CA and loss of
activity of PTEN due to the double mutations can lead to
hyperactivation of PI3K/Akt/mTOR signaling which may result
in oncogene induced senescence (OIS), potentially explaining the
blockage of tumor growth in the double mutant X-3093
xenograft.

Another oncogene with latent driver mutations is EGFR; the
mutations L62, G779, K860, and A871 are weak latent
accompanied by weak/strong driver mutations (Fig. 4a). There
are 17 double mutations in EGFR; these doublets are mostly
composed of weak drivers (7 doublets) and weak+strong driver
combinations (6 doublets).

A combination of a weak driver and a strong driver mutation
T790/L858 double mutation in EGFR is present in one cell line
(NCI-H1975) of lung cancer. H3255 cell line has only one
mutation at position L858 in EGFR (Fig. 4b). Both mutations are
in the kinase domain to which the RTK inhibitors bind (PDB:
4I23, Fig. 4c). However, response to the inhibitors is considerably
different in the cell line with double mutant EGFR. It is more
resistant compared to the single mutant cell line (p-value ~ 0.01,
two-sided Mann–Whitney U test, Fig. 4d).

L858R in EGFR is sensitive to EGFR-targeted tyrosine-kinase
inhibitors (TKIs). After treatment with TKIs, T790M, has been
observed. It decreases TKIs’ binding32,50. L858R lies in the A-loop
of the drug binding pocket and destabilizes the inactive
conformation. The “gatekeeper” residue T790M is in the hinge
region of the binding pocket. L858/T790 increases the protein
stability and changes the conformation of the binding pocket
which generates resistance to the EGFR inhibitors51,52. Another
double mutation is T790/C797. The sensitivity of the T790M
mutant lung cancer tumors to the third generation TKIs vanishes
with the emergence of C797S32.

Collectively, pre-clinical models -PDXs and cell lines- bearing
double mutations show different growth and drug response patterns.
The PIK3CA double-mutant PDX grows faster, and its growth trend
differs from the single-mutant PDXs. Better response to the PI3K
inhibitors both in double mutant cell lines and PDX give clues to
their clinical behavior, despite the necessity of functional data. On the
contrary, EGFR double mutation may lead to increased resistance by
altering the inhibitor binding pocket. Overall, the double mutations
and single mutation counterparts are not the only genetic difference
between pairs of single mutant and double mutant cell lines or PDXs.
However, the prominent difference between double and single
mutants in terms of drug response and tumor growth make them
good candidates for further exploration of their clinical association.

Discussion
In this study, we scan the cancer genome landscapes aiming to
identify latent drivers. In our definition, mutations which are
statistically frequent and thus labeled as oncogenic hotspots in the
literature are strong drivers. Oncogenic mutations in the long tails
of the distributions are statistically rare. They can be strong or
weak drivers. Mutations that are rare25 and not yet labeled as
oncogenic can be latent drivers. They may or may not be
allosteric53. Rare drivers can be as potent as frequent drivers.
Their low statistical frequencies may simply be an outcome of the
computational strategy that has been employed in the
calculation54,55. They may be tissue, or cell specific, harbored in
specific cancers. Apart from repressors, under physiological
conditions, the wild-type inactive state is more highly populated
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than the active state. Driver mutations, whether frequent or rare,
destabilize the inactive state and/or stabilize the active state
making the active state more populated than the inactive state.
Two or multiple driver mutations can destabilize the inactive
state to a greater extent than single driver mutation as compared
to the active state, shifting the population toward the active state.
Especially, the conformational change that they promote may also
involve steric hindrance at the drug binding site. However, an
allosteric mutation away from the binding site may restore drug
efficacy against highly resistant mutants, as observed in BCR-
ABL156. A latent driver also either destabilizes the inactive state
and/or stabilizes the active state, but the relative difference
between the states can be smaller. Consequently, on their own
their contribution to protein activation is relatively small, hin-
dering their identification. However, the additive contributions of
strong drivers or of latent drivers (strong or weak) can increase
the population of the active conformations leading to the
ensemble being fully activated. Given that the mechanism
described here depends on the positions of the constituents in the
3D protein structure and their distance from one another in

addition to other factors, it is entirely plausible that it cannot
apply to all doublets.

We designed this study to discover latent driver mutations
based on the premise that in cis, latent, and weak mutations can
cooperate to enhance the oncogenic signal. We identified
155 significant, same gene double mutations which are composed
of mostly one rare and one frequent. Frequent mutations have
been cataloged as strong drivers4,5,25. Rare drivers can also be
strong drivers. We newly cataloged 140 latent drivers. Even
though they may be cancer-wide, coupling with another mutation
increases their cancer-type specificity. The load of double muta-
tions in tumor suppressors is significantly higher than in onco-
genes, indicating their relative robustness to functional loss.

With the sparsity of patient treatment datasets, cell lines or
patient-derived tumor xenografts are a useful clinical interpreta-
tion resource. We found evident differences in the response to
PI3K inhibitors in tumor models that differ in the presence or
absence of double mutations in PIK3CA, which is in line with
recent experimental work29. Tumor growth is extremely fast in
double mutant PIK3CA compared to the single mutant. Recent

Fig. 4 Structural and clinical aspects of EGFR double mutations. a Paired dot plot of EGFR double mutations. Each paired dot represents one double
mutation. Dots are colored according to their type, driver (purple), weak driver (orchid), strong latent driver (blue), and weak latent driver (sky blue). Line
size connecting the dots is proportional to the number of tumors with double mutations. b EGFR mutation doublets in lung cancer cell lines and their
response to drugs in network representation. Dashed lines connecting cell line nodes (hexagon) to mutation nodes (diamond) indicate cell lines that harbor
corresponding mutations. Green and red lines connecting cell line nodes (hexagon) to drug nodes (V-shaped) represent sensitivity and resistance of the
cell lines to the corresponding drugs, respectively. Dashed lines between the drug nodes (V-shaped) and pathway nodes (rectangle) indicate that, the
drugs have target(s) in the corresponding pathways. c Representation of double mutations in EGFR structure. d EGFR mutation doublets in lung cancer
together with the violin plot that shows the response to RTK inhibitor in double mutant and single mutant cell lines. More negative z-score means more
sensitivity and more positive z-score means more resistance to the drug molecule.
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mechanistic studies suggest that the increased protein activity or
acquired drug resistance is due to the mutation combinations.
Zhang et al.44 suggested that combinations of strong and weak
drivers can enhance PI3K activity and explain the phenotypic
differences in PIK3CA double mutant tumors43 that we observed
prominently in breast and uterus tumors. Here we further
extended the analysis to combinations of less frequent mutations
not cataloged as drivers, which we view as potential latent drivers.
Among them, doublets with mutation at position R88 are
depleted in breast but not in uterus cancers, suggesting that
potential latent driver mutations pairing with R88 are important
signatures of uterus tumors.

Not limited to PIK3CA, numerous other significant double
mutations with possible prognostic or therapeutic impact have
also been identified (i.e., EGFR in the lung in line with previous
studies30). To fully understand mutational frequencies requires
detailed functional data related to specific mutations, their com-
binations, and the proteins that harbor them. We, and others,
have been aiming to reveal the mechanisms of oncogenic muta-
tions in key protein nodes in the network. The paramount
principle that guides us is that the mechanisms of the mutations
mimicing the physiological activation57. However, whereas phy-
siological activation is regulated, taking place following some
signaling event, e.g., hormone binding to the extracellular domain
of a receptor tyrosine kinase in the case of PI3K, with the sig-
naling propagating downstream through a series of cascading
events, oncogenic activation is dysregulated. We thus suggest that
the single mutations which are components of doublets can act in
one of two ways: their effects can be complementary in relieving
the autoinhibition4,58,59, or can enhance the same effect, for
example involving not one positive charge but two for membrane
binding. Consider for example PI3K, whose physiological acti-
vation involves binding of the phosphorylated C-terminal motif
of insulin receptor to the nSH2, resulting in breaking of the
interaction of the nSH2 with the helical domain and relieving the
autoinhibition, and binding of active Ras, which assists in binding
and properly positioning the PI3K on the membrane. E542K and
E545K hotspots mimic the action of the first, and H1047R the
second. With all being strong hotspots, their co-occurrence can
trigger oncogene induced senescence (OIS). However, a combi-
nation with more moderate mutations can powerfully activate
this lipid kinase. Relieving the autoinhibition is a common phy-
siological activation mechanism that oncogenic mutations
adopt58. Not all mutations form pairs. One example is BRAF
V600E. This has been attributed to its being a strong hotspot.
Mutant BRAF V600E has been postulated to be activated as a
monomer independent of Ras activation60 and shown to be able
to phosphorylate MEK61–63. However, as we noted above, recent
data suggest that even though the mutant is activated as a
monomer, a dimeric BRAF is still required to phosphorylate MEK
in cells62,64–66. Mechanistic arguments clarify that despite being
an activating mutation for cell growth, BRAF V600E still requires
a collaboration with a Raf partner to have MEK appropriately
positioned and retained in the assembly, just as in the case of
physiological BRAF64, an observation which is of vital importance
in drug discovery aiming at targeting dimerization. This example
serves to illustrate the importance of knowledge of the functional
activation mechanism which statistics alone is unable to
provide67. Combined, they may better forecast treatment out-
comes. The sensitivity or responsivity of drug action to a targeted
cancer therapy depends on how much the tumor relies on the
particular oncogene and the cellular pathway with which it is
associated. In PIK3CA, a combination of a driver mutation with a
weak driver, or strong latent driver, particularly under different
mechanisms of actions, have a good, albeit temporary, therapeutic
response.

A major observation from our comprehensive analyses is that
doublet mutations are infrequent events. We attributed the relative
rarity of strong doublet hot spots to OIS. Another highly plausible
explanation is that our doublets count identical mutations. However,
the doublets can consist of mutations of similar chemical character.
Mutations can emerge during cancer development to form doublets;
however, commonly they pre-exist in the background mutational
load. In contrast to rare strong hot spots, latent drivers may require
additional collaborative mutations. Since their clinical or biological
outcome is too weak to be observed, or the cells that harbor them
may constitute a rare population, to date they were not considered in
the patient cancer-specific protein sequence analysis. Alternatively,
they may be silent, but a cryptic splice site which is executed may
promote their expression68.

Our results, supported by drug response data of cell lines and
patient-derived xenografts provide a strong background for
therapeutic potentials of double mutations. Our results may form
a basis for further experimental evaluation of molecular altera-
tions to be exploited for therapeutics across different cancer
types and in clinical identification. Mechanistically, the actions of
same gene double mutations are more straightforward to interpret
as compared to double mutations in different proteins in inde-
pendent pathways. How double mutations in independent path-
ways work is still highly challenging to understand.

Methods
Data collection and processing. All available somatic missense mutation profiles
are downloaded from The Cancer Genome Atlas (TCGA) and the AACR launched
Project GENIE (Genomics Evidence Neoplasia Information Exchange)69–71. The
TCGA mutation annotation file contains more than 10,000 tumors across 33 dif-
ferent cancer types. We used the merged MC3 file to get TCGA pan-cancer data.
The somatic variants without sufficient normal depth coverage and variants found
in the panel of normal samples were evaluated as possible germline variants and
were removed from the file before merging.

The GENIE mutation file (Release 6.2-public) contains 65,401 patients and
68,897 tumor samples across 648 cancer subtypes under the Oncotree classification.
Within the GENIE cohort 2930 patients match with multiple tumor barcodes. For
those cases, only one primary tumor barcode is kept when available; if not, only
one metastatic or unspecified tumor barcode is kept for further analysis without
any other constraint. Among these patients, 2019 has sequenced primary tumors,
757 have sequenced metastatic tumors and the remaining 154 have tumors of the
type not specified.

Next, we selected non-synonymous mutations including missense, nonsense,
nonstop and frameshift mutations (altering only one position on a protein). We
also excluded the mutations where the wild type and/or mutant residue name is not
specified. As a result of this filtering process, 9703 and 57,921 tumors remained
with a total of 1,631,755 point mutations in the TCGA and GENIE cohorts,
respectively.

We did a pre-filtering on the VAF (Variant Allele Frequency) value to control
the heterogeneity of the samples to some extent given that variants were collected
by bulk sequencing in both datasets. We calculated VAF by using the ratio of the
values in the t_alt_count and t_depth columns of the MAF (Mutation Annotation
File) file of the pan-cancer data sets. Then, we continued our analysis with the
mutations that have VAF value more than 0.125, ensuring that the remaining
mutations are present roughly in 25% of the sequenced cells. We continued the
analyses with 62,567 samples (9588 and 52,979 samples from the TCGA and
GENIE cohorts, respectively) from 619 cancer subtypes and 33 tissues (including
OTHER category).

Statistics and reproducibility. We set pre-filtering criteria to find significant
double mutations. This pre-filtering consists of total number of occurrences and
VAF values of each individual mutation. We construct potential double mutations
to be tested after prefiltering. Therefore, it is independent of the test statistic under
the null hypothesis70,71. If an individual mutation is present in less than three
tumors in the cohort and have a VAF less than 0.125, we filtered them out. We
continued our calculations with the remaining 65,872 mutations on 12,724 genes,
and for each gene and the mutations they are harboring in the final set we formed
binary combinations. As a result, we obtained 2,230,203 potential double mutations
to be tested in 62,567 tumor samples that have at least one point mutation with
VAF > 0.125 and assessed their statistical significance (Fisher’s Exact Test). For
each potential double mutation, we created a contingency table [[a,b],[c,d]] where a
is the number of tumors having both alterations, b is the number of tumors having
only the first alteration, c is the number of tumors having only the second
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alteration and d is the number of all tumors not having these two alterations
together (d= 62,567−(a+ b+ c)).

Then, we applied multiple testing corrections by using Benjamini–Hochberg
method and continued subsequent analyses with doublets having q < 0.1 and kept
11,532 significant doublets out of 2,230,203 potential doublets after multiple testing
corrections (Supplementary Data 4)

We applied more filtering for the significant double mutations based on the
nonsense mutation composition among double mutants and the VAF values of the
constituents. Throughout our analyses, we assumed point mutations occur at the
same position as same regardless of the mutant residue. We evaluated the VAF
values of the components and the presence of a nonsense mutation in the upstream
in a tumor-specific way for the significant double mutations and double mutant
tumors. In the components of a doublet, despite having a mutation at the same
position, the mutated amino acid may result in a missense, nonsense or frameshift
mutation. Therefore, a double mutation can be one of the combinations of the
following variant classes: missense+missense, missense+ frameshift, missense
+nonsense, frameshift+frameshift, nonsense+nonsense. Among the tumor
barcodes having a double mutation, if at least half of the barcodes carries a
nonsense mutation as a component of a doublet we filtered them from our dataset.

To inspect whether double mutation constituents are in the same set of
sequenced cells in a tumor, we first calculated the total VAF value of double
mutation components. If the total VAF value is >0.5, mutation components
encompass >100% of the sequenced cells, which is impossible unless there is an
overlap. Therefore, we labeled the mutation constituents as highly likely
overlapping for such records. We retained the double mutations where the
constituents overlap for at least 20% of the records for further inspection and kept
7252 significant double mutations where 155 of them are present in at least three
tumors.

We used the Catalog of Validated Oncogenic Mutations from the Cancer
Genome Interpreter9 to label double mutation components: if a mutation is among
the 5601 driver mutations, we labeled it as known driver (D), otherwise potential
latent driver (d). For each gene harboring at least one double mutation, we
collected all the tumors with mutations present on at least 3 tumors as gene-mutant
tumors. Then, we calculated the fraction (%) of tumors with double mutation
components among the gene-mutant tumors. We classified a known driver
mutation as a strong driver if it is present in more than 10% of the gene-mutant
tumors; otherwise, it is a weak driver. Similarly, we dubbed a potential latent driver
mutation as a strong latent driver if it is present in more than 1% of the gene-
mutant tumors; otherwise, we classified it as a weak latent driver. Here, we
considered mutations in each gene present in at least three tumors when generating
gene-mutant tumor groups.

Additionally, double mutations are annotated based on their functions,
domains, chemical properties, and structural proximity (see Supplementary Note).

Hyper-mutated samples and double mutations. First, we listed all non-hyper-
mutated tumors that have at least one mutation on the 54 genes carrying at least
one double mutation. Then, for each double mutation, we noted the total number
of non-synonymous mutations on these tumors and labeled the double mutant
tumors as Double and the remaining gene-mutant tumors as Single (Supplemen-
tary Data 2).

To test the null hypothesis that the double mutant tumors (Double) have a
lower or equal mutation burden compared to the remaining gene-mutant tumors
(Single), we applied a permutation test (p < 0.01) with 5000 iterations. We prepared
a two-column table having the Double/Single group labels of the tumors in the first
column and the total number of non-synonymous mutations in the second column
for each double mutation. To compare the observed and expected mean mutation
counts for the two tumor groups, we shuffled the group labels in the first column
5000 times by preserving the second column as is. Here, we set the test statistic for
two groups as follows:

Test Statistic ¼ μðDoubleÞ � μðSingleÞ ð1Þ

where μ is the mean mutation count. We calculated the permuted test statistic at
each iteration by shuffling the Double/Single labels. At the end of 5000 iterations,
we counted the number of iterations where the permuted test statistic is greater
than the original test statistic (N) and found the p-value by N/5000.

Allelic configuration of double mutations. We exploited supplementary data files
of the papers29–31 to check cis/trans status of double mutations for the matching
samples.

Mutational signature analysis. We used 96 mutation contexts deposited in
COSMIC that the format of codons and putative substitutions is as follows:
C1[C2 > C2

subs]C3 where Ci is the nucleotide in the corresponding position for
i= 1,2,3 and C2 > C2

subs indicates the wild type nucleotide C2 is substituted by
C2

subs.
We assumed double mutations are of the same context either they have the

same base pairs in C1[C2 > C2
subs]C3 at the same position or C1, C2, C2

subs, and C3

are mapped to the opposite strand with the same ordering72.

Cell line network construction. We obtained a list of cell lines with the double
mutations from Cell Model Passports and their drug response information from
CancerrxGene38,73. We also extracted information about drug targets and target
pathways. We used two different approaches to select drugs for PTEN, APC, and
PIK3CA double mutant cell lines: if a drug is in the gray zone (|z-score|≤2) in the
single mutant cell lines but gives a significant drug response in a double mutant cell
line (|z-score|>2). If there is a single mutant cell line that is sensitive (or resistant)
to the drug but the dual mutant cell line gives an opposite response to the drug.
(Drug response flips sensitive into resistant or resistant into sensitive between
single and dual mutant cell lines).

For EGFR we selected drugs that give significant drug response either in the
single or double mutant cell line. Then we formed networks connecting mutations
to cell lines, cell lines to drugs, and drugs to their target pathways.

Patient-derived xenograft analysis. We used the mutation profiles, tran-
scriptomic data and drug responses of patient-derived xenografts in37. We deter-
mined xenografts harboring significant doublets. Then, we compared changes in
tumor volumes of single and dual mutant xenografts for the untreated and drug-
treated cases (single mutation is part of a significant dual mutation). We preferred
to specify the time intervals in multiples of 5. When a given timepoint is not a
multiple of 5, we used linear interpolation between two nearest numbers containing
a multiple of 5 as follows:

Voli ¼ Voli�1 þ
ti � ti�1

tiþ1 � ti�1
ðVoliþ1 � Voli�1Þ ð2Þ

where ti is a timepoint that is multiple of 5 between the given timepoints ti−1 and ti+1
and Voli is the volume (mm3) at timepoint i.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The results shown here are in whole or part based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga. The authors would like to acknowledge
the American Association for Cancer Research and its financial and material support in
the development of the AACR Project GENIE registry, as well as members of the
consortium for their commitment to data sharing. Interpretations are under the
responsibility of the study authors. The cell line data underlying the results presented in
the study are available from GDSC in https://www.cancerrxgene.org/downloads, Cell
Model Passports in https://cellmodelpassports.sanger.ac.uk/downloads, and The Cancer
Dependency Map project in https://depmap.org/portal/download/. The PDX data
underlying the results presented in the study are available in Gao et al.37. Source data of
the main figures are available in https://doi.org/10.6084/m9.figshare.21788192.v374.

Code availability
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