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COMMUTING GRAPH OF A GROUP ACTION

WITH FEW EDGES

İSMAİL Ş. GÜLOĞLU AND GÜLİN ERCAN∗

Abstract. Let A be a group acting by automorphisms on the group G. The com-

muting graph Γ(G,A) of A-orbits of this action is the simple graph with vertex set
{xA : 1 6= x ∈ G}, the set of all A-orbits on G \ {1}, where two distinct vertices xA

and yA are joined by an edge if and only if there exist x1 ∈ xA and y1 ∈ yA such
that [x1, y1] = 1. The present paper characterizes the groups G for which Γ(G,A)
is an F-graph, that is, a connected graph which contains at most one vertex whose
degree is not less than three.

1. introduction

Throughout this paper group means a finite group. A great deal is known on deriving
information about the structure of a group G from some certain properties of an associ-
ated graph. The commuting graph of a group has been one of the most popular amongst
such graphs; and several results indicating the influence of the commutativity relation
on the structure of a group have been obtained. As a generalization, the commuting
graph of conjugacy classes has been introduced and analyzed in [3]. Recently, focusing
attention on a further generalization, the concept of the commuting graph of a group
action has been introduced in [1] as follows.

Definition 1.1. Let A be a group acting by automorphisms on the group G. The
commuting graph Γ(G,A) of A-orbits is the graph with vertex set {xA : 1 6= x ∈ G},
the set of all A-orbits on G \ {1}, where two distinct vertices xA and yA are joined by
an edge if and only if there exist x1 ∈ xA and y1 ∈ yA such that x1 and y1 commute.

In [1] the connectedness of Γ(G,A) has been studied and the structure of the group
G has been investigated in cases where Γ(G,A) is complete or triangle free or contains
a complete vertex or contains an isolated vertex. We would like to mention here only
the fact that G is nilpotent if Γ(G,A) is complete (see Theorem 3.1 in [1]) due to its
appearance in the next sections.

Of course, for further study on Γ(G,A) several problems can be suggested. In the
present article, as a matter of taste, we want to characterize all groups G admitting a
group A of automorphisms so that Γ(G,A) has few edges. More precisely we fix the
notion of being a graph “having few edges” as being an F -graph in the following sense.

Definition 1.2. A finite simple graph Γ is an F-graph if it is connected and contains
at most one vertex whose degree is not less than three. If an F -graph Γ contains a
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2 İSMAİL Ş. GÜLOĞLU AND GÜLİN ERCAN∗

vertex v with more than two neighbours then v is uniquely determined by this property
and is called the singular vertex of Γ.

All path-graphs Pn and cycles Cn with n vertices are F -graphs. Friendship graphs
and starlike trees are special F -graphs.

The purpose of the present paper is to describe the groups G which has a group A
of automorphisms such that Γ(G,A) is an F -graph. The main result we obtained is as
follows.

Theorem. Let A be a group acting by automorphisms on the group G with |π(G)| ≥ 2
so that the commuting graph Γ(G,A) of A-orbits is an F-graph. Then either Γ(G,A)
does not possess a singular vertex and G = P ×Q where P and Q are elementary abelian
p- and q-groups for some distinct primes p and q, respectively, and P \ {1}, Q \ {1} and
G \ (P ∪ Q) are all the distinct A-orbits; or Γ(G,A) does have a uniquely determined
singular vertex zA. Then |z| is a prime p and one of the following holds:

(1) Op(G) = 1 and p = 2 and G = F (G)S where S ∈ Syl2(G) and F (G) is elementary

abelian. Moreover one of the following holds where H = GA and H = H/CH(F (G)).

(a) S ∼= D8,
∣

∣H/G
∣

∣ = q − 1 and |F (G)| = q2 where q ∈ {3, 7}.
(b) S ∼= Q8 ∗ D8, the extraspecial group of order 32 with 20 elements of order 4,

|F (G)| = 34, and H/G is a Frobenius group of order 10 or 20.

(2) 1 6= Op(G) = F (G) and CG(F (G)) ≤ F (G) and for G = G/F (G) one of the
following holds:

(a) G has a normal subgroup of prime order which is complemented by a (possibly
trivial) cyclic p-group of order dividing p2 and acting Frobeniusly on it.

(b) G ∼= SL(2, 4), Z(G) = zA ∪ {1}, 1 6= F (G)/Z(G) is a direct sum of natural
irreducible modules of G. Furthermore G does not split over Z(G).

(c) G ∼= SL(2, 4), p = 5, F (G) is elementary abelian, F (G) \ {1} is the union of
two A-orbits, all p-elements in G \F (G) lie in the same A-orbit, zA ∩Z(S) = φ
for any S ∈ Sylp(G), and A/CA(G) is isomorphic to S4 or S5.

(3) 1 6= Op(G) = F (G) and CG(F (G)) 6≤ F (G) where either G is a quasisimple group
which is isomorphic to one of SL(2, 5), 2PSL(3, 4), 22PSL(3, 4), or G = Op(G)×E(G)
with Op(G) = 〈zA〉 and E(G) ∼= PSL(2, 5).

(4) 1 6= Op(G) 6= F (G) such that F (G) = P ×Q where P = Op(G) is an elementary
abelian p-group, Q = Op′(F (G)) is a Sylow q-subgroup of G for another prime q which
is elementary abelian, G/P is a Frobenius group with kernel F (G)/P and complement
either of prime order or a p-group which has a unique subgroup of order p. Furthermore
both P \ {1} and Q \ {1} are A-orbits.

This paper is divided into five sections. Section 2 investigates the structure of the
group G when Γ(G,A) contains no singular vertex. Section 3 is devoted to the comple-
tion of the proof of the theorem above in case Γ(G,A) contains a singular vertex. This
section is divided into four subsections the first of which includes several basic observa-
tions arising from the existence of a singular vertex to most of which we appeal frequently
throughout the rest of the paper, while the second presents some critical groups G for
which Γ(G,A) is not an F -graph for any A ≤ Aut(G). The other subsections study the
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cases Op(G) = 1 and Op(G) 6= 1 separately and contain several examples. The paper
ends with Section 4 including some final remarks on some immediate consequences of
the Theorem1.

Before closing this introduction we want to remind the reader of two basic well-known
facts which we shall use repeatedly without explicit reference:

(1) If A is a noncyclic, elementary abelian group acting coprimely by automorphisms
on the group G then G = 〈CG(a) : 1 6= a ∈ A〉 .

(2) If A = FH is a Frobenius group with kernel F and complement H, acting on
the group G by automorphisms so that CG(F ) = 1, then CG(H) 6= 1.

For all the properties of the simple groups appearing in this paper we refer to Atlas
[5] without mentioning it explicitly.

Throughout, for any graph Λ with vertex set V, the induced graph on W ⊂ V will
be denoted by Λ[W ]. If W = {v1, . . . , vn} we simply write Λ[v1, . . . , vn] rather than
Λ[{v1, . . . , vn}] for Λ[W ].

To simplify the notation, throughout Γ will denote the commuting graph Γ(G,A) of
A-orbits of the finite group G.

2. When Γ is an F-graph without singular vertex

We begin by examining the structure of G in case where Γ is an F -graph with no
singular vertex.

Proposition 2.1. Suppose that Γ has no singular vertex. Then

(i) Γ is either Pn with n ≤ 3 or C3;
(ii) Either G is a p-group for some prime p, or Γ = C3 and G = P × Q where P

and Q are elementary abelian p- and q-groups for some distinct primes p and q,
respectively. Furthermore, P \ {1}, Q \ {1} and G \ (P ∪Q) are all the distinct
A-orbits.

Proof. (i) An F -graph with no singular vertex is a connected graph in which every
vertex is of degree at most 2 and hence it is either Pn for some positive integer n or Cm

with m ≥ 3. If G is a p-group for a prime p then any vertex xA for some x ∈ Z(G)
is a complete vertex with deg(xA) ≤ 2 which yields that |V (Γ)| ≤ 3 proving the claim.
Assume next that |π(G)| ≥ 2 and every element is of prime power order. As the graph is
connected there must exist two adjacent vertices xA and yA represented by elements of
coprime orders which is impossible. Finally assume that there exists x ∈ G the order of
which is divisible by two distinct primes. Then xA is a vertex of a subgraph isomorphic
to C3 whence Γ = C3 which completes the proof of (i).

(ii) Assume that |π(G)| ≥ 2. An argument in the proof of (i) shows that Γ = C3 is
a complete graph. It follows by Theorem 3.1 of [1] that the group G is nilpotent. Let p
and q be two distinct elements of π(G); and x and y be elements of G of orders p and
q, respectively. Since x and y commute it holds that Γ[xA, yA, (xy)A] = C3 = Γ, that is,
V (Γ) = {xA, yA, (xy)A}. In particular, π(G) = {p, q}, xA is the set of elements of G of
order p, yA is the set of elements of order q and all the other nonidentity elements of G
are of order pq forming the orbit (xy)A.

Let P be the Sylow p-subgroup of G. Clearly P \ {1} = xA. We may assume that
x ∈ Ω1(Z(P )). It follows that P is elementary abelian. Similarly the Sylow q-subgroup
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Q of G is elementary abelian and yA = Q \ {1}. Then the set {uv : u ∈ P \ {1}, v ∈
Q \ {1}} = (xy)A consists of elements of G of order pq. This establishes (ii). �

Remark 2.2. Observe that for any two distinct prime numbers p and q and any elemen-
tary abelian p-group P and any elementary abelian q-group Q there exists a subgroup
A of Aut(P ×Q) such that Γ(P ×Q,A) = C3.

3. When Γ is an F-graph with singular vertex

The following precise description of Eppo-groups (or CP -groups by some authors),
namely, groups in which every element is of prime power order will be frequently used
in the rest of the paper.

Theorem 3.1 (Main Theorem of [2]). One of the following holds for any Eppo-group
E with |π(E)| ≥ 2:

(a) E is a Frobenius group with |π(E)| = 2;
(b) E is a 2-Frobenius group with |π(E)| = 2;
(c) E is isomorphic to one of the following groups:

PSL(2, q) for q ∈ {5, 7, 8, 9, 17}, PSL(3, 4), Sz(8), Sz(32), M10;
(d) O2(E) 6= 1 and E/O2(E) is isomorphic to one of the following groups:

PSL(2, q) for q ∈ {5, 8}, Sz(8), Sz(32).
Furthermore O2(E) is isomorphic to a direct sum of natural irreducible modules
for E/O2(E).

Henceforth we shall concentrate on the question of what information can be deduced
about the group G when Γ is an F -graph with singular vertex. All results of this section
are obtained under the hypothesis below without explicitly mentioning it in each case.

Hypothesis. Suppose that |π(G)| ≥ 2 and that Γ = Γ(G,A) is an F-graph with the
singular vertex zA. Fix p as one of the prime divisors of |z|.

3.1. KEY OBSERVATIONS.

Proposition 3.2. The following hold for Γ.

(a) We have |z| = p.

(b) Every connected component ∆ of Γ[V \ {zA}] is isomorphic to Pn for some
positive integer n. One of the pendant vertices of ∆ is connected to zA in Γ and
the only vertices of ∆ which are connected to zA in Γ are contained in the set
of pendant vertices of ∆.

(c) If xA ∼ yA with (|x|, |y|) = 1 then x and y are of prime orders and zA ∈
{xA, yA}. In particular, for any q-element u where q 6= p, the CG(u) is a {p, q}-
group and for any p-element v such that vA 6= zA, CG(v) is a p-group.

(d) Let M and N be A-invariant subgroups of G such that N ⊳ M . If zA∩M ⊂ N,
then M/N is an Eppo-group. In particular, G/N is an Eppo-group if zA∩N 6= ∅
and N is an Eppo-group if zA ∩N = ∅.



COMMUTING GRAPH OF A GROUP ACTION WITH FEW EDGES 5

(e) If zA is a complete vertex of Γ then either A is not contained in Inn(G) or
z ∈ Z(G) and G/Z(G) is an Eppo-group. Furthermore Γ consists of a certain
number of C3’s and a certain number of P2’s joined at zA.

(f) If ∆ is a connected component of Γ[V \{zA}] which is not a subgraph of a triangle
in Γ, then |x| divides p2 for each xA ∈ V (∆). In particular, the exponent of a
Sylow p-subgroup of G divides p3.

(g) Let Q be a Sylow q-subgroup of G for a prime q 6= p and let 1 6= x ∈ Ω1(Z(Q)).
Then xA ∼ zA, Q \ {1} ⊆ xA and hence exp(Q) = q. In particular, any two
commuting nontrivial q-elements lie in the same A-orbit.

(h) Let H be an A-invariant subgroup of G and q be a prime different from p. Then
for any Q ∈ Sylq(G), either Q ≤ H or Q ∩H = 1. In particular, (|H | , [G : H ])
is a power of p.

(i) The Grünberg-Kegel graph of G is the complete binary graph K1,n where n+1 =
|π(G)| .

(j) (zx)A = zA for any x ∈ GA. In particular zA is invariant under conjugation by
elements of G, that is, zA is a normal subset of G.

(k) If there exists a Sylow p-subgroup P such that z ∈ Z(P ) then zA is a complete
vertex of Γ and zA ⊂ Op(G).

(l) The distance of a pendant vertex from zA is at most two.

(m) If Cn appears as the subgraph of Γ then it contains zA as a vertex and n ≤ 4.

Proof. (a) Suppose that zp 6= 1. Then (zp)A is a vertex different from zA which is
adjacent to each vertex adjacent to zA. This leads to the contradiction deg((zp)A) ≧

deg(zA) > 2. Therefore |z| = p as claimed.

(b) Let ∆ be a connected component of Γ[V \ {zA}]. It follows by a similar argument
as in the proof of Proposition 2.1 (i) that ∆ = Pn for some positive integer n or Cm

with m ≥ 3. The latter is impossible as Γ is connected and zA is the only vertex of Γ of
degree greater than two. Because of the same reason the only vertices of ∆ which are
connected to zA in Γ are contained in the set of pendant vertices of ∆. Clearly at least
one of the pendant vertices of ∆ is connected in Γ to zA.

(c) Assume that xA ∼ yA and that (|x|, |y|) = 1. Without loss of generality we may
assume that x and y commute. Then Γ[xA, yA, (xy)A] = C3 and hence is not a subgraph
of Γ[V \ {zA}] by (b). It follows that zA ∈ {xA, yA, (xy)A}. Without loss of generality
we may assume that xA = zA. Let q be a prime divisor of |y|. If |y| 6= q then we get
Γ[xA, yA, (xy)A, (yq)A] = K4 which is also impossible by paragraph (b). Let now u be
a q-element where q 6= p and let w ∈ CG(u) be an r-element for some r 6= q. Then
uA ∼ wA, and so r = p by the above argument. Next let v be a p-element such that
vA 6= zA. Clearly v cannot be centralized by an element the order of which is divisible
by a prime different from p.

(d) If zA∩M ⊂ N, and there exists an element xN of order rs for two distinct primes
r and s in M/N . Since 〈x〉 contains an element of order rs we observe by (c) that
p ∈ {r, s} and the p-part u of x belongs to zA. This leads to a contradiction as zA ⊂ N
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but u /∈ N . Therefore every nontrivial element of M/N has prime power order, that is
M/N is an Eppo-group.

(e) That zA is a complete vertex means that for any nonidentity x ∈ G there exists
some a ∈ A such that [za, x] = 1, that is,

⋃

a∈ACG(z)
a = G. If A ≤ Inn(G) then

⋃

a∈ACG(z)
a ⊆

⋃

g∈G CG(z)
g which yields that CG(z) = G. Thus one can immediately

conclude by (d) that G/Z(G) is an Eppo-group.

(f) Let ∆ be a connected component of Γ[V \{zA}] which is not a subgraph of a C3 in
Γ and pick xA from V (∆). Suppose that |x| is divisible by two distinct primes r and s.
Then there are x1 and x2 in 〈x〉 of orders r and s, respectively. Then Γ[xA

1 , x
A
2 , x

A] = C3

is a subgraph of Γ which is not possible. This shows that |x| is a power of a prime q.
In fact every vertex in ∆ must have a representative having order which is a power of
the same prime q because otherwise zA appears as a vertex in ∆ by (c). Let uA be a
vertex of ∆ which is adjacent to zA. Without loss of generality we may assume that
u and z commute. If q 6= p then (uz)A ∈ V (∆) which is impossible. Thus we have

q = p. Furthermore, if p3 divides |u|, we see that Γ[uA, (up)A, (up2

)A] = C3 and hence

(up2

)A = zA by (b) and (a). In particular |u| = p3 completing the proof.

(g) Let Q be a Sylow q-subgroup of G for some q 6= p and let 1 6= x ∈ Ω1(Z(Q)).
Suppose that xA 6= yA for some y ∈ Q \ {1}. It holds that xA ∼ yA. Let ∆ denote the
connected component of Γ[V \ {zA}] containing xA and yA. As p 6= q, we have |∆| = 2
by (f). We may assume that xA ∼ zA and that x commutes with z. It follows now that
(xz)A ∈ V (∆) which is a contradiction. Therefore Q \ {1} ⊆ xA and hence exp(Q) = q.

(h) Let H be an A-invariant subgroup of G, and let Q be a Sylow q-subgroup of G for
q ∈ π(G)\{p} such that Q∩H 6= 1. Recall that Q\{1} ⊂ xA for any x ∈ Ω1(Z(Q))\{1}
by (e). Pick y ∈ Q ∩H of order q. It holds now that Q \ {1} ⊆ xA = yA ⊂ H and the
claim follows.

(i) We observe by (g) that for each prime q ∈ π(G) \ {p} there exists an element
of order pq in G. On the other hand the existence of an element in G of order qr for
distinct primes q and r in π(G) \ {p} is impossible by (c).

(j) Notice that, for any x ∈ GA, zx is a p-element of G centralizing a q-element of G
for some prime q 6= p by (g). Then zx is A-conjugate to z and so (zx)A = zA.

(k) Suppose that there exists a Sylow p-subgroup P such that z ∈ Z(P ). Then for
any g ∈ G there exists some a ∈ A by (j) such that za ∈ Z(P g) which means that
zA ∩ Z(S) 6= ∅ for any S ∈ Sylp(G). We shall observe that zA ∼ xA for any 1 6= x ∈ G.
This is clear by (c) if x is of composite order, and by (g) if |x| is a power of a prime
different from p. Assume now that x is a p-element, and let S ∈ Sylp(G) such that x ∈ S.
As zA ∩Z(S) 6= ∅ we see that xA is adjacent to zA as claimed. As x is arbitrary we see
that zA is a complete vertex. It follows now by Theorem 3.5 in [1] that zA ⊂ Op(G).

(l) − (m) Let the induced graph on {xA
i : i = 0, 1, . . . , n} be a path with n > 4 so

that x0 = z and xA
i ∼ xA

i+1 for i = 0, 1, . . . , n − 1. Without loss of generality we may

assume that [xi, xi+1] = 1, i = 0, 1, . . . , n− 1. By (f) |xi| divide p2 for each i > 0. Let
T ∈ Sylp(G) containing 〈x1, x2〉 and pick a nonidentity element t1 from Z(T ). We see
by (b) that tA1 ∈ {xA

1 , x
A
2 }. On the other hand there exists g ∈ G such that zg ∈ T .
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Note that (zg)A = zA by (j). If tA1 = xA
2 then xA

2 is adjacent to zA and hence n = 2
and Γ[{zA, xA

1 , x
A
2 }] is C3 which is impossible. If tA1 = xA

1 and n > 2 then we apply
the same argument to {xA

2 , x
A
3 } and find an element t2 such that tA2 is adjacent to each

member of {zA, xA
2 , x

A
3 }. As xA

2 is not adjacent to zA we see that tA2 /∈ {zA, xA
2 }, that

is, tA2 = xA
3 ∼ zA. This proves that the distance of any pendant vertex from zA is at

most two and any cycle appearing as a subgraph of Γ is of length at most four. �

We also frequently appeal to the next proposition in the rest of this paper.

Proposition 3.3. Let M and N be A-invariant subgroups of G such that N ⊳ M . Then
the following hold.

(a) M/N is nonabelian simple if M/N is a nonsolvable A-chief factor of G.
(b) zA ∩M ⊂ N if M/N is nonabelian simple.

Proof. (a) If M/N is a nonsolvable A-chief factor of G then M/N is a direct product of
isomorphic nonabelian simple groups. In case where M/N is not simple there exist two
prime numbers r and s distinct from p so that M/N and hence G contains an element
of order rs which is impossible by Proposition 3.2 (c).

(b) Let M/N be a nonabelian simple group such that zA ∩M * N. Then zA ⊆ M
and zN 6= N . Let p 6= q ∈ π(M/N). Then q /∈ π(N) by Proposition 3.2 (h). On the
other hand, by Proposition 3.2 (g), for any x ∈ M of order q there exists a ∈ A such
that [za, x] = 1 which means that N 6= xN commutes with zaN = (zN)a. This implies
that the Grünberg-Kegel graph of the simple group M/N has the vertex p as a complete
vertex.

In case where p = 2 it follows by Theorem 7.1 in [4] that M/N is an alternating group
An for some n such that there are no prime numbers r with n − 3 ≦ r ≦ n. Let now
m = n if n is odd and m = n− 1 if n is even. Then there exists an m-cycle, say σ, in
An. Now |σ| = m is an odd integer which is not a prime and cannot be divisible by two
distinct primes by Proposition 3.2 (c). So m = rk is a prime power with k > 1 which is
impossible by Proposition 3.2 (g) as CAn

(σ) = 〈σ〉. This shows that p must be odd, and
so Sylow 2-subgroups of M/N are elementary abelian by Proposition 3.2 (g). Using the
main result of [9] we see that one of the following holds for the simple group M/N :

(i) M/N ∼= PSL(2, 2t) with t ≥ 2;
(ii) M/N ∼= PSL(2, s) where s ≡ ±3(mod 8);
(iii) M/N contains an involution u with CM/N (u) = 〈u〉 ×K with K ∼= PSL(2, s)

where s ≡ ±3 (mod 8).

Since π(K) contains at least three distinct primes the case (iii) cannot occur because
otherwise we would get p = 2. The case (i) cannot also occur because otherwise the
centralizers of involutions are Sylow 2-subgroups of M/N but their orders must be
divisible by p. Therefore we are left with the case (ii), that is, M/N ∼= PSL(2, s) where
s ≡ ±3(mod 8). Suppose that s = 3+8k for some k. Then |M/N | = s(1+ 4k)4(1+ 2k)
and M/N has cyclic subgroups of orders (1 + 4k) and 2(1 + 2k) which contain the
centralizer in M/N of any of its nontrivial elements of odd order by Kapital II Satz 8.3
and Satz 8.4 in [6]. So we see that p divides both 1+2k and 1+4k which is not possible.
Similarly if s = 5 + 8k for some k then we have |M/N | = s(3 + 4k)4(1 + 2k) and M/N
has cyclic subgroups of orders (3 + 4k) and 2(1 + 2k) which contain the centralizer in
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M/N of any of its nontrivial elements of odd order by Kapital II Satz 8.3 and Satz 8.4 in
[6]. This forces that p divides both 1+2k and 3+4k which is also impossible completing
the proof of (iii). �

Proposition 3.4. If a Sylow 2-subgroup of G is nonabelian then p = 2 and all Sylow
subgroups for odd primes have prime exponent . If a Sylow 2-subgroup of G is abelian
then either G is solvable or G has only one nonabelian A-chief factor in an A-chief
series and that is isomorphic to PSL(2, 5).

Proof. The first claim is clear by Proposition 3.2 (g). Assume now that G is nonsolvable
and a Sylow 2-subgroup of G is abelian. Let M/N be a nonabelian A-chief factor of G.
Then by Proposition 3.3 (b) and Proposition 3.2 (d) M/N is a simple Eppo-group with
abelian Sylow 2-subgroup and hence isomorphic to PSL(2, 5) or PSL(2, 8).

Assume first that M/N is isomorphic to PSL(2, 8). Then M/N has a cyclic subgroup
of order 9 and so p = 3. This shows that 2 does not divide |N | |G/M | whence M/N
is the only nonsolvable A-chief factor. Therefore N is solvable. Let T be a Sylow 2-
subgroup of M. Then T is elementary abelian and acts by automorphisms on N/N ′ and
N ′. Thus N/N ′ = 〈CN (t)N ′/N ′ : 1 6= t ∈ T 〉 and N ′ = 〈CN ′(t) : 1 6= t ∈ T 〉. Since it is
not possible that both N ′ and N \N ′ contain elements of zA we see that either N = 1
or N is an elementary abelian p-group generated by zA.

If N = 1 then M is a minimal normal subgroup of GA and z ∈ G \M by Proposition
3.3 (b) and centralizes a Sylow p-subgroup 〈x〉 of M. But this is not possible because
then x is an element of order p2 and Γ[zA, xA, (xp)A, (zx)A] = K4.

If N 6= 1 and P ∈ Sylp(G) then N ≤ P and hence N ∩ Z(P ) 6= 1. Without loss
of generality we may assume that z ∈ N ∩ Z(P ). This shows that |CM (z)| is divisible
by 2 · 32 · 7 · |N | . As M/N cannot have a proper subgroup of index less than 5 we see
that CM (z) = M and hence N = Z(M). As M ′N = M we have either N ∩M ′ = 1 or
N ≤ M ′. The first case brings us back to the situation N = 1 which was seen as leading
to a contradiction. The second case is also not possible because it implies that the Schur
multiplier of PSL(2, 8) contains a nontrivial p-subgroup, but it is known to be trivial.

So we have M/N is isomorphic to PSL(2, 5). If p 6= 2 then |N | |G/M | is odd and the
claim follows. Thus we can also assume that p = 2.

Let us now consider the A-chief factor K/S where S is the solvable radical of G.
What we have seen so far shows that K/S ∼= PSL(2, 5). G/KCG(K/S) is isomorphic to
a subgroup of Out(PSL(2, 5) ∼= Z2. To show that G/K is solvable we only need to get
that KCG(K/S)/K ∼= CG(K/S)/(K ∩CG(K/S)) = CG(K/S)/S is solvable. As for r ∈
π(K/S)\{p} = {3, 5} we know that r does not divide |S|, a Sylow r-subgroup R of K
is a Sylow r-subgroup of G and is isomorphic to a Sylow r-subgroup of K/S.Therefore
CG(K/S) ≤ CG(RS/S) ≤ SCG(R) for any r ∈ π(K/S)\{p} and hence CG(K/S) ⊆
⋃

a∈A Sza. This establishes the claim. �

3.2. SOME CRITICAL GROUPS G FOR WHICH Γ IS NOT AN F-GRAPH.

Lemma 3.5. Let G be a group having a characteristic subgroup N such that G/N ∼=
Sz(8). Then there exists no A ≤ Aut(G) such that Γ is an F-graph.

Proof. For A ≤ Aut(G) suppose that Γ is an F -graph. It is clear by Proposition 2.1
that Γ is an F -graph with a singular vertex. As G/N ∼= Sz(8) holds there exists a
2-element x of G such that α = xN is of order 4. Note that there are two conjugacy
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classes of elements of order 4 represented by α and α−1 in Sz(8) and that they cannot
fuse in Aut(Sz(8)) as |Aut(Sz(8)) : Inn(Sz(8))| = 3. Therefore there cannot exist any
a ∈ A such that xa = x−1, that is, xA 6= (x−1)A. This yields that {xA, (x−1)A, (x2)A}
forms a triangle and hence must contain the singular vertex. By (b) of Proposition
3.3 we know that the singular vertex is contained in N. This contradicts the fact that
xA ∪ (x−1) ∪ (x2)A ⊆ G \N and completes the proof. �

Lemma 3.6. There exists no A ≤ Aut(SL(2, 9)) such that Γ(SL(2, 9), A) is an F-graph.

Proof. Let G = SL(2, 9) and suppose that Γ is an F -graph for some A ≤ Aut(G).
Let T ∈ Syl3(G). Then T is elementary abelian of order 9, CG(T ) = T × Z(G) and
NG(T )/CG(T ) is cyclic of order 4. Hence there are two conjugacy classes of elements
of order 3 in G. Now Aut(G) = Inn(G) 〈γ〉 where γ is the automorphism of SL(2, 9)
arising from the automorphism x 7→ x3 of the field GF (9). Since γ fixes a subgroup of
G which is isomorphic to SL(2, 3) and hence fixes an element of order 3, we see that the
two conjugacy classes of elements of order 3 do not fuse to one Aut(G)-orbit. If X and
Y are representatives of different A-orbits of elements of order 3 lying in the same Sylow
3-subgroup and Z is the involution in the center of G we see that the induced graph on
the set of A-orbits represented by X,Y,XZ, Y Z, Z is a clique which shows that Γ is not
an F -graph. This contradiction completes the proof. �

Lemma 3.7. There exists no A ≤ Aut(SL(2, 7)) such that Γ(SL(2, 7), A) is an F-graph.

Proof. Let G = SL(2, 7) and suppose that Γ is an F -graph for some A ≤ Aut(G). A
Sylow 2-subgroup S of G is generalized quaternion of order 16 and contains a unique
cyclic subgroup T = 〈t〉 of order 8. Notice that any two elements of order 8 in T are
conjugate to each other in H = Aut(G) if and only if they are conjugate by an element in
NH(T ) = SCH(T ). It follows that the induced graph on the set of A-orbits represented
by t, t2, t3, t4 is K4, which is impossible. This proves the claim. �

3.3. THE CASE WHERE Op(G) 6= 1.

Proposition 3.8. If Op(G) 6= 1 then z ∈ Op(G).

Proof. Suppose that Op(G) 6= 1 and z /∈ Op(G). Set G = G/Op(G). We observe by
Proposition 3.2 (c) that CG(Op(G)) ≤ Op(G).

Let M = M/Op(G) be a minimal A-invariant normal subgroup of G. Assume first
that M ≤ Op,p′(G). As z /∈ M the group M is a Frobenius group with kernel Op(G)

by Proposition 3.2 (c). It follows that M is elementary abelian and hence is of order
r for some prime r 6= p. Let R be a Frobenius complement of Op(G) in M. Then
G = Op(G)NG(R). Note that an A-conjugate of z centralizes R by Proposition 3.2 (g).
It follows by Proposition 3.2 (c) that CG(R) = RS where S is a nontrivial p-group. Then
Op(Op(G)CG(R)) = Op(Op(G)(R×S)) = Op(G)S which leads to the contradiction that

S = 1. Thus M is not a p′-group. On the other hand M is not a p-group and hence is a
direct product of isomorphic nonabelian simple groups. As in the proof of Proposition
3.3 (a) we conclude that M is a nonabelian simple group. Then z /∈ M by Proposition
3.3 (b) and hence M is a nonsolvable Eppo-group by Proposition 3.2 (d). As M has a
nontrivial normal p-subgroup, Theorem 3.1 implies that p = 2 and M is isomorphic to
either PSL(2, q) for q ∈ {4, 8} or Sz(8) or Sz(32).
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Notice that the outer automorphism groups of PSL(2, 8), Sz(8) and Sz(32) are of odd
order. Therefore z induces an inner automorphism on M in each of these cases, that is,
there exists x ∈ M with [M,xz] ≤ Op(G). By Proposition 3.2 (c) it holds that xz ∈ zA.
On the other hand, by a similar argument as above, one can see that Op(G) 〈xz〉 is a
normal p-subgroup of G. Then xz ∈ zA ∩ Op(G) which is not the case. So we are left

with the case M ∼= PSL(2, 4) ∼= A5 whence G ∼= S5 which is also impossible since no
element of order 5 is centralized by an involution in S5. This completes the proof. �

In this section we study the case whereOp(G) 6= 1 by examining the subcasesOp(G) 6=
F (G) and Op(G) = F (G) separately. The next result provides a precise description of
the structure of G when Op(G) and Op′(F (G)) are both nontrivial.

Proposition 3.9. If 1 6= Op(G) 6= F (G) then F (G) = P × Q where P = Op(G) is
an elementary abelian p-group, Q = Op′(F (G)) is a Sylow q-subgroup of G for another
prime q which is elementary abelian, G/P is a Frobenius group with kernel F (G)/P and
complement either of prime order or a p-group which has a unique subgroup of order p.
Furthermore both P \ {1} and Q \ {1} are A-orbits.

Proof. By hypothesis Q 6= 1. Since Q is an A-invariant, normal and nilpotent subgroup
it follows by (c), (g) and (h) of Proposition 3.2 that Q is an elementary abelian q-group
for some prime q and is a Sylow q-subgroup of G. Thus we have F (G) = Q × P. Note
that Γ 6= C3 and hence F (G) 6= G. We observe that zA ⊂ P by Proposition 3.8.
Then CF (G)/P (xP ) = 1 for any x ∈ G \ F (G) by Proposition 3.2 (c), that is, G/P
is a Frobenius group with kernel F (G)/P . This forces that |π(G/F (G))| = 1, and if
π(G/F (G)) 6= {p} then G/F (G) is cyclic of prime order as claimed. �

Example 3.10. Let G = Q ⋊ T where Q = 〈σ〉 is of order 3 and T = 〈τ〉 is of order
4 and στ = σ−1. Then F (G) = P ×Q where P =

〈

τ2
〉

, and G/O2(G) is the Frobenius
group of order 6. There exists an automorphism α of G such that α fixes σ and inverts
τ. Let t denote the inner automorphism of G induced by τ and A = 〈t, α〉. Then Γ(G,A)
is an F -graph with 5 vertices, one triangle Γ[(τ2)A, σA, (τ2σ)A] and two P2’s, namely
Γ[τA, (τ2)A] and Γ[(τ2)A, (τσ)A].

The rest of this subsection is devoted to the case where 1 6= Op(G) = F (G). First we
handle the subcase where CG(F (G)) ≤ F (G).

Proposition 3.11. Suppose that 1 6= Op(G) = F (G) and that CG(F (G)) ≤ F (G) holds.

Set G = G/F (G). Then one of the following holds.

(a) G has a normal subgroup M of prime order which is complemented in G by a
p-group of order dividing p and acting Frobeniusly on it.

(b) G ∼= SL(2, 4), p = 2, Z(G) = zA ∪ {1}, 1 6= F (G)/Z(G) is a direct sum of
natural irreducible modules of G. Furthermore G does not split over Z(G).

(c) G ∼= SL(2, 4), p = 5, F (G) is elementary abelian, F (G) \ {1} is the union of
two A-orbits, all p-elements in G \F (G) lie in the same A-orbit, zA ∩Z(S) = φ
for any S ∈ Sylp(G), and A/CA(G) is isomorphic to S4 or S5.

Proof. Let P = F (G). By Proposition 3.8 we know that z ∈ P and G is an Eppo-group.



COMMUTING GRAPH OF A GROUP ACTION WITH FEW EDGES 11

Step 1. If G is solvable then (a) holds.

Proof. Suppose that G is solvable. Then G, being a solvable Eppo-group, is either a
q-group for some prime q 6= p or is a Frobenius or a 2-Frobenius group with

∣

∣π(G)
∣

∣ = 2.

Let M be a minimal normal A-invariant subgroup of G. It is an elementary abelian
q-group for some prime q 6= p and is a Sylow q-subgroup of G by Proposition 3.2 (h).
This shows that G cannot be 2-Frobenius with

∣

∣π(G)
∣

∣ = 2 and hence we have either G

is a q-group or G is a Frobenius group with kernel M whose complement is an r-group
for some prime r. If r 6= p then |G/M | = r by Proposition 3.2 (g). If r = p then G/M is
isomorphic to a p-group which has a unique subgroup of order p. For any Q ∈ Sylq(G)
and R ∈ Sylr(NG(Q)) we have M = PQ and G = MR.

Suppose that either Q is noncyclic or r 6= p. Then N = 〈CN (x) : 1 6= x ∈ Q〉 or
C[N,Q](R) 6= 1 for any QR-invariant section N of P. This shows that Φ(P ) = 1 because
otherwise both Φ(P ) and P \ Φ(P ) contain A-conjugates of z which is impossible. So
P is an elementary abelian p-group. Let P = P1 ⊕ P2 ⊕ · · · ⊕ Pk be the decomposition
of P into the sum of homogeneous Q-components. For any x = x1 + · · ·+ xk ∈ P with
xi ∈ Pi, i = 1, 2, . . . , k, we define the weight of x as |{i : xi 6= 1}|. As A acts on the set
{P1, . . . , Pk} we see that A stabilizes the sets of elements of P of the same weight. There-
fore vA1 , (v1 + v2)

A, (v1 + v2 + v3)
A where 1 6= vi ∈ Pi for i = 1, 2, . . . , k, are different A-

orbits. If Q is noncyclic then CQ(Pi) is nontrivial for each i = 1, 2, . . . , k. It follows that
k = 1 because otherwise zA = vA1 6= (v1 + v2)

A = zA where 1 6= vi ∈ CQ(Pi), i = 1, 2.
Then P1 = P and CQ(P ) 6= 1 which is not possible. Thus Q is cyclic. Clearly CG(z)
has order divisible by q and r if r 6= p and hence CG(z) = G. Now zA ⊂ Z(G) < P as
CG(P ) ≤ P. But then z /∈ N = [P,Q] 6= 1. As QR is a Frobenius group we obtain that
CN (R) 6= 1. This yields a contradiction if r 6= p because it implies that N contains an
A-conjugate of z which is not possible. Thus r = p. Since Q is cyclic we see that R
is a cyclic p-group. If possible, let x be a p-element such that p2 divides the order of
xP . If xA, (xp)A, (x−1)A are pairwise different A-orbits then they are adjacent to each
other and hence one of them must be zA which is not possible. So there must exist an
element a ∈ A such that xa = x−1. But then the subgroup of the semidirect product
GA generated by x and a must induce a group L of automorphisms on the cyclic section
M which must be isomorphic to a cyclic group of order dividing q− 1. Of course this is
not possible as L is not abelian. Therefore |G : M | divides p.

Step 2. If G is nonsolvable we have O2(G) = 1 and hence G is either a simple
Eppo-group or isomorphic to M10.

Proof. If G is nonsolvable the assumption O2(G) 6= 1 leads to p 6= 2 as P = Op(G).
Therefore a Sylow 2-subgroup of G is of exponent 2 and hence is elementary abelian.
This implies that a Sylow 2-subgroup of G/O2(G) acts trivially on O2(G) which is not
possible. Then O2(G) = 1 and hence G is either a simple Eppo-group or isomorphic to
M10.

Step 3. If G is nonsolvable and CG(z) contains a Sylow p-subgroup of G then (b)
holds.
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Proof. We shall first observe that z ∈ Z(G) under the assumption that CG(z)
contains a Sylow p-subgroup of G: For any prime q ∈ π(G) \ {p} ⊂ π(G), a Sylow
q-subgroup of G is a group of exponent q which is isomorphic to a Sylow q-subgroup of
G where q divides |CG(z)|.

Assume now that the Sylow 2-subgroups of G are not elementary abelian. Then p = 2
and by Theorem 3.1, the group G is isomorphic to one of the following groups:

PSL(2, 7), PSL(2, 9), PSL(2, 17), PSL(3, 4), Sz(8), Sz(32),M10

We can eliminate the groups PSL(2, 17) and Sz(32) from this list because they contain
cyclic groups of orders 9 and 25, respectively. Among the remaining groups, PSL(2, 9),
M10 and PSL(3, 4) have elementary abelian Sylow 3-subgroups of order 9 and cyclic
Sylow subgroups for primes different from 2 and 3. So |G : CG(z)| divides 3 and
hence is 1. The others, namely PSL(2, 7) and Sz(8), have cyclic Sylow subgroups for
odd primes. Therefore G = CG(z) in case where the Sylow 2-subgroups of G are not
elementary abelian.

Assume next that the Sylow 2-subgroups of G are abelian. Then G ∼= PSL(2, 5) by
Proposition 3.4. We get [G : CG(z)] ≤ 4 and hence z ∈ Z(G) establishing the first claim.

As z ∈ Z(G), we have
〈

zA
〉

≤ Z(G) = zA ∪ {1}. In this case Z(G) is properly
contained in P since CG(P ) ≤ P . Hence, by Proposition 3.2 (e), G/Z(G) is a nonsolvable
Eppo-group with nontrivial normal subgroup P/Z(G). In particular p = 2 and G is
isomorphic to one of the groups SL(2, 4), Sz(8), SL(2, 8), Sz(32). The last two can be
eliminated from this list because they contain elements of orders 9 and 25 respectively.
Sz(8) cannot also occur by Lemma 3.5.

To complete the proof of Step 3 it remains only to show that G does not split
over Z(G). Assume the contrary, that is, assume that G = H × Z(G) for some sub-
group H which is isomorphic to G/Z(G). Since G/Z(G) is a perfect group we see that
H = H ′ = G′ is A-invariant. As H contains an element h of order 4, the induced graph
on the set of A-orbits represented by h, h2, hz, h2z is K4. This contradiction completes
the proof.

Step 4. If G is nonsolvable and CG(z) does not contain a Sylow p-subgroup of G,
then (c) holds.

Proof. Let N be an A-invariant minimal normal subgroup of G contained in P .
Clearly N ≤ Z(P ). Let S ∈ Sylp(G) and 1 6= x ∈ N ∩ Z(S). Then we have xA 6= zA.
Assume that A has k orbits in N \ {1}. Note that N < S because otherwise z ∈ Z(S).
Then for any y ∈ S \N the orbit yA is adjacent to xA and is different from the vertices
contained in the set N. As deg(xA) ≤ 2 we see that k ≤ 2. If k = 1, then zA∩N = ∅ and
hence N < P as z ∈ P . On the other hand, G acts on N in such a way that every p′-
element of G is fixed point free onN . Then E = N⋊G is a nonsolvable Eppo-group with
nontrivial normal subgroup N . We see by Theorem 3.1 that p = 2. As G is nonsolvable,
|G| is even and hence P < S. Again the fact that deg(xA) ≤ 2 yields P \ N = zA and
S \P ⊂ yA for any y ∈ S \P. This implies in particular that the exponent of S of G must
be 2 and hence S is abelian. Thus we have either G ∼= PSL(2, 5) or G ∼= PSL(2, 8).
The latter cannot occur since PSL(2, 8) contains elements of order 9 and p = 2. On the
other hand as P \N = zA we see that exp(P ) = 2 which implies that P ≤ CG(z). Hence
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|G : CG(z)| ≤ 4, as 3 and 5 have to divide |CG(z)|. But the simple group G cannot have
a proper subgroup of index less than 5 and so z ∈ Z(G) in case where k = 1. Therefore
we must have k = 2, that is, N \ {1} is the union of two A-orbits.

If N < P then S = P since deg(xA) ≤ 2. This means p does not divide
∣

∣G
∣

∣

which shows in particular that p is odd. Hence a Sylow 2-subgroup of G is noncyclic,
elementary abelian. If T ∈ Syl2(G) then we have P/N =

〈

CP/N (x) : 1 6= x ∈ T
〉

where

N = 〈CN (x) : 1 6= x ∈ T 〉 which implies that (P \N)∩zA 6= ∅ 6= N∩zA, a contradiction.
Thus P = N and hence P is abelian. As z /∈ Z(S), we see that P < S. We also clearly
have P \ {1} = xA ∪ zA for some x ∈ P ∩ Z(S).

If Sylow r-subgroups of G are not of exponent r then p = r and S \ P intersects at
least two A-orbits, corresponding to elements of order p and p2 nontrivially, which is
not the case as deg(xA) ≤ 2. So every Sylow subgroup of G is of prime exponent, in
particular Sylow 2-subgroups of G are elementary abelian and hence G is isomorphic to
either PSL(2, 5) or PSL(2, 8). The latter case cannot occur because a Sylow 3-subgroup
of PSL(2, 8) is cyclic of order 9. If p = 2 then 3 and 5 divide the order of CG(z) and
hence |G : CG(z)| divides 4 which is impossible since PSL(2, 5) has no proper subgroup
of index less than 5. Therefore p is odd, G ∼= PSL(2, 5), and |G : CG(z)| divides 2p and
is divisible by p.

Let yP be a nonidentity element in G where y is a p-element in G \ P, and let
S1 ∈ Sylp(G) with y ∈ S1. Then clearly P E S1 and yA is adjacent to vA for any
v ∈ Z(S1) ∩ P. Recall that P \ {1} = xA ∪ zA for some x ∈ P ∩ Z(S). As CG(z) does
not contain a Sylow p-subgroup of G we have vA = xA. Since deg(xA) = 2 it holds that
all the p-elements in G \ P lie in the same A-orbit, in particular all the p-elements in
G \ P are of the same order.

Let T ∈ Syl2(G). Clearly T is elementary abelian of order 4 as p is odd and we have

[P, T ] = P1 = CP1
(t1)⊕ CP1

(t2)⊕ CP1
(t3)

where T = {1, t1, t2, t3} = 〈t1, t2〉. Notice that CP1
(t1) is T -invariant, and t2 acts fixed

point freely on CP1
(t1) whence t2 inverts elements of CP1

(t1). Since nontrivial elements
of CP1

(t1) are conjugate to z we see that NG(〈z〉) contains CG(z) properly . So we have
[G : NG(〈z〉)] = p. It follows that p = 5 because G cannot have a subgroup of index less
than 5.

Clearly A normalizes F (G) and induces automorphisms on G. Let A1 = CA(G). Then
A = A/A1 ≤ Aut(G) ∼= S5. We see that the involutions of T must lie in the same A-orbit
and for that purpose it is sufficient and necessary that there exists an element in A/A1

that leaves T invariant and acts on it as an automorphism of order 3. Observe that
the normalizer of a Sylow 2-subgroup of A5 in S5 is isomorphic to S4. So the number
of Sylow 3-subgroups of A ≤ S5 is either 1 or 4 or 10. The first cannot occur since a
Sylow 3-subgroup of S5 normalizes only 2 Sylow 2-subgroups and acts transitively on
the remaining 3 Sylow 2-subgroups. On the other hand we know that A is not contained
in Inn(G) ∼= A5, because if g is an element of order a power of 5 such that g an element
of order 5 of G then g and g2 are not conjugate in Inn(G) and hence gA and (g2)A are
two adjacent, different vertices, which is impossible. Therefore A is isomorphic to S4 or
S5 establishing the claim. �

Remark 3.12. It is very desirable to pin down the structure of F (G) in part (b) of
the above theorem and decide whether this case can really occur. The same question
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about the possible nonoccurence exists also in part (c) in the light of our knowledge of
irreducible S5-modules over GF (5). These contain more than two S5-orbits of nontrivial
elements. On the other hand F (G) is a minimal normal subgroup of GA and hence is a
homogeneous G-module and also a homogeneous CA(G)-module.

.

Proposition 3.13. If 1 6= Op(G) = F (G) and CG(F (G)) � F (G) then either G is
quasisimple and isomorphic to one of SL(2, 5), 2PSL(3, 4), 22PSL(3, 4) or G = Op(G)×
E(G) where Op(G) =

〈

zA
〉

and E(G) ∼= PSL(2, 5).

Proof. The generalized Fitting subgroup F ∗(G) is of the form F ∗(G) = F (G)E(G)
where E(G) is the layer of G, that is the subgroup generated by components, namely,
subnormal quasisimple subgroups. As CG(F (G)) 6≤ F (G) we see that E(G) 6= 1. Also
note that E(G) must be quasisimple since different components of G centralize each
other. Clearly Z(E(G)) ⊆ zA ∪ {1} and hence

Z(E(G)) = 1 or Z(E(G)) ⊇ zA ∪ {1} ⊇ CG(E(G)) ≥ F (G).

This observation shows that one of the following holds:

• E(G) is a simple Eppo-group and F ∗(G) = 〈zA〉 × E(G),
• F ∗(G) = E(G) is quasisimple with nontrivial center Z(E(G)) = 〈zA〉 and
E(G)/Z(E(G)) is a simple Eppo-group.

In any case F ∗(G)/Z(F ∗(G)) is isomorphic to one of the following groups:

PSL(2, q) for q ∈ {5, 7, 8, 9, 17}, PSL(3, 4), Sz(8), Sz(32).

In the case Z(E(G)) = 1 every element of the simple group E(G) must be of prime
order, in particular E(G) must have elementary abelian Sylow 2-subgroups. The only
simple Eppo-group satisfying these conditions is PSL(2, 5) whence we have F ∗(G) =
〈zA〉 × PSL(2, 5).

Suppose now that E(G) is quasisimple with nontrivial center and look at the list
of all possible groups for E(G)/Z(E(G)). The groups PSL(2, 8), Sz(32) both have
trivial Schur multipliers. Since the Schur multiplier of PSL(2, 17) is of order 2 we would
get p = 2 in this case and this would lead to a contradiction as PSL(2, 17) contains
an element of order 9. Thus F ∗(G)/Z(F ∗(G)) is isomorphic to one of the following
groups: PSL(2, 5), PSL(2, 7), PSL(2, 9), PSL(3, 4), Sz(8). Notice that the Schur
multiplier of PSL(2, 9) is of order 6, but p 6= 3 because otherwise a Sylow 2-subgroup
of PSL(2, 9) must be elementary abelian which is not the case. Therefore in the first
three cases we have F ∗(G) is isomorphic to one of SL(2, 5), SL(2, 7), SL(2, 9). The
Schur multiplier of PSL(3, 4) is isomorphic to Z4 ×Z12 so that Z(F ∗(G)) is isomorphic
to one of the groups Z2, Z2 × Z2, Z3. Again the last one is not possible as a Sylow
2-subgroup of PSL(3, 4) is not of exponent 2. Essentially there exist up to isomorphism
one quasisimple group K1 such that Z(K1) ∼= Z2 and K1/Z(K1) ∼= PSL(3, 4) and one
quasimple group K2 such that Z(K2) ∼= Z2×Z2 and K2/Z(K2) ∼= PSL(3, 4) possessing
an automorphism acting transitively on the set of the involutions in the center. Similarly
the Schur multiplier of Sz(8) is elementary abelian of order 4 and the full covering group
of Sz(8) has an automorphism of order 3 which acts transitively on the set of involutions
of the center of this covering group. So there exist unique quasisimple groups L1 and
L2 with Z(L1) ∼= Z2 and Z(L2) ∼= Z2 × Z2 and Li/Z(Li) ∼= Sz(8) for i = 1, 2.
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In both cases F (G) = 〈zA〉 and hence G/F (G) is a nonsolvable Eppo-group having
a simple normal subgroup F ∗(G)/F (G). Appealing to the list of such Eppo-groups
we obtain that G = F ∗(G) since the only nonsimple Eppo-group M10 cannot occur
as G/F (G) because the covering group 2PSL(2, 9) cannot be extended to M10 whose
Schur multiplier is of order 3. By the Lemmas of subsection 3.2 we can conclude that
G/Z(G) cannot be isomorphic to any of PSL(2, 7), PSL(2, 9), Sz(8). As a result G is
isomorphic to one of

SL(2, 5), 2PSL(3, 4), 22PSL(3, 4)

establishing the claim. �

Example 3.14. Let G = SL(2, 5). Then Aut(G) has 6 orbits on G \ {1} of lengths
1, 20, 20, 30, 24, 24, represented by elements of orders 2, 3, 6, 4, 5, 10 respectively. One
can easily check that Γ(G,Aut(G)) is an F -graph consisting of 2 triangles and a tail P2

joined at the singular vertex corresponding to the central element. The unique vertex
with degree 1 corresponds to the orbit consisting of the elements of order 4.

Example 3.15. Let G = Z × H where Z is an elementary abelian p-group for some
prime p and H = A5

∼= PSL(2, 5). Take further A ≤ Aut(G) given as A = U1 × U2

where U1 is cyclic of order |Z|− 1 and acts Frobeniusly on Z fixing H elementwise, and
U2 = S5 fixes Z elementwise and acts as Aut(H) on H. Then Γ = Γ(G,A) is a friendship
graph with 3 triangles.

Let B = U1 × U3 with U3 = NU2
(T ) for T ∈ Syl2(U2

′) where U3 is considered as the
subgroup of S5 which stabilizes the point 5 in the natural permutation representation
of S5 on the set {1, 2, 3, 4, 5}. Then U3

∼= S4 and the U3-orbits on H = A5 can be
represented by the elements

(1, 2)(3, 4), (1, 2, 3), (1, 2, 3, 4, 5), (1, 2)(3, 5), (1, 2, 5)

are respectively of lengths 3, 8, 24, 12, 12. So Γ(H,U3) = Γ(A5, S4) has 5 vertices and no
edges and that Γ(G,B) is a friendship graph with 5 triangles.

3.4. THE CASE WHERE Op(G) = 1.

Proposition 3.16. Suppose that Op(G) = 1. Then p = 2 and G = F (G)S where
S ∈ Syl2(G) and F (G) is elementary abelian. Moreover one of the following holds
where H = GA and H = H/CH(F (G)) :

(i) S ∼= D8,
∣

∣H/G
∣

∣ = q − 1 and |F (G)| = q2 where q ∈ {3, 7}.
(ii) S ∼= Q8 ∗ D8, the extraspecial group of order 32 with 20 elements of order 4,

|F (G)| = 34, and H/G is a Frobenius group of order 10 or 20.

Proof. For the sake of easy understanding we shall divide the rest of the proof into
smaller steps.

Step 1. G is a {p, q}-group where F (G) is a Sylow q-subgroup of G which is elemen-
tary abelian, self-centralizing and |Z(G/F (G))| = p. Furthermore nontrivial elements
of F (G) constitute an A-orbit.

Proof. Let M be an A-invariant minimal normal subgroup of G. As Op(G) = 1 we

see that CG(M) = 1 or CG(M) = Ṁ. In the first case M is nonsolvable. Then M is
nonabelian simple and hence zA ∩M = ∅ by Proposition 3.3 (a)-(b). Now Proposition
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3.2 (d) implies that M is a simple Eppo-group and G is isomorphic to a subgroup of
Aut(M) containing M . Clearly z induces by conjugation an automorphism ζ on M .
Note that ζ is an outer automorphism because otherwise there would exist x ∈ M such
that xz ∈ CG(M) = 1. Hence p divides |Out(M)| . If p is odd then a Sylow 2-subgroup
of M is abelian by Proposition 3.2 (g). Now appealing to Propositio 3.4 we observe that
M is isomorphic to one of PSL(2, 5). But |Out(PSL(2, 5)| = 2. This shows that p = 2.

Then all Sylow q-subgroups of M for odd primes q are of exponent q by Proposition
3.2 (g). We observe by Theorem 3.1 that M is isomorphic to one of the following groups:

PSL(2, 5), PSL(2, 7), PSL(2, 9), PSL(3, 4)

because PSL(2, 8) and PSL(2, 17) do not satisfy the exponent condition, and both
|Out(Sz(8))| and |Out(Sz(32))| are odd. Notice that in all these remaining cases there
exists a prime q 6= p such that q does not divide |CM (ζ)| which is impossible by (g) of
Proposition 3.2. Therefore M must be an elementary abelian q -group for some prime
q 6= p. We have M ∈ Sylq(G) and M \ {1} is an A-orbit by (g) and (h) of Proposition
3.2. Clearly it also holds that CG(M) = M .

We know by part (k) of Proposition 3.2 that zA∩Z(S) = ∅ for any Sylow p-subgroup
S of G. Let S ∈ Sylp(G). If 1 6= u ∈ Z(S) then CG(u) = S as u /∈ zA, in particular u
acts fixed point freely on Op′(G) for any 1 6= u ∈ Z(S) . This shows first that Op′ (G)
is nilpotent and hence Op′(G) = M and second that Z(P ) is cyclic. Suppose that there
exists an element x in Z(S) of order p2. Then for any y ∈ S \Z(S) we see that yA = zA

as Γ[xA, (xp)A, yA] = C3. Therefore every element in S \ Z(S) is of order p. But this is
not possible since xy ∈ S \ Z(S) and is of order p2. Thus we get |Z(S)| = p.

Let L/M be an A-invariant minimal normal subgroup of G/M. Suppose that L/M
is nonsolvable. Then by parts (a) and (c) of Proposition 3.3 L/M is nonabelian simple
and zA ∩ L ⊂ M and hence zA ∩ L = ∅. It follows by (b) of Proposition 3.3 that L is
a nonsolvable Eppo-group which has a nontrivial normal subgroup M . Appealing to
Theorem 3.1 we find M = O2(L). Thus q = 2 6= p which yields that a Sylow 2-subgroup
of L is elementary abelian. Then we see that the kernel of L/M on O2(L) = M = F (G)
contains a Sylow 2-subgroup and hence is nontrivial. This contradiction shows that
L/M is solvable. As M = Op′(G) we see that L/M is an elementary abelian p-group.
Then U = S ∩ L is a Sylow p-subgroup of L and G = MNG(U). If possible choose
r ∈ π(NG(U)) \ {p} and let R be a subgroup of NG(U)) of order r. Since Z(S) ≤ U
we see by Step 2 that CG(U) is a p-group. More precisely Z(S) = [Z(S), R] ≤ [U,R]
is nontrivial and R acts Frobeniusly on [Z(U), R]M as r 6= q because M is a Sylow
q-subgroup of G. This contradiction shows that NG(U) = S is a p-group and G = MS
and L = MZ(S).

Step 2. For any S ∈ Sylp(G) we have z ∈ X = {x ∈ S \ Z(S) : xp = 1} is contained
in an A-orbit while S \ (Z(S) ∪ X) is contained in another A-orbit, and one of the
following holds :

(a) S is extraspecial,
(b) Z2(S) = S′ = Φ(S) is an extraspecial group of exponent p, p is odd.

Proof. Let S ∈ Sylp(G). By Step 1 we know that U = Z(S) is of order p and U 6= S.
The number k of A-orbits the union of which covers S \ Z(S) is at most 2 because
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otherwise there exist xi in S \ Z(S) such that xA
i , i = 1, 2, 3 and uA for any 1 6= u ∈ U

are pairwise distinct. As uA is adjacent to xA
i , i = 1, 2, 3 we see that uA = zA which is

not possible. Suppose that k = 2. There exists x ∈ S \ U such that x /∈ zA. Assume
that x is also of order p. As U acts fixed point freely on M we see that

M = 〈CM (y) : y ∈ 〈x〉U \ {1}〉 = 〈CM (t) : t ∈ Ux〉 .

If x ∈ Z2(S) then 〈x〉U E S and hence xS = xU . Thus we obtain that CM (x) 6= 1 and
hence x ∈ zA. If x /∈ Z2(S) then as k = 2 we see that S\Z2(S) ⊂ xA and Z2(S)\U ⊂ zA.
But then there exists u ∈ U such that t = xu centralizes some nontrivial element in M
implying the contradiction that t ∈ (S \Z2(S))∩ zA. This shows that in case k = 2 any
element in (S \ U) \ zA is of order p2 and hence any two elements of S \ Z(S) of the
same order are lying in the same A-orbit. If k = 1 then S \ Z(S) ⊆ zA. In any case we
have {x ∈ S \ Z(S) : xp = 1} ⊆ zA and S \ (Z(S) ∪X) is contained in another A-orbit
which consists of elements of order p2 if it is nonempty.

Suppose that there exists an element y ∈ S of order p2 such that yp /∈ U = 〈u〉.
Then yp = v ∈ zA. The abelian group 〈u, y〉 acts on the nontrivial group CM (v). If x
∈ 〈u, y〉 \ 〈v〉 has some nontrivial fixed point in CM (v) then it must be A-conjugate to
z and hence is contained in Ω1(〈u, y〉) ≤ 〈u, v〉. But clearly any element of 〈u, v〉 \ 〈v〉
acts fixed poiny freely on CM (v). It follows that CM (v) 〈u, y〉 / 〈v〉 is a Frobenius group
which is not possible as 〈u, y〉 / 〈v〉 is noncyclic of order p2. This contradiction shows that
yp ∈ 〈u〉, that is ℧1(S) = U. So independent of the exponent of S we have ℧1(S) ≤ U.

If S′ = U then we have Φ(S) = S′℧1(S) = U = Z(S) and hence S is extraspecial
and clearly S = Z2(S).

If U < S′ then S′ \ U and S \ S′ are lying in different A-orbits. So there are no
A-invariant subgroups Y such that MU < Y < MS = G except MS′. In particular
we have Z2(S) = S′ or Z2(S) = S. As S/U is of exponent p and Z2(S)

′ ≤ U < S′

we see that Z2(S) = S′ = Φ(S). Similarly, as MCS(S
′) is A-invariant and contains

MU we see that either CS(S
′) ≤ S′ or S′ < CS(S

′)S′ and hence CS(S
′)S′ = S. The

second implies CS(S
′) = S and hence the contradiction S′ ≤ Z(S) = U. Thus we have

CS(S
′) ≤ S′. Suppose next that zA∩S′ = ∅. Then MS′ is a Frobenius group and hence

S′ is isomorphic to either Zp2 or Q8. So the unique subgroup of order p in S′ must be

A-conjugate to 〈z〉 which is not possible. This shows that S′ \U ⊂ zA and hence S \S′

is the set of elements of order p2 in S.
Furthermore since exp(S′) = p we have that S′ is either extraspecial of exponent p

or is elementary abelian. Now M is an irreducible GA-module and MS′ is a normal
subgroup of GA. Let M = W1⊕ · · ·⊕Wm be the Wedderburn decomposition of M with
respect to MS′. As A acts on the set {W1, . . . ,Wm} of MS′-Wedderburn components,
it leaves W1 ∪ · · · ∪Wm invariant. Since M \ {1} is an A-orbit by Step 1 we must have
W1 ∪ · · · ∪ Wm = M and this is possible only if m = 1. Thus M is a homogeneous
MS′-module and hence a homogeneous MS′/M -module. If S′ is abelian we obtain that
S′/CS′(M) is cyclic of order p which is impossible as CS′(M) = 1 and U < S′. So S′ is
extraspecial of exponent p which yields in particular that p is odd.

Step 3. The end of the proof.

Proof. Note that S ∼= G E H . Then H is isomorphic to a subgroup of GL(m, q) =
Aut(M), which acts transitively on the set of all nonidentity elements of M and has a
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normal subgroup G which is isomorphic to S. Appealing to [7] if A is assumed to be
solvable, or to [8] which uses CFSG we conclude that one of the following holds:

(1) SL(k, qn) ≤ H ≤ ΓL(k, qn),
(2) Sp(k, qn) E H , where the parameters n and k are related to the dimension m

by m = nk,
(3) There exists a normal subgroup N in H which is an extraspecial 2-group of

order 2m+1 such that CH(N) = Z(H) and H/NZ(H) is faithfully represented

on N/Z(N) and
• either m = 2, q ∈ {3, 5, 7, 11, 23} and H/NZ(H) is isomorphic to a sub-

group of S3,
• or m = 4, q = 3 and Z5 ≤ H/N is isomorphic to a subgroup of a Frobenius

group of order 20 acting faithfully on N/Z(N).

Assume that (1) or (2) holds. Then the fact that H has a normal subgroup G
isomorphic to S bounds the parameters: k ≤ 2; and qn ∈ {2, 3} if k = 2 , because
otherwiseH does not contain a nonabelian normal p-subgroup. Suppose first that k = 1.
Then H is isomorphic to a subgroup of ΓL(1, qn). On the other hand ΓL(1, qn) = KL
where K is a normal subgroup which is isomorphic to the multiplicative group of the
field GF (qn) and L ∼= Aut(GF (qn), K E ΓL(1, qn) and K ∩ L = 1. Note that K is
cyclic of order qn − 1 and L is cyclic of order n. We deduce that G has a cyclic normal
subgroup which we denote by abuse of language by G ∩K so that G/(G ∩K) is also a
cyclic group. Since on the other hand either S is extraspecial or S′ is extraspecial we see
that S ∼= G must be an extraspecial group of order p3 containing a cyclic subgroup of
order p2 and also a subgroup of order p different from Z(G). In any case there exists an
element x ∈ G \ (G ∩K). If we consider x as an element of ΓL(1, qn) it can be given as
x = hγ where h ∈ H ∩K and 〈γ〉 is the unique subgroup in L of order p. In particular,
p divides n and γ is the automorphism of the field GF (qn) given by yγ = yq

r

where
n = pr. Using this description we want to compute CH(G) : We have

CH∩K(G) = CH∩K(x) ≤ CK(γ) ∼= GF (qr)×

and hence
∣

∣CH(G)
∣

∣ divides |L| |CK(γ)| = pr (qr − 1). Clearly Z(G) is of order p and is

contained in (G ∩K) ∩ CH∩K(x) which gives the additional information that p divides

qr − 1. H/CH(G) is isomorphic to a subgroup of Aut(G) containing

Inn(G) = GCH(G)/CH(G) ∼= G/Z(G) ∼= Zp × Zp.

We know by [10] that Aut(G)/Inn(G) is isomorphic to Z2 if G ∼= D8 and to the
Frobenius group of order p(p − 1) if p is odd. But taking the metacyclic structure
of ΓL(1, qn) into account we see that the group of automorphisms induced by H on
G modulo inner automorphisms must be abelian and must leave G ∩ K invariant and
hence

∣

∣H
∣

∣ divides 24r(qr − 1) if p = 2, and divides p3(p − 1)r(qr − 1) if p is odd as

Zp−1
∼= H/CH(Z(G)) acts transitively on Z(G) \ {1}. As M \ {1} is an H-orbit we see

that qpr − 1 divides the order of H . So we get that

q2r − 1 divides 24r(qr − 1), or p is odd and qrp − 1 divides p3(p− 1)r(qr − 1)

where p is a prime dividing qr − 1. In particular

qrp − 1 ≤ p4r(qr − 1) ≤ (qr − 1)5r < qr5r < qrp
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if p > 5 which is clearly not possible. So p ∈ {2, 3, 5}.
Let us assume that p ≥ 3 and hence n = pr ≥ 3. Then by Theorem 3.5 and Theorem

3.9 in [8] we see that if (n, q) 6= (6, 2) there exists a prime divisor s of qn − 1 which does
not divide qk − 1 for any 0 < k < n. Thus s divides (p − 1)r. If s divides p − 1 then
s = 2 and q is odd and s divides q−1 which is not possible. So s divides r and hence we
have qs ≡ q(mod s) and hence qrp ≡ q

r

s
p ≡ 1(mod s) which contradicts the definition of

s. So we are left with the case (n, q) 6= (6, 2). In this case qn − 1 = 63, p = 3 and r = 2
giving that p3(p − 1)r(qr − 1) = 3322(22 − 1) which shows that qn − 1 does not divide
p3(p − 1)r(qr − 1). So we have p = 2 and we get qr + 1 divides 24r. This yields that
r = 1 and q ∈ {3, 7}. Then H = ΓL(1, q2) and [H : G] = q − 1.

Suppose next that k = 2. Then either qn = 3 or qn = 2 and m = k. Note that
in the second case H ≤ S3 which is not possible as G is nonabelian. In the first case
SL(2, 3) = Sp(2, 3) ≤ H ≤ ΓL(2, 3) and G ≤ O2(H). The group G is an extraspecial
group of order 8 containing the involution z outside its center and hence G ∼= D8. This
forces H to be the semidihedral group of order 16 containing a subgroup isomorphic to
Q8 and acting regularly on M. So (i) holds in this case.

Now we can assume that (3) holds. We obtain immediately that p = 2, because
otherwise [G,N ] ≤ G ∩ N = 1 implying the contradiction that G ≤ CH(N) = Z(H).

Thus GN ≤ O2(H). If H/NZ(H) is not a 2-group then O2(H) ≤ NO2(Z(H)). So we
have either G ≤ NO2(Z(H)) or H = GNZ(H) and |G : G ∩NZ(H)| = 2. The second
case may occur only if m = 2.

We shall distinguish between the cases m = 2 and m = 4. If m = 4 then q =
3, Z(H) = Z(N) ∼= Z2, N = O2(H) is extraspecial of order 25 and |H/N | ∈ {5, 10, 20}.
Therefore G ≤ N . On the other hand an element of order 5 in H acts irreducibly on
N/Z(N) and normalizes G. This implies that G = N and also S ∼= G is an extraspecial
group of order 32. There are two isomorphism classes of extraspecial groups of order
32, which differ by the number of involutions they contain. And only the one which is
the central product of a dihedral group and a quaternion group and contains exactly 20
elements of order 4 admits an automorphism of order 5. This forces that S ∼= Q8 ∗D8.
As elements of the same order in S \ Z(S) are A-conjugate we see that the elements of
G of order 4 must be conjugate in H. Since an element x ∈ G of order 4 has exactly
two conjugates inside G, namely x and x−1, we see that |H : G| ∈ {10, 20}. Observe
that all maximal abelian subgroups of S are isomorphic to Z4 × Z2 and hence for any
1 6= w ∈ M we have |CS(w)| = 2 so that the subgroup GL is transitive on M \ {1}
where L ∈ Syl5(H).

If m = 2 then by [7] N ∼= Q8 and it acts irreducibly on M implying that Z(H) acts by
scalars on M. Hence Z(H) is cyclic of order dividing q− 1 and H/NZ(H) is isomorphic
to a subgroup of S3. As Z(N) ≤ Z(H) and a Sylow 2-subgroup of Z(H) is of order 2 for

q ∈ {3, 7, 11, 23} it holds that Z(H) = Z(N)×O2′(Z(H)). As Q8 ≇ G we have G � N

and therefore GN = O2(H) implying H = GNO2′(Z(H)). This gives that q = 3, and
G ≡ D8 and H = GN. So we are left with the case q = 5.

Notice that Z(H) is of order dividing 4 in this case. As 24 = |M | − 1 divides
∣

∣H
∣

∣

we see that O2(H) = NZ(H) and G ≤ NZ(H). Since G is extraspecial we get G ∼= D8

and hence NZ(H) ∼= Q8 ∗ Z4. Then an element of order 3 in H must normalize G and
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hence must act trivially on it and on NZ(H) as well. This contradiction completes the
proof. �

Example 3.17. We shall now present a slightly modified version of an example given
in [7]. Consider the subgroup of GL(4, 3) generated by the matrices

α =

[

N1 O
O N1

]

β =

[

N2 O
O N2

]

γ =

[

I2 I2
I2 −I2

]

δ =

[

O −I2
I2 O

]

where

O =

[

0 0
0 0

]

I2 =

[

1 0
0 1

]

N1 =

[

0 1
−1 0

]

N2 =

[

1 0
0 −1

]

f =









1 1 −1 −1
0 0 −1 1
0 0 −1 −1
−1 1 1 −1









g =









0 1 0 −1
0 0 1 0
0 1 0 1
1 0 0 0









.

Then we have the following relations:
α2 = γ2 = δ2 = −I4 = −β2, αβ = α−1, γδ = γ−1, [〈α, β〉 , 〈γ, δ〉] = I4, that is
〈α, β〉 ∼= D8, 〈γ, δ〉 ∼= Q8, 〈α, β, γ, δ〉 ∼= D8 ∗ Q8, the extraspecial group of order 25

with 20 elements of order 4. Furthermore we have f5 = −g4 = I4, fg = f2, αf = βγ,
βf = −αβ, γf = αβδ, δf = −γ, αg = αβγ, βg = −β, γg = −βγδ, δg = −βδ.

Set B = 〈f, g〉. Then B/Z(B) is the Frobenius group of order 20 with Z(B) =
〈−I4〉 and B acts nontrivially on S = 〈α, β, γ, δ〉 so that the kernel of the action is
Z(B) = Z(S). The subgroup SB of GL(4, 3) acts in a natural way on the vector space
of column matrices over GF (3) which we denote by M and consider it as an elementary
abelian group of order 34. Let G denote the normal subgroup MS of the semidirect
product A = MSB and consider A as a group of automorphisms of G. Observe that
if u = −I4 ∈ Z(S) and v = [1, 0, 0, 0]T ∈ CM (β), then the A-orbits in G \ {1} are
represented by v, u, β, vβ, δ which are of lengths 34 − 1, 34, 32 · 10, 32(32 − 1) · 10, 34 · 20
respectively. Now if Γ = Γ(G,A) we see that Γ[βA, vA, (vβ)A] = C3 = Γ[βA, uA, δA] and
Γ is a friendship graph with two triangles joined at the singular vertex βA.

Example 3.18. Let M be an elementary abelian group of order 32 and T be a Sylow
2-subgroup of GL(2, 3) = Aut(M). Note that T ∩ SL(2, 3) = 〈y1, y2〉 is a quaternion
group and acts Frobeniusly on M . Let z be an involution in T \SL(2, 3). Then we have
T = 〈y1, y2, z〉 and z acts on 〈y1, y2〉 such that yz1 = y−1

1 , yz2 = y1y2. Let A = MT
and G = M〈y1, z〉. Then G is a subgroup of A of index 2 on which A acts faithfully
by conjugation. If 1 6= m ∈ CM (z) then the A-orbits in G \ {1} are represented by
m, y21, y1, z, zm and are of lengths 8, 9, 18, 12, 24 respectively. It holds that Γ is an F -
graph consisting of a triangle Γ[zA,mA, (zm)A] together with a tail Γ[zA, (y21)

A.yA1 ] = P2.

4. Final Remarks

Corollary 4.1. If G is a group with |π(G)| ≥ 2 and Γ is an F-graph for some A ≤
Inn(G) then |Z(G)| = 2 and G/Z(G) ∼= S3 and A contains a Sylow 2-subgroup of
Inn(G) ∼= S3.

Proof. If Γ has no singular vertex then Proposition 2.1 shows that G is abelian of order
at least 6 which is not possible. Therefore Γ possesses a singular vertex. Let p be the
order of a representative of the singular vertex. If Op(G) = 1, it holds by Proposition
3.16 that A is not contained in Inn(G). Hence we may also assume that Op(G) 6= 1.



COMMUTING GRAPH OF A GROUP ACTION WITH FEW EDGES 21

We shall repeatedly use the fact that if Γ is an F -graph for some A ≤ Inn(G) and a
Sylow subgroup T of G for some prime different from p is abelian then NG(T ) must act
transitively on T \ {1}.

Suppose first that G is solvable. Then the Theorem 1 says that the structure of
G can be described as G = PQR where P = Op(G), Q ∈ Sylq(G) for some prime
q 6= p, PQ E G and R ∈ Sylr(NG(Q)) where r 6= q. We observe that R = 1 implies that
the elements of Z(Q) \ {1} lie in different A-orbits and hence that |Q| = 2 . Therefore
p is odd. On the other hand z ∈ P and z is A-conjugate to all the other elements
in 〈z〉 \ {1} and this conjugation must take place in the normalizer of 〈z〉. Note that
the Sylow p-subgroup of NG(〈z〉) centralizes 〈z〉 and z has to centralize an element of
order 2 and hence a Sylow 2-subgroup of G. This forces that NG(〈z〉) = CG(z) which is
impossible. Similarly we see that R/CR(Q) is of order r if it is nontrivial and if r 6= p
then r = 2 and |Q| = 3 and p ≥ 5. As 6 has to divide |CG(z)| it holds that CP (QR) 6= 1.
But CP (QR) \ {1} ⊂ zA which is not possible because any two elements of CP (QR) are
conjugate in G if and only if they are conjugate in NG(CP (QR)) = NP (CP (QR))QR
which has a center containing at least 5 elements. Therefore R is a p-group and G =
G/PQ contains only one subgroup of order p. If there exists a p-element x such that
|x| = p2 in G then it is not possible that x, x−1, xp represent different A orbits. So
we obtain that G ∼= Q8 = 〈a, b〉 . Then a, b and ab lie in different A-orbits. It follows
that p = 2 = |R/CR(Q)| and hence |Q| = 3. Notice that A has to act transitively
on Y =

⋃

X∈Sylq(G) CZ(P )(X) \ {1}. We see that Y = CZ(P )(Q) \ {1} as CZ(P )(Q) is

normalized by PQR = G. If Y 6= ∅ then Y ⊆ Z(G) as Y ∩ Z(G) 6= ∅. This yields
∣

∣CZ(P )(Q)
∣

∣ ≤ 2. If there exists an involution y in [P,Q] ∩ Z(S) where S ∈ Syl2(G) and
u ∈ S \P then y /∈ Y and hence y, yz, u, z represent different A-orbits which are pairwise
adjacent to each other. Then [P,Q] = 1 and hence P ⊆ zA ∪ {1}. As P ∩ Z(G) 6= 1
we get P = Z(G) = 〈z〉 and G/Z(G) ∼= QR/CR(Q) ∼= S3. So either G ∼= Z2 × S3 or G
has cyclic 2-subgroup of order 4 and a normal subgroup of order 3 such that Z(G) ∼= Z2

and G/Z(G) ∼= S3. Clearly a Sylow 2-subgroup of QR is contained in A. Here Γ is a
friendship graph with four or two C3 ’s, depending on whether A is a 2-group or not.

Assume next that G is nonsolvable. By the Theorem1 we see that G has a normal
subgroup such that G/N is isomorphic to PSL(2, 5) or PSL(2, 7) or PSL(3, 4). In the
last two of these groups a Sylow 2-subgroup is not abelian and so p = 2. But then in
both of these groups a Sylow 7-group S is cyclic and in both of them NG(S)/CG(S) is
not of order 6. Therefore we have G/N ∼= PSL(2, 5). If p 6= 5 then 5 does not divide
|N | and hence NG(T ) does not act transitively on T \ {1} where T ∈ Syl5(G). Then we
must have p = 5 and we are in the case Theorem1 (2)(c) or (3). In the former case A is
not contained in Inn(G) and so we have G = P × PSL(2, 5) where P =

〈

zA
〉

= Z(G)
is an elementary abelian 5-group. This contradiction completes the proof. �

Corollary 4.2. For no nonabelian group G with |π(G)| ≥ 2 the commuting graph of G
is an F-graph.

Proof. Suppose that G is a nonabelian group with |π(G)| ≥ 2. If Z(G) = 1 then the
commuting graph of G is Γ = Γ(G, 1) and by the above corollary we see that it is not an
F -graph. So Z(G) is nontrivial. The commuting graph of G is then ∆ = Γ[G \ Z(G)].
For any x ∈ G \ Z(G) the graph ∆ induces a clique on the vertex set xZ(G) and
hence |Z(G)| ≤ 3. Furthermore if a vertex in xZ(G) is adjacent to some vertex v not
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contained in xZ(G) then every element of xZ(G) is adjacent to v. This shows that
CG(x) \ Z(G) = xZ(G) for any x ∈ G \ Z(G) and since ∆ is connected we obtain
G = Z(G) ∪ xZ(G) is an abelian group which is not possible.

�

Corollary 4.3. Γ is a starlike graph that is an F-graph with no cycles if and only if
it is a star graph. If this is the case and Γ has at least 3 vertices then G is either a
special p-group or is a p-group with Ω1(Z(G)) = Z(G) < G′ = Z2(G) and G′′ = 1 and
CG(y) ∩ Z2(G) = Z(G) for any y ∈ G \ Z2(G). In both cases Z2(G) \ {1} is a union of
two A-orbits.

Proof. If Γ has no cycles, then it is a tree and so G is a p-group for some prime p by
Proposition 3.2 (f). Therefore Γ has a complete vertex and has |V |− 1 pendant vertices,
that is, all the rays of the graph are of length 1. This proves the first claim. Assume
now that G is a p-group for some prime p and has a group of automorphisms A such
that Γ is an F -graph with no cycles.

If G is abelian then Γ is a complete graph and hence has at most two vertices. So we
can assume that G is nonabelian. This implies the existence of a vertex xA ⊆ G \Z(G).
Hence Z(G) \ {1} = {v} is a vertex and any other vertex is adjacent only to v. It
follows that for any x ∈ G \ Z(G) and any y ∈ CG(x) \ Z(G) we have xA = yA, that is
CG(x) \ Z(G) is an A-orbit for any x ∈ G \ Z(G). Now G′ ≤ CG(x) ≤ Z2(G) for any
x ∈ Z2(G) \Z(G) because in this case we have CG(x) E G and G/CG(x) is isomorphic
to a subgroup of Z(G) and both CG(x) and Z2(G) are A-invariant. Furthermore as
Z(G) ∩G′ 6= 1 it holds that Z(G) ≤ G′. So have either G′ = Z(G) = Φ(G) as G/Z(G)
is of exponent p or Z(G) < G′ hence G′ = CG(x) for any x ∈ Z2(G) \ Z(G). This
implies in the second case that G′ = Z2(G) = {1} ∪ zA ∪ xA for some z ∈ Z(G) and
x ∈ G′ \ Z(G). In both cases we have G′′ = 1, Ω1(Z(G)) = Z(G) and if y ∈ G \ Z2(G)
then CG(y) ∩ Z2(G) = Z(G). �

Example 4.4. Let G = 〈a, b〉 be the extraspecial group of order 33 and exponent 3 .
Let B = 〈x, t〉 ∼= D8 acts on G as follows: x centralizes Z(G), t inverts Z(G), ax = b−1,
bx = a, at = a−1, bt = b. Let C = 〈x2, t〉. Then Γ(G,A1) = P3 where A1 = Inn(G)B
and Γ(G,A2) is a star graph with 4 vertices where A2 = Inn(G)C.

Corollary 4.5. Γ is a triangle free F-graph if and only if it is a star graph.

Proof. Suppose that Γ is an F -graph. To prove the claim, one needs only to show that
Γ has no cycles in case it has no triangles. If Γ has no singular vertex then Γ = Pn for
some n ≤ 3 by Proposition 2.1 and hence is a star graph. If |π(G)| ≥ 2 then Γ contains
certainly a triangle. Then G is a p-group and hence Γ has a complete vertex. It follows
that Γ has a triangle if it contains a cycle. �

Corollary 4.6. Suppose that A acts coprimely on the group G in such a way that Γ is
an F-graph. Then either G is a p-group for some prime p, or Γ = C3 and there are
infinitely many different examples with Γ = C3 and (|G| , |A|) = 1.

Proof. Suppose that |π(G)| ≥ 2. Assume first that Γ has an isolated vertex. Let p
be the order of a representative of a complete vertex of Γ. By the Theorem 1 we only
need to consider the case that G is solvable and Op(G) 6= 1, because otherwise 2 divides
(|G| , |A|). Thus we may assume that G/Op(G) is a Frobenius group with an elementary
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abelian kernel M/Op(G) so that A acts transitively on the set of nontrivial elements
of M/Op(G). Then |M/Op(G)| − 1 divides |A|. Every prime dividing the order of
the Frobenius complement of G/Op(G) divides also |M/Op(G)| − 1 and hence divides
(|G| , |A|). This shows that Γ has no isolated vertex. Now appealing to the Theorem1
we see that G = P ×Q where P and Q are elementary abelian p- and q-groups for two
distinct primes p and q. We also know that both |P |− 1 and |Q|− 1 divide |A| as A acts
transitively on both P \ {1} and Q \ {1}. On the other hand there exists a subgroup A
of Aut(G) given as A = A1 × A2 with |A1| = |P | − 1 and |A2| = |Q| − 1 so that A1

acts Frobeniusly on P and centralizes Q, and A2 acts Frobeniusly on Q and centralizes
P . So if the primes p and q and the positive integers n and m are chosen in such a way
that p does not divide qm − 1 and q does not divide pn − 1 then there exists a nilpotent
group G of order pnqm with elementary abelian Sylow subgroups and A ≤ Aut(G) such
that Γ = C3. �

Finally, we list some questions we would like to see them answered.

Q.1 What can be said about a p-group G admitting a group A of automorphisms
such that Γ is an F -graph?

Q.2 Do the cases (b) and (c) in the Proposition 3.11 really occur?
Q.3 Do the quasisimple groups 2PSL(3, 4) and 22PSL(3, 4) have really a group of

automorphisms A such that Γ is an F -graph?
Q.4 What can be said about the groups G such that Γ is planar for some A ≤

Aut(G)?
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