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 Abstract 

Deploying convolutional neural networks to mobile or embedded devices is often prohibited by 

limited memory and computational resources. This is particularly problematic for the most 

successful networks, which tend to be very large and require long inference times. Many 

alternative approaches have been developed for compressing neural networks based on pruning, 

regularization, quantization or distillation. In this paper, we propose the “Knowledge Distillation 

with Dynamic Pruning” (KDDP), which trains a dynamically pruned compact student network 

under the guidance of a large teacher network. In KDDP, we train the student network with 

supervision from the teacher network, while applying L1 regularization on the neuron activations 

in a fully-connected layer. Subsequently, we prune inactive neurons. Our method automatically 

determines the final size of the student model. We evaluate the compression rate and accuracy of 

the resulting networks on an image classification dataset, and compare them to results obtained 

by Knowledge Distillation (KD). Compared to KD, our method produces better accuracy and 

more compact models. 
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1. INTRODUCTION 

Deep neural networks have enabled many applications in a diverse set of domains including vision, 

language, medicine and robotics. However, these models require large amounts of processing power and 

memory, which severely limits their deployability in limited-resource computers. New possibilities would 

emerge if such models can be deployed in embedded platforms, mobile and edge devices. Therefore, 

research on “neural network compression”, that is reducing the processing and memory requirements of 

neural networks, is important. 

Early work on neural network compression aimed to make a large network smaller by removing redundant 

structures. These can be weights, neurons, blocks, etc. LeCun et al. proposed one of the pioneering network 

compression methods, the Optimal Brain Damage method [1], which was followed by many magnitude-

based network pruning methods [2, 3]. These approaches work by removing weights that are close to zero. 

To prune more structures and make the models smaller, regularization can be used to enforce sparsity. Han 

et al. proposed one of the first regularization-based model compression methods. Following this work, some 

other methods [5-7] that use regularization on different structures were also proposed. For convolutional 

networks, researchers have designed novel convolutional filters to save parameters which decrease 

redundancy [8-10]. Research on low-rank factorization methods [11-13] tries to find informative 

parameters by using matrix or tensor decomposition. Another major body of work [14-16] reduces the 

number of bits that represent each weight. 

A prominent approach to network compression is the “knowledge distillation” (KD) method [17], where a 

large, cumbersome model called the teacher guides the training of a much smaller model called the student 

(Figure 1). The student network is trained with two losses: (i) the usual cross-entropy loss coming from the 

training set, (ii) the “softened” class probabilities output by the teacher, computed via a hyper-parameter 
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called temperature. The aim of “softened” probabilities is to increase the information about the target class 

by introducing uncertainty into the probability distribution. Softened probabilities contain similarity 

information on different classes, which is absent in the one-hot labels coming from the training set. 

 

Figure 1. Illustration of the standard Knowledge Distillation method [17]. In KD, student model is trained 

with a linear combination of two losses. One loss comes from the one-hot (or hard) labels and the other 

from the “softened” labels. The architecture of the student model in KD is pre-determined and does not 

change during or after training. However, in our method, we prune fully-connected layers in the student 

network based on neuron activations to get a more compact model whose size is determined dynamically 

and automatically. 

KD based methods [18, 19] yield good performance on computer vision tasks and have had a significant 

impact on model compression. However, a major disadvantage of KD is that the user has to specify the 

student newtork architecture and this architecture do not change during or after training. While KD can 

succesfully distil the knowledge of the teacher into the student, we do not know whether the student model 

is unnecessarily large or smaller than it should be. In this paper, we address this disadvantage by 

dynamically pruning the student network based on neuron activations, to obtain a more compact student 

model. For pruning, we target the largest fully-connected layer of the student model, which typically contain 

the largest percentage of neurons in the student model. Specifically, during the KD training, we apply L1 

regularization on the activations of the neurons in a selected fully-connected layer of the student model to 

impose sparsity. Then, we calculate the average activation over training examples, of each neuron in this 

layer. We prune those neurons having an average activation below a certain threshold by directly removing 

them from the network. To the best of our knowledge, our compression technique is the first method that 

combines KD and L1 regularization in this way. We name our method as Knowledge Distillation with 

Dynamic Pruning, or KDDP for short. Since our method can only prune fully-connected layers, its typical 

targets are Multilayer Perceptrons (MLP) or CNNs with large fully-connected (fc) layers. 

We extensively analyze and compare standard training from scratch, knowledge distillation and our 

proposed method, KDDP, on the CIFAR10 dataset [20]. Experiments show that our method performs better 

than the baselines (standard training and KD), while also sigfinicantly compressing the student model. 

Furthermore, we find that setting hyper-parameters is crucial for KD based methods. Temperature, T, 
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distillation weight, α, and L1 regularization penalty should be tuned to find a good balance between the 

model size and the classification performance. In summary, when the hyper-parameters are chosen 

carefully, our method works well. 

Our contributions in this paper can be summarized as follows. 

• We propose a new dynamic compression method based on KD. It dynamically prunes inactive 

neurons in selected fully-connected layers from the student network. Unlike KD, our method does 

not require the final size of the compressed model as input; it is determined dynamically. 

• We experimentally analyze our method and compare against standard training from scractch and 

KD. We make extensive experiments on our hyper-parameters to find meaningful relations with 

the accuracy of the compressed model.  

• We test our method on the CIFAR10 dataset. We get better accuracies than both standard training 

and KD methods with much fewer parameters. 

In the rest of the paper, we first summarize the neural network model compression literature in Section 2. 

We describe our proposed method and its implementation details in Section 3. Then, we analyze the 

effectiveness of our approach with experiments performed on the CIFAR10 dataset in Section 4, and finally 

conclude in Section 5. 

2. BACKGROUND AND RELATED WORK 

Here we review the literature on model compression in deep neural networks in two main categories: (i) 

parameter pruning and sharing, (ii) knowledge distillation. We give more detailed information about the 

parameter pruning and sharing due to its direct relation to our method. 

2.1. Parameter Pruning And Sharing 

Parameter pruning attracted many researchers since the early development of neural networks due to its 

effectiveness on reducing model complexity and over-fitting. It is also shown that pruning redundant 

parameters from the network improves generalization, which is an important side-effect. 

Early works to prune parameters are Optimal Brain Damage [1] (OBD) and Optimal Brain Surgeon [2]. In 

their work, the authors remove redundant paramaters after sorting them by their saliencies. Saliency is 

measured based on the Hessian of the objective function. Recently, Srinivas and Babu also showed how 

similar neurons, which have similar weight sets, are redundant [3]. Since Hessian computation is heavy, 

they propose a more systematic way than OBD and data-free method to remove them. 

Most of the follow-up works use sparsity constraints (L0, L1-norm, etc.) in the optimization problems to 

obtain redundancy. Researchers use these constraints on different elements (e.g. weights, blocks, etc.). Han 

et al. are one of the first to propose a regularization-based method on model compression [4]. They apply 

L2 regularization during the training phase in order to have near zero-valued parameters. Then they prune 

all lowweight connections from the network. The deep compression method [15] uses the same procedure 

as [4] for removing redundant connections. The authors also add quantization and Huffman coding on top 

of the pruned network to have a more compact one. 

Recently, redundancy in convolutional networks also has been explored. Lebedev and Lempitsky [21] apply 

the idea of Optimal Brain Damage [1] to convolutional filters. They remove entries of L2,1-norm 

regularization applied convolution filters, which are below a threshold, in a group-wise fashion. Similarly, 

work by Zhou et al. [5] enforce low-rank constraints on tensors and L2,1-norm regularization on the 

objective function during the training stage to achieve compact CNNs with reduced neurons. Another study 

which uses L2,1-norm is Wen et al.’s work [6]. They apply regularization to big baseline models to learn 

more compact CNNs. With their structured sparsity method, they regularize filters, channels, filter shapes 

and layer depth of CNNs. Huang and Wang [22] improve the method of Wen et al. [6] and propose a more 

general end-to-end method for network pruning. Their method contains a factor to scale the output of a 
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specific neurons, groups or blocks. They apply L1-norm sparsity regularization to the scaling factors. 

Structures having scaling factors below a threshold are removed from the network while training. Unlike 

the previous works, Ullrich et al. [23] base their regularization on the soft weight-sharing method [24]. 

They compress weights of the pre-trained model into clusters by fitting mixtures of Gaussian models. After 

retraining the model with new weights concentrated on the cluster means, they obtain a layer-wise-pruned 

compact network. 

There are also methods which focus on sparsity in batch-normalization (BN) layers. Liu et al. [7] add a 

scaling factor after BN layers. L1 regularization is applied on these scaling factors during training for the 

purpose of identifying redundant filters. Then, they prune channels with near-zero scaling factors. Another 

recent study [25] uses the method proposed by Beck and Teboulle [26] to enforce sparsity on the γ-

parameter in BN operator. During training, this method makes some γ values zero and helps these channels 

to block sample-wise (for each sample in the training set) information flow. After the training is completed, 

they remove these constant-valued channels from the original network. The study MorphNet [27] uses a 

combination of three ideas above: first, an L1-norm-based regularization of the neurons, second, the idea 

of multipliers of Howard et al. [28] for reducing the floating point operations and model size, and third, the 

paradigm introduced by Han et al. [4] for retraining of the pruned network. 

There has also been some research for measuring the redundancy in the networks. Guo et al. present a 

feedback mechanism named splicing which re-establishes mistakenly removed parameters after the pruning 

operation [29]. With this work, they show that measuring the redundancy of the parameters is an extremely 

difficult task. Researchers use different techniques for measuring redundancy. In [30], L1-norm of kernels 

are calculated. After sorting kernels by their L1norm values, small valued kernels and corresponding feature 

maps were pruned. ThiNet does filter-level pruning based on filter statistics computed from the following 

layer, not the current layer [31]. In spite of their success, the compression rate of the filters had to be 

predefined, which is another difficult problem for pruning methods. Moreover, He et al. exploit feature 

maps for redundancy [32]. The authors select the most representative channels of the feature maps and 

prune the redundant ones. After pruning, in order not to damage accuracy, they reconstruct the outputs with 

the remaining channels using linear least squares. 

Recently, several methods proposed to measure the importance of structures. Yu et al. propose that layer-

by-layer network pruning leads to significant reconstruction error propagation [33]. They introduce a global 

neuron importance measuring algorithm which uses information at the Final Response Layer (FRL, the 

second-to-last layer before classification). The algorithm obtains the importance of all neurons in the 

network with a single backward pass after a feature ranking operation on the FRL. Subsequently, the 

trimming of the whole network is performed considering the pruning ratio per layer as a pre-defined hyper-

parameter. Prakash et al. propose a novel inter-filter orthogonality metric for ranking filter importance and 

a new training strategy [34]. Their method consists of temporarily dropping (some) of the least important 

convolutional filters (ranked by their metric), and reintroducing dropped filters with new weights. They 

repeat this process cyclically. With this strategy, they improve generalization and reduced overlap of 

learned features. Unlike the traditional deterministic methods, Wang et al. approach pruning weights of 

convolutional layers in a probabilistic manner [35]. They specify a pruning probability for each weight 

group. At each iteration, these probabilities are updated with the L1 norm as an importance criterion of each 

weight group. The pruning is guided by sampling from the pruning probabilities. He et al. use a novel 

pruning method instead of norm-based pruning approaches [36]. They calculate the geometric median 

Fletcher et al. of the filters within the same layer, and prune the filter(s) near to the geometric median [37]. 

In addition to above works, Dong et al. [38] improve the idea in previous works [1, 2]. Their pruning method 

is based on second order derivatives of a layer-wise error function. 

There are also some recent and novel compression techniques used for pruning. In SplitNet [39], the goal 

is to find a tree-structured network that contains a set or a hierarchy of subnetworks, where the leaf-level 

subnetworks are associated with a specific group of classes. Since each group uses a subset of features that 

are completely disjoint from the ones used by other groups, the splitting algorithm prunes out inter-group 
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connections while optimizing the cross entropy loss and the group regularization. At the end, the weight 

matrix can be explicitly split into block diagonal matrices to reduce the number of parameters. Similarly, 

Yang et al. approach the network compression from energy consumption of the network [40]. They sort 

layers by their energy consumption, and pruned weights, which have small magnitudes, of the layers that 

consume the most energy first. Similar to the idea of “network slimming” [7], Zhao et al. modify the BN 

layer and add a new parameter called channel saliency to the BN layer [41]. They try to find approximate 

gamma distributions over these channel saliency parameters. They then remove redundant channels with 

mean and variance of their gamma distributions less than predefined thresholds. 

2.2. Knowledge Distillation 

Knowledge Distillation is a simple way to have compact deep learning models. In this method, a large (i.e. 

cumbersome) network or an ensemble model is trained, first. This model is called the “teacher”, which 

typically produces accurate predictions. Then, a smaller network, called the “student”, is trained using the 

guidance coming from the teacher model. This guidance is obtained using “temperature softmax” applied 

on the logits of the teacher. The goal is to provide a better training for the student model than using only 

the labels from the dataset. Trained in this way, the final student network was shown to produce comparable 

results to the teacher’s [18].  

Similar ideas to knowledge distillation has been explored before. Bucilua et al. approach the idea of 

knowledge transfer from a different point of view [42]. Instead of training a neural network on an original 

small set, they use an ensemble of base-level classifiers to label a large unlabeled dataset and then train the 

network on this much larger dataset. Ba and Caruana propose using L2 loss on the logits to mimic the 

teacher network [43].  

FitNets [18] use knowledge distillation to yield deep and thin student networks that perform on par with or 

better than the teacher. They achieve this by training some student layers using the teacher’s supervision 

for better initialization. Luo et al. show that using L2 loss to match the features of top hidden layers from 

both teacher and student is effective [19]. Yim et al. distill knowledge from the teacher by generating a 

matrix from feature maps at each layer [44]. Then, they transfer the knowledge from teacher to student, 

which has the same depth as the teacher, by applying L2 loss to these matrices. 

2.3. Other Approaches 

There are also other approaches to neural network compression and pruning that are orthogonal to our 

method. These include low-rank factorization methods, quantization and binarization methods and methods 

that aim to obtain compact convolutional filters. 

2.4. Summary 

Given the context of existing work, although L1 regularization to enforce sparsity is commonly used for the 

purposes of pruning/compression, it has not been applied in the context of KD to obtain a student model 

whose size is determined dynamically and automatically. 

3. METHOD  

Before we present our method in detail, we first describe the knowledge distillation (KD) method [17] for 

completeness. In KD, there are two models: teacher and student. Given a supervised dataset, the teacher 

model is trained first. Then, the student model is trained using a linear combination of two losses: (i) the 

regular crossentropy loss coming from the supervised dataset, and (ii) “softened” cross-entropy loss coming 

from the teacher’s prediction. To better explain these two losses, let us consider an example input image x 

with its ground-truth label y, which is a one-hot vector. A neural network outputs a raw score, or logit, zi 

for quantifying the degree that the input x belongs to class i. These logits are normalized using the “softmax” 

function so that the resulting vector can be considered as a probability distribution: 
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𝑞𝑖 =
exp(𝑧𝑖/𝑇)

∑ exp(𝑧𝑐/𝑇)
𝐶
𝑐=1

 (1) 

 

where C is the number of classes and T is called the “temperature” parameter, which by default equals to 

1. Then, cross-entropy between q = [q1,q2,...,qC] and y is computed as 

CE(𝐲, 𝐪) = ∑𝑦𝑐log(𝑞𝑐)

𝐶

𝑐=1

. (2) 

When T > 1, we call the loss as “softened” cross-entropy, as it softens the effect of the exponential function 

in softmax as T gets larger. 

Let qtch,T denote the softmax output of the teacher model with temperature T. Similarly, let qstd,T be the 

student’s softmax output with temperature T. First, the teacher model is trained to minimize the regular 

cross-entropy loss: 

𝐿tch = ∑ CE(𝐲, 𝐪tch,1)

(𝐱,𝐲)

. (3) 

And, the knowledge-distillation loss, by which the student model is trained, can be written as 

𝐿std = ∑(1 − α)CE(𝐲, 𝐪std,1) + 𝛼CE(𝐪tch,T, 𝐪std,T)

(𝐱,𝐲)

. (4) 

The first term is the regular cross-entropy loss with one-hot ground-truth labels. The second term is the 

cross-entropy between temperature-softmax outputs. It is this second term, which brings in new information 

about class similarities predicted by the teacher. α is an hyperparameter to adjust the contribution of the 

two terms. Figure 1 illustrates the KD method.  

In KD, both the teacher and the student model architectures are determined before training and are fixed 

during and after training. So, essentially, one hast to decide on the size of the student beforehand and KD 

attempts to distill the knowledge of the teacher into this student. However, there is no way of knowing the 

optimal size for the student architecture beforehand. Our method addresses this problem by dynamically 

pruning (removing) neurons from the student. By doing so, our method both finds an optimal size for the 

student model and slightly improves the final accuracy of the student model. In the following we describe 

our method. 

3.1.  Knowledge Distillation With Dynamic Pruning (KDDP) 

As done in standard KD, we first train the teacher model, or it is provided as an already trained model. 

Then, we add L1 regularization to the largest fullyconnected layer of the student — let us call this layer 

fc1. The rationale behind this choice is that this layer typically contains a large percentage (up to 83% in 

our experiments) of all parameters in the model (Table 1). Next, we train the student using the KD loss 

defined in Equation (4). After the student is trained, we run it on the training set to calculate the average 

activation (i.e. output) of each neuron at fc1. If the activation of a neuron is below 10−6, we prune (i.e. kill 

or remove) that neuron and delete the corresponding weight set in its next layer. After testing all neurons 

at fc1, we re-train the pruned student network using Equation (4), this time without any L1 regularization 

on fc1. 

3.2. Teacher And Student Models 

As the teacher, we use a ResNet model [45]. ResNet and its variants proved their success on many computer 

vision tasks. Specifically, our teacher model is a ResNet-56 which achieves 6.97% error rate on CIFAR10 

and has 850K learnable parameters. Details of ResNet-56 can be found in the original ResNet paper [45]. 
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Table 1. Student networks differ only in the number of neurons in the fc1 layer. Percentages in 

parenthesis indicate the ratio of the parameters in fc1 to the total number of parameters. 

Model # of neurons in fc1 # of parameters at fc1 total # of parameters 

SN50 50 29k (34%) 85k 

SN100 100 58k (50%) 114k 

SN500 500 289k (83%) 349k 

 

We choose our student network to have a very simple architecture in order to efficiently analyze the 

performance of our method. Our student network architecture starts with an input layer for 32×32×3 sized 

images. It is followed by a convolutional layer with a kernel size of 7×7 with a stride of 1, with 64 

convolution filters. This result in an output of size 16 × 16 × 64. The convolutional layer is followed by a 

Batch Normalization (BN) layer and a ReLU non-linear activation function. We later use a max-pooling 

layer which has a window size of 3×3 with stride 2 that produces an output of size 7×7×64. This layer 

followed by an identity-block of the ResNet architecture [45]. ResNet’s identity block is composed of 3 

convolutional layers, each followed by a BN and a ReLU layer. The first and third convolutional layers 

have a kernel size of 1×1, and the middle layer has a kernel size of 3 × 3. The stride of all convolutions of 

the identity blocks is 1 and the number of filters used in each layer is 64. Before the ReLU layer of the last 

convolutional layer inside the residual block, there is a skip connection that allows the flow of information 

from the initial layers to the last layers by adding the input of the identity block and the output of the ReLU 

layer. The identity-block is followed by an average pooling layer which outputs a 3×3×64-dimensional 

tensor. This layer is followed by a fully-connected layer, fc1, and a ReLU layer. Finally, the ReLU layer is 

followed by another fully connected layer, fc2, as a bridge to a softmax layer at the end. 

In our experiments, we create three different variant of this student model. The only difference between 

these student models are the neuron counts in the first fully-connected layer, fc1. We use 50, 100 and 500 

neurons for this layer to explore the effect of the increasing number of neurons. We set the number of 

neurons in the second fully-connected layer, fc2, to the number of classes in the classification task at hand. 

The total number of parameters and percentage of parameters in fc1 for these networks are presented in 

Table 1. Figure 2 illustrates the architecture of our student network.  

3.3. Baseline Methods 

We compare our method with the following models. 

Vanilla SN: We train the student network from scratch without any teacher guidance or regularization 

penalty. We use this model to find out the baseline performance of our student networks. 

Vanilla-KD SN: We train the student network with standard Knowledge Distillation [17] at different 

temperature values (T) but without regularization penalty. 

3.4. Implementation Details 

Teacher Network (TN): We train a ResNet-56 model from scratch. The learning rate is 10−4 , the mini-

batch size is 64, and the optimization algorithm is Adam [46].  

Student Networks (SN): We use the same hyper-parameters while training all student models. All models 

are trained from scratch. Weights and biases are initialized with Xavier’s initialization [47]. Network 

architectures are implemented using the Keras framework [48]. Adam [46] is used for training. The learning 

rate is set to 10−4, and the mini-batch size is 64. An L1 regularization penalty is applied on fc1 during the 

training of the KDDP student networks. The training is stopped early if there is no improvement in the 

accuracy on the validation set for 50 epochs. 
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Figure 2. Student Network overview. The network takes an image and outputs a class label. It is 

composed of an input layer followed by a convolutional layer, max pooling, an identity-block of 

ResNet(He et al., 2016), average pooling, two fully connected layers, and a softmax layer. ResNet’s 

identity block is highlighted with the yellow rectangle.  This layer is composed of three convolutional 

layers and a skip connection which adds the input of the identity block and the output of the last 

convolutional layer in the identity block. 

4. EXPERIMENTS 

In this section, we describe the experimental evaluation and validation of our method. We evaluate it by 

comparing against the two baselines and then, provide extensive experiments on hyper-parameters in 

Section 4.3. 

 

Figure 3. Example images from the CIFAR10 dataset. 

4.1. Dataset 

We use the CIFAR10 dataset [20] in our experiments. It contains 60000 32x32 color images in 10 classes, 

with 6000 images per class. Example images can be seen in Figure 3). There are 50000 training images and 

10000 test images. We randomly sample (using stratified sampling, i.e., by preserving class 

frequencies)10000 images from the training set to form a validation set. We report our results after 

observing no improvements on the validation set for 50 epochs during training. As data augmentation, we 

only use horizontal flip. We use this setup in all experiments.  

4.2. Analysis of the Proposed Method 

We present our main results in Table 2, where we compare the performances and parameter counts of the 

teacher model, vanilla SN model, vanilla KD SN model and our KDDP model. 
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Table 2. Main results on the CIFAR10 test set. 

Model Acc. # Params. 

Teacher  0.8808 1,673,738 

Vanilla SN50  0.8048 85,104 

Vanilla KD SN50 0.8141 85,104 

KDDP SN50 (final |fc1|=45) 0.8193 82,169 

Vanilla KD SN45 0.8145 82,169 

Vanilla SN100 0.8075 114,454 

Vanilla KD SN100 0.8197 114,454 

KDDP SN100 (|fc1|=83) 0.8219 104,475 

Vanilla KD SN83 0.8146 104,475 

Vanilla SN500 0.8128 349,254 

Vanilla KD SN500 0.8264 349,254 

KDDP SN500 (|fc1|=264) 0.8281 210,722 

Vanilla KD SN264 0.8267 210,722 

 

We use the same teacher logits in for all experiments (i.e. z in Eq. (1)). We train our teacher once. We use 

the same initial weights for all student network trainings with hyper-parameters: L1 = 1e−4 and α = 0.5. 

We also train Vanilla SNs and Vanilla-KD SNs for each model to explore the capacity of these networks 

and compare with our model. 

The teacher network has 1.7M parameters and yields an accuracy of 88.08% on the test set. This score is 

lower than other ResNet results on the same set, e.g. Cai et al. achieve 97.92% [49]. This is because we 

hold out 10K examples from the training set as validation data to have a solid early stopping criterion. Also, 

we only use horizontal-flip augmentation. 

The “Vanilla SN” (student network), which is the SN trained from scratch without any teacher guidance or 

regularization, has three versions. These versions differ only in the number of neurons in the fc1 fully 

connected layer. For 50, 100 and 500 neurons, Vanilla SN achieves 80.48%, 80.75%, 81.28% test set 

accuracy, respectively. Increasing the number of neurons in fc1 has a positive effect on model performance. 

However, this causes an increase in the number of parameters, as well. When the student model is trained 

using standard knowledge distillation method, we obtain the “Vanilla KD SN” models. Compared to the 

Vanilla SNs, they achieve around 1% better accuracy for all models. 

Our method, KDDP, achieves 81.93%, 82.19%, 82.81% accuracies on the test set for student networks 

SN50, SN100, SN500, respectively. We observe that our method works better than both Vanilla SN and 

Vanilla KD SN, and improves the accuracies around 0.5% for SN50, SN100, SN500 with 3%, 9%, 40% 

fewer parameters than their original networks. It dynamically removes 10%, 17%, 48% of the parameters 

at fc1. 

We conduct further experiments to compare our method against KD to provide fair comparisons based on 

the total number of neurons in the network. We record the number of final neurons in KDDP and we train 

smaller Vanilla KD SNs that have the same neuron counts at fc1 with the final KDDP SNs. We denote 

these models with “Vanilla KD SNn” where n is equal to 45, 83 or 264. We use the same softmax 

temperature for both bases. We observe that with the same fc1 size, KDDP outperforms Vanilla KD. 

From these results, we conclude that our dynamic pruning method both improves accuracy and reduces 

computational cost of inference. In the following, we analyze the sensitivity of our method to its hyper-

parameters, and also conduct statistical significance analysis. 

4.3. Hyper-parameter Analysis  

4.3.1. L1 Regularization Penalty Analysis 
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We use L1 regularization on the activations of fc1 layer neurons to increase sparsity. L1 regularization 

penalizes the absolute value of the activations of the neurons. We present results for different L1 penalties 

in Table 3. We set α to 0.5 in these experiments.  

We observe that larger values of L1 penalty result in fewer active neurons at the fc1 layer and therefore 

decreases the performance of the models. For example, when L1 is 1e−3 and T = 32 at KDDP SN100 

experiment, the model gets stuck at some local minima and cannot even reach the vanilla model’s 

performance. However, when there are fewer parameters it helps the model to get acceptable performances. 

For example, for hyperparameters L = 1e−3, T = 2, our KDDP SN50 model achieves better performance than 

the other SN50 models. We also observe that using smaller values for L1, e.g. L1 = 1e−5, does not work for 

our pruning method in all student models. Therefore, L1 penalty should be tuned to strike a good balance 

between the model size and the classification performance. In our experiments, we set the L1 regularization 

to 1e−4. 

 

Table 3. Effect of L1 regularization penalty. Results for models SN50, SN100, SN500. Hyper-parameter α = 

0.5. 
  𝐿1 = 1𝑒−3 𝐿1 = 1𝑒−4 𝐿1 = 1𝑒−5 

 T Acc. fc1 size Acc. fc1 size Acc. fc1 size 

5
0

 n
eu

ro
n

s 

2 0.8198 15 0.8193 45 0.8162 49 

4 0.8054 10 0.8123 40 0.8146 48 

8 0.7638 7 0.7891 41 0.7968 47 

12 0.7707 7 0.7913 38 0.7918 47 

16 0.7761 8 0.7902 33 0.7948 46 

20 0.7802 8 0.8011 37 0.7961 47 

32 0.7607 5 0.8010 37 0.8049 48 

64 0.7776 7 0.8078 37 0.8034 44 

100 0.7871 6 0.8088 32 0.8038 49 

200 0.7966 7 0.8053 41 0.8077 47 

1000 0.7877 8 0.8065 35 0.8078 46 

5000 0.7616 5 0.8032 40 0.8069 43 

1
0

0
 n

eu
ro

n
s 

2 0.8132 18 0.8219 83 0.8219 97 

4 0.7913 9 0.8156 79 0.8192 93 

8 0.7655 7 0.8037 61 0.8099 92 

12 0.7931 10 0.7952 59 0.7941 92 

16 0.7970 76 0.7922 59 0.7931 92 

20 0.7802 7 0.7978 59 0.7935 89 

32 0.6900 3 0.8085 61 0.8001 93 

64 0.7779 6 0.8095 59 0.8012 91 

100 0.7594 4 0.8077 54 0.8121 91 

200 0.7800 6 0.8003 54 0.8055 90 

1000 0.7609 4 0.8171 53 0.8058 95 

5000 0.8063 89 0.8087 54 0.8010 88 

5
0

0
 n

eu
ro

n
s 

2 0.8211 103 0.8281 264 0.8185 467 

4 0.8213 330 0.8186 156 0.8196 453 

8 0.8175 400 0.8106 113 0.8101 441 

12 0.8017 140 0.8079 118 0.8110 432 

16 0.8010 235 0.7952 109 0.8089 429 

20 0.7991 151 0.8003 91 0.8075 425 

32 0.8047 98 0.8147 111 0.8063 425 

64 0.8050 17 0.8121 109 0.8025 417 

100 0.8040 90 0.8114 101 0.8030 431 

200 0.8062 185 0.8146 112 0.8076 423 

1000 0.8059 15 0.8140 116 0.8040 425 

5000 0.8123 17 0.8093 105 0.8070 423 

4.3.2. 𝜶 Analysis 

α in Eq. (4) sets the contribution of the two objective functions (i.e. the weight of distillation). In other 

words, using bigger α values means giving more importance to soft targets in the objective function. We 



660                      Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 

present results for different α values in Table 4. We can see that too small and large α values don’t lead to 

good performances. α also should be tuned carefully to have a good balance between the model size and 

classification performance. In our experiments, we observe that setting α to 0.5 gives the best results. 

4.3.3. T Analysis  

Setting the vaue of T, which “softens” the softmax output, is not a trivial task. To find its optimal value, we 

did a grid search over the temperatures values of [2, 4, 8, 12, 16, 20, 32, 64, 100, 200, 1000, 5000]. If we 

keep increasing T, at some point, logits will be saturated and no information will flow from the teacher to 

the student network. We present our results in Table 4. We can see that when we train the network with 

100 neurons solely with the loss coming from the soft targets (the second term in Eq. (4)) with a temperature 

of 5000, we get an accuracy of 10%, which is equal to the random guess for CIFAR10. For all models, we 

observe that the accuracy fluctuates depending on T.  Therefore, we conclude that the temperature parameter 

should also be tuned carefully. 

Table 4. Distillation loss weight (α in Eq. (4)) and temperature analysis. Results for models 

SN50,SN100,SN500. Hyperparameters: L1 = 1e−4 . 
  𝛼 = 0.2 𝛼 = 0.5 𝛼 = 0.8 𝛼 = 1 

 T Acc fc1 size Acc fc1 size Acc fc1 size Acc fc1 size 

5
0

 n
eu

ro
n

s 

2 0.8046 48 0.8193 45 0.8093 49 0.7955 45 

4 0.8003 44 0.8123 40 0.8147 39 0.8034 32 

8 0.7987 42 0.7891 41 0.8031 26 0.7967 8 

12 0.7945 43 0.7913 38 0.7843 28 0.5061 25 

16 0.8093 43 0.7902 33 0.7726 23 0.5844 46 

20 0.8081 45 0.8011 37 0.7761 25 0.5882 45 

32 0.8058 39 0.8010 37 0.7872 23 0.5101 42 

64 0.8060 42 0.8078 37 0.7961 25 0.5850 42 

100 0.8021 44 0.8088 32 0.8069 24 0.5835 42 

200 0.8057 42 0.8053 41 0.8018 22 0.5526 39 

1000 0.8072 44 0.8065 35 0.8088 26 0.6277 40 

5000 0.8106 42 0.8032 40 0.8040 26 0.1000 12 

1
0

0
 n

eu
ro

n
s 

2 0.8077 76 0.8219 83 0.8239 87 0.8078 66 

4 0.8082 75 0.8156 79 0.8177 69 0.8108 49 

8 0.8042 66 0.8037 61 0.8041 33 0.7948 8 

12 0.8041 75 0.7952 59 0.7880 30 0.6685 88 

16 0.8005 69 0.7922 59 0.7733 26 0.5931 63 

20 0.8010 79 0.7978 59 0.7689 31 0.5886 40 

32 0.8075 69 0.8085 61 0.7889 25 0.5764 49 

64 0.8065 79 0.8095 59 0.7962 33 0.5835 51 

100 0.7963 72 0.8077 54 0.7985 33 0.5890 85 

200 0.8047 67 0.8003 54 0.8037 29 0.5748 85 

1000 0.8039 71 0.8171 53 0.8000 34 0.5864 86 

5000 0.8096 75 0.8087 54 0.8073 31 0.1000 14 

5
0

0
 n

eu
ro

n
s 

2 0.8170 247 0.8281 264 0.8255 262 0.8158 212 

4 0.8138 205 0.8186 156 0.8215 126 0.8157 57 

8 0.8100 204 0.8106 113 0.8133 44 0.6642 407 

12 0.8065 177 0.8079 118 0.7863 28 0.5768 256 

16 0.8092 181 0.7952 109 0.7872 27 0.5890 319 

20 0.8070 187 0.8003 91 0.7734 24 0.5843 397 

32 0.8112 184 0.8147 111 0.7925 29 0.6397 123 

64 0.8087 178 0.8121 109 0.8017 28 0.6458 394 

100 0.8072 183 0.8114 101 0.8068 27 0.7257 389 

200 0.8110 189 0.8146 112 0.8085 36 0.6410 135 

1000 0.8069 189 0.8140 116 0.8070 36 0.6374 395 

5000 0.8116 176 0.8093 105 0.8039 33 0.1001 120 

4.4. Statistica Analysis of the Results  

We use Welch’s T-test to measure the significance of our method’s results. We train Vanilla SN, Vanilla 

KD and KDDP models with 100 fc1 neurons, starting with different initial weights for 11 times. We set our 
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hyper-parameters as L1 = 1e−4, α = 0.5. We present these results in Table 5.  

 

KDDP & Vanilla Analysis: We start with assuming a null hypothesis that the mean of the results of the 

KDDP is equal to the mean of the results of the Vanilla network. Then, we calculate the T-score of these 

sets (classification results) using Eq. 5. We get a T-score of 9.91. For two-tailed hypothesis and 10 degrees 

of freedom, this T-score corresponds to p < .00001., which indicates statistical significant. Therefore, it is 

safe to reject the null hypothesis that there is no difference between the means of results. 

 

KDDP & Vanilla-KD Analysis: We follow the same computations for comparing our KDDP with the 

Vanilla-KD. We get a T-score of 2.9730, which corresponds to p = .013974 for two-tailed hypothesis with 

10 degrees of freedom. Since p <.05, it is again safe to reject the null hypothesis. We conclude that our 

KDDP model’s performance has intrinsic differences from Vanilla SN and Vanilla KD results, and they 

are strong and are not by chance. 

 

Table 5. Results of 11 different trainings for Vanilla SN, Vanilla KD and KDDP models with 100 neurons 

in fc1. Hyper-parameters for KDDP are L1 = 1e−4, α = 0.5. Although the difference in mean accuracies 

are small, they are statistically significant. 

Run # Vanilla Acc. Vanilla-KD 

Acc. 

KDDP Acc. 

0 0.8075 0.8197 0.8219 

1 0.8041 0.8156 0.8226 

2 0.8089 0.8182 0.8234 

3 0.7975 0.8125 0.8166 

4 0.8051 0.8172 0.8183 

5 0.8101 0.8167 0.8175 

6 0.7998 0.8210 0.8221 

7 0.8080 0.8193 0.8212 

8 0.8033 0.8163 0.8210 

9 0.8098 0.8139 0.8152 

10 0.7980 0.8169 0.8233 

Mean 0.8047 0.8170 0.8203 

Var 1.9522e−5 5.6783e−6 7.5033e−6 

KDDP & Vanilla T-score: 9.9177  

KDDP & Vanilla-KD T-Score: 2.9730 

 

5. CONCLUSION 

In this paper, we propose a new method based on Knowledge Distillation (KD) [17]. We use L1 

regularization on the activities of the neurons in a fully-connected layer and remove the inactive neurons. 

There is no need to provide the final size of the student model as input; our method determines it 

automatically. Our method performs better than the standard KD method with much fewer parameters. 

In our extensive experiments, we show that KD based methods including ours are highly hyperparameters 

dependent. Temperature, T, and distillation weight, α selection determine the performance of the trained 

model. We observe that the accuracy varies significantly between low and high values for different T values. 

Moreover, α constrains us to decide to what extent we should rely on the teacher network’s logits. However, 

when the hyper-parameters are chosen carefully, our method works well. It performs better than the 

baselines. 
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In conclusion, our method can be used when there is a need for a much smaller network that performs 

comparably. Moreover, considering the benefits such as comparable accuracy with fewer parameters, one 

should expect that the hyper-parameter selection is vital for the performance. 

Although we did not explore the use of our method for convolutional layers, we expect that similar gains 

(higher accuracy with fewer parameters) would be obtained. We leave this as future work. 
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