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Abstract: This paper proposes a new Hepatocellular Carcinoma (HCC) classification method uti-
lizing a hyperspectral imaging system (HSI) integrated with a light microscope. Using our custom
imaging system, we have captured 270 bands of hyperspectral images of healthy and cancer tissue
samples with HCC diagnosis from a liver microarray slide. Convolutional Neural Networks with 3D
convolutions (3D-CNN) have been used to build an accurate classification model. With the help of
3D convolutions, spectral and spatial features within the hyperspectral cube are incorporated to train
a strong classifier. Unlike 2D convolutions, 3D convolutions take the spectral dimension into account
while automatically collecting distinctive features during the CNN training stage. As a result, we
have avoided manual feature engineering on hyperspectral data and proposed a compact method for
HSI medical applications. Moreover, the focal loss function, utilized as a CNN cost function, enables
our model to tackle the class imbalance problem residing in the dataset effectively. The focal loss
function emphasizes the hard examples to learn and prevents overfitting due to the lack of inter-class
balancing. Our empirical results demonstrate the superiority of hyperspectral data over RGB data
for liver cancer tissue classification. We have observed that increased spectral dimension results in
higher classification accuracy. Both spectral and spatial features are essential in training an accurate
learner for cancer tissue classification.

Keywords: hyperspectral imaging; hyperspectral microscopy; human carcinoma detection; hepa-
tocellular carcinoma detection; cancerous cell classification; deep learning; convolutional neural
networks; 3D convolutions; focal loss function; 3D-CNN

1. Introduction

In 2020, approximately 960,000 new liver cancer cases were diagnosed, and 830,000
deaths due to liver cancer have been reported. Liver cancer is the sixth most encountered
cancer type and is the third leading cause of cancer death globally. Hepatocellular carci-
noma (HCC) is the most common type of liver cancer, with an occurrence rate of 80% [1].
In 70–90% of HCC patients, the risk factors include hepatitis B virus, hepatitis C virus,
exposure to aflatoxin B1, cirrhosis, and excessive alcohol consumption. The tumor nodules
can be monitored with ultrasonography at the early stages, and resection is considered
the primary treatment method for patients with sufficient liver functionality and small
tumor solitary scores. For more complex cases, treatment procedures might include liver
transplantation, chemoembolization, and molecular-targeted therapies [2]. Pathology is
an essential field for diagnosing HCC, screening the grade of disease, detecting the risk of
recurrence after surgery, and developing new treatment techniques, including medicines. A
variety of genetic mutations occur within the cells during cancer disease. The cancerous tis-
sues are differentiable by expert pathologists with the help of a biopsy operation. However,
the tissue examination process is tedious and time-consuming for expert pathologists [3].

A significant number of researchers have worked on computer-aided diagnosis (CAD),
including the tumor detection problem for many years [4]. For the problem of detecting
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cancerous tumors from pathological images, there are various methods proposed. Using
RGB data, the study [5] suggests using Atrous Spatial Pyramid Pooling (ASPP) blocks
to obtain multi-scale texture features from Hematoxylin and Eosin (H&E) stained HCC
histopathology images. ASPP blocks have been placed after each max-pool layer to gener-
ate a multi-scale sample space. With the help of this approach, texture features in images
are effectively utilized by the deep neural network, and the experimental results showed
90.93% accuracy in the four-category classification of HCC images. Another study [6]
works on the HCC grade differentiation from multiphoton microscopy images. The re-
searchers adapt VGG-16 CNN topology to train a classifier on a dataset consisting of
three grades of HCC disease, including well-differentiated, moderately-differentiated, and
poorly-differentiated groups. Over 90% HCC differentiation accuracy has been obtained,
and the results show the validity of deep learning approaches with multiphoton fluo-
rescence imagery. Alternatively, hyperspectral imaging is a powerful tool for describing
the subject matter up to its chemical properties, and it has many applications in remote
sensing [7], agriculture [8], food safety [9], environment [10], and more [11]. Hyperspectral
imaging technology provides promising results for CAD researchers [12]. A 2001 study
shows an early example of hyperspectral imaging integrated with a light microscope [13].
A reference hardware system is devised to capture hyperspectral cubes from microscopy
tissue slides. The proposed approach combines an imaging spectrograph with an epi-
fluorescence microscope. Different wavelength light sources have been used to illuminate
the samples, such as a 532 nm solid-state laser, a helium-neon laser, an argon ion laser,
and a pulsed-doubled nitrogen dye laser. The sample slide is moved with a motorized
mover during the data capturing. A Charge-Coupled Device (CCD) camera captures the
reflected light, and custom software is developed to visualize and store hyperspectral
data. The study [14] proposes a new approach based on hyperspectral image analysis to
address the Anaplastic Lymphoma Kinase (ALK) positive and negative tumor identifica-
tion problems. Sixty-channel hyperspectral data from lung cancer tissues are captured by
an Acousto-Optic Tunable Filter (AOTF) based hyperspectral imaging system. Using a
Support Vector Machine (SVM) based segmentation algorithm, the lung tissue images are
segmented into three regions: cell nucleus, cytoplasm, and blank area. The accuracy of the
segmentation model is calculated with the help of manual ground truth data provided by a
lung cancer expert. The segmentation accuracy for each class is evaluated to conclude a
treatment prescription focusing on ALK-positive and ALK-negative tumor diversity. In
another study [15], a similar hyperspectral imaging system powered by AOTF is employed
to collect hyperspectral data from bile duct tissue samples with 30 channels. Deep convo-
lutional neural networks (CNN) with architectures Inception-V3 [16] and Restnet50 [17]
are deployed for building a prediction model. A spectral interval convolution method is
proposed to adapt hyperspectral data with deep learning architectures. CNN experiments
have been conducted by feeding image patches to the network. A random forest-based ap-
proach is utilized to provide scene-level predictions by combining image patch predictions
from the same scene. The authors have reported a tumor detection accuracy of 0.93 with
hyperspectral data and 0.92 with RGB data.

This paper proposes a new HCC tumor detection framework based on hyperspectral
imaging and 3D Convolutional Neural Networks. We have built a microscopy biological
tissue image-capturing system in-house by integrating a push broom VNIR hyperspectral
camera and a light microscopy device. We collected a wide range of spectral data between
400 nm to 800 nm from liver tissue samples. The captured images from each sample are
divided into smaller patches and fed into a custom 3D convolution-based CNN learner
to generate a strong cancer tissue prediction model. With 3D convolution operation, both
spectral and spatial features are considered while training the classification model. 3D
convolution operation enables the capture of local spectral features in the hyperspectral
cube. Furthermore, we have employed the focal loss function as the CNN cost function to
overcome the class imbalance problem [18]. We have empirically demonstrated that 3D
convolutions significantly improve classification accuracy compared to 2D convolutions
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operated on the same dataset. During our experiments, we demonstrated the superiority
of hyperspectral data over its RGB counterpart.

Compared to the existing literature, we employ more spectral bands for the tissue
classification task in this study. Although AOTF is a widely used piece of equipment
in tissue classification tasks, there are studies reporting that AOTF may not be reliable
enough for radiometric measurements due to the lack of homogeneity of the diffraction
efficiency [19–21]. Unlike the existing studies, we employ a hyperspectral VNIR camera
as primary imaging equipment to obtain reliable data. We introduce a solid classification
framework based on a new deep-learning topology and 3D convolutions. Additionally,
in contrast to other studies, we clearly compare performances of hyperspectral, Principal
Component Analysis (PCA) of hyperspectral and RGB datasets on classification accuracy.
The contributions of this paper can be summarized as follows. Firstly, we have built a
biological tissue image capture system in our laboratory by integrating a hyperspectral
camera and a light microscope with a 3D-printed motorized stepper. Secondly, we have
demonstrated that hyperspectral data considerably improves classification performance.
RGB data can represent spatial features of tumor tissues in fine detail, while, hyperspectral
imaging captures both spatial and spectral features of tumor tissues leveraging the deep
neural network classification accuracy. Thirdly, our proposed method takes advantage
of the hyperspectral cube by utilizing 3D convolutional neural networks. 3D kernels
enable the learner to extract voxel information with a compact approach. The use of a
3D convolution operator in CNN can generate both spectral and spatial features via the
same single convolution operation. Additionally, our method does not require manual
feature engineering as pre-processing or post-processing stages in the classification pipeline.
Thus, 3D convolutional neural networks commit better generalization performance with
a simpler network topology. Finally, our paper tackles the class imbalance problem, a
common challenging aspect for most medical image analysis studies. We have employed
the focal loss function within our classification model. The focal loss method compensates
for class imbalance by using a focusing parameter in the cross-entropy function, and the
learner’s sensitivity to misclassified samples is boosted. Furthermore, the focal loss function
is capable of increasing model generalization without causing overfitting.

The rest of the paper is organized as follows. In Section 2, we give details of our
methodology, including data capture and deep learning steps. Section 3 presents our
experimental results by comparing different sets of parameters and learner configurations.
Finally, in Section 4, we provide discussions with a brief conclusion of the study, including
its limitations and suggestions for future research.

2. Materials and Methods
2.1. Data Acquisition

In this study, we have developed a hyperspectral microscopy image-capturing system
by integrating a Headwall A-series VNIR model push-broom hyperspectral camera (Head-
wall Photonics Inc., Bolton, MA, USA) and a Euromex Oxion light microscope (Euromex,
Arnhem, The Netherlands) in our laboratory. A sample photograph from our data acquisi-
tion system is presented in Figure 1. The light microscope’s objective lens is configured to
display the samples with 40×magnification. The hyperspectral camera is capable of captur-
ing 408 spectral bands between 400 nm to 1000 nm. We calibrated and verified our imaging
setup using a microscope stage calibration slide for optimum image quality. In this regard,
our imaging system’s spatial resolution is 0.55 microns. Our imaging system measures a
liver cell nucleus around 12–18 pixels in diameter, and 6.6 to 9.9 microns, which is also
correlated with the clinical measurements of the human liver cell size [22]. In addition to
hyperspectral images, the camera simultaneously captures RGB images of the same scene.
To capture data with the proper geometry from our hyperspectral camera, we have devised
a motorized moving table hardware solution to gradually move tissue samples while the
camera is in capture mode. The motor speed is controlled by a small Arduino device (Atmel
Corporation, San Jose, CA, USA), which is optimized to capture tissue sample images with
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the highest resolution along the track direction. The tissue samples are illuminated from
the bottom by a 12 V, 100 W halogen light source (Thorlabs, Newton, NJ, USA). All images
are captured in a dark room without light sources other than the halogen lamp placed at the
bottom of the tissue slide. For radiometric calibration, we have collected white references
from the empty glass slide illuminated by the halogen lamp as in the regular capture mode.
In addition, we have collected dark references by blinding the camera sensor with its lens
cap. An example of captured data from healthy and unhealthy classes and corresponding
tissue components, including cell and background, can be seen in Figure 2. The spectra
sketches in Figure 2 are obtained by obtaining the area average of the selected regions from
the sample image captured with 40× lens magnification. It can be inferred that normal and
tumor cell samples transmit different spectral signatures for their particular components.
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components.

By morphologically inspecting the tissue spectra in Figure 2, we see two noticeable
dips around 540 nm and 650 nm. Eosin in H&E staining has a very characteristic dip
around 540 nm [23,24]. In fact, those two dips are compatible with previous findings from
previous studies [25,26] working on hyperspectral data of liver tissue samples.
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2.2. Classification

Hyperspectral imaging provides a high potential for classification tasks when both
spectral and spatial data are fused inside a machine learning model. However, the machine
learning applications developed with a hyperspectral imaging base might be prone to
overfitting the training data due to high dimensionality. In fact, for small datasets, complex
classifiers like CNN and SVM tend to overfit by learning random noise in the data instead
of extracting generative relations between the classes [27]. In addition, manual feature
engineering operations on the dataset can significantly reduce the trained model’s gener-
alization capability. Manually crafted features restrict the feature space for the classifier,
whereas deep learning models can automatically find optimal features and extract indirect
and nonlinear relationships between features. Therefore, in this study, we aim to develop
a fully automatic classification model with high generalization capability on the HCC
detection problem.

To fully exploit the effectiveness of automatic feature learning in deep learning, we
employed a CNN-based learner using 3D convolutions. 3D-CNN models are commonly
used in 3D object recognition [28], video action recognition [29], and medical image recog-
nition [30] studies. 3D-CNN learners commit to the effective utilization of spatial-spectral
data and high generalization performance for hyperspectral data. Thus, spectral signature
information encoded within a 3D hyperspectral cube is extracted together with the textural
information available on the spatial plane.

The main difference between traditional 2D-CNN and 3D-CNN is the mechanics
of convolution operation applied at the convolution layers. The kernel slides along two
dimensions (x and y) on the data in 2D-CNN classifiers while, in 3D-CNN classifiers, the
kernel slides along three dimensions (x, y, and z) on the data. 3D-shaped kernels used in
convolutions can describe the features in spatial and spectral directions. In addition to
spatial features like texture and shape attributes, the spectral dimension can be embedded
in the final classification model to capture radiometric information. We employed the 3D
convolution operation proposed in the study [29].

vxyz
ij = f

(
∑
m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m + bl j

)
(1)

Mathematically, 3D kernels can be formulated as in Equation (1), where vxyz
lij represents

the value at position (x, y, z) in the jth feature map in the ith layer, m is the index value of
the input feature maps from the (i− 1)th layer connected to the current feature map, Pi, Qi
and Ri are the height, width, and depth of the kernel, respectively, wpqr

ijm is the kernel value

at position (p, q, r) for mth feature map in the previous layer, b is the bias, and f (.) is the
activation function.

As an activation function, a non-saturating Rectified Linear Units (ReLU) function is
used as proposed in [31]. The formulation of the ReLU activation function is given as

f (v) = max(0, v) (2)

We have designed a custom CNN topology according to the details given in Table 1 and
illustrated in Figure 3. In the network, there are max-pooling layers defined between the
consecutive convolution layers to decrease the number of parameters and the complexity
of the model [32]. Furthermore, a batch normalization layer follows each max-pooling layer
to reduce internal covariate shift. The batch normalization layer also helps to speed up
training by applying a normalization so that the mean value is around 0 and the standard
deviation is 1. Hence the learner can utilize a larger learning rate in the optimizer algorithm.
Furthermore, instead of a conventional fully connected layer, we have employed a global
average pooling layer to generate feature maps into a 2D structure before feeding to the final
dense layer. As elaborated in the paper [33], the global average pooling layer is not prone to
overfitting since it has no parameter to optimize. It is also invariant to spatial translations
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in the input since it amounts to spatial averaging. In this way, we can simultaneously tackle
overfitting due to the structure of texture features in our training set and eliminate the
effect of noise caused by the tiny vibrations in the stepper motor.

Table 1. 3D-CNN Topology with parameters.

Layer Parameters Output Size

Input 100 × 100 × 270

Convolution3D

Kernel Size: 3 × 3 × 3
Number of filters: 4
Activation: ReLU

Padding: same

100 × 100 × 270 × 4

Max-pooling3D
Pool Size: 3 × 3 × 3
Strides: 2 × 2 × 2

Padding: same
50 × 50 × 135 × 4

BatchNormalization 50 × 50 × 135 × 4

Convolution3D

Kernel Size: 3 × 3 × 3
Number of filters: 8
Activation: ReLU

Padding: same

50 × 50 × 135 × 8

Max-pooling3D
Pool Size: 3 × 3 × 3
Strides: 2 × 2 × 2

Padding: same
25 × 25 × 68 × 8

BatchNormalization 25 × 25 × 68 × 8

Convolution3D

Kernel Size: 3 × 3 × 3
Number of filters: 16

Activation: ReLU
Padding: same

25 × 25 × 68 × 16

Max-pooling3D
Pool Size: 3 × 3 × 3
Strides: 2 × 2 × 2

Padding: same
13 × 13 × 34 × 16

BatchNormalization 13 × 13 × 34 × 16

Convolution3D

Kernel Size: 3 × 3 × 3
Number of filters: 32

Activation: ReLU
Padding: same

13 × 13 × 34 × 32

Max-pooling3D
Pool Size: 3 × 3 × 3
Strides: 2 × 2 × 2

Padding: same
7 × 7 × 17 × 32

BatchNormalization 7 × 7 × 17 × 32

GlobalAveragePooling3D 32

Dense Units: 512
Activation: ReLU 512

Dropout Drop rate: 0.1 512

Dense (Classification) Units: 1 1
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For convolution kernel size, we have selected 3 × 3 × 3 following the best practice
suggested by [34]. For CNN training, we used the Adam optimizer, as proposed in [35],
with default parameters (β_1 = 0.9 and β_2 = 0.999) a and learning of rate 0.001. We
set the batch size to 128, trained the models for 100 training epochs, and used a 10% of
dropout rate.

As in most medical studies [36], our dataset is imbalanced due to the presence of
very few healthy compared to tumor samples. Therefore, CNN classifiers can be biased
towards the majority class and may result in false positives in medical applications. We
have employed the focal loss (FL) function to overcome the class imbalance problem in
our dataset. Traditionally, the cross entropy (CE) function is employed in most deep
learning models.

CE(pt) = − log(pt) (3)

where pt is given by

pt =

{
p y = 1

1− p y = −1
(4)

where y ∈ {−1, 1} is the ground truth class and p ∈ [0, 1] is the classifier’s output
probability value for the class y = 1.

Nevertheless, in case of extreme class imbalance, the loss contribution of well-classified
examples in cross-entropy-based models can easily dominate the minority class. The
balanced cross entropy (BCE) function, as defined in Equation (5), is employed for dealing
with the class imbalance problem in the traditional CE function.

CE(pt) = −at log(pt) (5)

where at is a weighting factor hyperparameter and defined as

at =

{
a i f y = 1

1− a otherwise
(6)

where a ∈ [0, 1]. The BCE function helps to balance the contribution of minority and
majority classes during the training. However, it does not affect the loss between easy/hard
examples. Our dataset contains an extreme imbalance, the easy positives (tumor samples
with high pt) can dominate the training and cause too much focus on easy positives. The
focal loss function, however, can down-weight the loss contribution of easy examples and
relatively increase the loss contribution from the hard examples. Focal loss is derived from
the cross-entropy loss function (3) by introducing a modulating factor (1− pt)

γ to the
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cross-entropy loss. In this study, we have employed a balanced version of the focal loss
function, defined in Equation (7).

FL(pt) = −a(1− pt)
γ log(pt) (7)

where γ ≥ 0 is the focusing parameter. The weighting factor, a, enforces the training
procedure so that the learner concentrates on the minority class instead of treating the
classes with equal importance. At the same time, the focusing parameter, γ, imposes
focusing on the examples resulting in large errors, namely hard examples [18].

3. Results
3.1. Dataset

In this study, we employed a liver tissue array from Biomax LV962 (TissueArray.Com
LLC, Derwood, MD, USA), a commercially available H&E-stained liver tissue slide. The
tissue microarray contains both healthy and unhealthy cases; 3 normal liver tissues, 1 cancer
adjacent liver tissue, 1 each of metastatic adenocarcinoma and cavernous hemangioma,
4 liver cirrhosis, 3 cholangiocarcinoma, and 32 hepatocellular carcinoma. From each
case, our dataset contains two tissue samples. We have employed normal (healthy) and
hepatocellular carcinoma (unhealthy) classes from the tissue microarray. As depicted in
Table 2, there are 6 healthy and 54 unhealthy tissue samples in our dataset.

Table 2. Dataset statistics with the class distribution.

Healthy Unhealthy Total

Training Samples 2 18 20
Training Cases 1 9 10
Validation Samples 2 18 20
Validation Cases 1 9 10
Testing Samples 2 18 20
Testing Cases 1 9 10
Total Samples 6 54 60
Total Cases 3 27 30

We have evenly divided the dataset into three subsets, including training, validation,
and testing sets. Therefore, all three sets include distinct patients and there is no overlap
between them.

In the dataset, each sample image is captured with 1000 × 2000 pixels resolution and
40×microscopy lens magnification. As shown in Figure 4, for visualization purposes, we
have generated an RGB representation from the hyperspectral cube by fitting three normal
distributions synthesizing red, green, and blue bands with a standard deviation of 25 and
mean values of 630, 540, and 480 respectively. Sample images are divided into smaller
patch images with size S× S pixels, where we took S as a parameter. In some patches, there
were blank areas without any tissue samples. The image patches with more than 50% blank
area were automatically removed from the dataset to obtain a reliable dataset, and 4% of
the data was eliminated with this method. Our hyperspectral imaging system can output
408 bands between 400 and 1000 nm. However, manually inspecting the samples, we have
observed that the bands above 800 nm contain a low signal-to-noise ratio. Therefore, we
have only used the first 270 bands between 400 and 800 nm to reduce computational cost
and prevent flawed information from being presented to the classifier.
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3.2. Hardware and Software Configuration

We have employed an AI server with eight NVIDIA V100 Tensor Core 32GB GPUs
with 5,120 Tensor Cores, delivering up to 1 petaflop of AI computing performance. The
server machine has a dual Intel Xeon E5-2620 v3 CPU and 128 GB of DDR4 memory. By
using this server, eight distinct models can be trained simultaneously. The software stack
used in our study includes Python 3.8, Keras 2.3.1 with Tensorflow 2.0 for deep learning
programming, CUDA for GPU acceleration, and Ubuntu 18.04 for the main operating
system.

3.3. Evaluation Metrics

We have employed accuracy, precision, recall, and F1 score metrics formulated in
Equations (8) to (12) to evaluate the classification performance. Moreover, we have used
the Matthews Correlation Coefficient (MCC) metric, which is generally suggested for the
classifiers focusing on class imbalance problems in medical studies [37] as formulated
in Equation (9). The output value of the MCC metric varies between −1 and 1, such
that 1 represents a perfect prediction, 0 means a random prediction, and −1 implies total
disagreement between prediction and observation. All metrics are calculated from the
classifier output metrics including True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1Score = 2· precision· recall
precision + recall

(11)

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

3.4. Experimental Results and Discussion

To evaluate the performance of the proposed method, we trained distinct CNN clas-
sifiers with different configurations but the same topologies as depicted in Table 1. We
have empirically found the optimal values for image patch size S. As stated in [18], the
hyperparameters γ and α in the focal loss function are dataset-specific and need to be
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tuned for different model and dataset configurations. Therefore, in order to provide a fair
evaluation, we optimized focal loss hyperparameters for each configuration. Furthermore,
we have compared the classification performances of different spectral resolutions such
as hyperspectral, sampled hyperspectral, PCA of hyperspectral, and RGB. Afterward, to
reveal the effect of kernel dimensionality (2D vs. 3D kernels), we experimented with the
implications of convolution operation by comparing 2D and 3D convolution-based CNN
results. Finally, we have conducted another experiment by rotating our dataset splits be-
tween training, validation, and testing subsets to ensure that our models are not overfitting
on the data.

In the first experiment, we explored the impact of patch size (S) on classification per-
formance. The patch size is an important parameter for our classification method since it
determines the amount of variation in textural features on a single patch image. The textural
features are composed of different components such as cell nucleus, cytoplasm, and blank
area in the tissue sample. Therefore, the size of the cropped patches should not be too small to
miss important textural features. Similarly, the classifier might tend to only focus on dense
areas when the size parameter is too large. For this purpose, we have conducted experiments
using four different values for patch size parameters as given in Table 3. We obtained the best
classification accuracy and MCC value with a 100 × 100 pixels patch size. For the remaining
experiments, we have fixed the patch size parameter to 100.

Table 3. Classification results for varying patch size parameter. (focusing parameter γ = 2, weighting
factor α = 0.50, 3D convolutions, see Figure A1 for network topology).

Patch Size (S) Accuracy Precision Recall F1-Score MCC

50 × 50 0.929 0.996 0.924 0.961 0.722
100 × 100 0.970 0.999 0.968 0.984 0.860
150 × 150 0.961 0.973 0.983 0.967 0.774
200 × 200 0.924 0.968 0.947 0.945 0.615

In the second phase of the experiments, we have identified the optimal focal loss
hyperparameters, γ and α, for the HSI dataset. We have compared the classification
performance of the balanced cross-entropy function with the focal loss function. In the focal
loss cost function, the weighting factor, α, enables the loss function to output differentiated
loss values for the minority (healthy) and majority (tumor) classes. It balances the influence
of negative and positive examples on the loss. Meanwhile, the focusing parameter, γ,
effectively reduces the loss contribution from well-classified, namely, easy, examples while
keeping the high loss contribution of hard examples. This way, the focusing parameter,
γ, adjusts the level of focus on the hard examples during the training stage. The focusing
parameter value should be tuned to deal with the misclassified hard examples while
maintaining the overall classification accuracy and MCC score. The optimal values for
the focal loss hyperparameters, α and γ, depend on the severity of the imbalance and the
existence of hard and easy examples in the dataset. Hence, the optimal values depend
on the dataset. As stated in the paper that first introduced the focal loss function [18],
the gain in modifying the focusing parameter, γ, is much larger than that in modifying
the weighting factor, α. The optimal α values are found in the range [0.25, 0.75], and the
α = 0.5 value performs well in most cases. Similar to those findings, as in Table 4, we have
empirically shown that the hyperparameter values γ = 2 and α = 0.5 produce the best
classification performance for our HSI dataset. Although there is an extreme imbalance
in the dataset, the same α value, which is 0.5, is selected for both positive and negative
classes. The reason is that the easy positives are down-weighted with the help of γ and
the negatives require less focus from the loss function. As a result, the model training
concentrates on the hard examples rather than intentionally focusing on the minority class.
The other α values, 0.25 and 0.5, still perform similarly for the same γ values. Therefore,
we can conclude that the value of γ is the critical factor in the loss function, while the α
parameter should be optimized for each γ value. In the CE configuration, the classifier
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outputs the lowest precision since its false positive rate is relatively high. When the α value
is set to 0.25 in BCE, we see a significant improvement in precision thanks to the drop
in false positives. We can confirm that α plays an important role in identifying the cost
function behavior in BCE form. Nevertheless, the FL function performs much better than
the BCE function since it can force the learner to focus on hard examples independent from
the class label.

Table 4. Classification results with HSI dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 3D convolutions, see Figure A1 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

CE 0.891 0.921 0.961 0.906 0.277
BCE (γ = 0, α = 0.25) 0.901 0.938 0.953 0.919 0.412
BCE (γ = 0, α = 0.75) 0.902 0.916 0.981 0.909 0.278
FL (γ = 1.5, α = 0.25) 0.918 0.982 0.926 0.949 0.646
FL (γ = 1.5, α = 0.50) 0.922 0.978 0.935 0.949 0.643
FL (γ = 1.5, α = 0.75) 0.930 0.969 0.952 0.949 0.638
FL (γ = 2.0, α = 0.25) 0.960 0.993 0.962 0.976 0.811
FL (γ = 2.0, α = 0.50) 0.970 0.999 0.968 0.984 0.860
FL (γ = 2.0, α = 0.75) 0.955 0.983 0.966 0.969 0.766
FL (γ = 2.5, α = 0.25) 0.948 0.998 0.943 0.972 0.782
FL (γ = 2.5, α = 0.50) 0.958 0.999 0.955 0.978 0.818
FL (γ = 2.5, α = 0.75) 0.953 0.986 0.962 0.969 0.768

A further experiment we conducted compared the classification performance for
different spectral resolutions. For this purpose, we compared a hyperspectral dataset (HSI),
sampled hyperspectral datasets (HSI-90, HSI-30, and HSI-10), two PCA-based versions of
the hyperspectral dataset (PCA-9 and PCA-3), and RGB versions of our dataset. The initial
HSI dataset consists of 270 bands. By sampling individual bands from the HSI dataset with
a constant frequency, we have generated 90 (HSI-90)-, 30 (HSI-30)-, and 10 (HSI-10)-band
versions of the initial dataset. Additionally, we have applied dimensionality reduction to
our HSI dataset with the help of the PCA method. We have utilized the PCA algorithm
presented in [38], an incremental technique to calculate the PCA of large datasets. We
selected the first nine principal components using a variance threshold value of 0.1%. We
have also formed another PCA dataset by using the first three principal components to
do a three-bands performance comparison with the RGB dataset. The first three principal
components (PCA-3) had a total variance of 93.46%, and the first nine principal components
(PCA-9) had a total variance of 98.60%. In addition to hyperspectral datasets, we have
employed the RGB data simultaneously captured by our hyperspectral camera with HSI
data. The RGB data captured by the camera contains three individual bands taken from
the 630, 540, and 480 nm wavelengths, respectively. We have used the RGB images to
train another 3D-CNN model with the same topology. For supporting three channels
input to our 3D-CNN learner, we have set convolution kernel depth and stride parameters
accordingly and kept the other parameters the same as in its original version. As shown in
Tables 5–10, the focal loss function hyperparameters of 3D-CNN for the datasets are fine-
tuned empirically. According to the experimentation results, HSI performs the best with
the highest accuracy and MCC score. The results of the sampled HSI datasets clearly show
that more hyperspectral bands result in higher classification performance. For the sampled
hyperspectral datasets, the classification accuracy is directly proportional to the number
of bands contained in the dataset. The PCA-9 dataset has the second-best classification
accuracy since it holds most of the variance from the original HSI dataset. The PCA-3
dataset has a lower accuracy than PCA-9, but a higher accuracy and MCC score than the
RGB dataset.
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Table 5. Classification results with HSI-90 dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 3D convolutions, see Figure A2 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

FL (γ = 1.5, α = 0.25) 0.885 0.973 0.897 0.927 0.539
FL (γ = 1.5, α = 0.50) 0.892 0.975 0.903 0.932 0.559
FL (γ = 1.5, α = 0.75) 0.897 0.971 0.913 0.933 0.554
FL (γ = 2.0, α = 0.25) 0.919 0.980 0.929 0.949 0.645
FL (γ = 2.0, α = 0.50) 0.950 0.990 0.955 0.970 0.767
FL (γ = 2.0, α = 0.75) 0.924 0.986 0.929 0.954 0.679
FL (γ = 2.5, α = 0.25) 0.914 0.977 0.926 0.944 0.619
FL (γ = 2.5, α = 0.50) 0.885 0.977 0.894 0.929 0.552
FL (γ = 2.5, α = 0.75) 0.857 0.970 0.868 0.91 0.473

Table 6. Classification results with HSI-30 dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 3D convolutions, see Figure A2 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

FL (γ = 1.5, α = 0.25) 0.877 0.970 0.890 0.921 0.510
FL (γ = 1.5, α = 0.50) 0.885 0.973 0.897 0.927 0.537
FL (γ = 1.5, α = 0.75) 0.885 0.971 0.90 0.926 0.53
FL (γ = 2.0, α = 0.25) 0.889 0.974 0.900 0.930 0.55
FL (γ = 2.0, α = 0.50) 0.931 0.985 0.937 0.957 0.692
FL (γ = 2.0, α = 0.75) 0.909 0.975 0.923 0.941 0.598
FL (γ = 2.5, α = 0.25) 0.883 0.971 0.897 0.925 0.524
FL (γ = 2.5, α = 0.50) 0.861 0.973 0.870 0.914 0.495
FL (γ = 2.5, α = 0.75) 0.857 0.97 0.868 0.91 0.473

Table 7. Classification results with HSI-10 dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 3D convolutions, see Figure A2 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

FL (γ = 1.5, α = 0.25) 0.857 0.967 0.871 0.909 0.46
FL (γ = 1.5, α = 0.50) 0.857 0.970 0.868 0.910 0.472
FL (γ = 1.5, α = 0.75) 0.859 0.966 0.874 0.909 0.46
FL (γ = 2.0, α = 0.25) 0.914 0.978 0.926 0.945 0.622
FL (γ = 2.0, α = 0.50) 0.910 0.977 0.922 0.942 0.61
FL (γ = 2.0, α = 0.75) 0.898 0.973 0.911 0.934 0.565
FL (γ = 2.5, α = 0.25) 0.867 0.973 0.876 0.917 0.505
FL (γ = 2.5, α = 0.50) 0.862 0.973 0.871 0.914 0.498
FL (γ = 2.5, α = 0.75) 0.890 0.970 0.905 0.928 0.534

Table 8. Classification results with PCA-9 dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 3D convolutions, see Figure A2 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

FL (γ = 1.5, α = 0.25) 0.897 0.975 0.909 0.934 0.571
FL (γ = 1.5, α = 0.50) 0.911 0.977 0.923 0.943 0.614
FL (γ = 1.5, α = 0.75) 0.911 0.974 0.926 0.941 0.602
FL (γ = 2.0, α = 0.25) 0.945 0.987 0.952 0.966 0.743
FL (γ = 2.0, α = 0.50) 0.957 0.988 0.964 0.972 0.788
FL (γ = 2.0, α = 0.75) 0.927 0.987 0.932 0.956 0.687
FL (γ = 2.5, α = 0.25) 0.930 0.980 0.941 0.954 0.674
FL (γ = 2.5, α = 0.50) 0.892 0.981 0.897 0.934 0.583
FL (γ = 2.5, α = 0.75) 0.882 0.976 0.891 0.927 0.544
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Table 9. Classification results with PCA-3 dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 3D convolutions, see Figure A2 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

FL (γ = 1.5, α = 0.25) 0.873 0.971 0.885 0.919 0.503
FL (γ = 1.5, α = 0.50) 0.879 0.970 0.894 0.922 0.511
FL (γ = 1.5, α = 0.75) 0.857 0.941 0.897 0.897 0.336
FL (γ = 2.0, α = 0.25) 0.899 0.977 0.910 0.936 0.584
FL (γ = 2.0, α = 0.50) 0.913 0.983 0.919 0.947 0.638
FL (γ = 2.0, α = 0.75) 0.906 0.975 0.920 0.939 0.590
FL (γ = 2.5, α = 0.25) 0.888 0.976 0.897 0.930 0.556
FL (γ = 2.5, α = 0.50) 0.889 0.974 0.900 0.930 0.550
FL (γ = 2.5, α = 0.75) 0.923 0.972 0.942 0.947 0.626

Table 10. Classification results with RGB dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 3D convolutions, see Figure A2 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

FL (γ = 1.5, α = 0.25) 0.852 0.964 0.868 0.905 0.440
FL (γ = 1.5, α = 0.50) 0.851 0.966 0.865 0.905 0.449
FL (γ = 1.5, α = 0.75) 0.828 0.936 0.869 0.879 0.269
FL (γ = 2.0, α = 0.25) 0.900 0.974 0.914 0.936 0.573
FL (γ = 2.0, α = 0.50) 0.891 0.972 0.905 0.930 0.544
FL (γ = 2.0, α = 0.75) 0.882 0.970 0.897 0.924 0.520
FL (γ = 2.5, α = 0.25) 0.859 0.970 0.871 0.911 0.479
FL (γ = 2.5, α = 0.50) 0.853 0.968 0.865 0.907 0.458
FL (γ = 2.5, α = 0.75) 0.878 0.964 0.897 0.919 0.486

In our fourth experiment, we compared the implications of convolution operation
on classification performance. For this purpose, instead of a 3D convolution operation,
we trained another classification model with a 2D convolution operation with the same
network topology. We fine-tuned the focal loss hyperparameters for the 2D convolution
case as given in Table 11. We found that the hyperparameter set, γ = 2 and α = 0.5, that was
best with 3D-CNN was also best for the 2D-CNN model. Two-dimensional convolution
operates in two directions of the image data, whereas 3D convolution slides in three
directions of the hyperspectral cube. Therefore, the descriptive power of the feature sets
collected by 2D and 3D convolution operations are different. As depicted in Table 12, the
3D convolution operator performed better than the 2D version. From the analysis, we
infer that the 3D convolution operator can utilize the full potential of hyperspectral data
while the 2D convolution operator causes a deterioration of classification performance for
hyperspectral data.

Table 11. Classification results with HSI dataset for varying cost functions and respective parameter
sets. (patch size parameter S = 100, 2D convolutions, see Figure A3 for network topology).

Loss Function Accuracy Precision Recall F1-Score MCC

FL (γ = 1.5, α = 0.25) 0.891 0.974 0.903 0.931 0.554
FL (γ = 1.5, α = 0.50) 0.885 0.972 0.897 0.926 0.534
FL (γ = 1.5, α = 0.75) 0.885 0.970 0.900 0.926 0.527
FL (γ = 2.0, α = 0.25) 0.922 0.983 0.929 0.952 0.663
FL (γ = 2.0, α = 0.50) 0.934 0.986 0.940 0.959 0.706
FL (γ = 2.0, α = 0.75) 0.920 0.980 0.930 0.949 0.646
FL (γ = 2.5, α = 0.25) 0.932 0.983 0.94 0.957 0.689
FL (γ = 2.5, α = 0.50) 0.923 0.982 0.931 0.952 0.658
FL (γ = 2.5, α = 0.75) 0.915 0.975 0.929 0.944 0.615
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Table 12. Comparison of classification results of 3D-CNN and 2D-CNN models trained by HSI data.

Model Accuracy Precision Recall F1-Score MCC

HSI-3D-CNN 0.970 0.999 0.968 0.984 0.860
HSI-2D-CNN 0.934 0.986 0.940 0.959 0.706

In our fifth experiment setup, we showed that our model is free from overfitting
by rotating the split sets, training, validation, and testing, between each other. There
are 3 healthy and 27 unhealthy patients in our whole dataset. We created three different
data-splitting configurations by putting one healthy and nine unhealthy patients in each
of the training, validation, and testing sets. We rotated the sets between each other and
repeat model training for each configuration. As shown in Table 13, we obtained similar
classification performance results for all three configurations. From this experiment, we
empirically show that our 3D-CNN model is capable of learning descriptive features from
hyperspectral space without overfitting the given training data.

Table 13. Comparison of classification results of 3D-CNN when the training, validation, and testing
sets are rotated between each other. (patch size parameter S = 100, 3D convolutions, see Figure A1 for
network topology).

Model Accuracy Precision Recall F1-Score MCC

HSI-3D-CNN
(configuration-1) 0.970 0.999 0.968 0.984 0.860

HSI-3D-CNN
(configuration-2) 0.965 0.997 0.963 0.981 0.836

HSI-3D-CNN
(configuration-3) 0.968 0.996 0.968 0.982 0.846

4. Discussions and Conclusions

In this study, we have proposed a new HCC tumor detection method utilizing hy-
perspectral imaging and a custom deep-learning model. We have built a biological tissue
imaging system by integrating a VNIR hyperspectral camera with a light microscopy device.
We collected hyperspectral images of tumor and healthy liver tissues with the help of our
imaging system. We have designed a custom 3D-CNN classification topology to utilize the
full potential of HSI data. In our CNN topology, we have included four convolution layers
with max-pooling layers between them. The max-pooling layers down-sample the data by
halving the size of the dataset at every iteration, effectively reducing model complexity. The
use of 3D convolution layers enables us to leverage both textural and spectral features in a
single training pipeline. Moreover, our method does not require separate feature extraction
operations on the dataset, and the learner can automatically extract useful features from
the training set. In addition to 3D convolutions employed in the deep learning model,
we have optimized the network topology by replacing the traditional cross-entropy cost
function with the focal loss cost function. In this way, we have significantly overcome
the class imbalance problem residing in our dataset. The focal loss function made the
classification model less biased towards the majority class (unhealthy). Well-classified easy
examples are down-weighted with the help of the focal loss function; thus, the training
procedure concentrates on learning hard examples. We have empirically optimized the
hyperparameters of the focal loss function, γ and α, for each experiment configuration.
Notably, the γ parameter in the focal loss function has a critical impact on the classification
performance whereas α has a minor effect on the results.

The majority of computer-aided histopathology studies rely on RGB data captured
with a Complementary Metal-Oxide Semiconductor (CMOS) or CCD sensors [39–41]. Our
study utilizes a much wider range of the electromagnetic spectrum. The hyperspectral
dataset used in our study includes contiguous 270 bands between 400 to 800 nm in the
spectrum, whereas the RGB dataset includes three individual bands taken from 630, 540,
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and 480 nm. With the help of hyperspectral imaging, the subject material’s chemical
composition can be analyzed in addition to conventional spatial attributes such as size,
shape, and texture. The hyperspectral cube is versatile for our classification task since it can
represent the variation of material properties in fine detail as spectral signatures. Unlike
an RGB dataset, the descriptive features along the spectral dimension can be effectively
captured by a 3D convolution operation. Our 3D-CNN-based supervised learner can
describe the nonlinear relationships between the features in both spectral and spatial
dimensions. That is, features such as corners, edges, and textures in the spatial plane
can be associated with features such as peaks, dips, slopes, and valleys in the spectral
signatures of pixels. The large amount of information within the hyperspectral cube
enables the deep learning model to build a strong classifier with highly descriptive feature
extraction competency. Moreover, by sampling the original hyperspectral dataset into
lower dimension datasets such as HSI-90, HSI-30, and HSI-10, we observe the advantage of
having more bands in classification. In other words, the deep learning model’s prediction
power is enhanced by introducing more spectral bands to the learner. Additionally, we
have used PCA for dimensionality reduction on the original hyperspectral data with
270 bands. We have generated two other datasets with, first, nine principal components
(PCA-9) and then three principal components (PCA-3). The PCA method significantly
reduces data complexity and improves the signal-to-noise ratio; hence it becomes easier
for the learner to converge. However, the CNN models trained with PCA data yielded
lower classification accuracy than the CNN model trained with HSI data. The PCA-9
dataset having a maximum variance of 98.60% performed almost as well as the HSI dataset.
Considering the simplicity of PCA-9 compared to the original HSI dataset, PCA provides a
cost-effective way of utilizing hyperspectral data for our task. The PCA-3 dataset performed
better than the RGB dataset, indicating that hyperspectral data compressed into three bands
contains more useful information for classifying tissue samples than RGB. Experimental
results validate the resourcefulness of the HSI dataset over its RGB and PCA counterparts
on classification accuracy.

Although we have proposed a 3D-CNN classification model with promising results,
there are limitations to our study. Firstly, the dataset employed in the study needs to be
extended by adding more tissue samples. With more data fed into the training stage, the
resultant classifier is expected to be more resistant to the overfitting phenomenon and have
a better generalization capability. It is desirable to assess our model with further validation
with a larger tissue sample dataset collected from various laboratories labeled by different
pathologists. This way, the dataset’s sample variation can be boosted, and the classification
model can span a larger area in feature space.

In summary, the model can be used for supporting pathologists’ examination or initial
screening. Our methodology can serve as a decision support tool for novice pathologists
even though the model does not provide a holistic tissue examination, including inspection
of inflammation, necrosis, and blood vessels, as pathologists do.
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