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ABSTRACT

PHENOMENOLOGICAL APPROACHES ON THE PHASE TRANSITION
MECHANISMS OF SOME FERROELECTRIC MATERIALS

Kara, Nazan
Doctor of Philosophy, Physics
Supervisor: Prof. Dr. Hamit Yurtseven
Co-Supervisor: Assoc. Prof. Dr. Ali Kiraci

January 2023, 105 pages

Several phenomenological studies were carried out to investigate the phase transition
mechanisms of some ferroelectric crystals. In particular, we focused on the
compressible Ising model to explain the anomalous behavior of specific heat for such
ferroelectrics exhibiting second-order phase transitions in the vicinity of the
transition temperatures. The temperature dependence of some thermodynamic
functions such as internal energy, enthalpy, entropy, and free energy of some
ferroelectric materials was also predicted. The thermodynamic quantities of
ferroelectrics are obtained by calculating the order parameters using the experimental
data from the literature. The calculated results are then interpreted with the ones

stated in previous experimental studies.

Keywords: Phase Transitions, Ferroelectrics, Ising Model, Landau Theory
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CESITLI FERROELEKTRIK MALZEMELERIN FAZ GECIS
MEKANIZMALARINA FENOMENOLOJIK YAKLASIMLAR

Kara, Nazan
Doktora, Fizik
Tez Yoneticisi: Prof. Dr. Hamit Yurtseven
Ortak Tez Yoneticisi: Dog. Dr. Ali Kiract

Ocak 2023, 105 sayfa

Baz1 ferroelektrik kristallerin faz gecis mekanizmalarint arastirmak igin bir dizi
fenomenolojik ¢alisma yapilmistir. Ozellikle, gecis sicakliklarmin yakiinda ikinci
derece faz gecisleri sergileyen bu tiir ferroelektriklerin 6zgiil 1sisinin anormal
davranigin1  agiklamak i¢in sikistirilabilir Ising modeline odaklandik. Bazi
ferroelektrik malzemelerin i¢ enerji, entalpi, entropi ve serbest enerji gibi
termodinamik fonksiyonlarnin sicakliga bagliligi da ongorilmiistiir. Ferroelektrik
malzemelerin termodinamik 6zellikleri, literatiirdeki deneysel verilerden elde edilen
diizen parametreleri kullanilarak hesaplandi. Hesaplanan degerler yine literatiirdeki

sonugclarla karsilastirilarak yorumlandi.

Anahtar Kelimeler: Faz Gegisleri, Ferroelektrikler, Ising Model, Landau Teori
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CHAPTER 1

INTRODUCTION

Ferroelectric materials demonstrate electric dipole moments even in the absence of
an external electric field, which has spontaneous electric polarization [1,2]. These
materials offer a wide range of useful properties, such as hysteresis loop, high
permittivity, high piezoelectric effects, high pyroelectric coefficients, strong electro-
optic effects, and anomalous temperature coefficients of resistivity [3]. Also, they
can occur in a wide variety of forms, including single crystals, ceramics, polymers,
and thin films [3]. Ferroelectric materials can be used in a wide variety of fields due
to their non-linear nature such as electronics, medicine, material science, marine,
memory devices, and many applications in daily life. However, there are still lot of

research ongoing on various promising ferroelectric materials.

As a typical behavior of ferroelectric materials, ferroelectricity usually disappears
above a special temperature known as transition temperature (Curie temperature, Tc)
and material becomes paraelectric. This phenomenon has been defined as a phase
transition. The present study aims to investigate the phase transition mechanism in
terms of various dynamical properties such as order parameter, damping constant,
activation energy, etc. in the vicinity of transition temperatures for ferroelectric
materials; Lanthanum Borogermanate (LBG) crystals, Pyridinium Fluorosulfonate,

Imidazolium Perchlorate, and Zirconia.

In the scope of present study, firstly, two phenomenological models, namely the
compressible Ising model and the Landau model, have been used to analyze the
specific heat and the dielectric constant data, respectively, for the pure and Nd**
doped LaBGeOs (LBG) crystals. The critical exponent of the specific heat was
extracted in both ferroelectric and paraelectric phases of the crystals studied here



within the temperature intervals of |T — T.| < 4 K. The extracted values of critical
exponent were then utilized to make predictions about a variety of thermodynamic
parameters, including enthalpy, entropy, and the Gibbs free energy. The measured
values of birefringence were related to the order parameter below the transition
temperature Tc in terms of the analysis of dielectric constant data within the Landau

theory framework.

Secondly, the spin-lattice relaxation time T1" for protons nuclei is calculated in terms
of the pseudospin-phonon (PS) coupled and the energy fluctuation (EF) models close
to the IV-IIl solid-solid phase transition of T, = 235K in Pyridinium
Fluorosulfonate ((CsNHes)FSOs). Calculation was performed by associating the
observed second moment of the H as the order parameter below T, and as the
disorder parameter above T.. Values of the activation energies for the cation
reorientation in the (CsNHes)FSOs crystal are also deduced by using both PS and EF
models. Additionally, the observed dielectric permittivity of this crystal is analyzed
within the framework of the Landau theory, and values of the spontaneous
polarization (SP) are determined as a function of temperature. The normalized values
of SP are used in PS and EF models to extract the activation energy for the
reorientation of the dipole moment of this compound arising from cation-anion
interaction. The results show that the PS and EF models can describe the observed
behavior of the spin-lattice relaxation time adequately for the I\V-11I solid-solid
transition in (CsNHs)FSO:s.

Thirdly, the temperature dependence of the relaxation time of imidazolium
perchlorate (Im-ClOa4) was calculated from the pseudospin-phonon coupled (PS) and
the energy fluctuation (EF) models close to the first order phase transition
temperature of 247 K. Calculation was performed in terms of the proton second
moment that was associated with the order parameter as predicted from the mean
field theory. The results were in good agreement with the observed data. In addition,
values of the activation energy were deduced in terms of the Arrhenius plot using

the calculated values of the relaxation time from both PS and EF models.



The anomalous behavior of the specific heat of Im-ClOs was analyzed in terms of a
power-low formula (including the critical exponent a and the interaction parameter
JA) deduced from the Ising model in the vicinity of the lower phase transition
temperature of Tc = 247 K. Moreover, some thermodynamic functions such as
entropy and enthalpy were predicted as a function of temperature using the values of

a and JA extracted from the observed specific heat data of Im-ClOa.

In addition, the critical exponents of the Im-CIO4 were examined, which correlated
the reduced temperature to the specific heat Cp, polarization and susceptibility in the
vicinity of second-order transition temperature Tc = 373 K, so that the critical
exponents were extracted for each relation. Their values have been examined if they
are compatible with any of the universality classes as given in the literature. Finally,
as the well-known scaling relation, Rushbrooke inequality (RI) has been investigated
whether it is compatible with the values of the critical exponent, which were

obtained.

Finally, the isothermal Griineisen parameters yt of various Raman modes in Zirconia
(ZrO2) were calculated as a function of pressure at room temperature. For this
calculation of yt, the pressure dependence of both Raman frequencies for the bands
at 150, 260, 320, 480, 602, and 650 cm™, with the cell volume of the ZrO2, were
obtained from the literature. The two lowest modes (150 and 260 cm™) exhibit an
unusual over-damped soft mode behavior upon increasing pressure, as stated earlier.
Therefore, the pressure dependencies of the frequencies of those two lowest modes
were associated with the order parameter S to predict the half width at half maximum
(HWHM or damping constant) from the pseudo-spin phonon coupled (PS) and the
energy fluctuation (EF) models for the pressure gaps from 0 GPa to 5 GPa.






CHAPTER 2

LITERATURE REVIEW

Ferroelectricity was not observed in any other material for many years after it was
discovered with Rochelle salts [4] until it was observed in KH2PO4 (KDP) in the
1930s and barium titanate (BTO) in the 40s [5]. It can be claimed that molecular
ferroelectrics could be alternatives to perovskites, if some of their features, like
spontaneous polarization, can be measured closer to perovskites [6-7]. After many
studies in the field, it has been revealed that molecular ferroelectrics can meet the
need and have more environmentally friendly [8] solutions than perovskites. With
the inclusion of these new materials in ferroelectrics, many new features have been
added; such as being soft and flexible [9-10], having lightweight [7], being lead-free
[8], being able to work at low temperatures [7,10], and being biocompatible [11].

2.1 Ferroelectric Materials

The electric dipole moment per unit volume of a substance is used to define
polarization (P) and is related to dielectric displacement (D) linearly [1,2]. In
ferroelectric materials both P and D, are non-linear functions of electric field (E). A
ferroelectric crystal typically consists of fields referred to as domains of homogenous
polarization, where each one has the same direction of polarization. The magnitude
of the polarization within a single ferroelectric domain is defined as spontaneous
polarization (Ps). However, the polarization could be in different directions for the
adjacent domains, therefore at first, when there is no electric field (E=0) applied, the

net polarization of the sample is equal to zero. Since the relation is non-linear, the



polarization displays the closed curve known as the hysteresis loop by a change of

the electric field.

Hysteresis shows how a material’s current state depend on its history. To investigate
the properties of ferroelectric materials, the electric field polarization (P-E) cycle is
measured. As demonstrated in the Figure 2.1, the polarization does not change
linearly with the electric field for ferroelectric materials.

P(X) 4
() il
T
< >
L )
LI T
L]  /

Ferroelectric

Figure 2.1. A hysteresis loop illustrating the spontaneous polarization (Ps) and

remnant polarization (Pr) [2].

When an electric field is applied to the crystal, the domains containing polarization
components along the applied field direction expand, that causes an increase in the
polarization. In time, the polarization saturates and the crystal becomes a single
domain when all the domains are oriented in the direction of the applied field. There
will be some distortion in the polarization direction of the crystal. As seen in the
Figure 2.1, the up and down states correspond to the points where the ferroelectric is
fully saturated, either positive or negative, respectively. These points also refer to
spontaneous polarization. As expected, the polarization decreases when the applied
electric field decreases, but it follows a different path and does not reach zero when

the electric field vanishes. Remanent polarization (Pr) is the value of polarization



where the electric field disappears as shown in the figure. Additionally, as the reverse
electric field increases, the polarization in the opposite direction becomes saturated.
The hysteresis curve will be obtained (Figure 2.1) by once more inverting the electric
field.

2.2 Properties of Examined Ferroelectric Materials

2.2.1 Lanthanum Borogermanate (Nd** doped LaBGeOs, LBG) crystals

At about a Curie temperature of Tc 804K, the ferroelectric material lanthanum
borogermanate, LaBGeOs or simply LBG, passes through a phase transition.
According to a Rulmont and Tarte [13], LBG has a crystalline structure similar to
that of stillwellite (CeBSiOs)., At about room temperature, in ferroelectric phase,
LBG is in the trigonal polar space group P31 containing three formula units per cell
(24 atoms) and the unit cell parameters are a= 6.9995 A, c= 6.8596 A [14]. In the
ferroelectric phase the crystal structure of LBG has been reported [15] as the boron
(B), germanium (Ge) and lanthanum (La) ions are surrounded by oxygen (O)
forming BO4, GeOs tetrahedra and LaOg polyhedra. In order to create helical chains
along the c-axis, the BOxs tetrahedra are connected by their corners. By sharing the
oxygen atoms at the corners, the GeOs tetrahedra connect two subsequent BO4
tetrahedra in the chain. The chain of BO4 and GeOQs tetrahedra is connected by the
large LaOg polyhedra. Below Tc, LBG crystals exhibit the following advantageous
characteristics; spontaneous polarization Ps = 9uC/cm?® at 300K [16], high Curie-
Weiss constant (order of 10* K) [17], high pyroelectric coefficient y = dPs/dT =
10nC/cm? at 300K, relatively low permittivity (g.= €, = 13.4 at 1 MHz) [18], high
electrical resistivity (py> 10’Q.cm) and low dielectric loss (tand = 0.001) [18]. This
model states that the LBG in non-polar space group P3:21 has three formula units
per cell (z = 3), and the unit cell parameters are a =6.9926 A and ¢ = 6.9315 A above
Tc (paraelectric phase) [18]. The BO4 tetrahedra disorder above Tc that was revealed

by this model [18] can be explained by the dynamical displacement of the La and Ge



atoms to place them on the twofold axis. These displacements of La and Ge concern
the B and Os atoms close to the c-axis which occupy with equal probability two sites

with distance of approximately 0.6 A and 0.15 A, respectively.

There have been a lot of conflicting reports regarding the structural phase transition
mechanism of LBG. An order-disorder process is indicated by the Rhodes-Wohforth
plot referred by Tokunaga [19] and the minimal entropy change AS =0.114 R =R
In (1.121) [16] for the LBG resembling displacive type transition. Similarly, Onodera
et al. [16] and Stefanovich et al. [17] reported the Landau coefficients that indicated
order-disorder mechanism. Moreover, it has been stated by Hruba et al. [20] that
small excess entropy is consistent with the disorder of the atom which is one of the
eight atoms in the formula unit, supporting the order-disorder aspect of transition.
According to Kaminskii et al. [12] and Rulmont and Tarte [13], the unpolarized
infrared (IR) and Raman spectra of LBG have been described. Pisarev and Serhane
[21] noted a partial softening of the low frequency created by the A symmetry close
to the Tc. The polarized Raman spectra of LBG glasses were published by Califano
et. al. [22]. Milov and Strukov experimentally determined the piezoelectric moduli
of the LBG crystal [23]. To describe the structural, electrical, and vibrational
characteristics of LBG crystals, density functional theory (DFT) computations were
carried out [15,24].

Despite B203 evaporation, a high melt viscosity, and a significant tendency for
undercooling, it is very challenging to create LBG crystals [25]. They offer a great
deal of promise for application in the creation of nonlinear optical devices such
tunable waveguides and fiber gratings. Nd** or Pr®* doped LBG in particular shows
promise as a self-frequency-doubling (second harmonic generation, SHG) crystal
that can meet the needs of the development of short-wavelength lasers. It has
reported in the literature on how the rare-earth metals (Gd, Eu, Tm, and Nd) doping
affect the ferroelectric characteristics of LBG [25,26]. On the basis of the
compressible Ising model, the anomalous behavior of the specific heat, which is a
spin for the potential phase transition, has been examined. According to Rice [27],

the specific heat at constant volume (Cv) for a first order transition reaches infinity



at the transition temperature. On the other hand, Larkin and Pikin [28] claimed that
for weakly first order or almost second order transitions, the specific heat at constant
pressure (Cp) goes to infinity at the transition temperature. As the transition
temperature is approached from below, Baker and Essam [29] shown that Cp does
not change from being finite. For such crystals displaying weakly first order or
almost second order transitions, Yurtseven [30] developed a compressible Ising
model superimposed on an Einstein and/or Debye model in light of these research.
In order to explore the unusual behavior of the specific heat at the phase transition
temperatures for several ferroelectric materials, such as ammonium halides [31,32],
LiKSO4 [33], TMA-ZnBr4 [34], and PyBF4[35], Yurtseven and/or coworkers have

employed his model.

In terms of the compressible Ising model with the critical exponent, the critical
behavior of the specific heat for (La1-xNdx)BGeOs crystals [26], where x= 0; 0.03;
0.05, was examined in the region of the phase transition temperatures of Tc = 802.39
K (x=0), Tc=816.63 K (x=0.03), Tc =823.27 K (x = 0.05). The critical exponent,
which was taken from the measured [26] specific heat data, was used to determine
the temperature dependence of the enthalpy (H), the entropy (S), and the Gibbs free
energy (G) of these three compositions. Additionally, the Landau phenomenological
theory was used to examine the inverse dielectric susceptibility (y 1) obtained from
the observed [26] dielectric constant data, and the Landau coefficients were
calculated. The measured [26] birefringence (normalized) of these compositions was

used as the order parameter (squared) in this investigation.

2.2.2 Pyridinium Fluorosulfonate (CsNHg)FSO3

The pyridinium (CsNHs cation, or shortly Py) salts can be formed as a result of the
reaction of the pyridine (CsNHs), a strong organic base, with various acids. These
salts are widely applied as disinfectants in the medical field (foams, eye drops, and
solutions). Moreover, pyridinium compounds have been used as dyes (acylating

agents), phase transfer catalysts, and intrinsic fluorescence [36]. They are synthetic



building blocks for obtaining piperdine, dihydropyridire and substituted pyridine
[37]. A simple principle of classification for pyridinium salts has been proposed [38]
by considering the number of solid-solid phase transitions: salts of type N undergo
N transformations. A few monomorphic compounds (Type 0) of these salts including
tetrahaloarutes [39] and nitrate [40] anions have been reported. Some examples of
the Type 1 salts with the inclusion of chloride, bromide, iodide [41],
hexafluorophosphate [42] and antimonite [43] anions have been reported to undergo
one solid-solid phase transition. Besides, the tetrafluoroborate [44], percholarete [45]
and perhenate [46] salts have exhibited two successfully phase transitions (Type 2).
The dynamic orientational disorder of the Py cations in the high temperature phases
of the Type 2 salts has been described by a model of stochastic jumps among the
equivalent potential barriers [47]. The orientational order below the lower phase
transition is lost on heating as a result of the Py cation's infrequent reorientation
between likely non-equivalent potential barriers in the low-temperature phases of
Type 2 salts. It is also noteworthy that for Type 2 salts, the alignment of the
permanent dipole moments of the Py cations in an applied electric field gives rise to
the existence of a reversible spontaneous polarization in the intermediate phases
(mesophases), as stated before [46]. As a member of Type 3 of these salts,
pyridinium fluorosulfonate (CsNHs)FSOs or shortly PyFSOs undergoes three solid-
solid phase transitions at 235 K (IVV-111 transitions), 272 K (I11-11 transition), and
282 K (I1-1 transition) as the temperature was lowered from the room temperature
[48]. At room temperature (paraelectric phase), PyFSOs belongs to the trigonal
crystal system with the space group R3m and its lattice parameter in this structure
was reportedas a = 5.762 A, a = 97.86° and Z = 1 [48]. Both Py cation and FSOs3
anion reveal 3m symmetry and they are dynamically strongly disordered. Also, it is
reported that the Py cation reorients around its pseudohexad axis perpendicular to the
ring plane. The center of the gravity of Py cation occupies site a (0,0,0) while the S
atom occupies site b (Y2, ¥4, 1%2), as reported previously [48]. On the other hand, since
the position of the nitrogen (N) atom could not be determined, all the pyridine ring

atoms are refined as carbon atoms so that each site f(x, x, 0) contains 5/6 C and 1/6

10



N. For the same reason, fluorine (F) atom was refined together with the three oxygen
atoms as the (50,)~ anion so that one can obtain six positions for both F and O

atoms, each containing 1/6 F and %2 O with relatively large temperature factors [48].

The ferroelectric properties of PyFSOs have been studied experimentally by Polish
scientists [48]. In their study, they reported the temperature dependence of the
specific heat and the entropy by using Differential Scanning Calorimetry (DSC).
Also, they measured the temperature dependence of the seconds moments and spin
lattice relaxation time T1 of *H and °F by using the nuclear magnetic resonance
(NMR) spectrometer. In addition, they performed the measurements of the complex

dielectric permittivity and obtained the dielectric hysteresis loop of PyFSOs [48].

The spin lattice relaxation time (SLRT) for proton nuclei (T1") was calculated as a
function of temperature close to the IV-IIl transition (T, = 235 K) using the
pseudospin-phonon coupled (PS) model [49] and the energy fluctuation (EF) model
[50]. For this calculation, we used the temperature dependence of the observed
proton second moment [48] as an order parameter. By fitting the SLRT calculated
from both models (PS and EF) to the observed data [48], the parameters were
determined and the observed behavior of SLRT was explained close to the IV-III
solid-solid transition in PyFSOs. In addition, values of the activation energy for the
cation reorientation in PyFSO3s were deduced by using the damping constant which
was calculated from both models (PS and EF) in the temperature range studied.

Finally, the observed [48] dielectric permittivity of PyFSO3 was analyzed by means
of the Landau theory in the vicinity of the I\V-111 solid-solid transition and the Landau
coefficients a2 and a4 were determined. These coefficients were then used to predict
the spontaneous polarization and to calculate the activation energy for the

reorientation of the dipole moment within the framework of both PS and EF models.
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2.2.3 Imidazolium Perchlorate (ImCIQO.)

Imidazolium salts (IMSs) are derived from imidazole rings, which are found all over
nature and have the capacity to form hydrogen bonds with both drugs and proteins
as well as metals as ligands [51]. IMSs can interact electrostatically with biological
systems in a way that their parent imidazoles cannot because they lost the ability to
link both metals and hydrogen [52]. Imidazolium salts are referred to room
temperature ionic liquids (RTILs), which include substantial organic cations and
inorganic anions, and can be employed as electrolytes due to their broad chemical
stability [53] and remarkable catalytic capabilities [54,55]. Moreover, they have been
utilized to dissolve carbohydrates [56], cover metal nanoparticles with metal ions
[57], and produce polyelectrolyte brushes on surfaces [58]. In contrast to
ferroelectric oxides, organic-inorganic molecular ferroelectrics have gained
prominence due to their favorable traits, including being environmentally friendly
(particularly due to their lead-free structure), having both a low cost and
mechanically flexible structure [6, 59]. In particular, as a member of organic-
inorganic molecular ferroelectrics, imidazolium perchlorate (CsN2HsCIO4 or Im-
ClO4) can be used as an effective 3D printed metamaterial that produces rapid-
prototype for reducing the manufacturing time of ferroelectrics from hours to
minutes, as pointed out previously [7]. Moreover, it has been noted [60] that Im-
ClOa4 thin films demonstrate superior electromechanical coupling over PZT films,
making them a desirable lead-free option for a variety of uses in sensor technology

and electro-optics.

Im-ClOu is reported to go through three successive solid-solid phase transitions at
487, 373, and 247 K [61]. According to Pajgk et al. [61], the Im-ClO4 crystal
structure is trigonal, with a space group of R3m, Z=1 and a lattice parameter a =
5.484(1) A with a value of a = 95.18(2)°. Moreover, as previously reported [61],
cations are very disordered where perchlorate ions are ordered at room temperature.
The crystal structure is also trigonal above room temperature, with a space group of

R3m, a = 5.554(1) A and & = 95.30(2)°, but all of the ionic sublattices are disordered
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[61].The dielectric and optical properties of Im-CIO4 have been declared by Czapla
et al. [62] by studying the x-ray diffraction, dielectric and birefringence
measurements. The precise measurements of specific heat changes of this crystal
have been performed by Przeslawski and Czapla [63] using an ac calorimeter. The
polymorphic phase transitions, appearance of the ferroelectricity, molecular
structure, and molecular dynamics of Im-CIO4 have been investigated by Pajak et.
al. [61] using differential scanning calorimetry (DSC), proton NMR relaxation and

second moment, x- ray diffraction and dielectric spectroscopy measurements.

In the present study, the proton spin lattice relaxation time (SLRT), denoted as Tz (s)
has been calculated as a function of temperature in the vicinity of the solid-solid
phase transition temperature Tc = 247 K, by using both the pseudospin-phonon (PS)
coupled and the energy fluctuation (EF) models. This calculation has been performed
by using the observed [61] proton second moment (M) as an order parameter below
Tc and as a disorder parameter above Tc according to both models. Moreover, the
fitting procedure was implemented for the calculated data of SLRT, by obtaining the
fitting parameters at first, then the attitude of the observed values of SLRT was
denoted around the transition temperature. Finally, the activation energy values are
computed from the correlation of the damping constant with respect to the reciprocal

of temperature.

As an example of molecular ferroelectrics, Croconic acid was found to have a high
spontaneous polarization of roughly 23 pC cm [60], which is comparable to BTO.
Also, diisopropylammonium bromide (DIPAB), as another example, has a high
ferroelectric phase transition temperature of 426K, which is higher than that of BTO,
and also has a strong piezoelectric response with well-defined ferroelectric domains
[59,61]. Similarly, with strong spontaneous polarization, low coercivity, superior
electromechanical coupling, and high Curie temperature imidazolium perchlorate
(ImCI0O4) can be accepted as promising molecular ferroelectric. As a trigonal crystal
Im-ClOa4 has a high melting temperature and high ferroelectric transition temperature

so that it can be processed at high temperatures [63, 64].
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Im-ClOq4 is a molecular ionic crystal with pseudopentagonal cation symmetry that
can be categorized by disordered molecular structure [62]. Thanks to the foregoing
features mentioned also for molecular ferroelectrics, ImCIlO4 can be used in sensing,
actuation, data storage, electro-optics, and molecular flexible electronics [60]. Im-
ClOa4 has been reported [61] to undergo three successive solid-solid phase transitions
at 487, 373 and 247 K. Im-ClO4 is polar below Tc= 373.6 K according to the
structural analysis and second harmonic generation measurement [62].

In the previous study, we dealt with the structural anomalies at the temperatures close
to the first-order phase transition temperature of 247 K. The temperature dependence
of the relaxation time of Im-CIO4 was computed using the pseudospin-phonon
coupled (PS) and energy fluctuation (EF) models [66]. In the present study, the
anomalous behavior of the specific heat of the same material Im-ClO4 was analyzed
in terms of a power-low formula deduced from the Ising model in the vicinity of the
lower phase transition temperature of Tc = 247 K and the critical exponents which
were deduced from the specific heat, polarization, and susceptibility, have been
investigated around the second-order phase transition temperature Tc = 373 K. So,

we aimed to have a detailed series of study about Im-ClOa.

2.2.4 Zirconium dioxide (Zirconia, ZrQO,)

Zirconium dioxide (Zirconia, ZrO2) has complex polymorphism, including high-
pressure and high-temperature phases. The unique properties of these phases ensured
the broad and diverse application of ZrO2 and ZrO2-based materials in various fields
[67]. Many remarkable properties can be possessed; refractoriness, low volatility,
high chemical resistance, extraordinary mechanical strength, wear resistance, low
thermal conductivity, wide bandgap, oxygen conductivity, high refractive index, and
biological inertness [68]. The significance of Zirconia in engineering ceramics is
widely acknowledged; among the many useful uses are high-temperature equipment,

thermal barriers, and oxygen sensors. The reason why prospective application of
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particular current interest is its possible use to replace SiO: as the gate-dielectric

material in metal-oxide-semiconductor (MOS) device [69].

Currently, ZrO2 is a major component of modern ceramic material which is well
acknowledged as possesses three polymorphic modifications under standard

pressure: monoclinic, tetragonal, and cubic [68].
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CHAPTER 3

THEORY

3.1 Phase Transition

Every condensed matter system has homogeneous forms called states which can be
identified in terms of various properties, such as density, crystal symmetry,
magnetization, electric polarization, etc. Since changes in these properties are
important to learn about phases, therefore materials, the phase transition is one of the
most studied topics. Phase transition can be defined as significant changes in
symmetry and properties of a system; that arise from changes in external conditions
such as temperature, pressure, chemical potential, etc. The transition occurs when
the system becomes unstable. The stability of any system is characterized by the

condition of the minimum thermodynamic potential at a finite temperature.

In other words, each system state in thermodynamics is determined by a certain
amount of energy. This energy is referred to as free energy if the system's state is
determined by its temperature T, pressure P, and volume V [70]. The stability

condition can be written as
AU + PAV —TAS >0 (3.1)
where U is internal energy, V is volume, and S is entropy.

This potential could be the Helmholtz free energy F = E — TS if the independent
variables are temperature and volume, whereas it is Gibbs free energy
G = E — TS + PV if the variables are temperature and pressure. It is clear from these
expressions that with increasing temperature, the highest possible entropy will be

reached, and the system will have a disordered state.
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Classification of Phase Transition

Paul Ehrenfest who presented the classification of phase transitions in 1933, divided
them into two groups; first order and second order transitions [71]. The main idea of
the classification is continuity/discontinuity of the thermodynamic potentials which

define the phase of matter.

Whether discontinuities take place in the first derivatives of Gibbs free energy G, as
given in Eqg. 3.2, in entropy and volume the transition is defined as a first order phase
transition [70].

G (66) - ((’)G) P 2(G) (32)

— \aT/, ~ \op/, - a(T) '
If the transition is of a second order type, the first derivatives of the Gibbs free energy
are continuous. Different from the first order type, the second derivatives of the
Gibbs free energy, which are given in Eq. 3.3, are discontinuous. At the transition

point, several thermodynamic quantities also approach infinity asymptotically or are
reduced to zero.

Cp 0%G _(OS) . %G\ (61/) 33)
T~ \orz), ~\or), = "\epz), T " \op '

T

Cr denotes the heat capacity at constant pressure and k; is the isothermal

compressibility at a constant temperature.

As well as continuity in the first and second derivatives of thermodynamic potential
defines the type of it, latent heat is also a method to distinguish. The presence or
absence of latent heat during phase transformations accounts for the primary
distinction between these two types of transitions since it reflects the change of
enthalpy [70]. Whether there exists a latent heat during the transition, it can be
defined as the first order, and an absence of the latent heat indicates a second order

transition.

18



Another way of classifying the phase transitions is based on the dependence of the
order parameter on temperature. The quantities that characterize the state of the
system have certain ordering and they can be matched by order parameters [70]. The
idea was suggested by Landau phenomenological theory which will be introduced in
detail later. The theory put forward that if the order parameter changes
discontinuously around the transition point (if there is a jump) with respect to the
temperature as shown in Figure 3.1 (a), the transition is called a first order phase
transition. On the other hand, it can be defined as a second order phase transition if
the dependence is continuous as indicated in Figure 3.1 (b). The transition occurs
over a definite temperature called critical temperature (Curie temperature) where one
can talk about an order below it. As seen in the figure, there is an order below the
critical temperature Tc, whereas the order parameter vanishes above this
temperature. The order parameter is used by normalization, which takes a value

between 0 and 1.
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Figure 3.1. The order parameter dependence on temperature (a) first order phase

transition (b) second order phase transition [70]
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3.2  The Compressible Ising Model

The Ising model can be defined as a microscopic approach to phase transitions, based
on the interaction between particles. Essentially, Ernst Ising developed the Ising
model to simulate the behavior of phase transitions in ferromagnets [70]. The model
explains how short-range interactions between molecules in a crystal result in long-
range, correlative behavior, and predicts the possibility of a phase change. It is one
of the simplest thermodynamic models, based on three assumptions:

(1) The particles of the system that are located on the sites of a crystal lattice.

(2) Each particle exists in one of two potential states (in magnetic case,
spins), which are S; = +1/2.

(3) The energy of the system can be defined as E = —] }.; ; S;S;, where Jis a
constant interaction parameter and sum is over all pairs of nearest

neighbors i and j [70].

The main problem is calculating the mechanical energy of the system with all the
particles, especially for many particle systems. The Hamiltonian for an Ising system

which considers the nearest neighbor spin interactions is described in the usual form
Hi-—] ) oo (3.4)
Lj

where J is the interaction parameter between the nearest neighbor molecules, and o;,
a; represent the spin variables. The Ising free energy G, of an Ising system is defined

as
G, = —kTInZ (3.5)

where k is the Boltzman constant and Z is the partition function given as

7=y o T (3.6)

i,j
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The critical behavior of the Ising free energy G, close the phase transition
temperature can be expressed as a power-law formula as stated before [30] which

reads as
G, = Ay + Ale|*>~@ (3.7)

where o is the critical exponent, ¢ = |T-Tc|/Tc is the reduced temperature and
Ay =JAyand A’ = J A are the parameters in the dimensions of energy with constants
A, and A. The specific heat C which is the second derivative of the free energy G

with respect to the its argument J /KT is,

C =k(/kT )?[0%InZ/d(J /KT )?] (3.8)
From Eq. (3.5) and (3.7), one gets

InZ =—(/kT) (4y + A le|*™%) (3.9)

The second derivative of the Eq (3.9) with respect to J/kT is

2

02120 /KT )2 = — (2 — ) [(A e + 2L~ wlele] 310)
JT¢ Tc

Inserting Eq (3.10) into the Eq (3.8), Yurtseven and Sherman [72] have reported an
analytical expression for the specific heat C by neglecting the weakly divergent

|e] 1% term, given by

C=-— ];4—2T A-a)2—-a)le|™ (3.11)

c

Enthalpy, Entropy, and the Gibbs Free Energy

The temperature dependence of the enthalpy H can be calculated as follows

H= deT +H, (3.12)
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where H, is the enthalpy value at T = T¢. Inserting Eq. (3.11) into the Eq (3.12) one
gets

AH = —JA[(1 — a)|e|*7 % + (2 — a)|e|t 9] (3.13)
AH denotes the change in the enthalpy (AH = H — H,).

Likewise, the temperature dependence of the entropy S can also by calculated

according to the following equation;
C
S= f? dT + S, (3.14)

where S, is the entropy value at T = T¢. Inserting Eq (3.11) into the Eq (3.14) one
gets

AS = —]—A(z —a)le[*® (3.15)
Te

Similarly, AS denotes the entropy change (4S5 = S — S;)

The obtained vales of AH and AS are used to calculate the Gibbs free energy AG
given as
AG = AH — TAS (3.16)

3.3 Landau Phenomenological Theory

The Landau phenomenological theory was initially proposed to explain the
mechanism of second order phase transition in the region close to the transition
temperature. The main idea of the theory is determining the free potentials of the
system by investigating the changes in macroscopic properties such as spontaneous

polarization, magnetization, elasticity, probability of occupancy of atoms, etc.

In Landau theory, free energy can be both Helmholtz F(V,T) and Gibbs G(P,T) free
energies that are defined as continuous functions of order parameter n. As mentioned
before, order parameter is a variable that is determined to characterize the ordering

22



of the homogeneous states (phases) in systems. Since free energy of the system in
equilibrium is directly related to pressure and temperature, order parameter n must
be a function of them. In the vicinity of transition temperature Tc, the order

parameter n is small, so free energy can be expanded in Taylor series;
G(P,T,n) = ay(P,T) + aym + a;n? + azn® + azn* + - (3.17)

where sequence of coefficients ay, a;, a,, a3, and a, are known as Landau

coefficients which are functions of temperature and pressure.

There are two assumptions in the Landau phenomenological theory. The first one is
that the order parameter can be defined by the conditions;

o6 _ 0 d 0% >0 (3.18)

6n = an 6n2 .
which are the expressions for minimum free energy. Second assumption is about
vanishing the order parameter at the phase transition, n(Tc) = 0. To achieve the first
assumption for all 1, it is clear that a; must be zero in the case of no external field.
Otherwise, by the presence of linear term, order parameter cannot disappear for any

temperature above Tc and free energy cannot display a minimum at n = 0.

According to the symmetry arguments that arise from magnetic systems, which is
positive and negative magnetization of the system, must be equivalent so that the
odd power terms of the magnetization in the free energy are omitted. Similarly, only
the even power terms of order parameter are accepted here, and the free energy G

can be expressed in terms of the order parameter n as
G(P,T,m) = ay(P,T) + ayn? + a,n* (3.19)

To simplify the expression, we treat the system at constant pressure as being
equivalent to the critical one and omit the pressure from the arguments. In addition,
when we consider the second requirement in Eq. 3.18, it follows that a, > 0 must
be satisfied for T > Tc while a, < 0 for T < Tc. So, the coefficients a, can be written

around Tc as;
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a, =a (T — T,) (3.20)
where the positive constant a. Then the free energy takes its simplest form;
G(T,m) =ay+a(T— Tn? + asn* (3.21)
From the minimization condition dG/dn = 0, one gets
n(a (T — Ty) + 2a4n*) =0 (3.22)
which can be solved for the order parameter n as

a(T —T
n=0 and n?=— % (3.23)
4

n = 0 corresponds to the paraelectric phase for T > T,.. By taking a, > 0, a positive
n solution of Eq (3.23) defines the ferroelectric phase. The n* term in the Eq. 3.21 is
needed since the n? term vanishes at the transition temperature, however its

temperature dependence can be ignored and accepted as a constant.

The equilibrium condition of the free energy can be obtained by putting Eq. 3.23
back into energy expression for T < Tg;

2
a
Gmin = ag + — (T — T)? (3.24)
2a,

It can be easily seen that the first derivative of the free energy has continuous
behavior where it would have a jump in second derivative that is the characteristic

behavior of second order phase transition.

Since the temperature dependence expression of the free energy has been obtained,
thermodynamic quantities such as entropy S, heat capacity Cp, and the inverse
dielectric susceptibility y~! can be calculated by means of the Landau

phenomenological theory for the second order phase transition.
The derivative of the free energy gives the entropy S of the transition as

oG

S=——
aT

= So(T) — an? (3.25)
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It follows that

So(T) T>T,

QT —T 3.26
sy + 22T g (3.26)
2a,

where entropy demonstrates continuous behavior with respect to order parameter as
a given condition for second order phase transition. The heat capacity is another

thermodynamic quantity, which can be derived from the free energy by the relation;

a’T,

20,

Co=T (a—S) = C,(T) + (3.27)

aT

at constant pressure in the ferroelectric phase T < T.. Since the order parameter
vanishes in the paraelectric phase T > T, behavior of the heat capacity depends on
the temperature in this phase and there exists a discontinuity at the transition
temperature. The jump in the specific heat C»(T) defines a divergent A shape curve

so that this transition is known as a A-transition.

The second derivative of Eq (3.21) with respect to the order parameter n defines the

inverse dielectric susceptibility y~* which reads

2
yl= ZTG =2a (T —T,) + 12a,n? (3.28)

Inserting n? (Eq 3.23) into the Eq (3.28), one gets the following expression for y =1

in the ferroelectric phase (T < Tc).

x ' =—4a(T - T,) (3.29)

First Order Phase Transition in Landau Theory

There are two assumptions which we accept to investigate the Landau
phenomenological theory up to here. One of them is omitting the cubic term of order
parameter in energy expression (Eq 3.17). What if the cubic term is also considered?

The Landau expression Eg. 3.21 turns to;
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G(T,n) =ay+a(T— T)n?+ asn® + aun? (3.30)

By minimizing the free energy with respect to n, dG /dn = 0, one can obtain

3a; _ [/3as\* a(T —T,)
0 and n,=--2 ( ) _ 331
UE and 1 8a, +\/ 8a, 2a, (3.31)

where these two solutions need to satisfy the energy equation for a specific

temperature To;

G141, To) = Gz, Tp) (3.32)

There is a discontinuity in the order parameter from 7n, to n,, which means that the

first order phase transition occurs at To.

The second assumption is about the coefficient a, of the n* term which has been
accepted as positive previously. In the case of negative a,, the sixth order term needs
to be added to the free energy expression for extracting the minimum of it. The

expression can be written as;
G(T,n) =ag +a (T — ToIn? — lagln* + agn® (3.33)

The roots of the equation for the order parameter can be extracted as;

1
2
=0 and n,= {|a4| + \/aﬁ — 3aga(T — TC)} (3.34)

1
v 3ag
The discussion of Eq. 3.27 can be repeated here. Since there is a jump between the

values of order parameter for a specific temperature, this is also defined as a first

order phase transition.

3.4  Damping Constant

The damping constant I, (I?v, w, ) due to the pseudospin-phonon interaction is given

by the imaginary part of the self-energy which reads as [73]
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'y ( v)
Iy (v, w,) zAf s@, )l ?()"+1+1l d3q + B (3.35)

In Eqg. (3.35) the integral is taken over all the wavevector g in the Brillouin zone

(BZ). A and B are constants, k is the wavevector of the vt" phonon w, is the peak
frequency and S is the dynamic scattering function of the pseudospins that describes
the anomalous behavior of the damping constant close to the transition temperature
(Tc), which is given by [49]

x(q, 0wty

3.36
1+ (a)rq)z ( )

S(qw) = (n(w) +1)
where, y is the dielectric susceptibility, 7, is the relaxation time of the order
parameter with the wavevector g. Eq. (3.36) can be expressed as follows (Eq 3.37)
by using the approximations n(w)+ 1=(kT/tw), (wry)*><« 1 and
n(w,)/[n(w) + 1] « 1 for w = 0,

AT
[ > f 2(¢,0)7, d3q + B (3.37)

BZ
In their study, Laulicht and Luknar [73] have reported the following expression using
the random phase approximation which reads as

C(1—-P?)72

T . (3.38)

x(q,0)t, =

Here C is the Curie constant, P is the fractional spontaneous polarization (order

parameter), t is the proton flipping time.

Lahajnar et. al. [74] have calculated the integration of Eq. (3.37) using Eq. (3.38) for
the KDP crystal given by

1
« — « (1—P3in

; =i
P T, T — To(1 — P?)

(3.39)
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where T1 represents the proton spin lattice relaxation time. Eq (3.39) defines the
temperature dependence of the damping constant (or relaxation time) for the
pseudospin-phonon coupled (PS) model.

On the other hand, the damping constant (relaxation time) is related to the fluctuation

of the frequencies at zero wavevector [50] given by

kT x(0)

v (3.40)

T o

where V is the volume of the crystal.

Schaack and Winterfelt [50] have reported the following expression for the damping

constant by inserting Eq. (3.38) in Eq. (3.40) that reads as

1 T(1 — P?) 2 .
Iy & T_1 o« (T T P2)> (3.41)

Eq. (3.41) defines the critical broadening of the damping constant due to the energy
fluctuation (EF model).

3.5 Griineisen parameter

The Griineisen parameter is related to the volume dependence of mode frequency by
regarding the quantum harmonic oscillator of Einstein’s theory as a mode of crystal

vibration;

aK;

Y = (3.42)
pCy

where o denotes the volume expansion coefficient, p is the density, Kr is the

isothermal bulk modulus and Cv denotes the specific heat.

The Griineisen parameter value for each mode of the frequency vi in the crystal is;

dlnvy;
= =G, (43
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where vi denotes the frequency of the i mode and V is the volume of the unit cell.

By differentiating the previous function with respect to pressure (P), the isothermal

Grilineisen parameter is derived as;

v (7). 6) (@),
v(P) (a_V) B Kr

yr(P) = (3.44)

apP

where kis the isothermal compressibility.
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CHAPTER 4

PHENOMENOLOGICAL APPROACHES ON THE Nd3** DOPED
FERROELECTRIC LaBGeOs

Ferromagnetic Nd** doped Lanthanum Borogermanate (LaBGeOs or LBG) crystals
were examined in three samples (pure and two more compositions) in terms of the
compressible Ising model and the Landau model to analyze their specific heat and
the dielectric constant, respectively. The formula that is used for the sample is
Lai1xNdxBGeOs and the compositions are given as x= 0, 0.03, and 0.05. The
calculations were performed separately at the three transition temperatures; 802.4K,
816.6K, and 823.3K. The measured values of birefringence were related to the order
parameter below the transition temperature Tc by analyzing dielectric constant data

within the framework of the Landau theory.

4.1  Analysis of the Specific Heat

The specific heat Cp data were used from the literature [26] for Lai-xNdxBGeOs, by
the specific heat versus temperature graph, which has three peaks at temperatures;
802.4K, 816.6K, and 823.3K for three compositions; x= 0, 0.03, and 0.05,
respectively. These temperature values were taken as transition temperatures,
depending on the behavior of specific heat of the samples. The specific heat data of
La1-xNdxBGeOs were analyzed according to Eq. 3.8 approximately 4K below and
above the phase transition temperatures (Tc) for x= 0, 0.03, and 0.05. The In(Cr/T)
versus In|g| graphs were plotted as shown in Figure (4.1) to extract the critical
exponent o and the fitting parameter JA Eq. (3.11). The slope of the graph gives a

value and the intersection point can be related with the parameter JA.
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Figure 4.1. Specific heat [26], Cp, as a function of the reduced temperature
¢ in a In-In scale according to Eq. (3.11) for the temperature intervals of
801.1<T(K)<803.3 (paraelectric phase) in Lai-xNdxBGeOs with x=0 (Tc=802.4 K).

The calculation procedure of a and JA of Eq. (3.11) were repeated for these three
compositions of LBG crystals at all three transition temperatures. Each calculation
has been done in both ferroelectric and paraelectric phases of the crystals within the
temperature intervals AT = |T — T¢| < 4 K. In other words, while AT getting

smaller, we approach the transition temperature.

The extracted values of the critical exponent o and the fitting parameter JA from the
heat capacity (Eq. 3.8) were indicated in Tables (4.1)- (4.3) for various temperature
intervals (AT) in the vicinity of critical temperature both in ferroelectric and
paraelectric phases for the x= 0.03 and 0.05 compositions of LaixNdxBGeOs,

respectively.
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Table 4.1 Values of the critical exponent a and the fitting parameter /A according to

Eg. (3.11) in both ferroelectric (T<Tc) and paraelectric (T>Tc) phases of

La1-xNdxBGeOs with x= 0 (Tc= 802.4 K) for the temperature intervals indicated.

Phase JA o Temp. interval (K) AT (K)
4673 £ 864 | 0.201 £0.011 798.6 < T<802.1 35
’l_B 5072+ 814 | 0.185+0.010 799.4<T<802.1 2.7
t\;’ 5559+ 890 | 0.168 +0.009 800.2<T<802.1 1.9
g 6183 +£834 | 0.149 £ 0.008 800.6 < T<802.1 15
E 6594 +962 | 0.138 +0.008 801.2<T<802.1 0.9
= 7196 + 1165 | 0.123 +0.009 801.6 <T<802.1 0.5
U
v 2524210 | 0871+0.124 | 8025<T<8058 | 3.3
% 268 £318 0.773 +£0.138 802.5<T<804.9 2.3
,I_IS r_a 545 £ 816 0.575+0.135 802.5<T<804.3 1.8
% 1402 £ 1971 | 0.387 £0.112 802.5<T<804.0 15
g 2626 £2913 | 0.275+0.084 802.5<T<803.7 1.2
)
;_g 4251+ 3781 | 0.195+0.065 802.5<T<8034 0.9
6308 + 3256 | 0.132 +0.036 802.5<T<803.3 0.7
8058 + 1504 | 0.094 +0.012 802.5<T<803.1 0.6
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Table 4.2 Values of the critical exponent a and the fitting parameter JA according to
Eg. (3.11) in both ferroelectric (T<Tc) and paraelectric (T>Tc) phases of
La1-xNdxBGeOs with x=0.03 (Tc= 816.6 K) for the temperature intervals indicated.

Phase JA o Temp. interval (K) AT (K)

6219+ 1564 | 0.150+£0.015 | 813.1<T<816.5 3.4
6684 +1774 | 0.137+£0.016 | 813.8<T<816.5 2.7
:zo 7278 £2033 | 0.122+0.016 | 814.3<T<816.5 2.2
= g 7649 £2187 | 0.113+£0.017 | 814.6<T<816.5 1.9
% é 8701 £2294 | 0.093+£0.015 | 815.1<T<816.5 1.4
i = 9273 +2423 0.083 £0.015 | 8154<T<816.5 1.0
§ 10050 £ 1999 | 0.070+0.011 | 8155<T<816.5 0.9
|I_|8 - 343 + 108 0.528£0.018 | 817.1<T<8224 4.2
l:%, 330 £ 140 0.541+£0.024 | 817.1<T<821.0 2.8
g 328 £202 0.543 £0.035 | 817.1<T<820.5 2.2

o
a 300 + 303 0.572+£0.054 | 817.1<T<819.7 1.4
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Table 4.3 Values of the critical exponent a and the fitting parameter JA according to
Eg. (3.11) in both ferroelectric (T<Tc) and paraelectric (T>Tc) phases of
La1-xNdxBGeOs with x=0.05 (Tc= 823.3 K) for the temperature intervals indicated.

Phase JA o Temp. interval (K) | AT (K)
7109£2005 | 0.146+0.018 | 819.6<T<8229 | 33
,\ 7431£2145 1 0.137+£0.018 | 820.0<T<822.9 | 2.9
Eo 814442432 | 0119+0.019 | 8204<T<8229 | 25
£ | 928E279 | 0.094+0017 | 8209<T<8229 | 1.9
=
% 1042142759 | 0072+0.016 | 821.4<T<822.9 | 15
E:O; & [T1103£3103 | 0060+ 0017 | 821.6<T <8229 | 1.2
\';.'s 12086 3027 | 0.045+0.015 | 821.9<T<8229 | 1.0
% 344 + 442 0.806+0.047 | 823.7<T<8058 | 3.1
&
% 345 £ 646 0.803+0.063 | 823.7 <T<8049 | 1.9
oo
E 432+872 0.700+0.078 | 823.7<T<8043 | 12
'}:E 851+ 1398 0.526+0.075 | 823.7<T<8040 | 0.8
5
% 1678 £ 1369 | 0386+0.042 | 823.7<T<803.7 | 0.6
€ | 22mx16% 0.332+0.039 | 823.7<T<803.4 | 0.4
2709 +3088 | 0295+0.058 | 823.7<T<803.3 | 0.3
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The variation of the critical exponent with respect to the temperature difference AT
is demonstrated in Figure (4.2). As seen in the figure, in the ferroelectric phase, the
critical exponent values decrease slightly while the temperature intervals are getting
tight. Nevertheless, in the paraelectric phase, the variation of the a values can be seen
clearly for pure and x= 0.05 doped LGB crystal. The x= 0.03 doped sample has a
different view compared to the other cases, that has a slight increase while

temperature interval decreases.

Lo = x=0, T<T
l * x=0.03, T<T,
1 4 x=0.05, T<T,,

0,8 - { w { J vox=0, Ty

¢ x=0.03, T>T,

|
. T J % w J E < x=0.05, T>T03-
3 ] l W { ‘

0,4 H I
T1
I I
1 T I
0,2 - [}
TII x - ?I I3
1 LA < ¢ ¢ 1 = -
h 4 *E ix el
$tr st
010 I I I I
0 1 2 3 4 5
AT(K)

Figure 4.2. Values of the critical exponent o as a function of temperature AT
(Tables 1-3), calculated from the specific heat data [26] in both ferroelectric
(T<Tc) and paraelectric (T>Tc) phases of Lai1-xNdxBGeOs with x=0; 0.03 and 0.05
according to Eq. (3.11).

Similarly, the extracted JA values vary with respect to temperature as the variation
is demonstrated in Figure (4.3). In the ferroelectric phase, all three combinations
have similar tendency, while temperature intervals get larger the JA values decrease.

It can be also claimed that the paraelectric phase has the same behavior as the

36



ferroelectric phase, whereas they approach a smaller value of JA close to zero. The
decreasing tendency is seen clearly in Figure (4.3) for the pure (x= 0) LGB crystal
(magenta triangle). On the other hand, x = 0.03 sample has approximately the same
values for the different temperature intervals. There are limited experimental data to
examine at small temperature intervals, so the decreasing tendency cannot be
observed. In general, itis seen in the figure that the extracted values are in accordance

with each other for each phase.

16 . , . , . , . ,
T " x=0, T<TCl

® x=008,T<T, )

l 4 x=0.05, T<T_, ||

12 - . L
x=0, T>T,

l ¢ x=003,T>T_, )

I I < x=005, 75T, ||

RINCS)
o
1
——
——
e

L A
r
A
—a—
—
1

o
1
——a—A
Fo
f——<
—a—
—a—
L gl
Fe
L
A
L JI
L

AT(K)

Figure 4.3. Values of the fitting parameter /A as a function of temperature AT (Tables
1-3) which was calculated from the specific heat data [28] in both ferroelectric
(T<Tc) and paraelectric (T>Tc) phases of Lai-xNdxBGeOs with x=0; 0.03 and 0.05
according to Eq. (3.11).
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4.2 Calculation of the Enthalpy, Entropy and the Free Energy for
LaBGeOs

The change in the enthalpy, AH = H— H,, of the three compositions of
La1-xNdxBGeOs crystals was calculated according to Eq (3.13) in both ferroelectric
and paraelectric phases. The results are given in Figure (4.4) where H,, is the enthalpy
value at T = T¢. For this calculation of AH, the extracted values of o and JA (Tables
4.1-4.3) were used.

In Figure (4.4), the three samples on the left demonstrate the ferroelectric phase, and
the samples on the right are for the paraelectric phase. The analysis of the graph
illustrates that for the ferroelectric phase the enthalpy changes AH increase gradually
due to the increase in the temperature. The AH values corresponding to each critical
exponent o, become consistent with each other while the temperature is getting closer
to critical temperature Tc. These values approach zero around the critical
temperature, and it is expected from the second order phase transition type where
there is no latent heat. On the other hand, in the paraelectric phase, the AH values
are close to each other when the temperature gets close to Tc and spread out slightly

while the temperature increases.

Likewise, the entropy change A4S = S — S, was calculated according to Eq (3.15) by
using the extracted values of a and JA (Tables 4.1-4.3) in both phases of the three
compositions of LBG crystals, as it performed for the calculation of the enthalpy
change AH. The results of AS were demonstrated in Figure (4.5), where S, is the
entropy value at T = T,. The variation of the entropy AS can be observed from the
graphs that increases slightly with increasing the temperature both in ferroelectric
and paraelectric phase. It is seen that the difference between the results extracted for
different a values around the critical temperature, disappears and these values
approach each other.
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The obtained values of AH (Figure 4.4) and AS (Figure 4.5) of those three
compositions of LBG crystals were inserted into the Eq. (3.16) to calculate the Gibbs
free energy AG given as Eq (3.16). The temperature dependence of the AG was given
in Fig (4.6). It can be clearly observed in the graphs that Gibbs free energy tends to
increase in ferroelectric phases and decrease in paraelectric phase with increasing
temperature. The differences between the results for various a values around the
critical temperature vanish, and the values converge, as also observed in enthalpy

and entropy changes.

4.3 Analysis of the Birefringence and the Dielectric Constant

The birefringence An is proportional to the square of the order parameter n? through
the Kerr effect. The Kerr effect, which occurs due to the externally applied electric
field, expresses the change in the refractive index of the material. It is known that
the Kerr effect is directly proportional to the square of the electric field. That is why
we can relate the birefringence with the square of the order parameter. Within the
framework of the Landau theory (Eq 3.11), the observed [26] birefringence data of

the three samples of LBG were analyzed according to

An

a
=——(T-T.)+ 4.1
JAY I~ ay ( c)+ o (1)

where An,,,, represents the maximum value of the birefringence, as given in
Table (4.4). The normalized (An/An,,,,) values of the birefringence were taken into
consideration because the order parameter could have any value between 0 and 1.
The Landau coefficient a, and the constant c,, were extracted from the (An/An,,4.)
versus (T — T.) graph (Figure 4.7), as given in Table (4.4). Since there are lack of
data at about 816.6 K temperature, the relation between birefringence and
temperature interval relation cannot be obtained for x=0.03 composition of the LBG

crystals.
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Table 4.4 Values of the Landau coefficients a , a, (Eg. 4.6) and also the coefficients
o » ¢1 (EQ. 4.7) for the ferroelectric (T<Tc) phase of Lai-xNdxBGeOs with x= 0; 0.03

and 0.05.
Sample . A T (K)
ax10™ a c cy x10™
(% of N 43 + 4 0 1 c
0 3.08 0.52 0.98 34.10 804.6
0.03 3.62 - - -3.96 810.4
0.05 5.15 1.28 0.98 -12.4 818.4
1.000 4 " I ' '-aB'Geol5 1.000 4 I ILaa.ssNdo oIsBGeos
\ x=0 1 x =0.05
An_ =3.60 an = 3.58
09967 \ T = 804.6K 09957 T =818.4K
‘ C1 i _] c3 i
Cé 0.992 \. Cé 0.990
0.988 \ 0.985 -
0.984 4 \. ] 0.980 - " |
30 20 s 5 o 50 % 20 40 0
T-T.,(K) T-T(K)

Figure 4.7. The normalized birefringence An/Anmax as a function of T-Tc according
to Eq (4.1) in the ferroelectric phase (T>Tc) of Lai-xNdxBGeOs with x=0 and 0.05.

The temperature dependence of the inverse dielectric susceptibility y~ of the three
samples of LaixNdxBGeOs with x= 0, 0.03 and 0.05, was calculated from the
observed [26] dielectric constant data according to equation y 1= |¢ — 1|~1. Within
the framework of the Landau phenomenological theory (Eq 3.13), x ! values were

fitted to the following relation
X_l - —4‘a (T - Tc) + C1 (4‘2)

The Landau coefficient a and the constant ¢, were tabulated in Table 4.4. The y !

versus (T — T,) graphs were demonstrated in Figure (4.8). Note that, for the analysis
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of An/An,,,, and y~! according to Eqgs (4.1) and (4.2), respectively, the observed
[26] transition temperatures (T) of 804.6 K, 810.4 K and 818.4 K from the dielectric
constant measurement, were used for the three samples of the LBG crystals (x= 0,
0.03 and 0.05).

9.0

T T T T T T T T T T
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Figure 4.8. The inverse dielectric susceptibility x~1 calculated from the observed
[26] dielectric constant data using x~*= |¢ — 1|~ as a function of LaixNdxBGeOs
with x=0; 0.03 and 0.05.

4.4 Results and Discussion of LaBGeOs

The phonon dispersion calculations based on the density function theory (DFT),
revealed a zone-centered unstable mode, called a rigid unit mode, above the
transition temperature of LBG crystal [15]. Also, the valence force field model
calculations [75] indicated a strong softening of this rigid unit mode when the
ferroelectric phase changed towards the paraelectric phase. Both calculations [15,
73] point out that the rigid rotation of the BO4 tetrahedra is the main feature of the
phase transition mechanism in LBG crystals. By considering the BOa4 tetrahedra as
the Ising spin variable, the anomalous behavior of the observed [26] specific heat for
Nd** doped LBG crystals (LaixNdxBGeOs with x= 0, 0.03 and 0.05) was analyzed
in terms of the compressible Ising model (Eq 3.8) approximately 4 K below and
above the phase transition temperatures of 802.4 K, 816.6 K and 823.3 K for x= 0,
0.03 and 0.05, respectively. The slope of the In (Cp/T) against In|e| graph
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(Figure 4.1) determines the critical exponent a while the intercept allows us to
deduce the interaction parameter JA. Calculation of the @ and JA were employed for
the three samples of LBG crystals in the different temperature intervals as given in
Tables (4.1)-(4.3) for x=0, 0.03 and 0.05, respectively. The evolution of the critical
exponent « and the interaction parameter JA were shown in Figs. (4.2) and (4.3),
respectively as a function of the change in the temperature (AT) according to the

temperature intervals indicated in Tables (4.1)-(4.3).

In the ferroelectric phase (T < T,) of those three compositions of LBG crystals, the
values of the critical exponents tend to decrease slightly as AT decreases. In
particular, the a value of 0.12 extracted within the temperature interval of
801.5 < T(K) < 802.0 for the pure LBG crystal (x=0, Tc=802.4 K), is exactly the
same as obtained by Lushigton and Garland [76] for a second-order transition in
ferroelectric-like  NH4Cl which can be classified as an Ising- like system.
Furthermore, the extracted values of 0.07 and 0.04 for the critical exponent a within
the temperature intervals of 815.5 < T(K) < 816.5 and 821.9 < T(K) < 822.9 for the
Lai-xNdxBGeOs with x=0.03 (Tc=816.6 K) and x=0.05 (Tc= 823.3 K), respectively
were very close to the expected value of 0.066 (=1/16) for T<Tc according to a 3D-

Ising model.

Similarly, in the paraelectric phase (T>Tc) of the two samples with x= 0 and x= 0.05,
the o values decrease as AT gets smaller (Figure 4.2) while the a value for the sample
with x= 0.03 is almost constant as AT decreases. In some detail, the o value of 1.0
for pure LBG crystals (x= 0; Tc= 802.4K) which was extracted within the
temperature interval of 802.5 < T(K) < 808.8 (AT=6.3K) is exactly the same value
as reported by Strukov et al. [28] for 1 < |Tc-T| <10K. But, as AT decreased to the
value of 0.6 K (802.5 < T(K) < 803.1K) we deduce a as 0.09 which can be compared
with 0.125 (=1/8) predicted from the 3D-Ising model for T>Tc. Furthermore, the
extracted value a = 0.5 which is almost independent of AT for the samples with x=
0.03 and 0.05 within the temperature interval of 823.6 < T(K) < 824.5K (AT = 0.8K)

is consistent with that reported by Strukov et. al. [26] above the transition
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temperatures of 816.6 K and 823.3 K, respectively. But, as AT decreased to a value
of 0.3 K (823.6 < T(K) < 823.9K) for the sample with x= 0.05, the a was found to
be 0.3 which can be compared with that predicted from the 2-d Pots model. The non-
singular (background) part of the specific heat (lattice contribution) which is less
dominant when compared with the spin interaction contribution in the vicinity of the

phase transition temperature, was not considered in this study.

In addition, the thermodynamic quantities of AH (enthalpy), AS (entropy) and AG
(Gibbs free energy) were predicted as a function of temperature according to
Egs (3.13), (3.15) and (3.16), respectively in terms of the obtained values of critical
exponent o and the interaction parameter JA (Tables 4.1- 4.3) for both below
(T <Tc) and above (T > Tc) the phase transition temperatures of these three samples
of LBG crystals, as given in Fig(4.4)-(4.6).

The observed [26] birefringence data An of these three samples of LBG crystal
decrease almost linearly below the phase transition temperatures. On the other hand,

below Tc the molecular field theory [77] predicts that the order parameter n

decreases according to (T;—_T)ﬁ with the critical exponent g = 0.5, as the
C

temperature increases toward the Tc. In the light of these information, we associated

n

the normalized birefringence ( ) with the square of the order parameter n? in

A
ANMmax

the ferroelectric phase (T < Tc). Then, the observed [26] An data of LBG crystals
with x= 0 and x= 0.05 were analyzed according to Eq (4.6) within the framework of
the Landau theory (Figure 4.7). We were unable to do the same analysis for LBG
crystal with x=0.03 due to the lack of the sufficient data of An below Tc. In addition,
the inverse dielectric susceptibility y~1 calculated from the observed [26] dielectric
constant of these three samples of LBG crystals was also analyzed according to Eq
(4.2) within the framework of the Landau theory in the ferroelectric phase (Figure
4.8). The slope of Figs (4.7) and (4.8) allows us to extract the coefficients a and a,
as we tabulated them in Table (4.4). Both a and a, were found to be positive as
expected from the Landau phenomenological theory for a second-order type of phase

transition. The intercepts c, and c, are also given in Table (4.4).
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4.5 Conclusion of Lai1-xNdxBGeOs

The compressible Ising model was used to study the anomalous behavior of the
specific heat for Lanthanum Borogermanate (Lai-xNdxBGeOs) at x = 0, 0.03, and
0.05, which is around 4 K below and above the phase transition temperatures of
802.4 K, 816.6 K, and 823.3 K, respectively. For these three compositions, the
critical exponents (a) were calculated in the ferroelectric phase (T < Tc), and the
extracted values are ranging between 0.04 - 0.12 that are consistent with that
predicted from the 3-D Ising model (0.07 for T < Tc). Similarly, critical exponent in
the paraelectric phase (T > Tc) of the sample with x= 0 is also appropriate in 3-D
Ising model. However, the deduced value of the sample with x= 0.05 in the
paraelectric phase is 0.3, which is same with the predicted one from the 2-D Pots
model. It can be concluded that the Compressible Ising Model is adequate to describe
the ferroelectric-paraelectric phase transition in pure and Nd** doped LaBGeOs

crystals.

In addition, the observed birefringence data which were associated with the order
parameter (squared) and the observed dielectric constant of the three compositions
(x =0, 0.03, and 0.05) for Lanthanum Borogermanate (Lai-xNdxBGeOs) were
analyzed within the framework of the Landau phenomenological theory to determine
the Landau coefficients a and a,. The Landau coefficients were found to be positive,
as expected, which indicates that the phase transition of the samples studied here is

of a second order type.
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CHAPTER 5

CALCULATION OF THE SPIN- LATTICE RELAXATION TIME AND
THE ACTIVATION ENERGY NEAR THE IV-111 PHASE TRANSITION IN
PYRIDINIUM FLUOROSULFONATE (CsNHg)FSOs

In the scope of the present chapter, the pseudospin-phonon (PS) coupled and energy
fluctuation (EF) models are used to compute the spin-lattice relaxation time T1" for
protons, which is close to the IV-I11 solid-solid phase transition of T, = 235 K in
Pyridinium Fluorosulfonate ((CsNHs)FSO3). The observed second moment of the tH
was used in this calculation as both the order parameter below T, and the disorder
parameter above T.. This calculation was performed by associating the observed
second moment of the *H as the order parameter below T and the disorder parameter
above T,. The activation energies for the cation reorientation in (CsNHs)FSOs crystal
are calculated by using both PS and EF models. In addition, the Landau theory is
used to examine the measured dielectric permittivity of the crystal, and the

spontaneous polarization (SP) is calculated as a function of temperature.

5.1  Analysis of the Damping Constant

Temperature dependence of the damping constant I3, which is inversely
proportional to the spin-lattice relaxation time T; can be calculated by using the
pseudospin-phonon (PS) coupled model [49] and the energy fluctuation (EF) model
[50] for PyFSOs. In terms of the order parameter (n), damping constant by
considering the pseudospin-phonon interactions (Eq 3.39) in PyFSOs can be
expressed as [49]

Tc

T—T(1-7n?) G

1
IjgpaT—=F0+A(l—T[2)ln
1
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where T is the transition temperature, I, and A are the background damping constant
and the amplitude, respectively. Also, the temperature dependence of the damping
constant (Eq. 3.41) in terms of the order parameter can be evaluated by using the
energy fluctuation (EF) model [50],

(5.2)

T(1-1n?) ]“2
n?)

1
I — =1y + A
sp & ot [T—Tc(l—

Ty
where ;" and A’ are the background damping constant and the amplitude. The
molecular field theory provides the temperature dependence of the order parameter
(n) appearing in Egs. (5.1) and (5.2) for the different temperature regions below and

above T, given as [77]

2T,
1—exp(——) T <T¢
T
1
n= T\)2 (5.3)
T¢
0 T <T

Based on the Ising pseudospin-phonon coupled model of Yamada et al. [78] and
Matsushita [77], Egs. (5.1) and (5.2) have been obtained previously for the KDP type
materials [49, 73]. Although it is hard to define its physical meaning without
knowledge of the low-temperature crystal structure of PyFSQOgs, the proton second
moment Mz in phase IV behaves like an order parameter as it was pointed out
previously [48]. To check this consideration, we associated the observed [48] second
moment M2 of PyFSOs with the order parameter n below the 1V-111 phase transition

temperature T, = 235 K according to

M,

=an+b>b (5.4)
MZ,max 7

where M, .4, is the maximum value of the second moment, a and b are the unitless

coefficients (Table 5.1).
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Figure 5.1. M, /M 1,4, Versus n graph (Eq. 5.4) below the IV-111 solid-solid phase
transition temperature of T, = 235 K in PyFSQOs.

The values are plotted in Figure (5.1) as M, /M, 14, Versus n below the IV-I11 phase
transition temperature. Those M, /M, ., Values were then used as order parameters
[n? = (My/Mjmax)®] below the IV-IIl solid-solid transition temperature
T = 235 K while it is used as a disorder parameter [1 —n?% = (My/Mymax)?]
above T, in Equations (5.1) and (5.2) to calculate the spin-lattice relaxation time of
proton T1. These calculated values of T1 were fitted to the observed [48] spin-lattice
relaxation time (Fig 5.2) and the background damping constant I, (I;") with the
amplitudes A (A") were extracted both below and above T, as tabulated in
Table (5.2).
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Figure 5.2. The experimental damping constant (1/T;) against our calculated Ip

from both PS and EF models below and above the I'V-I11 solid-solid phase

transition temperature of T, = 235 K in PyFSO:s.

Table 5.1 Values of the M, ,,,,,, the parameters a and b according to Eq. (5.4) and

values of the a and a, according to the Eqg. (5.6) below the solid-solid phase
transition (I\V-111) temperature of T, = 235 K.

ax10® Temperature
Crystal | M3 a0y a b -as
(J/IK) Interval (K)
24.7 0.14 -80<T-Tc<-40
PyFSOs | 7.2G 416 | 2.93
33.3 0.12 -38<T-Tc< 0
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Calculated values of the spin-lattice relaxation time T1 from Eqgs. (5.1) and (5.2) were
plotted in Figure (5.3) as a function of temperature. The observed data [48] were also

given in Figure (5.3) for comparison.
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Figure 5.3. The temperature dependence of the spin-lattice relaxation time T,
calculated from the PS (Eg. 5.1) and EF (Eq. 5.2) models both below and above the
IV-I11 solid-solid phase transition temperature of T, = 235 K in PyFSOs. The

experimental [48] data were also given for comparison.
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Table 5.2 Values of the background damping constant Iy, (I;") and the amplitude
A (A") due to the PS (Eq. 5.1) and EF (Eqg. 5.2) models both below and above

T, = 235 K using the experimental [48] spin-lattice relaxation time of the proton
in PyFSOs.

Crystal Model Iy (Fy)(Hz) | A (A)(Hz) | Temperature Interval
PS (Eg.5.1) | 0.05 1.92 160 < T (K) < 223
PS (Eq.5.1) | 1.78 54.25 249 < T (K) <320
PyFSO3
EF (Eq.5.2) |-0.25 1.07 160 < T (K) < 223
EF (Eq.5.2) |-15.29 33.11 249 < T (K) < 320

The activation energy U for the cation reorientation of crystal can be calculated from

the linewidth (damping constant) as given previously [80,81]

U
lnF—lnC—kB—T (55)

where kg is the Boltzman constant and C is a constant.

The values of the activation energy U were deduced from the Arrheniu