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ABSTRACT 

 

PHENOMENOLOGICAL APPROACHES ON THE PHASE TRANSITION 

MECHANISMS OF SOME FERROELECTRIC MATERIALS 

 

 

 

Kara, Nazan 

Doctor of Philosophy, Physics 

Supervisor: Prof. Dr. Hamit Yurtseven 

Co-Supervisor: Assoc. Prof. Dr. Ali Kiracı 

 

 

January 2023, 105 pages 

 

 

Several phenomenological studies were carried out to investigate the phase transition 

mechanisms of some ferroelectric crystals. In particular, we focused on the 

compressible Ising model to explain the anomalous behavior of specific heat for such 

ferroelectrics exhibiting second-order phase transitions in the vicinity of the 

transition temperatures. The temperature dependence of some thermodynamic 

functions such as internal energy, enthalpy, entropy, and free energy of some 

ferroelectric materials was also predicted. The thermodynamic quantities of 

ferroelectrics are obtained by calculating the order parameters using the experimental 

data from the literature. The calculated results are then interpreted with the ones 

stated in previous experimental studies. 
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ÖZ 

 

ÇEŞİTLİ FERROELEKTRİK MALZEMELERİN FAZ GEÇİŞ 

MEKANİZMALARINA FENOMENOLOJİK YAKLAŞIMLAR 

 

 

 

Kara, Nazan 

Doktora, Fizik 

Tez Yöneticisi: Prof. Dr. Hamit Yurtseven 

Ortak Tez Yöneticisi: Doç. Dr. Ali Kiracı 

 

 

Ocak 2023, 105 sayfa 

 

Bazı ferroelektrik kristallerin faz geçiş mekanizmalarını araştırmak için bir dizi 

fenomenolojik çalışma yapılmıştır. Özellikle, geçiş sıcaklıklarının yakınında ikinci 

derece faz geçişleri sergileyen bu tür ferroelektriklerin özgül ısısının anormal 

davranışını açıklamak için sıkıştırılabilir Ising modeline odaklandık. Bazı 

ferroelektrik malzemelerin iç enerji, entalpi, entropi ve serbest enerji gibi 

termodinamik fonksiyonlarının sıcaklığa bağlılığı da öngörülmüştür. Ferroelektrik 

malzemelerin termodinamik özellikleri, literatürdeki deneysel verilerden elde edilen 

düzen parametreleri kullanılarak hesaplandı. Hesaplanan değerler yine literatürdeki 

sonuçlarla karşılaştırılarak yorumlandı. 

 

Anahtar Kelimeler: Faz Geçişleri, Ferroelektrikler, Ising Model, Landau Teori 
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CHAPTER 1  

1 INTRODUCTION  

Ferroelectric materials demonstrate electric dipole moments even in the absence of 

an external electric field, which has spontaneous electric polarization [1,2]. These 

materials offer a wide range of useful properties, such as hysteresis loop, high 

permittivity, high piezoelectric effects, high pyroelectric coefficients, strong electro-

optic effects, and anomalous temperature coefficients of resistivity [3]. Also, they 

can occur in a wide variety of forms, including single crystals, ceramics, polymers, 

and thin films [3]. Ferroelectric materials can be used in a wide variety of fields due 

to their non-linear nature such as electronics, medicine, material science, marine, 

memory devices, and many applications in daily life. However, there are still lot of 

research ongoing on various promising ferroelectric materials.  

As a typical behavior of ferroelectric materials, ferroelectricity usually disappears 

above a special temperature known as transition temperature (Curie temperature, TC) 

and material becomes paraelectric. This phenomenon has been defined as a phase 

transition. The present study aims to investigate the phase transition mechanism in 

terms of various dynamical properties such as order parameter, damping constant, 

activation energy, etc. in the vicinity of transition temperatures for ferroelectric 

materials; Lanthanum Borogermanate (LBG) crystals, Pyridinium Fluorosulfonate, 

Imidazolium Perchlorate, and Zirconia. 

In the scope of present study, firstly, two phenomenological models, namely the 

compressible Ising model and the Landau model, have been used to analyze the 

specific heat and the dielectric constant data, respectively, for the pure and Nd3+ 

doped LaBGeO5 (LBG) crystals. The critical exponent of the specific heat was 

extracted in both ferroelectric and paraelectric phases of the crystals studied here 
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within the temperature intervals of |𝑇 − 𝑇𝐶| < 4 𝐾. The extracted values of critical 

exponent were then utilized to make predictions about a variety of thermodynamic 

parameters, including enthalpy, entropy, and the Gibbs free energy. The measured 

values of birefringence were related to the order parameter below the transition 

temperature TC in terms of the analysis of dielectric constant data within the Landau 

theory framework. 

Secondly, the spin-lattice relaxation time T1
H for protons nuclei is calculated in terms 

of the pseudospin-phonon (PS) coupled and the energy fluctuation (EF) models close 

to the IV-III solid-solid phase transition of 𝑇𝐶 = 235 𝐾 in Pyridinium 

Fluorosulfonate ((C5NH6)FSO3). Calculation was performed by associating the 

observed second moment of the 1H as the order parameter below 𝑇𝐶  and as the 

disorder parameter above 𝑇𝐶. Values of the activation energies for the cation 

reorientation in the (C5NH6)FSO3 crystal are also deduced by using both PS and EF 

models. Additionally, the observed dielectric permittivity of this crystal is analyzed 

within the framework of the Landau theory, and values of the spontaneous 

polarization (SP) are determined as a function of temperature. The normalized values 

of SP are used in PS and EF models to extract the activation energy for the 

reorientation of the dipole moment of this compound arising from cation-anion 

interaction. The results show that the PS and EF models can describe the observed 

behavior of the spin-lattice relaxation time adequately for the IV-III solid-solid 

transition in (C5NH6)FSO3. 

Thirdly, the temperature dependence of the relaxation time of imidazolium 

perchlorate (Im-ClO4) was calculated from the pseudospin-phonon coupled (PS) and 

the energy fluctuation (EF) models close to the first order phase transition 

temperature of 247 K. Calculation was performed in terms of the proton second 

moment that was associated with the order parameter as predicted from the mean 

field theory. The results were in good agreement with the observed data. In addition, 

values of the activation energy were deduced in terms of the Arrhenius plot using 

the calculated values of the relaxation time from both PS and EF models. 
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The anomalous behavior of the specific heat of Im-ClO4 was analyzed in terms of a 

power-low formula (including the critical exponent α and the interaction parameter 

𝐽𝐴) deduced from the Ising model in the vicinity of the lower phase transition 

temperature of TC = 247 K. Moreover, some thermodynamic functions such as 

entropy and enthalpy were predicted as a function of temperature using the values of 

α and 𝐽𝐴 extracted from the observed specific heat data of Im-ClO4. 

In addition, the critical exponents of the Im-ClO4 were examined, which correlated 

the reduced temperature to the specific heat CP, polarization and susceptibility in the 

vicinity of second-order transition temperature TC = 373 K, so that the critical 

exponents were extracted for each relation. Their values have been examined if they 

are compatible with any of the universality classes as given in the literature. Finally, 

as the well-known scaling relation, Rushbrooke inequality (RI) has been investigated 

whether it is compatible with the values of the critical exponent, which were 

obtained.  

Finally, the isothermal Grüneisen parameters γT of various Raman modes in Zirconia 

(ZrO2) were calculated as a function of pressure at room temperature.  For this 

calculation of γT, the pressure dependence of both Raman frequencies for the bands 

at 150, 260, 320, 480, 602, and 650 cm-1, with the cell volume of the ZrO2, were 

obtained from the literature. The two lowest modes (150 and 260 cm-1) exhibit an 

unusual over-damped soft mode behavior upon increasing pressure, as stated earlier. 

Therefore, the pressure dependencies of the frequencies of those two lowest modes 

were associated with the order parameter S to predict the half width at half maximum 

(HWHM or damping constant) from the pseudo-spin phonon coupled (PS) and the 

energy fluctuation (EF) models for the pressure gaps from 0 GPa to 5 GPa.  
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CHAPTER 2  

2 LITERATURE REVIEW 

Ferroelectricity was not observed in any other material for many years after it was 

discovered with Rochelle salts [4] until it was observed in KH2PO4 (KDP) in the 

1930s and barium titanate (BTO) in the 40s [5]. It can be claimed that molecular 

ferroelectrics could be alternatives to perovskites, if some of their features, like 

spontaneous polarization, can be measured closer to perovskites [6-7]. After many 

studies in the field, it has been revealed that molecular ferroelectrics can meet the 

need and have more environmentally friendly [8] solutions than perovskites. With 

the inclusion of these new materials in ferroelectrics, many new features have been 

added; such as being soft and flexible [9-10], having lightweight [7], being lead-free 

[8], being able to work at low temperatures [7,10], and being biocompatible [11].  

2.1 Ferroelectric Materials 

The electric dipole moment per unit volume of a substance is used to define 

polarization (P) and is related to dielectric displacement (D) linearly [1,2]. In 

ferroelectric materials both P and D, are non-linear functions of electric field (E). A 

ferroelectric crystal typically consists of fields referred to as domains of homogenous 

polarization, where each one has the same direction of polarization. The magnitude 

of the polarization within a single ferroelectric domain is defined as spontaneous 

polarization (PS). However, the polarization could be in different directions for the 

adjacent domains, therefore at first, when there is no electric field (E=0) applied, the 

net polarization of the sample is equal to zero. Since the relation is non-linear, the 
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polarization displays the closed curve known as the hysteresis loop by a change of 

the electric field. 

Hysteresis shows how a material’s current state depend on its history. To investigate 

the properties of ferroelectric materials, the electric field polarization (P-E) cycle is 

measured. As demonstrated in the Figure 2.1, the polarization does not change 

linearly with the electric field for ferroelectric materials.  

Figure 2.1. A hysteresis loop illustrating the spontaneous polarization (PS) and 

remnant polarization (PR) [2]. 

When an electric field is applied to the crystal, the domains containing polarization 

components along the applied field direction expand, that causes an increase in the 

polarization. In time, the polarization saturates and the crystal becomes a single 

domain when all the domains are oriented in the direction of the applied field. There 

will be some distortion in the polarization direction of the crystal. As seen in the 

Figure 2.1, the up and down states correspond to the points where the ferroelectric is 

fully saturated, either positive or negative, respectively. These points also refer to 

spontaneous polarization. As expected, the polarization decreases when the applied 

electric field decreases, but it follows a different path and does not reach zero when 

the electric field vanishes. Remanent polarization (PR) is the value of polarization 
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where the electric field disappears as shown in the figure. Additionally, as the reverse 

electric field increases, the polarization in the opposite direction becomes saturated. 

The hysteresis curve will be obtained (Figure 2.1) by once more inverting the electric 

field. 

2.2 Properties of Examined Ferroelectric Materials 

2.2.1 Lanthanum Borogermanate (Nd3+ doped LaBGeO5, LBG) crystals 

At about a Curie temperature of Tc 804K, the ferroelectric material lanthanum 

borogermanate, LaBGeO5 or simply LBG, passes through a phase transition. 

According to a Rulmont and Tarte [13], LBG has a crystalline structure similar to 

that of stillwellite (CeBSiO5)., At about room temperature, in ferroelectric phase, 

LBG is in the trigonal polar space group P31 containing three formula units per cell 

(24 atoms) and the unit cell parameters are a= 6.9995 Å, c= 6.8596 Å [14]. In the 

ferroelectric phase the crystal structure of LBG has been reported [15] as the boron 

(B), germanium (Ge) and lanthanum (La) ions are surrounded by oxygen (O) 

forming BO4, GeO4 tetrahedra and LaO9 polyhedra. In order to create helical chains 

along the c-axis, the BO4 tetrahedra are connected by their corners. By sharing the 

oxygen atoms at the corners, the GeO4 tetrahedra connect two subsequent BO4 

tetrahedra in the chain. The chain of BO4 and GeO4 tetrahedra is connected by the 

large LaO9 polyhedra. Below TC, LBG crystals exhibit the following advantageous 

characteristics; spontaneous polarization Ps = 9µC/cm3 at 300K [16], high Curie-

Weiss constant (order of 104 K) [17], high pyroelectric coefficient γ =  dPS/dT ≈ 

10nC/cm2 at 300K, relatively low permittivity (𝜀∥𝑐= 𝜀⊥𝑐  = 13.4 at 1 MHz) [18], high 

electrical resistivity (ργ > 107Ω.cm) and low dielectric loss (tanδ ≈ 0.001) [18]. This 

model states that the LBG in non-polar space group P3121 has three formula units 

per cell (z = 3), and the unit cell parameters are a = 6.9926 Å and c = 6.9315 Å above 

TC (paraelectric phase) [18]. The BO4 tetrahedra disorder above TC that was revealed 

by this model [18] can be explained by the dynamical displacement of the La and Ge 
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atoms to place them on the twofold axis. These displacements of La and Ge concern 

the B and O5
 atoms close to the c-axis which occupy with equal probability two sites 

with distance of approximately 0.6 Å and 0.15 Å, respectively. 

There have been a lot of conflicting reports regarding the structural phase transition 

mechanism of LBG. An order-disorder process is indicated by the Rhodes-Wohforth 

plot referred by Tokunaga [19] and the minimal entropy change ΔS = 0.114 R = R 

ln (1.121) [16] for the LBG resembling displacive type transition. Similarly, Onodera 

et al. [16] and Stefanovich et al. [17] reported the Landau coefficients that indicated 

order-disorder mechanism. Moreover, it has been stated by Hrubá et al. [20] that 

small excess entropy is consistent with the disorder of the atom which is one of the 

eight atoms in the formula unit, supporting the order-disorder aspect of transition. 

According to Kaminskii et al. [12] and Rulmont and Tarte [13], the unpolarized 

infrared (IR) and Raman spectra of LBG have been described. Pisarev and Serhane 

[21] noted a partial softening of the low frequency created by the A symmetry close 

to the TC. The polarized Raman spectra of LBG glasses were published by Califano 

et. al. [22]. Milov and Strukov experimentally determined the piezoelectric moduli 

of the LBG crystal [23]. To describe the structural, electrical, and vibrational 

characteristics of LBG crystals, density functional theory (DFT) computations were 

carried out [15,24]. 

Despite B2O3 evaporation, a high melt viscosity, and a significant tendency for 

undercooling, it is very challenging to create LBG crystals [25]. They offer a great 

deal of promise for application in the creation of nonlinear optical devices such 

tunable waveguides and fiber gratings. Nd3+ or Pr3+ doped LBG in particular shows 

promise as a self-frequency-doubling (second harmonic generation, SHG) crystal 

that can meet the needs of the development of short-wavelength lasers. It has 

reported in the literature on how the rare-earth metals (Gd, Eu, Tm, and Nd) doping 

affect the ferroelectric characteristics of LBG [25,26]. On the basis of the 

compressible Ising model, the anomalous behavior of the specific heat, which is a 

spin for the potential phase transition, has been examined. According to Rice [27], 

the specific heat at constant volume (CV) for a first order transition reaches infinity 
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at the transition temperature. On the other hand, Larkin and Pikin [28] claimed that 

for weakly first order or almost second order transitions, the specific heat at constant 

pressure (CP) goes to infinity at the transition temperature. As the transition 

temperature is approached from below, Baker and Essam [29] shown that CP does 

not change from being finite. For such crystals displaying weakly first order or 

almost second order transitions, Yurtseven [30] developed a compressible Ising 

model superimposed on an Einstein and/or Debye model in light of these research. 

In order to explore the unusual behavior of the specific heat at the phase transition 

temperatures for several ferroelectric materials, such as ammonium halides [31,32], 

LiKSO4 [33], TMA-ZnBr4 [34], and PyBF4 [35], Yurtseven and/or coworkers have 

employed his model. 

In terms of the compressible Ising model with the critical exponent, the critical 

behavior of the specific heat for (La1-xNdx)BGeO5 crystals [26], where x= 0; 0.03; 

0.05, was examined in the region of the phase transition temperatures of TC = 802.39 

K (x = 0), TC = 816.63 K (x = 0.03), TC = 823.27 K (x = 0.05). The critical exponent, 

which was taken from the measured [26] specific heat data, was used to determine 

the temperature dependence of the enthalpy (H), the entropy (S), and the Gibbs free 

energy (G) of these three compositions. Additionally, the Landau phenomenological 

theory was used to examine the inverse dielectric susceptibility (𝜒−1) obtained from 

the observed [26] dielectric constant data, and the Landau coefficients were 

calculated. The measured [26] birefringence (normalized) of these compositions was 

used as the order parameter (squared) in this investigation. 

2.2.2 Pyridinium Fluorosulfonate (C5NH6)FSO3 

The pyridinium (C5NH6 cation, or shortly Py) salts can be formed as a result of the 

reaction of the pyridine (C5NH5), a strong organic base, with various acids. These 

salts are widely applied as disinfectants in the medical field (foams, eye drops, and 

solutions). Moreover, pyridinium compounds have been used as dyes (acylating 

agents), phase transfer catalysts, and intrinsic fluorescence [36]. They are synthetic 
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building blocks for obtaining piperdine, dihydropyridire and substituted pyridine 

[37]. A simple principle of classification for pyridinium salts has been proposed [38] 

by considering the number of solid-solid phase transitions: salts of type N undergo 

N transformations. A few monomorphic compounds (Type 0) of these salts including 

tetrahaloarutes [39] and nitrate [40] anions have been reported. Some examples of 

the Type 1 salts with the inclusion of chloride, bromide, iodide [41], 

hexafluorophosphate [42] and antimonite [43] anions have been reported to undergo 

one solid-solid phase transition. Besides, the tetrafluoroborate [44], percholarete [45] 

and perhenate [46] salts have exhibited two successfully phase transitions (Type 2). 

The dynamic orientational disorder of the Py cations in the high temperature phases 

of the Type 2 salts has been described by a model of stochastic jumps among the 

equivalent potential barriers [47]. The orientational order below the lower phase 

transition is lost on heating as a result of the Py cation's infrequent reorientation 

between likely non-equivalent potential barriers in the low-temperature phases of 

Type 2 salts. It is also noteworthy that for Type 2 salts, the alignment of the 

permanent dipole moments of the Py cations in an applied electric field gives rise to 

the existence of a reversible spontaneous polarization in the intermediate phases 

(mesophases), as stated before [46]. As a member of Type 3 of these salts, 

pyridinium fluorosulfonate (C5NH6)FSO3 or shortly PyFSO3 undergoes three solid-

solid phase transitions at 235 𝐾 (IV-III transitions), 272 𝐾 (III-II transition), and 

282 𝐾 (II-I transition) as the temperature was lowered from the room temperature 

[48]. At room temperature (paraelectric phase), PyFSO3 belongs to the trigonal 

crystal system with the space group 𝑅3̅𝑚 and its lattice parameter in this structure 

was reported as 𝑎 = 5.762 Å,   𝛼 = 97.860 and 𝑍 = 1 [48]. Both Py cation and FSO3 

anion reveal 3̅𝑚 symmetry and they are dynamically strongly disordered. Also, it is 

reported that the Py cation reorients around its pseudohexad axis perpendicular to the 

ring plane. The center of the gravity of Py cation occupies site a (0,0,0) while the S 

atom occupies site b (½, ½, ½), as reported previously [48]. On the other hand, since 

the position of the nitrogen (N) atom could not be determined, all the pyridine ring 

atoms are refined as carbon atoms so that each site f(x, x, 0) contains 5/6 C and 1/6 
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N. For the same reason, fluorine (F) atom was refined together with the three oxygen 

atoms as the (𝑆𝑂4)
− anion so that one can obtain six positions for both F and O 

atoms, each containing 1/6 F and ½ O with relatively large temperature factors [48].   

The ferroelectric properties of PyFSO3 have been studied experimentally by Polish 

scientists [48]. In their study, they reported the temperature dependence of the 

specific heat and the entropy by using Differential Scanning Calorimetry (DSC). 

Also, they measured the temperature dependence of the seconds moments and spin 

lattice relaxation time T1 of 1H and 19F by using the nuclear magnetic resonance 

(NMR) spectrometer. In addition, they performed the measurements of the complex 

dielectric permittivity and obtained the dielectric hysteresis loop of PyFSO3 [48].  

The spin lattice relaxation time (SLRT) for proton nuclei (T1
H) was calculated as a 

function of temperature close to the IV-III transition (𝑇𝐶 = 235 𝐾) using the 

pseudospin-phonon coupled (PS) model [49] and the energy fluctuation (EF) model 

[50]. For this calculation, we used the temperature dependence of the observed 

proton second moment [48] as an order parameter. By fitting the SLRT calculated 

from both models (PS and EF) to the observed data [48], the parameters were 

determined and the observed behavior of SLRT was explained close to the IV-III 

solid-solid transition in PyFSO3. In addition, values of the activation energy for the 

cation reorientation in PyFSO3 were deduced by using the damping constant which 

was calculated from both models (PS and EF) in the temperature range studied.  

Finally, the observed [48] dielectric permittivity of PyFSO3 was analyzed by means 

of the Landau theory in the vicinity of the IV-III solid-solid transition and the Landau 

coefficients a2 and a4 were determined. These coefficients were then used to predict 

the spontaneous polarization and to calculate the activation energy for the 

reorientation of the dipole moment within the framework of both PS and EF models. 
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2.2.3 Imidazolium Perchlorate (ImClO4) 

Imidazolium salts (IMSs) are derived from imidazole rings, which are found all over 

nature and have the capacity to form hydrogen bonds with both drugs and proteins 

as well as metals as ligands [51]. IMSs can interact electrostatically with biological 

systems in a way that their parent imidazoles cannot because they lost the ability to 

link both metals and hydrogen [52]. Imidazolium salts are referred to room 

temperature ionic liquids (RTILs), which include substantial organic cations and 

inorganic anions, and can be employed as electrolytes due to their broad chemical 

stability [53] and remarkable catalytic capabilities [54,55]. Moreover, they have been 

utilized to dissolve carbohydrates [56], cover metal nanoparticles with metal ions 

[57], and produce polyelectrolyte brushes on surfaces [58]. In contrast to 

ferroelectric oxides, organic-inorganic molecular ferroelectrics have gained 

prominence due to their favorable traits, including being environmentally friendly 

(particularly due to their lead-free structure), having both a low cost and 

mechanically flexible structure [6, 59]. In particular, as a member of organic-

inorganic molecular ferroelectrics, imidazolium perchlorate (C3N2H5ClO4 or Im-

ClO4) can be used as an effective 3D printed metamaterial that produces rapid-

prototype for reducing the manufacturing time of ferroelectrics from hours to 

minutes, as pointed out previously [7]. Moreover, it has been noted [60] that Im-

ClO4 thin films demonstrate superior electromechanical coupling over PZT films, 

making them a desirable lead-free option for a variety of uses in sensor technology 

and electro-optics.   

Im-ClO4 is reported to go through three successive solid-solid phase transitions at 

487, 373, and 247 K [61]. According to Pająk et al. [61], the Im-ClO4 crystal 

structure is trigonal, with a space group of R3m, Z=1 and a lattice parameter 𝑎 = 

5.484(1) Å with a value of 𝛼 = 95.18(2)º. Moreover, as previously reported [61], 

cations are very disordered where perchlorate ions are ordered at room temperature. 

The crystal structure is also trigonal above room temperature, with a space group of 

R3̅m, 𝑎 = 5.554(1) Å and 𝛼 = 95.30(2)º, but all of the ionic sublattices are disordered 
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[61].The dielectric and optical properties of Im-ClO4 have been declared by Czapla 

et al. [62] by studying the x-ray diffraction, dielectric and birefringence 

measurements. The precise measurements of specific heat changes of this crystal 

have been performed by Przeslawski and Czapla [63] using an ac calorimeter. The 

polymorphic phase transitions, appearance of the ferroelectricity, molecular 

structure, and molecular dynamics of Im-ClO4 have been investigated by Pajak et. 

al. [61] using differential scanning calorimetry (DSC), proton NMR relaxation and 

second moment, x- ray diffraction and dielectric spectroscopy measurements.  

In the present study, the proton spin lattice relaxation time (SLRT), denoted as T1 (s) 

has been calculated as a function of temperature in the vicinity of the solid-solid 

phase transition temperature TC = 247 K, by using both the pseudospin-phonon (PS) 

coupled and the energy fluctuation (EF) models. This calculation has been performed 

by using the observed [61] proton second moment (M2) as an order parameter below 

TC and as a disorder parameter above TC according to both models. Moreover, the 

fitting procedure was implemented for the calculated data of SLRT, by obtaining the 

fitting parameters at first, then the attitude of the observed values of SLRT was 

denoted around the transition temperature. Finally, the activation energy values are 

computed from the correlation of the damping constant with respect to the reciprocal 

of temperature.  

As an example of molecular ferroelectrics, Croconic acid was found to have a high 

spontaneous polarization of roughly 23 µC cm-2 [60], which is comparable to BTO. 

Also, diisopropylammonium bromide (DIPAB), as another example, has a high 

ferroelectric phase transition temperature of 426K, which is higher than that of BTO, 

and also has a strong piezoelectric response with well-defined ferroelectric domains 

[59,61]. Similarly, with strong spontaneous polarization, low coercivity, superior 

electromechanical coupling, and high Curie temperature imidazolium perchlorate 

(ImClO4) can be accepted as promising molecular ferroelectric. As a trigonal crystal 

Im-ClO4 has a high melting temperature and high ferroelectric transition temperature 

so that it can be processed at high temperatures [63, 64]. 
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Im-ClO4 is a molecular ionic crystal with pseudopentagonal cation symmetry that 

can be categorized by disordered molecular structure [62]. Thanks to the foregoing 

features mentioned also for molecular ferroelectrics, ImClO4 can be used in sensing, 

actuation, data storage, electro-optics, and molecular flexible electronics [60]. Im-

ClO4 has been reported [61] to undergo three successive solid-solid phase transitions 

at 487, 373 and 247 K. Im-ClO4 is polar below TC= 373.6 K according to the 

structural analysis and second harmonic generation measurement [62]. 

In the previous study, we dealt with the structural anomalies at the temperatures close 

to the first-order phase transition temperature of 247 K. The temperature dependence 

of the relaxation time of Im-ClO4 was computed using the pseudospin-phonon 

coupled (PS) and energy fluctuation (EF) models [66]. In the present study, the 

anomalous behavior of the specific heat of the same material Im-ClO4 was analyzed 

in terms of a power-low formula deduced from the Ising model in the vicinity of the 

lower phase transition temperature of TC = 247 K and the critical exponents which 

were deduced from the specific heat, polarization, and susceptibility, have been 

investigated around the second-order phase transition temperature TC = 373 K. So, 

we aimed to have a detailed series of study about Im-ClO4.  

2.2.4 Zirconium dioxide (Zirconia, ZrO2) 

Zirconium dioxide (Zirconia, ZrO2) has complex polymorphism, including high-

pressure and high-temperature phases. The unique properties of these phases ensured 

the broad and diverse application of ZrO2 and ZrO2-based materials in various fields 

[67]. Many remarkable properties can be possessed; refractoriness, low volatility, 

high chemical resistance, extraordinary mechanical strength, wear resistance, low 

thermal conductivity, wide bandgap, oxygen conductivity, high refractive index, and 

biological inertness [68]. The significance of Zirconia in engineering ceramics is 

widely acknowledged; among the many useful uses are high-temperature equipment, 

thermal barriers, and oxygen sensors. The reason why prospective application of 
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particular current interest is its possible use to replace SiO2 as the gate-dielectric 

material in metal-oxide-semiconductor (MOS) device [69].  

Currently, ZrO2 is a major component of modern ceramic material which is well 

acknowledged as possesses three polymorphic modifications under standard 

pressure: monoclinic, tetragonal, and cubic [68]. 
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CHAPTER 3  

3 THEORY 

3.1 Phase Transition 

Every condensed matter system has homogeneous forms called states which can be 

identified in terms of various properties, such as density, crystal symmetry, 

magnetization, electric polarization, etc. Since changes in these properties are 

important to learn about phases, therefore materials, the phase transition is one of the 

most studied topics. Phase transition can be defined as significant changes in 

symmetry and properties of a system; that arise from changes in external conditions 

such as temperature, pressure, chemical potential, etc. The transition occurs when 

the system becomes unstable. The stability of any system is characterized by the 

condition of the minimum thermodynamic potential at a finite temperature.  

In other words, each system state in thermodynamics is determined by a certain 

amount of energy. This energy is referred to as free energy if the system's state is 

determined by its temperature T, pressure P, and volume V [70]. The stability 

condition can be written as  

∆𝑈 + 𝑃∆𝑉 − 𝑇∆𝑆 ≥ 0 (3.1) 

where U is internal energy, V is volume, and S is entropy. 

This potential could be the Helmholtz free energy 𝐹 = 𝐸 − 𝑇𝑆 if the independent 

variables are temperature and volume, whereas it is Gibbs free energy                              

𝐺 = 𝐸 − 𝑇𝑆 + 𝑃𝑉 if the variables are temperature and pressure. It is clear from these 

expressions that with increasing temperature, the highest possible entropy will be 

reached, and the system will have a disordered state. 
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Classification of Phase Transition 

Paul Ehrenfest who presented the classification of phase transitions in 1933, divided 

them into two groups; first order and second order transitions [71]. The main idea of 

the classification is continuity/discontinuity of the thermodynamic potentials which 

define the phase of matter.  

Whether discontinuities take place in the first derivatives of Gibbs free energy G, as 

given in Eq. 3.2, in entropy and volume the transition is defined as a first order phase 

transition [70].  

𝑆 =  − (
𝜕𝐺

𝜕𝑇
)
𝑃
             𝑉 =  (

𝜕𝐺

𝜕𝑝
)
𝑇

      𝐻 =  −𝑇 (
𝜕(𝐺)

𝜕(𝑇)
   ) (3.2) 

If the transition is of a second order type, the first derivatives of the Gibbs free energy 

are continuous. Different from the first order type, the second derivatives of the 

Gibbs free energy, which are given in Eq. 3.3, are discontinuous. At the transition 

point, several thermodynamic quantities also approach infinity asymptotically or are 

reduced to zero. 

𝐶𝑃
𝑇
=  −(

𝜕2𝐺

𝜕𝑇2
)
𝑃

= (
𝜕𝑆

𝜕𝑇
)
𝑃
             𝜅𝑇𝑉 =  −(

𝜕2𝐺

𝜕𝑝2
)
𝑇

= −(
𝜕𝑉

𝜕𝑝
)
𝑇

  (3.3) 

CP denotes the heat capacity at constant pressure and 𝜅𝑇 is the isothermal 

compressibility at a constant temperature.  

As well as continuity in the first and second derivatives of thermodynamic potential 

defines the type of it, latent heat is also a method to distinguish. The presence or 

absence of latent heat during phase transformations accounts for the primary 

distinction between these two types of transitions since it reflects the change of 

enthalpy [70]. Whether there exists a latent heat during the transition, it can be 

defined as the first order, and an absence of the latent heat indicates a second order 

transition.  
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Another way of classifying the phase transitions is based on the dependence of the 

order parameter on temperature. The quantities that characterize the state of the 

system have certain ordering and they can be matched by order parameters [70]. The 

idea was suggested by Landau phenomenological theory which will be introduced in 

detail later. The theory put forward that if the order parameter changes 

discontinuously around the transition point (if there is a jump) with respect to the 

temperature as shown in Figure 3.1 (a), the transition is called a first order phase 

transition. On the other hand, it can be defined as a second order phase transition if 

the dependence is continuous as indicated in Figure 3.1 (b). The transition occurs 

over a definite temperature called critical temperature (Curie temperature) where one 

can talk about an order below it. As seen in the figure, there is an order below the 

critical temperature TC, whereas the order parameter vanishes above this 

temperature. The order parameter is used by normalization, which takes a value 

between 0 and 1.  

 

 

Figure 3.1. The order parameter dependence on temperature (a) first order phase 

transition (b) second order phase transition [70] 
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3.2 The Compressible Ising Model  

The Ising model can be defined as a microscopic approach to phase transitions, based 

on the interaction between particles. Essentially, Ernst Ising developed the Ising 

model to simulate the behavior of phase transitions in ferromagnets [70]. The model 

explains how short-range interactions between molecules in a crystal result in long-

range, correlative behavior, and predicts the possibility of a phase change. It is one 

of the simplest thermodynamic models, based on three assumptions: 

(1) The particles of the system that are located on the sites of a crystal lattice. 

(2)  Each particle exists in one of two potential states (in magnetic case, 

spins), which are 𝑆𝑖 = ±1/2. 

(3) The energy of the system can be defined as 𝐸 = −𝐽∑ 𝑆𝑖𝑆𝑗𝑖,𝑗 , where J is a 

constant interaction parameter and sum is over all pairs of nearest 

neighbors 𝑖 and 𝑗 [70]. 

The main problem is calculating the mechanical energy of the system with all the 

particles, especially for many particle systems. The Hamiltonian for an Ising system 

which considers the nearest neighbor spin interactions is described in the usual form 

𝐻𝐼 = − 𝐽 ∑𝜎𝑖𝜎𝑗
𝑖,𝑗

(3.4) 

where 𝐽 is the interaction parameter between the nearest neighbor molecules, and 𝜎𝑖, 

𝜎𝑗 represent the spin variables. The Ising free energy 𝐺𝐼 of an Ising system is defined 

as  

𝐺𝐼 = −𝑘𝑇 ln 𝑍 (3.5) 

where 𝑘 is the Boltzman constant and Z is the partition function given as  

𝑍 =  ∑𝑒−
𝐻
𝑘𝑇

𝑖,𝑗

(3.6) 
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The critical behavior of the Ising free energy 𝐺𝐼 close the phase transition 

temperature can be expressed as a power-law formula as stated before [30] which 

reads as 

𝐺𝐼 = 𝐴0
′ + 𝐴′|𝜀|2−𝛼 (3.7) 

where α is the critical exponent, ε = |T-TC|/TC is the reduced temperature and         

𝐴0
′ = 𝐽𝐴0 and 𝐴′ = 𝐽𝐴 are the parameters in the dimensions of energy with constants 

𝐴0 and 𝐴. The specific heat 𝐶 which is the second derivative of the free energy G 

with respect to the its argument 𝐽 𝑘𝑇⁄  is, 

𝐶 = 𝑘(𝐽 𝑘𝑇⁄  )2[𝜕2𝑙𝑛𝑍 𝜕(𝐽 𝑘𝑇⁄  )2⁄ ] (3.8) 

From Eq. (3.5) and (3.7), one gets 

ln 𝑍 = −(𝐽 𝑘𝑇⁄ ) (𝐴0 +  𝐴 |𝜀|
2−𝛼) (3.9) 

The second derivative of the Eq (3.9) with respect to 𝐽 𝑘𝑇⁄  is 

𝜕2𝑙𝑛𝑍 𝜕(𝐽 𝑘𝑇⁄  )2⁄ = −
𝑉𝑇2

𝐽𝑇𝐶
(2 − 𝛼) [(𝐴 − 1) |𝜀|1−𝛼  +  

𝐴𝑇

𝑇𝐶
(1 − 𝛼)|𝜀|−𝛼] (3.10) 

 

Inserting Eq (3.10) into the Eq (3.8), Yurtseven and Sherman [72] have reported an 

analytical expression for the specific heat 𝐶 by neglecting the weakly divergent 

|ε| 1−𝛼 term, given by 

𝐶 = − 
𝐽𝐴𝑇

𝑇𝐶
2  (1 − 𝛼) (2 − 𝛼) |𝜀|

−𝛼 (3.11) 

Enthalpy, Entropy, and the Gibbs Free Energy  

The temperature dependence of the enthalpy H can be calculated as follows  

𝐻 = ∫𝐶𝑑𝑇 + 𝐻0 (3.12) 
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where 𝐻0 is the enthalpy value at  𝑇 = 𝑇𝐶. Inserting Eq. (3.11) into the Eq (3.12) one 

gets 

𝛥𝐻 = −𝐽𝐴[(1 − 𝛼)|𝜀|2−𝑎 + (2 − 𝛼)|𝜀|1−𝑎] (3.13) 

𝛥𝐻 denotes the change in the enthalpy (𝛥𝐻 = 𝐻 − 𝐻0).  

Likewise, the temperature dependence of the entropy 𝑆 can also by calculated 

according to the following equation;  

𝑆 =  ∫
𝐶

𝑇
 𝑑𝑇 + 𝑆0 (3.14) 

where 𝑆0 is the entropy value at 𝑇 = 𝑇𝐶. Inserting Eq (3.11) into the Eq (3.14) one 

gets 

𝛥𝑆 = −
𝐽𝐴

𝑇𝐶
(2 − 𝛼)|𝜀|1−𝛼 (3.15) 

Similarly, 𝛥𝑆 denotes the entropy change (𝛥𝑆 = 𝑆 − 𝑆0)  

The obtained vales of 𝛥𝐻 and 𝛥𝑆 are used to calculate the Gibbs free energy 𝛥𝐺 

given as  

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆 (3.16) 

3.3 Landau Phenomenological Theory  

The Landau phenomenological theory was initially proposed to explain the 

mechanism of second order phase transition in the region close to the transition 

temperature. The main idea of the theory is determining the free potentials of the 

system by investigating the changes in macroscopic properties such as spontaneous 

polarization, magnetization, elasticity, probability of occupancy of atoms, etc. 

In Landau theory, free energy can be both Helmholtz F(V,T) and Gibbs G(P,T) free 

energies that are defined as continuous functions of order parameter η. As mentioned 

before, order parameter is a variable that is determined to characterize the ordering 
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of the homogeneous states (phases) in systems. Since free energy of the system in 

equilibrium is directly related to pressure and temperature, order parameter η must 

be a function of them. In the vicinity of transition temperature TC, the order 

parameter η is small, so free energy can be expanded in Taylor series; 

𝐺(𝑃, 𝑇, η) = 𝑎0(𝑃, 𝑇) + 𝑎1η + 𝑎2η
2 + 𝑎3η

3 + 𝑎4η
4 +⋯ (3.17) 

where sequence of coefficients 𝑎0, 𝑎1, 𝑎2, 𝑎3, and 𝑎4 are known as Landau 

coefficients which are functions of temperature and pressure.  

There are two assumptions in the Landau phenomenological theory. The first one is 

that the order parameter can be defined by the conditions; 

𝜕𝐺

𝜕η
= 0         𝑎𝑛𝑑          

𝜕2𝐺

𝜕η2
> 0 (3.18) 

which are the expressions for minimum free energy. Second assumption is about 

vanishing the order parameter at the phase transition, η(TC) = 0. To achieve the first 

assumption for all η, it is clear that 𝑎1 must be zero in the case of no external field. 

Otherwise, by the presence of linear term, order parameter cannot disappear for any 

temperature above TC and free energy cannot display a minimum at η = 0.  

According to the symmetry arguments that arise from magnetic systems, which is 

positive and negative magnetization of the system, must be equivalent so that the 

odd power terms of the magnetization in the free energy are omitted. Similarly, only 

the even power terms of order parameter are accepted here, and the free energy G 

can be expressed in terms of the order parameter η as  

𝐺(𝑃, 𝑇, η) = 𝑎0(𝑃, 𝑇) + 𝑎2𝜂
2 + 𝑎4𝜂

4 (3.19) 

To simplify the expression, we treat the system at constant pressure as being 

equivalent to the critical one and omit the pressure from the arguments. In addition, 

when we consider the second requirement in Eq. 3.18, it follows that 𝑎2 > 0 must 

be satisfied for T > TC while  𝑎2 < 0 for T < TC. So, the coefficients 𝑎2 can be written 

around TC as; 
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𝑎2 = 𝑎 (𝑇 − 𝑇𝐶) (3.20) 

where the positive constant 𝑎. Then the free energy takes its simplest form; 

𝐺(𝑇, η) = 𝑎0 + 𝑎 (𝑇 − 𝑇𝐶)𝜂
2 + 𝑎4𝜂

4 (3.21) 

From the minimization condition 𝑑𝐺/𝑑𝜂 = 0, one gets  

𝜂(𝑎 (𝑇 − 𝑇𝐶) + 2𝑎4𝜂
2) = 0 (3.22) 

which can be solved for the order parameter 𝜂 as  

𝜂 = 0   𝑎𝑛𝑑   𝜂2 = − 
𝑎(𝑇 − 𝑇𝐶)

2𝑎4
(3.23) 

𝜂 = 0 corresponds to the paraelectric phase for 𝑇 > 𝑇𝐶. By taking 𝑎4 > 0, a positive 

𝜂 solution of Eq (3.23) defines the ferroelectric phase. The 𝜂4 term in the Eq. 3.21 is 

needed since the 𝜂2 term vanishes at the transition temperature, however its 

temperature dependence can be ignored and accepted as a constant. 

The equilibrium condition of the free energy can be obtained by putting Eq. 3.23 

back into energy expression for T < TC; 

𝐺𝑚𝑖𝑛 = 𝑎0 +
𝑎2

2𝑎4
(𝑇𝐶 − 𝑇)

2 (3.24) 

It can be easily seen that the first derivative of the free energy has continuous 

behavior where it would have a jump in second derivative that is the characteristic 

behavior of second order phase transition.  

Since the temperature dependence expression of the free energy has been obtained, 

thermodynamic quantities such as entropy 𝑆, heat capacity 𝐶𝑃, and the inverse 

dielectric susceptibility 𝜒−1 can be calculated by means of the Landau 

phenomenological theory for the second order phase transition. 

The derivative of the free energy gives the entropy 𝑆 of the transition as 

𝑆 = −
𝜕𝐺

𝜕𝑇
= 𝑆0(𝑇) − 𝑎𝜂

2 (3.25) 
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It follows that 

𝑆 = {

𝑆0(𝑇)                          𝑇 > 𝑇𝐶

𝑆0(𝑇) +
𝑎2(𝑇 − 𝑇𝐶)

2𝑎4
      𝑇 < 𝑇𝐶         

(3.26) 

where entropy demonstrates continuous behavior with respect to order parameter as 

a given condition for second order phase transition.  The heat capacity is another 

thermodynamic quantity, which can be derived from the free energy by the relation; 

𝐶𝑃 = 𝑇 (
𝜕𝑆

𝜕𝑇
) = 𝐶0(𝑇) +

𝑎2𝑇𝐶
2𝑎4

(3.27) 

at constant pressure in the ferroelectric phase  𝑇 < 𝑇𝐶. Since the order parameter 

vanishes in the paraelectric phase  𝑇 > 𝑇𝐶, behavior of the heat capacity depends on 

the temperature in this phase and there exists a discontinuity at the transition 

temperature. The jump in the specific heat 𝐶𝑃(𝑇) defines a divergent λ shape curve 

so that this transition is known as a λ-transition. 

The second derivative of Eq (3.21) with respect to the order parameter 𝜂 defines the 

inverse dielectric susceptibility  𝜒−1 which reads 

𝜒−1 =
𝜕2𝐺

𝜕𝜂2
= 2 𝑎 (𝑇 − 𝑇𝐶) + 12𝑎4𝜂

2               (3.28) 

Inserting 𝜂2 (Eq 3.23) into the Eq (3.28), one gets the following expression for 𝜒−1 

in the ferroelectric phase (T < TC). 

𝜒−1 = −4𝑎(𝑇 − 𝑇𝐶) (3.29) 

 

First Order Phase Transition in Landau Theory 

There are two assumptions which we accept to investigate the Landau 

phenomenological theory up to here. One of them is omitting the cubic term of order 

parameter in energy expression (Eq 3.17). What if the cubic term is also considered? 

The Landau expression Eq. 3.21 turns to; 
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𝐺(𝑇, 𝜂) = 𝑎0 + 𝑎 (𝑇 − 𝑇𝐶)𝜂
2 + 𝑎3𝜂

3  + 𝑎4𝜂
4 (3.30) 

By minimizing the free energy with respect to 𝜂, 𝑑𝐺/𝑑𝜂 = 0, one can obtain 

𝜂1 = 0     𝑎𝑛𝑑     𝜂2 = −
3𝑎3
8𝑎4

∓√(
3𝑎3
8𝑎4

)
2

−
𝑎(𝑇 − 𝑇𝐶)

2𝑎4
(3.31) 

where these two solutions need to satisfy the energy equation for a specific 

temperature T0; 

𝐺(𝜂1, 𝑇0) = 𝐺(𝜂2, 𝑇0) (3.32) 

There is a discontinuity in the order parameter from 𝜂1 to 𝜂2, which means that the 

first order phase transition occurs at T0.  

The second assumption is about the coefficient 𝑎4 of the 𝜂4 term which has been 

accepted as positive previously. In the case of negative 𝑎4, the sixth order term needs 

to be added to the free energy expression for extracting the minimum of it. The 

expression can be written as; 

𝐺(𝑇, 𝜂) = 𝑎0 + 𝑎 (𝑇 − 𝑇𝐶)𝜂
2 − |𝑎4|𝜂

4 + 𝑎6𝜂
6 (3.33) 

 The roots of the equation for the order parameter can be extracted as; 

𝜂1 = 0     𝑎𝑛𝑑     𝜂2 =
1

√3𝑎6
{|𝑎4| + √𝑎4

2 − 3𝑎6𝑎(𝑇 − 𝑇𝐶)}

1
2

(3.34) 

The discussion of Eq. 3.27 can be repeated here. Since there is a jump between the 

values of order parameter for a specific temperature, this is also defined as a first 

order phase transition.  

3.4 Damping Constant 

The damping constant 𝛤𝑠𝑝(𝑘⃗ 𝜈, 𝜔𝜈) due to the pseudospin-phonon interaction is given 

by the imaginary part of the self-energy which reads as [73] 
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𝛤𝑠𝑝(𝑘⃗ 𝜈, 𝜔𝜈) ≃ 𝐴∫ 𝑆
𝐵𝑍

(𝑞 , 𝜔) [
𝑛(𝜔𝜈)

𝑛(𝜔) + 1
+ 1] 𝑑3𝑞 + 𝐵 (3.35) 

 

In Eq. (3.35) the integral is taken over all the wavevector q in the Brillouin zone 

(BZ). A and B are constants, 𝑘⃗  is the wavevector of the 𝜈𝑡ℎ phonon 𝜔𝜈 is the peak 

frequency and S is the dynamic scattering function of the pseudospins that describes 

the anomalous behavior of the damping constant close to the transition temperature 

(TC), which is given by [49] 

𝑆(𝑞, 𝜔) =  〈𝑛(𝜔) + 1〉
𝜒(𝑞, 0)𝜔𝜏𝑞

1 + (𝜔𝜏𝑞)
2  (3.36) 

where, 𝜒 is the dielectric susceptibility, 𝜏𝑞 is the relaxation time of the order 

parameter with the wavevector q. Eq. (3.36) can be expressed as follows (Eq 3.37) 

by using the approximations 𝑛(𝜔) +  1 = (kT/ℏω), (𝜔𝜏𝑞)
2 ≪ 1 and   

𝑛(𝜔𝜈)/[𝑛(𝜔) + 1] ≪ 1 for 𝜔 ≃ 0, 

Γ𝑠𝑝 ≈
𝐴𝑘𝑇

ℏ
∫ 𝜒(𝑞, 0)𝜏𝑞 𝑑

3𝑞 + 𝐵

𝐵𝑍

 (3.37) 

In their study, Laulicht and Luknar [73] have reported the following expression using 

the random phase approximation which reads as  

𝜒(𝑞, 0)𝜏𝑞 =
𝐶 (1 − 𝑃2)

𝑇

𝜏𝑞
2

𝜏
 (3.38) 

Here C is the Curie constant, P is the fractional spontaneous polarization (order 

parameter), 𝜏 is the proton flipping time.  

Lahajnar et. al. [74] have calculated the integration of Eq. (3.37) using Eq. (3.38) for 

the KDP crystal given by 

Γ𝑠𝑝 ∝
1

𝑇1
 ∝ (1 − 𝑃2)𝑙𝑛 [

𝑇𝐶
𝑇 − 𝑇𝐶(1 − 𝑃

2)
] (3.39) 
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where T1 represents the proton spin lattice relaxation time. Eq (3.39) defines the 

temperature dependence of the damping constant (or relaxation time) for the 

pseudospin-phonon coupled (PS) model. 

On the other hand, the damping constant (relaxation time) is related to the fluctuation 

of the frequencies at zero wavevector [50] given by 

Γ𝑠𝑝
2  ∝  

𝑘𝑇𝜒(0)

𝑉
 (3.40) 

where V is the volume of the crystal. 

Schaack and Winterfelt [50] have reported the following expression for the damping 

constant by inserting Eq. (3.38) in Eq. (3.40) that reads as 

Γ𝑠𝑝 ∝
1

𝑇1
 ∝  (

𝑇(1 − 𝑃2)

𝑇 − 𝑇𝐶(1 − 𝑃
2)
)

1
2

(3.41) 

Eq. (3.41) defines the critical broadening of the damping constant due to the energy 

fluctuation (EF model). 

3.5 Grüneisen parameter 

The Grüneisen parameter is related to the volume dependence of mode frequency by 

regarding the quantum harmonic oscillator of Einstein’s theory as a mode of crystal 

vibration; 

𝛾 =  
𝛼𝐾𝑇
𝜌𝐶𝑉

 (3.42) 

where α denotes the volume expansion coefficient, ρ is the density, KT is the 

isothermal bulk modulus and CV denotes the specific heat.  

The Grüneisen parameter value for each mode of the frequency νi in the crystal is; 

𝛾𝑖 = −(
𝜕𝑙𝑛𝑣𝑖
𝜕𝑙𝑛𝑉

)
𝑇
 (3.43) 
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where vi denotes the frequency of the ith mode and V is the volume of the unit cell.  

By differentiating the previous function with respect to pressure (P), the isothermal 

Grüneisen parameter is derived as; 

𝛾𝑇(𝑃) =  −
𝑉(𝑃)

𝜈(𝑃)
 
(
𝜕𝜈
𝜕𝑃
)
𝑇

(
𝜕𝑉
𝜕𝑃
)
𝑇

=
(
1
𝜈
) (
𝜕𝜈
𝜕𝑃
)
𝑇

𝜅𝑇
(3.44) 

where 𝜅𝑇is the isothermal compressibility.  
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CHAPTER 4  

4 PHENOMENOLOGICAL APPROACHES ON THE Nd3+ DOPED 

FERROELECTRIC LaBGeO5 

Ferromagnetic Nd3+ doped Lanthanum Borogermanate (LaBGeO5 or LBG) crystals 

were examined in three samples (pure and two more compositions) in terms of the 

compressible Ising model and the Landau model to analyze their specific heat and 

the dielectric constant, respectively. The formula that is used for the sample is         

La1-xNdxBGeO5 and the compositions are given as x= 0, 0.03, and 0.05. The 

calculations were performed separately at the three transition temperatures; 802.4K, 

816.6K, and 823.3K. The measured values of birefringence were related to the order 

parameter below the transition temperature Tc by analyzing dielectric constant data 

within the framework of the Landau theory. 

4.1 Analysis of the Specific Heat  

The specific heat CP data were used from the literature [26] for La1-xNdxBGeO5, by 

the specific heat versus temperature graph, which has three peaks at temperatures; 

802.4K, 816.6K, and 823.3K for three compositions; x= 0, 0.03, and 0.05, 

respectively. These temperature values were taken as transition temperatures, 

depending on the behavior of specific heat of the samples. The specific heat data of 

La1-xNdxBGeO5 were analyzed according to Eq. 3.8 approximately 4K below and 

above the phase transition temperatures (TC) for x= 0, 0.03, and 0.05. The ln(CP/T) 

versus ln|ε| graphs were plotted as shown in Figure (4.1) to extract the critical 

exponent α and the fitting parameter 𝐽𝐴 Eq. (3.11). The slope of the graph gives α 

value and the intersection point can be related with the parameter 𝐽𝐴.  
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Figure 4.1. Specific heat [26], CP, as a function of the reduced temperature              

ε in a ln-ln scale according to Eq. (3.11) for the temperature intervals of 

801.1<T(K)<803.3 (paraelectric phase) in La1-xNdxBGeO5 with x=0 (TC=802.4 K).  

The calculation procedure of α and 𝐽𝐴 of Eq. (3.11) were repeated for these three 

compositions of LBG crystals at all three transition temperatures. Each calculation 

has been done in both ferroelectric and paraelectric phases of the crystals within the 

temperature intervals ∆𝑇 = |𝑇 − 𝑇𝐶| < 4 𝐾. In other words, while ∆𝑇 getting 

smaller, we approach the transition temperature.  

The extracted values of the critical exponent α and the fitting parameter 𝐽𝐴 from the 

heat capacity (Eq. 3.8) were indicated in Tables (4.1)- (4.3) for various temperature 

intervals (∆𝑇) in the vicinity of critical temperature both in ferroelectric and 

paraelectric phases for the x= 0.03 and 0.05 compositions of La1-xNdxBGeO5, 

respectively.  
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Table 4.1 Values of the critical exponent α and the fitting parameter 𝐽𝐴 according to 

Eq. (3.11) in both ferroelectric (T<TC) and paraelectric (T>TC) phases of                      

La1-xNdxBGeO5 with x= 0 (TC= 802.4 K) for the temperature intervals indicated. 

Phase JA α Temp. interval (K) ΔT (K) 

T
C

1
 =

 8
0

2
.4

 K
 (

x
=

 0
) 

F
er

ro
el

e
ct

ri
c
  
(T

<
T

C
) 

 4673 ± 864 0.201 ± 0.011 798.6 < T < 802.1 3.5 

 5072 ± 814 0.185 ± 0.010 799.4 < T < 802.1 2.7 

 5559 ± 890 0.168 ± 0.009 800.2 < T < 802.1 1.9 

 6183 ± 834 0.149 ± 0.008 800.6 < T < 802.1 1.5 

 6594 ± 962 0.138 ± 0.008 801.2 < T < 802.1 0.9 

 7196 ± 1165 0.123 ± 0.009 801.6 < T < 802.1 0.5 

P
a

ra
el

ec
tr

ic
  

(T
>

T
C
) 

 252 ± 210 0.871 ± 0.124 802.5 < T < 805.8 3.3 

 268 ± 318 0.773 ± 0.138 802.5 < T < 804.9 2.3 

 545 ± 816 0.575 ± 0.135 802.5 < T < 804.3 1.8 

 1402 ± 1971 0.387 ± 0.112 802.5 < T < 804.0 1.5 

 2626 ± 2913 0.275 ± 0.084 802.5 < T < 803.7 1.2 

 4251 ± 3781 0.195 ± 0.065 802.5 < T < 803.4 0.9 

 6308 ± 3256 0.132 ± 0.036 802.5 < T < 803.3 0.7 

 8058 ± 1504 0.094 ± 0.012 802.5 < T < 803.1 0.6 
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Table 4.2 Values of the critical exponent α and the fitting parameter 𝐽𝐴 according to 

Eq. (3.11) in both ferroelectric (T<TC) and paraelectric (T>TC) phases of                       

La1-xNdxBGeO5 with x= 0.03 (TC= 816.6 K) for the temperature intervals indicated. 

Phase JA α Temp. interval (K) ΔT (K) 

T
C

2
 =

 8
1
6
.6

 K
 (

x
=

 0
.0

3
) 

F
er

ro
el

ec
tr

ic
  
(T

<
T

C
) 

6219 ± 1564 0.150 ± 0.015 813.1 < T < 816.5 3.4 

6684 ± 1774 0.137 ± 0.016 813.8 < T < 816.5 2.7 

7278 ± 2033 0.122 ± 0.016 814.3 < T < 816.5 2.2 

7649 ± 2187 0.113 ± 0.017 814.6 < T < 816.5 1.9 

8701 ± 2294 0.093 ± 0.015 815.1 < T < 816.5 1.4 

9273 ±2423 0.083 ± 0.015 815.4 < T < 816.5 1.0 

10050 ± 1999 0.070 ± 0.011 815.5 < T < 816.5 0.9 

P
a

ra
el

ec
tr

ic
 (

T
>

T
C
) 

343 ± 108 0.528 ± 0.018 817.1 < T < 822.4 4.2 

330 ± 140 0.541 ± 0.024 817.1 < T < 821.0 2.8 

328 ± 202 0.543 ± 0.035 817.1 < T < 820.5 2.2 

300 ± 303 0.572 ± 0.054 817.1 < T < 819.7 1.4 
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Table 4.3 Values of the critical exponent α and the fitting parameter 𝐽𝐴 according to 

Eq. (3.11) in both ferroelectric (T<TC) and paraelectric (T>TC) phases of                       

La1-xNdxBGeO5 with x= 0.05 (TC= 823.3 K) for the temperature intervals indicated. 

Phase JA α Temp. interval (K) ΔT (K) 

T
C

3
 =

 8
2
3
.3

 K
 (

x
=

 0
.0

5
) F
er

ro
el

ec
tr

ic
  
(T

<
T

C
) 

 7109 ± 2005 0.146 ± 0.018 819.6 < T < 822.9 3.3 

 7431 ± 2145 0.137 ± 0.018 820.0 < T < 822.9 2.9 

 8144 ± 2432 0.119 ± 0.019 820.4 < T < 822.9 2.5 

 9228 ± 2579 0.094 ± 0.017 820.9 < T < 822.9 1.9 

 10421 ±2759 0.072 ± 0.016 821.4 < T < 822.9 1.5 

 11103 ± 3103 0.060 ± 0.017 821.6 < T < 822.9 1.2 

 12086 ± 3027 0.045 ± 0.015 821.9 < T < 822.9 1.0 

P
a
ra

el
e
ct

ri
c 

 (
T

>
T

C
) 

 344 ± 442 0.806 ± 0.047 823.7 < T < 805.8 3.1 

 345 ± 646 0.803 ± 0.063 823.7  < T < 804.9 1.9 

 432 ± 872 0.700 ± 0.078 823.7 < T < 804.3 1.2 

 851 ± 1398 0.526 ± 0.075 823.7 < T < 804.0 0.8 

 1678 ± 1369 0.386 ± 0.042 823.7 < T < 803.7 0.6 

 2222 ± 1656 0.332 ± 0.039 823.7 < T < 803.4 0.4 

 2709 ± 3088 0.295 ± 0.058 823.7 < T < 803.3 0.3 
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The variation of the critical exponent with respect to the temperature difference ΔT 

 is demonstrated in Figure (4.2). As seen in the figure, in the ferroelectric phase, the 

critical exponent values decrease slightly while the temperature intervals are getting 

tight. Nevertheless, in the paraelectric phase, the variation of the α values can be seen 

clearly for pure and x= 0.05 doped LGB crystal. The x= 0.03 doped sample has a 

different view compared to the other cases, that has a slight increase while 

temperature interval decreases.   
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C2

 x=0.05, T>T
C3



T(K)
 

Figure 4.2. Values of the critical exponent α as a function of temperature ΔT 

(Tables 1-3), calculated from the specific heat data [26] in both ferroelectric 

(T<TC) and paraelectric (T>TC) phases of La1-xNdxBGeO5 with x=0; 0.03 and 0.05 

according to Eq. (3.11). 

Similarly, the extracted JA values vary with respect to temperature as the variation 

is demonstrated in Figure (4.3). In the ferroelectric phase, all three combinations 

have similar tendency, while temperature intervals get larger the JA values decrease. 

It can be also claimed that the paraelectric phase has the same behavior as the 
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ferroelectric phase, whereas they approach a smaller value of JA close to zero. The 

decreasing tendency is seen clearly in Figure (4.3) for the pure (x= 0) LGB crystal 

(magenta triangle). On the other hand, x = 0.03 sample has approximately the same 

values for the different temperature intervals. There are limited experimental data to 

examine at small temperature intervals, so the decreasing tendency cannot be 

observed. In general, it is seen in the figure that the extracted values are in accordance 

with each other for each phase.  
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Figure 4.3. Values of the fitting parameter 𝐽𝐴 as a function of temperature ΔT (Tables 

1-3) which was calculated from the specific heat data [28] in both ferroelectric 

(T<TC) and paraelectric (T>TC) phases of La1-xNdxBGeO5 with x=0; 0.03 and 0.05 

according to Eq. (3.11). 
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4.2 Calculation of the Enthalpy, Entropy and the Free Energy for 

LaBGeO5 

The change in the enthalpy, 𝛥𝐻 = 𝐻 − 𝐻0, of the three compositions of                       

La1-xNdxBGeO5 crystals was calculated according to Eq (3.13) in both ferroelectric 

and paraelectric phases. The results are given in Figure (4.4) where 𝐻0 is the enthalpy 

value at  𝑇 = 𝑇𝐶. For this calculation of 𝛥𝐻, the extracted values of α and 𝐽𝐴 (Tables 

4.1-4.3) were used.  

In Figure (4.4), the three samples on the left demonstrate the ferroelectric phase, and 

the samples on the right are for the paraelectric phase. The analysis of the graph 

illustrates that for the ferroelectric phase the enthalpy changes 𝛥𝐻 increase gradually 

due to the increase in the temperature. The 𝛥𝐻 values corresponding to each critical 

exponent α, become consistent with each other while the temperature is getting closer 

to critical temperature TC. These values approach zero around the critical 

temperature, and it is expected from the second order phase transition type where 

there is no latent heat. On the other hand, in the paraelectric phase, the 𝛥𝐻 values 

are close to each other when the temperature gets close to TC and spread out slightly 

while the temperature increases.  

Likewise, the entropy change 𝛥𝑆 = 𝑆 − 𝑆0 was calculated according to Eq (3.15) by 

using the extracted values of 𝛼 and 𝐽𝐴 (Tables 4.1-4.3) in both phases of the three 

compositions of LBG crystals, as it performed for the calculation of the enthalpy 

change 𝛥𝐻. The results of 𝛥𝑆 were demonstrated in Figure (4.5), where 𝑆0 is the 

entropy value at 𝑇 = 𝑇𝐶. The variation of the entropy 𝛥𝑆 can be observed from the 

graphs that increases slightly with increasing the temperature both in ferroelectric 

and paraelectric phase. It is seen that the difference between the results extracted for 

different 𝛼 values around the critical temperature, disappears and these values 

approach each other.  
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The obtained values of 𝛥𝐻 (Figure 4.4) and 𝛥𝑆 (Figure 4.5) of those three 

compositions of LBG crystals were inserted into the Eq. (3.16) to calculate the Gibbs 

free energy 𝛥𝐺 given as Eq (3.16). The temperature dependence of the 𝛥𝐺 was given 

in Fig (4.6). It can be clearly observed in the graphs that Gibbs free energy tends to 

increase in ferroelectric phases and decrease in paraelectric phase with increasing 

temperature. The differences between the results for various 𝛼 values around the 

critical temperature vanish, and the values converge, as also observed in enthalpy 

and entropy changes. 

4.3 Analysis of the Birefringence and the Dielectric Constant 

The birefringence ∆𝑛 is proportional to the square of the order parameter 𝜂2 through 

the Kerr effect. The Kerr effect, which occurs due to the externally applied electric 

field, expresses the change in the refractive index of the material. It is known that 

the Kerr effect is directly proportional to the square of the electric field. That is why 

we can relate the birefringence with the square of the order parameter. Within the 

framework of the Landau theory (Eq 3.11), the observed [26] birefringence data of 

the three samples of LBG were analyzed according to 

∆𝑛

∆𝑛𝑚𝑎𝑥
= −

𝑎

𝑎4
 (𝑇 − 𝑇𝐶) + 𝑐0 (4.1) 

where ∆𝑛𝑚𝑎𝑥 represents the maximum value of the birefringence, as given in       

Table (4.4). The normalized (∆𝑛 ∆𝑛𝑚𝑎𝑥⁄ ) values of the birefringence were taken into 

consideration because the order parameter could have any value between 0 and 1. 

The Landau coefficient 𝑎4 and the constant 𝑐0, were extracted from the (∆𝑛 ∆𝑛𝑚𝑎𝑥⁄ ) 

versus (𝑇 − 𝑇𝐶) graph (Figure 4.7), as given in Table (4.4). Since there are lack of 

data at about 816.6 K temperature, the relation between birefringence and 

temperature interval relation cannot be obtained for x= 0.03 composition of the LBG 

crystals.  
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Table 4.4 Values of the Landau coefficients 𝑎 , 𝑎4 (Eq. 4.6) and also the coefficients 

𝑐0 , 𝑐1 (Eq. 4.7) for the ferroelectric (T<TC) phase of La1-xNdxBGeO5 with x= 0; 0.03 

and 0.05. 

Sample 

(% 𝒐𝒇 𝑵𝒅𝟑+) 
𝒂 𝒙 𝟏𝟎−𝟒  𝒂𝟒 𝒄𝟎 𝒄𝟏 𝒙𝟏𝟎

−𝟒  𝑻𝑪(𝑲) 

0 3.08 0.52 0.98 34.10 804.6 

0.03 3.62 - - -3.96 810.4 

0.05 5.15 1.28 0.98 -12.4 818.4 

 

 

 

Figure 4.7. The normalized birefringence Δn/Δnmax as a function of T-TC according 

to Eq (4.1) in the ferroelectric phase (T>TC) of La1-xNdxBGeO5 with x=0 and 0.05. 

The temperature dependence of the inverse dielectric susceptibility 𝜒−1 of the three 

samples of La1-xNdxBGeO5 with x= 0, 0.03 and 0.05, was calculated from the 

observed [26] dielectric constant data according to equation 𝜒−1= |𝜀 − 1|−1. Within 

the framework of the Landau phenomenological theory (Eq 3.13), 𝜒−1 values were 

fitted to the following relation 

𝜒−1 = −4𝑎 (𝑇 − 𝑇𝐶) + 𝑐1 (4.2) 

The Landau coefficient 𝑎 and the constant 𝑐1 were tabulated in Table 4.4. The 𝜒−1 

versus (𝑇 − 𝑇𝐶) graphs were demonstrated in Figure (4.8). Note that, for the analysis 
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of ∆𝑛 ∆𝑛𝑚𝑎𝑥⁄  and 𝜒−1 according to Eqs (4.1) and (4.2), respectively, the observed 

[26] transition temperatures (𝑇𝐶) of 804.6 K, 810.4 K and 818.4 K from the dielectric 

constant measurement, were used for the three samples of the LBG crystals (x= 0, 

0.03 and 0.05). 
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Figure 4.8. The inverse dielectric susceptibility χ−1 calculated from the observed 

[26] dielectric constant data using χ−1= |ε − 1|−1 as a function of La1-xNdxBGeO5 

with x=0; 0.03 and 0.05. 

4.4 Results and Discussion of LaBGeO5    

The phonon dispersion calculations based on the density function theory (DFT), 

revealed a zone-centered unstable mode, called a rigid unit mode, above the 

transition temperature of LBG crystal [15]. Also, the valence force field model 

calculations [75] indicated a strong softening of this rigid unit mode when the 

ferroelectric phase changed towards the paraelectric phase. Both calculations [15, 

73] point out that the rigid rotation of the BO4 tetrahedra is the main feature of the 

phase transition mechanism in LBG crystals. By considering the BO4 tetrahedra as 

the Ising spin variable, the anomalous behavior of the observed [26] specific heat for 

Nd3+ doped LBG crystals (La1-xNdxBGeO5 with x= 0, 0.03 and 0.05) was analyzed 

in terms of the compressible Ising model (Eq 3.8) approximately 4 K below and 

above the phase transition temperatures of 802.4 K, 816.6 K and 823.3 K for x= 0, 

0.03 and 0.05, respectively. The slope of the ln (𝐶𝑝 𝑇⁄ ) against ln|𝜀| graph         
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(Figure 4.1) determines the critical exponent 𝛼 while the intercept allows us to 

deduce the interaction parameter 𝐽𝐴. Calculation of the 𝛼 and 𝐽𝐴 were employed for 

the three samples of LBG crystals in the different temperature intervals as given in 

Tables (4.1)-(4.3) for x= 0, 0.03 and 0.05, respectively. The evolution of the critical 

exponent 𝛼 and the interaction parameter 𝐽𝐴 were shown in Figs. (4.2) and (4.3), 

respectively as a function of the change in the temperature (∆𝑇) according to the 

temperature intervals indicated in Tables (4.1)-(4.3).  

In the ferroelectric phase (𝑇 < 𝑇𝐶) of those three compositions of LBG crystals, the 

values of the critical exponents tend to decrease slightly as ∆𝑇 decreases. In 

particular, the 𝛼 value of 0.12 extracted within the temperature interval of              

801.5 < T(K) < 802.0 for the pure LBG crystal (x=0, TC=802.4 K), is exactly the 

same as obtained by Lushigton and Garland [76] for a second-order transition in 

ferroelectric-like NH4Cl which can be classified as an Ising- like system. 

Furthermore, the extracted values of 0.07 and 0.04 for the critical exponent 𝛼 within 

the temperature intervals of 815.5 < T(K) < 816.5 and 821.9 < T(K) < 822.9 for the 

La1-xNdxBGeO5 with x= 0.03 (TC= 816.6 K) and x= 0.05 (TC= 823.3 K), respectively 

were very close to the expected value of 0.066 (=1/16) for T<TC according to a 3D-

Ising model.  

Similarly, in the paraelectric phase (T>TC) of the two samples with x= 0 and x= 0.05, 

the α values decrease as ΔT gets smaller (Figure 4.2) while the α value for the sample 

with x= 0.03 is almost constant as ΔT decreases. In some detail, the α value of 1.0 

for pure LBG crystals (x= 0; TC= 802.4K) which was extracted within the 

temperature interval of 802.5 < T(K) < 808.8 (ΔT=6.3K) is exactly the same value 

as reported by Strukov et al. [28] for 1 < |TC-T| <10K. But, as ΔT decreased to the 

value of 0.6 K (802.5 < T(K) < 803.1K) we deduce α as 0.09 which can be compared 

with 0.125 (=1/8) predicted from the 3D-Ising model for T>TC. Furthermore, the 

extracted value α = 0.5 which is almost independent of ΔT for the samples with x= 

0.03 and 0.05 within the temperature interval of 823.6 < T(K) < 824.5K (ΔT = 0.8K) 

is consistent with that reported by Strukov et. al. [26] above the transition 
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temperatures of 816.6 K and 823.3 K, respectively. But, as ΔT decreased to a value 

of 0.3 K ( 823.6 < T(K) < 823.9K) for the sample with x= 0.05, the α was found to 

be 0.3 which can be compared with that predicted from the 2-d Pots model. The non-

singular (background) part of the specific heat (lattice contribution) which is less 

dominant when compared with the spin interaction contribution in the vicinity of the 

phase transition temperature, was not considered in this study.  

In addition, the thermodynamic quantities of ΔH (enthalpy), ΔS (entropy) and ΔG 

(Gibbs free energy) were predicted as a function of temperature according to            

Eqs (3.13), (3.15) and (3.16), respectively in terms of the obtained values of critical 

exponent α and the interaction parameter JA (Tables 4.1- 4.3) for both below               

(T < TC) and above (T > TC) the phase transition temperatures of these three samples 

of LBG crystals, as given in Fig(4.4)-(4.6). 

The observed [26] birefringence data ∆𝑛 of these three samples of LBG crystal 

decrease almost linearly below the phase transition temperatures. On the other hand, 

below TC the molecular field theory [77] predicts that the order parameter η 

decreases according to (
𝑇𝐶−𝑇

𝑇𝐶
 )𝛽 with the critical exponent 𝛽 = 0.5, as the 

temperature increases toward the TC. In the light of these information, we associated 

the normalized birefringence (
𝛥𝑛

𝛥𝑛𝑚𝑎𝑥
) with the square of the order parameter 𝜂2 in 

the ferroelectric phase (T < TC). Then, the observed [26] ∆𝑛 data of LBG crystals 

with x= 0 and x= 0.05 were analyzed according to Eq (4.6) within the framework of 

the Landau theory (Figure 4.7). We were unable to do the same analysis for LBG 

crystal with x= 0.03 due to the lack of the sufficient data of ∆𝑛 below TC. In addition, 

the inverse dielectric susceptibility 𝜒−1 calculated from the observed [26] dielectric 

constant of these three samples of LBG crystals was also analyzed according to Eq 

(4.2) within the framework of the Landau theory in the ferroelectric phase (Figure 

4.8). The slope of Figs (4.7) and (4.8) allows us to extract the coefficients 𝑎 and 𝑎4 

as we tabulated them in Table (4.4). Both 𝑎 and 𝑎4 were found to be positive as 

expected from the Landau phenomenological theory for a second-order type of phase 

transition. The intercepts 𝑐0 and 𝑐1 are also given in Table (4.4). 



 

 

47 

4.5 Conclusion of La1-xNdxBGeO5 

The compressible Ising model was used to study the anomalous behavior of the 

specific heat for Lanthanum Borogermanate (La1-xNdxBGeO5) at x = 0, 0.03, and 

0.05, which is around 4 K below and above the phase transition temperatures of 

802.4 K, 816.6 K, and 823.3 K, respectively. For these three compositions, the 

critical exponents (α) were calculated in the ferroelectric phase (T < TC), and the 

extracted values are ranging between 0.04 - 0.12 that are consistent with that 

predicted from the 3-D Ising model (0.07 for T < TC). Similarly, critical exponent in 

the paraelectric phase (T > TC) of the sample with x= 0 is also appropriate in 3-D 

Ising model. However, the deduced value of the sample with x= 0.05 in the 

paraelectric phase is 0.3, which is same with the predicted one from the 2-D Pots 

model. It can be concluded that the Compressible Ising Model is adequate to describe 

the ferroelectric-paraelectric phase transition in pure and Nd3+ doped LaBGeO5 

crystals.  

In addition, the observed birefringence data which were associated with the order 

parameter (squared) and the observed dielectric constant of the three compositions 

(x = 0, 0.03, and 0.05) for Lanthanum Borogermanate (La1-xNdxBGeO5) were 

analyzed within the framework of the Landau phenomenological theory to determine 

the Landau coefficients 𝑎 and 𝑎4. The Landau coefficients were found to be positive, 

as expected, which indicates that the phase transition of the samples studied here is 

of a second order type. 
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CHAPTER 5  

5 CALCULATION OF THE SPIN- LATTICE RELAXATION TIME AND 

THE ACTIVATION ENERGY NEAR THE IV-III PHASE TRANSITION IN 

PYRIDINIUM FLUOROSULFONATE (C5NH6)FSO3 

In the scope of the present chapter, the pseudospin-phonon (PS) coupled and energy 

fluctuation (EF) models are used to compute the spin-lattice relaxation time T1
H for 

protons, which is close to the IV-III solid-solid phase transition of 𝑇𝐶 = 235 𝐾 in 

Pyridinium Fluorosulfonate ((C5NH6)FSO3). The observed second moment of the 1H 

was used in this calculation as both the order parameter below 𝑇𝐶  and the disorder 

parameter above 𝑇𝐶. This calculation was performed by associating the observed 

second moment of the 1H as the order parameter below 𝑇𝐶  and the disorder parameter 

above 𝑇𝐶. The activation energies for the cation reorientation in (C5NH6)FSO3 crystal 

are calculated by using both PS and EF models. In addition, the Landau theory is 

used to examine the measured dielectric permittivity of the crystal, and the 

spontaneous polarization (SP) is calculated as a function of temperature. 

5.1 Analysis of the Damping Constant 

Temperature dependence of the damping constant 𝛤𝑆𝑃 which is inversely 

proportional to the spin-lattice relaxation time 𝑇1 can be calculated by using the 

pseudospin-phonon (PS) coupled model [49] and the energy fluctuation (EF) model 

[50] for PyFSO3. In terms of the order parameter (η), damping constant by 

considering the pseudospin-phonon interactions (Eq 3.39) in PyFSO3 can be 

expressed as [49] 

𝛤𝑆𝑃 𝛼 
1

𝑇1
= 𝛤0 + 𝐴(1 − 𝜂

2) ln [
𝑇𝐶

𝑇 − 𝑇𝐶(1 − 𝜂
2)
] (5.1) 
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where 𝑇𝐶 is the transition temperature, 𝛤0 and 𝐴 are the background damping constant 

and the amplitude, respectively. Also, the temperature dependence of the damping 

constant (Eq. 3.41) in terms of the order parameter can be evaluated by using the 

energy fluctuation (EF) model [50], 

𝛤𝑆𝑃 𝛼 
1

𝑇1
= 𝛤0

′ + 𝐴′ [
𝑇(1 − 𝜂2)

𝑇 − 𝑇𝐶(1 − 𝜂
2)
]

1/2

(5.2) 

where 𝛤0’ and 𝐴’ are the background damping constant and the amplitude. The 

molecular field theory provides the temperature dependence of the order parameter 

(𝜂) appearing in Eqs. (5.1) and (5.2) for the different temperature regions below and 

above 𝑇𝐶 given as [77] 

𝜂 ≈

{
 
 

 
 

 

1 − exp (−
2𝑇𝐶
𝑇
)                                      𝑇 ≪ 𝑇𝐶

{3 (1 −
𝑇

𝑇𝐶
)}

1
2
                               0 < (𝑇𝐶 − 𝑇) < 𝑇𝐶

      0                                                             𝑇𝐶 < 𝑇

(5.3) 

Based on the Ising pseudospin-phonon coupled model of Yamada et al. [78] and 

Matsushita [77], Eqs. (5.1) and (5.2) have been obtained previously for the KDP type 

materials [49, 73]. Although it is hard to define its physical meaning without 

knowledge of the low-temperature crystal structure of PyFSO3, the proton second 

moment M2 in phase IV behaves like an order parameter as it was pointed out 

previously [48]. To check this consideration, we associated the observed [48] second 

moment M2 of PyFSO3 with the order parameter 𝜂 below the IV-III phase transition 

temperature 𝑇𝐶 = 235 𝐾 according to  

𝑀2

𝑀2,𝑚𝑎𝑥
= 𝑎𝜂 + 𝑏 (5.4) 

where 𝑀2,𝑚𝑎𝑥  is the maximum value of the second moment, a and b are the unitless 

coefficients (Table 5.1).  
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Figure 5.1. 𝑀2/𝑀2,𝑚𝑎𝑥 versus 𝜂 graph (Eq. 5.4) below the IV-III solid-solid phase 

transition temperature of 𝑇𝐶 = 235 𝐾 in PyFSO3. 

The values are plotted in Figure (5.1) as 𝑀2/𝑀2,𝑚𝑎𝑥  versus 𝜂 below the IV-III phase 

transition temperature. Those 𝑀2/𝑀2,𝑚𝑎𝑥 values were then used as order parameters 

[𝜂2 = (𝑀2/𝑀2,𝑚𝑎𝑥)
2] below the IV-III solid-solid transition temperature               

𝑇𝐶 = 235 𝐾 while it is used as a disorder parameter  [1 − 𝜂2 = (𝑀2/𝑀2,𝑚𝑎𝑥)
2] 

above 𝑇𝐶 in Equations (5.1) and (5.2) to calculate the spin-lattice relaxation time of 

proton T1. These calculated values of T1 were fitted to the observed [48] spin-lattice 

relaxation time (Fig 5.2) and the background damping constant 𝛤0 (𝛤0’) with the 

amplitudes 𝐴 (𝐴’) were extracted both below and above 𝑇𝐶, as tabulated in             

Table (5.2).  
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Figure 5.2. The experimental damping constant (1/𝑇1) against our calculated 𝛤𝑆𝑃 

from both PS and EF models below and above the IV-III solid-solid phase 

transition temperature of 𝑇𝐶 = 235 𝐾 in PyFSO3. 

 

Table 5.1 Values of the 𝑀2,𝑚𝑎𝑥, the parameters 𝑎 and 𝑏 according to Eq. (5.4) and 

values of the 𝛼 and 𝑎4 according to the Eq. (5.6) below the solid-solid phase 

transition (IV-III) temperature of 𝑇𝐶 = 235 𝐾. 

Crystal 𝑴𝟐,𝒎𝒂𝒙 𝒂 𝒃 
α x 10-5 

(J/K) 
-a4 

Temperature 

Interval (K) 

PyFSO3 7.2 G 4.16 2.93 
24.7 0.14 -80 < T-TC < -40 

33.3 0.12 -38 < T-TC  <  0 
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Calculated values of the spin-lattice relaxation time T1 from Eqs. (5.1) and (5.2) were 

plotted in Figure (5.3) as a function of temperature. The observed data [48] were also 

given in Figure (5.3) for comparison. 
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Figure 5.3. The temperature dependence of the spin-lattice relaxation time 𝑇1 

calculated from the PS (Eq. 5.1) and EF (Eq. 5.2) models both below and above the 

IV-III solid-solid phase transition temperature of  𝑇𝐶 = 235 𝐾 in PyFSO3. The 

experimental [48] data were also given for comparison. 
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Table 5.2 Values of the background damping constant 𝛤0 (𝛤0’) and the amplitude 

𝐴 (𝐴’) due to the PS (Eq. 5.1) and EF (Eq. 5.2) models both below and above   

𝑇𝐶 = 235 𝐾 using the experimental [48] spin-lattice relaxation time of the proton 

in PyFSO3. 

Crystal Model 𝜞𝟎 (𝜞𝟎’)(Hz) 𝑨 (𝑨’)(Hz) Temperature Interval 

PyFSO3 

PS (Eq. 5.1) 0.05 1.92 160 < T (K) < 223 

PS (Eq. 5.1) 1.78 54.25 249 < T (K) < 320 

EF (Eq. 5.2) -0.25 1.07 160 < T (K) < 223 

EF (Eq. 5.2) -15.29 33.11 249 < T (K) < 320 

 

The activation energy 𝑈 for the cation reorientation of crystal can be calculated from 

the linewidth (damping constant) as given previously [80,81] 

ln 𝛤 = ln 𝐶 −
𝑈

𝑘𝐵𝑇
(5.5) 

where kB is the Boltzman constant and 𝐶 is a constant.     

The values of the activation energy 𝑈 were deduced from the Arrhenius plot      

(Figure 5.4) and they were tabulated in Table (5.3). For this extraction of 𝑈, 

calculated values of the damping constant from the PS and EF models (Eqs. 5.1 and 

5.2) were used. 
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Figure 5.4. The damping constant 𝛤𝑆𝑃 calculated from Eqs. (5.1) and (5.2) as a 

function of the reciprocal temperature to extract the activation energy for the cation 

reorientation in PyFSO3. 

Table 5.3 Values of the activation energy 𝑈 for the cation reorientation and the 

constant 𝑙𝑛 𝐶 according to Eq. (5.5) for the temperature interval indicated in 

PyFSO3. 

Crystal Model 𝑼(𝒌𝑱/𝒎𝒐𝒍) 𝐥𝐧 𝑪 Temperature Interval 

PyFSO3 
PS (Eq. 5.1) 12.5 6.89 160 < T (K) < 223 

EF (Eq. 5.2) 13.1 7.27 160 < T (K) < 223 

 

The dielectric susceptibility 𝜒 of PyFSO3, which was calculated from the observed 

[49] dielectric permittivity 𝜀 (𝜀 = 𝜒 + 1), was analyzed within the framework of 

the Landau theory according to [81] 

𝜒−1 = (𝜀 − 1)−1 = −12𝛼(𝑇 − 𝑇𝐶) +
16

3
 
𝑎4
2

𝑎6
 (5.6) 
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where 𝛼, 𝑎4, and 𝑎6 are the coefficients of the free energy F expanded in terms of 

the spontaneous polarization 𝑃 as  

𝐹 = 𝑎0 + 𝛼(𝑇 − 𝑇𝐶)𝑃
2 + 𝑎4𝑃

4 + 𝑎6𝑃
6 (5.7) 
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Figure 5.5. Temperature dependence of the inverse dielectric susceptibility 𝜒−1 

below the IV-III solid-solid phase transition temperature 𝑇𝐶 = 235 𝐾 in PyFSO3. 

Figure 5.5 shows 𝜒−1 versus 𝑇 − 𝑇𝐶 graph for this crystal below 𝑇𝐶. The coefficient 

𝛼 and 𝑎4 (Table 5.1) extracted from Figure (5.5) according to Eq. (5.6) were then 

used to predict the spontaneous polarization 𝑃 which reads as [81] 

𝑃2 =
𝛼 (𝑇 − 𝑇𝐶)

2𝑎4
− 
2𝑎4
3𝑎6

 (5.8) 
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For simplicity 𝑎6 was taken as unity. The spontaneous polarization calculated from 

Eq. (5.8) were then used as order parameter to calculate the damping constant from 

the PS and EF models (Eqs. 5.1 and 5.2). Finally, the activation energy for the 

reorientation of the dipole moment was calculated according to Eq. (5.5) for the 

temperature intervals indicated in Table (5.4).  

Table 5.4 Values of the activation energy 𝑈 and the constant 𝑙𝑛𝐶 according to     

Eq. (5.5) for the reorientation of the dipole moment in PyFSO3. 

Crystal Model 𝑼(𝒌𝑱/𝒎𝒐𝒍) 𝐥𝐧 𝑪 Temperature Interval 

PyFSO3 
PS (Eq. 5.1) 21.9 12.8 159 < T (K) < 212 

EF (Eq. 5.2) 11.2 7.0 159 < T (K) < 212 

 

-80 -60 -40 -20 0

0.08

0.09

0.09

0.10

0.10

0.11

0.11

P
2

T-T
c
 (K)

 

Figure 5.6. The temperature dependence of the spontaneous polarization 𝑃 below 

the IV-III solid-solid phase transition temperature of  𝑇𝐶 = 235 𝐾 in PyFSO3. 
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5.2 Results and Discussion of Pyridinium Fluorosulfonate (C5NH6)FSO3 

The observed [48] proton second moment M2 for PyFSO3 decreases in phase IV as 

the temperature increases toward the solid-solid phase transition (IV-III) temperature 

of 𝑇𝐶 = 235 𝐾. This behavior is very similar to the order parameter 𝜂 that was 

predicted from the mean field theory (Figure 5.1). This then allows us to associate 

the normalized proton second moment (M2/M2,max) with the order parameter 𝜂 

according to Eq (5.4). The fitting parameters (a and b) of Eq (5.4) were tabulated in 

Figure (5.1). On the other hand, above 𝑇𝐶 = 235 𝐾 the observed [48] proton second 

moment M2 decrease further as the temperature increases due to the infrequent 

reorientation of the cation between probably non-equivalent potential wells. That is 

why above TC the observed 𝑀2 [48] was associated with the disorder parameter    

(1 − 𝜂2 ) according to 1 − 𝜂2  =  (𝑀2/𝑀2,𝑚𝑎𝑥)
2.  

The spin lattice relaxation time (SLRT) of proton T1 for PyFSO3 was calculated in 

terms of the pseudo-spin phonon (PS) coupled (Eq. 5.1) and the energy fluctuation 

(EF) models (Eq. 5.2) with the help of the observed [48] second moment M2 of this 

crystal both below and above the solid phase transition (IV-III) temperature of      

𝑇𝐶 = 235 𝐾. The background damping constant 𝛤0 (𝛤0’) and the amplitudes 𝐴 (𝐴’) 

of Eqs. 5.1 and 5.2 were extracted through a fitting procedure (Figure 5.2) and they 

were tabulated in Table (5.2) for the temperature intervals indicated. Those 

calculated values of SLRT from PS and EF models and the observed data were given 

in Figure 5.3 as a function of inverse temperature T-1. The SLRT predicted from both 

PS and EF models are adequate to explain the observed [48] data. We extracted the 

values of 12.6 kJ/mol and 13.1 kJ/mol for the cation reorientation activation energy 

through Eq (5.5) by using the damping constant, which were calculated from the PS 

model (Eq. 5.1) and EF model (Eq. 5.2) respectively. Both values are almost the 

same with the calculated value (12.7 kJ/mol) [48]. 

Regarding the calculation of the activation energy (Eq. 5.5) for the reorientation of 

the dipole moment in phase IV of PyFSO3 within the framework of the Landau 
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theory, we first calculated the dielectric susceptibility 𝜒 of PyFSO3 below the solid-

solid phase transition (phase IV-III) temperature 𝑇𝐶 = 235 𝐾 from the observed 

dielectric permittivity  𝜀 (𝜀 =  χ + 1). A fitting procedure for 𝜒 -1 versus 𝑇 − 𝑇𝐶 

(Figure 5.5) was performed according to Eq (5.6), which is a simplified form of 𝜒 

[81], and the fitting parameters 𝛼 and 𝑎4 were extracted (Table 5.1). The coefficient 

a6 was taken unity due to the fact that our solution of 𝜒−1 was based on the 

approximation (𝑎2𝑎6/𝑎4
2  <<  1) in order to simplify the solution by regarding very 

small values of 𝛼 and almost ~0.1 value of a4 [81]. We then predicted values of the 

spontaneous polarization P by using these coefficients 𝛼, 𝑎4 (Table 5.1) according 

to Eq (5.8).  

These predicted values of P (Eq. 5.8) were then used as an order parameter in         

Eqs. (5.1) and (5.2) to calculate the damping constant 𝛤 from both PS and EF models, 

respectively. Finally, by using 𝛤 values through Eq (5.5) we expected the activation 

energy for the reorientation of the dipole moment within the temperature intervals of 

159 <  𝑇(𝐾)  <  212 as given in Table (5.4). Our expected value of 22 kJ/mol from 

the PS model (Eq. 5.1) for the temperature interval of 159 <  𝑇(𝐾)  <  212 can be 

compared with the experimental value of 26 kJ/mol which was extracted from the 

dielectric correlation time within the same temperature interval [48] while our 

expected value of 11 kJ/mol from the EF model (Eq. 5.2) was very small when 

compared with the experimental value of 26 kJ/mol. This is an indication of that PS 

model works better than the EF model to explain the reorientation of the effective 

dipole moment of the PyFSO3 arising from the cation-anion interaction.  

As a result, the energy fluctuation (EF) and the pseudospin-phonon coupled (PS) 

models were used to determine the spin-lattice relaxation time for protons nuclei in 

Pyridinium Fluorosulfonate (PyFSO3). The activation energy for the cation 

reorientation in the PyFSO3 crystal can be calculated using both models as accurate 

as that which can be deduced from the experimental spin-lattice relaxation time data. 

Additionally, the activation energy for the reorientation of the dipole moment 

estimated from the PS model within the context of the Landau theory is nearly 
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identical to that obtained from the experimental dielectric correlation time, while the 

EF model was unable to achieve the same result. The phase transition mechanisms 

of other pyridinium salts could be investigated using PS and EF models.  
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CHAPTER 6  

6 ANALYSIS OF THE SPECIFIC HEAT AND CALCULATION OF 

THE RELAXATION TIME, ACTIVATION ENERGY, ENTROPY, AND 

ENTHALPY CLOSE TO THE LOWER PHASE TRANSITION IN 

IMIDAZOLIUM PERCHLORATE 

In the present chapter, the phase transition mechanism of the Imidazolium 

Perchlorate (Im-ClO4) crystal has been investigated in terms of thermodynamic 

properties; specific heat, activation energy, entropy, and enthalpy. Im-ClO4 crystal 

demonstrates anamolous behaviour around various temperatures; 245K [61, 63], 

247K [63], and 373K [83] according to the literature, which were accepted as 

transition temperatures and they were investigated by different methods. Both 

relaxation time and specific heat calculations are performed at around 245 K, and 

entropy and entalpy changes are deduced. At around 247 K, only the specific heat 

calculations were done, and similar to 245K, some thermodynamic behaviors were 

investigated. Lastly at 373 K, the analysis of critical exponents was carried out and 

it was checked whether they are compatible with Rushbrooke's inequality or not.  

6.1 Calculation of the Relaxation Time and Activation Energy 

6.1.1 Calculations and Results 

The temperature dependence of the spin lattice relaxation time (τ) for the 

Imidazolium Perchlorate (Im-ClO4) crystal has been calculated from the pseudospin-

phonon (PS) coupled (Eq. 5.1) and energy fluctuation (EF) models (Eq 5.2) in the 

vicinity of the phase transition temperature of 𝑇𝐶 = 247 𝐾. The observed [61] 

normalized proton second moment M2/M2max was associated with the order 

parameter 𝜂 according to 

𝑀2 𝑀2𝑚𝑎𝑥⁄ =  𝑎0 + 𝑎1𝜂 (6.1) 
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Thus, by fitting the order parameter from the mean field theory (Eq. 5.3) to the 

experimental [61] M2/M2max data for Im-ClO4, the coefficients 𝑎0 and 𝑎1 were 

determined as given in Table 6.1. In Figure 6.1 (Eq. 6.1) normalized proton second 

moment M2/M2max and order parameter 𝜂 (Eq. 5.3) are given as a function of 

temperature for Im-ClO4. 

Table 6.1 Values of the coefficients a0 and a1 according to Eq. (6.1) below the 

transition temperature (TC= 247 K) of Im-ClO4. 

Crystal 𝑴𝟐,𝒎𝒂𝒙 𝒂𝟎 𝒂𝟏 

ImClO4 7.50 G 0.76 0.27 

 

120 140 160 180 200 220 240

0,80

0,85

0,90

0,95

1,00

1,05

 M
2
/M

2max
 [61]

 Eq (5.3)

O
rd

e
r 

P
a

ra
m

e
te

r

Temperature
 

Figure 6.1. The order parameters (observed (M2/M2,max) [61] and calculated 𝜂 

(Eq. 5.3)) versus temperature graph below the phase transition temperature of       

TC = 247 K in ImClO4. 
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As indicated in Figure (6.1), observed and calculated values are in a good agreement. 

Therefore, the normalization of the square of the observed [61] proton second 

moment (𝑀2
2/𝑀2,𝑚𝑎𝑥

2 ) has been associated with the square of the order parameter 

(𝜂2) for the calculations. On the other hand, above TC, the observed M2 [61] 

decreases very rapidly as the temperature increases due to the infrequent 

reorientation of the cation between the non-equivalent potential wells. This caused 

us to associate the values above TC with the disorder parameter (1 − 𝜂2) instead of 

the order parameter. 

Then, the spin lattice relaxation time (demonstrated by 𝜏𝑐𝑎𝑙) from both PS and EF 

models were calculated according to damping constant equations; Eq 5.1 and 5.2 by 

the order and disorder parameters below and above TC, respectively. The calculated 

relaxation time 𝜏𝑐𝑎𝑙 was fitted to the observed relaxation time 𝜏𝑜𝑏𝑠 [61] according to 

1 𝜏𝑜𝑏𝑠⁄ = 𝑏0 + 𝑏1(1 𝜏⁄ )𝑐𝑎𝑙 + 𝑏2(1 𝜏⁄ )𝑐𝑎𝑙
2 (6.2) 

where 𝑏0, 𝑏1, and 𝑏2 are the fitting parameters that are constant and they are listed in 

Table 6.2 for both models in the ferroelectric and paraelectric phases.  

Table 6.2 Values of the coefficients b0, b1 and b2 according to Eq. (6.1) below and 

above the transition temperature (TC= 247 K) of Im-ClO4 

 

  

Crystal Model 𝒃𝟎 x 10-2 

(s-1) 

𝒃𝟏 x 10-2 

(s-1) 

𝒃𝟐 x 10-2 

(s-1) 

Temperature Interval 

ImClO4 

PS (Eq. 5.1) 1.505 38.6 -213.3 142.9 < T (K) < 236.0 

PS (Eq. 5.1) 16.2 644.7 15776.0 251.0 < T (K) < 357.4 

EF (Eq. 5.2) 1.3 5.1 -3.1 142.9 < T (K) < 236.0 

EF (Eq. 5.2) 39.0 -261.6 587.3 251.0 < T (K) < 357.4 
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Calculated (Eqs. 5.1 and 5.2) values of 𝜏𝑐𝑎𝑙 were fitted to the measured data [61]  as 

given in Figure 6.2. Both models displayed similar curves for the ferroelectric and 

paraelectric phase. In the paraelectric phase of EF model, there is an irregularity but 

the relation can be examined by general tendency. 

 

Figure 6.2. The experimental [61] versus calculated (Eqs. 5.1 and 5.2) spin lattice 

relaxation time at various temperatures. The solid curves represent the best fit to 

the experimental data. 

In Figure 6.3 both calculated (Eqs. 5.1 and 5.2) values and measured data [61] of the 

inverse spin lattice relaxation time are demonstrated as a function of temperature. 

The discontinuity in the vicinity of the transition temperature TC is clearly seen in 

the figure. Additionally, it can be claimed that the tendency of the observed and 

calculated values of the spin lattice relaxation time are compatible with each other 

in both phases as seen in Figure (6.3). 
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Figure 6.3. The temperature dependence of the inverse spin lattice relaxation time 𝜏 

that was calculated from the PS and EF models both below and above the solid-

solid phase transition temperature of TC = 247 K in ImClO4. 

The activation energy U can be calculated from the spin lattice relaxation time by 

the following relation [80] 

ln(1 𝜏⁄ ) = ln 𝐶 − 𝑈 𝑘𝐵𝑇⁄   (6.3) 

Calculated ln( 𝜏−1) from both PS (Eq 5.1) and EF (Eq 5.2) models were plotted as a 

function of 𝑇−1 according to Eq. (6.3) as given in Figure 6.4. The slope of the graphs 

allows to find the activation energy 𝑈 and intersection points allow to calculate the 

constant 𝐶 in Eq (6.3). The values of activation energy 𝑈 and the constant 𝐶 were 

then extracted below and above 𝑇𝐶 for Im-ClO4 as given in Table 6.3. 
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Figure 6.4. The damping constant 𝛤𝑆𝑃 calculated from Eqs. 5.1 (PS) and Eqs. 5.2 

(EF) as a function of the reciprocal temperature to extract the activation energy for 

the cation reorientation in ImClO4. 

Table 6.3 Values of the activation energy 𝑈 and the constant 𝐶 according to         

Eq. (6.3) for the cation reorientation in Im-ClO4. 

Crystal Model 𝑼(𝒌𝑱/𝒎𝒐𝒍) 𝑪 x 10-3 Temperature Interval 

ImClO4 

PS (Eq. 5.1) 2.4 107.7 142.9 < T (K) < 236.0 

PS (Eq. 5.1) 13.5 0.4 251.0 < T (K) < 285.9 

EF (Eq. 5.2) 4.9 650.9 142.9 < T (K) < 236.0 

EF (Eq. 5.2) 9.8 2.5 251.0 < T (K) < 285.9 
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6.1.2 Discussion 

Although it is difficult to explain the physical mechanism without knowledge of the 

low temperature crystal structure of Im-ClO4, the proton second moment M2 below 

TC = 247 K can be considered as an order parameter 𝜂, as pointed out previously for 

pyridinium periodate [38] and pyridinium flurosulfonate [48]. The molecular field 

theory provides the temperature dependence of the order parameter 𝜂 below the 

phase transition as given in Chapter 5, which was calculated according to Eq (5.3) 

for Im-ClO4. Then, the observed [61] proton second moment M2/M2max was 

associated with the order parameter 𝜂 from the mean field theory (Eq. 5.3) for           

Im-ClO4. The parameters of Eq. (6.1) were determined by the fitting procedure 

below the transition temperature TC. Above TC, on the other hand, the observed M2 

[61] decreases very rapidly as the temperature increases due to the infrequent 

reorientation of the cation between the non-equivalent potential wells. So that, the 

square of the observed [61] M2/M2max was associated with the disorder parameter   

[1- 𝜂 2] above TC for Im-ClO4. 

Then, the temperature dependence of the spin lattice relaxation time was calculated 

from PS (Eq 5.1) and EF (Eq 5.2) models below and above TC for Im-ClO4 as given 

in Figure 6.3. Our results indicate that the inverse spin lattice relaxation time 

increases very slightly as the temperature increases below the transition temperature 

of TC= 247 K. At the transition temperature TC, it increases anomalously and reaches 

its maximum value. Above TC, it decreases very rapidly up to the 300 K and it is 

almost constant above 300 K. Although both models (PS and EF) were in good 

agreement with the observed data [61], the PS model seems to describe it better than 

EF model (Fig 6.3) with the fitting parameters of Eq. (6.2) as given in Table 6.2. 

These calculated values of the spin lattice relaxation time from both models were 

then used to deduce the activation energy U according to Eq. (6.3) as given in Figure 

6.4. A significant deviation of 𝑙𝑛Γ from linearity above the transition temperature of 

247 K (Figure 6.3), which starts at about 320 K (104/T= 31.25 K-1) is occurred. A 

similar deviation is observed at about 320 K in the unit cell volume of Im-ClO4, so 
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this illustrates reasonably well the pretransition effects which were pronounced in 

the DSC experiments, as pointed out previously [61].  Our extracted values of U 

from the PS model 2.4 and 13.5kJ/mol (Table 6.3) below and above TC, respectively, 

are close to that reported [61] values of 3.0 and 16.0 kJ/mol. 

6.2 Analysis of the Specific Heat  

6.2.1 Calculation of the Entropy, Enthalpy, and Free Energy 

The anomalous behavior of the measured [63] specific heat data was analyzed 

according to the Ising model (Eq (3.11)) close to the phase transition temperature of 

Im-ClO4. Interestingly, two peaks at T=245.8 K and 247.1 K have been reported by 

Przesławski and Czapla [63] for the specific heat of Im-ClO4, which are given in 

Figure (6.5). So, both of 245.8 K and 247.1 K have been considered as transition 

temperatures and the analysis has been carried out below and above those two 

temperatures. 

 

Figure 6.5. Temperature dependence of the specific heat observed during the 

heating at the lower-temperature phase transition [63] 
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The analysis has been performed according to Eq. (3.11) by taking the logarithmic 

(ln) function of both sides. 𝑙𝑛 (𝐶𝑝/𝑇) versus 𝑙𝑛 (𝜀) graphs were plotted for all 

regions of both transitions. As seen in Figure (6.6), linear correlation has been 

captures in all regions. The critical exponent α and the interaction parameter JA were 

deduced from tangent and intersection of the graphs, respectively, in the vicinity of 

these transition temperatures (245.8 K and 247.1 K). The extracted values of α and 

JA were tabulated in Table (6.4). While all critical exponent values appear to be in 

harmony with each other, it is seen that the value in the paraelectric region at of       

TC2 = 247.1 K is clearly greater than the others. 
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Figure 6.6. Specific heat (CP) [63] as a function of the reduced temperature ε in an 

ln-ln scale according to Eq. (3.11) in the vicinity of these transition temperatures 

245.8 K and 247.1 K in Im-ClO4. 
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Table 6.4 Values of the critical exponent α and the fitting parameter 𝐽𝐴 according 

to Eq. (3.11) in the vicinity of these transition temperatures 245.8 K and 247.1 K in 

Im-ClO4. 

 
Phase -JA α 

Temp.              

interval (K) 

TC1 = 245.8 K 

Ferroelectric 31317 0.33 245.2-245.7 

Paraelectric 49926 0.26 245.9-246.5 

TC2 = 247.1 K 

Ferroelectric 40403 0.30 246.6-246.9 

Paraelectric 6411 0.66 247.3-247.9 

 

Another discussion that has been carried out in this analysis, is about the 

thermodynamic properties of Im-ClO4, such as enthalpy, entropy, and free energy. 

The thermodynamic definition of the enthalpy H = ∫ 𝐶𝑃 𝑑𝑇 can be used to predict 

the temperature dependence of 𝐻 close to the phase transition temperatures TC. By 

substituting the expression of 𝐶𝑃 (Eq. (3.11)) in this definition, the enthalpy (H) 

expression in terms of the critical exponent and reduced temperature can be obtained 

as  

∆𝐻 = 𝐻 − 𝐻0 = −𝐽𝐴[(1 − 𝛼)|𝜀|
2−𝛼 + (2 − 𝛼)|𝜀|1−𝛼] (6.4) 

where 𝐻0 is the enthalpy value at T = TC, α is the critical exponent, and ε = |T-TC|/TC 

is the reduced temperature. The extracted values of α and JA (Table 6.4) were used 

to predict the temperature dependence of the enthalpy (𝐻) of Im-ClO4. The predicted 

values of enthalpy change ∆𝐻 have been demonstrated in Figure (6.7) for both 

critical temperatures. 

Similarly, from the definition of entropy 𝑆 = (𝐶𝑃 𝑇)⁄  𝑑𝑇 + 𝑆0 , one can calculate 

the entropy as a function of temperature by replacing the specific heat (Eq. (3.11)) 

in this basic definition which gives 
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∆𝑆 = 𝑆 − 𝑆0 = −𝐽𝐴
(2 − 𝛼)

𝑇𝐶
 |𝜀|1−𝛼 (6.5) 

where S0 is the entropy at the transition temperature. The computed values of ∆𝑆 for 

Im-ClO4 were given in Figure 6.8 as a function of temperature for both critical 

temperatures. Similar to the enthalpy calculations, the extracted values of JA and α 

(Table 6.4) from the specific heat data were used for the computation of ∆𝑆. 
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Figure 6.7. The enthalpy difference ΔH as a function of temperature according to 

Eq. (6.4) around both transition temperatures 245.8 K and 247.1 K in Im-ClO4. 

The obtained values of 𝛥𝐻 (Figure 6.7) and 𝛥𝑆 (Figure 6.8) of Im-ClO4 crystals were 

inserted into the expression of the Gibbs free energy 𝛥𝐺;  

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆 (6.6) 

The temperature dependence of the 𝛥𝐺 was demonstrated in Fig (6.9). It can be 

clearly observed in the graphs that Gibbs free energy tends to increase in ferroelectric 

phases and it decreases in the paraelectric phase with increasing temperature, as 

expected.  
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Figure 6.8. The entropy difference ΔS as a function of temperature according to  

Eq. (6.5) around both transition temperatures 245.8 K and 247.1 K in Im-ClO4. 
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Figure 6.9. The Gibbs free energy difference ΔG as a function of temperature 

according to Eq. (6.6) around both transition temperatures 245.8 K and 247.1 K in 

Im-ClO4. 



 

 

73 

6.2.2 Calculation of the Critical Exponents 

Another discussion about the analysis of Im-ClO4 has been continued on the critical 

exponents of an Ising model. The variation of certain thermodynamic properties of 

a system around its phase transition temperature can be expressed by critical 

exponents. The order parameter, specific heat, susceptibility, and other system 

characteristics can exhibit some sharp changes or jumps close to the transition point. 

The power laws can be used to describe critical behavior of the system which was 

caused by these discontinuities or singularities. The power laws can be expressed 

generally as 

𝐴(−𝜀)∅ (6.7) 

where ∅ denotes the critical exponent, A is any constant and 𝜀 is the reduced 

temperature (ε = |T-TC|/TC). 

For this analysis, another temperature value, 373 K has been chosen as the transition 

temperature that has been widely studied in the literature and the transition is already 

defined as a second order phase transition [63, 82, 83].  By using the definition of 

the power law, the reduced temperature has been correlated to the specific heat CP 

according to the Eq. (3.11), polarization, and susceptibility in the vicinity of second-

order transition temperature TC = 373 K and then the critical exponents were 

extracted for each relation.  

The power-law rise of specific heat (𝐶~|𝜀|−𝛼) and susceptibility (𝜒~|𝜀|−𝛾) near Tc, 

as well as their divergences at Tc, characterize the second-order phase transition [82]. 

Firstly, the reduced temperature ε was correlated to the specific heat Cp to extract 

the critical value of α according to the scaling law.  The relation has been revealed 

by the ln-ln scale graph for the reduced temperature and specific heat. The linear 

relation can be seen in Figure (6.10), so by the tangent of the graph, the critical 

exponent α can be extracted. In addition, to observe the changes in the critical 

exponent (α) values with respect to the temperature, we examined it at different 

temperature ranges, which diverge to the critical phase transition temperature as TC 
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demonstrated in Figure (6.11). As can be seen from the figure, while the temperature 

ranges get narrow, α values gradually decrease and approach zero. 
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Figure 6.10. Specific heat (CP) [63] as a function of reduced temperature ε in an   

ln-ln scale according to Eq. (3.11) in the vicinity of second-order phase transition 

temperatures 373 K in Im-ClO4. 

 

Figure 6.11. Critical exponent α as a function of temperature interval ΔT that 

approaches the second-order phase transition temperatures (373 K) in Im-ClO4. 
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Then, the correlation between the reduced temperature and polarization has been 

investigated. According to scaling laws, the value of the critical exponent β can be 

calculated by using the value of the average dipole [83] at the critical temperature 

TC. The average polarization data [83] have been used to extract the critical exponent 

β, by the power-law P ~ |ε| β. The expected linear relation has been obtained and it 

was demonstrated in Figure (6.12). The slope of the graph was used to calculate the 

β values. Also, temperature interval analysis has been made for polarization, the 

ranges have been chosen as approaching the critical temperatures. 

Lastly, the susceptibility data obtained from the permittivity relation (χ = ε - 1) and 

it was given in an ln-ln scale graph as a function of the reduced temperature as 

discussed for the specific heat and polarization. The linear relation can be seen in the 

Figure (6.13) and it was used to extract γ values in different temperature intervals. 

 

 

Figure 6.12. Polarization P as a function of reduced temperature ε in an ln-ln scale 

in the vicinity of the second-order phase transition temperatures 373 K in Im-ClO4. 
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Weight No Weighting

Residual Sum of 
Squares

0.00594

Pearson's r 0.99392

Adj. R-Square 0.98485

Value Standard Error

ln(P) Intercept 3.94622 0.18312

ln(P) Slope 0.57041 0.03159
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Figure 6.13. The susceptibility χ as a function of reduced temperature ε in an ln-ln 

scale in the vicinity of the second-order phase transition temperatures (373 K) in 

Im-ClO4. 

The temperature interval analysis was made for all three critical exponents. As 

mentioned earlier, α approaches zero when intervals get narrow, whereas β and γ 

values did not change drastically. The critical exponent values for the specific 

temperature interval ΔT at about 2 K are demonstrated in Table (6.5) with their 

errors.  

Table 6.5 The critical exponents deduced from the specific heat, polarization, and 

susceptibility in the vicinity of the second-order phase transition temperature            

TC = 373 K. 

Critical Exponents α ± Δα β ± Δβ γ ± Δγ 

Calculated Values 0.19 ± 0.01 0.58 ± 0.01 1.10 ± 0.20 
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Equation y = a + b*x

Weight No Weighting

Residual Sum of 
Squares

0.012

Pearson's r -0.99897

Adj. R-Square 0.99768

Value Standard Error

Ln(susceptibility Intercept -0.5966 0.11386

Ln(susceptibility Slope -1.09953 0.01768
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The fact that various systems might exhibit the same critical exponents close to the 

transition point, is known as the universal critical behavior. Such a classification 

(scaling) allows us to determine the characteristics of the transitions. The 

Rushbrooke inequality (RI), which reduces to equality under the static scaling 

hypothesis [82], is one of the most remarkable scaling relations. 

𝛼 + 2𝛽 +  𝛾 ≥ 2  (6.8) 

As an extension to critical exponent calculations, the values of the extracted critical 

exponents were checked to see if they were consistent with any of the universality 

classes listed in the literature. 

6.2.3 Results and Discussions about Calculations of Im-ClO4 

The critical behavior of the observed specific heat data for Im-ClO4 [63] was 

analyzed according to Eq. (3.11) close to the transition temperatures of TC1 = 245.8 

K and TC2 = 247.1 K (Figure 6.6). Table (6.4) gives our extracted values of the 

critical exponent α and the interaction parameters JA for the temperature intervals 

indicated. While the values of 0.33 (T < TC1), 0.26 (T > TC1) and 0.30 (T < TC2), can 

be compared with that predicted from the 2d Potts model (α = 0.30), the value of 

0.66 (T > TC2) is much greater than the predicted value. So, it is reasonable to argue 

that the Im-ClO4 undergoes a second-order phase transition at TC1 = 245.8 K, while 

it exhibits a first-order phase transition at TC2 = 247.1 K. 

Regarding the prediction of the enthalpy ΔH (Eq. 6.4), the entropy ΔS (Eq. 6.5) and 

free energy ΔG for ImClO4, the extracted values of the critical exponent α and the 

interaction parameters from the observed [63] specific heat data of this crystal (Table 

6.4) were used. The results have been given in Figs. (6.7), (6.8), and (6.9) as a 

function of temperature for the enthalpy, entropy, and free energy, respectively. The 

predictions for ΔH (Figure 6.7) and ΔS (Figure 6.8) can be compared with the 

measured values when they are available in the literature.  
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When we evaluated the critical exponent α, we obtained it in the 2 K neighborhood 

of second-order phase transition temperature TC, which was approximately 0.15 

(Table 6.5).  It is compatible with the 3D Ising model which predicts 0.11. However, 

as we approach the critical temperature closer than 2 K, the α value approaches zero, 

as predicted by the mean field theory. As the discussion continues for the critical 

exponent β, by the correlation between reduced temperature and polarization, the 

value of 0.57 (Table 6.5) has been attained, while TC has been approached around 

2.3 K temperature difference. However, when we approach more than 2 K to TC, this 

value has increased slightly. It can be claimed that it is still close to 0.5, as suggested 

by the mean field theory. 

The last critical exponent which is of interest is γ that was related to the 

susceptibility. Its value has been obtained from Figure (6.13), at around 1.10       

(Table 6.5) and the value did not change noticeably as it approaches the critical 

temperature TC. This critical exponent value is less than 1.23 as suggested by the 3d 

Ising model and it is greater than 1.0 as suggested by mean field theory. However, it 

has been extracted between the values of both models, which seems to be in 

agreement with both. 

Finally, the extracted values of critical exponents α, β, and γ (Table 6.5) have been 

used to control the applicability of the Rushbrooke inequality [82] given in Eq. (6.8). 

The extracted values are 0.19, 0.58, and 1.10 for α, β, and γ, respectively. As easily 

can be calculated from Eq. (3.11), the result of the scaling law gives 2.43 at the 

temperature close as 2 K to the second-order phase transition temperature TC. As a 

result of this discussion, we can conclude that the extracted values of the critical 

exponents have been compatible with Rushbrooke's inequality. 

6.2.4 Conclusion of Im-ClO4 

The phase transition mechanism in Im-ClO4 crystal was investigated by calculating 

the relaxation time and the activation energy of the crystal close to the phase 
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transition temperature TC. The calculated values of the relaxation time from the 

pseudospin-phonon (PS) and the energy fluctuation (EF) models fit the observed data 

well. The phase transition mechanism in Im-ClO4 was investigated by analyzing the 

specific heat of this crystal around the phase transition temperatures; TC1 = 245.8 K 

and TC2 = 247.1 K. The results from the analysis of the specific heat indicate a second 

order phase transition at TC1 = 245.8 K and a first order transition at TC2 = 247.1 K. 

According to the specific heat analysis of the Im-ClO4, it can be concluded that in 

the vicinity of both transition temperatures, the anomalous behavior of the specific 

heat of Im-ClO4 was investigated in terms of a power-low formula, comprising the 

critical exponent α and the interaction parameter JA, as obtained from the Ising 

model. Furthermore, using the values of α and JA which were derived from the 

measured specific heat data of Im-ClO4, various thermodynamic functions such as 

entropy and enthalpy were projected as a function of temperature. 

Additionally, the critical exponents of Imidazolium Perchlorate (ImClO4) that have 

been associated using the reduced temperature to specific heat CP, polarization P, 

and susceptibility χ at around the second-order transition temperature TC = 373 K, 

were studied, and the critical exponents for each relation were extracted. After that, 

the values of the extracted critical exponents were checked whether they were 

consistent with any of the universality classes listed in the literature. Finally, the 

well-known scaling relation, Rushbrooke inequality (RI), was studied and it was 

concluded that corresponds to the critical exponent values as obtained. 
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CHAPTER 7  

7 RAMAN WAVENUMBERS CALCULATED AS A FUNCTION OF 

PRESSURE FROM THE GRÜNEİSEN PARAMETER OF ZIRCONIA  

7.1 Calculations and Results 

Changes in temperature and pressure can affect the size and dynamics of a crystal 

lattice, which in turn can cause slight changes in the vibrational frequencies of atoms 

in a molecular crystal. The Grüneisen parameter (denoted by γ) is a dimensionless 

parameter that expresses the change in volume of the crystal lattice as a function of 

temperature and pressure. The parameter can be hardly determined experimentally 

so a detailed knowledge of the phonon distribution spectrum is necessary to 

investigate by macroscopic parameters. For this purpose, investigation of 

microscopic parameters requires experimental measurements of thermodynamic 

properties at high pressure and temperature. 

The isothermal Grüneisen parameter of the Raman modes in ZrO2 was calculated 

according to the Eq. (3.44). To get the calculation, the observed Raman shift [68] 

and volume data [69] were analyzed as a function of pressure according to 

𝑤(𝑃) = 𝑎0 + 𝑎1𝑃 + 𝑎2𝑃
2 (7.1) 

and  

𝑉(𝑃) = 𝑏0 + 𝑏1𝑃 + 𝑏2𝑃
2 (7.2) 

The fitting parameters a0, a1, a2 of Eq. (7.1) and b0, b1, b2 and of Eq. (7.2) were given 

in Tables (7.1) and (7.2), respectively, in the pressure intervals indicated. 
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Table 7.1 The values of the fitting parameter of Eq. (7.1) for the Raman modes in 

ZrO2. 

Frequencies 

T = 298 K 

𝒂𝟎 

(cm-1) 

𝒂𝟏 

(cm-1/GPa) 

𝒂𝟐 

(cm-1/GPa2) 

Pressure 

Interval 

(GPa) 

150 cm-1 142.54879 4.06387 -0.1454 

0
 ≤

 P
 ≤

 4
0

 

260 cm-1 273.08047 - 4.92692 0.07759 

320 cm-1 318.35292 3.46741 -0.02443 

480 cm-1 462.18435 5.01944 0.01056 

602 cm-1 602.48966 2.41407 -0.0228 

650 cm-1 645.81203 3.66497 -0.06053 

 

Table 7.2 The values of the fitting parameter of Eq. (7.2) for the cell volume in 

ZrO2. 

Cell Volume 

(Å3) 

𝒃𝟎 

(cm-1) 

𝒃𝟏 

(cm-1/GPa) 

𝒃𝟐 

(cm-1/GPa2) 

Pressure 

Interval 

(GPa) 

𝒁𝒓𝑶𝟐 67.21242 -0.32874 0.00322 0 < P <50 
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Figure 7.1. Isothermal Grüneisen parameter γT(P) calculated (Eq 3.44) as a function 

of pressure for the Raman frequencies of ZrO2. 
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Figure 7.2. The damping constant ΓSP calculated from Eqs (5.1) and (5.2) as a 

function of pressure for the Raman frequency band at 150 cm-1 in ZrO2. 

We used the psuedospin-phonon coupled (Eq 5.1) and energy fluctuation (Eq. 5.2) 

models to investigate the pressure dependence of the HWHM of the lowest two 

Raman modes (150 and 260 cm-1). The calculated HWHM values were fitted to the 

observed data [68]. The fitting parameters of Eqs. (5.1) and (5.2) were then deduced 

as given in Table 7.3 for the pressure intervals indicated. The results are given in 

Figs (7.2) and (7.3) for 150 and 260 cm-1 Raman frequency, respectively. 
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Figure 7.3. The damping constant ΓSP calculated from Eqs. (5.1) and (5.2) as a 

function of pressure for the Raman frequency band at 260 cm-1 in ZrO2. 

Table 7.3 Values of the damping constant 𝛤0 (𝛤0’) and the amplitude 𝐴 (𝐴’) due to 

the PS (Eq. 5.1) and EF (Eq. 5.2) models both Raman frequency bands at 150 and 

260 cm-1 in ZrO2. 

Crystal Raman 

Frequency 

Band (w) 

Model 𝜞𝟎 (𝜞𝟎’) 

(Hz) 

𝑨 (𝑨’) 

(Hz) 

Pressure 

Interval 

𝒁𝒓𝑶𝟐 

150 cm-1 

PS (Eq. 5.1) 3.677 0.755 

0 < P (GPa) < 4 

EF (Eq. 5.2) 3.705 0.245 

260 cm-1 

PS (Eq. 5.1) 7.439 3.796 

EF (Eq. 5.2) 7.493 1.381 
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7.2 Discussion 

The observed [68] Raman frequency data for the bands at 150, 260, 320, 480, 602, 

650 cm-1, were analyzed according to Eq. (7.1) in the pressure intervals and the 

fitting paramerters were determined, as given in Table 7.1. In addition, the observed 

[69] cell volume dependence with the pressure of ZrO2 were also analyzed according 

to Eq. (7.2) with the fitting parameters as given in Table 7.2. Once we get the fitting 

parameters of Eqs of (7.1) and (7.2), we were able to calculate the isothermal 

Grüneisen parameters through Eq 3.44, as given in Fig 7.1. It is seen from Fig 7.1 

that the Grüneisen parameter from the Raman frequency of ZrO2 for the band at 150 

cm-1 decreases drastically as the pressure increases, whereas the 260 cm-1 band and 

the others (320, 480, 603 and 650 cm-1) which were calculated increase slightly.  

Regarding the calculation of the HWHM (damping constant) of the lowest modes 

(150 and 260 cm-1), the frequency softening of those two modes that have been 

represented by a power-law according to  𝑤 = 𝑎(𝑃0 − 𝑃)𝑏  where a = 16.25,             

𝑃0 = 38.03 GPa and b = 0.472, were associated with the order parameter 𝜂 according 

to  

(
𝑤

𝑤𝑚𝑎𝑥
)
2

 𝛼 𝜂2 (7.3) 

Since the order parameter 𝜂 can take any value between 0 and 1, the normalization 

was performed for the values of the frequency (Eq 7.3). 

It is possible to investigate the evaluation of the HWHM of the Raman modes 

indicated by considering the psuedospin-phonon interactions in ZrO2. For this 

reason, the psuedospin-phonon coupled (Eq 5.1) and energy fluctuation (Eq. 5.2) 

models have been taken into account. Although the PS (Eq 5.1) and EF (Eq 5.2) 

models have been derived at various temperatures, the pressure dependence of the 

HWHM (damping constant) can also be predicted by considering the pressure-

temperature (P-T) phase diagram of ZrO2, as considered in the present study. A lineer 
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relation between T and P were obtained from the analysis of the observed [69] P-T 

graph that reads  

𝑇𝐶 = 3787.66 − 173.62 𝑃 (7.4) 

By replacing Eqs. (7.3) and (7.4) into both Eqs. (5.1) and (5.2), we were able to 

predict the pressure dependence of the HWHM of the lowest two Raman modes    

(150 and 260 cm-1) in ZrO2, as given in Figures (7.2) and (7.3), respectively.  

Although the EF model (Eq. 5.2) explains well the observed HWHM data of the             

260 cm-1, it fails to explain the observed HWHM data of the 150 cm-1. On the 

contrary, the PS model fits well the observed data of both 150 and 260 cm-1 bands,  

as given in Figures (7.2) and (7.3).  
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CHAPTER 8  

8 SUMMARY 

In the scope of the present thesis, the phase transition mechanisms of some 

ferroelectric crystals were investigated by the phenomenological methods. 

Particularly, we made use of the compressible Ising model and Landau 

phenomenological theory to explain the anomalous behavior of ferroelectrics 

exhibiting second-order phase transitions in the vicinity of the transition 

temperatures. Besides, the temperature dependence of some thermodynamic 

functions such as internal energy, enthalpy, entropy, and free energy of some 

ferroelectric materials was predicted. The thermodynamic quantities of ferroelectrics 

were obtained by calculating the order parameters using the experimental data from 

the literature. Investigation on different ferroelectric materials in the present thesis 

can be summarized in the following order: 

Firstly, the compressible Ising model was used to study the anomalous behavior of 

the specific heat for La1-xNdxBGeO5 with x= 0, 0.03, and 0.05, at about 4 K below 

and above the phase transition temperatures of 802.4 K, 816.6 K, and 823.3 K, 

respectively. According to the results obtained, the extracted values of the critical 

exponent vary between 0.04 - 0.12 in the ferroelectric phase (T < TC) of these three 

compositions and also in the paraelectric phase (T > TC) of the sample with x= 0 they 

are consistent with those predicted from the 3-D Ising model (0.07 for T < TC and 

0.13 for T > TC).  On the other hand, the deduced value of 0.3 in the paraelectric 

phase of the sample with x= 0.05, is the same as that predicted from the 2-D Pots 

model. So, it can be argued that the compressible Ising model is adequate to describe 

the ferroelectric-paraelectric phase transition in pure and Nd3+ doped LaBGeO5 

crystals. Additionally, birefringence data which were associated with the order 

parameter (squared) and the observed dielectric constant of the three compositions 

of La1-xNdxBGeO5 were analyzed. The Landau phenomenological theory was used 
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to extract the coefficients 𝑎 and 𝑎4. As expected, all these coefficients were found to 

be positive, which also indicates that the phase transition of the La1-xNdxBGeO5 with 

x= 0, 0.03, and 0.05 is of a second order type. 

Secondly, two phenomenological models, namely the pseudospin -phonon coupled 

and the energy fluctuation (EF) models, were used to calculate the spin-lattice 

relaxation time for protons nuclei in Pyridinium Fluorosulfonate ((C5NH6)FSO3). 

The results indicated that both models explain well the observed anomalous behavior 

of the sample during the phase transition. In addition, the activation energy was 

calculated for the reorientation of the cation in this crystal. Also, both models are 

adequate to calculate the activation energy as close as those extracted from the 

experimental spin-lattice relaxation time data. Then, the activation energy for the 

reorientation of the dipole moment as calculated from the PS model within the 

framework of the Landau theory is almost the same as that extracted from the 

experimental dielectric correlation time, while the EF model fails to find the same 

result. As a consequence of this, those two models (PS and EF) work well to explain 

the phase transition mechanism and they can be used to examine the mechanism of 

other pyridinium salts. 

Thirdly, the phase transition mechanism in Imidazolium Perchlorate (Im-ClO4) 

crystal was investigated by calculating the relaxation time and the activation energy 

by using the pseudospin-phonon (PS) and the energy fluctuation (EF) models close 

to the phase transition temperature TC = 247 K. The calculated values of the 

relaxation time from both models fit to the observed data well. Then, the phase 

transition mechanism in Im-ClO4 was investigated by analyzing the specific heat of 

this crystal in the vicinity of the two phases transition temperatures TC1 = 245.8 K 

and TC2 = 247.1 K. The results from the analysis of the specific heat indicate a second 

order phase transition at TC1 = 245.8 K and a first order transition at TC2 = 247.1 K. 

According to the specific heat analysis of the Im-ClO4, it can be concluded that in 

the vicinity of the lower phase transition temperature of TC = 247 K, the anomalous 

behavior of the specific heat of Im-ClO4 was investigated in terms of a power-law 

formula, comprising the critical exponent α and the interaction parameter JA, as 
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obtained from the Ising model. Furthermore, using the values of α and JA which 

were derived from the measured specific heat data of Im-ClO4, various 

thermodynamic functions such as entropy and enthalpy were projected as a function 

of temperature.  

Additionally, the critical exponents of Imidazolium Perchlorate that have been 

associated using the reduced temperature to the specific heat CP, polarization P and 

susceptibility χ at around the second-order transition temperature TC = 373 K, were 

studied and they for each relation. After that, the values of the extracted critical 

exponents were checked to see if they were consistent with any of the universality 

classes listed in the literature. As a result of the critical exponent study the well-

known scaling relation, the Rushbrooke inequality (RI), was studied and I was 

concluded that the critical exponent values which were obtained, are in accordance 

with the Rushbrooke inequality. 

Finally, the Grüneisen parameter γT of various Raman modes in Zirconia (ZrO2) was 

calculated as a function of pressure at room temperature. For this calculation of γT, 

the pressure dependence of both Raman frequencies of the 150, 260, 320, 480, 602, 

and 650 cm-1 bands, and the volume of the ZrO2 cell were used as given in the 

literature. The results demonstrate that the two lowest modes (150 and 260 cm-1) 

exhibit unusual overdamped behavior of the soft mode with increasing pressure. 

From both Figures (7.2) and (7.3), it can be easily seen that the calculated damping 

constant values of pseudospin-phonon coupled model is in good agreement with the 

observed experimental data. 
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