
JOINT LEARNING OF SYNTAX AND ARGUMENT STRUCTURE IN
DEPENDENCY PARSING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

TOLGA KAYADELEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

DOCTOR OF PHILOSOPHY
IN

THE DEPARTMENT OF COGNITIVE SCIENCE

FEBRUARY, 2023

JOINT LEARNING OF SYNTAX AND ARGUMENT STRUCTURE IN
DEPENDENCY PARSING

submitted by TOLGA KAYADELEN in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Cognitive Science Department, Middle East
Technical University by,

Prof. Dr. Banu Günel Kılıç
Dean, Graduate School of Informatics

Dr. Ceyhan Temürcü
Head of Department, Cognitive Science

Prof. Dr. Cem Bozşahin
Supervisor, Cognitive Science, METU

Examining Committee Members:

Assoc. Prof. Dr. Barbaros Yet
Cognitive Science, METU

Prof. Dr. Cem Bozşahin
Cognitive Science, METU

Assist. Prof. Dr. Burcu Can Buğlalılar
Computing Science and Mathematics, University of Stirling

Prof. Dr. Balkız Öztürk
Linguistics, Boğaziçi University

Prof. Dr. Deniz Zeyrek Bozşahin
Cognitive Science, METU

Date: 27.02.2023

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Tolga Kayadelen

Signature :

iii

ABSTRACT

JOINT LEARNING OF SYNTAX AND ARGUMENT STRUCTURE IN
DEPENDENCY PARSING

Kayadelen, Tolga

Ph.D., Department of Cognitive Science

Supervisor: Prof. Dr. Cem Bozşahin

February, 2023, 92 pages

This thesis is an experimentation on learning predicate-argument structure and syn-
tax within the dependency parsing framework. The linguistic representation used in
this framework is dependency grammar. In dependency grammar, the predicate ar-
gument structure of a sentence is represented in the form of labeled and uni-directed
dependency trees.

Dependency parsing is the problem of inducing a dependency grammar from data.
The dependency parsing problem can be conceived of as a combination of two tasks:
head-selection (arc-prediction) and label-classification. Head selection aims to deter-
mine head-modifier relations in the sentence by associating modifiers with the heads
that they modify using dependency arcs. On the other hand, label classification aims
to determine the grammatical role of each word in the sentence. In existing parsing
approaches, these two tasks are usually stacked on top of one another where the for-
mer takes precedence over the latter. In other words, models first try to predict the
dependency arcs by connecting dependents to their heads and generating an unlabeled
tree, following which they assign labels to the arcs of the tree. In this set up, depen-
dency labeling have no impact at all in predicting the correct dependency tree as it
applies only after the tree is already generated.

In this study, instead of generating an unlabeled dependency tree and then using de-
pendency labels only as names over the arcs in that tree, we give dependency labels
a more central role in the overall parsing process. We first predict the dependency

iv

label of each word, therefore predicting its grammatical role in the sentence, and
then generate the dependency tree based on those predictions. We call this method
label-first parsing. As it will be shown, this approach improves the parsing accuracy
considerably for a number of languages.

Another important aspect of the label-first parsing approach is that in this approach
syntactic attachment is mainly driven by the argument structure that the system de-
tects, therefore a lot of weight is put on predicting the predicates and the arguments
correctly. We experiment with a variety of languages and show that a parser that
can accurately predict the predicate and argument roles early in the parsing process
can perform better across a number of languages compared to one which does not.
Comparing the variation in parsing performance across languages, and considering
their typological characteristics, we also try to derive conclusions about the suitabil-
ity of the dependency representation for learning the predicate-argument structure in
languages with different linguistic properties.

Keywords: Dependency parsing, language processing, syntax, argument structure,
deep learning

v

ÖZ

ÜYE YAPISI VE BAĞLILIK ÇÖZÜMLEMESİNİN BİRLİKTE ÖĞRENİMİ

Kayadelen, Tolga

Doktora, Bilişsel Bilimler Bölümü

Tez Yöneticisi: Prof. Dr. Cem Bozşahin

2023, 92 sayfa

Bağlılık ayrıştırması bir tümcedeki bağlılık ilişkilerini saptayarak bunların bağlılık
türlerini sınıflandırma işlemidir. Bağlılık ilişkilerinin saptanması, tümcedeki iye-uydu
(head-dependent) yapısının çözümlenmesi anlamına gelir. Bağlılık ayrıştırıcılar, tümce
içindeki iye-uydu ilişkilerini saptamanın yanı sıra, bu ilişkierin dilbilgisel türlerini de
sınıflandıran yapay zeka modelleridir. Burada bahsedilen dilbilgisel ilişkiler, tümce-
nin üye-yapısını tanımlayan özne, nesne, niteleyici gibi dilbilgisel rolleri kapsar. Bu
bağlamda, bağlılık türlerinin sınıflandırılması, bir başka deyişle bağlılık etiketleme
tümcedeki her sözcüğün tümcenin üye yapısındaki görevinin tanımlanması olarak yo-
rumlanabilir.

Bu çalışmada, mevcut bağlılık ayrıştırıcıların aksine, tümcede öncelikle üye rollerini
ve üye yapısını saptamaya çalışan bir ayrıştırma modeli geliştirilmiştir. Bu model bir
çok farklı dile ve veri setine uygulanmış ve modelin belirli dillerde bağlılık ayrıştırma
başarımında önemli artışlara yol açtığı saptanmıştır. Geliştirilen modelin farklı diller-
deki başarımı göz önünde bulundurularak, dilbilgisel bilgiyi bağlılık ilişkileri olarak
kodlayan yaklaşımın ve veri setlerinin, farklı dillerde üye yapısını bu tarz bir veri üze-
rinden öğrenmeyi ne kadar mümkün kılıp kılmadığına dair gözlemler sunulmuştur.

Anahtar Kelimeler: Bağlılık analizi, bağlılık etiketleme, üye yapısı, doğal dil işleme,
derin öğrenme

vi

To Ada

vii

ACKNOWLEDGMENTS

It has been so long since the start of this journey that I cannot believe I am at this
stage writing the acknowledgements, which means the journey is coming to an end. I
am grateful to a lot of people who made it possible.

First and foremost, I would like to thank my supervisor, Cem Bozşahin, for always
believing in me and supporting me. Overwhelmed by work-related duties, I know I
have not been the best student at times. However, his constant patience and trust in
me have always kept me going. It is hard to describe how much I have learned from
working with him, both during and before the writing of this thesis as my supervisor
and my teacher.

Special thanks to Deniz Zeyrek Bozşahin for her constant support and encourage-
ment. Her directions during my years as a graduate student at the Cognitive Science
department have had enormous impact on my career. In terms of the knowledge and
skills that I have acquired during these years, I am a completely different person than
I was when I first joined the department, and she played a big role in this.

I would like to thank Burcu Can Buğlalılar for her insights and guidance about de-
pendency parsing which ensured that the research presented in this thesis is going in
the right direction and asking the correct questions.

Thanks to my additional jury members, Balkız Öztürk and Barbaros Yet, for their
insightful comments and questions in terms of the linguistic and machine learning
aspects of this thesis. Their valuable input has helped me shape the thesis to its final
form.

I have worked on this thesis while being employed full-time at Google for the past 7
years. It is a difficult undertaking to complete a PhD thesis while working full-time in
a demanding job, and the last few weeks towards completion have been particularly
tiring and stressful for a various reasons. Special thanks to Sabine Lehmann, who
was my manager at that time, for her support and encouragement which helped me
get through those difficult times.

I would like to thank my dearest friend, Adnan Öztürel, for his help with machine
learning questions and for his constant support.

Thanks to my beloved family, Saadet Apaydın, Esra Kayadelen, Ebru Doğar and Nus-
ret Doğar for always being there for me. Biggest thanks to my wife, Buse Kayadelen,
for her friendship and tenderness, and for bearing with me during all these years I
have been working on this thesis.

viii

Finally, thank you to my lovely daughter, Ada – who is 1,5 years old at the time I am
writing these words – for being the joy of my life. You have made all the difference.

ix

TABLE OF CONTENTS

ABSTRACT. iv

ÖZ . vi

DEDICATION . vii

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Organization of the Thesis . 4

1.2 Contributions of the Thesis . 5

2 APPROACHES TO PREDICATE ARGUMENT STRUCTURE 7

2.1 Lexical-Projectionist View . 8

2.2 Construction Grammar (CxG) . 10

2.3 Combinatory Categorial Grammar . 11

2.4 Conclusion . 14

x

3 DEPENDENCY PARSING . 17

3.1 Dependency Parsing . 17

3.1.1 Transition Based Parsing . 19

3.1.2 Graph Based Parsing . 22

3.2 Neural graph based parser implementations . 24

3.3 Conclusion . 26

4 THE DATA . 27

4.1 Introduction . 27

4.2 Dependency Structure and Grammatical Relations in UD 27

4.2.1 Argument-Adjunct Distinction . 28

4.2.2 Control and Raising . 31

4.2.3 Nominal Modification . 32

4.3 Conclusion . 34

5 LABEL FIRST PARSING . 37

5.1 Introduction . 37

5.2 Label First Parsing . 38

5.3 Datasets . 40

5.4 Experiments . 41

5.4.1 Experiment 1: BERT+LSTM Model . 41

5.4.1.1 Description . 41

5.4.1.2 Results . 44

5.4.2 Experiment 2: Joint LSTM Model . 47

xi

5.4.2.1 Description . 47

5.4.2.2 Results . 48

5.5 Error Analysis . 49

5.5.1 Effect of Sentence Length . 50

5.5.2 Errors in Verbal Predicate Argument Structure 52

5.6 Conclusion . 58

6 LABEL FIRST PARSING WITH SEMANTIC ROLES 59

6.1 Introduction . 59

6.2 Propbank and Semantic Dependencies . 60

6.3 Experiment . 63

6.3.1 Limitations of the Data . 64

6.3.2 Model . 64

6.3.3 Results . 66

6.4 Conclusion . 67

7 LABEL FIRST PARSING WITH AN RL BASED RERANKER: A PRE-
LIMINARY EXPERIMENT . 69

7.1 Reinforcement Learning . 69

7.2 RL in NLP . 70

7.3 Label First Parsing using an RL Reranker . 71

7.3.1 An RL based label reranker . 71

7.3.2 Training the label reranker . 72

7.4 Results and Discussion . 74

xii

7.5 Conclusion . 76

8 CONCLUSION . 77

8.1 Future Work . 78

REFERENCES . 81

CURRICULUM VITAE . 91

xiii

LIST OF TABLES

Table 1 Arc-standard parse of sentence ’The cat sat on the mat’ 21

Table 2 Arc-eager parse of sentence ’The cat sat on the mat’ 22

Table 3 Core vs. non-core arguments in UD . 29

Table 4 Nominal modifiers in UD . 33

Table 5 Baseline metrics for the languages evaluated in the experiments 40

Table 6 Hyperparameters for finetuning BERT model . 43

Table 7 Hyperparameters for training the head-classifier 43

Table 8 Label vs. Attachment Accuracy Across Languages and Datasets 44

Table 9 Typological Properties of the Languages in the Experiments 45

Table 10 Avg. Label vs. Attachment Accuracy for different language types . . . 46

Table 11 Comparison of current model with the baseline models 46

Table 12 Comparison of BERT+LSTM model with joint-LSTM model 49

Table 13 Arguments and Adjuncts in UD . 52

Table 14 Errors in Predicate-Argument Structure in En and Tr (PUD sets) 53

Table 15 Distribution of Predicate Argument Errors Per Grammatical Role . . . 53

Table 16 Distribution of Error Type Per Grammatical Role 53

Table 17 Confusion Table for Clausal Dependents . 54

Table 18 Confusion Table for Adverbial Clauses . 55

Table 19 Semantic Role Labels in Turkish Propbank . 62

Table 20 Dependency Labels in Propbank with Counts . 65

Table 21 Overall Parsing Accuracy of the Baseline vs. Experimental Model . . 66

Table 22 Performance in Identifying Grammatical Roles in Base vs. Exp.
Model . 66

xiv

Table 23 Performance in Argument - Adjunct Distinction 67

Table 24 Featureset used in state representation S for token wi 72

Table 25 Hyperparameters used in training label reranker 73

Table 26 Comparison of RL-based ranking model with Supervised Models . . . 75

xv

LIST OF FIGURES

Figure 1 Dependency tree of sentence ’My dog also likes sausage’ 18

Figure 2 Hierarchical structure of sentence ‘My dog also likes sausage’ . . 18

Figure 3 Maximum spanning tree representation of the sentence ’Ada en-
joyed the book . 23

Figure 4 Stanford Parser Architecture . 25

Figure 5 Dependency tree of sentence ’John is a lazy student incapable
of success’ . 29

Figure 6 Dependency tree of sentence ’Brutus stabbled Ceaser with a
knife at the back’ . 29

Figure 7 Dependency tree of sentence ’Brutus stabbed Ceaser with a
knife at the back with dependency labels.’ . 30

Figure 8 Dependency tree of sentence ’John asked/promised Mary to win’. 31

Figure 9 Dependency tree of sentence ’Burada on gün kadar kaldıktan
sonra dönüş yolculuğuna başladık.’ . 33

Figure 10 Dependency tree of sentence ’This would put it on coarse for
global domination.’ . 34

Figure 11 BERT+LSTM model architecture . 42

Figure 12 Dependency Label vs. Attachment Accuracy Across Datasets . . . 44

Figure 13 Joint LSTM model architecture . 48

Figure 14 English BERT-LSTM Model’s Performance by Sentence Length 50

Figure 15 Turkish BERT-LSTM Model’s Performance by Sentence Length 50

Figure 16 Attachment vs. Label Accuracy, en-pud . 51

Figure 17 Attachment vs. Label Accuracy, tr-pud . 51

Figure 18 Dependency tree of sentence ’Ama Frank’in ona modellik yap-
masını önerdiğimde güldü.’ . 56

Figure 19 Dependency tree of sentence ’İşkenceyi destekler nitelikte konuştu.’ 56

xvi

Figure 20 Dependency tree of sentence ’But, when I suggest that she get
Frank to model for her, she laughs.’ . 57

Figure 21 Semantic tree of sentence ’Ada bardağı düşürünce korktu.’ 61

Figure 22 Dependency prediction of sentence ’Beni nasıl etkilediğini bile-
mezsin.’ . 67

Figure 23 Information Flow in the Label Reranking Model 71

Figure 24 Reward Function Representation . 73

Figure 25 ’Wrong dependency tree prediction of sentence by the model
without label reranker’ . 75

Figure 26 ’Accurate dependency tree prediction of sentence by the model
with label reranker’ . 75

xvii

LIST OF ABBREVIATIONS

1sg First person singular agreement suffix

2sg Second person singular agreement suffix

3sg Third person singular agreement suffix

AAD Argument Adjunct Distinction

acc Accusative Case

AMR Abstract Meaning Representation

aor Aorist suffix

Aggl Agglutinative

BERT Birectional Encoder Representations from Transformers

c-structure Constituent Structure

en English

CCG Combinatory Categorial Grammar

CFG Context Free Grammar

CLE Chu-Liu-Edmonds

CoNNL Conference on Computational Natural Language Learning

de German

dat Dative case

DNN Deep Neural Network

DQN Deep Q Network

ECM Exceptional Case Marking

ERG Ergative

FFNN Feed forward Neural Network

xviii

fi Finnish

gen Genitive marker

ko Korean

LAS Labeled Attachment Score

LCS Lexical Conceptual Structure

LFG Lexical Functional Grammar

LLM Large language models

loc Locative case

LSTM Long Short-term Memory

f-structure Functional Structure

MDP Markov Decision Process

ML Machine Learning

MLP Multi layered Perceptron

MST Maximum Spanning Tree

neg Negation suffix

NLP Natural Language Processing

NP Noun Phrase

PALM Pathways Language Model

past Past tense

pres Present tense

Propbank Proposition Bank

PoS Part of Speech

poss Possessive marker

PP Prepositional Phrase

PUD Parallel Universal Dependencies

ReLU Rectified Linear Unit

xix

RL Reinforcement Learning

RNN Recurrent Neural Network

ru Russian

SD Stanford Dependencies

SRL Semantic Role Labeling

SVM Support Vector Machine

tr Turkish

UAS Unlabeled Attachment Score

UD Universal Dependencies

VN Verbal Noun

VP Verb phrase

zh Chinese

xx

CHAPTER 1

INTRODUCTION

The central issue in this thesis is learning predicate argument structure within a de-
pendency parsing framework using data driven machine learning models. Parsing
is an important domain of application in Natural Language Processing (NLP) for a
couple of reasons. First, we know that natural language syntax, in and of itself, is a
complex system due to many subtleties that natural languages possess. Second, it is
a system that interfaces with other systems such as morphology, semantics, and even
prosody, all of which might impose well-formedness restrictions on it. Such level of
complexity provided by natural language syntax makes it one of the most interest-
ing domains to implement and test parsers for and to see, to what extent, even the
most powerful statistical models can achieve the same success that a toddler achieves
in understanding complex sentences. Second, from a purely practical perspective,
dependency parsing has proven to be a useful first task for other downstream applica-
tions such as semantic role labeling (Marcheggiani et al., 2017) [1], relation extraction
(Zhang et al., 2018) [2] and even machine translation (Chen et al., 2017) [3].

Achieving high performance results in any machine learning problem has at least
three fundamental requirements: a) a proper understanding and representation of the
phenomenon one is dealing with, b) an appropriate statistical model that can address
the complexities of the phenomenon, and c) high quality data that is consistently
annotated and has good representational coverage of the phenomenon. It is hard
to compromise from any one of these without harming the others. That is to say,
low quality in one of these components can easily nullify the quality of others. For
example, unless one has a good mental model of the problem and of its representation,
it is hard to create high quality data that is appropriate for the task. As a result, no
matter how powerful a machine learning model one might employ, results will suffer
as the data will not be representing the problem well enough. On the other hand,
assume we have a good representation of the problem and very strong ML models.
We still need to make sure that our dataset which the model will be trained on covers
different distributional properties of the data and is annotated consistently. Lack of
proper sampling will cause the model perform poorly in the face of new data, lack of
consistent annotations will make it unable to learn the solution to the task as much as
it potentially can.

Over the years, advances in deep learning and related developments in large language
models (LLM) such as BERT (Devlin et al., 2019) [4] and PALM (Chowdhery et al.
2022) [5] has made it possible to gain better results in more and more NLP tasks.

1

Dependency parsing is no exception: recently developed models that rely on deep
learning methods and large language models have achieved state of the art perfor-
mance on a large number of languages easily, e.g. (Kondratyuk and Straka, 2019)
[6]. In parallel, especially due to the success of Universal Dependencies (UD)[7]
project in providing a unified way to annotate multilingual dependency treebanks, the
amount of data available for dependency parsing has increased considerably in the
past 10 years.

Of course, an increase in the number of treebanks covering different languages is not
by itself a guarantee of quality parity between languages in terms of parsing perfor-
mance. One reason for the lack of quality parity might be that the unified represen-
tation that UD imposes could be less suitable to languages with different linguistic
properties. This is an inevitable risk that any unification efforts naturally bear and
even though UD makes all effort to ensure that the annotation guidelines are sensi-
tive to peculiarities of typologically different languages, the question of how suitable
UD annotation scheme is to all the languages it aspires to cover is an open debate.
Another issue that prevents quality parity is that there is less amount of annotated
treebanks available for some languages. Complex ML models require large amounts
of data to train on, and training on insufficient data easily leads to overfitting. Further-
more, certain languages are categorized as more challenging for dependency parsing
than others. Some examples are morphologically rich languages that encode syntactic
dependencies in morphological units and, accordingly, free word order languages that
can assemble syntactic units in many different ways therefore increasing the amount
of permutations a parser has learn. This brings us back to the importance of data for
ML models. None of these linguistic properties are inherently problematic as long
as one can have enough data to account for the additional complexity they bring to
the parsing problem. However, there is no easy way to know beforehand what size of
data is enough to accurately represent what type of language.

Turkish is a notable example of languages that are traditionally classified as challeng-
ing for dependency parsing (Oflazer, 2014) [8], both because of its morphological
complexity and because it lacked sufficiently large dependency treebanks for many
years. Until recently, the only available treebank for Turkish was IMST-UD (Su-
lubacak et al, 2016) [9] which was relatively small, consisting of 5.67k sentences.
In recent years, this issue is addressed with some newly published treebanks such
as the BOUN treebank (Turk et al., 2022) [10], Grammar Book Treebank (Coltekin,
2017) [11], both of which use UD annotation scheme, and Turkish Web Treebank
(Kayadelen et al, 2020) [12] which uses a non-UD annotation scheme. Given these
new treebanks, it is hard to categorize Turkish as an underrepresented language for
dependency parsing any more. On the other hand, Turkish still consistently performs
at the lower end of languages in shared tasks such as Zeman et al (2017) [13], which
means either that current parsers are still far away from addressing its linguistic com-
plexities even with the available data or that the data, in the way it is annotated, does
not allow for capturing the peculiarities of the language.

This thesis experiments with a set of models that construes dependency parsing as
a problem of optimizing predicate-argument structure. Dependency parsing can be
understood as a combination of two tasks: a head selection task identifying the head-

2

dependent relations in the sentence, and a label prediction task identifying the nature
of the grammatical relation that holds between the heads and dependents. In this
thesis, while we preserve this two-level understanding of the parsing problem, we
differ from the current state of the art parsers in that we interpret dependency labels
as categorical markers defining the grammatical role (or function) each word plays
in the overall predicate argument structure of the sentence. In this approach, de-
pendency labels are conceptualized as properties predicated over words (rather than
over dependency arcs), representing the words as functions seeking their arguments.
For example, an nsubj dependency label represents a word as a function seeking the
verbal predicate it takes as an argument, grouping it together with other dependency
labels such as dobj, iobj or ccomp in UD label inventory. A det relation represents
a word as a function seeking its nominal argument, similar to other labels such as
amod, nummod, or nmod.

Based on the viewpoint described above, we develop a model which aims to predict
the grammatical role of each word first, therefore trying to account for the predicates,
arguments, and non-arguments in the sentence as a first step, before building the syn-
tactic tree. From a modeling perspective, this approach is in contrast with the current
state of the art parser implementations. As we review further in Chapter 3, in most
of the current parser implementations the head-selection and label-prediction tasks
are usually set up in a way that parsers first predict the dependency arcs connecting
dependents to their heads (head selection), which are then labeled using one of the
dependency labels. In that kind of set up, accurate identification of dependency la-
bels, or in linguistic terms the grammatical functions, has no impact at all on how the
syntactic tree is constructed. We call these mainstream approaches head-first to con-
trast them with the current methodology. In contrast to these approaches, the models
developed in this thesis are label-first as they aim to identify the grammatical role that
each word plays in the predicate argument structure of the sentence before generating
the dependency tree.

The linguistic motivation behind the label-first parsing approach is that synctactic
structure is mainly determined by predicate-argument structure, and in a parsing
framework where predicates and arguments (or non-arguments) can be identified ac-
curately, identification of dependency relations should follow almost trivially. Ex-
perimenting with a variety of languages and datasets, in Chapter 5 we show that the
label-first parsing approach can indeed improve parsing accuracy (both labeled and
unlabeled attachment score) significantly in a certain subset of these languages and
datasets.

Analyzing the variability in parsing performance between the different languages ex-
perimented with, we then try to explain why the proposed approach works well only
for certain languages but not for others. We show that this is mainly due to two rea-
sons: a) the typological characteristics of the different languages experimented with,
b) the lack of a typing mechanism in dependency grammars which defines the se-
mantic and syntactic constraints (such as valency, subcategorization, and semantic
selectional restrictions) over functional categories (e.g. predicates) in the linguistic
representation. As we discuss and show with examples, the combined effect of these
two facts is that learning predicate-argument structure from dependency treebanks is

3

tightly limited to the structures that a model can only explicitly see in the treebank. In
languages that are more analytical in nature, the treebanks are less sparse in terms of
different argument structure frames a model can witness a verb occur in, because in
these langauges grammatical roles are overtly represented in the surface representa-
tion. On the other hand, in languages that are more on the synthetic/agglutinative side,
grammatical roles can be covert in the surface representation due to rich morpholog-
ical marking but can only be understood at the level of semantic representation. In
turn, the lack of any lexical semantic information on predicates to explain unseen data
in the linguistic representation hinders a successful induction of predicate argument
structure in such languages more severely than others.

In terms its linguistic motivation, this thesis can be thought of as an effort which
tests to what extent predicate argument structure is learnable in languages with dif-
ferent linguistic properties within a dependency parsing framework. The results that
it reports have implications on how grammatical properties relevant to predicate ar-
gument structure should (or should not) be represented in linguistic frameworks that
aim develop sufficiently rich datasets for typologically diverse languages. The main
conclusion that it arrives is that the poorly typed representation that dependency for-
malism employs is problematic for learning predicate-argument structure accurately
for all languages, and different languages suffer from this problem to different de-
grees.

1.1 Organization of the Thesis

The rest of this thesis is organized as follows.

In Chapter 2, we review the linguistic background of this thesis and provide an
overview of the different approaches to predicate-argument structure.

In Chapter 3, we discuss the computational foundations of this thesis, reviewing
graph-based and transition based dependency parsing algorithms. This is followed
by a review of the recent state of the art neural parser implementations.

In Chapter 4, we review the properties of the data that we use for experiments in
chapters 5 and 6. Specifically, we provide a linguistic analysis of the UD, focusing,
where relevant, on the problematic aspects of it with respect to capturing important
distinctions about predicate-argument structure.

In Chapter 5, we run a set of multilingual experiments and show that the label first
parsing strategy, which aims to account for predicate and argument roles early in pars-
ing stage, improves parsing accuracy across multiple languages and datasets. The
results confirm our hypothesis that a parser which can resolve predicate argument
structure early can perform better in resolving the syntactic dependencies. We then
analyze why certain languages, but not others, seem to be benefiting more from this
proposed strategy and derive conclusions about the learnability of predicate-argument

4

structure in different languages using dependency grammar as a linguistic represen-
tation.

In Chapter 6, we augment the model in chapter 5 with semantic role labels and per-
form label first parsing based on them. More specifically, we start parsing from an-
notated Semantic Role Labels (SRL), based on which we predict grammatical roles,
on top of which we build the dependency tree. The main idea of this chapter is to test
whether semantic role labels can further help a dependency parser in learning distinc-
tions relevant to predicate-argument structure (e.g. the argument-adjunct distinction).

Chapter 7 provides results of a preliminary experiment which is much less conclusive
and much more relevant for future work than any others in this thesis. We report an
approach which tries to optimize for grammatical roles in a label-first parsing set-
ting using a hybrid learning methodology, combining Reinforcement Learning (RL)
algorithms with Supervised Learning. We explain the motivating idea behind this
approach and review the relevant design employed.

Chapter 8 concludes the thesis and suggests some future work that can follow this
thesis.

1.2 Contributions of the Thesis

The thesis has the following computational and linguistic contributions to the field of
dependency parsing.

• It introduces a novel dependency parsing strategy which is different from the
current implementation of the available state of the art parsers.

• It improves the state of the art metrics (Unlabeled Attachment Score (UAS)
and Labeled Attachment Score (LAS)) for dependency parsing across multiple
languages and UD datasets.

• It implements a BERT based dependency label classifier, illustrating the mul-
tilingual BERT models’ performance on detecting grammatical roles without
using any syntactic features (simply relying on word order and surface forms
of words) in multiple languages.

• It develops an experiment that aims to resolve grammatical roles and syntac-
tic dependencies in a hierarchical set up based on semantic role labels, which
shows that using semantic role labels not only improve parsing accuracy, but
also helps reduce predicate-argument structure errors with respect to arguments
and adjuncts.

• From a linguistic point of view, it discusses that the dependency representation
as adopted in UD, with its impoverished approach to representing linguistic
properties of predicates, is not a sufficient representation for learning predicate-
argument structure from data, especially in languages with certain typological
characteristics.

5

6

CHAPTER 2

APPROACHES TO PREDICATE ARGUMENT STRUCTURE

Following Clark et al (2002) [14], predicate argument structure can be defined as
"the dependencies that hold between lexical functor categories and their arguments".
The common understanding in linguistics is that predicate-argument structure lies at
the heart of syntax-semantics interface and is defined to a great extent by the lexical
semantics of verbs. A great example of this idea has been shown in the seminal works
of Talmy (1985, 1991) [15], [16].

In his works on cross-linguistic lexicalization patterns, Talmy (1985, 1991) discusses
how languages with different typologies map semantic participants of motion events
to argument or adjunct roles. Motion events are events that express movement along
a trajectory, expressed by verbs such as push, kick, roll, swing, move, run and so on.
A motion event can have five semantic components: a) a Figure, which is the entity
that moves; a Path, which encodes the trajectory of movement; a Ground, which is
the location with respect to which movement happens, a Manner component, which
encodes how the motion happens; and finally the Motion itself which is expressed by
the verb. The path component is central to any motion event, and should be lexical-
ized somehow in the surface syntax. Based on this observation, Talmy categorizes
languages into two classes: those that encode the path semantics in the verb mean-
ing (verb-framed languages) and those that can realize them in non-verbal categories
such as adpositions (satellite-framed languages). This distinction helps explain how
surface realization of other semantic components (such as Manner) of a motion event
happens. In satellite-framed languages, since path is encoded in the adposition, the
verb can encode motion+manner at the same time. Therefore, these languages have
a lot of verbs that express manner of motion. On the other hand, in verb-framed lan-
guages, since since path is encoded in the verb, manner cannot be encoded in the verb
as well. As a result, these languages have to employ adjuncts to express manner of
motion.

1. [The pencil]figure [rolled]motion+manner [off]path [the table]ground.

2. [Kalem]figure [masadan]ground [yuvarlanarak]manner [düştü]motion+path.

An example of the mapping generalizations proposed by Talmy is exemplified in
examples (1) and (2). Turkish, being a verb-framed language, employs an adjunct
to express the manner of motion for a motion event while English, a satellite-framed
language, can encode it in the verb and does not need an adjunct.

7

Talmy’s observations constitute a great example of how semantics interacts with syn-
tax, specifically how lexical semantics of verbs determine the predicate-argument
structure of the verb in typologically different languages. A large amount of linguis-
tic studies have dealt with formalizing this interface as part of a theory of grammar
and different accounts have been proposed based on the linguistic theory one assumes.
In this chapter, we review some of these approaches below.

2.1 Lexical-Projectionist View

According to Government and Binding (GB) theory (Chomsky, 1981)[17], linguis-
tic competence consists of three basic components: lexical knowledge, PS-rules, and
transformations. A matter of debate in this approach has always been the division of
labor between these three components, especially between lexicon and syntax. More
specifically, the question has been how to precisely define the nature of grammatical
information that comes from the lexical component. Usually, two kind of lexical in-
formation has been recognized: the unstructured, “encyclopedic” information which
has no relevance to the “computational system”, and the systematic, grammatically
relevant information that interfaces with the grammatical module and has the power
to impose well-formedness conditions on grammar (Ramchand, 2008) [18]. The lat-
ter kind of information is assumed to be a proper subpart of the former, e.g. as Pinker
(1989: 166)[19] notes “[...] there is a set of semantic elements and relations that is
much smaller than the cognitively available [...] distinctions, and verb meanings are
organized around them”.

Chomsky’s “Remarks” (1970) [20] can be taken as a milestone for the so called
lexical-projectionist view of semantics-syntax interface. The idea put forward there
was that lexical items project into syntax argument structural information that is
stored in them. This idea has assumed a multi-layered representation of the gram-
matical system, where one level of representation (the lexicon) and the other one (the
syntax) conspire to determine grammaticality. This idea is later taken up to its full
potential in works such as Fillmore (1970)[21] and Levin (1993) [22] and related
work). More explicitly, the common understanding in works of this clay has been
that different patterns of behavior exhibited by verbs could be explained by taking
into consideration the semantic role lists they define in their lexical conceptual struc-
ture.

Given the semantic role lists which are defined in the lexicon, these multi-stratal
accounts of grammar would have to also define a theory of “linking” governing how
the semantic information gets mapped onto syntax. Various linking theories have
been proposed, and in most of them the central idea has been that the linking of
semantic information should observe a thematic hierarchy of some sort. The thematic
hierarchy proposed by Fillmore (1968) is shown below:

3. Fillmore (1968) Thematic Hierarchy:

Agent > Experiencer > Instrument > Theme/Patient

8

The linking (or mapping) operates by proposing generalizations for associating se-
mantic roles in the hierarchies like the ones in (3) with grammatical role hierarchies
like (subject>object ...). This is done by positing certain mapping rules. For example,
the subject selection rule states that the argument of a verb which bears the highest
ranked semantic role is mapped to the highest ranked grammatical role in the syntac-
tic role hierarchy. Interpreted from this perspective, Fillmore’s hierarchy entails that
if there is an Agent semantic role in the verb’s lexical entry then it has to be mapped
to the Subject grammatical role, if not an Experiencer is mapped to the subject role.
If none of these roles exist, then the Subject is an Instrument or else, it is Objective.
To illustrate this mapping in action, we can consider Fillmore’s (1968) examples in
his famous work ’The grammar of hitting and breaking’. The following examples are
adapted from that work:

4. a. The door opened. (Subject=Theme)

b. John opened the door. (Subject=Agent, Object=Theme)

c. A key opened the door. (Subject=Instrument)

d. *A key opened the door by John. *(Subject=Instrument, Oblique=Agent)

5. a. The fence broke. (Subject=Theme)

b. A stick broke the fence. (Subject=Instrument, Object=Theme)

c. John broke the fence with a stick. (Subject=Agent, Oblique=Instrument)

d. *The fence broke with a stick. *(Subject=Theme, Oblique=Instrument)

The sentences (4d) and (5d) are ungrammatical because they violate the subject se-
lection principle based on the thematic role hierarchy proposed in (3), which does not
allow for selecting an Instrument subject when there is an Agent present (4d) or a
Theme subject when there is an Instrument present (5d).

There has been some dissatisfaction concerning the thematic role approach to syntax-
semantics interface, which has mainly been related to the definition of thematic role
labels. It has been acknowledged that some verbs require finer-grained thematic roles
since the inventory of thematic roles do not seem to adequately capture the semantic
properties of arguments projected by these verbs. Some of these verbs are require,
confirm, contemplate, and facilitate which, as noted by Levin and Rappoport-Hovav
(2005: 40)[23], ask for individually tailored semantic roles. However, as also noted
by the same researchers, “positing such roles could result in a staggering number of
roles; furthermore, little is gained by introducing them since many would not enter
into any significant linguistic generalizations”. Moreover, once one starts reducing
the grain-size of the thematic roles and decomposing them into smaller units, there is
not a principled reason to stop at any particular point. One can go on and on as long
as the need arises.

This has led researchers like Dowty (1990)[24] to give up the idea of identifying the-
matic roles as primitives in a theory of argument structure altogether. Arguing that
thematic hierarchies do not have the explanatory potential that they are assumed to

9

have, Dowty (1990) suggested thematic roles are derived and probabilistically deter-
mined based on the number of entailments that hold between the verb and its argu-
ments. That quite innovative view captured and explained many problems related to
argument selection/realization. More striking was Dowty’s conception of semantic
roles as being partly derived, rather than being determined solely by the lexemes.
This idea has later on yielded itself into a whole paradigm of deriving semantic roles
from syntactic patterns, and refusing the lexemes any argument structural information
altogether; i.e. the “constructivist approaches”.

2.2 Construction Grammar (CxG)

In a constructionish view of grammar (Goldberg, 1995[25]; Michaelis, 2006 [26]
among others), lexemes contain no semantic (and in fact syntactic) information at all;
they are just packages of grammatically irrelevant “encyclopedic” content. According
to CxG, there is an inventory of syntactically represented meanings that exist inde-
pendently of verbs, and idiosyncratic semantic requirements of verbs use one of these
syntactic representations, allowing or disallowing the verbs to be inserted within one
constructional frame but not the other.

These approaches usually base their claim on examples where it seems that the cat-
egorical information related with the verb is overridden as a result of the verb’s ap-
pearing in a variety of non-canonical usages that it should not normally be expected to
appear. As example, we can consider Goldberg’s (2003: 592)[27] famous discussion
of verbs “laugh” and “sneeze”. In a framework where verbs include categorical in-
formation, these verbs would be categorized one-place predicates assigning an agent
role to their arguments.

6. a. We laughed.
b. John sneezed.

On the other hand, Goldberg notes that these verbs could easily be used in a ditransi-
tive construction, as in

7. a. We laughed our conversation to an end.
b. John sneezed his tooth right across town.

Now, we know that the ditransitive pattern usually expresses events of transfer and
caused- motion. Verbs like “give”, “wipe”, “drag”, “push” are commonly cited mem-
bers of this class of verbs (Diesel, 2004: 17):

8. a. She dragged the child into the car.
b. He wiped the mud off his shoes.
c. He pushed the book down the clute.

10

Comparing (7) to (8), CxG grammarians argue that it is implausible to assign the verbs
“sneeze” and “laugh” a “caused-motion” sense besides their regular meaning. This
would, they propose, lead to “unconstrained verb polysemy” because we would have
to write different entries for verbs each time we see them appearing in another non-
canonical frame. In turn, it also becomes implausible to say that the “caused-motion”
meaning is the outcome of the syntactic projections of heads “wipe” and “push”,
because this suggestion would not be able to express how “sneeze” and “laugh” can
be used to describe a caused-motion event as well.

The solution posited by CxG is that neither syntactic nor semantic information is
coming from the lexicon. Instead, it is the constructions that determine both semantic
interpretation and syntactic representation. Constructions in this sense are seman-
tically interpreted abstract syntactic frames which have their own significance and
an existence independent of verbs. For example, the ditransitive construction above,
formally represented as “NP V NP in/to NP”, is a construction which denotes caused-
motion and selects three thematic roles: agent, theme and goal. Crucially, verbs
no longer project any syntactic information but only fill in appropriate slots made
available by various constructions. Whether a verb can be inserted within a certain
construction is determined by the idiosyncratic properties of the verb. Aside from this
idiosyncratic information, a lexeme has no further part to play in grammatical theory.
While it is true that CxG grammars capture many of the flexibilities displayed by lex-
emes in a powerful way, they have usually been blamed for being too functionalist,
turning the language into a kind of “inventory” of structures, and not appreciating the
computational mechanism at all.

So far, we have reviewed how two approaches trying to account for the correspon-
dance between semantics and syntax. While lexicalist theories believe that syntax
derives (partially) from semantics and verbal argument structure, constructionist the-
ories believe that none of them are derived from one another. A third view is pre-
sented in more compositional approaches like Combinatory Categorical Grammars,
e.g. Steedman (1996, 2000) [28][29], which keep the correspondance in a one-to-one
development through the derivation. We review this approach below.

2.3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a member of the family of Categorial
Grammars based on the AB calculus of Adjukiewicz (1935)[30] and Bar-Hillel (1953)[31],
whose work centered upon capturing the type structure of natural languages. In the
classical AB calculus, grammatical objects are categories which may belong either
to an atomic (alternatively referred to as saturated, primitive or non-functional) type
or to a function type (alternatively unsaturated or compound type). Atomic types are
denoted with atomic symbols such as α, β,X, Y etc. while functions are denoted as
α /βi for i ≥ 1, where α and β are categories. A category of type α /β is interpreted
as denoting a set of expressions which take a category of type β as an argument to
yield an expression of type α (i.e. the set of functions from β to α).

11

Bar-Hillel makes a distinction between functions which take arguments in a forward
or backward manner. For example, an expression like α/(β)[γ] denotes a set of func-
tions which combine with an expression of type β and an expression type γ, yielding
an expression of type α. As noted by McConville (2007: 36)[32], in Categorial Gram-
mar formalisms the same effect is achieved by Schönfinkelization (i.e. currying) of
Bar-Hillel’s ordered categories with the help of forward and backward slashes /, \:
((α\β) /γ). Schönfinkelization turns a function that takes more than one argument
into a function that takes those arguments one-by-one in an ordered way. In other
words, Schönfinkelization means that any function f that has the form of i× β 7→ m
(from the domain i×β to the range m) is equal to a function g from the domain i to the
range (β 7→ m), which is itself function from domain β to m; i.e. (i 7→ (B 7→ m)).

CCG assumes a categorical lexicon, and assigns either a function type or atomic type
to each lexical item. Consider a toy sentence like John found the puppy. The categor-
ical type of each lexical item in this sentence under CCG would be as below:

9. the := NP/N
John := N
found := (S\NP)/NP
puppy := N

There are two functor categories in 9: the, which takes an atomic category N to the
right to form an NP, and the predicate find, which takes an NP to the right to form a
VP (=(S\NP)) and another NP to the left to form an S.

In CCG, every syntactic type is paired with a semantic type (i.e. the logical form)
which defines the predicate-argument structure of the category in question. The logi-
cal form is formalized with typed λ-calculus. For example, given the lexical-functor
category (S\NP)/NP such as find, we have the correspondent logical form of this
category as in (10):

10. found := (S\NP)/NP : λx.λy.find ′xy

The λ-binding on the variables indicate which NPs are interpreted as the object and
the subject. The rightmost NP in the syntactic type corresponds to the innermost
λ-bound variable in the semantic type, indicating the variable that the verb applies
first, i.e. the object. The predicate-argument structure represented in the CCG log-
ical forms is agnostic to language specific parameters and is assumed to be cross-
linguistically universal. For example, one can see that the directionality of appli-
cation as indicated by slashes (/, \), which belongs purely to the surface syntactic
derivation, is not represented in the semantic interpretation. As Steedman (2019)[33]
notes, predicate-argument structure is "essentially equivalent to the lexical compo-
nent of thematic structure in Minimalism, f-structure in LFG, ARG-ST in HPSG, the
grammatical function tier of SS".

In CCG, a transparent syntax-semantics interface is maintaned through the deriva-
tion of the sentence. Given a set of lexical items with associated syntactic and se-

12

mantic types, CCG derives the syntactic structure and the semantic intepretation of
the sentence compositionally by means of a finite number of combinatory rules1 and
functional application, as in (11).

11. John found the puppy

NP (S\NP)/NP NP/N N
: john ′ : λx.λy.found ′xy : λx.x : puppy ′

>

NP
: puppy ′

>

S\NP
: λy.found ′puppy ′y

<

S
: found ′puppy ′john ′

Important for our purposes is how categorical grammars like CCG represent the ar-
gument structure of predicates. Compared to the theories discussed in sections 2.1.
and 2.2., it is the one that decorates the lexical-functor categories most richly, by both
using a syntactic type defining the subcategorization frame and a semantic type defin-
ing the predicate-argument structure of the predicate. Grammatical phenomena which
is relevant to predicate-argument structure, such as control or raising, extraction, or
pro-drop, are all defined as lexical properties over predicates, that is; as properties of
the logical form. For example, subject control verbs such as promise have the subject
control property defined using λ-binding in their logical form as in (12).

12. John promised Mary to win

NP (S\NP)/VP)/NP NP VP/VP VP
: john ′ : λx.λp.λy.promised ′(py)xy : mary ′ : λp.p : λy.win ′y

>

VPto
λy.win ′y

>

(S\NP)/VP)
: λp.λy.promised ′(py)mary ′y

>

S
: λy.promised ′(win ′y)mary ′y

<

S
: promised ′(win ′john ′)mary ′john ′

(12) is a case of subject control because John is the semantic subject of the infinitival
clause to win. As can be seen from the semantic type of the verb, this control relation
is captured at the level of predicate-argument structure, specifically with the variables
p and y. First, the logical form of promise makes it clear that it selects for a clausal
complement (specified by variable p). Second it also defines that the variable y, which

1 It is beyond the scope of this work to review all the combinatory rules of CCG. The reader is referred to
relevant works such as Steedman (2019) [33] and Steedman, (2020) [29] for a detailed overview.

13

is the subject argument of promise, is also the subject of the clause subcategorized for
by promise.

As another example, consider (13), which is a sentence with a pro-drop subject. In
languages which rich inflection like Turkish, agreement morphology on the predicate
allows for the subject to be covert in the surface syntax while it is understood at the
semantic level.

13. Otobüsü kaçırdı

NP S\NP
: bus ′ : λx.missed ′(x, one3s)

>

S

: missed ′bus ′one3s

CCG captures pro-drop in the logical form as well, using an anaphorically bound one
pronoun as part of the predicate-argument structure representation of the predicate.
This ensures that the argument structural properties of the verb miss (i.e. that it is a
predicate which subcategorizes for two arguments) is accounted for properly in the
context of a missing argument in the surface representation.

To summarize, in CCG the logical form has a critical role in determining the predicate
argument structure of functor categories. The rich and transparent representation that
CCG employs to represent the semantics of predicates not only allows for a trans-
parent syntax-semantics interfaces in all steps of derivation, but it more importantly
ensures that argument structural properties of predicates is captured even in the face
of data that can be unseen in the surface form (e.g. pro-drop, control etc.).

2.4 Conclusion

An important difference between the various approaches to argument structure is what
kind of information they assume to exist in the lexicon. In approaches adopted by Fill-
more (1968) [21], Gruber [34], Jackendoff (1974) [35], Levin and Rapoport Hovav
(2005) [23], among others, lexicon and syntax are two different layers of representa-
tion. The valency (or subcategorization) information comes from the lexicon in the
form of θ-grids which define the number and semantic type of the subcategorized ar-
guments. Syntax is a CFG determining how various arguments realized in the surface
form should be grouped together using phrase structure rules. In these approaches,
derivational constraints are defined over phrase structure trees rather than over the
lexicon (e.g. using empty categories and/or movement rules).

A similar conceptualization of the lexicon can be observed in CCGs, where lexicon
is responsible for specifying for each functor category the type and number of argu-
ments it takes. However, being radically lexicalized, CCG does not assume a separate

14

layer of representation than the lexicon which would be responsible for syntactic and
semantic composition. Each lexical item also has a logical form associated with it
which defines the predicate-argument structure of the category in question. Crucially,
the logical type of a category differs from its syntactic type in the sense that it accounts
for argument structural constraints that the predicate defines over the derivation even
when arguments might be missing in the surface representation. As such, derivational
constraints in CCG are defined in the lexicon, as properties of the predicate argument
structure of a category in its logical form.

As we will review in Chapter 4, the dependency representation, which is the represen-
tation we use in the parsing experiments in this thesis, lacks any linguistic informa-
tion which describes the argument structural properties of predicates. The lack of this
kind of information is a major challenge for models which aim to learn grammar from
datasets using the dependency representation. As shown in the examples above, lin-
guistic features such as subcategorization or valency explain a predicate’s behaviour
on unseen data and lack of this information on a predicate strictly constrains learn-
ability of predicate-argument structure to data that the model can see in the particular
dataset, which will inevitably be impoverished and sparse. This makes it impossible
for the learning model to make good generalizations about verbal behaviour in the
face of such data.

15

16

CHAPTER 3

DEPENDENCY PARSING

In this chapter, we review the two main dependency parsing methods, namely transition-
based parsing and graph-based parsing. As the model that we develop Chapter 5 on-
wards is also a variety of the graph-based approach, we also review the current state
of the art neural implementations of it.

3.1 Dependency Parsing

Dependency parsing is the task of resolving the grammatical structure of a sentence
by means of constructing a dependency graph that represents the syntactic relations
which hold in the sentence. The syntactic relations are defined in terms of bi-lexical
relationships, or modifier-head relationships, of attachment where each word is con-
nected with the word it modifies, called its head, by means of a dependency arc. The
arcs in the graph can also have labels which name the grammatical relation that holds
between the head and the dependent connected with the arc.

Not all dependency graphs represent linguistically well formed dependency trees.
For a dependency graph to be a linguistically well formed dependency tree, it should
conform to the conditions described in Kübler et al (2009): [36]

1. Single Rooted: There should be one and only one root node in the graph.

2. Acyclic: No node can be the dependent of its own dependent, or one of the
dependents of its own dependents. Cyclic paths are not allowed.

3. Directed: Each node except for the root node has a head.

4. Spanning: There exists a path from root node to every node.

5. Connected: There exists a path connecting every two nodes in the tree.

The single-rootedness condition guarantees that the sentence has only one main pred-
icate which all the other constituents (directly or indirectly) modify. The acyclicity
guarantees that the leaf nodes in the tree are not heads but only modifiers. The di-
rectedness condition makes sure that every word in the sentence modifies one other

17

My dog also likes sausage

Figure 1: Dependency tree of sentence ’My dog also likes sausage’

word. Combined with acyclicity, it also guarantees that words cannot be modifiers of
themselves.

Dependency trees are linear representations, however, from Figures 1 and 2, it is easy
to see that they capture the hierarchical structure of the sentence to a certain extent. A
significant difference is that compared to a phrase structure tree, we see from Figure
2 that in dependency representation there is no intermediate layer which represents
phrasal constituents.

Besides the aforementioned well-formedness conditions, some researchers have also
defined a projectivity property for dependency trees which disallows arcs crossing
each other in a dependency graph. More formally, this property can be defined as
follows: a projective dependency arc is one where there is path from the head word to
every other word situated in between the head and the dependent positions connected
with the arc. Given this, a projective dependency tree is defined as one where all the
dependency arcs in the tree is projective.

It can be understood from the definition of projectivity above that it is mainly related
to word order. In the parsing literature, a lot of languages have been noted where the
word order in grammatical sentences does not satisfy projectivity. This is specifically
true in flexible word order languages such as Czech, Hindi and Turkish (Kuhlmann
and Nivre, 2006) [37], (Collins et al., 1999) [38]. Therefore, projectivity is not defined
as a constraint on the set of possible dependency trees, but is regarded only as a
property that distinguishes certain types of trees from others.

A dependency parser is a model that generates dependency trees. A parser can be
grammar-driven in which case it depends on a set of formal grammar rules that deter-

Figure 2: Hierarchical structure of sentence ‘My dog also likes sausage’

18

mine whether a dependency tree is part of a formal language. A data-driven parser,
on the other hand, is one led by a machine learning algorithm which induces a pars-
ing model that constructs well formed dependency trees from annotated dependency
treebanks. It is these type of parsers we will be dealing with in this thesis.

A data-driven dependency parser can be analyzed from two points of view:

1. Learning Method: The ML method that is used to induce the parsing model
from data.

2. Parsing Algorithm: The algorithm that generates the dependency tree given a
sentence and a learned parsing model.

In terms the learning method, most recent approaches have been using some variety
of Deep Neural Networks (DNN). However, traditional ML models such as SVMs
(Yamada and Matsumoto, 2003) [39] or Perceptrons (Collins, 2002) [40] have also
been widely used before the recent advancement on DNNs.

In terms of the algorithm being used, two well established methods represent current
state of the art: the Transition Based Parsing method and the Graph Based Parsing
method (McDonald and Nivre (2007)[41]). The distinction between the two methods
lies in how they conceptualize the parsing problem.

3.1.1 Transition Based Parsing

For a transition-parser, parsing is a problem of sequential decision making. Transition
parsers employ a state machine that processes the sentence left-to-right (token by
token) and builds the dependency tree in a bottom-up fashion.

At the heart of the transition parser is the notion of a Configuration (C), which repre-
sents the state of the dependency tree at any given timestep as the parser incrementally
builds up the tree. Formally, a configuration is a data structure that consists of three
components:

• A Stack (δ): Holding the words that are (partially) processed.

• A Buffer (β): Holding the words that are yet to be processed.

• A set of dependency arcs (A): A list of tuples (wi, r, wj) keeping track of words
(wi, wj) that are connected by a dependency arc r.

During parsing, the transition parser modifies the configuration based on the tran-
sition decisions it takes. In the initial configuration, i.e. before the parser starts
processing the sentence, the buffer holds all the words and the stack is empty (ex-
cept for the dummy token representing root of the tree), i.e. C: δ = [root], β =

19

[w1, w2, ..., wn], A = (). As the parser processes the sentence, it takes transition deci-
sions that modify the configuration. In each transition, words might be pushed to the
stack, removed from the stack, or removed from the buffer. The set of dependency
arcs A is updated accordingly to keep track of the head-dependent relations identified
during this parsing process.

As can be understood from the brief overview, in a transition parser the model pa-
rameterized over a set of actions. The actions help the parser move from one state to
another. At its basic, arc-standard version, the parser chooses one of three transition
actions: LEFT-ARC, RIGHT-ARC, and SHIFT. Their formal definitions are given
below based on (Nivre, 2008)[42]

Transitions for Arc-Standard Transition Parsing

• TRANSITION LEFT-ARC: (δ|wi, wj|β, A) → (δ, wj|β), A ∪ {wj, r, wi}
Given a word wi at the top of the stack and a word wj in the buffer, assigns j as
the head of i. Pops i from the stack as it’s head is now found.

• TRANSITION RIGHT-ARC: (δ|wi, wj|β, A) → (δ, wi|β), A ∪ {wi, r, wj}
Given a word wi in the stack and a word wj in the buffer, assigns wi as the head
of wj . Removes wj from the buffer and puts wi to the buffer instead. This last
step, i.e. replacement of wj with wi in the buffer, is done so that the parser can
determine at a later stage whether wi might have a head to its left in the stack.

• TRANSITION SHIFT: (δ, wj|β, A) → (δ|wj, β, A)

Pushes the word at the top of the buffer to the stack. This is the transition ap-
plied when the parser cannot find a head-dependent relation between the word
in the stack and the buffer (left-arc or right-arc does not apply). The word in
the buffer is pushed to the stack for later processing as the sentence unfolds.

Table 1 below traces an example parse of the sentence The cat sat on the mat based
on the transitions defined above.

Given a configuration, the task for an ML classifier is to classify the correct transition
action to take at each step. At training and inference time, the classifier uses the
linguistic properties of the words on the stack and the buffer as features.

Two main important properties of transition based parsers is that they parse sentences
in linear time and they guarantee generating projective trees. Projectivity is guaran-
teed due to the fact that the tree is built in a bottom up fashion. Linearity is guaranteed
because the system has no backtracking and each {x,y} token pair is evaluated at most
once. Notably, this latter property also makes transition parsers prone to error propa-
gation. In other words, if the parser has made a wrong attachment decision between
some early token pairs in the sentence, this decision might lead to more errors in the
later stages of parsing and there is no way to correct this decision later based on more
signals.

20

TRANSITION STACK BUFFER RELATIONS
[root] [The, cat, sat, on, the, mat] ∅

SHIFT [root, The] [cat, sat, on, the, mat] ∅
LEFT-ARC [root] [cat, sat, on, the, mat] A = {cat,DET, the}
SHIFT [root,cat] [sat, on, the, mat] A = A
LEFT-ARC [root] [sat, on, the, mat] A = A ∪ {sat,NSBJ, cat}
SHIFT [root, sat] [on, the, mat] A = A
SHIFT [root, sat, on] [the, mat] A = A
SHIFT [root, sat, on, the] [mat] A = A
LEFT-ARC [root, sat, on] [mat] A = A ∪ {mat,DET, the}
RIGHT-ARC [root, sat] [on] A = A ∪ {on, POBJ,mat}
RIGHT-ARC [root] [sat] A = A ∪ {sat, PREP, on}
RIGHT-ARC [] [root] A = A ∪ {root,ROOT, sat}
SHIFT [root] [] A = A

Table 1: Arc-standard parse of sentence ’The cat sat on the mat’

In the literature, certain modifications to the arc-standard system have been proposed
to overcome some of the challenges that such systems face. One such modification is
adding a REDUCE transition to the set of actions which can remove words from stack
any time (i.e. not only when they are a left dependent) as long as they have a head
(Nivre, 2003, 2004)[43] [44]. This change also allows for modifying the behaviour
of RIGHT-ARC transition to let right-dependents attach their left heads right away,
instead of only after all their dependents have been identified. The resulting system
is called arc-eager, for which the transition actions are defined below.

Transitions for Arc-Eager Transition Parsing

• TRANSITION LEFT-ARC: (δ|wi, wj|β, A) → (δ, wj|β), A ∪ {wj, r, wi}

• TRANSITION RIGHT-ARC: (δ|wi, wj|β, A) → (δ|wi, wj, β), A∪{wi, r, wj}

• TRANSITION SHIFT: (δ, wj|β, A) → (δ|wj, β, A)

• TRANSITION REDUCE: (δ|wi, β, A) → (δ, β, A)

Table 2 below shows the arc-eager parse of the sentence The cat sat on the mat.

There have been other proposals in the literature to modify the transition system in
one way or another. It is beyond the scope of this work to review them all. However,
some notable ones worth mentioning are Nivre (2009) [45] adding a SWAP transition
to the system to deal with non-projectivity and Qi and Manning (2007)[46] defining
an arc-swift transition system that allows tokens farther apart from one another to
attach rather than just the immediately adjacent ones in the stack and the buffer.

Transition parsers can easily be extended to become joint systems that take parsing
and labeling decisions together. The method is to expand the transition types to create
a labeled version of them for each of the available dependency labels (i.e. LEFT-ARC
-> LEFT-ARCNSUBJ , RIGHT-ARC -> RIGHT-ARCOBJ and so on). In this labeled

21

TRANSITION STACK BUFFER RELATIONS
[root] [The, cat, sat, on, the, mat] ∅

SHIFT [root, The] [cat, sat, on, the, mat] ∅
LEFT-ARC [root] [cat, sat, on, the, mat] A = {cat,DET, the}
SHIFT [root,cat] [sat, on, the, mat] A = A
LEFT-ARC [root] [sat, on, the, mat] A = A ∪ {sat,NSUBJ, cat}
RIGHT-ARC [root, sat] [on, the, mat] A = A ∪ {root,ROOT, sat}
RIGHT-ARC [root, sat, on] [the, mat] A = A ∪ {sat, PREP, on}
SHIFT [root, sat, on, the] [mat] A = A
LEFT-ARC [root, sat, on] [mat] A = A ∪ {mat,DET, the}
RIGHT-ARC [root, sat, on, mat] [] A = A ∪ {on, POBJ,mat}
REDUCE [root, sat, on] [] A = A
REDUCE [root, sat] [] A = A
REDUCE [root] [] A = A

Table 2: Arc-eager parse of sentence ’The cat sat on the mat’

parsing scenario, classifiers are trained to learn typed/labeled transitions and predict
such transitions at inference time.

3.1.2 Graph Based Parsing

Graph-based parsing defines the dependency parsing as a problem of finding the max-
imum spanning tree (MST) amongst the set of all possible trees in a dependency for-
est. The most prominent approach in this line of research is the algorithm developed
in studies like McDonald et al. (2005) [47], McDonald and Perreira (2006) [48], and
related work.

MST parsing is arc-factored in the sense that it parameterizes the parsing model over
the set of all possible dependency arcs. The task is to determine, among the exhaustive
list of possible arcs connecting any two nodes in any sentence, weights for the optimal
set of arcs that span over all the nodes and preserve the well-formedness conditions
for dependency trees defined in section 3.1. Let us explore how this is done in detail.

Given a sentence S such that S = w1, w2, ...wn where w1, w2, ...wn is the set of words
(or nodes in graph-theoretic terminology), the set of all possible dependency arcs R
for the dependency tree T of S can be defined as in equation (1):

λ(T) = λ(wi,r,wj)ϵ R, for each(wi, r, wj)ϵ T (1)

To give an example, consider a sentence like Ada enjoyed the book. λT for this
sentence would correspond to the graph on the left in Figure 3, representing the set
of all possible arcs for all the nodes in S. An MST parser’s job is to score all the arcs
connecting any two nodes in this graph based on a learned scoring model and then
for each arc (wi, r, wj)ϵ T , keep the one that has the highest score in the ultimate

22

Figure 3: Maximum spanning tree representation of the sentence ’Ada enjoyed the
book

dependency tree. To put it in another way, it aims to retrieve the red arcs on the right
from the one on the left based on a scoring function.

The scoring function is an ML model trained to assign scores to all the possible arcs
in the tree. As such, the score of the ultimately constructed dependency tree is a
function of the scores of the individual arcs such that:

score(T) = argmax Σ(wi, r, wj)ϵA λ(T) (2)

Based on the discussion above, it is easy to see that for an MST parser the parsing
problem reduces to finding the dependency tree whose arc scores sum to the maxi-
mum value. Given that arcs attach dependents to their heads, another way to describe
this is that for an MST parser the parsing problem is finding the most probable head
for each word in the tree. As a result, we can say that for graph based methods de-
pendency parsing is a head selection problem.

Differently from the transition-parsers, MST parsers do not guarantee a well-formed
tree. This is for two reasons. First, they do not guarantee that the maximum spanning
tree will conform to the single-rootedness condition. For example, it might happen
that the ML model scores two words as dependents to the ROOT node, meaning it se-
lects two ROOTs for the sentence. Second, MST parsers do not guarantee acyclicity.
This is due to the fact that there is no constraint on the arc-factored scoring process to
assign highest scores only to non-cyclic paths. Such problems are resolved by post-
processing the generated trees using the Chu-Liu-Edmonds (CLE)[49][50] algorithm
which breaks any cyclic paths and ensures that only one ROOT is maintained in the
tree. Without going into too much detail, the CLE algorithm is a recursive algorithm
that breaks cycles in a tree with a pruning procedure which collapses nodes included
in the cycle into a new single node and recalculating the arc weights in the tree. The
process is guaranteed to find the maximum spanning tree without any cycles, but due
to the recursive calls leads to a time complexity of O(n3)1.

1 For a detailed explanation of the CLE algorithm with examples, the reader is referred to Kübler et al (2009,
chapter 4)[36]

23

3.2 Neural graph based parser implementations

With the recent advancements in DNNs, a variety of neural MST parser implementa-
tions have appeared in the dependency parsing literature. In this section, we briefly
talk about some of them, and mainly discuss the currently accepted state of the art
MST parser model, i.e. Stanford’s Biaffine Parser[51][52][53], in detail.

Kipperwasser and Goldberg [54] presents the first neural implementation of MST
parsing, where they implement birectional LSTMs to encode input tokens, on top of
which a multi layered perceptron (MLP) predicts dependency arcs between tokens.
The architecture proposed in this work was extended in Stanford’s Biaffine Parser
where the outputs from the LSTM encodings are used in two biaffine classifiers where
one computes the head y for each token x and the other computes the dependency label
l for each dependency arc (x, y).

In the Stanford Parser, the input to the model is a sequence of tokens and PoS tags.
The model uses multilayered bidirectional LSTMs to encode the features of each
token-PoS pair, and then uses the output hidden state of the last LSTM layer to create
four different vector representations for each input token. These vector representa-
tions are created with the help of 4 different MLPs with ReLU activation, each of
which transforms the hidden state output into a different vector as in equations 3-6
(Dozat et al, 2017: 21):

h
(arc−dep)
i = MLP (arc−dep)(hi) (3)

h
(arc−head)
i = MLP (arc−head)(hi) (4)

h
(rel−dep)
i = MLP (rel−dep)(hi) (5)

h
(rel−head)
i = MLP (rel−head)(hi) (6)

Each vector in equations 3-6 creates a different representation of input token t. Equa-
tion 3 creates a representation of t as a dependent seeking its head, equation 4 as a
head seeking its dependents, equation 5 creates a representation of t as a dependent
seeking its dependency label, and equation 6 as a head word determining the depen-
dency labels of its dependents. This is graphically represented in Figure 4.

Crucial in the Stanford Parser is the two biaffine classifiers that apply to the outputs of
the MLP transformations in 3-6. The first biaffine classifier, shown in equations 7-8
below, applies to the head and dependent vector representations in 3-4 and outputs
an arc prediction (y(arc)i) for each token i. In other words, this classifier selects the
most likely head for token i by outputting for every token yi the probability of its
being the head of token i. In turn, the second biaffine classifier applies to the rel

24

Figure 4: Stanford Parser Architecture

vectors in equations 5-6 and given a head-dependent pair, outputs the probability of a
dependency label rel for this pair, following equations 9-10 (Dozat et al, 2017:22)2.

s
(arc)
i = h(arc−head)W (arc)h

(arc−dep)
i + h(arc−dep)bT (arc) (7)

y′i
(arc) = argmaxjs

(arc)
ij (8)

s
(rel)
i = h

T (rel−head)

y′i
(arc) ∪(rel) h

(rel−dep)
i +W (rel)(h

(rel−dep)
i ⊕ h

(rel−head)

y′i
(arc)) + b(rel) (9)

y′i
(rel) = argmaxjs

(rel)
ij (10)

Models that are similar to Stanford Parser have been proposed also in Hashimoto et
al. [55] and Zhang et al. [56]. Hashimoto et al. present a multi-task model which
jointly does PoS tagging, chunking and dependency parsing at the same time in a
similar LSTM based framework. Zhang et al. also use a similar model where the
difference is that in the decoding stage they retrieve the best tree not using the CLE
algorithm but by a parse reranker. The Stanford Parser has won the CoNLL shared
task in 2017, improving the state of the art parsing performance across a variety of
languages and datasets. In Chapter 5, we run our experiments on the same CoNLL
datasets as the Stanford Parser and compare our results to this parser.

2 In all the equations in 7-10, W stands for the weight vectors, h for the hidden state outputs from the LSTM
layers, and b for the bias terms.

25

3.3 Conclusion

In this chapter, we have reviewed the transition-based and graph-based dependency
parsing algorithms and discussed how the conceptualize the parsing problem. While
for transition-based parsers, dependency parsing is a problem of sequential decision
making using a state-machine, graph-based parsers interpret the parsing problem as a
problem of head-selection using graph processing algorithms.

As we conclude this section, let us clarify that the models that develop in this thesis
falls together with the graph-based approach. However, it differs critically from the
state of the art implementations of this approach in terms of how it generates a labeled
dependency tree. As can be understood from our review above, both the Stanford
Parser, and its variations cited in section 3.2 set up the dependency parsing task in
a head-first manner. In other words, first the dependency arcs are generated using
token features, then for each dependency arc (x,y), a dependency label is predicted.
Contrary to this, the models that we develop in this thesis are label-first as we try to
account for the predicate and argument roles in the sentence by predicting dependency
labels first, and then using these predictions as inputs generating the dependency tree.
As we show in our multilingual experiments in Chapter 5, accurate prediction of
these labels early in the parsing stage improves parsing performance in a variety of
languages (but not in all of them).

26

CHAPTER 4

THE DATA

4.1 Introduction

In this chapter, we review the properties of the data that will form the basis of our ex-
periments in the following chapters. Mainly, we review properties of UD dependency
treebanks, discussing, when relevant, its limitations in capturing important linguistic
distinctions especially with respect to predicate argument structure. Due to the pars-
ing strategy proposed in this thesis, we will also focus in more detail on the set of
dependency labels used in UD treebanks.

4.2 Dependency Structure and Grammatical Relations in UD

The UD effort aims to develop a unified framework for representing syntactic struc-
ture across a large number of linguistically diverse languages. This is achieved by
adopting a dependency grammar formalism which, as we have reviewed in the pre-
vious chapter, represent syntax using binary asymmetrical links between words that
modify one another.

There are several design principles of UD which are discussed in detail in the main
UD paper[7]. An important principle is simplicity. UD authors state that the goal is
to develop treebanks in such a way that linguistic structures can be easily used and
understood by non-linguists and can be rapidly and consistently annotated by annota-
tors. This goal forces UD to be as theory-agnostic as possible, avoiding constructs or
distinctions that are particular to a specific grammatical theory (e.g. empty categories
in Transformational Grammars). On the other hand, it can sometimes lead to over-
simplification, or a failure to capture, some grammatically relevant distinctions in the
linguistic representation.

Another primary goal of UD is universality, i.e. developing a representation that can
capture the linguistic properties of languages with different typologies. This is mainly
achieved by employing a universal set of tags representing grammatical relations (i.e.
dependency labels). Even though the core set of dependency labels are universal and
unified across languages, UD allows them to be further extended to account for a
predominant linguistic phenomenon which could be observed in some language or

27

language family. For example, the dislocated tag is mainly used to mark nominals
which introduce the Topic of discussion without being part of the predicate-argument
structure of the sentence in East Asian languages like Japanese. Maintaining a unified
representational framework while trying to capture as many languages with different
linguistic properties as possible is challenging and can sometimes cause semantic
overloading of particular dependency labels. For example, in many treebanks for lan-
guages which do not have the same properties as Japanese, the dislocated tag is used
to represent any kind of nominals extracted from their typical positions, including
those that are in fact part of the predicate-argument structure of the sentence.

The relatively simple representation that UD provides makes it suitable for parsing
with high accuracy, and its universal approach makes it scalable to various languages.
However, the commitment to simplicity and universality does come with certain lin-
guistic drawbacks.

4.2.1 Argument-Adjunct Distinction

The binary representation of syntactic relations in UD (or in dependency grammars in
general) leads to a significantly simpler syntactic tree compared to e.g. phrase struc-
ture trees. As a result, it is impossible to account for certain linguistic distinctions
concerning argument vs. adjuncts within this representation. Consider examples in
(1) below.

1. a. John is a lazy student incapable of success.
b. John is a student incapable of success.
c. *John is a student lazy incapable of success.

The constraint on word order exemplified in a sentence (1c) is explained in theories
that assume a phrase structure such as the X’ Theory of Jackendoff 1977 [57] by
stipulating word level and phrase level adjunction rules as in (2):

2. a. N -> AP N
b. NP -> NP AP

According to this rule, for English, word level adjuncts adjoin their heads in a head-
final fashion while phrase level adjuncts in a head-first fashion. This is represented
in phrase structure grammars by an intermediate layer of representation (e.g. X’) that
groups together heads and their adjuncts, which is a different layer than the one that
groups together heads and their complements (e.g. XP). In contrast, when the UD
representation of the same sentence is considered (Figure 5), there is no difference
between the grammatical status of the modifiers a, lazy and student with respect to
their head student. All the modifiers, whether determiners, adjectives, or phrasal
heads, modify the NP head student in the same way.

28

John is a lazy student incapable of success.

Figure 5: Dependency tree of sentence ’John is a lazy student incapable of success’

Brutus stabbled Ceaser with a knife at the back.

Figure 6: Dependency tree of sentence ’Brutus stabbled Ceaser with a knife at the
back’

The same situation applies to verbal complementation where dependency formalism
does not distinguish, at least in the dependency tree, between complements that are
required by the verb (arguments) vs. modifiers that are optional for the verb (ad-
juncts). This means that UD dependency tree representation is agnostic to linguistic
notions such as subcategorization and/or valency.

In Figure 6, the adjuncts (with a knife) and (at the back) are linearly attached to verbal
root stabbed. In this representation, they do not have a more significant relationship
with the verb than arguments that are actually subcategorized by the verb: Brutus and
Ceaser.

The relatively impoverished syntactic representation that dependency formalism uses
leads UD to define a rich set of dependency labels to do the grammatical heavy-
lifting that cannot be represented otherwise in the dependency trees. The dependency
labels in UD mark the grammatical function of each word in the sentence. In terms of
marking distinctions relevant to predicate-argument structure, two sets of dependency
labels are defined: those that mark core modifiers (i.e. arguments) and those that mark
non-core modifiers (i.e. adjuncts), as in Table 3.

Table 3: Core vs. non-core arguments in UD

Subject Object Non-core

nominal nsubj obj/iobj obl
clausal csubj ccomp advcl
open xcomp

29

Brutus stabbed Ceaser with a knife at the back.

case

det

obl

caseobl

nsubj dobj det

root

Figure 7: Dependency tree of sentence ’Brutus stabbed Ceaser with a knife at the
back with dependency labels.’

The distinction between nsubj and csubj is whether the subject is a NP or a clause,
similarly for ccomp vs NP complements such as obj/iobj. Using these labels, the
sentence in Figure 6 would then be annotated as Figure 7.

There are two important points to mention about how UD handles adjuncts. First, all
adverbial clause modifiers of a verb get an adjunct interpretation in UD. Second, the
obl label is used as an umbrella term to cover all prepositional phrase (PP) modifiers
of the verb (see Figure 7). That is, UD treats all prepositional phrase modifiers of
verbs as adjuncts. This is an important problematic linguistic aspect of UD in terms
of capturing important distinctions in predicate-argument structure of different verbs.
To give some examples, this treatment does not capture the semantics of verbs of
perception like look, stare, peep (cf. Levin (1993: 187) [22] which select for a PP
complement.

3. a. I stared [at the restaurant]obl.
b. I fell [at the restaurant]obl.

4. a. *I stared
b. I fell.

Similarly, the use of obl label misses the fact that in dative alternation, the PP variant
is actually a complement of the verb rather than its adjunct.

5. a. I gave [John]dobj [the book]iobj .
b. I gave [the book]dobj [to John]obl
c. I gave the book [to John]obl [at the restaurant]obl.
d. *I gave the book [to John]obl and [at the restaurant]obl.

The constraint on conjunction in example (5d) indicates that [at the restaurant] has
a different status than [to John] in the context of the verb give. In phrase structure
grammars, this would be represented by the adjunction rules as explained above. In
the current dependency annotation scheme as being followed by UD, the overloading

30

John asked/promised Mary to win

nsubj dobj

xcomp

mark

root

Figure 8: Dependency tree of sentence ’John asked/promised Mary to win’.

of the dependency label obl to cover all kinds of PP complementation fails to capture
lexical properties of different verbs.

The problematic status of the argument-adjunct distinction (AAD) in UD can be enu-
merated with more examples as in Przepiorkiwski and Patejuk (2018) [58]. A fair
summary would be to state that while UD manages to differentiate adverbial adjuncts
with the dependency label advcl successfully, due to its overuse of dependency label
obl, it fails to capture distinctions relevant to argument structure in PP complementa-
tion.

4.2.2 Control and Raising

UD borrows the xcomp label in Table 3 from Lexical-Functional Grammars[59][60]
and uses it for marking open clausal complements or, as stated in the UD guidelines,
complements without their own subject. These are typically control clauses or raising
structures, where the semantic subject of a clausal complement is controlled either
by the subject or the object of the matrix clause or receives exceptional case marking
(ECM) from the matrix verb.

6. Subject Control

a. John yearns to win.

b. John promised Mary to win.

7. Object Control

a. John asked Mary to win .

In the UD representation of sentences 6-7, the matrix verbs (yearn, promise) would
be connected to the head of the clausal complement win with the xcomp dependency
label. Therefore, the dependency structure of sentences like (6b) and (7a) would be
exactly the same, as shown in Figure 8. One can see that this representation mis-
treats the lexical properties of verbs like ask vs promise, as it fails to represent that
one is subject control while the other is object control. One solution to this prob-
lem would be to implement an additional dependency arc between John and win in
the subject control cases, and Mary and win in the object control cases. However,

31

well-formedness constraints for dependency trees disallow such a treatment because
dependency grammars require every word to have only one head.

The aforementioned problem also applies to raising structures, which are equally
problematic for dependency grammars. Differently from control predicates, raising
predicates such as seem, appear, want do not semantically select the argument that ap-
pears as their subjects or objects in the surface representation. This can be understood
from 8 and 9 below.

8. Raising to Object

a. The teacher wanted us to read the whole chapter.

b. *We were wanted by the teacher to read the whole chapter.

9. Object Control

a. The teacher asked us to read the whole chapter.

b. We were asked by the teacher to read the whole chapter.

The passivizability test shows that, in contrast to the verb ask in (9a), the syntactic ob-
ject us is not the semantic object of the verb want in (8a), which makes passivization
ungrammatical in (8b). This is a subtle distinction in predicate-argument structure of
the two predicates deriving from their lexical semantic properties, about which depen-
dency grammars have nothing to say. In the dependency representation, the word us
would be marked as the direct object of the matrix verbs in both raising-to-object and
object-control cases. UD has no other mechanism or a representational layer which
accounts for the fact that in one of the cases the surface object is not subcategorized
by the matrix verb.

4.2.3 Nominal Modification

Nominal complementation in UD is less problematic than verbal complementation.
The basic UD inventory consists of 8 nominal dependents, which are listed in Table
4. Many of the labels are self explanatory and do not require further explanation.
For some of the less clear ones: the appos label stands for appositional modifier
structures, i.e. when two noun phrases which refer to the same entity are used side
by side in a sentence: "John, my brother, is 25 today". UD uses the acl tag to mark
relative clause modifiers of nominal heads.

Among the set of nominal modifiers, case is another label besides acl that has clausal
significance. The case tag is introduced relatively recently to UD to introduce ad-
juncts headed by adpositional categories, as in Figure 9. UD states that this treatment
achieves higher parallelism between prepositional phrases and subordinate clauses
which are introduced by complementizers (such as "that" in English). However, be-
sides the fact that it is not clear why such a parallelism is needed, this treatment
quickly appears problematic for a language like Turkish which is head-final and where

32

Table 4: Nominal modifiers in UD

nominal nmod appos nummod
clausal acl
adjectival amod
function words det clf case

Burada on gün kadar kaldıktan sonra dönüş yolculuğuna başladık.

nmod:posscase

advcl

obl

case

obl

nummod obj

root

Figure 9: Dependency tree of sentence ’Burada on gün kadar kaldıktan sonra dönüş
yolculuğuna başladık.’

dependencies are normally right-to-left except in post-verbal constructions. As can be
seen in Figure 9, the use of case dependency label introduces rightward dependencies
to the structure, going against the directionality of the language.

A more important problem with the use of case label is that it does not capture the fact
that adpositions are categories with an internal argument structure (Hale & Keyser,
2002)[61], projecting a complement position in the syntax.

10. a. I left after [the meeting]NP .

b. I left.

11. a. [Okuldan]NP sonra eve gitti.

b. Eve gitti

In both 10 and 11, the paranthesized NPs are required by the relative adpositions
rather than the verbs and therefore should be headed by the adpositions but not the
verbs. The current UD scheme, marking these phrases as heads of adpositions, is
contrary to this linguistic reality, which leads to further problems in terms of assigning
the correct predicate-argument structure to certain sentences. For example, verbs of
putting subcategorize for a LOCATION argument headed by an adposition (Croft,
1991 [62]).

12. a. I put the books on the shelf.

b. *I put the books.

33

This would put it on coarse for global domination.

nsubj

aux dobj

obl

case

nmod

nmod

case

root

Figure 10: Dependency tree of sentence ’This would put it on coarse for global dom-
ination.’

The current UD representation, with the aforementioned treatment of adpositional
phrases, has no option but to treat these phrases as adjuncts of the verb (using the
obl label), rather than as arguments of the preposition on, as in Figure 10 (which is a
sentence in the English Web Treebank).

4.3 Conclusion

Learning predicate-argument structure means learning the lexical-properties of the
predicates: what kind of arguments they select, how many arguments they subcate-
gorize for, how do they establish grammatical relations with the arguments they do
and do not select. We have seen that certain properties of UD makes it impossible to
learn some of these distinctions using a dependency framework. First, the semantic
overloading of the obl label fails to distinguish between verbs that require PP comple-
ments from the ones that have PP adjuncts. Second, the xcomp label does not capture
the nature of the grammatical relation between the verbs and their objects or sub-
jects in raising vs. control structures. Finally, the case label does not account for the
fact that adpositions have their own selectional properties with an internal argument
structure.

Besides the points mentioned above, a more important problem with the UD repre-
sentation in terms of its suitability for learning predicate-argument structure is that it
does not have adequate means to represent the restrictions that the predicates impose
on syntax as part of their lexical semantic properties. As we have reviewed in Chapter
2, transformational grammars mark such restrictions by means of θ-grids accompa-
nied by argument realization rules. More compositional approaches like CCGs, on
the other hand, handle them by means of a logical form which transparently encode
such restrictions over the predicates at the level of semantic representation. In UD,
however, there is no explicit marking of semantic notions such as subcategorization
or valency defined over lexical items which have internal argument structure. As we
will see in chapter 5, when such restrictions are not explicitly marked over predicates,
there is no way for a dependency parser to induce them from dependency trees well
enough. This is mainly for two reasons. The first reason is the fact that certain dis-
tinctions in predicate argument structure only apply at the level of semantics and will
never be visible over the surface structure of the sentence unless explicitly marked in
some way in the linguistic representation (over lexical items, logical forms, syntactic

34

trees etc). The second reason is the problem of data sparsity. In lack of an explicit rep-
resentation of argument structural properties over predicates, a parser can only induce
verbal behaviour from a dependency treebank if the treebank is rich enough to expose
all possible predicate-argument combinations that a verb can appear in. However, no
treebank will be as rich, and some treebanks will be more sparse due to the linguistic
properties of the specific language which might allow arguments to be more covert in
the surface structure. Faced with sparseness, the generalizations that the parser makes
will be biased towards the structures that it overtly sees in the surface representation
because it will not have any priors about the structures that it does not see.

35

36

CHAPTER 5

LABEL FIRST PARSING

In this chapter, we report the results of our experiments with label first dependency
parsing: a dependency parsing strategy that first predicts dependency labels for each
word before building the dependency tree for the sentence. We show that accurate
prediction of dependency labels at the word level before dependency arcs improves
parsing accuracy for unlabeled attachment score (UAS) and labeled attachment score
(LAS) metrics. As was discussed in the previous chapters, in UD most of the depen-
dency labels encode the grammatical function (or grammatical role) that a word plays
as part of the overall predicate argument structure of a sentence. The hypothesis is
that provided that these grammatical functions are accurately predicted, a parser that
has early access to predicate and argument roles at inference time will more accu-
rately figure out the syntactic relationships (i.e. dependency arcs) in the sentence. We
test the developed model in multiple languages and report significant improvements
on both UAS and LAS on a few of them.

Another aim of the chapter is to analyze why in certain languages improvements
are more significantly observed than others. We specifically analyze the errors of
the model with respect to accurate identification of predicate-argument structure and
argue that dependency formalism is more suitable for inducing argument structural
information for certain type of languages than others.

5.1 Introduction

As was discussed in Chapter 3, approaches to dependency parsing can be divided into
two as transition-based and graph-based [41].

For a transition-parser[43][42], parsing is a problem of sequential decision making.
Transition parsers employ a state machine that processes the sentence left-to-right and
builds the dependency tree in a bottom-up fashion. At the heart of transition parser
is the notion of a Configuration (C) which represents the state of the dependency tree
at any given timestep. Transition parsers parameterize the parsing model over a set
of shift-reduce decisions. These actions, or transitions, modify the Configuration as
they identify head-modifier relations (dependency arcs) and build a dependency tree
in a bottom-up fashion during the processing of the sentence.

37

On the other hand, graph-based systems solve the dependency parsing problem by
factoring out the sentence into a unidirected, acyclic dependency graph using graph
algorithms. This can be achieved by employing the Maximum Spanning Tree (MST)
algorithm which tries to find the highest scoring tree for a sentence amongst the set of
all possible trees[47][48]. These systems parameterize the parsing model over the set
of all possible dependency arcs. The task is to determine, among the exhaustive list
of possible arcs connecting any two words in any sentence, weights for the optimal
set of arcs that span over all the words and preserve the well-formedness conditions
for dependency trees. As such, given that arcs attach dependents to their heads, for
graph-based approaches parsing the problem is finding the most likely head for each
word, i.e. a head selection problem.

5.2 Label First Parsing

Our parsing model is an implementation of the graph based approach. However, it
differs critically from the current state of the art implementations of this approach in
terms of the order with which it predicts the dependency labels and selects heads.

As we have reviewed in Chapter 3, the state of the art graph based parser imple-
mentations usually generate a labeled dependency tree following a head-first strategy
where labels are predicted for the arcs that have been already identified. Following
a head-first parsing strategy means the label classifier uses features which represent
the properties of the arc < wj, wi > as input and tries the figure out the label that
best explains the type of the relationship that is predicted to exist between the tokens
connected by the arc. Importantly, in this approach the label predictions have no im-
pact whatsoever on how the dependency tree is built. The dependency structure of
the sentence is already determined by the head classifier, and dependency labels are
employed merely as names over an already built set of arcs. In these approaches,
the label classifier is usually trained separately than the head-classifier using gold
head-dependent pairs from the training data.

There is also a group of studies which follow a joint strategy where heads and labels
are predicted together. In the joint parsing strategy, one would encode the heads and
the dependency labels as a set of tuples < xi, li > and the goal of the parser would be
to predict these labels of tuples. Theoretically, this design puts equal weight on heads
and labels in determining the correct dependency structure of the sentence as it has a
joint optimization objective. An important design choice in these works is to figure
out how to encode the heads i.e. xi, as part of the labels of tuples < xi, li >. Various
studies which aim to implement dependency parsing using a sequence-to-sequence
model such as Li et al. [63], Spoustova and Spousta (2010) [64], and Kiperwasser and
Ballesteros (2018) [65] have dealt with this question. A recent study along this vein,
Strzyz et al. [66], have experimented with multiple encoding strategies that consider
absolute or relative positions of heads together with their PoS tags, and reported that
the one that performs best is using relative positional encodings (distance between the
word wi and the head xi) as well as the PoS tag information of the head xi.

38

The strategy proposed in this study is label-first in the sense we predict the depen-
dency labels over each word before selecting the head for the word. As was explained
in the previous chapters, dependency labels are expressions of the grammatical func-
tion that a word plays in a sentence. As such, one can easily conceptualize them as
properties predicated over words (rather than arcs), representing the words as func-
tions seeking their arguments. In this interpretation, an nsubj dependency label rep-
resents a word as a function seeking the verbal predicate it takes as an argument,
grouping it together with other dependency labels such as dobj, iobj or ccomp in UD
label inventory. A det relation represents a word as a function seeking its nominal
argument, similar to other labels such as amod, nummod, or nmod. As a result, label-
first parsing is a strategy where we predict the functional category of each word (the
dependency label) before determining the function-argument application (the depen-
dency arc) for that word. Conceptually, one can see that this strategy makes depen-
dency parsing closer to Categorial Grammars described in Adjukiewicz (1935) [30]
and Bar-Hillel (1953) [31].

Besides its conceptual significance, the choice of whether one employs a head-first
or label-first strategy changes how the information flows within the parsing model,
therefore might bear a significance over the parsing performance as well. In this
respect, the hypothesis we investigate is whether accurate prediction of grammatical
function for each word before predicting its head improves the accuracy of the head
selection task for the parser. The motivating idea behind this hypothesis is simple.
Knowing the grammatical function of a word early on significantly reduces the search
space for its head (or argument), reducing the ambiguity for attachment decisions. For
example, an nsubj can only attach either to the root of the clause, or to the predicate
of one of its clausal complements (i.e. root, ccomp) depending on whether it is the
subject of the matrix clause or not.

What is critically important in the proposed strategy is being able to predict depen-
dency labels without relying on any syntactic clues and simply based on the surface
representation of words and their surrounding context. Contrary to head-first ap-
proaches, in this approach the label classifier does not have access to any arc features
< wj, wi >. While this might not be too much of a problem for dependency labels
that have a one-to-one mapping with the lexical categories that they mark (i.e. the
det label typically marks a, an, the in English), the correct grammatical role for many
lexical items can only be determined based on surrounding context. For example,
knowing whether a nominal functions as a modifier of another noun (nmod) or as an
argument of a verbal category (nsubj) is determined by the surrounding words and
the semantics of the verb. Similarly, the correct grammatical roles for words which
are verbal complements can only determined by a variety of factors such as case in-
flection (in languages that have it), positional features (especially in configurational
languages) and verb semantics.

39

Table 5: Baseline metrics for the languages evaluated in the experiments

Language-Dataset UAS LAS

en-ud 84.74 82.23
en-pud 88.22 85.51
de-ud 84.10 80.71
de-pud 80.88 74.86
fi-ud 87.97 85.64
fi-pud 90.60 88.47
ko-ud 85.90 82.49
ru-ud 87.15 83.65
ru-pud 82.31 75.71
tr-ud 77.36 70.37
tr-pud 72.33 59.57
zh-ud 74.03 68.75

5.3 Datasets

The ConLL 2017 Shared Task [13] aimed to rank parsers over their performance
based on UAS and LAS metrics on multiple languages. As part of the shared task,
training and test sets were delivered[67] for the participating teams to evaluate their
models, together with word2vec[68] style pretrained word embeddings for each lan-
guage.

We have run our experiments on 7 languages, namely Chinese (zh), English (en),
Finnish (fi), German (de), Korean (ko), Russian (ru) and Turkish (tr). For all the
languages except Turkish, we have used the same training and test sets as the ones
that were delivered in the CoNLL shared task. For Turkish, we have used a recently
developed UD Treebank, the BOUN treebank [69], which is accepted as another state
of the art UD treebank for this language. We have also used the same word2vec em-
beddings that the competing systems used in the aforementioned shared task. Where
available, we have evaluated our models on the parallel UD treebank (PUD) corpora
that was developed as an additional test set for the same shared task as well.

Stanford’s Biaffine Parser [52] which was reviewed in Chapter 3 performed best in
the shared task, improving the state of the art metrics across many of the evaluated
languages including English, German, Finnish, Korean, Russian, and Turkish. There-
fore, in the below experiments, we compare our results to the results reported for
this parser. For Chinese, the Stanford Parser was worse than the baseline UD-Pipe
model[70] so we take this model as reference. Finally, for Turkish, the Stanford
Parser’s performance on the newly developed BOUN treebank was reported recently
in Özateş (2022) [71], so we take the metrics reported in this study as baseline. Table
5 shows the baseline UAS and LAS metrics for the languages considered.

40

It is important to note that the selection of the languages which we run experiments on
cuts across dimensions such as linguistic typology and dataset size. Among the lan-
guages considered, English and Chinese are configurational and analytical languages
where the grammatical function of a word is heavily determined by its position in the
syntax. These languages typically lack rich morphological inflection or derivation,
and do not exhibit the same word order variability that non-configurational languages
do. Between them, Chinese is a relatively low resourced language (its training set size
consisting of 3497 sentences,) compared to English which has a much larger treebank.
On the other hand, Finnish, Russian, Korean and Turkish fall into the class of syn-
thetic/agglutinative languages which are characterized by a relatively free word order
and a flat phrase structure. These languages encode grammatical function with case
marking, and have productive morphological derivation which increase the vocabu-
lary size considerably compared to analytical ones. Among these languages, Korean
and Russian are relatively low resourced (consisting of training set sizes of 4400 and
3850 respectively) compared to Turkish and Finnish (for which the training sets have
7789 and 12217 sentences).

5.4 Experiments

We have run two sets of experiments to evaluate the label first parsing strategy on the
aforementioned datasets. These are described below.

5.4.1 Experiment 1: BERT+LSTM Model

5.4.1.1 Description

Since their introduction, pretrained BERT models have proven to be very helpful
for many downstream sequence transduction tasks such as Question Answering [72],
Text Summarization [73], or Machine Translation [74]. The contextual, non-static na-
ture of BERT embeddings capture semantics of words in different contexts, which has
attracted a lot of interest from researchers who wanted to better interpret what kind of
linguistic capacities BERT models have. In terms of syntactic capabilities, there have
been studies which show BERT’s ability to capture subject-verb agreement across a
variety of linguistic structures[75]. Various efforts to extract constituency or depen-
dency trees from BERT without any further fine-tuning have concluded that[76][77]
structural knowledge is somehow embedded in BERT.

In the experiment that we describe below, we have independently trained two classi-
fiers. First, we have fine-tuned a BERT model on dependency label prediction task
without using any arc features to create a dependency label classifier. Second, we de-
veloped an LSTM based head-classifier and pretrained it to predict head-dependent
relationships based on inputted dependency labels. At inference time, these two clas-

41

sifiers are concatenated as schematized in Figure 111. The output predictions from
the BERT classifier are passed to LSTM-based head-classifier (together with word
embeddings), to predict arcs between heads and dependents.

Note that the architecture of our head-classifier is very much the similar to Stanford
Parser except that it does not have the label classification layer on top of the LSTM
layers, since predicted labels are already given as input. At inference time, words and
dependency label inputs (as predicted by fine-tuned BERT models) are passed through
three bidirectional LSTM layers, the outputs states of which are then fed through
two ReLU perceptron layers. Similar to the Stanford Parser, these layers create two
hidden vectors for each word: one that represents the word as a dependent and the
other as head. Finally, the classifier selects the most likely head for each dependent
following procedure in equations (11)-(12), which are the same as equations (7)-(8)
from Chapter 3.

s
(arc)
i = H(arc−head)W (arc)h

(arc−dep)
i +H(arc−dep)bT (arc) (11)

y′i
(arc) = argmaxjs

(arc)
ij (12)

Figure 11: BERT+LSTM model architecture

1 In Figure 11, the part that represents the BERT Label Classifier is based on the Wikimedia image: The
Transformer Model Architecture.

42

https://en.wikipedia.org/wiki/File:The-Transformer-model-architecture.png
https://en.wikipedia.org/wiki/File:The-Transformer-model-architecture.png

Table 6: Hyperparameters for finetuning BERT model

Param Value

Learning rate 5e−5

Optimizer Adam
Dropout 0.2
Weight Decay 0.01
β1 0.9
β2 0.999
Batch Size 8
Epoch 3

Table 7: Hyperparameters for training the head-classifier

Param Value

Word Embedding Size 100
Label Embedding Size 50
LSTM Size 512
LSTM Depth 3
LSTM Dropout 0.33
Arc MLP Size 256
Arc MLP Depth 1
Optimizer Adam
β1 0.9
β2 0.9
Learning Rate 0.01

Another crucial property of the head-classifier is the fact that it is pretrained with an
attachment accuracy (i.e. UAS) optimization objective. During this pretraining, be-
sides word inputs, we use gold dependency labels as input features, and we train a
label embeddings layer online as part of the training process. This creates a model
whose weights are fine-tuned for optimal head classification based on accurate depen-
dency labels. At inference time, we plug in the labels predicted by BERT as input to
the head-classifier. The end result is that the more accurate the predicted dependency
labels, the higher will be the head-classifier’s performance on attachment accuracy.

The BERT models that we fine tune for dependency label prediction are BERT-base-
multiligual-cased for languages other than English and BERT-base-uncased for En-
glish. BERT models typically use word-piece tokenization (Song et al. (2020)[78])
for training and inference, which subtokenizes words into smaller units based on a
greedy longest-match-first algorithm. On the other hand, baseline parsers that we
compare our results with use global embeddings in word2vec style over pre-tokenized
datasets. Therefore, to achieve better comparability of results to these parsers, we
make sure that the LSTM head-classifier does not rely on BERT’s word piece tokens.

43

Table 8: Label vs. Attachment Accuracy Across Languages and Datasets

Dataset Dependency Label Accuracy Attachment Accuracy

tr-pud 79.8 74.5
tr-ud 83.0 77.1
ko-ud 90.1 80.6
zh-ud 90.3 83.4
de-pud 86.6 88.2
de-ud 90.7 87.4
fi-pud 93.4 85.8
fi-ud 92.2 85.7
ru-pud 89.2 85.2
ru-ud 93.4 86.5
en-pud 94.6 91.3
en-ud 94.3 88.9

In other words, we pass the full form of words (as tokenized in the CoNLL 2017
datasets) separately through word2vec embeddings made available in the shared task,
and concatenate them with the dependency label prediction for each word.

Tables 6 and 7 display the parameters employed while fine-tuning BERT for the de-
pendency label classification task and training the LSTM based head-classifier re-
spectively.

5.4.1.2 Results

Figure 12: Dependency Label vs. Attachment Accuracy Across Datasets

44

Table 9: Typological Properties of the Languages in the Experiments

Languages en de zh tr fi ko ru

Analytic ✓ ✓
Synthetic/Agglutinative ✓ ✓ ✓ ✓ ✓
Strict Word Order ✓ ✓
Case Marking ✓ ✓ ✓ ✓ ✓
Pro-Drop ✓ ✓ ✓ ✓

In Table 8, we first report the overall dependency label prediction accuracy of the la-
bel classifier for each language and dataset, and the attachment scores from the head
classifier using the predicted labels as input. The corresponding plot in Figure 12
indicates that there is a strong correlation between label accuracy and head accuracy
with a pearson coefficient r = 0.82 and p-value = 0.0008, confirming the hypothesis
that accurate prediction of grammatical roles early in parsing leads to higher perfor-
mance in syntactic resolution. When all languages and datasets considered, we see
that higher results in dependency label prediction have a positive impact on the de-
pendency parser in terms of finding head-dependent relations. These results set label
first parsing strategy as a viable strategy for generating labeled dependency trees, one
that is promising to provide improvements on state of the art metrics.

It is interesting to inspect the results from the perspective of linguistic typology. In
Table 9, we present the linguistic properties of the languages experimented with. On
the one hand, we have analytical languages [en, zh] which make very limited use of
inflectional or derivational morphology, contrasted with synthetic/agglutinative lan-
guages [tr, ru, fi, ko] which heavily rely on morphology for deriving new words,
marking arguments (e.g. case-marking), changing valency, and with a rich agreement
system. There are languages in between like German which cross-cut a simple binary
classification. Even though German does not have as complex a morphological sys-
tem as languages like Turkish for example, it is still different than English or Chinese
in the sense that it has case-declension to indicate grammatical roles and has pro-
ductive morphological means of word formation using compounding and derivation2.
Languages with richer morphology and agreement system tend to be pro-drop and
display more word order variablity than the ones which do not. In the languages that
we experiment with, [tr, fi, ko, ru] falls into this class of languages. Again, German is
still a case in between because it is relatively more flexible than English and Chinese
in terms of word order, but it does not have pro-drop, and the word order flexibility is
not as extensive as languages like [tr, fi, ko, ru]3.

Considering the linguistic typology described above, an interesting pattern emerges
in parsing performance where we see higher overall dependency label accuracy in
analytical languages with simple morphology [en, zh] than morphologically richer
languages [tr, fi, ru, ko], accompanied with higher overall Attachment Score in the

2 In Parsing literature, German is usually classified as a moderately rich language in terms of morphological
complexity (Tsarfaty et al, 2010 [79]

3 In German, the main restriction on word order flexibility is that the verb cannot change its position.

45

Table 10: Avg. Label vs. Attachment Accuracy for different language types

Language Type Dependency Label Accuracy Attachment Accuracy

Analytic (en, zh) 93.0 87.8
Synthetic/Aggl. (tr, fi, ru, ko) 88.7 82.2

Table 11: Comparison of current model with the baseline models

Dataset UAS (Baseline) UAS (Current Model) LAS (Baseline) LAS (Current Model)

en-ud 84.74 88.9 82.23 86.5
en-pud 88.22 91.3 85.51 88.2
de-ud 84.10 87.4 80.71 82.2
de-pud 80.88 88.2 74.86 79.2
fi-ud 87.97 85.7 85.64 81.8
fi-pud 90.60 87.9 88.47 84.2
ko-ud 85.90 80.6 82.49 76.3
ru-ud 87.15 86.05 83.65 81.8
ru-pud 82.31 85.4 75.71 78.6
tr-ud 77.36 77.1 70.37 68.8
tr-pud 72.33 74.5 59.57 64.7
zh-ud 74.03 83.4 68.75 79.7

former type of languages compared to the latter. This is shown in Table 10. One
possible way to interpret the difference in performance might be that BERT, which is
based on an attention based transformer architecture (Vaswani et al., 2017)[80], does
not have a notion of word-order except for relying purely on positional embeddings,
as was suggested by Goldberg (2019) [75]. Analytic languages, where BERT seems
the perform better on dependency label prediction task, are typically the ones where
grammatical roles are determined more by syntactic position, as opposed to the other
type of languages where inflectional morphology marks grammatical roles and allows
for relatively free ordering of lexical items in the sentence. In section 5.5, we will do
a more detailed comparative error analysis on one language from each group.

Table 11 compares the performance of label first parsing model against the state of
the art performance metrics that were displayed in Table 5. Results where the cur-
rent model improves the metrics compared to the baselines are boldfaced. As is the
practice for evaluating CoNLL datasets, we ignore the punct tag while computing
results.

The results show that we see a significant improvement compared to the baselines in a
number of languages and datasets, with the most significant improvements observed
in [en, de, zh] once again, where metrics improve for both UD and PUD consistently.
As was noted in the previous section, these are the languages where the label classifier
was relatively more accurate in end to end prediction of dependency labels4. It is

4 It is worth mentioning that of course other studies have been made in years following the 2017 shared
task on the languages we experiment with here. For example, another shared task was organized in 2018 [81]

46

also worth observing that an improvement on LAS score is always accompanied by
an improvement on overall Attachment Score (UAS), confirming our intuitions that
early prediction of accurate grammatical roles, or dependency labels, help improve
the overall accuracy of the parser in predicting head-dependent relations.

5.4.2 Experiment 2: Joint LSTM Model

5.4.2.1 Description

The previous experiment was limited to testing the label-first parsing strategy in a
BERT based setting, where dependency labels are independently predicted by BERT
disjointly from the head-classifier. An interesting next step could be to compare this
model’s performance on dependency label prediction to LSTMs which, as opposed to
BERT, track states explicitly across the sentence and (arguably) have a better notion
of word order than simply relying on positional embeddings [75]. This allows for de-
veloping a joint, purely LSTM based architecture which optimize dependency labels
and dependency arcs together, following a label-first hierarchy.

In this experiment, we have developed a joint LSTM model which optimizes for de-
pendency labels and dependency arcs jointly in a label-first setting. The model is
represented schematically in Figure 13. Specifically, the LSTM model that was used
as a head-classifier in the previous experiment is expanded with a Softmax Layer
that carries out dependency label prediction before the Biaffine classifier performs
head-classification. Losses from the two classifiers are summed and backpropagated
through the network. As a result, the model creates a pipeline with trainable depen-
dencies between the two classifiers where early stage dependency label predictions
determines how the dependency tree is going to be built. The backpropagation of
losses from the head classifier to the network, including the Softmax layer, ensures
that there is a feedback loop to the label classification layer (in the form of a loss
value) from head-classification layer. The idea is that this feedback loop can help
tune the model weights to optimize for dependency labels that lead to better attach-
ment decisions.

Contrary to the BERT-LSTM model, we have used the gold PoS tags as input features
as well. The PoS Embeddings are trained together with the model, although we do
not further fine tune the pretrained word2vec embeddings as part of model training.
The LSTM parameters are the same as in Table 7.

which included the same set of languages. Therefore, a fair question to ask would be whether these baselines
have been improved by different models in more recent years. Unfortunately, the results of the 2018 shared
task are not directly comparable to the results we report here because segmentation was also added as another
task in 2018 whereas the 2017 shared task was run on already segmented treebanks. Still, let us report for the
sake of completeness that the results from 2018 shared task do not show any better results on the languages and
datasets we report improvements here. To the author’s best knowledge, there are no other studies that improve the
dependency parsing accuracy for the relevant languages more than the currently reported improvements using the
exact same features/embeddings on the same datasets.

47

Figure 13: Joint LSTM model architecture

5.4.2.2 Results

We have run this experiment on 3 languages where BERT+LSTM model relatively
underperformed in Experiment 1 (Russian, Korean and Turkish) and one language
where BERT+LSTM overperformed the state of the art in Experiment 1: Chinese.
The goal here is to see whether a fully LSTM based architecture, with a joint op-
timization objective performs as good as or even better than a disjoint BERT based
architecture in different language types.

In Table 12, we compare the results from the joint-LSTM model to results of the
model described in the previous experiment, reporting Label Accuracy, Attachment
Accuracy (UAS) and Labeled Attachment Accuracy Scores (LAS). Note that these
results are based only on UD sets (i.e. non-PUD sets).

In all the languages, we observe the BERT+LSTM model outperforms the joint model
across all metrics. The Label Accuracy metrics indicate that the contextual embed-
ding that BERT employs is much more powerful than the LSTM model in figuring
out correct grammatical roles in the sentence. The results also further confirm the
hypothesis that one can constrain the dependencies with accurate prediction of gram-

48

Table 12: Comparison of BERT+LSTM model with joint-LSTM model

Model Language Label Accuracy Attachment Accuracy LAS

Bert+LSTM ru 93.4 86.5 81.8
Joint-LSTM ru 83.9 78.0 69.5
Bert+LSTM ko 90.1 83.4 76.3
Joint-LSTM ko 71.9 68.9 60.0
Bert+LSTM zh 90.3 83.4 79.7
Joint-LSTM zh 80.3 73.2 64.9
Bert+LSTM tr 83.0 77.1 68.8
Joint-LSTM tr 79.1 74.3 64.9

matical roles at an earlier stage during parsing. For all the languages in Table 12, the
drop in Attachment Accuracy (compared to results in Experiment 1) is the result of
the drop in Label Accuracy.

5.5 Error Analysis

In this section, we perform error analysis on English and Turkish based on the BERT-
LSTM model performance over the PUD test set. We focus more specifically on
errors related to predicate-argument structure, and try to explain the difference in
performance between the two languages. We have shown in Table 11 that for both
languages, the label first BERT-LSTM model over-performed the state of the art on
the PUD sets. However, when the two languages are compared, there is a big differ-
ence in performance (tr=UAS: 74.5, LAS: 64.7 vs. en=UAS: 88.9, LAS: 86.5). As we
have also shown, the overall label accuracy of the English model was much higher
than the Turkish model (94.3 vs. 79.8) correlating with the higher performance on
syntactic attachment.

The use of PUD gives us an opportunity to compare the two models over sentences
that have the same semantics as this corpus contains exact translations of the same
sentences across languages. As was noted before, these treebanks were developed as
an additional test set for the ConLL 2017 shared task where sentences sourced from
English Wikipedia were translated to other languages and annotated by linguists of
the relevant language.

Following Can et al (2022)[82], we first look at how robust the two models are to
longer sentences. Afterwards, we deep dive into the type of errors that are relevant to
predicate-argument structure for the Turkish set.

49

5.5.1 Effect of Sentence Length

The performance of the two languages with respect to varying sentence length is
plotted in Figures 14 and 15. Sentence length is determined by the number of tokens
in the sentence. We kept a sentence length interval as 10 and plotted the UAS and
LAS metrics in sentences of length up to 50.

Figure 14: English BERT-LSTM Model’s Performance by Sentence Length

Figure 15: Turkish BERT-LSTM Model’s Performance by Sentence Length

Lengthier sentences imply more complicated predicate argument structures as they
are more likely to include multiple clauses in the sentence and longer distance depen-
dencies. The results show that the Turkish model is much less robust to increasing
sentence length compared to the English model. While in the English model, At-
tachment Accuracy between shortest sentences ([1-10) tokens) and longest sentences
([41-50) tokens) only drops by ~10%, for Turkish it drops for ~30%. Similarly for
Labeled Attachment Scores.

As we are following a label-first strategy, it would be interesting to see how these
scores correlate with the respective label accuracies of the two models. For English,

50

we would expect that the label classifier did a better job in identifying the grammatical
roles in relatively larger sentences compared Turkish. This is plotted in Figures 16
and 17.

Figure 16: Attachment vs. Label Accuracy, en-pud

Figure 17: Attachment vs. Label Accuracy, tr-pud

As can be seen from the plot in Figure 16, the English model much more consis-
tent in accurately predicting grammatical roles even in longer sentences. By contrast,
in the Turkish model, the continuous drop in predicting grammatical roles in longer
sentences seems to correlate with the drop in predicting syntactic dependencies accu-
rately.

The results so far confirm the hypothesis about label-first parsing which argued that
accurate prediction of grammatical roles lead to accurate discovery of syntactic struc-
ture. Based on comparative evaluation, we have seen that languages that perform
consistently high in predicting dependency labels first perform better in resolving the
syntactic relations in the sentence, even in longer sentences.

51

Table 13: Arguments and Adjuncts in UD

Subject Object Adjunct

nominal nsubj obj/iobj obl
clausal csubj ccomp advcl
open xcomp

In the next section, we will do a deep dive into the type of errors that are directly re-
lated to verbal predicate argument structure. We are going to evaluate how the models
perform in determining correct predicate-argument structures in different contexts,
especially in terms of argument-adjunct distinction and in sentences with embedded
clauses.

5.5.2 Errors in Verbal Predicate Argument Structure

As we mentioned in Chapter 4, UD defines 8 tags in total to mark grammatical ar-
guments and adjuncts in the sentence. These are repeated in Table 13 above for
convenience. We consider an error in parsing a predicate-argument structure error
if it is an error that concerns one of the grammatical role labels in Table 13. These
predicate-argument structure errors can be further subdivided into three categories:

1. Grammatical Role Errors: The parser correctly identifies the predicate that
the word should attach to, but misclassifies its grammatical role, i.e. a subject
argument of a verb is misclassified as object.

2. Attachment Errors: The parser correctly identifies the grammatical role of a
word, but wrongly identifies its predicate, i.e. a subject is attached to a wrong
predicate.

3. Role-and-Attachment Errors: The parser misclassifies both the grammatical
function of a word and its head.

First, in Tables 14-15, we look at how many argument structure errors there are for
each language and how they are distributed per grammatical role in the two languages.
Argument structure errors account for a much larger portion of total errors Turkish
(~34%) compared to English (~19%), implying that resolving the verbal complements
and adjuncts is a harder task for the Turkish model. In terms of the distribution
of these errors over grammatical roles (Table 15), a few observations seem to be
emerging.

First, both languages seem to be doing relatively well on identifying clausal depen-
dents (xcomp, ccomp, csubj). In fact, the total portion of errors concerning clausal de-
pendents is even lower in the Turkish model than its English counterpart. The reason
behind this can be that in Turkish the (non-finite) subordinate clauses are explicitly

52

Table 14: Errors in Predicate-Argument Structure in En and Tr (PUD sets)

language total tokens total errors total argument structure errors

tr 16881 6136 2075 (%33.7)
en 21176 2726 508 (%18.8)

Table 15: Distribution of Predicate Argument Errors Per Grammatical Role

Label En (%) Tr (%)

nsubj 18,70 22,41
obl 34,65 28,53
advcl 16,54 11,76
ccomp 8,46 3,04
xcomp 9,25 5,73
csubj 2,56 2,41
obj 8,86 19,47
iobj 0,98 6,65

marked by morphology -mAK, -mA, -DIK, -(y)AcAK or -(y)Iş) . Even though we did
not apply any further morphological preprocessing or used morphological labels dur-
ing determining grammatical roles, it is very likely that the word piece tokenization
BERT models employ have developed sensitivity to these structures.

Second, both languages seem to be struggling with adjunct roles (advcl, obl), and
specifically obliques. In the Turkish data, the obl tag was confused with a variety of
tags, but mostly with adverbial clause modifiers (advcl). In both Turkish and English,
it was also confused with nominal modifiers (nmod:poss and nmod) with very high
frequency.

Next, we look at the distribution of error types that were defined above for each of the
argument and adjunct categories in Turkish data and inspect some interesting exam-
ples. Table 16 illustrates the distribution of Attachment and Grammatical Role Errors
across categories. We have also reported a sub-type of attachment errors, i.e. attach-
ment errors in a multi-clause sentences. These are errors where the system attached
the relevant argument to a wrong predicate even though it predicted the grammat-

Table 16: Distribution of Error Type Per Grammatical Role

Error Type obl nsubj obj advcl iobj xcomp ccomp csubj

Attachment (%) 53,58 40,98 26,56 41,79 0 0,84 16,42 13,73
In Multiclause Const. (%) 9,11 10,02 4,43 14,93 0 0 4,48 5,88
Role (%) 11,79 14,21 29,18 21,64 57,97 58,82 44,78 41,18
Both (%) 34,63 44,81 44,27 36,57 42,03 40,34 38,81 45,1

53

Table 17: Confusion Table for Clausal Dependents

category confused tag %

ccomp obj 56,67
obl 16,67

amod 13,33
nsubj 3,33

acl 3,33
advcl 3,33

xcomp ccomp 34,29
advcl 21,43
obl 17,14
obj 12,86

nmod:poss 1,43
csubj 2,86
amod 4,29

nummod 2,86
csubj nsubj 66,67

obj 23,81
amod 4,76

acl 4,76

ical role of the argument correctly. We analyze some of the errors in detail in the
next section and try to understand what they mean for the current implementation and
learnability of predicate argument structure.

Grammatical Role Errors

When the role errors are considered, interesting to inspect are the clausal dependents
xcomp, ccomp, and csubj, which seem to account for the highest number of errors in
this category. Notably, this is reversely correlated with the lower amount of Attach-
ment Errors for these labels. This signals that even though the system mispredicted
the grammatical role for the lexical items that should bear this role, it still managed
to find the right head in many cases for those items.

Given the label-first parsing approach that is employed in this study, this would hap-
pen mostly if the confused category for these labels is also one that is the same type of
verbal complement. In Table 17, we present the confusion table for these categories,
which seem to confirm our hypothesis. The ccomp category is mostly confused with
obj, meaning that the system managed to understand the object of the sentence, but
did not realize the object was a clause. Similarly, the xcomp category, which stands for
non-finite clausal complements with open argument position, is mostly confused with
another clausal complement category ccomp, and the csubj is confused mostly with
another Subject category nsubj. In all these cases, it seems that the system managed to
identify the argument roles correctly, leading to accuracy in figuring out syntactic de-
pendencies. We believe these results can be directly attributed to the properties of the

54

Table 18: Confusion Table for Adverbial Clauses

category confused tag %

advcl obl 36,21
ccomp 22,41
amod 6,9

advmod 6,9
obj 4,45

nsubj 1,72
nmod 2,0
aux 1,72

current parsing strategy. As we have described section 5.4.1, Figure 11, during train-
ing we embed the dependency labels into vector space. The embedding mechanism
leads the system to learn how to cluster similar dependency labels together based on
their distributional and syntactic properties. We take this as a factor explaining why
the current implementation leads to higher attachment accuracy across a range of lan-
guages. Even though the system might confuse the exact grammatical role, this does
not always lead to wrong attachment if in most cases it is confused with a role that
has similar syntactic properties.

The more severe cases in Table 17 are the second mostly confused grammatical cat-
egories: xcomp->advcl, ccomp->obl, csubj->obj. All these cases mean that the sys-
tem has confused the predicate-argument structure of the verb in question, classifying
clausal complements either as adjuncts when they are objects or objects when they
are subjects. Similarly, when we look at the confusion table of adverbial clauses
(advcl), we observe an important ratio of mistakes are due to confusing them with
the argumentative role ccomp, which can also be classified as an argument-adjunct
distinction error.

Without having a baseline which also reports predicate-argument structure errors in
the way we do, it is difficult to state how well the current implementation fares against
different implementations in resolving predicate-argument structure in dependency
parsing. However, looking at the confusion tables for argument and adjunct roles,
one positive side of the current strategy is that most of the confusion happens between
grammatical categories that have the same argument roles (i.e. ccomp->obj, xcomp-
>ccomp, csubj->nsubj, advcl->obl). This can be interpreted as a positive impact of
the current implementation which tries to fine-tune dependency labels for accurate
dependency parsing.

Attachment Errors

Interesting in the Attachment Errors are those that include multi-clause sentences or
sentences with embedded clauses. These are errors where an argument, even though
correctly identified to be a subject or object, might be attached to the wrong predicate
(e.g. a subject is confused by the system to be the subject of the embedded clause

55

Ama Frank’in ona modellik yapmasını önerdiğimde güldü.
But Frank-gen he-dat modeling do-poss-acc suggest-vn-1sg-loc laugh-past-3sg

cc

nsubj

obl

obj xcomp advcl

root

Figure 18: Dependency tree of sentence ’Ama Frank’in ona modellik yapmasını ön-
erdiğimde güldü.’

İşkenceyi destekler nitelikte konuştu.
Torture-acc support-aor tone-loc talk-past-3sg

obj

oblcompound

root

Figure 19: Dependency tree of sentence ’İşkenceyi destekler nitelikte konuştu.’

rather than the main clause). Two examples from Turkish eval data where the model
has made such errors are given in Figures 18 and 19.

Errors in both 18 and 19 can be attributed to the lack of parser’s ability to figure out the
argument structure for the verbs in question. In Figure 18, there are three embedded
clauses and only the innermost one has an overt subject. The model attaches this
subject to the root of the main clause laugh rather than the embedded one. In Figure
19, the verb destekle- (support) requires an internal object while the verb konuş- (talk)
does not. However, the model confuses the predicate-argument structure of the two
verbs and chooses the the main verb konuş- to be the head of the object işkenceyi.

These examples are illuminating in terms of why it is more difficult to learn predicate
argument structure from dependency treebanks for certain languages. As we see in
both examples above, in languages like Turkish, certain arguments might be covert
in the surface representation due to agreement morphology over the predicate which
helps them be understood at the semantic level. In such cases, the model can only
account for such unseen data if one of the two conditions hold: a) if it has seen
the relevant predicate appearing in all possible argument combinations in the dataset
already and can therefore predict that the language allows for certain arguments to
be missing in the surface structure b) if the parser has prior knowledge about the
subcategorization requirements of the verb, and can therefore understand from the
sentence which argument is missing at the syntactic level.

56

But when I suggest that she gets Frank to model for her she laughs.

cc

mark

nsubj

advcl

mark

nsubj

ccomp

markobj nsubjcase

obl

xcomp
root

Figure 20: Dependency tree of sentence ’But, when I suggest that she get Frank to
model for her, she laughs.’

It is unrealistic to expect that condition (a) can be true for most of the predicates in
any treebank. On the other hand, one can presume that due to the linguistic properties
of the langauge, a Turkish treebank (or treebanks of similar languages) will always
be more sparse than its English counterparts in terms of its richness for exposing
different predicate-argument combinations to the model. What we see in Figures 18
and 19 is that this sparseness easily leads to model bias. In both examples, the model
is overly greedy for attaching subjects or objects of the embedded clauses to the root
of the main clause. Given the data sparseness problem, the only way to overcome
these type of errors for accurate parsing, especially for languages like Turkish, is to
decorate lexical-functor categories richly with lexical semantic information such as
valency or subcategorization. This would allow for the model to have prior knowledge
that a predicate like konuş- (talk) does not call for a direct object argument while a
verb like destekle- (support) does, therefore helping the model score the parse in
Figure 19 as less likely in the context of these verbs.

Compare the parse in Figure 19 to the English model’s parse of the same sentence
in Figure 20 where we can see that the English model predicts the predicate argu-
ment structure of all the verbs correctly. An important point to note here is that the
analytical nature of English requires all arguments of a predicate to be overtly rep-
resented in the surface structure. This makes the datasets for languages like English
less sparse, therefore providing the opportunity for the parser to better learn subcat-
egorization directly from treebanks even when such information is not encoded on
the lexical items. We argue that this is one of the main factors that explains the vari-
ability in performance between analytical languages like English and synthetic/ag-
glutinative languages like Turkish in terms of learning predicate-argument structure
from dependency data. In analytical languages like English which have poor mor-
phology, arguments are never covert, so a parser is more easily exposed to relevant
predicate-argument combinations for a verb in the surface representation. If we want
comparable performance in languages like Turkish we need to deal with the data
sparseness that is inevitably caused by the linguistic properties of the language. One
way to deal with this is to annotate the lexical-functor categories with information rel-
evant to predicate-argument structure5. This way, we can train a dependency parser

5 For example, similar to how CCGs which were reviewed in Chapter 2 represent the predicate-argument
structure of functor categories.

57

in such a way that derivations that does not satisfy the selectional requirements of the
predicates are ranked lower than those that do.

5.6 Conclusion

This chapter constitutes the heart of this thesis. In this chapter, we have developed a
novel parsing strategy called label first parsing. We have shown that a BERT based
implementation of this model improves the parsing accuracy across a number of lan-
guages and baselines. This was followed by an error analysis, particularly on Turkish
and English examples. There are a number of conclusions that can be drawn from
this chapter.

First, we see that the label-first parsing strategy improves state of the art metrics for
quite a few languages due to the fact that it prioritizes identifying predicate argument
structure first in a dependency parsing problem. Accurate identification predicate and
argument roles makes parsing a much simpler task for the model as it considerably
reduces the ambiguity concerning how the syntactic dependencies should be estab-
lished. As part of this parsing strategy, we have shown that dependency labels can
be interpreted as properties predicated over words, defining them as functions seek-
ing their arguments (or heads). We have mentioned that such an approach makes
dependency parsing closer to Categorical Grammars. Finally, we have shown that
the developed parsing strategy allows for clustering syntactically similar dependency
labels together during training, which positively impacts the overall attachment accu-
racy for a parser.

Second, the comparative error analysis on Turkish and English shows that the depen-
dency formalism is better suited for inducing predicate-argument structure in certain
type of langauges than others. The dependency framework relies purely on surface
representation and have no means to account for data that is relevant to predicate-
argument structure at the semantic level but not visible in the surface. This property of
dependency grammars hinders learnability of predicate-argument structure from de-
pendency treebanks more drastically in synthetic/agglutinative languages where data
can be more sparse due to morphological complexity which might cause arguments
be covert in the surface structure. We have shown that this is an important factor
that explains variablity in parsing performance between English and Turkish on the
same dataset. The main argument that we derived from the results we obtained is
that to be able to learn predicate-argument structure for languages with different ty-
pological characteristics from data, one needs to encode lexical semantic properties
of predicates such as their subcategorization and selectional restrictions on the lexical
items. Otherwise, datasets of certain langauges will inevitably be more sparse due to
typological reasons, which will lead to poorer performance in learning and parsing.

58

CHAPTER 6

LABEL FIRST PARSING WITH SEMANTIC ROLES

6.1 Introduction

In the previous chapter, we have shown that using a dependency parsing methodology
that starts from predicting grammatical roles and builds a syntactic tree based on
them improves parsing performance for a number of languages. Importantly, even
in languages where we have not seen improvements relative to the baseline parsing
models, we have seen a strongly positive correlation between a parser’s performance
in predicting grammatical roles and resolving for syntactic dependencies. We have
discussed that this is because grammatical roles constrain the hypothesis space for
dependencies, reducing considerably the attachment ambiguity for a parser.

It has also been discussed in that Chapter 2 that from a linguistic perspective which
is assumed in a large body of theories dealing with syntax-semantics interface, gram-
matical roles are semantically derived rather than being primitive constructs of gram-
mar. Works like Jackendoff (1974) [35], Talmy (1985) [15], and Levin and Rapaport
Hovav (2005) [23], among many others, have all argued for a multistratal theory of
grammar where semantic roles that exist in the Lexical-Conceptual Structure of a verb
are mapped to grammatical roles in the sentence based on various argument realiza-
tion principles. Following these ideas, in this chapter we design an experiment where
we start parsing not directly from grammatical roles but from semantic roles, and aim
to predict grammatical roles based on them. The hypothesis is that a parser that has
access to semantic role information can learn how to map semantic roles to grammat-
ical roles, which should improve the accuracy of grammatical role labeling, which, in
turn, should lead to more accurate resolution of syntactic dependencies. Therefore,
the goal is to show if, or how much, such a hierarchical set up that uses semantic role
labels leads to better learning of syntactic dependencies for a parser.

Note that, unlike the experiment in the previous chapter where we learned both gram-
matical roles and dependencies, in this experiment we do not also aim to learn se-
mantic roles during training, but treat them as given. In practice, this means we are
using the gold semantic role annotations as features while learning grammatical roles
and dependencies, rather than trying to optimize the parser for predicting them as
well. This is because the main contribution of this experiment is not about finding
out ways to engineer a model that can best optimize for the relevant tasks involved.
Rather, it has a more linguistically driven concern of investigating in what ways, if

59

at all, knowledge of semantic information in the form of thematic role labels leads
to reduction in predicate-argument structure errors for a dependency parser. There-
fore, the main focus will be given to analysing the errors that the parser makes or
recovers from in this set up compared to one which does not use semantic role labels.
If it can be shown that such a parser really makes better generalizations about pred-
icate argument structure, future work or experiments can be devised to investigate
how to efficiently optimize for all the tasks also involving semantic role labeling, in
a hierarchical, multitask setting. Also note that contrary to previous chapter, current
experiment is only run on Turkish data.

In section 6.2., we first start with reviewing the dataset we will use in this experiment,
i.e. the Propbanks, which are dependency treebanks extended with semantic role
labels.

6.2 Propbank and Semantic Dependencies

Since their introduction to grammatical theory, thematic roles (or semantic roles) have
had a prominent role in understanding the syntax-semantics interface and have been
employed to theorize how semantic information is mapped into grammatical struc-
ture. Every verb expresses an eventuality and eventualities typically contain partici-
pants; individuals involved in the event or the state expressed by the eventuality. A
thematic role is a conceptual representation of how exactly a participant is involved
in an eventuality: whether a participant is doer of the action (AGENT), the undergoer
of the action (PATIENT), the perceiver of the action (EXPERIENCER) and so on. As
was shown in Chapter 2, many grammatical theories assume these roles exist as argu-
ments in the lexical-conceptual structure (LCS) of verbs, and represent them usually
with θ-grids.

Thematic roles are a distinct layer of representation than grammatical roles. While
the latter is a syntactic notion concerning how an argument fits into the subcatego-
rization frame of a verb to make a syntactically well-formed sentence, the former
is a semantic notion concerned with what kind of semantic properties this argument
should possess. On the other hand, as many studies have successfully shown, the-
matic representation is one which syntax is sensitive to and one which can constrain
syntactic behaviour. For example, we know that if a verb defines a participant role that
causes an action and another participant role that undergoes a change in its θ-grid, the
former is realized as the subject while the latter as the object. This and similar kind of
mapping principles explain the behaviour and lexicalization patterns of many verbs,
positing generalizations about how a verb realizes its arguments in syntax based on
its lexical-conceptual structure.

Propbanks (Kingsbury and Palmer, 2002) [83], (Palmer et al., 2005)[84] are exten-
sions of dependency treebanks where semantic roles associated with each verb in the
sentence is explicitly marked over the grammatical arguments. This enriched repre-
sentation provide a way to illustrate, for each argument in the sentence, the thematic
role that it fulfills with respect to a verb as a semantic dependency, together with how

60

Ada bardağı düşürünce korktu.
Ada glass-acc drop-when scare-past-3sg.

root
nsubj

dobj advcl

AM-Temp

A0:experiencer

A-A:causer

A1:theme

Figure 21: Semantic tree of sentence ’Ada bardağı düşürünce korktu.’

this thematic role is realized into a grammatical role in the syntactic dependency. The
ability to see both syntactic and semantic roles makes it possible to better represent
linguistic relations in sentences where a single argument might fulfill multiple roles
relevant to different predicates, for example in a sentence like Figure 21.

Here, Ada is both the experiencer of kork- (be afraid) and the causer agent of düşür-
(drop), since both of these verbs define these theta roles in their LCS which should
be preserved in the syntactic representation. Of course, theories like GB (Chomsky,
1981)[17], guided by the theta-role assignment principle, would not represent these
distinct thematic roles over the same argument but use a dummy PRO argument which
would be assigned the AGENT role of the verb in the embedded clause. However,
as was the case in UD treebanks, UD Propbanks try to remain theory agnostic. The
adjunct status of the adverbial clause is represented in the semantic tree with the role
AM-Temp, marking manner and temporal adjuncts.

Looking at the tree in Figure 21, one can see that the labels Propbanks use are not
exactly the same as the familiar thematic role lists. In fact, here, we have added the
thematic role labels such as agent, theme ourselves while the actual labels used in
Propbank are ArgA, Arg0, Arg1 and so on. However, the Propbank guidelines state
that they are designed with thematic roles in mind. Below, in Table 19, we give
definitions of each of the Propbank labels, together with their counts in the Turkish
Propbank. The counts are taken from (Şahin, 2018: 55) [85] and are the sum of all
the labels in training, dev and test sets. The argument definitions are based on the
current Propbank annotation guidelines (Bonial et. al, 2012) [86].

Looking at the Semantic Role Labels, one can see that actually Propbanks define 7
different semantic roles, namely; A0-4, A-A, and variations of AM. The roles A0-4
correlate directly with thematic roles, while the A-A tag is used to represent causer-
agents in morphologically derived causative constructions (e.g. (-DIR)) in Turkish.

61

Table 19: Semantic Role Labels in Turkish Propbank

Label Definition Count

A0 Agent, Experiencer 3800
A1 Patient, Theme 7812
A2 Instrument, Benefective 1330
A3 Source, Benefactive 289
A4 Ending point 621
A-A Secondary agents or Causer Agents 178
AM-TMP Temporal modifier 1614
AM-MNR Manner adverbs 1486
AM-LOC Locative modifier 859
AM-LVB Light verb 694
AM-GOL Goal 416
AM-EXT Extent modifier 384
AM-CAU Cause Clauses 359
AM-ADV Adverbials (which don’t fit to any other labels) 317
AM-INS Instrument 167
AM-PRD Secondary predication 144
AM-DIS Discourse 139
AM-TWO Reduplicative Adjuncts 92
AM-COM Comitative modifier 84
AM-DIR Directional modifiers 78
AM-NEG Negation 67
AM-MOD Modal Verb 6
AM-REC Reciprocals 1

62

6.3 Experiment

In this section, we first do a brief review of works that try to integrate semantic role
labeling into dependency parsing. Such works can be categorized into two main ap-
proaches. In the first group, represented by studies such as Punyakanok et al (2008)
[87], Gildea and Palmer (2002)[88], and Gildea and Jurafksy (2002)[89], the main
objective is to learn semantic roles using features from dependency (or constituency)
trees. These works employ a pipeline model where input sentences are first parsed
into syntax trees, from which various linguistic features are extracted to help an
SRL model. A technical variation of this approach can also be found in Che et al
(2008)[90] and Johansonn and Nugues (2008)[91], where the main idea is to use a
k-best list of candidate dependency trees which is reranked based on a global SRL
model. The common idea among all these studies is that syntactic priors are crucial
for accurate semantic role labeling.

The second group of works follow a joint strategy by which they to optimize a model
for syntactic and semantic dependencies together. A challenging aspect of such an
approach is the fact that in the dependency representation the syntactic and semantic
layers are not isomorphic. In Propbank data, for example, dependencies in the syn-
tactic layer are bilexical, meaning one argument can only be linked to one head. On
the other hand, in the semantic layer more than one semantic role label can be defined
over the same argument. Even though this is not a problem from a purely representa-
tional perspective, this divergence between the two layers make the commonly used
arc-factored models [47] unsuitable for the semantic parsing task.

A common approach devised to overcome the divergent representation is to prepro-
cess the data to make it suitable for joint processing. This approach has been em-
ployed by Musillo and Merlo (2006)[92], Yi and Palmer (2005)[93], and more re-
cently by Shi et al (2020) [94] . The trick is to create joint-tags by enriching depen-
dency labels with semantic role labels. For example, an nsubj tag would have a list
of variants such as: nsubj-A0, nsubj-A1 and so on which represent grammatical and
semantic role labels together. Of course, from a computational perspective, this ap-
proach brings in more data sparsity problems as it leads to a proliferated number of
tags where most of them will have few or no training examples.

Even though we do not jointly learn the SRL task as part of our experiment, it would
be fair to say that the proposed architecture is different from the aforementioned set
of works in the sense that we start from semantic role labels to build up a syntax
tree. This is an extension of the label-first parsing strategy that was proposed in the
previous chapter. The goal is to see to what extent access to semantic information
helps a label-first parser to better identify grammatical roles and dependencies and
how it translates into a reduction in predicate-argument structure errors. As such,
this experiment and analysis can be considered as a precursor to further experiments
which might use the same hierarchical parsing strategy while at the same time jointly
learning both semantic and grammatical roles as well as dependencies.

63

6.3.1 Limitations of the Data

Before talking about the experiments, we should briefly talk about the limitations of
the data that we use in this chapter.

The experiments in the previous chapter were based on treebanks that use the lat-
est version of UD (v2.9) for all the languages. However, the Turkish Propbank data
[85] which we run the experiments of this chapter on, is developed based on an ear-
lier version of UD which has an impoverished number of grammatical role labels.
Specifically, the advcl tag does not exist, and all kinds of adjuncts, whether nominal
or adverbial, are annotated with the obl tag. Furthermore, the xcomp tag does not
exist, and all kinds of clausal complements are mapped to the ccomp tag. Finally,
Propbank does not distinguish between indirect objects and direct objects and use the
obj tag to cover both.

There are also distributional problems in the Propbank data. For example, the ccomp
tag only appears 13 times in the test and the dev sets combined, meaning that the
treebank’s eval set only has 13 sentences with clausal complements. The situation in
clausal subjects is similar, which appear only 2 times in the Propbank’s test set, and
only once in the dev set. The dependency labels in the Propbank test and dev sets
together with their counts is presented in Table 20.

Since the goal of the experiment here is to analyse how semantic role labels help
identify correct grammatical roles for a dependency parser using Propbank data, we
should acknowledge that the impoverished amount of grammatical role labels as well
as the distributional problems associated with this data impedes a very detailed anal-
ysis. Therefore, when we discuss how much Propbanks help with learning predicate-
argument structure in what follows, we will be able to focus mainly on nominal sub-
jects and objects and the oblique adjuncts as much as possible.

6.3.2 Model

For the experiments, we have used the exact same model that was described in chap-
ter 5, Figure 13, with the same hyperparameters that were defined in Table 7 in the
same chapter. This is the joint LSTM model that tries to optimize dependency labels
and dependency heads together. On the base side, we have trained this model only
with word embeddings and PoS tags while on the experiment side we have also used
semantic role labels. As we have mentioned, the goal of the experimental model is
to see whether semantic role labels help improve grammatical role accuracy and, in
turn, syntactic dependencies. From now on, we will refer to the model that did not use
any semantic role labels as the baseline model and the other one as the experimental
model.

Due to the small size of Propbank data, we have used both the test set and the dev
set for our training and evaluations. That is to say, in one case we have merged the

64

Table 20: Dependency Labels in Propbank with Counts

category Test Set Count Dev Set Count

acl 276 256
advmod 282 287
advmod:emph 147 144
amod 532 560
appos 6 8
aux:q 47 33
case 351 374
cc 126 153
ccomp 7 6
compound 303 311
compound:lvc 92 79
compound:redup 37 32
conj 580 614
cop 131 114
det 308 296
discourse 25 34
fixed 15 15
flat 175 168
mark 14 16
nmod 532 533
nmod:poss 615 560
nsubj 600 582
nummod 99 70
obj 669 707
obl 765 762
parataxis 1 4
punct 1592 1607
root 869 865
csubj 2 1

65

Table 21: Overall Parsing Accuracy of the Baseline vs. Experimental Model

Baseline Experimental

UAS (Dev Set) 73.8% 76.6%
LAS (Dev Set) 58.5% 62,5%
UAS (Test Set) 73.6% 76,8%
LAS (Test Set) 59.9% 63,7%

Table 22: Performance in Identifying Grammatical Roles in Base vs. Exp. Model

Precision (Dev) Recall (Dev) Precision (Test) Recall (Test)

nsubj (Baseline) 56% 58% 66% 61%
nsubj (Experimental) 66% 60% 67% 71%
obj (Baseline) 63% 59% 68% 68%
obj (Experimental) 63% 71% 73% 66%
obl (Baseline) 68% 73% 69% 84%
obl (Experimental) 74% 82% 75% 84%

training and dev sets as training data, and evaluated on the test set. In another case we
have merged the training and test sets as training data and evaluated on the dev set.

6.3.3 Results

We first look at the overall accuracy between the baseline and experimental models
together with some results showing precision and recall for grammatical role cate-
gories relevant to verbal predicate argument structure. These are shown in Tables 21
and 22. We see an overall improvement in LAS and UAS metrics, correlated with
the reduction in error rate of grammatical role discovery for argument and adjunct
roles in both dev and test sets. In terms of the grammatical roles, the biggest gains
seem to have been achieved in obliques, which means the system is doing a better job
in identifying adjuncts and arguments. To understand whether this higher accuracy
translates into better argument-adjunct distinction for the experimental model we also
need to see how the syntactic attachment performed for these categories. Following
the error analysis methodology we have implemented in the previous chapter, we
look at whether there is a reduction in attachment errors for all the grammatical roles
considered in this experiment. To do this we look at the amount of cases where the
system managed to predict both the grammatical role and the syntactic attachment
for arguments or adjuncts correctly and we see whether the experimental system per-
formed better on this metric. This is the same as computing the LAS score for each
of the relevant grammatical categories, which we report Table 23.

The experimental model seems to be doing better in distinguishing arguments from
adjuncts. Furthermore, it manages to predict better both the grammatical function and

66

Table 23: Performance in Argument - Adjunct Distinction

nsubj (Baseline) 1182 42.3%
nsubj (Experimental) 1182 47.6%
obj (Baseline) 1376 47.2%
obj (Experimental) 1376 52.6%
obl (Baseline) 1527 50.0%
obl (Experimental) 1527 55.7%

BeniA1:Theme nasıl etkilediğiniA1:Theme bilemezsin
I-acc how effect-VN-poss-acc know-ability-neg-3sg-pres

obj

advmod obj

root

Figure 22: Dependency prediction of sentence ’Beni nasıl etkilediğini bilemezsin.’

the syntactic head for categories relevant to verbal predicate-argument structure when
using Semantic Role Labels as additional input.

6.4 Conclusion

In this chapter, we have used the Turkish Propbank as our dataset and have shown
that a label-first parsing strategy that builds a dependency tree in a hierarchical set
up starting from semantic role labels positively affects the UAS and LAS metrics.
Specifically, confirming our hypothesis, we have seen that such a parser is able to
learn the mapping between semantic roles and grammatical roles, which results in
better performance in distinguishing arguments from adjuncts during parsing.

As we conclude this chapter, it is important to emphasize that the use of semantic
role labels as additional input to dependency parsing does not adress the more fun-
demantal problems about dependency representation that were discussed in Chapter
5. In Chapter 5, we have argued that the main problem with the UD representation
is its failure to decorate the lexical semantic information encoded in a predicate’s
meaning in the linguistic representation of lexical-functor categories. This leads a
parser perform poorly in the face of sparse or unseen data, as it cannot rely on any
linguistic priors to account for such data. The situation is no different when using
Propbanks. As could be seen from Figure 21 in section 6.2, Propbanks are simple
extensions of UD treebanks where the predicates are still not annotated with their se-
lectional constraints such as valency and subcategorization. As a result, it is possible
for the model to still make the kind of predicate-arguments structure errors that are
similar to those explained in Chapter 5 even when using Propbanks. As an example,

67

consider the model prediction in Figure 22. Here, even though the model figures out
the grammatical roles of the objects accurately, it wrongly selects two objects for the
predicate know which only subcategorizes for one. As a result, the generated parse
is in violation of the subcategorization restrictions for both the embedded predicate
etkile- (affect) and the main predicate bil- (know).

All in all, it would be fair to say that using semantic role labels in Propbanks help
a dependency parser to a certain degree in distinguishing arguments from adjuncts.
However, as long as these semantic roles are not decorated as constraints over the
verb’s semantic representation, it is still possible for the parser to fail to generate a
syntactic tree which obeys such requirements that emanate from the lexical semantics
of verbs.

68

CHAPTER 7

LABEL FIRST PARSING WITH AN RL BASED RERANKER: A
PRELIMINARY EXPERIMENT

In this final chapter of the thesis, we report the results of a preliminary experiment
where the label first parser developed in Chapter 5 is combined with a label reranker
trained using Reinforcement Learning (RL) techniques. The experimental results are
not competitive against a purely supervised approach. However, we believe the ex-
periment itself brings methodological value rather than a linguistic one due to its use
of RL in dependency parsing. Therefore, the main aim of the chapter is to explain
how the particular experiment was designed with the hope that it can give ideas for
further research looking to integrate RL into the problem of dependency parsing.

7.1 Reinforcement Learning

Reinforcement Learning [95] is a family of algorithms which represent the machine
learning problem at hand as an agent learning to make better decisions in an environ-
ment based on some sort of reward feedback. RL algorithms are mainly developed
for settings where supervised learning with a set of gold labels is not possible and the
model should learn with a trial and error process, trying to maximize better actions
which lead to better results during these trials. However, hybrid approaches which
combine supervised learning with reinforcement learning techniques have also been
abundant in many application domains.

An RL problem is formalized as a Markov Decision Process (MDP), which is repre-
sented as a tuple <S, A, R, γ> that consists of a state S, a set of actions A, a reward
function R, and a discount factor γ. The meaning of all these expressions is deter-
mined based on the exact problem one is dealing with. In a grid-world problem,
the state might represent the <x, y> coordinates of the agent’s location while actions
would be which direction the agent will move next. In a more complicated problem
such as learning to drive, state can include a variety of signals such as the position
and the speed of the car, the traffic signs, position of neighboring cars and so on.

The reward function represents a feedback from the environment to the agent, sig-
nalling that its action (or action sequences) have positive or negative results. The
exact specification of the reward function is usually determined by the designer of the
agent.

69

Given this set up, the goal of an RL agent is to learn a policy (π) that maximizes
rewards. As is shown in equation 14, π is a function of the states (S) and actions (A).
The agent’s objective is to learn correct set of actions in each state that lead to higher
overall cumulative reward. In other words, the agent’s aim is to learn the best policy
that maximizes rewards.

π(a|s) = p(A = a|S = s) (13)

The algorithms by which an RL agent tries to learn the best policy that returns max-
imum rewards are called policy optimization algorithms. At the heart of the policy
optimization algorithms is the Bellman Equation, which defines a so-called Q func-
tion (or state-value function) as follows.

Q(s, a) = r(s, a) + γmax(a′)Q(s, a) (14)

The Q function is a definition of the value of taking an action a in state s. It states that
this value is equal to the immediate reward you get from taking this action and moving
to next state (s’) and the cumulative discounted rewards that you gain when you follow
your policy afterwards. The discount value (γ) can be fine tuned depending on how
much weight one wants to give to future rewards. For example, in a chess game the
reward is not based on individual actions but on the overall sequence of actions that
lead to winning or losing the game. Therefore, in such an environment the discount
factor can be kept high (e.g. 0.9) to maximize longer term gains. On the other hand, in
an environment where each action might be immediately and independently rewarded,
the discount factor can be kept minimal or be dispensed with completely.

As their name suggests, the so called Q-learning algorithms (Watkins and Dayan,
1992)[96] aim to learn Q values, i.e. the value of taking each action in each state.
Accordingly, their neural versions, the Deep Q Learning (DQN) models [97], aim to
approximate the Q-value for each state-action pair based on data.

7.2 RL in NLP

Recent years have seen an increase in the amount of works that applied RL tecniques
to NLP problems. However, their application to parsing in general, and dependency
parsing in particular, has been very few to non-existent. In a recent experiment that
is similar to the one that we present here, Pan et al (2018)[98] tried to improve the
state of the art Stanford parser using the DQN algorithm, but were unable to report
promising results. On the semantic parsing side, Naseem et al (2019)[99] applied
RL techniques on transition based AMR parsing and managed to report competitive
results. For a detailed survey of the application of RL on NLP domains other than
dependency parsing, the reader is refered to a recent comprehensive survey carried
out by Luketina et al. (2019) [100].

70

Figure 23: Information Flow in the Label Reranking Model

7.3 Label First Parsing using an RL Reranker

In Chapter 5, we have seen that a parser that makes better decisions in determining
dependency labels performs better in resolving syntactic dependencies. Specifically,
we have seen as a result of our comparative evaluation that languages that perform
better on dependency labeling also perform better on syntactic parsing.

Given that bad dependency label decisions lead to wrong attachment decisions for a
parser, one idea can be to design an agent which learns to recover from bad labeling
decisions based on how they effect attachment. This agent operates in an environment
where it observes the correlation between label predictions and attachment accuracy
in the context of different sentences and tries to learn which dependency labels lead
to higher attachment accuracy in different contexts (or to use the RL term, states). We
designed this agent in the form of a label reranker and trained it as a DQN using the
process explained in the next section.

7.3.1 An RL based label reranker

Our system can best be described by Figure 23 which represents the information flow
within the model at inference time. We have two stand-alone LSTM models, one re-
sponsible for label prediction, the other for head-selection. In the middle of these two
models is the label-reranker, which is a multi-layered feed-forward neural network
(FFNN) that takes as input a <state, label> tuple and outputs the score Q(state, label)
for the tuple. At inference time, first the label prediction model outputs a set of top_k
label predictions together with a state vector, S, representing the state for each token.

71

Table 24: Featureset used in state representation S for token wi

Word Features (wi) Neighbour features (for each neighbour wj)

pos(wi) pos(wi) + pos(wj)
lemma(wi) lemma(wi)+lemma(wj)

morphology(wi) morphology(wi) + morphology(wj)
word-embedding(wi) word-embedding(wi) + word-embedding(wj)

distance((wj))
dependency-label(wj)

The state representation is based on the linguistic properties of the token as well as the
surrounding tokens (explained below). Each label in the top_k labels is concatenated
with the state representation and these <state, label> tuples are then passed over to the
label reranker for scoring. The topmost label as a result of this scoring is passed over
to the head-classifier. The label reranker’s scoring function is trained by observing
which labels coming from the label classifier leads to higher rewards for a depen-
dency parser, where reward is defined based on both label accuracy and attachment
accuracy. Therefore, the aim of this procedure is for the label ranker to try to surface
label predictions that lead to better attachment decisions.

During training we have chosen the k value in top_k to be 5, meaning we have passed
over 5 top_k label outputs from the label network to the DQN network. This was
based on the observation that in 98% of the cases, the correct label was amongst the
top 5 labels produced by the label network1.

7.3.2 Training the label reranker

As was mentioned in the previous section, the label reranker is trained using <state,
label> pairs as inputs, based on a reward function. We describe how each of these are
designed below.

State Representation

For each token wi, the State function s(wi) extracts <key:value> pairs for wi repre-
senting its linguistic and contextual properties as in Table 24. The state representation
for a token is equal to the features extracted for that token such that s(wi) := fea-
tureset(s(wi)), based on the featureset definition in the aforementioned table. While
extracting "neighbour features", we keep a window size 3, meaning we look at the
linguistic properties of the 3 tokens to the left and 3 the right of wi.

Training Details

We train the DQN network based on the outputs of the label classifier and the de-
cisions made by the head classifier. The label classifier and the head classifier are

1 For comparison, if we had set up k to be 3, this ratio would have been dropped to 93%.

72

Table 25: Hyperparameters used in training label reranker

Param Value

Learning rate 0.1
Optimizer Adagrad
MLP Depth 8
Loss Function Pairwise Hinge Loss
γ 0

first trained independently and disjointly from one another using the training data.
Afterwards, using the held-out dev set, we extract datapoints for the label reranker
by asking the label classifier to generate top_k labels for each token and asking the
head classifier to determine dependencies based on the generated labels. We use these
datapoints to train the label reranker. As a result of this procedure, we aim to teach
the label reranker to rank the top_k labels that lead to higher rewards, where reward is
determined based on accuracy of the label prediction as well as the head prediction.

The DQN network is a FFNN which consists of 7 ReLU layers and one output layer.
For optimization we have used the Adagrad optimizer, with the loss function as Pair-
wise Hinge Loss. Hinge loss carries out maximum margin classification and is there-
fore a commonly used loss function in listwise ranking problems where one tries to
maximize the difference between a highly rated item and a lowly rated one in a list of
items. The specific DQN training parameters are listed in Table 25.

Reward Design

Figure 24: Reward Function Representation

73

We have designed a simple reward function which gives higher rewards to a <state,
label> tuple when both the label is selected correctly and the head is predicted ac-
curately for a token. Further details of the reward function can be seen in Figure
24.

This reward function gives the <state, label> inputs which lead to both wrong depen-
dency classification and wrong label classification the lowest score (-1) and the ones
that lead to accurate classification on both tasks the highest reward (+2). Cases where
only the labels are accurately predicted would be rewarded as (+1) and cases where
the dependency labels are wrong while the heads are classified correctly would be
neutral (0).

As can be observed from Table 25, while training we have set the discount factor γ
to be 0. This means that each token is rewarded independently from one another. In
other words, say in a sequence of three tokens (wi, wj, wk), the reward from the later
tokens in the sequence (e.g. wk) does not propagate back and add to the cumulative
reward for earlier states (e.g. wi). This choice is made based on the intuition that in a
sentence, the correct dependency label of a token in position wi does not have a strong
impact on the prediction of the correct dependency label in position wj , contrary to,
for example, a PoS tagging task. However, we acknowledge that this intuition is open
to debate2 and different options for γ should be experimented with.

7.4 Results and Discussion

Before reporting the results, it would be interesting to see an example where the label-
reranker managed to recover the correct label out of the top_k labels where the correct
label was lower ranked by the label network.

Consider a sentence like 2, which is taken from our eval set. We show in Figure 25 an
error that was made by the LSTM model which does not use the label reranker. Here
the main problem is that the label for the root token is predicted wrongly (compound
rather than root). These kind of root identification errors are severe for parsing sys-
tems because it means the system failed to predict the main predicate of the sentence
correctly, which affects the accuracy of overall predicate-argument structure predic-
tion. One can also realize that the tree is cyclic, so would need to go through further
cycle pruning using the Eisner algorithm.

4. Alman seyircisi bile becerisi önünde hayran kaldı.
’Even German audience admired her skill.’

The model with the label reranker reranks the root label to the top of the list and
when reparsed with this new label prediction, the predicate-argument structure of all

2 In fact, in languages where word order is verb-initial (VSO, VOS), correct identification of the verbal
predicate or root of the sentence early in the sequence might have a positive impact on the overall label prediction
accuracy of the sequence. Therefore, giving a higher value to γ might be a more reasonable choice for those type
of languages.

74

Alman seyircisi bile becerisi önünde hayran kaldı

nmod:poss

nsubj

advmod nmod obl

amod

compound

root

Figure 25: ’Wrong dependency tree prediction of sentence by the model without label
reranker’

Alman seyircisi bile becerisi önünde hayran kaldı

nmod:poss

nsubj

obj nmod amod

obl

root

Figure 26: ’Accurate dependency tree prediction of sentence by the model with label
reranker’

the tree is correctly predicted. The example in Figure 26 show the corrected parse
with the reranker.

Even though examples like those in Figures 25-26 are motivating, we have found
that amongst all the models developed so far for label-first dependency parsing, the
reranker model achieves the lowest accuracy in relevant metrics compared to fully
supervised models. This is shown in Table 26.

This means that even though in certain examples the RL reranker does a good job
in correcting model errors, in more cases it fails to do so, and it even reduces model
performance rather than improving it.

Table 26: Comparison of RL-based ranking model with Supervised Models

Model UAS LAS

BERT-LSTM 77.1 68.8
Joint-LSTM 74.3 64.9
RL-Label-Reranker 68.6 60.2

75

7.5 Conclusion

We conclude this brief chapter by stating that integrating RL based methods into
dependency parsing might be a promising approach but needs to be studied further.
We have seen that an RL based ranking approach might have some potential to help a
parser recover from critical errors and improve its performance. However, the overall
performance of the RL augmented model was lower compared to fully supervised
models. We acknowledge that the experiment reported in this chapter is preliminary
and there can be important design or modeling choices which need to be thought more
carefully. However, the lack of previous studies in this area makes it hard to build new
studies on a solid foundation and leverage previous expertise while implementing new
designs. Therefore, we hope that this experiment helps further research to expand and
explore more ideas on how RL can be applied to the dependency parsing problem.

76

CHAPTER 8

CONCLUSION

Predicate-argument structure lies at the heart of syntax-semantics interface of natural
language. Following Clark et al (2000)[14], it can be defined as "the dependencies
that hold between words with lexical functor categories and their arguments" [101].
As we have reviewed in Chapter 2, various linguistic approaches have tried to ac-
count for this interface by means of different theoretical mechanisms. Aside from
radically constructionist approaches presented in Construction Grammars [26], the
common agreement in all the approaches is that predicate argument structure is deter-
mined partially by verb meaning, which impose lexical semantic constraints as well
as subcategorization requirements onto syntactic derivation.

This thesis presented an investigation into inducing predicate-argument structure from
dependency treebanks, which aim to represent predicate-argument structure of a sen-
tence in the form of dependency graphs where predicates are attached to their argu-
ments by means of uni-directed and labeled dependency arcs.

The experiments that are reported in this thesis, especially in Chapter 5, have implica-
tions mainly for the learnability of predicate argument structure using a dependency
representation. First, the purely binarized, non-compositional, and unconstrained na-
ture of dependency formalism presented in the UD framework hinders the ability to
encode grammatical restrictions that predicates project onto syntax in the dependency
data. The untyped nature of lexical categories in UD results in computational models
which suffer mostly in languages where arguments of a predicate can be covert in the
surface form but are represented at the level of lexical conceptual structure as part of
the predicate’s subcategorization frame. Clear examples of this appeared in chapter
5 when we compared the variation in parsing performance in different types of lan-
guages. In non-analytical languages like Turkish, a recurrent problem was being able
to induce the correct dependencies between predicates and arguments in sentences
with multiple predicates where one or more of the arguments of a predicate could be
covert in the surface representation.

The above finding means that an effort that aims to induce predicate argument struc-
ture from data, especially for languages like Turkish, needs to employ a more elabo-
rate representation where syntax-semantics correspondance is modelled more trans-
parently in the surface form, similar to the Montague approach to syntax semantics
interface, an implementation of which can be found in compositional approaches like
CCGs which were reviewed in Chapter 2. Specifically, to be able to learn how to

77

associate the correct arguments with correct predicates, the need is to type semantic
constraints such as valency over the meaning bearing units (which can be morpho-
logical or lexical) that project arguments in the syntax. However, the lack of such
semantic notions as valency in a dependency formalism does not make this possible.

In languages like Turkish, morphological meaning bearing units introduce their own
semantic constraints on predicate argument structure by means of which they can
modify the subcategorization frame of a predicate by adding arguments to it or delet-
ing arguments from it. This implies that the linguistic representation from which
one induces predicate argument structure for a language like Turkish should also ac-
curately encode the linguistic properties of these units, and account for their type-
changing role in syntax. However, the representation that UD provides which casts
all the langauges (whether morphologically complex or not) into a unified represen-
tation further impedes efforts that try to learn predicate argument structure from data
in this framework.

All in all, the main conclusion of this thesis is that employing a dependency represen-
tation as the one provided in UD for learning predicate argument structure only works
well for languages that are morphologically simple and analytic, which, due to lack
of rich morphological inflection and derivation, represent predicates and arguments
overtly in the surface form.

8.1 Future Work

We believe that the label first parsing methodology and the experiments with this
methodology in Chapter 5 lay the ground for future work as described below.

Unified Multilingual parsing. In chapter 5, we have fine-tuned BERT models for 7
different languages separately on the dependency label prediction task. We have seen
that this has led to improvements on certain languages in terms of overall parsing
accuracy while not in others. We have also shown that there is a strong correlation
between dependency label accuracy and attachment accuracy in all languages consid-
ered.

One way to further extend this experiment is to train a unified, multilingual depen-
dency labeling model using BERT which can classify dependency labels for multiple
languages at once. One challenge of this approach is the difference in dependency
tagsets used in each language. While certain languages like Russian and Finnish use
a more extensive tagset, languages like Korean and Chinese use relatively fewer tags.
To avoid data sparsity that might be introduced due to the divergence in tagsets in a
unified model, one might consider grouping languages with similar tagsets together
in such an experiment.

Joint BERT based label first parsing. In the model proposed in Chapter 5, the
BERT based dependency labeler and the LSTM based dependency head classifier
were trained disjointly from one another. A logical next step is to train a completely

78

joint model where the BERT model and the LSTM model is optimized together. This
would lead to creation of trainable dependencies between the two architectures and
more importantly allow the losses from the LSTM model to backpropagate to the
BERT model. The hypothesis is that if such a model can be properly optimized, this
joint training would further improve the accuracy of both of the tasks due to the strong
correlation between them.

Joint SRL and Dependency Parsing. In Chapter 6, we have made the assump-
tion that early access to semantic role labels in a label-first parsing setting should
improve a) identification of the correct argument roles and distinguishing arguments
from adjuncts and in turn b) the overall parsing accuracy. The results presented in
the chapter have confirmed our hypothesis, showing improvements on both grounds.
As we have explained, the experiment did not jointly optimize for semantic role la-
bels during training. Therefore, further research should be implemented which shows
whether a hierarchical, multilayered set up which starts parsing from semantic role
classification, followed by dependency label classification leading up to dependency
tree construction can help improve all three tasks at the same time compared to cur-
rent approaches to joint semantic and syntactic parsing which mostly predict semantic
roles over an already built dependency tree.

79

80

REFERENCES

[1] D. Marcheggiani, A. Frolov, and I. Titov, “A simple and accurate syntax-
agnostic neural model for dependency-based semantic role labeling,” arXiv
preprint arXiv:1701.02593, 2017.

[2] Y. Zhang, P. Qi, and C. D. Manning, “Graph convolution over pruned depen-
dency trees improves relation extraction,” in Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, (Brussels, Bel-
gium), pp. 2205–2215, Association for Computational Linguistics, Oct.-Nov.
2018.

[3] K. Chen, R. Wang, M. Utiyama, L. Liu, A. Tamura, E. Sumita, and T. Zhao,
“Neural machine translation with source dependency representation,” in Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, (Copenhagen, Denmark), pp. 2846–2852, Association for Compu-
tational Linguistics, Sept. 2017.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), (Minneapolis, Minnesota), pp. 4171–4186, Association for
Computational Linguistics, June 2019.

[5] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling lan-
guage modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.

[6] D. Kondratyuk and M. Straka, “75 languages, 1 model: Parsing universal de-
pendencies universally,” arXiv preprint arXiv:1904.02099, 2019.

[7] M.-C. de Marneffe, C. D. Manning, J. Nivre, and D. Zeman, “Universal De-
pendencies,” Computational Linguistics, vol. 47, pp. 255–308, June 2021.

[8] K. Oflazer, “Turkish and its challenges for language processing,” vol. 48,
p. 639–653, dec 2014.

[9] U. Sulubacak, M. Gokirmak, F. Tyers, Ç. Çöltekin, J. Nivre, and G. Eryiğit,
“Universal Dependencies for Turkish,” in Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Pa-
pers, (Osaka, Japan), pp. 3444–3454, The COLING 2016 Organizing Com-
mittee, Dec. 2016.

81

[10] U. Türk, F. Atmaca, Ş. B. Özateş, G. Berk, S. T. Bedir, A. Köksal, B. Ö.
Başaran, T. Güngör, and A. Özgür, “Resources for turkish dependency pars-
ing: Introducing the boun treebank and the boat annotation tool,” Language
Resources and Evaluation, vol. 56, no. 1, pp. 259–307, 2022.

[11] Ç. Çöltekin, “A grammar-book treebank of turkish,” in International Workshop
on Treebanks and Linguistic Theories (TLT14), p. 35.

[12] T. Kayadelen, A. Öztürel, and B. Bohnet, “A gold standard dependency tree-
bank for turkish,” in Proceedings of the 12th language resources and evalua-
tion conference, pp. 5156–5163, 2020.

[13] D. Zeman, M. Popel, M. Straka, J. Hajič, J. Nivre, F. Ginter, J. Luotolahti,
S. Pyysalo, S. Petrov, M. Potthast, F. Tyers, E. Badmaeva, M. Gokirmak,
A. Nedoluzhko, S. Cinková, J. Hajič jr., J. Hlaváčová, V. Kettnerová, Z. Ure-
šová, J. Kanerva, S. Ojala, A. Missilä, C. D. Manning, S. Schuster, S. Reddy,
D. Taji, N. Habash, H. Leung, M.-C. de Marneffe, M. Sanguinetti, M. Simi,
H. Kanayama, V. de Paiva, K. Droganova, H. Martínez Alonso, Ç. Çöltekin,
U. Sulubacak, H. Uszkoreit, V. Macketanz, A. Burchardt, K. Harris, K. Marhei-
necke, G. Rehm, T. Kayadelen, M. Attia, A. Elkahky, Z. Yu, E. Pitler, S. Lert-
pradit, M. Mandl, J. Kirchner, H. F. Alcalde, J. Strnadová, E. Banerjee, R. Ma-
nurung, A. Stella, A. Shimada, S. Kwak, G. Mendonça, T. Lando, R. Nitisaroj,
and J. Li, “CoNLL 2017 shared task: Multilingual parsing from raw text to
Universal Dependencies,” in Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, (Vancouver,
Canada), pp. 1–19, Association for Computational Linguistics, Aug. 2017.

[14] S. Clark, J. Hockenmaier, and M. Steedman, “Building deep dependency
structures with a wide-coverage ccg parser,” in Proceedings of the 40th An-
nual Meeting on Association for Computational Linguistics, ACL ’02, (USA),
p. 327–334, Association for Computational Linguistics, 2002.

[15] L. Talmy, “Lexicalization patterns: Semantic structure in lexical forms,”
Grammatical categories and the lexicon, 1985.

[16] L. Talmy, “Path to realization: A typology of event conflation,” 1991.

[17] N. Chomsky, Lectures on Government and Binding. Dordrecht: Foris., 1981.

[18] G. Ramchand, Verb Meaning and the Lexicon: A First-phase Syntax. Cam-
bridge Studies in Linguistics, Cambridge University Press, 2009.

[19] S. Pinker, Learnability and Cognition: The Acquisition of Argument Structure.
Bradford books, MIT Press, 1989.

[20] N. Chomsky, Remarks on Nominalization. Linguistics Club, Indiana Univer-
sity, 1968.

[21] C. Fillmore, The Grammar of ’hitting’ and ’breaking’, pp. 120–133. Ginn,
1970.

82

[22] B. Levin, English Verb Classes and Alternations: A Preliminary Investigation.
University of Chicago Press, 1993.

[23] B. Levin and M. Rappaport Hovav, Argument Realization. Research Surveys
in Linguistics, Cambridge University Press, 2005.

[24] D. Dowty, “Thematic proto-roles and argument selection,” Language, vol. 67,
no. 3, pp. 547–619, 1991.

[25] A. Goldberg, Constructions: A Construction Grammar Approach to Argument
Structure. Cognitive Theory of Language and Culture Series, University of
Chicago Press, 1995.

[26] L. Michaelis, “Construction grammar,” syntax and semantics, vol. 17, pp. 243–
262, 2006.

[27] A. E. Goldberg, “Constructions: A new theoretical approach to language,”
Trends in cognitive sciences, vol. 7, no. 5, pp. 219–224, 2003.

[28] M. Steedman, Surface Structure and Interpretation. Linguistic Inquiry Series,
MIT Press, 1996.

[29] M. Steedman, “The syntactic process,” 2000.

[30] K. Ajdukiewicz, “Die syntaktische konnexitat,” Studia philosophica, pp. 1–27,
1935.

[31] Y. Bar-Hillel, “A quasi-arithmetical notation for syntactic description,” Lan-
guage, vol. 29, no. 1, pp. 47–58, 1953.

[32] M. McConville, An Inheritance Based Hierarchical Lexicon in Combinatory
Categorial Grammar. PhD thesis, University of Edinburgh, 2007.

[33] M. Steedman, “Combinatory categorial grammar,” in Current Approaches to
Syntax, pp. 389–420, De Gruyter Mouton.

[34] J. Gruber, “Lexical structures in syntax and semantics,” 1976.

[35] R. Jackendoff, Semantic Interpretation in Generative Grammar. Studies in
linguistics series, MIT Press, 1974.

[36] S. Kubler, R. McDonald, and J. Nivre, Dependency Parsing. Morgan & Clay-
pool Publishers, 2009.

[37] M. Kuhlmann and J. Nivre, “Mildly non-projective dependency structures,”
in Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions,
(Sydney, Australia), pp. 507–514, Association for Computational Linguistics,
July 2006.

[38] M. Collins, J. Hajic, L. Ramshaw, and C. Tillmann, “A statistical parser for
Czech,” in Proceedings of the 37th Annual Meeting of the Association for Com-
putational Linguistics, (College Park, Maryland, USA), pp. 505–512, Associ-
ation for Computational Linguistics, June 1999.

83

[39] H. Yamada and Y. Matsumoto, “Statistical dependency analysis with support
vector machines,” in Proceedings of the Eighth International Conference on
Parsing Technologies, (Nancy, France), pp. 195–206, Apr. 2003.

[40] M. Collins, “Discriminative training methods for hidden Markov models: The-
ory and experiments with perceptron algorithms,” in Proceedings of the 2002
Conference on Empirical Methods in Natural Language Processing (EMNLP
2002), pp. 1–8, Association for Computational Linguistics, July 2002.

[41] R. McDonald and J. Nivre, “Characterizing the errors of data-driven depen-
dency parsing models,” Proceedings of the 2007 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Lan-
guage Learning, vol. 112, no. 1, p. 155, 2007.

[42] J. Nivre, “Algorithms for deterministic incremental dependency parsing,”
Computational Linguistics, vol. 34, no. 4, pp. 513–553, 2008.

[43] J. Nivre, “An efficient algorithm for projective dependency parsing,” in Pro-
ceedings of the Eighth International Conference on Parsing Technologies,
(Nancy, France), pp. 149–160, Apr. 2003.

[44] J. Nivre, “Incrementality in deterministic dependency parsing,” in Proceedings
of the Workshop on Incremental Parsing: Bringing Engineering and Cogni-
tion Together, (Barcelona, Spain), pp. 50–57, Association for Computational
Linguistics, July 2004.

[45] J. Nivre, “Non-projective dependency parsing in expected linear time,” in Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of
the AFNLP, (Suntec, Singapore), pp. 351–359, Association for Computational
Linguistics, Aug. 2009.

[46] P. Qi and C. D. Manning, “Arc-swift: A novel transition system for dependency
parsing,” in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), (Vancouver, Canada),
pp. 110–117, Association for Computational Linguistics, July 2017.

[47] R. McDonald, F. Pereira, K. Ribarov, and J. Hajič, “Non-projective depen-
dency parsing using spanning tree algorithms,” in Proceedings of Human Lan-
guage Technology Conference and Conference on Empirical Methods in Nat-
ural Language Processing, (Vancouver, British Columbia, Canada), pp. 523–
530, Association for Computational Linguistics, Oct. 2005.

[48] R. McDonald and F. Pereira, “Online learning of approximate dependency
parsing algorithms,” in 11th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, (Trento, Italy), pp. 81–88, Association
for Computational Linguistics, Apr. 2006.

[49] Y.-J. Chu and T.-H. Liu, “On the shortest arborescence of a directed graph,”
Science Sinica, vol. 14, pp. 1396–1400, 1965.

84

[50] J. Edmonds, “Optimum branchings,” Journal of Research of the National Bu-
reau of Standards, vol. 71b, pp. 233–240, 1967.

[51] T. Dozat and C. D. Manning, “Deep biaffine attention for neural dependency
parsing,” arXiv preprint arXiv:1611.01734, 2016.

[52] T. Dozat, P. Qi, and C. D. Manning, “Stanford’s graph-based neural depen-
dency parser at the CoNLL 2017 shared task,” in Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal Depen-
dencies, (Vancouver, Canada), pp. 20–30, Association for Computational Lin-
guistics, Aug. 2017.

[53] T. Dozat, Arc-Factored Biaffine Dependency Parsing. PhD thesis, Stanford
University, California, US, 2019.

[54] E. Kiperwasser and Y. Goldberg, “Simple and accurate dependency parsing
using bidirectional LSTM feature representations,” Transactions of the Associ-
ation for Computational Linguistics, vol. 4, pp. 313–327, 2016.

[55] K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher, “A joint many-task
model: Growing a neural network for multiple NLP tasks,” in Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Process-
ing, (Copenhagen, Denmark), pp. 1923–1933, Association for Computational
Linguistics, Sept. 2017.

[56] X. Zhang, J. Cheng, and M. Lapata, “Dependency parsing as head selection,”
in Proceedings of the 15th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long Papers, (Valencia, Spain),
pp. 665–676, Association for Computational Linguistics, Apr. 2017.

[57] R. Jackendoff, X’ syntax: A study of phrase structure. MIT, 1977.

[58] A. Przepiórkowski and A. Patejuk, “Arguments and adjuncts in Universal De-
pendencies,” in Proceedings of the 27th International Conference on Computa-
tional Linguistics, (Santa Fe, New Mexico, USA), pp. 3837–3852, Association
for Computational Linguistics, Aug. 2018.

[59] R. Kaplan, “Lexical functional grammar, a formal system for grammatical rep-
resentation. the mental representation of grammatical relations, ed. by joan
bresnan, 173–281,” 1982.

[60] J. Bresnan, A. Asudeh, I. Toivonen, and S. Wechsler, Lexical-functional syntax.
John Wiley & Sons, 2015.

[61] K. Hale and S. Keyser, Prolegomenon to a Theory of Argument Structure. Lin-
guistic Inquiry Monographs, MIT Press, 2002.

[62] W. Croft, Syntactic categories and grammatical relations: The cognitive orga-
nization of information. University of Chicago Press, 1991.

85

[63] Z. Li, J. Cai, S. He, and H. Zhao, “Seq2seq dependency parsing,” in Pro-
ceedings of the 27th International Conference on Computational Linguistics,
(Santa Fe, New Mexico, USA), pp. 3203–3214, Association for Computational
Linguistics, Aug. 2018.

[64] D. johanka Spoustová and M. Spousta, “Dependency parsing as a sequence
labeling task,” in Prague Bulletin of Mathematical Linguistics, 2010.

[65] E. Kiperwasser and M. Ballesteros, “Scheduled multi-task learning: From syn-
tax to translation,” Transactions of the Association for Computational Linguis-
tics, vol. 6, pp. 225–240, 2018.

[66] M. Strzyz, D. Vilares, and C. Gómez-Rodríguez, “Viable dependency pars-
ing as sequence labeling,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), (Minneapolis,
Minnesota), pp. 717–723, Association for Computational Linguistics, June
2019.

[67] J. Nivre, Ž. Agić, L. Ahrenberg, L. Antonsen, M. J. Aranzabe, M. Asahara,
L. Ateyah, M. Attia, A. Atutxa, E. Badmaeva, M. Ballesteros, E. Banerjee,
S. Bank, J. Bauer, K. Bengoetxea, R. A. Bhat, E. Bick, C. Bosco, G. Bouma,
S. Bowman, A. Burchardt, M. Candito, G. Caron, G. Cebiroğlu Eryiğit,
G. G. A. Celano, S. Cetin, F. Chalub, J. Choi, Y. Cho, S. Cinková, Ç. Çöl-
tekin, M. Connor, M.-C. de Marneffe, V. de Paiva, A. Diaz de Ilarraza,
K. Dobrovoljc, T. Dozat, K. Droganova, M. Eli, A. Elkahky, T. Erjavec,
R. Farkas, H. Fernandez Alcalde, J. Foster, C. Freitas, K. Gajdošová, D. Gal-
braith, M. Garcia, F. Ginter, I. Goenaga, K. Gojenola, M. Gökırmak, Y. Gold-
berg, X. Gómez Guinovart, B. Gonzáles Saavedra, M. Grioni, N. Grūzı̄tis,
B. Guillaume, N. Habash, J. Hajič, J. Hajič jr., L. Hà Mỹ, K. Harris,
D. Haug, B. Hladká, J. Hlaváčová, P. Hohle, R. Ion, E. Irimia, A. Johannsen,
F. Jørgensen, H. Kaşıkara, H. Kanayama, J. Kanerva, T. Kayadelen, V. Ket-
tnerová, J. Kirchner, N. Kotsyba, S. Krek, S. Kwak, V. Laippala, L. Lam-
bertino, T. Lando, P. Lê Hồng, A. Lenci, S. Lertpradit, H. Leung, C. Y.
Li, J. Li, N. Ljubešić, O. Loginova, O. Lyashevskaya, T. Lynn, V. Macke-
tanz, A. Makazhanov, M. Mandl, C. Manning, R. Manurung, C. Mărănduc,
D. Mareček, K. Marheinecke, H. Martínez Alonso, A. Martins, J. Mašek,
Y. Matsumoto, R. McDonald, G. Mendonça, A. Missilä, V. Mititelu, Y. Miyao,
S. Montemagni, A. More, L. Moreno Romero, S. Mori, B. Moskalevskyi,
K. Muischnek, N. Mustafina, K. Müürisep, P. Nainwani, A. Nedoluzhko,
L. Nguyễn Thi., H. Nguyễn Thi. Minh, V. Nikolaev, R. Nitisaroj, H. Nurmi,
S. Ojala, P. Osenova, L. Øvrelid, E. Pascual, M. Passarotti, C.-A. Perez, G. Per-
rier, S. Petrov, J. Piitulainen, E. Pitler, B. Plank, M. Popel, L. Pretkalnin, a,
P. Prokopidis, T. Puolakainen, S. Pyysalo, A. Rademaker, L. Real, S. Reddy,
G. Rehm, L. Rinaldi, L. Rituma, R. Rosa, D. Rovati, S. Saleh, M. Sanguinetti,
B. Saulı̄te, Y. Sawanakunanon, S. Schuster, D. Seddah, W. Seeker, M. Seraji,
L. Shakurova, M. Shen, A. Shimada, M. Shohibussirri, N. Silveira, M. Simi,
R. Simionescu, K. Simkó, M. Šimková, K. Simov, A. Smith, A. Stella, J. Str-
nadová, A. Suhr, U. Sulubacak, Z. Szántó, D. Taji, T. Tanaka, T. Trosterud,

86

A. Trukhina, R. Tsarfaty, F. Tyers, S. Uematsu, Z. Urešová, L. Uria, H. Uszkor-
eit, G. van Noord, V. Varga, V. Vincze, J. N. Washington, Z. Yu, Z. Žabokrtský,
D. Zeman, and H. Zhu, “Universal dependencies 2.0 – CoNLL 2017 shared
task development and test data,” 2017. LINDAT/CLARIAH-CZ digital library
at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathe-
matics and Physics, Charles University.

[68] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” in ICLR, 2013.

[69] U. Türk, F. Atmaca, Ş. B. Özateş, G. Berk, S. T. Bedir, A. Köksal, B. Ö.
Başaran, T. Güngör, and A. Özgür, “Boun treebank,” 2022.

[70] M. Straka, J. Hajič, and J. Straková, “UDPipe: Trainable pipeline for pro-
cessing CoNLL-U files performing tokenization, morphological analysis, POS
tagging and parsing,” in Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), (Portorož, Slovenia),
pp. 4290–4297, European Language Resources Association (ELRA), May
2016.

[71] Şaziye B. Özateş, Deep Learning Based Dependency Parsing for Turkish. PhD
thesis, Boğaziçi Univesity, Istanbul, Turkey, 2022.

[72] C. Alberti, K. Lee, and M. Collins, “A bert baseline for the natural questions,”
ArXiv, vol. abs/1901.08634, 2019.

[73] Y. Liu, “Fine-tune bert for extractive summarization,” arXiv preprint
arXiv:1903.10318, 2019.

[74] J. Zhu, Y. Xia, L. Wu, D. He, T. Qin, W. Zhou, H. Li, and T.-Y. Liu, “Incorpo-
rating bert into neural machine translation,” arXiv preprint arXiv:2002.06823,
2020.

[75] Y. Goldberg, “Assessing bert’s syntactic abilities,” arXiv preprint
arXiv:1901.05287, 2019.

[76] G. Jawahar, B. Sagot, and D. Seddah, “What does BERT learn about the struc-
ture of language?,” in Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, (Florence, Italy), pp. 3651–3657, Associ-
ation for Computational Linguistics, July 2019.

[77] J. Hewitt and C. D. Manning, “A structural probe for finding syntax in word
representations,” in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), (Minneapolis, Minnesota),
pp. 4129–4138, Association for Computational Linguistics, June 2019.

[78] X. Song, A. Salcianu, Y. Song, D. Dopson, and D. Zhou, “Fast wordpiece
tokenization,” arXiv preprint arXiv:2012.15524, 2020.

87

[79] R. Tsarfaty, D. Seddah, Y. Goldberg, S. Kuebler, Y. Versley, M. Candito, J. Fos-
ter, I. Rehbein, and L. Tounsi, “Statistical parsing of morphologically rich
languages (SPMRL) what, how and whither,” in Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Lan-
guages, (Los Angeles, CA, USA), pp. 1–12, Association for Computational
Linguistics, June 2010.

[80] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[81] D. Zeman, J. Hajič, M. Popel, M. Potthast, M. Straka, F. Ginter, J. Nivre, and
S. Petrov, “CoNLL 2018 shared task: Multilingual parsing from raw text to
Universal Dependencies,” in Proceedings of the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, (Brussels,
Belgium), pp. 1–21, Association for Computational Linguistics, Oct. 2018.

[82] B. Can, H. Aleçakır, S. Manandhar, and C. Bozşahin, “Joint learning of mor-
phology and syntax with cross-level contextual information flow,” Natural
Language Engineering, vol. 28, no. 6, pp. 763–795, 2022.

[83] P. Kingsbury and M. Palmer, “From TreeBank to PropBank,” in Proceedings
of the Third International Conference on Language Resources and Evaluation
(LREC’02), (Las Palmas, Canary Islands - Spain), European Language Re-
sources Association (ELRA), May 2002.

[84] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An annotated
corpus of semantic roles,” Comput. Linguist., vol. 31, p. 71–106, mar 2005.

[85] G. G. Şahin, Building of Turkish PropBank and Semantic Role Labeling of
Turkish. PhD thesis, Istanbul Technical University, Istanbul, Turkey, 2018.

[86] C. Bonial, “English propbank annotation guidelines,”

[87] V. Punyakanok, D. Roth, and W.-t. Yih, “The importance of syntactic pars-
ing and inference in semantic role labeling,” Comput. Linguist., vol. 34,
p. 257–287, jun 2008.

[88] D. Gildea and M. Palmer, “The necessity of parsing for predicate argument
recognition,” in Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, (USA), p. 239–246, Association for
Computational Linguistics, 2002.

[89] D. Gildea and D. Jurafsky, “Automatic labeling of semantic roles,” Computa-
tional Linguistics, vol. 28, no. 3, pp. 245–288, 2002.

[90] W. Che, Z. Li, Y. Hu, Y. Li, B. Qin, T. Liu, and S. Li, “A cascaded syntactic
and semantic dependency parsing system,” in CoNLL 2008: Proceedings of the
Twelfth Conference on Computational Natural Language Learning, (Manch-
ester, England), pp. 238–242, Coling 2008 Organizing Committee, Aug. 2008.

88

[91] R. Johansson and P. Nugues, “Dependency-based syntactic–semantic analysis
with PropBank and NomBank,” in CoNLL 2008: Proceedings of the Twelfth
Conference on Computational Natural Language Learning, (Manchester, Eng-
land), pp. 183–187, Coling 2008 Organizing Committee, Aug. 2008.

[92] G. Musillo and P. Merlo, “Accurate parsing of the Proposition Bank,” in Pro-
ceedings of the Human Language Technology Conference of the NAACL, Com-
panion Volume: Short Papers, (New York City, USA), pp. 101–104, Associa-
tion for Computational Linguistics, June 2006.

[93] S.-t. Yi and M. Palmer, “The integration of syntactic parsing and semantic role
labeling,” in Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), (Ann Arbor, Michigan), pp. 237–240, As-
sociation for Computational Linguistics, June 2005.

[94] T. Shi, I. Malioutov, and O. Irsoy, “Semantic role labeling as syntactic depen-
dency parsing,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), (Online), pp. 7551–7571, Associ-
ation for Computational Linguistics, Nov. 2020.

[95] R. Sutton and A. Barto, “Reinforcement learning: An introduction,” IEEE
Transactions on Neural Networks, vol. 9, no. 5, pp. 1054–1054, 1998.

[96] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–
292, 1992.

[97] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning,” nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[98] C. Pan, S. T. Barratt, and J. T. Barratt, “Improving the neural dependency
parser,” 2018.

[99] T. Naseem, A. Shah, H. Wan, R. Florian, S. Roukos, and M. Ballesteros, “Re-
warding Smatch: Transition-based AMR parsing with reinforcement learning,”
in Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, (Florence, Italy), pp. 4586–4592, Association for Computa-
tional Linguistics, July 2019.

[100] J. Luketina, N. Nardelli, G. Farquhar, J. Foerster, J. Andreas, E. Grefenstette,
S. Whiteson, and T. Rocktäschel, “A survey of reinforcement learning in-
formed by natural language,” arXiv preprint arXiv:1906.03926, 2019.

[101] J. Hockenmaier, “Parsing with generative models of predicate-argument struc-
ture,” in Proceedings of the 41st Annual Meeting on Association for Compu-
tational Linguistics - Volume 1, ACL ’03, (USA), p. 359–366, Association for
Computational Linguistics, 2003.

89

90

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kayadelen, Tolga

E-mail: kayadelen.tolga@gmail.com

EDUCATION

Degree Department Institution Year of Graduation
M.A. English Linguistics Mersin University 2008
B.A. English Literature Erciyes University 2005

PROFESSIONAL EXPERIENCE

Year Institution Enrollment
2016-present Google UK Senior Computational Linguist
2014-2016 Google Turkey Project Manager
2011-2014 Erciyes University Lecturer in Linguistics
2005-2011 Mersin University Lecturer

PUBLICATIONS

Kayadelen, T., Öztürel, A., and Bohnet, B. (2020). A gold standard depen-
dency treebank for Turkish. Proceedings of the 12th International Conference
on Language Resources and Evaluation (LREC)(pp. 5156-5163).

Öztürel, A., Kayadelen, T., and Demirşahin, I. (2019). A syntactically ex-
pressive morphological analyzer for Turkish. Proceedings of the 14th Interna-
tional Conference on Finite-State Methods and Natural Language Processing
(FSMNLP) (pp. 65-75).

Kagy, J.-F., Kayadelen, T., Ma, J., Rostamizadeh, A., and Stranadova, J. (2019).
The practical challenges of active learning: lessons learned from live experi-
mentation. Presented at 2019 ICML Workshop on Human in the Loop Learn-
ing (HILL 2019) Long Beach, USA. https://arxiv.org/abs/1907.
00038.

91

https://arxiv.org/abs/1907.00038.
https://arxiv.org/abs/1907.00038.

Kayadelen, T. (2011). Bare Noun Direct Objects and Telicity in Turkish.
Mersin Üniversitesi Dil ve Edebiyat Dergisi, 5(2).

Aksan, Y., Kayadelen, T., and Yücel, Ö. (2010). Olay anlambilimi açısından
Türkçe durum eylemleri üzerine kimi gözlemler. Proceedings of the 23rd Na-
tional conference on linguistics (pp. 251-269).

92

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Organization of the Thesis
	Contributions of the Thesis

	Approaches to Predicate Argument Structure
	Lexical-Projectionist View
	Construction Grammar (CxG)
	Combinatory Categorial Grammar
	Conclusion

	Dependency Parsing
	Dependency Parsing
	Transition Based Parsing
	Graph Based Parsing

	Neural graph based parser implementations
	Conclusion

	The Data
	Introduction
	Dependency Structure and Grammatical Relations in UD
	Argument-Adjunct Distinction
	Control and Raising
	Nominal Modification

	Conclusion

	Label First Parsing
	Introduction
	Label First Parsing
	Datasets
	Experiments
	Experiment 1: BERT+LSTM Model
	Description
	Results

	Experiment 2: Joint LSTM Model
	Description
	Results

	Error Analysis
	Effect of Sentence Length
	Errors in Verbal Predicate Argument Structure

	Conclusion

	Label First Parsing with Semantic Roles
	Introduction
	Propbank and Semantic Dependencies
	Experiment
	Limitations of the Data
	Model
	Results

	Conclusion

	Label First Parsing with an RL Based Reranker: A Preliminary Experiment
	Reinforcement Learning
	RL in NLP
	Label First Parsing using an RL Reranker
	An RL based label reranker
	Training the label reranker

	Results and Discussion
	Conclusion

	Conclusion
	Future Work

	REFERENCES
	CURRICULUM VITAE

