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ABSTRACT 

 

A DATA-INTEGRATED EDGE COMPUTING TECHNOLOGY ROADMAP FOR 

INDUSTRIAL INTERNET OF THINGS  

 

 

Bayar, Alp 

MSc., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. P. Erhan Eren 

Co-Supervisor: Dr. Kerem Kayabay 

  

April 2023, 83 pages 

 

As the volume and velocity of data produced from production systems increase, 

transmitting all the data to a central cloud for processing becomes costly in time and 

network resources such as bandwidth and energy. In critical Industrial Internet of Things 

(IIoT) environments where a business decision requires an immediate course of action, 

edge computing as a new paradigm brings faster response time by processing data near 

where it is generated. As paradigms such as edge computing emerge, there is a lack of 

research on guiding digitally transforming organizations to utilize emerging technologies 

strategically. This study aims to investigate applications of edge computing and evaluate 

them regarding business objectives, market trends, technologies used, and challenges. To 

achieve those, first, this study investigates state-of-the-art edge computing architectures 

by their objective and application domain. Then, the study applies data-driven technology 

roadmapping from emerging technology management literature to edge computing 

applications in IIoT. It uses topic modeling, a natural language processing approach for 

identifying market and technology trends. It extends data-integrated roadmapping 

literature by using it as a technology and social change assessment tool, by integrating 

data as a layer of the data-driven technology roadmap.   

 

Keywords: Edge Computing, Technology Management, Industrial Internet of Things, 

Technology Roadmapping, Topic Modeling 
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ÖZ 

 

ENDÜSTRİYEL NESNELERİN İNTERNETİ İÇİN VERİ GÜDÜMLÜ UÇ BİLİŞİM 

TEKNOLOJİ YOL HARİTASI  

 

 

Bayar, Alp 

 Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. P. Erhan Eren 

Tez Eş Danışmanı: Dr. Kerem Kayabay 

 

Nisan 2023, 83 sayfa 

 

Üretim sistemlerinden üretilen verilerin hacmi ve hızı arttıkça, tüm verinin işlenmek üzere 

merkezi bir bulut sunucusuna iletilmesi zaman, bant genişliği ve enerji gibi kaynaklar 

açısından maliyetleri artırmaktadır. Veri odaklı karar vermek adına, bir organizasyonda 

anlık olarak karar almak gereken kritik endüstriyel nesnelerin interneti ortamlarında, yeni 

bir bilgi işlem paradigması olarak uç bilişim, verileri üretildiği yere yakın bir yerde 

işleyerek daha hızlı yanıt süresi sağlar. Uç bilişim gibi modeller ortaya çıktıkça, dijital 

dönüşüm sürecinde olan kuruluşlara gelişmekte olan teknolojileri stratejik olarak 

kullanabilme konusunda rehberlik edecek araştırma ve bilgi eksiklikleri tespit edilmiştir. 

Buna istinaden bu çalışma, uç bilişim uygulamalarını araştırmayı ve bunları işletme 

gereksinimleri, pazar eğilimleri, kullanılan teknolojiler ve karşılaşılan zorluklar açısından 

değerlendirmeyi amaçlamaktadır. Bu doğrultuda ilk olarak; güncel uç bilgi işlem 

mimarisinin endüstriyel nesnelerin interneti uygulamaları araştırılmış, çalışmalar 

öncelikli amaçları ve uygulandıkları alana göre incelenmiştir. Daha sonra teknoloji 

yönetimi literatürü incelenmiş ve veri odaklı teknoloji yol haritası çerçevesi endüstriyel 

nesnelerin interneti ortamlarında uç bilgi işlem mimari ve uygulamaları konusuna 

uygulanmıştır. Pazar ve teknoloji eğilimlerini belirlemek için bir doğal dil işleme 

uygulaması olan konu modelleme algoritmaları kullanılmıştır. Teknoloji yol haritasının 

bir katmanı olarak veri, yol haritasına dâhil edilerek, veri odaklı yol haritası, bir teknoloji 

ve sosyal değişim değerlendirme aracı olarak genişletilmiş ve veri güdümlü yol haritası 

literatürüne eklenmiştir.  

Anahtar Sözcükler: Uç Bilişim, Teknoloji Yönetimi, Endüstriyel Nesnelerin İnterneti, 

Teknoloji Yol Haritalama, Konu Modelleme  
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CHAPTER 1 

CHAPTER 

INTRODUCTION 

 

1.1 Research Background 

In digital transformation, improvements in digital technologies enable people to build 

new capabilities and improve the performance of applications in business use cases, 

and these result in social changes driven by changes in the competitors and customers 

(Pousttchi et al., 2019; Vial, 2019). Although different definitions and classifications 

exist; cloud computing, internet of things, big data, and data analytics are a few 

examples of digital technologies (Pousttchi et al., 2019), and paradigm changes evoked 

by them enable the Industry 4.0 revolution (Zaki, 2019). In the context of Industry 4.0, 

machines in a manufacturing environment can interact with their environment, and are 

context-aware, smart, and even self-learning (Gokalp et al., 2016). Enabler 

technologies of this paradigm either can be new cyber-physical technologies, or some 

of them refer to the convergence of multiple technologies and some are only paradigm 

shifts in using available technologies in a new business model. These data-driven 

business models enabled by digital technologies are shaped around data (Fruhwirth et 

al., 2020), and are concerned with collecting, transmitting, processing, and using it as 

efficiently and as effectively as possible to digitally transform and achieve data-driven 

organizations.  

The Internet of Things (IoT) brought many new opportunities to industrial systems. 

The term coined by Kevin Ashton in 1999, is the idea of enabling objects to manage 

their tasks without human intervention by communicating with each other (Ashton, 

2009). These objects generally see the world through the data gathered from their 

sensors and actuators and can manage their tasks without human intervention.  

Industrial IoT (IIoT) refers to IoT applications in the industrial domains. According to 

several market research companies (AllTheResearch, 2021; MarketsandMarkets, 

2021), the IIoT market is around $77 billion and is expected to reach around $110 

billion by 2027. Gartner predicts that around 75% of business data will be generated 

outside a traditional central cloud architecture by 2025. This number was around 10% 

in 2021 (Gartner, 2018). 



2 

 

 

Data from production systems are traditionally sent and processed in cloud-based 

central computing architectures (Oracle, 2023). As the volume and velocity of data 

increase, transmitting all the data to a central cloud for processing becomes costly in 

time and network resources such as bandwidth and energy consumption. In critical 

IIoT environments where a business decision requires immediate computation and 

action, edge computing as a new paradigm brings faster response times (Yi et al., 

2015). The term “edge” refers to the nodes in the opposite direction of the cloud data 

center (Accenture, 2023). Rather than transmitting and processing a high volume of 

data from IIoT devices to a central cloud, edge computing reduces network congestion 

by moving computing and storage near where data is generated (Qiu et al., 2020). This 

reduced latency enables real-time processing of data and enables many opportunities 

to improve an organization's business processes. In an edge architecture, sensors, 

actuators, and other production machine logs can be sent to edge nodes, which are 

computing devices with smaller capabilities compared to a cloud server. These edge 

nodes can analyze, process or store the whole or a fragment of data. There are many 

edge architectures proposed, varying in technological properties depending on the 

business requirements of the use case they are applied (Yu et al., 2018).   

Investigating available real-life applications and understanding edge architectures is 

significant for organizations since practitioners can understand the technology trends 

and architectures for a particular IIoT edge computing use case. In the following 

section, problems and lack of knowledge identified from the socio-technical 

perspective on edge computing applications in the literature are questioned. 

1.2 Problem Statement 

Analyzing technological development patterns and convergences, and predicting 

future technologies and their relations to market trends are important questions of 

research in many fields, helping organizations to achieve competitive advantage (Zaki, 

2019). Practitioners and researchers are increasing awareness of the potential of edge 

computing, however, the type of architectures to use in their case to achieve which 

business objective is a question, also there are many challenges in utilizing those demo 

applications in production and slowing digitally transforming the business processes 

(Atieh, 2021). Although edge computing technology makes a good fit to use in IIoT 

systems, the data underachiever nature of the manufacturing industry (Kayabay et al., 

2022) and lack of strategic technology management in industrial corporations makes 

it hard to adopt a cloud-edge computing best practice architecture (Bayar et al., 2023). 

While paradigms such as edge computing emerge, there is a research gap in edge 

computing literature, on guiding digitally transforming organizations to utilizing 

emerging technologies strategically. Current studies review existing edge 

architectures, possible application domains, and objectives; however, they lack a 

business strategy perspective.  
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Technology roadmapping is a tool for technology management and strategic 

technology planning. It can be used for exploring and understanding relationships 

between markets, technological resources, and strategic objectives, also product, 

service, strategy planning, and more (Phaal et al., 2004b). It is a flexible and 

customizable tool, which can have different goals such as planning, forecasting, 

assessment, and scopes such as industrial, national, and organizational. At the sectoral 

level, it helps to identify and forecast future trends using exploratory methods while at 

an organizational level, it increases communication between stakeholders for planning 

markets, products services and technologies over time (Lee and Park, 2005).  

Indeed, technology management tools such as roadmapping can help practitioners 

understand technology trends and architectures (Lee and Park, 2005) but no study 

explores any technology management framework for edge computing in IIoT. 

Nonetheless, while developing a strategy for a computing paradigm, an important asset 

to consider is the data, subject to be transferred, processed, analyzed, or stored for the 

business processes (Han and Geum, 2020). New tools and frameworks for 

management and strategy should be shaped considering the value of data, as the main 

resource of digital transformation. (Han and Geum, 2020) integrated data layer to a 

technology roadmap for smart service planning. (Kayabay et al., 2022) proposed a data 

science roadmapping framework for organizations to structurally plan a digital 

transformation process in order to become data-driven. The study uses roadmapping 

as an organizational planning tool, conducting workshops for data-related, 

technological, and organizational resources, and discusses it can be extended as a 

social assessment and evaluation tool to complement the data-integrated roadmaps for 

future research. Based on this, it is evident that there is a lack of using quantitative 

approaches, especially with the rapid rise of transformer-based NLP algorithms, in 

large textual databases for developing data-integrated strategic planning and 

technological assessment for emerging technologies. This thesis uses roadmap as a 

social assessment and evaluation tool and discusses it can be used with other 

technology forecasting tools and can be integrated to complement the data-integrated 

roadmaps for future research as discussed in (Kayabay et al., 2022). 

1.3 Research Aim and Objectives 

This study aims to investigate applications of edge computing and compile academic 

studies regarding business objectives, market trends, technologies used, and 

challenges. The findings of the study will provide insights into edge computing 

adoption, research, and development. It will increase the understanding of 

organizations and practitioners. Research objectives are stated below:  

I. Investigating applications of edge architectures in industrial environments to 

understand the motivations behind using these technologies. 
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II. Identifying and mapping the relationships between technology and market 

trends of edge computing.  

III. Developing a data-integrated edge computing technology roadmap using data-

driven approaches. 

1.4 Significance of the study 

This study integrates research areas of edge computing and data-driven roadmapping 

for emerging technologies. 

I. It investigates edge computing applications in IIoT and evaluates them by their 

business objectives and application domains. 

II. It investigates data-driven technology roadmapping literature to bridge the 

sociotechnical knowledge gaps in the edge computing domain. 

III. Methodologically, it contributes to exploratory technology assessment and 

forecasting literature by combining SLR and topic modeling into technology 

roadmapping.  

IV. It extends data-integrated roadmapping literature as a technology and social 

change assessment tool and applies it to the edge computing domain.   

V. It integrates dynamic topic modeling into technology roadmapping stated as in 

future work by (Feng et al., 2022; Kim and Geum, 2021). It evaluates and 

compares BERTopic and LDA algorithms for creating topic models. 

1.5 Structure of the Thesis 

The subsequent parts of this thesis are organized as follows: After the introduction in 

Chapter 1, Chapter 2 presents a comprehensive review of literature in related research 

areas, and evaluates the state of knowledge. As stated in Chapter 2.10, knowledge gaps 

identified in the literature review revealed the need for this study. Edge computing 

literature and socio-technical studies on other emerging technologies are investigated 

to bridge two research areas. Chapter 3 presents the research aim, research questions, 

research objectives and chosen methods to be used for achieving the objectives of the 

study. As one of the chosen methods, the systematic literature review is presented in 

Chapter 4 which examines edge computing applications in IIoT. Chapter 5 employs 

quantitative exploratory methods for identifying market and technology trends and 

developing an edge computing technology roadmap for IIoT. Finally, Chapter 6 
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concludes the study by summarizing and discussing findings, results, limitations, and 

prescribes fields of future work.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Edge Computing and Related Terms 

In this chapter, a short history of edge computing and related fog computing, multi-

access edge computing, mobile edge computing, and cloudlet terms are explained. 

Practically, these terms can be used interchangeably in combinations. However, 

conceptual definitions and how terms are used in literature de facto are explained 

below.  

2.1.1 Edge Computing 

As introduced in Chapter 1.1, edge computing is a distributed computing paradigm 

referring to processing data closer to sources, increasing processing speeds, enabling 

to handle of high volumes of data without causing bandwidth congestion, and yielding 

a lower response time to end-users (IBM, 2020). The origins of edge computing can 

be traced back to the content delivery network proposed by Akamai in the early ’90s 

(Kuever, 2019), to deliver multimedia content to users using caching in edge servers 

closer to end-users (Dilley et al., 2002). Another important milestone for edge 

computing was (Noble et al., 1997), conducting speed recognition using offloading 

from mobile devices with limited computing capability to central servers. These 

studies were followed by academic research on improving battery life and improving 

computing capabilities of mobile devices (Satyanarayanan, 2017). Technical research 

focuses on improving technical properties of edge architectures such as security issues, 

the energy consumption of hardware, computational limitations and efficient 

offloading, and limited storage capacity (Bayar et al., 2023).  

Motivations of using edge computing in IIoT environments are explained in Chapter 

2.2, followed by challenges of implementing edge architectures in Chapter 2.3, open-

source tools available in the edge landscape in Chapter 2.4, and market roles and 

responsibilities in Chapter 2.5. 
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2.1.2 Fog Computing 

Fog computing is a similar concept introduced by Cisco, focusing more on the 

infrastructure between edge devices and central cloud servers (Qiu et al., 2020). After 

reviewing studies in the literature, Fog and Edge terms are used interchangeably in 

this study because what they are trying to achieve is the same from the business 

objective perspective. The fog computation term is used in the literature that focuses 

on the architecture and technical infrastructure level and is considered a subset of edge 

computing (Qiu et al., 2020).  

2.1.3 Cloudlet 

Cloudlet terms were introduced by (Satyanarayanan et al., 2009), which propose the 

core feature of edge computing, reducing latency using a data center in a box 

connected to the internet, rather than using a central cloud. Cloudlets reside in a middle 

layer between the mobile edge device and the central cloud, and function as a small 

data center providing cloud capabilities closer to mobile devices. In 2017, NIST 

defined a cloudlet as a virtual fog node in a fog architecture similar to a virtualized 

switch, or a virtual machine (Iorga et al., 2018).  

2.1.4 Mobile Edge Computing 

This term refers to networks with mobile devices at the edge, namely smartphones, 

and tablets. Initially, ETSI used the MEC acronym for mobile edge computing, but as 

the research progressed, they realized edge devices, mostly IIoT devices in 

manufacturing do not have to be mobile devices. So in 2017 ETSI officially changed 

the term in the research group’s name from Mobile Edge Computing to Multi-Access 

Edge Computing (Dahmen-Lhuissier, n.d.). The core of Mobile edge networks is built 

on virtualization. European 5G Public Private Partnership defines MEC as A key 

enabler for 5G networks together with NFV and SDN technologies (Hu et al., 2015).   

2.1.5 Multi-Access Edge Computing (MEC) 

MEC is an extension of mobile computing in edge computing. ETSI defines the MEC 

as a technology providing IT and cloud computing services within Radio Access 

Network (RAN) in 4G and 5G (Fabio Giust and Gianluca Verin, 2018). MEC extends 

edge computing, reducing computing and storage energy consumption and bringing 

mobile devices with lower calculation capabilities when compared to cloud computing 

infrastructure. ETSI defined five key features of MEC was on-premises, proximity, 

reduced latency, location awareness, and network context information (Carvalho et al., 

2021). Although there are technical differences between MEC, cloudlet, and fog 

computing, they are all considered under the edge computing umbrella in this study. 
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2.2 Edge Computing in IIoT: Motivation and Considerations 

Edge computing has been a complementary and supporting paradigm to cloud 

computing rather than competitive. For understanding what edge computing brings, in 

an experiment carried out by (Yi et al., 2015) on a face recognition task, it has been 

shown that moving applications from the cloud to the edge reduces 900 msec to 160 

in response time. 

With better response times, edge nodes can help monitor and control processes (L. Li 

et al., 2018) or machine status (Bose et al., 2019), make forecasts under uncertainty 

(Taïk and Cherkaoui, 2020), spot bottlenecks, inefficiencies, and deep-dive failures 

into their root causes. There are studies in the following sections that will provide 

information about how these decisions are made in literature while communicating 

machines with edge architectures keeping optimal bandwidth, energy consumption, 

costs, and processing capabilities. 

In terms of data security and privacy, in an edge architecture, data is less transmitted 

in a network, therefore, is less exposed to other network components, reducing the 

single point of failure in central architectures and reducing risks of data leakages (Qiu 

et al., 2020). However, vulnerabilities are higher as stated in the section below, 

differences in edge nodes can cause and might bring different security requirements 

than in cloud architectures (Carvalho et al., 2021).  

2.3 Edge Computing in IIoT: Challenges 

Unlike central cloud systems, edge computing systems are decentralized, consisting of 

different technologies on the edge nodes, so resource management needs to be worked 

on more. In their review, (Khan et al., 2019) state that edge computing platforms are 

heterogeneous considering data communication, protocols, APIs, policies, platforms, 

and energy consumption.  

In a similar study to this, (Qiu et al., 2020) present current challenges in literature such 

as security, routing, task scheduling, energy efficiency, data storage, analytics, and 

standardization.  

Several storage servers may be deployed with different operating systems to store and 

manage data, which creates naming problems. Traditional naming systems like DNS 

are insufficient for dynamic edge computing networks, and IP-based naming becomes 

too costly for edge nodes with multiple sources and tasks (Yu et al., 2018).  

As computing shifts from the center to the edge, scalable and elastic sharing of 

resource pools becomes hard to achieve and is limited. Edge devices are harder to 
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manage the lifecycle and orchestrate dependencies between them. Edge computing 

needs more effort in infrastructure management mainly due to the heterogeneity of 

devices, different communication protocols, technologies, and several other 

constraints like bandwidth, CPU, memory, and battery. There are standardization 

efforts for orchestration, such as ETSI MEC and ETSI NFV Management and 

Orchestration (Industrial Internet Consortium et al., 2016).  

2.4 Edge Computing Landscape and Open-Source Tools 

Working together with academia and companies with areas of expertise is vital for 

achieving the best practices of IIoT. Being part of initiatives, contributing to 

consortiums, and helping collaborations mentioned in this chapter are essential. The 

OpenFog Consortium was founded in 2015 by companies like Cisco, Intel, Dell, and 

Microsoft. The consortium merged with the Industrial Internet Consortium in 2019, 

which also had similar efforts, for example, a reference architecture called OpenFog, 

which many studies used as a reference. 

EdgeX Foundry is an open-source software framework, one of the eight projects 

hosted by the LF Edge organization of the Linux Foundation. LF Edge projects aim to 

create a unified edge community for increasing collaboration and cooperation. EdgeX 

provides a vendor-neutral, open-source IIoT edge computing common framework  

(The Linux Foundation, 2021). (Liu et al., 2019) reviewed and explained the 

differences between open-source edge computing tools considering performance, 

applicability, and energy-efficient deployment strategies. Liu’s work can guide the 

selection of appropriate open-source tools for a company to build its edge 

infrastructure. It is stated (Liu et al., 2019) that EdgeX is designed for IoT 

environments with various sensors, making it practical in automated factories, 

machinery systems, and industrial use cases. Another LF Edge project is Akraino, a 

set of integrated infrastructure that can serve a broader range of use cases. According 

to (Liu et al., 2019) it is created for network operators who focus on the edge 

infrastructure. One of the projects in an earlier stage, KubeEdge is worth mentioning 

for extending containerization orchestration capabilities into edge architectures. 

StarlingX by OpenStack, an edge infrastructure software platform (StarlingX, 2021), 

Eclipse Kura, ioFog, and fog05 platforms enable people to build IIoT gateways. 

Some of the frequently encountered open-source tools used in the architectures in the 

literature are explained below: Modbus, OPC UA, MQTT, and ZigBee are examples 

of open protocols frequently mentioned in open edge architectures literature. EdgeX 

can communicate with devices using these protocols, making it a good fit for IIoT.  

MySQL and MongoDB are popular open choices for storage.  

Grafana and Ganglia are monitoring and visualization systems.  

Docker is a popular containerization tool. Containerization is a natural fit for edge 
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computing due to easy deployment and light storage and computing requirements. 

Kubernetes is an orchestration tool for managing containerized applications in a 

scalable manner.  

2.5 Edge Computing Market Players and Roles  

According to Ericsson’s report (Carlos Brava and Henrik Backström, 2020), 

companies that operate in the domain are traditionally Cloud Service Providers, OT 

vendors, System Integrators, and Communication Service Providers. Companies like 

AWS, Microsoft, and Google are mentioned as Hyperscale Cloud Providers (HCP) in 

the paper as other key players in the edge ecosystem. With their bountiful resources, 

they can serve many companies from a variety of sectors and are able to drive the 

ecosystem. OT vendors are companies that utilize IoT as their primary business role. 

Companies such as Siemens, GE, and BMW use OT for their activities in smart 

manufacturing. These companies are more likely to coordinate with Cloud providers 

to realize applications and develop best practices. System Integrators are providers of 

edge computing tailor-made specific solutions that address varying market needs. 

They can also serve with tailor-made specific solutions.  

An edge computing market player can serve as a combination of full edge provider, 

partner edge provider, aggregator edge provider, and limited edge provider (Carlos 

Brava and Henrik Backström, 2020). Full edge providers provide infrastructure and 

platforms. Partner edge providers help with connectivity and reconfiguration of 

present infrastructure. Aggregator edge providers provide infrastructure software and 

platform as a service, and limited edge providers cover enterprises for most of their 

edge computing requirements, deciding edge computing setup. It is essential to know 

these roles and strategies in the market while selecting a partner to achieve company 

goals and forming an edge computing adoption strategy. 

2.6 Edge Computing as Enabler of IT/OT Convergence 

Traditionally, Information Technology (IT) is used for a more centralized office 

environment, computers, storage, networking devices, and infrastructure to process 

data. Operational Technology (OT), on the other hand, is associated with the edge 

devices in manufacturing like programmable logic controller (PLC), supervisory 

control, and data acquisition (SCADA) that were traditionally not connected to the 

internet, used to manage industrial processes or equipment (Denzler et al., 2020). 

IT/OT convergence has been discussed for standardizing OT, providing IIoT data to 

business strategic decision-making, and enabling new strategies and business models 

to utilize data. In IIoT, OT devices are generally connected as a distributed network 

architecture, making edge computing more convenient for the following: devices have 
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connectivity bottlenecks, applications need large data transmission, preprocessing is 

required before transferring data, or there are security issues for transferring all the 

data to a center for processing (Pop et al., 2021). 

By reengineering themselves in these ways, organizations will have a more convenient 

collection and analysis of the data obtained from a network of edge devices. IT/OT 

convergence reflects the true potential of building an edge computing architecture, 

faster decision-making in the industry, and increased business value through data-

driven operations. 

2.7 Edge Computing in IIoT Literature  

Edge computing applications in IIoT domain are to be investigated, focusing on studies 

with similar methodologies such as surveys and literature reviews. These secondary 

studies include information on the research focus such as creating a unified edge 

architecture, supporting technologies, technical opportunities, and challenges.  

(Banijamali et al., 2020) conducted a systematic literature review to identify critical 

architectures used in the convergence of cloud computing and IoT, referred to as CoT. 

In the search strategy, they included edge or fog or cloud keywords in the search 

strings, which is why this study is related to our research.  Also examining the 

relationship between the architectural style and quality attributes, they found 

performance efficiency, portability, and security have the most research attention.    

As their results suggest, the number of manufacturing applications was behind after 

smart cities, transportation and mobility systems, healthcare, and smart homes holding 

only 2% of the architectures in their research were in manufacturing. Investigating the 

popularity of “architectural design patterns” authors find “edge connectivity” pattern 

was the first followed by stream processing, virtual device representation telemetry 

ingestion. In edge connectivity, IoT gateways can connect any kind of device to the 

cloud without any adaptation problem (Banijamali et al., 2020). Although this work is 

comprehensive, industrial practitioners need more specific detailed guidance, and as 

stated in the future work section, standards or frameworks are needed for developers 

and researchers to select from existing technologies or develop their tailored solutions.   

(Khan et al., 2019) conducted a comprehensive survey on edge computing. The study 

discusses the edge computing paradigm, the latest problems, and use cases in 

businesses where low response time is essential. Classified edge computing as fog, 

cloudlet and mobile edge architectures and compared papers in these classes based on 

the objectives identified for each class. Following, identified key requirements for 

edge computing, such as smart billing mechanism, real-time applications support, a 

joint business model for management and deployment, resource management, 
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resource management, scalability, security and reliability capabilities. This study also 

evaluates edge solutions by their objectives. 

In a similar study, (Qiu et al., 2020) review surveys of edge computing, their focuses, 

findings, and differences, and discuss that the edge computing architectures in the 

literature do not explain each layer in detail. Then present current challenges in 

literature such as security, routing, task scheduling, energy efficiency, data storage, 

analytics and standardization. They suggest their proposed reference architecture 

differs in terms of considering the characteristics of IIoT in layers in more detail. 

Possible application areas of the architecture are also discussed such as smart vehicles, 

grids and manufacturing. Then, opportunities and challenges in the widespread 

adoption of edge computing are given.  

(Hamm et al., 2019) reviewed edge computing initiatives worldwide, and 

characterized them using layers that focus on edge computing. Then proposed a 

roadmap for edge computing development in terms of social, ecological, and economic 

sustainability, relating them to the main concerns of edge computing introduced in 

Reference Architecture Model for Edge Computing (RAMEC). These concerns are 

security, real-time capabilities, smart capabilities, and management capabilities.  

(Carvalho et al., 2021) state there is no consensus on the terms fog, edge, mobile edge, 

cloudlet, MEC and give examples of different views in the literature. They map studies 

with use cases and these paradigms with a table. Also, they present a chronologic 

examination of edge computing research topics, which is useful for researchers and 

practitioners to follow state-of-the-art applications.  

As explained below under Chapter 4, related studies focus on the technological aspects 

of edge architectures. They explain application domains, when and why to use 

technologies, and further work on the open research topics, however, most of the 

applications are experimental. It is found that there is a lack of a strategic deployment 

decision framework for the implementation of such technologies. All applications are 

trial-based, without sufficient information about organizational research and 

feasibility. After identifying the need for more strategic and sociotechnical knowledge 

on these issues, technology management literature is investigated for studies applied 

to similar different emerging technologies.  

2.8 Technology Management Activities  

Technology management activities along with supporting activities are explained to 

avoid confusion of terms. Management of Technology provides a hidden competitive 

advantage by bridging the knowledge and practical gap between science, engineering 

and management (National Research Council, 1987).  
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The core TM processes for managing and building technological capabilities:  

(Cetindamar and Phaal, 2017; Gregory, 1995; Rush et al., 2007)  

1. Identification of technologies that are currently not employed by the 

organization but might be necessary. 

2. Selection of technologies in line with business strategy. 

3. Acquisition of selected technologies, make-buy decisions.  

4. The exploitation of technology, utilizing new capabilities into business value.   

5. Protection of knowledge and know-how (e.g. patenting). 

6. Learning from all the knowledge produced in the process and making the TM 

processes sustainable. 

There are also activities supporting TM activities. Knowledge management, project 

management, and innovation management:  

Knowledge management aims to add and create value by leveraging know-how, 

experience, and judgment within and outside an organization. Comprises a range of 

practices used by organizations to identify, create represent and distribute knowledge 

for reuse, awareness, and learning. Knowledge includes awareness, cognition or 

recognition (know-what), capacity to act (know-how) as well as understanding (know-

why) that is within the mind (Desouza, 2005).  

Innovation management is the successful implementation of novel ideas in the form of 

a product, service, or business process. Innovation does not have to be limited to new 

technology, it can be a new business model, such as the cloud computing paradigm 

itself. Technology Management includes all decision-making to develop or use a 

technology within an organization (Cetindamar and Phaal, 2017).  

2.9 Technology Management Tools 

In this study, a method, tool, or framework for answering the problems stated in 

Chapter 1.2 regarding the edge computing domain is investigated from the technology 

management domain. Here, related alternatives are explained briefly.  

2.9.1 Technology Roadmapping  

Although there are older appearances of technology roadmapping by organizations 

such as NASA, Boeing, GE, and Lockheed (Kerr and Phaal, 2020); the first published 
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journal paper in manufacturing by Motorola in the late 80s integrated product and 

technology strategic planning (Willyard and McClees, 1987). Since then, roadmapping 

is widely used for supporting business strategy, innovation and policy. Technology 

roadmapping is a technology management tool and a process, while the output of the 

process is the technology roadmap. Roadmap itself is a visual representation having 

varying formats. One of the most generic roadmaps used is a layered chart with market, 

product, and technology layers with a time axis (Phaal et al., 2004b). A popular fast-

start method also called the “T-Plan”, developed by the Cambridge practical school, 

provides a starting point for organizations by conducting several workshops focusing 

on different aspects. The roadmapping process is based on the organizational and case-

dependent context therefore can be customized along with the roadmap structure 

(Phaal et al., 2004a).  

As explained in the problem statement in Chapter 1.2, technology roadmaps can be 

used for product planning, service planning, strategic planning, foresight, knowledge 

planning, technology forecasting, and technology assessment. Depending on the 

different purposes, the typology of the roadmaps can also be modified. The type of 

technology roadmapping process for mapping technologies to business operations and 

capabilities as service/capability planning (Phaal et al., 2001). This typology of 

technology roadmap is ostensibly convenient for the research questions of this study. 

In terms of time, two common types of technology roadmapping are retrospective and 

prospective analysis, also called backward and forward (Kostoff and Schaller, 2001). 

Retrospective analysis covers time frames from past to present using existing data and 

has a higher level of certainty, objectivity, and reliability then prospective analysis 

(Kostoff and Schaller, 2001). Extending the roadmapping time horizon to the past 

enables us to understand industrial emergence and map scientific and technological 

developments (Phaal et al., 2011). Analyzing how academic knowledge changes over 

time retrospectively and how industries change enables us to analyze innovations of 

socio-technical transitions (Park et al., 2020).  

Roadmapping studies can also be grouped by the methods used for creating the 

roadmaps. (Pora et al., 2022) generalizes these methods as expert-based, computer-

based, and hybrid methods. This categorization is similar to comprehending qualitative 

and quantitative methods since most of the quantitative approaches are executed using 

computers.  The aforementioned fast-start T-Plan method is an example of an expert-

based method, which utilizes knowledge from concluding workshops between 

stakeholders. There are also schools of thoughts on roadmapping (Park et al., 2020) 

where different methodologies used in roadmapping studies are grouped by different 

universities around the world are classified. For example, Cambridge's practical 

school, mentioned above, generally prefers expert-based methods, while Seoul school 

prefers more computer-based methods, which are investigated in detail in the 

following chapter.  
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2.9.2 Data-Driven Roadmapping  

There are several methods to collect data for generating roadmaps when workshop-

based roadmapping is not possible or not preferred. This is generally the case in studies 

of practitioners classified as the Seoul school (Park et al., 2020). Large textual 

databases including technology, science, engineering, and product content can be 

analyzed using approaches such as bibliometric methods, co-occurrence or co-citation 

analysis, and patent analysis in a both retrospective and prospective way (Kostoff and 

Schaller, 2001). In emerging technologies, where there is no historical data available 

(Daim et al., 2006) state bibliometric and patent analysis can be used as data collection 

methodologies for technology forecasting tools such as scenario planning or growth 

curves. Also, Quality Function Deployment, Bayesian Networks, several text mining 

approaches, and patent analysis are other quantitative methods that are used in 

technology roadmapping studies. Below, examples from the literature are explained 

with a focus on the methodologies they used for developing a roadmap. All studies are 

evaluated and grouped by data sources and methodologies they used for identifying 

roadmap elements and defining relationships between those elements, information on 

the typology of the roadmap and presented in Table 1. 

(Zhang et al., 2013) conducted co-occurrence analysis and frequency analysis on 

publications and patent records as bibliometric methods and constructed a technology 

roadmap accordingly, using feedback from experts. As a case study, they worked on 

electric vehicles which were in the very early stages as an emerging technology of that 

time. In another similar study, (Zhang et al., 2014) worked on Dye-Sensitized Solar 

Cells. The study explains the foundations of Triz, the theory of inventive problem 

solving proposed in the 1940s, used for extracting similar ideas from massive numbers 

of patents, and how Subject-action-object analysis is integrated Triz to make it 

semantic. When compared to PCA or LDA, authors stated Triz needs more qualitative 

effort (such as expert opinion) than LDA, an advantage of Triz is understanding 

problem and solution patterns, but as a disadvantage, it is dependent on qualitative 

assessment. Notice NLP applications in these years did not have their performance of 

today, which can be identified when looking at the methods used as relatively new 

studies.  

(Jin et al., 2015) propose a technology-driven roadmap instead of a market-driven one 

for solar LED lighting technologies using text mining and similarity scores. Markets 

and products are evaluated based on technologies available and developing. Patents 

and product user manuals are used as data sources. They discussed in future work, TF-

IDF scores and SAO analysis can be used for overcoming imitations of their 

methodology. Two authors of that study (Jeong and Yoon, 2015) created a patent 

roadmap using text mining and patent analysis, grouped and classified patents using 
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qualitative patent analysis methods such as TEMPEST, and identified patterns for 

patent planning for AMOLED display technology. 

Regarding the relationship between layers of the technology roadmap, (Geum et al., 

2015) used association rule mining for measuring the dependencies of keywords 

between layers. In a case study they collected data about Apple products and services 

from the internet for creating data sources for product layer and service layer. They 

use text mining from documents to identify keywords of these layers. Using 

association rule mining, they created a keyword portfolio roadmap and keyword 

relational map. To investigate the relationship between elements (Son and Lee, 2019) 

proposed using network analysis with fuzzy-set theory and presented a case study in 

3D printing technology. Elements of the roadmap are chosen after the expert 

workshop.  

Topic modeling with LDA was performed on patent data for technology assessment 

and roadmapping of another emerging technology, blockchain in (Zhang et al., 2021). 

Technology stage division is conducted using S-curve by the number of cumulative 

patents released each year. They identified three stages emerging stage in 2014-2015, 

slow growth in 2016-2017, and rapid growth after 2018. Then using individual datasets 

from these stages, technology topic analysis was conducted. 

In their recent study, (Kim and Geum, 2021) proposed a data-driven roadmapping 

approach by integrating layer-mapping, contents mapping, and opportunity finding 

methods. They implemented their proposed method on self-driving (autonomous) 

vehicles. For the technology and market layers of the technology roadmap, they 

utilized individual data sources. For the technology layer, they utilized data from 

patent databases, and for the market layer, automobile magazines, community 

websites, and consumer reports. Content mapping comprises keyword network 

analysis for identifying major trends in each topic identified. Link prediction for 

opportunity finding, can be used as a substitute for technology workshops in traditional 

T-Plan based for assessing future technology prediction, the convergence of 

technologies, and changing market trends.  

By integrating data analysis tools into technology roadmaps (Feng et al., 2022) aims 

to identify opportunities for metabolic disease drugs. Similarly, they follow layer 

mapping, content mapping, and opportunity finding. A topic model is created using 

BERT topic model on drug patent data; subject-action-object analysis is conducted for 

content mapping and link prediction for identifying potential connections, shown in 

the roadmap. This study uses deep learning and expert opinion for classifying 

documents as technical and market data, for mapping them to layers of roadmap.  

(Miao et al., 2022) state that technology roadmapping is a practical tool for mapping 

emerging technologies to the market, and is traditionally done using expert opinions. 
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They use Technology-relationship-technology (TRT) analysis for identifying the 

relationship between products, functions, and technologies using smart wear patent 

data, and integrate it into the technology roadmap. Analyzing and discussing, future 

changes and trends in smart wear technology with the help of experts.  

As mentioned earlier, there are situations when conducting a workshop or accessing 

to an expert is not feasible, such case in (Garza Ramos et al., 2022) where a roadmap 

for a start-up company is implemented in an emerging technology. The literature 

review method is used for identifying technology and product features of 3D 

Bioprinting and Cell culture technologies, also with a SWOT analysis. QFD and 

linking grids methods are used for linking market drivers and product features.  

There are also hybrid methods, not relying only on quantitative methods but utilizing 

them and integrating them with traditional workshop-based qualitative technology 

roadmapping methods.  

Similar to our study, (Zhang et al., 2016) used National Science Rewards scientific 

database search results from titles and abstracts on big data research, as their data 

source. They do a K-means clustering for finding clusters on big data research to form 

the components of the technology roadmap. They compared their clustering with LDA 

and Hierarchical Aggregative Clustering (HAC). They calculate TF-IDF similarity 

scores for forecasting how trends change in the future and identifying the relationships 

between the elements in the technology roadmap, combining quantitative analysis with 

expert knowledge.  

(Li et al., 2015) integrates bibliometrics with expert opinions for constructing 

technology roadmaps on emerging technologies, applied a case study in dye-sensitized 

solar cells. (Li et al., 2019) combines text mining and expert opinions for analyzing 

technology evolution paths of perovskite solar cell technology, examining patents and 

scientific papers.  

(Wang et al., 2018) analyzes the current situation and future development of 

nanogenerator technology trends in China, combining bibliometrics, patent analysis, 

and TRM. External factors and forecasts on future developments of trends are 

identified using expert opinion, and discussed in workshops.  

(Ma et al., 2021) proposes another hybrid methodology containing topic modeling, 

SAO analysis, machine learning, and expert opinion for finding potential technological 

opportunities in dye-sensitized solar cell patents.  

Technology roadmapping with quantitative methods increases reliability in decision-

making and reduces expert bias, however, it may decrease the legitimacy of 

roadmapping in stochastic environments. (Ozcan et al., 2022) uses text mining in 
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patents for clustering and creating a roadmap for technologies used in retail marketing. 

Apart from roadmaps, they separated the product layer as back-end and front-end. The 

proposed hybrid methodology is believed to minimize the reliability and validity issues 

of using a quantitative method alone. 

Scenario analysis is used in various studies to make the roadmap more robust to 

different scenarios. (Noh et al., 2021) use scenario analysis and workshops for 

identifying potential products and services for 5G mobile services. They use patent 

analysis and TOPSIS to identify key technologies and capabilities, and use QFD for 

linking products/services to technologies, then finalize the roadmap with a workshop. 

(Jeong et al., 2021) tried to integrate risks into the roadmap as a layer. Creating a 

futuristic database by using websites, LDA is used for deriving possible future events 

and risks. Using co-occurrence and similarity of keywords from documents, a 

Bayesian network is created. 
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Table 1: Data-driven roadmapping methodologies and roadmap typologies 

Study Dataset TRM Layers Identify Roadmap 

Elements 

Linking Roadmap 

Elements 

Time Temporality Context 

(Zhang et 

al., 2013) 

Patents and 

Papers 

Materials, 

Technologies, 

Products 

Term Frequency 

Analysis, Experts 

Association Rules, 

PCA  

Years Retrospective Electric 

Vehicles 

(Zhang et 

al., 2014) 

Papers (WoS 

and EI 

Compendex)  

Materials, 

Technologies, 

Products 

Term Clumping, 

(TF-IDF, 

Clustering 

TRIZ, SAO, Expert 

opinion 

Years Retrospective Dye-

Sensitized 

Solar Cells 

(Jin et al., 

2015) 

Patents, 

Users 

Manuals 

Technology, 

Product, Market 

Text Mining, Patent 

Analysis 

Cosine Similarity, 

QFD 

Years Retrospective Solar LED 

Lightning 

(Jeong and 

Yoon, 

2015) 

Patents Patent Groups, 

Technologies 

Text Mining, Patent 

Analysis 

Cosine Similarity, 

SCAMPER scoring 

Years  Prospective (7 

years) 

Amoled 

Display 
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 Table 1 Continued: 

(Geum et 

al., 2015) 

Apple 

Website, 

Internet 

Service- Product 

Mapping 

Text Mining Association Rule 

Mining, UCINET 

No  - Apple 

Products 

and 

Services 

(Son and 

Lee, 2019) 

Ministry 

Planning 

Reports 

Material, Device, 

Soft ware 

Expert Workshop  Relative Importance 

Fuzzy Inference, 

Clustering 

Years Prospective  

(6 years) 

3D Printing 

(Zhang et 

al., 2021) 

Patents None Topic Modeling 

LDA 

Cosine Similarity 

(Limitation: Should 

be combined with 

Experts.) 

Growth 

Stages 

by 

Years 

Retrospective Blockchain 

(Zhang et 

al., 2016) 

Natural 

Science 

Foundation 

Awards 

Database 

(Scientific) 

TF-IDF Scores TF-IDF, LDA, 

HAC 

Similarity Scores, 

Expert Opinion for 

classifying topics 

and locate on map 

Years  Retrospective 

(Prospective 

After 2014) 

Big Data 

Research 
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 Table 1 Continued: 

(Kim and 

Geum, 

2021) 

Patents for 

Technology, 

Magazines 

and Websites 

for Market 

Technology, 

Market 

LDA, evaluated by 

domain experts and 

mapped in TRM.  

Link Prediction No - Self-

Driving 

Cars 

(Feng et al., 

2022) 

Patents, 

Journals, 

Reports 

Technology, 

Market 

BERT and Expert 

Opinion, LDA, 

BERTopic, SAO 

Link Prediction Growth 

Stages 

by 

Years 

Retrospective Hyperurice

mia Drugs 

(Miao et 

al., 2022) 

Patents Technology, 

Function, Product, 

Market 

TRT and Expert 

Knowledge ,TF-

IDF, Similarity  

Expert Knowledge 

based on TRT 

results 

Years Retrospective Smart Wear 

(Wang et 

al., 2018) 

Patents, 

Papers 

Technology, 

Industry, 

Production, Market 

Bibliometrics, 

Patent Analysis, 

Expert opinions 

Expert Workshops Years Prospective Nanogenera

tors 
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 Table 1 Continued: 

(Ma et al., 

2021) 

Patents Materials, 

Technology, 

Products, Market 

LDA  Expert Opinion, 

SAO 

No - Dye-

Sensitized 

Solar Cells 

(Ozcan et 

al., 2022) 

Patents Technology, 

Product/service/pro

cess Back-end,  

Front-end, Market 

Text Mining, 

Expert Opinion 

Expert Opinion Growth 

Stages 

by 

Years 

Prospective (7 

years) 

Retail 

Technologi

es 

(Jeong et 

al., 2021) 

Web Sites 

(Futuristic 

Database) 

Risk, Technology, 

Product/System/Ser

vice, Market 

LDA  Co-occurrence, 

Cosine Similarity, 

Bayesian Network 

(Roadmapping 

validated with 

patents and experts)  

Years Prospective (1 

year) 

Driver 

assistance 

systems 

(Garza 

Ramos et 

al., 2022) 

Papers and 

Expert 

Opinion 

Business, Market, 

Product, 

Technology, 

Resources 

SWOT, Literature 

Review 

QFD, Linking Grids  Years Prospective 3D cell 

culture 

workstation 
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2.9.3 Value Roadmapping for Emerging Technologies 

There is a lack of financial and quantitative data for emerging technologies with 

uncertainties in the market such as edge computing; therefore, financial valuation and 

quantitative decision-making approaches cannot be utilized. In qualitative approaches 

where the opinions of decision makers are discussed, sometimes scored, and evaluated, 

(Dissel et al., 2009) discuss a lack of orientation in early-stage technologies when not 

enough expertise is present in the stakeholders and state many companies do not 

consider evaluation until the technology becomes more mature. Until then, they rely 

only on the expertise of managers which is sometimes referred to in the literature as 

the“gut feel”.  

Therefore they propose value roadmapping for providing a useful environment for 

linking technological and business perspectives throughout the technology lifecycle 

(Cetindamar and Phaal, 2017; Dissel et al., 2009). The environment structures the 

individual expert opinions using a set of workshops for achieving the goals stated as 

steps of value roadmapping below.  

Steps of value roadmapping are as follows:  

 Define strategic framework, vision and scenario, 

 Map technology development and investment milestones 

 Define value streams 

 Map market and business trends and drivers 

 Map barriers and enablers 

 Review project plan and value roadmapping 

 Present visualization 

 Maintain value roadmapping as a process 

2.9.4 Data-Integrated Roadmapping  

Roadmapping for data (Han and Geum, 2020) framework was proposed to integrate 

data as a layer of technology roadmap and the roadmapping process for increasing 

utilization of numerous big data produced by smart products and services. They 

underline digital transformation of services and products requires systematic planning 

focused around data. They propose three types of data integration: data as supporter, 
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data as mediator, and data as value generator. Supporter data is for supporting the 

current processes without increasing the level of digitalization. As mediator, data is 

used for optimizing and increasing the efficiency of current processes, increasing the 

level of digitalization. Finally, as value generator, there is a feedback mechanism from 

smart services and products, resulting highest level of digitalization processes among 

data integration types. 

A data science roadmapping framework is proposed (Kayabay et al., 2022) suggesting 

a tailored workshop-based methodology to overcome data, organization, technology 

and strategy (DOTS) related challenges for an organization to become data-driven. 

The framework integrates CRISP-DM process model thus considering the data 

lifecycle as a whole. The integrated data layer consists of data sources, data science 

processes, metadata objects, data products, and services sublayers in the roadmap 

architecture.  

2.10 Literature summary and knowledge gaps 

When edge computing literature is investigated, a lack of studies from the technology 

management perspective is observed. Many academic studies regarding adoption, 

maturity, strategic planning aspects, and other technology management activities are 

conducted on more mature technologies such as cloud computing. Those aspects 

should be also focused on edge architectures to establish a similar literature as the 

technology matures. However, edge architectures are generally use case dependent and 

not as generic as cloud solutions.  

Considering the knowledge gaps identified in edge computing literature, technology 

management literature is investigated with a focus on emerging technologies. 

Technology management activities and tools are explained and alternatives are 

evaluated.  Considering available data and similar studies focusing on emerging 

technologies with similar research questions, data-driven technology roadmapping 

studies are investigated in detail in Chapter 2.2.8. Table 1 presents a classification of 

studies based on their data source, methodologies used, and typology of the roadmap.  

In their conclusion, (Kim and Geum, 2021) state a potential application can be a 

dynamic topic model for considering how trends are relatively changing over time and 

reflecting it in a data-driven technology roadmap.  

(Kayabay et al., 2022) addresses the absence of a data-centric planning point of view 

for strategical roadmapping of an organization to become a data-driven organization, 

by identifying challenges they face and considering data as a separate layer in the 

roadmap. In the discussion for the future research section of the data science 

roadmapping framework study (Kayabay et al., 2022), it is stated that research 
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technology assessment and forecasting tools can be integrated to complement the data-

integrated roadmaps.  

This thesis identifies the following knowledge gaps in the literature:  

I. The literature lacks a study that applies a technology management framework 

to edge computing, neither organizational nor sectoral level.    

II. No study in the data-driven roadmapping literature uses a dynamic topic model 

for creating the technology roadmap of an emerging technology.  

III. Data-driven roadmapping studies for emerging digital technologies such as 

blockchain, cloud computing, or smart cities, do not consider data as a resource 

and a subject to be planned or investigated in the roadmap.  
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CHAPTER 3 

 

3 RESEARCH METHOD 

 

3.1 Research Questions, Aim, and Objectives 

This thesis aims to fill the research gap mentioned in Chapter 1.2 on analyzing the 

sectoral edge computing adoption and implementation of emerging technologies into 

edge architectures. The research aim has been transformed into the following research 

questions:  

RQ-1. What kind of real-life applications of edge computing and case studies 

are used in the IIoT environment?  

RQ-2. What are edge computing trends and how do business objectives and 

market trends shape edge architectures regarding technologies used? 

RQ-3. How to assess edge computing technology research using a data-centric 

approach?  

Accordingly, these research objectives are formed:  

RO-1. Investigating applications of edge architectures in industrial 

environments. Understanding motivations behind using these technologies. 

RO-2. Identifying and mapping the relationship between technology and 

market trends of edge computing.  

RO-3. Developing a data-integrated edge computing technology roadmap for 

IIoT. 

3.2 Research Methodology 

After defining research objectives from research questions, the methods selected for 

the objective and the data used in that step are identified in this section and shown in 

Figure 1. Corresponding to the first research objective, this research starts with a 

systematic literature review on edge computing applications in the industrial internet 
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of things. The SLR reviews applications of cloud-to-edge architectures in the industry 

and groups them according to business objectives and application areas. It has been 

structured based on (Kitchenham, 2004). guidelines Snowballing approach is 

combined with a database search to systematically find case studies and real-life 

examples of edge computing applications in the industry regarding IIoT environments.  

Surveys and literature reviews on edge computing generally have a similar approach 

to a literature review, explained in Chapter 2.7 and Chapter 4.2.  

 

 Figure 1- Research Objectives, Used Methodologies, and Data Sources  

After the literature review on edge computing applications in IIoT, a knowledge gap 

in strategic aspects of applying new technologies to edge architectures in IIoT systems 

is identified. Although studies investigate edge computing on the technical 

developments side, they lack focus on business goals and which technology is used in 

which use case. One contribution of the SLR in Chapter 4 to the edge computing 

literature is that it investigates how different architectures are applied in a business 

objective, defining motivations of using an edge architecture along with the objective 

of the study itself.  

Regarding the second research objective for identifying trends, some of the evident 

market and technology trends were identified in the SLR and presented at the end of 

Chapter 4 part followed by a discussion, that those identifications are made using the 

judgments of the researchers, hence those results may contain subjectivity. Therefore, 

following the SLR, a quantitative approach, unsupervised learning by topic modeling 

in a broader database search is used, without the inclusion criteria.  Data for this section 

consists of a database search of titles, keywords, and abstracts of academic papers. 

Identifying the same trends in the same topics, the results of SLR are validated and 

expanded in content. Supporting SLRs using topic models or other text-mining models 
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can be observed in other research domains (Asmussen and Møller, 2019), reducing 

researcher bias, and increasing reproducibility. (Ho and Lee, 2022) uses Human-in-

the-loop topic modeling for identifying their roadmap structure, which is similar to our 

approach, provided with both researcher expertise and insights from SLR results.  

LDA and BERT topic models are trained, using different numbers of topics, and 

smaller different versions of the dataset and several experiments on preprocessing 

methods such as lemmatization have been conducted and tracked using text files. 

When studies that embrace similar data-driven approaches to form a technology 

roadmap for emerging technologies are investigated in Section 2.2.9, most of them are 

published in Technological Forecasting & Social Change journal (Kim and Geum, 

2021), (Zhang et al., 2021), (Garza Ramos et al., 2022), (Li et al., 2015), (Li et al., 

2019), (Ma et al., 2021), (Noh et al., 2021), (Zhang et al., 2016).  We used LDA and 

BERTopic model results to identify the market and technology trends and the 

relationships between them to be visualized as elements in the technology roadmap. 

They both provided reasonable results that validate SLR results and both results 

produced interpretable value by the researcher, so one could not be chosen as superior 

to the other. Dynamic topic modeling using the BERTopic library (Grootendorst, 

2022) enables one to trace and visualize how topics frequency changes over time, 

addressing the potential future research identified by (Kim and Geum, 2021) on being 

able to trace how trends change by time, explained at the end of Chapter 2. Market, 

technology, and data trends are identified using keywords appearing in the same topics 

(clusters), explained in detail in Chapter 5. In general, LDA with a lower number of 

topics was consistent with SLR results, and BERT with a slightly more number of 

topics provided good insights for the identification and mapping of the trends. 

After identifying market and technology trends, this study presents data sources and 

applications used in applications from the edge computing applications literature, 

detailing topic model findings. All the identified elements are then integrated as 

different layers of a technology roadmap using expert opinion, SLR, and topic 

modeling findings, as shown in Figure 2. To provide ease of tracking to the readers, 

little circles next to process rectangles indicate the chapter number in which the 

process is located in the thesis.  

In this study, the nature of research questions 2 and 3 needs investigation of very 

different edge applications rather than focusing on a specific case, unlike industrial 

applications in RQ-1. Therefore, it is a more breadth-first exploratory investigation 

rather than depth-first (See 5.2 data collection for topic models).  A study on how 

companies can develop a digital strategy (Al-Ali and Phaal, 2019) also used both 

qualitative and quantitative methods to answer different research questions. By 

customizing technology roadmapping for digital transformation, they conducted case 

studies and applied workshops in organizations. To identify digital strategy 
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archetypes, (Al-Ali et al., 2020) utilize text classification on Fortune 500 Earning calls, 

doing cluster analysis with the best performed model, a pre-trained RoBERTa.  

 

 

Figure 2- Research Methodology Data Flow 
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CHAPTER 4 

 

4 EDGE COMPUTING APPLICATIONS IN INDUSTRIAL IOT 

SYSTEMATIC LITERATURE REVIEW 

 

4.1 Systematic Literature Review Methodology 

This literature review is conducted based on Kitchenham's guidelines (Kitchenham, 

2004; Kitchenham and Charters, 2007). Snowballing approach is combined with a 

database search to systematically find case studies and real-life examples of edge 

computing applications in the industry regarding IIoT environments. Accordingly, the 

research questions of the study are formed as follows: 

 What kind of real-life applications of edge computing and case studies are used 

in the industry regarding an IIoT environment? 

 What are the main objectives for investigating edge computing architectures? 

 How edge architectures are shaped regarding these objectives and nature of the 

business problem? 

In this thesis, applications of edge computing in the industry are investigated and 

grouped according to their objectives and application areas. The aim is to present the 

current implementation status of edge technologies and trends to assist organizations 

in researching their business objectives.  

4.1.1 Search Process 

The following search query is used as a starting point of the search: ((“Edge”OR 

“Fog”) AND “Computing” AND “Industrial” AND “IoT”). First, the Web of Science 

is used as the main database and results are enriched using IEEE Explore in 

snowballing phase, too. Search results are stored in MS Excel. 67 initial results were 

found after searching the Web of Science Core Collection. Only four of them were 

released before 2017, and the number of published papers had increased by the year 

2021. 15 studies were selected after the initial elimination. After fully reading these 

articles, and including references of the references of those studies, 28 papers were 
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selected as Primary Studies (PS). The studies focusing on edge computing use cases, 

applications, and architectures in IIoT, covering algorithms, tools, benefits, and 

implementation challenges were regarded as PS, and 16 of them are journal articles, 

while 11 studies are conference papers, and one is a book chapter. The authors 

conducted iterative meetings for identifying the main objectives and trends for 

grouping papers. 

4.1.2 Inclusion Criteria 

Studies on edge computing use cases and applications in IIoT, focusing on algorithms, 

tools, benefits, and implementation challenges such as energy consumption or 

computing capabilities of different architectures in real-life scenarios, were included. 

Domain specific IoT articles with less or no edge computing implementation were 

excluded from the search. Studies targeting smart cities, blockchain-edge, 

autonomous-driving, 5 and healthcare domains rather than manufacturing were 

excluded. The papers that include only technical solutions in computation load 

balancing, energy consumption, security, and data storage efficiency were included if 

they explain a particular case study application related to the IIoT domain. In the 

snowballing phase, papers are found with English titles and abstracts, but Turkish 

content is also included. 

 

Figure 3- Literature Review Process 

4.2 Systematic Literature Review Findings 

This section reviews applications of edge architectures in the industry and groups them 

according to objective and application areas. Studies are explained regarding how the 

architectures and trends are shaped to fulfill the objectives, allowing practitioners to 

have an idea while developing implementations for their cases. Studies focusing on 

security, latency, resource utilization, and energy efficiency are presented in Table 2. 
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4.2.1 Open-Source Edge Architectures 

An open-source architecture for industrial networks called IFog4.0 is proposed in 

(Ghazi Vakili et al., 2019) with case studies in an emulated gas regulation station 

environment. A Fog-Management module has been developed to manage Docker 

containers. Only this component is exposed to the external internet; Docker’s internal 

security and a firewall limits access to this network. Using Node-RED programming 

working with a flow-based programming paradigm, nodes of inputs and outputs 

developed with NodeJS, communicate in a network. The Grafana environment 

provides data visualization, using the data provided by PLC Siemens through the s7 

Profinet protocol. Odoo ERP, MySQL, and MongoDB databases have been used for 

storage. For Linux Kernel to work with Profinet, Modbus, OPC UA, industrial 

communication drivers were implemented. The author states their goal was to provide 

this technology for SME’s digital transformation. 

Although there are similar layered architectures of edge computing, the one proposed 

by (Chalapathi et al., 2021) is specifically for manufacturing and is presented with a 

case study in the paper. Application domain provides monitoring and control services, 

data domain provides data cleaning, feature extraction, and operation throughput 

optimization, increasing system efficiency. Network domain manages devices using 

SDN. Time Sensitive Network (TSN) protocol is also employed to make the 

architecture time-sensitive. Finally, device layers consist of physical infrastructure, 

sensors, and actuators, which must be flexibly sustainable in an environment with 

various protocols, and dynamically changing system execution strategies depending 

on data.  A similar architecture is used to compare the productivity of a newly deployed 

edge architecture to an existing private cloud on a candy packaging production line 

(B. Chen et al., 2018). Standardized Data Distribution Service (DDS) middleware 

protocol and Ethernet were integrated into the network between edge devices. Tasks 

were individually assigned to each robot which the system can shift in case of any 

failure using Contract Net Protocol (CNP). Robots can bargain and make agreements 

on their own to complete the assigned task. The Hadoop architecture was built at the 

local database level to set up this system, and real-time analysis was claimed to be 

performed with MapReduce. Machine status and sensor data for the model were loaded 

from a Raspberry Pi. An OPC UA server was operating to transmit raw data from 

sensors and handle preprocessing tasks. Although the network's speed decreased from 

16MB/s to 6 MB/s after switching to the edge, results show in high-volume mass 

production, edge provides more productivity.  

A manufacturing process control system has been proposed by (Wu et al., 2017) for 

monitoring production lines, collecting and analyzing data to increase efficiency. First, 

stream data collected from sensors through communication adapters working on OPC 

UA and MTConnect protocols. Then, an edge node, streaming data in real-time, 
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provides control signals allowing the system to work in low latency. Samples from 

data can be transmitted to cloud centers for further analytics, and building models. An 

open-source edge architecture is implemented in a university campus's air quality 

monitoring system (Kristiani et al., 2021). Data was collected from Arduino sensors 

across the campus. Low Power Wide Area Network (LoRA) gets data from sensors. It 

transmits data to the LoRa gateway, then to an edge gateway of Kubernetes minion 

installed on a Raspberry Pi for final unified delivery to the data center. MQTT protocol 

enables sending alerts to devices if there are anomalies in the data. The network's 

overall performance is analyzed using Ganglia Monitoring System, and comparisons 

are made to achieve the best open-source architecture. 

4.2.2 Security Applications 

There are many studies related to distributed blockchain and edge computing 

convergence in the literature related to the security of IIoT systems, such as (Kumar 

et al., 2020) (Lee et al., 2020; Wu et al., 2021). An approach that uses blockchain and 

context-aware security for IIoT environments was proposed by (Portal et al., 2020), 

and implementation in an additive manufacturing site was presented. Data for context 

reasoning is provided with blockchain instead of the cloud, claimed to be providing a 

better fit for edge devices, reducing communication costs, and increasing bandwidth 

efficiency. 

Another tiered edge architecture, (Sittón-Candanedo et al., 2019)  utilized blockchain 

to data from sensors for increasing security in the Edge layer. The proposed 

architecture is implemented in an agroindustry platform to monitor and support 

decisions in a dairy farm, implementing AI to detect anomalies. Sensors for measuring 

rain, wind speed, ground temperature, and humidity, gas sensors for detecting 

chemical levels in the air, and biometric sensors for measuring body temperature, heart 

rate, and breathing rates for cows were used. ZigBee communication was used to 

connect IoT gateways and sensors. Edge layer node is a Raspberry Pi for preprocessing 

IoT data and forwarding it to the cloud. A data processing framework is proposed in 

(Fu et al., 2018), enabling secure data storage and operations using edge in IIoT 

systems. Data management and encryption challenges are summarized, and solutions 

were proposed as a framework. Then it is evaluated using simulations and experiments 

in a prototype of a system built to monitor the temperature in a factory. Another real-

time industry application for edge computing was implemented in a simulated smart 

factory to observe the effectiveness under cyber security scenarios (Güven and 

Çamurcu, 2018).  

4.2.3 Energy Efficiency and Resource Utilization Applications 

Energy efficiency and computational workload are vital aspects to consider while 

utilizing edge nodes. SDN is widely used for managing a network of middleware 
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devices, reviewed by (Kaur et al., 2018), where the trade-off between energy 

efficiency and latency is evaluated. Djemame proposes a technical architecture that 

leverages SDN with Network Function Virtualization (NFV) and serverless 

architectures to reduce the high energy consumption of edge architectures (Djemame, 

2021). 

An adaptive data transmission algorithm using SDN and edge computing for IIoT is 

proposed by (X. Li et al., 2018) to find an optimal route for traffic load, task deadlines, 

and energy consumption. To achieve an industrial internet, Chen et al. (C.-H. Chen et 

al., 2018) proposed a framework consisting of high-level embedded microcontrollers 

and gateway systems to provide an edge gateway of a smart sensor Fieldbus network. 

With the help of distributed computing, the gateway efficiently performs network 

management, data collection, and communication, considering power consumption 

and providing better scalability than traditional IIoT solutions. A similar problem is 

modeled using a probabilistic approach (Chekired et al., 2018). A priority queuing 

model is implemented for scheduling IIoT data according to priorities as high and low, 

formulated as a mixed non-linear integer program, and an optimal solution is found 

using branch and bound algorithm with simulated annealing. Also, an IIoT offloading 

algorithm for queuing and processing work according to resource priority and 

availability is proposed. 

Utilizing deep learning requires high computation power and bandwidth; the cloud 

requires data transfer while the edge requires expensive computing resources. In an 

edge architecture tailored for deep learning (Liang et al., 2020), complexity is 

optimized in line with the computational capacity of edge devices. To evaluate the 

solution, the authors formed a convolutional neural network using real-world IIoT data 

and apply their approach, doing experiments that reduce network traffic while 

maintaining the model's classification accuracy. In the scenario, they worked with 30 

different components used and identified by cameras, representing a production line.  

One way of processing deep learning in MEC is by inferencing, and executing pre-

trained models with newly generated visual content from mobile edge devices. The 

study by (Xu et al., 2021) formulated the inference offloading problem to minimize 

energy consumption and evaluated the performance of proposed algorithms using 

simulations.  In order to use deep learning for anomaly detection, (Ferrari et al., 2019) 
performance of different architectures are tested. Trade-offs of choosing the 

architecture considering scalability, bandwidth, and delay have been presented. The 

author concludes that scaling cloud computation power results in full cloud 

outperforming the edge. To monitor the real-time status of machinery and conduct 

predictive maintenance,  a database is created by (Oyekanlu, 2017), small enough to 

fit in memories of edge devices using open-source Python SQLite. The data is 

processed in edge devices, analyzed, and only the recommendation is sent to the 

central cloud to take action. 
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Containerized edge architectures are evaluated by (Liu et al., 2021) in terms of 

industrial requirements, measuring round trip time, bandwidth, processing capabilities, 

and latency while doing machine learning tasks for predictive maintenance. Microsoft 

Azure IoT Edge is utilized for running container applications on Raspberry Pi.  

Device-to-cloud, device-to-edge-to-cloud, and device-to-edge architectures are 

compared. Results showed that containerization does not decrease performance while 

increasing flexibility and scalability. Fog Computing Platform reference architecture 

is proposed for IIoT applications by (Pop et al., 2021), using open standards, OPC UA, 

and TSN. In the Conveyor Distribution System, a machine is provided packages 

containing tags, and the system delivers them to the destination by accessing a 

database by reading the tag. Electric motors that provide the movement, forming the 

“machine level” of architecture, produce massive data, which is problematic to send 

to the central cloud. Network configurations, network traffic, and other benefits of 

using an edge architecture are explained in detail in their paper about this use case 

(Barzegaran et al., 2020). The authors also mention different use cases of the same 

architecture, such as industrial robotics on the shop floor and machine control using 

edge platforms. These cases are also referred to as Fog-based Industrial Robotic 

System and next generation of machine control using a Fog Platform in (Shaik et al., 

2020) and (Denzler et al., 2020). 

Table 2: Papers are grouped by their objective and application 

Papers Main Objective Application Domain 

(Sittón-Candanedo et al., 2019) Security Agricultural Monitoring 

(Portal et al., 2020) Security Additive Manufacturing 

(Güven and Çamurcu, 2018) Security Simulated Factory 

(Ghazi Vakili et al., 2019) Resource Utilization Real-Time Gas Pressure Control 

(Oyekanlu, 2017) Resource Utilization Predictive Maintenance 

(Chalapathi et al., 2021) Latency + Energy Efficiency Active Maintenance 

(Kaur et al., 2018) Latency+ Energy Efficiency Software Defined Network 
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Table 2 Continued: 

(Kristiani et al., 2021) 
Energy Efficiency+ Resource 

Utilization 
Air Quality Monitoring 

(C.-H. Chen et al., 2018) 
Energy Efficiency+ Resource 

Utilization 
Smart Manufacturing System 

(B. Chen et al., 2018) Security+ Latency Active Maintenance 

(Okay and Ozdemir, 2016) Security+ Latency Smart Grid 

(Kumar et al., 2020) Security+ Latency Simulation  

(Fu et al., 2018) Security+ Resource Utilization Factory Temperature Monitoring 

(Pop et al., 2021) 
Latency+ Security+ Resource 

Utilization 

Conveyor Routing, Distributed 

Predictive Maintenance  

(Chekired et al., 2018) Latency+ Resource Utilization Simulation with real IIoT Data 

(Denzler et al., 2020) Security+ Resource Utilization Real-Time Machine Data Analytics 

(Liang et al., 2020) Latency+ Resource Utilization  Image Classification Simulation 

(Ferrari et al., 2019) Latency+ Resource Utilization Real-Time Anomaly Detection 

(Lee et al., 2020) Latency+ Resource Utilization Numerical Experiments 

(Liu et al., 2021) Latency+ Resource Utilization Vertical Plant Wall System 

(Shaik et al., 2020) Latency+ Resource Utilization Industrial Robotics 

(X. Li et al., 2018) 
Latency+ Resource Utilization + 

Energy Efficiency  
Smart Manufacturing 
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4.3 Discussion  

Although there is research on when and why to use edge architectures, all applications 

are experimental. It is found that there is a lack of a strategic deployment decision 

framework for the implementation of such technologies. All applications are trial-

based, without sufficient information about organizational research and feasibility, 

which is generally the case in a large company. Working with academia and companies 

with expertise is vital for understanding the best practices. The research highlights: 

 Real-life applications of edge computing do not consider the market trends and 

adoption strategies mentioned in Section 2. There is a severe problem in 

choosing the right technological solution among an abundance of alternatives 

for decision-makers, application developers, domain experts, and operational 

personnel (Gokalp et al., 2016). 

 Latency is a common concern among edge applications in IIoT. Depending on 

the complexity of the computation business case requires, e.g., a deep learning 

task or real-time monitoring, literature presents offloading mechanisms or 

tailored approaches for efficiently using resources. 

 Following trends of edge computing are identified. First, open-source tools 

have been commonly used to develop edge architectures. Second, blockchain 

has been incorporated into IIoT networks for security. Third, approaches such 

as SDN, containerization, and computational offloading algorithms are used 

for resource utilization and energy efficiency.  

 Edge computing's objectives and trends coincide with the IT/OT convergence 

trend.  

4.4 Limitations 

Limitations of the SLR are identified as follows: 

 Snowballing and manually investigating specific titles may have reduced the 

reproducibility of the search process. 

 For presenting trends, case studies, and discussion grey literature have been 

utilized including reports from non-governmental organizations, market 

research/consulting companies, and researcher’s experience.  

 As stated in 2.3.1, groupings of papers by their objectives and identified trends 

resulted in iterative meetings between researchers may contain subjectivity.  



39 

 

 

CHAPTER 5 

 

5 DEVELOPMENT OF A DATA-INTEGRATED EDGE COMPUTING 

TECHNOLOGY ROADMAP  

 

5.1 Introduction 

In an emerging technology research domain, scientific literature progresses rapidly. 

Chapter 4 briefly discusses the technological and business trends in applications. 

However, the generalizability of the findings and discussion are stated as a limitation, 

and also, prone to researcher bias. This chapter collects more scientific resources on 

edge computing applications in the industry from the academic literature and a more 

data-driven approach is used. Some of the findings of the systematic literature review 

are validated and business and technology trends are matched using dynamic topic 

modeling, also allowing to make predictions on how trends are changing with time. In 

contrast to using expert opinion-based qualitative approaches, using data-driven 

analytical methods would be less prone to human bias (Miao et al., 2022). Also, 

applying analytical methods such as text mining, topic modeling, and patent analysis 

enable the investigation of more data in a shorter amount of time, compared to manual 

approaches with the same goals (Nazarenko et al., 2022).  

5.2 Data Collection 

The search query is searched in the titles, abstracts, and keywords both for being able 

to identify the most relevant search results and also to avoid papers that include the 

keywords only in a small part of the text.  The search query used in the Scopus database 

is similar to the one in Chapter 4 and is as follows:  

TITLE-ABS-KEY ("edge computing" OR "fog computing) AND (industrial OR 

manufacturing) AND (iot OR "internet of things") AND (application OR applications 

OR "case study") 

7773 documents were analyzed, and almost 60% were classified as articles followed 

by 31% as conference papers and 4.5% as book chapters. The number of documents 

per year is shown in Figure 4. However, with the effect of the Covid-19 pandemic, 

some conference proceedings were canceled and researchers might choose not to send 

their work to virtual conferences. To address this issue, Figure 5 shows the database 
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search results when conference work is excluded. So we can say the increasing trend 

of the number of documents is preserved.  

 

Figure 4- Search Results, Number of Publications by Years, from Scopus 

 

Figure 5- Number of documents by year after excluding conferences 

In the SLR in Chapter 4, industrial environments are questioned as a sub-domain of 

using edge architectures and also for being able to manually investigate studies using 

a systematic literature review and developing expertise on the state of research.  In this 

chapter, industrial or manufacturing keywords are again in the search string, however, 

there are also papers on autonomous vehicles, healthcare systems, and pollution 

monitoring systems, which were excluded from the analysis in Chapter 4 and are not 

excluded from topic modeling results.  When the search results and topic models are 

investigated in terms of using edge technology, it can be seen that innovations and 

changes driven by novel applications in one domain affect the other. Strategically, big 
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industrial organizations can choose to diversify or even change their target market such 

as Philips, which used to be more end-user electronics, now focuses more on the 

healthcare market (Balasubramanian, 2022). Therefore, with lots of studies focusing 

on diverse applications, we use broader and more holistic database search results to 

explore using topic modeling, compared to the manual systematic literature review.  

5.3 Topic Modeling for Emerging Technology Analysis 

Topic modeling is an unsupervised learning task that is often classified as a Natural 

Language Processing (NLP) application, where related terms are clustered under 

topics from a large set of written documents. In this chapter, studies that use topic 

modeling for similar objectives as our study are presented. A well-established state-

of-the-art topic modeling algorithm, Latent Dirichlet Allocation (LDA) first applied in 

ML by (Blei et al., 2003) has been widely used in the literature, as presented in the 

examples below and detailed in Chapter 5.4.  

Recent studies applied LDA in a variety of research areas. In this chapter, similar 

related examples are given corresponding to our research objectives stated in Chapter 

3.1 for detecting emerging technology trends. One example study that applies topic 

modeling with LDA is (Ma et al., 2021), which proposes a hybrid methodology 

containing topic modeling, Subject-Action-Object (SAO) analysis, machine learning, 

and expert opinion methodologies, for finding potential technological opportunities in 

dye-sensitized solar cell patents. Similar to this study, they conclude and present their 

findings with a technology roadmap.  

(Atzeni et al., 2022) used topic modeling with BERT for identifying convergence of 

machine learning for Wi-Fi connection analysis. They counted the number of 

occurrences of machine learning model names in each identified topic to find widely 

used ML methods for Wi-Fi data.  (Inaam ul Haq et al., 2022) applied LDA topic 

modeling to  Scopus abstracts and titles to detect IoT research trends over time, and 

also classified research orientation for different sectors where IoT is used. 

(Kwon et al., 2022) uses LDA topic modeling in patents and for detecting technology 

trends, TF-IDF scoring is used which is explained in detail under Chapter 5.5.1, for 

clustering unstructured text data. The popularity of the trends over time is classified as 

hot, active, and cold research topics. The Generative Topographic Mapping algorithm 

is used for identifying vacant technologies. A similar method to this study is embraced 

by (Kukushkin et al., 2022), for visualizing and analyzing the bibliometric situation in 

digital twin research including 8693 abstracts of publications between 1993 and 2022. 

Topics are modeled using BERTopic and LDA. It is noticed that the number of studies 

in the search results is almost the same as for our search results for edge computing 

between 2015 and 2022, which can be a reference for increasing popularity.  
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To identify digital strategy archetypes, (Al-Ali et al., 2020) utilize text classification 

on Fortune 500 Earning calls, doing cluster analysis with the best performed model, a 

pre-trained RoBERTa. Each cluster represents the digital capabilities of companies are 

called a topic.  

5.4 Latent Dirichlet Allocation  

LDA is a generative model to discover underlying semantic knowledge as topics in a 

corpus of text data. Corpus in NLP refers to a collection of text data to provide a sample 

of language regarding patterns and structures to train the model. As can be seen in 

Chapter 5.3, LDA has been widely used in topic modeling tasks.  

There are also latent semantic analysis and latent semantic indexing methods, which 

use singular value decomposition to reduce the dimensionality rather than a generative 

approach, also used in some studies, but have been largely replaced by LDA (Inaam 

ul Haq et al., 2022). The initial paper where LDA is proposed (Blei et al., 2003) 

compares it with probabilistic LSI (pLSI) and explains how LDA overcomes some 

overfitting problems in pLSI.  

To determine the number of topics, coherence score, and human interpretability were 

evaluated by the researcher in a Human-in-the-loop manner while changing the 

number of topics hyperparameter. Coherence score is generally used for evaluating the 

number of topics hyperparameter. It measures the similarity between words within the 

same topic. Perplexity is also another evaluation method used in NLP, but some argue 

it does not correlate with human judgment (Chang et al., 2009).  Therefore, in the 

experiments, there are cases where some evaluation metrics are worse but the topic 

outputs of the model are more coherent when evaluated by the researcher. Comparing 

LDA models, these metrics are calculated and represented in the results section to 

maintain reproducibility and objectivity.  

5.4.1 Data Pre-Processing  

There are several pre-processing steps applied to data before proceeding to LDA. 

Gensim and Spacy libraries of Python are used for pre-processing. NLTK library is 

used for removing stop words.  

1. Each abstract had a copyright sign and a piece of publishment information at 

the end, these are also stripped from the text along with stop words. Text is 

converted to lowercase. 
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2. Words are tokenized using the Gensim library. Tokenization is a fundamental 

step in NLP tasks. It is splitting each word, sentence, or phrase in the text into 

small units called tokens. 

3. Word phrases such as: “edge”+ “computing”, an example of a bi-gram, are 

detected and added to the corpus, as suggested by (Mikolov et al., 2013).  

4. Lemmatization is applied to tokens to take roots of the words that semantically 

have the same meaning. It removes suffixes and returns the word to its 

dictionary form.  

5. Cleaning the corpus from tokens that have too high or low frequency i.e 

extreme words. Filtering tokens appearing in more than 90% of documents 

would eliminate terms in the database search explained in Chapter 5.2 Another 

filtering was to eliminate tokens that only appear in less than 2 documents. 

As discussed above on the evaluation metrics, both lemmatized and non-lemmatized 

models ran.  Results and opinions on using lemmatization and filtering extreme tokens 

for topic modeling are presented in the following chapters. Experiment tracking has 

been conducted using Microsoft Excel and notebooks. 
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5.4.2 LDA Hyperparameter Tuning 

The number of topics parameter needs to be optimized by the researcher. In the 

experiments, several model versions are tracked, applying different pre-processing 

steps of lemmatization, using bigram models, and different datasets where different 

levels of extreme tokens are removed from the corpus. Below, charts reflecting how 

the number of topics and the coherent score (c_v) (Syed and Spruit, 2017) change with 

the number of topics are given in Figures 6 and 7 below. Both indicate K=10 is a good 

number to use as the number of topics.  

 

Figure 6- Finding the optimal number of topics in non-lemmatized model 

 

Figure 7- Finding the optimal number of topics in lemmatized model 
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In the experiments, perplexity scores of the non-lemmatized model performed better 

than the lemmatized versions with the same hyperparameters. However, as shown in 

Figures 6 and 7, it can be seen that lemmatization increases the coherence score. In the 

results, some of the findings in the non-lemmatized model are not found in the 

lemmatized model. Therefore, both models are utilized in terms of topics produced.  

There are another two hyperparameters of α and β. In the experimentations, different 

alpha and beta values are tried in the model in two validation sets. Although some 

results were achieving higher coherence and perplexity scores, the interpretability of 

these models was poor. Our experiments and optimization resulted similarly to (Chang 

et al., 2009), optimizing hyperparameters using perplexity as the objective resulted in 

non-human-interpretable results with almost no insights. Also, (Hoyle et al., 2021) 

states that better coherence score in topic models are not always ending up with a 

preferred topic model therefore expert judgment is essential for evaluating and 

discussing the results of LDA. Similarly, in this study, the number of topics, alpha and 

beta parameters are tried to optimize using manual grid search and Optuna. The models 

with the best perplexity score or coherence scores did not result in the topic models 

with insightful clustering of topics (trends of market and technology) in a human-

interpretable manner. Therefore, the ‘auto’ option in the Gensim library is used for the 

alpha and beta parameters of LDA (Hoffman et al., 2010) and different numbers of 

topics are compared. Therefore, they learned from asymmetric prior data, by setting 

‘auto’ for these values in the Gensim library for Python (Hoffman et al., 2010), which 

gave the most interpretable results.  

5.4.3 LDA Results 

The final topics identified and the keywords in each topic are given in Table 3 below 

for the LDA topic model without lemmatization. See, in the results, “task” and “tasks”, 

“offloaded” and “offload can be identified in the same topic because of not using 

lemmatization.  
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Table 3: Topics and keywords of the non-lemmatized LDA model 

Topics Keywords 

Topic 1- 

Latency 

Fog, cloud, devices, services, latency_ end, network, layer, 

low_latency, bandwidth, quality, available, qos, sdn, data_centers 

Topic 2- 

Technology 

Forecasts  

Technologies, systems, management, integration, hardware, 

big_data, future, platforms, networking, smart_cities, towards, 

connectivity, gateways, enabling, flexible 

Topic 3- 

Resource 

Management  

Edge_nodes, model, improve, mechanism, collaborative, 

business, content, realize, operational, cache, terminal, agent, 

grid, pricing, network_congestion 

Topic 4- 

Energy 

Algorithm, energy, energy_consumption, optimization, 

transmission, routing, scheduling, energy_efficient, consumption, 

clustering 

Topic 5- 

Security 

Data, privacy, secure, blockchain, protocol, attacks, image, 

sensitive, trust, authentication, sensor_nodes, data_aggregation 

Topic 6- 

Computation 

Offloading 

Task, offloading, (offloaded, offload), task_scheduling, path, 

parallel, battery, long_term, capture, transform, simulations 

Topic 7- 

Smart 

Manufacturing 

Industrial_internet, detection, deep_learning, production, 

accuracy, classification, equipment, machines, semantic, 

products, factory, recognition, smart_factory, time_series, robots, 

technical 

Topic 8- 

Software 

Applications 

Software, urban, tracking, city, low_power, events, open_source, 

inference, controller, web, project, health_monitoring, predictive, 

measurement, traffic_congestion, verification 

Topic 9- 

Monitoring 

Monitoring, sensor, healthcare, health, people, machine, 

modeling, water, patients, diagnosis, personal, data_acquisition, 

wearable_devices, 

Topic 10- IoV MEC, vehicles (vehicular), task_offloading, resource_allocation, 

radio_access, cellular, mec_server, reinforcement_learning, 

parking, base_station, joint_optimization 
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pyLDAvis library is used for creating the intertopic distance maps below (Sievert and 

Shirley, 2014). Also, keywords in topics are ordered using the relevance metric 

(Sievert and Shirley, 2014). In the intertopic distance maps, a larger topic circle 

indicates the higher frequency of the topic in documents. Distances between the topics 

reflect the distance measures used and can be interpreted as a similarity or divergence 

relationship between the topics. This visualization uses multidimensional scaling to 

project the distance between topics onto two dimensions by placing centers of circles 

(Chuang et al., 2012). Jensen-Shannon divergence is used as the distance metric and 

PCA is used for dimensionality reduction for the visualization by default pyLDAvis 

(Sievert and Shirley, 2014). 

From the intersecting sets shown in Figure 8, we can understand there are common 

tokens in the topics. Topics 1 and 2 share common tokens such as: “applications”, 

“architecture” and “requirements”, which are not trend dependent but words occurring 

a lot. That’s why they are intertwined in the intertopic distance map.  It is noticed that 

topics 6 and 10 share common tokens such as “task_offloading”.  Similarly, topics 1 

and 3 shares “resources”, “network” and “performance” tokens.  

 

Figure 8- Intertopic Distance Map of Non-Lemmatized LDA 
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“Computation_offloading”, “network” and “optimal, tokens are shared between topics 

6 and 10. This indicates computational offloading related research on the internet of 

vehicles, or autonomous driving market trend is conducted by researchers. Below, 

table 4 shows LDA model trained using the lemmatized tokens, by grouping different 

forms of the same word. 

Table 4: Topics and keywords of the lemmatized LDA model 

Topics Keywords 

Topic 1- 

Latency 

Device, cloud, environment, approach, processing, latency, 

distribute, reduce, solution, performance, increase 

Topic 2- IoV Network, base, communication, vehicle, traffic, mechanism, 

dynamic, function, cache 

Topic 3- 

Smart City  

Technology, smart, management, platform, development, 

research, concept, discuss, integration, field, software, big_data 

smart_grid, smart_city 

Topic 4- Edge 

Efficiency 

Problem, energy_consumption, algorithm, delay, solve, 

optimization, cost, strategy, transmission, scheduling, simulation, 

minimize, resource_allocation,  

Topic 5- 

Security 

Security, scheme, privacy, secure, protocol, attack, blockchain, 

message, trust, encryption, sensitive, protect, authentication, 

decentralize, association, interface  

Topic 6- 

Monitoring 

Sensor, analysis, real_time, monitor, collect, health, healthcare, 

transmit, hardware, wireless_sensor, patient, signal, measurement 

Topic 7- Deep 

Learning 

Image, accuracy, prediction, detection, deep_learning, video, 

classification, feature machine_learning, camera, detect, 

recognition, congestion, neural_network 

Topic 8- 

Smart 

Manufacturing 

Machine, Production, embed, robot, consumer, world, factory, 

standard, operational, communicate, digital, evolve, 

smart_factory, enterprise, home, vision 

Topic 9- 

Computation 

Offloading 

Task, offload, computation_offload, mobile, edge_server, 

load_balance, task_offloading, assign, battery, priority, 

offloading_decision, computation_intensive_reward, profit 
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Table 4 continued: 

Topic 10- 

Robotics 

Project, sensing, robotic, centric, data_acquisition, charge, 

augmented, communication_protocol, drone, plug, logic, chip, 

high_reliability 

 

Results of the lemmatized model are similar in identifying most of the topics 

semantically can be related. For example, the wearable device trend identified in the 

non-lemmatized model is an important technology for real-time monitoring tasks. 

Case studies using data from wearable technologies are also identified in the SLR in 

Chapter 4. Also non-lemmatized model could not have identified a topic related to 

robotics technologies as Topic 10. Also, we identified case studies conducted using 

robotics data in the SLR, and we know it is an important technology trend. Therefore, 

the author decided to utilize both models for findings.  

 

 

Figure 9- Intertopic Distance Map of Lemmatized LDA 
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5.5 BERTopic (Attention is All Researchers Need) 

Transformer-based deep learning models provided incredible advances in NLP tasks. 

They adopt specifically the attention mechanism from Recurrent Neural Networks 

(RNN) (Vaswani et al., 2017), enabling the model to handle long sequences of words 

without overfitting to the last appearing ones. In other words, they can process multiple 

words, therefore a complete sentence at the same time.  Pre-trained in large textual 

databases; GPT (Generative Pre-trained Transformer) and BERT (Bidirectional 

Encoder Representations from Transformers) provided observable advances in NLP 

tasks. BERTopic is a topic modeling algorithm with several steps explained below that 

utilizes sentence-BERT for embedding, UMAP (Uniform Manifold Approximation 

and Projection for Dimension Reduction) for dimensionality reduction, HDBSCAN 

(Hierarchical Density-Based Spatial Clustering of Applications with Noise) and c-TF-

IDF (Term frequency-inverse document frequency) for clustering (Grootendorst, 

2022). BERTopic is a more computationally complex algorithm when compared to 

LDA, therefore requires more time and computational resources to get results. It has a 

relatively easy implementation and supports guided, hierarchical, online, and dynamic 

topic modeling, by leveraging, class-based TF-IDF.  

5.5.1 Algorithm and components  

First, documents are transformed to vectors using sentence-transformers, a pre-trained 

using sentence BERT model “all-MiniLM-L6-v2”. Sentence BERT is a modified 

version of BERT to do semantic similarity clustering tasks. Modifications include 

Siamese and triplet network structures to compare similarities of clusters, otherwise 

would require pairwise comparison among all sentences, which is inconvenient 

computationally (Reimers and Gurevych, 2019). Another approach for this step; 

Top2vec representation for converting topics to vectors by word semantic embedding 

and also does not require discarding stop-words or lemmatization and automatically 

finds the number of topics (Angelov, 2020). BERTopic implements sentence BERT 

and compares it to the original paper (Grootendorst, 2022).  

Following the embeddings, dimensionality reduction has been conducted as (Allaoui 

et al., 2020) state dimensionality reduction improves clustering performance. UMAP 

technique is selected, as it has been shown to outperform popular methods such as t-

SNE and PCA (McInnes et al., 2020). The novel technique, based on Riemannian 

geometry and algebraic topology is discussed as superior to t-SNE in terms of 

preserving the global structure of the data. While (Kobak and Linderman, 2021) argue 

there is no evidence UMAP has proven advantage therefore PCA and t-SNE can also 

be used in BERTopic for dimensionality reduction.   

After reducing the dimensions, the density-based clustering method HDBSCAN is 

used. For assessing the clustering, TF-IDF scores are used as a measure of the 
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relevance of a word in a cluster. TF-IDF combines term frequency and inverse 

document frequency. Inverse document frequency indicates the amount of information 

a term provides to a document. Initially, all documents are assigned in a cluster, then 

iteratively calculating TF-IDF by assigning documents to clusters by the importance 

of words for each topic and merging, until the specified number of topics.  

Dynamic topic modeling introduced by (Blei and Lafferty, 2006) enables analyzing 

changes in documents over time. This feature is modeled using class-based TF-IDF in 

topics. To achieve the dynamic nature, BERTopic multiples timestamp with term 

frequency of documents. This enables dynamic topic modeling and analyzing how 

trends change over time. 

TF-IDF can be formulated as:  

𝑊(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑)  ∙ log
𝑁

𝑑𝑓𝑡
     (1) 

Where the variables are:  

 N is the number of documents,  

 D is an index for each document 

 T is an index for each term 

 tf (t,d) is a function that returns the term frequency, the number of times term t 

appears in document d,  

 df (t) is the document frequency of term t.  

 Inverse document frequency (IDF) is the logarithmic part of the statement, the 

logarithm of the number of documents N divided by document frequency dft.  

5.5.2 BERTopic Topic Model 

Because BERTopic utilizes pre-trained BERT which is trained using real text, 

lemmatization is not used. Literature indicates there is no preprocessing needed for 

BERTopic (Kukushkin et al., 2022). In Figure 10 below, the number of topics is 

detected automatically by BERTopic. For achieving a better model, BERTopic allows 

merging topics, this is done manually by the researcher, investigating the similarity 

scores of keywords and the intertopic distance map. The similarity in topics is based 

on cTF-IDF scores. 
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Figure 10- Two topics to be merged in BERTopic Intertopic Distance Map 

For example, two topics after the initial run, topics 5 and 11 with common keywords 

such as in this case: “security”, “attack”, “detection”, and the other “privacy”, 

“scheme”, and “encryption” are merged into one topic. This way, each topic is 

investigated after training and merged with a similar topic when necessary. By default, 

the BERTopic algorithm detected 50 topics capturing technology trends more in detail 

than LDA. By merging, these topics are reduced to 30. Experiments have been made 

with several minimum topic sizes and the number of topic values. Since LDA already 

gave highlights of edge computing trends, BERTopic enabled more detailed 

technological trends and relations to application areas.   

Table 5: Topics and keywords of the BERTopic Topic Model 

Topics Keywords 

T1- Internet of 

Vehicles 

Vehicles (vehicular, vehicles), UAV, offloading, computing 

T2- Blockchain- 

Security 

Blockchain, security, data, privacy, scheme, attacks 

T3- 

Manufacturing 

Manufacturing, production, data,  system, real, time 

T4- Smart Grid Grid, power, energy, smart, data, load, system, electricity 

T5- Healthcare Healthcare, health, medical, data, patient, monitoring 

T6- Deep 

Learning 

Deep, learning, neural, AI, devices, inference, dnn, models 

T7- Blockchain- 

Management 

Blokchain, miners, auction, mining, mobile, mec, resource, game 
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Table 5 Continued: 

T8- Federated 

Learning 

Federated, learning, privacy, data, local, distributed 

T9- IoV-

Security 

Vehicles, blockchain, security, IoV, scheme, privacy, 

authentication 

T10- Video 

Surveillance 

Vide, surveillance, detection, object, camera, frame, accuracy, 

real 

T11- Trust Trust, attacks, devices, ddos, security, trustworthiness, malicious 

T12- MEC MEC, mobile, security, network, access, services, key, service 

T13- Smart City Smart, city, urban, technologies, data, citizens, big, service 

T14- 

Agriculture 

Agriculture, crop, farmers, farming, data, soil, plant 

T15- Routing Network, routing, energy, cluster, sensor, NFV(network 

functions virtualization), lifetime, VNF (virtual network 

function)  

T16- Edge 

Databases 

(storage)  

Data, processing, database, storage, distributed, prediction, real-

time 

T17- Robotics Robotics, robots, slam (Simultaneous localization and mapping), 

cloud, localization, system, computing 

T18- Caching Caching, cache, query, network, hit, user, strategy, replacement, 

algorithm, popularity 

T19- Software 

Defined 

Networking 

Network, slicing, SDN, NFV, access, generation, radio, 

technologies, spectrum,  

T20- 

Augmented 

Reality 

AR, Video, VR, reality, augmented, streaming, caching, MAR 

(Mobile augmented reality), content 
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Table 5 Continued: 

T21- Facial 

Emotion 

Recognition 

Recognition, emotion, human, face, activity, facial, accuracy, 

system 

T22- Smart Grid Grid, smart, aggregation, privacy, scheme, data, security, meters, 

preserving, electricity 

T23- Anomaly 

Detection 

Anomaly, detection, data, sensor, time, detect, abnormal, source, 

real 

T24- Air 

Quality 

Monitoring 

Air, quality, pollution, monitoring, indoor, system time, sensors 

T25- Water 

Drought 

Monitoring  

Water, drought, monitoring, severity, quality, flood, using, 

system, prediction 

T26- Traffic 

Detection 

Traffic, detection, vehicle, road, object, lane, time, real, 

prediction, accidents 

T27- Smart Car 

Parking 

Parking, smart, system, car, slot, finding, space, vehicle, city 

T28- Digital 

Twin 

Digital, twin, manufacturing, physical, virtual, machine, 

construction, data, wireless 

T29- 

Kubernetes 

Kubernetes, container, scheduler, pod, orchestration, 

autoscaling, cluster, resource 

  

Notice “real” and “time” words occurring in the same topics, apparently indicating 

real-time.  Topics 3 and 4, namely smart grid and manufacturing also have common 

tokens and are intertwined in the intertopic distance map similarly in Figure 8. 

However, these topics reflect two different big market trends so they are not merged 

into the same topic. Below, c-TF-IDF scores are given for terms and topics in Figure 

11. A higher score on the word means a higher probability of being a part of that topic.  
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Figure 11- BERTopic Topic Word Scores 
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In the results, blockchain technology is used for two different business objectives, 

security applications, and resource management applications, identified as topics 2 and 

7. There is a bilateral relationship between the convergence of edge computing and 

blockchain technologies. One main challenge of blockchain technology is the 

scalability of computing resources, while a big challenge of edge architectures is 

managing decentralized devices securely. Keywords of topic 2, “security”, “data”, 

“privacy”, and “ attacks” make it obvious on using blockchain for increasing security. 

Keywords identified in topic seven:  “miners”, “auction”, “mobile”,” resource”, and 

“game” refer to game theoretic systems for managing decentralized computing 

resources. Although this thesis does not investigate how edge technologies can be used 

in blockchain applications such as managing computing resources for mining 

cryptocurrencies, topic 7, blockchain management is taken as a technological trend for 

managing edge nodes, similar to SDN and NFV.  

5.6 Dynamic Topic Modeling Results 

In recent literature, several papers discussed BERTopic gives more human-

interpretable results than LDA (Egger and Yu, 2022; Kukushkin et al., 2022). This is 

also backed by our results for our problem and dataset.  

Dynamic topic modeling enables one to see how edge applications and market trends 

changed over time. Although it is inconvenient to analyze all the topics by time in a 

single plot, the dynamic plot in the BERTopic library enables one to select multiple 

topics to analyze them. See the topic numbers and keywords can be chosen from the 

right-hand side. Below, Topics 16, 17, 18, 21, 28, and 29 are shown with the relative 

trend to each other. For example, it can be seen that a sharp increase in blockchain-

related research started to decline from 2021 to 2022, while cloudlet and Kubernetes 

technological trends continued to increase. 

 

Figure 12- Dynamic Topics Trend Analysis 
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Each topic identified from the dynamic topic model is investigated and as explained 

in Chapter 5.8, time series information is used for creating a technology roadmap. 

5.7 Cross-chapter Discussion  

Recall in the discussion chapter 4.3, the following trends were identified as results of 

the SLR:  

 Latency is a common concern among edge applications in IIoT.  

 Depending on the complexity of the computation business case requires, e.g., 

a deep learning task or real-time monitoring, literature presents offloading 

mechanisms or tailored approaches for efficiently using resources. 

 Open-source tools have been commonly used to develop edge architectures.  

 Blockchain has been incorporated into IIoT networks for security.  

 Approaches such as SDN, containerization, and computational offloading 

algorithms are used for resource utilization and energy efficiency.  

Findings in the topic modeling section validate these trends by identifying blockchain 

and security-related topics, both in LDA and BERTopic, deep learning applications 

trends, SDN and containerization keywords for computational offloading topics, 

energy efficiency topics, and Kubernetes topic is identified in BERTopic as topic 29.   

5.8 Data-Integrated Technology Roadmap 

Findings of the topic modeling are integrated to form an edge computing roadmap. 

Links and relationships between the roadmap components are formed both using terms 

occurring in the same topics, also from the manually investigated papers from the SLR 

and expert opinions. As explained in Section 2, using edge computing is a data-related 

issue therefore it should be planned and analyzed with a data-centric approach 

(Kayabay et al., 2020). Therefore, a data-integrated technology roadmap for edge 

computing is proposed. Data sources and processes are linked with market and 

technology layers. Some linkages and background information are explained in the 

technology roadmap.   

5.8.1 Smart Manufacturing and Real-Time Monitoring 

Smart manufacturing use cases and data sources are briefly explained in Chapter 2. In 

addition to those, technology trends identified by the topic model that are related to 
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smart manufacturing are robotics, digital twins, anomaly detection, and deep learning 

applications applied to manufacturing data. Notably, LDA results include ‘detection’, 

‘recognition’, ‘classification’, ‘accuracy’ tokens in the smart manufacturing topic. 

Although it is included in the monitoring-related topic in the LDA results, “wearable 

technologies” is another technology trend also used in smart manufacturing.  

Regarding how wearables enable real-time monitoring and smart manufacturing 

market trends, for example, monitoring the amounts of harmful gas spread, radiation, 

or dangerous lightning during operations in real-time can prevent work accidents. 

These can also be done using detectors on tools, trucks, or conveyors carrying semi 

materials. In contrast to monitoring and doing predictive maintenance analytics with 

data collected from machinery, performance, efficiency, and health status can also be 

used for workers using wearables. A case study conducted in Australia (Forkan et al., 

2019) monitors and analyzes worker performance using data streams collected from 

wearable sensors and transmitted to edge computers of Raspberrypis using Bluetooth. 

Then captured data is forwarded to central cloud servers for machine learning, 

detecting the activities, and calculating KPIs. 

Other examples are pumps with limited computing capabilities that can shut down 

when dangerous temperatures are exceeded, protecting equipment and personnel 

(Peng et al., 2019). In production lines of subassemblies, keeping track of KPIs as 

overall equipment effectiveness (OEE) is traditionally done by sampling and 

observations of production engineers. These KPIs can be provided in real-near time to 

required personnel in edge at the plant level, avoiding costs of working with low 

performance before detecting inefficiencies and decisions from the center are made. 

Similar examples can be given in monitoring supply chains or predictive maintenance.  

5.8.2 Internet of Vehicles 

Utilizing driving data enables applications such as predicting driver wakefulness and 

alarming for rests when needed. Real-time geographical information on vehicles 

reduces traffic congestion in the cities. Topic modeling results indicated smart car 

parking as a technological trend in this domain. Also, video surveillance is detected as 

an enabler of autonomous driving. Federated learning can be integrated for securing 

users' privacy while enabling the development of collaborative deep-learning models 

for autonomous driving (Lim et al., 2021). Autonomous vehicles can both use and 

produce data for geographical position, physical data such as velocity, tire pressure, 

parameters of engine data, accidents, and safety of the road (Xu et al., 2018). This way 

it can also be an enabler of smart logistics with less randomness in the supply chains. 

Where IoV and smart manufacturing meet; fleets of automated guided vehicles (AGV) 

or similar coordinated robots used in factory floors for packaging, palletizing, placing, 

and inspections having sensors with edge computing capabilities may not require 

human orchestration (Industrial Internet Consortium et al., 2016). 
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5.8.3 Smart Grid 

Topic model results show the smart meter as an important enabler technology 

identified in the topic model. Topic models identify smart grid is a very close trend to 

smart manufacturing in terms of similarity scores of keywords. As stated in Chapter 

4.3.1 real-time electricity consumption data from household and industrial plants, and 

production data from power plants are sources of data in a smart grid (Feng et al., 

2021). Customers can monitor their energy consumption in real-time while 

maintaining security because end-user data are stored at the edge nodes, not in the 

cloud server (Feng et al., 2021). Also, see in the smart grid topic identified in the LDA 

results, shows the privacy of user electricity consumption is another challenge edge 

computing literature has been working on. Customers can monitor their energy 

consumption in real-time while maintaining security because end-user data are stored 

at the edge nodes, not in the cloud server (Feng et al., 2021). Balanced energy load in 

a grid can be achieved using these architectures in the smart grid with low-latency. 

(Okay and Ozdemir, 2016). 

Edge computing in smart grids can make sustainable energy more dependable and 

useful. As wind speed and direction change in a wind farm, edge devices analyze data 

in real-time, optimize accordingly, and send preprocessed data to the central cloud, 

reducing communication time and data transfer costs. These data and optimization 

would help an energy company trade better terms in the market while avoiding wasting 

resources and increasing dependability on renewable energy, which is the most critical 

aspect reason still use fossil fuels.  

5.8.4 Healthcare 4.0 

Digital transformation of healthcare is referred to as Healthcare 4.0, smart healthcare, 

or digital healthcare in different domains. Healthcare statistics, patients diagnosed with 

a disease, analysis, and records from patients are examples of data leveraged by 

researchers, and pharmaceutical companies in the healthcare domain. Topic modeling 

results also show in the healthcare literature, privacy challenges of the patient data are 

addressed using integrating blockchain to these data, also processing using federated 

learning. Tomography images, or magnetic resonance imaging (MRI) data are 

processed with deep learning and tumors can be detected (Rieke et al., 2020).  

5.8.5 Smart Farming 

As explained in Chapter 2 with a case study (Sittón-Candanedo et al., 2019), the digital 

transformation of agriculture helps farmers work more efficiently, reliably, and 

sustainably. Data can be collected from RFIDs, sensors, barcodes for temperature, 

humidity, levels of CO2 or other chemicals, and lightning for agriculture (O’Grady et 

al., 2019). Besides production, digital transformation in agriculture also enables 
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transparency and traceability of the food across the supply chain for consumers. The 

main reason for monitoring food is to make instant decisions for possible flaws in 

products because they are quickly perishable.  Data regarding packaging, transporting 

pallets, containers and can be traced through the supply chain, identifying products at 

different points. This way, edge computing provides a latency-sensitive ubiquitous 

product lifecycle monitoring environment in the food industry. 

5.8.6 Environmental Monitoring 

The covid-19 pandemic increased the trend of air quality monitoring. In Chapter 4, a 

university campus's air quality monitoring system (Kristiani et al., 2021). Data was 

collected from Arduino sensors across the campus containing temperature, humidity,  

PM10 (Particulate Matter), and PM5, regarding particles less than 10 and 5 µm in 

diameter. Another topic identified in BERTopic includes data processes water quality 

monitoring and water draught prediction. Dissolved oxygen is a key parameter for 

using water in agriculture, which can be monitored using edge architectures (Kuang et 

al., 2020). Draught prediction utilizes data such as water supply resources, 

meteorological conditions, soil moisture, drought-causing factors data from 

government agencies, and periodic rainfalls (Kaur and Sood, 2020).  

5.8.7 Smart City 

Smart city can be seen as a higher trend that healthcare, smart grid, agriculture, 

environmental monitoring, and smart transportation systems (IoV) enables. 

Lemmatized LDA topic model also presents “smart_grid” and “smart_city” bigram 

tokens in topic 3, so we infer the linkage between these trends. Also, BERTopic 

identified smart car parking trend as topic 27, which includes “city” as a token, which 

identifies a technology market trend mapping, added in the technology roadmap. All 

research and technologies for preventing privacy such as blockchain and federated 

learning are directly related to smart cities. As identified in all of the topic models and 

mentioned under 5.8.2, real-time traffic monitoring and analytics can be used in new 

data applications in smart cities, finding better routes, arranging timings of traffic 

lights, and forwarding vehicle loads of specific areas (Khan et al., 2020). 

Other future applications in smart cities can be, creating security applications using 

video surveillance technology using data from security cameras (Markavathi and 

Kesavaraja, 2021, p. 8). Although some aspects of this use case can be seen as a 

violation of human freedom depending on how the automatic data is utilized and 

stored. Another example of data application is smart buildings or houses as parts of 

smart cities can monitor and control temperatures, gas levels, or humidity as discussed 

similarly in Chapter 5.8.6  (Abbas et al., 2018). 
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5.8.8 Final Roadmap 

In the roadmap below shown in Figure 13, the first appearances of each trend item in 

the dynamic topic model are mapped as the year. In a column of a year, market trends, 

data applications, data sources, and enabling technologies are mapped. However, some 

technologies started being used after the start of the market trend. For example, edge 

computing applications in healthcare studies were present from 2014 so we see that 

trend under 2014. Federated learning technology trend in edge computing research, 

started being applied to healthcare data after 2019, therefore arrows are used for 

mapping those roadmap items. An arrow from technologies to data sources indicates 

the relationship identified from topic modeling, and that technology is frequently 

applied to that data source, hence in the data application as well, enabling the market 

trend in the same column. Similarly, an arrow from the data layer to market layer also 

indicates high similarity in the topic model and semantic causality relationship.  

 

Figure 13- Edge Computing in IIoT Final Roadmap 

From the mapping explanations in Chapter 5.8, technological trends of smart meters, 

blockchain security, video surveillance, digital twin, robotics, and federated learning 

are mapped to their market trends according to the topic model results and the most 

widely adopted application domains in the SLR. For example, it is obvious that smart 

meter technology is a key enable for smart grids, or digital twins are more likely to be 

used in smart manufacturing. However, other identified technology trends namely, 

deep learning, SDN, NFV, containerization, blockchain management for 
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computational power, and Kubernetes, can be used in almost every market trend 

application, since they focus on edge architecture resource utilization improvements. 

Technologies such as SDN, containerization, and Kubernetes are use case dependent 

edge computing technology trends on their own and can be related to all edge 

architectures independent of the application domain and market trend. Examples of 

applications of those technologies in edge architectures are given in Chapter 4.2.1 and 

Chapter 4.2.3, and grouped regarding their business objectives such as increasing 

resource utilization and energy efficiency applications are discussed under Chapter 4. 

These examples are mainly in smart manufacturing and monitoring tasks considering 

the focus of SLR in Chapter 4. Therefore, these technology trends should not be seen 

as mapped only to the market trends under which they are located in the same column 

they appear.  

5.9 Discussion: Additional Implications for Organizations 

As stated in Chapter 6.3, this study proposes a high-level sectoral technology roadmap 

for edge computing and discusses the need for future research, especially at the 

organizational level. This high-sectoral roadmap brings us a limitation also stated in 

Chapter 6.3, the generality of the roadmap makes it less strategic (Kanama, 2013). Just 

as this study focuses on edge computing, data-driven technology roadmapping studies 

generally focus on science and technology related research. This is not a limitation due 

to the properties of the process, but the availability of large textual data (Kostoff and 

Schaller, 2001). One limitation of data-driven approaches is that they are subject to 

plentiful uncertainties regarding organizational matters and are rarely applied and 

validated in real-world settings (Park et al., 2020). The potential strategic benefits of 

the technology roadmapping process for an organization can be exploited by 

customizing it to company-specific internal and external factors (Lee and Park, 2005). 

Quantitative studies and our technology roadmap can be used as input for qualitative 

methods to conduct further technology forecasting as in hybrid methodology studies 

explained in Chapter 2.9.2. These studies combined text mining and similar 

quantitative approaches with qualitative approaches such as workshops (Noh et al., 

2021),  (Wang et al., 2018) or interviews with experts (Ozcan et al., 2022), (Ma et al., 

2021), (Li et al., 2019).     

Using the guidelines by (Phaal et al., 2004a) on customizing a fast-start T-Plan 

process, baseline implications regarding creating an organizational edge computing 

strategy are proposed, which can be detailed and validated with a case study in an 

organization in future work. Practitioners can discuss these topics consecutively in 

their workshops for an edge adoption and should customize workshops based on 

organizational structure. Below, recommended steps for edge computing practitioners 

and researchers from the socio-technical perspective on the IIoT environment are 

discussed and shown in Figure 14.  
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In the recently proposed data science roadmapping framework (Kayabay et al., 2022), 

the customized roadmapping process involves four main workshops, where strategical, 

data-related, technological, and organizational aspects are discussed, respectively. 

Similarly, this study proposes the steps below for fast starting a strategic edge 

computing planning.  

1. Learn industry and market trends, presented in this study in Chapter 5, and 

discuss how a company can align. Analyze the current production workflows 

to find opportunities and set up a strategy for filling those gaps. Looking for 

examples of an edge architecture and forming a data-driven business process 

that utilizes the architecture may also be a more specific aim for the company 

for starting digitally transforming current business processes. 

2. Discuss which business processes can be leveraged using edge, and how to 

exploit the value of real-time data analytics using an edge architecture. A 

company may want to achieve one of the following scenarios: real-time 

monitoring of several processes and KPIs, making forecasts with data from 

distributed network devices, detecting anomalies, tracing machinery for 

predictive maintenance, and sustaining these in the business processes.  

3. The sufficiency of currently used technologies should be evaluated. Decide on 

whether to find a provider for a service level agreement or create the whole 

architecture using open-source tools. Resources like budget, time, human 

resources, relationship with academia, OT/IT domain knowledge can be also 

determined. Idle OT devices or computing resources may be used for 

prototypes.  

4. Create necessary teams, determining suitable personnel according to the 

required skillset for each step depending on the type and size of the 

organization. Best practices, issues, and solutions in the industry/market should 

be investigated, especially security concerns edge computing brings. Top 

management support for the process and cooperation between business 

functions are essential. Representatives of partner companies or consultants 

may attend to this process to share know-how and speed up processes. 
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Figure 14- Proposed steps for adopting edge architectures 

After identifying possible architectures, a team with OT and IT skills has to decide on 

the components and technological infrastructure. Consultants or partner company 

representatives can contribute depending on the experience of the personnel and the 

complexity of the architecture company decides to achieve. Working together with 

academia and companies with expertise is vital for understanding the best practices.  
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CHAPTER 6 

 

6 CONCLUSION 

 

6.1 Summary 

A technology roadmap can be used for analyzing or forecasting technology trends, 

customer needs, relationships between alternative technologies, competitors, changes 

in market conditions, and developing strategies to meet the industry’s technology 

needs (Lee and Park, 2005; Lu and Weng, 2018). This study investigates edge 

computing research and applications in IIoT and related environments under a 

sectoral-industrial scope and proposes a retrospective data-integrated edge computing 

technology roadmap. The retrospective roadmap served as a technological evaluation 

and social assessment tool. Also, it can be used as a starting point for other 

organizational or prospective planning studies by integrating to complement the data-

integrated roadmapping activities (Kayabay et al., 2022). 

Research on edge computing is investigated and a knowledge gap is identified there 

are no strategic investigations, but only demo applications as stated in detail in Chapter 

1.2 problem statement and Chapter 2.10 literature summary and knowledge gaps.  

First, a manual SLR is conducted including papers with applications in a real-life IIoT 

setting. Technologies in edge architectures, data sources used, business objectives, and 

the application domain are described.  

To create the roadmap, market and technology trends of using edge computing in IIoT 

environments are identified using topic modeling. LDA and BERTopic algorithms are 

applied to a dataset of academic publications. The results of topic models are then 

combined with the results of SLR and shown in the technology roadmap. Dynamic 

topic modeling approach enabled us to see how these trends started and changed over 

time, as shown in the horizontal axis of the technology roadmap. Generally, market 

and technological trends are identified from the topic model and were supporting 

findings of the SLR. Some market and technology trends identified in the SLR are then 

validated with the results of the topic models and discussed under the cross-chapter 

discussion in Chapter 5.7. Data sources and applications, on the other hand, were more 

use case dependent than market and technology trends, therefore could not be 

identified in topic models, generalized using examples from the SLR, and integrated 
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into the roadmap manually by the researchers. The creation of the final roadmap is 

explained under Chapter 5.8 and presented with explanations of the data sources and 

applications used in that market trend, justifying market-data layer relationships in the 

roadmap. 

6.2 Contributions 

This thesis contributes to the edge computing literature by proposing the first sectoral 

edge computing technology roadmap. It reveals how the focus of edge computing 

research and technologies correlates with business objectives and application domains 

in IIoT.   

It contributes to technology roadmapping literature by developing a new technology 

and social change assessment tool, proposing a data-integrated roadmap for sectoral 

planning of emerging technology, by integrating the data layer into the technology 

roadmap.   

Methodologically, it contributes to exploratory technology forecasting and assessment 

literature by combining SLR and topic modeling into technology roadmapping. It 

evaluates and presents BERTopic and LDA algorithms for creating topic models. It 

compares lemmatized and non-lemmatized LDA models and discusses the results and 

effects of lemmatization in topic models under Chapter 5.4. It integrates dynamic topic 

modeling into technology roadmapping stated as future work in related studies (Feng 

et al., 2022; Kim and Geum, 2021). Dynamic topic model using BERTopic is 

explained in Chapter 5.5 and Chapter 5.6 explained how the time dimension from the 

results is integrated into the TRM. Chapter 5.9 discusses implications for organizations 

on how to make a more strategic and customized edge computing planning by tailoring 

a workshop-based roadmapping process to their requirements.  

Therefore, this study used data-driven technology roadmapping to bridge the 

sociotechnical knowledge gaps in the edge computing domain. 

6.3 Limitations and Future Work 

Chapter 5.9 stated technology roadmaps can serve different scopes of planning such 

as organizational, industrial, or national. However as the purpose of the roadmap 

becomes more general, the roadmap is less strategic (Kanama, 2013), therefore future 

research can use roadmapping to be incorporated at the organizational level.  

Quite often, technology forecasting is incorporated into a roadmapping activity (Lee 

and Park, 2005), which might indicate it is a tool for technology forecasting, however 
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as can also be seen in other data-driven roadmapping studies presented in Chapter 

2.9.2, it provides a mechanism to help experts make the forecasting (Garcia and Bray, 

1997). In this study, the technology roadmap assesses the current situation of edge 

computing in IIoT, without making any forecasts for the future. Also, further 

qualitative studies can be integrated such as workshops or expert interviews can be 

integrated into the findings similar to some studies explained in Chapter 2.9.2 for 

making the roadmap prospective rather than retrospective, therefore the roadmap can 

be used as a technology forecasting tool as well. Chapter 5.9 discusses how a potential 

workshop-based approach could be customized for edge architectures.  

Future work can conduct a case study for developing an edge computing adoption 

strategy for industrial organizations. Also, data-integrated roadmapping studies 

(Kayabay et al., 2022) and (Han and Geum, 2020) can be used for more data-centric 

strategy development at the organizational level, since the motivations of using edge 

computing are shaped around the characteristics of data available. 

In the final edge computing technology roadmap in Chapter 5.8, columns reflect the 

market, data, and technology trends that are correlated to each other, however, most 

of the technology trends identified can be used in all of the market trends, so are not 

individually stated as relationships. For example, it is obvious that smart meter 

technology enables smart grids or digital twins to be more likely used in smart 

manufacturing. However, technologies such as SDN, containerization, and Kubernetes 

are edge computing technology trends on their own and can be related to all edge 

architectures independent of the application domain and market trend.  

As for data sources of technological and market trends, patents can be utilized as the 

data source with well-established database search results in patent databases. For 

market trends, sources from grey literature such as commercial edge solutions, success 

stories, or market research company reports, can be used. Also, other quantitative 

approaches can be used for finding further and more detailed links between market 

and technology trends.
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