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ABSTRACT

COMPARISON OF ARTIFICIAL NEURAL NETWORK-BASED AND
ADAPTIVE QUADRATIC NEURAL NETWORK-BASED MULTI-FIDELITY

ALGORITHMS FOR BUCKLING LOAD PREDICTION OF STIFFENED
PANELS

Yaşar, Hüseyin Avni

M.S., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Ercan Gürses

Co-Supervisor : Assoc. Prof. Dr. Hamdullah Yücel

April 2023, 75 pages

This thesis presents a novel approach for predicting the buckling load of stiffened
panels using multi-fidelity modeling based on the quadratic neural networks (QNNs)
with adaptive activation functions. The effectiveness of the proposed approach is
demonstrated through a series of simulations on a range of stiffened panel configu-
rations, and the results are compared to those obtained from traditional multi-fidelity
modeling methods in terms of accuracy and computational efficiency. Numerical ex-
periments demonstrate that the model can accurately and efficiently predict the buck-
ling load of stiffened panels, while significantly reducing the computational cost of
evaluating the surrogate model. This approach can significantly improve the design
and optimization of aerospace structures by easily and quickly exploring various de-
sign configurations and finding stable and efficient configurations. Overall, this study
highlights the potential of multi-fidelity modeling for predicting the buckling load of
aerospace structures, and the effectiveness of using QNNs with the adaptive activation
functions.

Keywords: Multi-Fidelity Models, Surrogate Model, Adaptive Activation Functions,
Artificial Neural Networks, Buckling, Stiffened Panels
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ÖZ

GÜÇLENDİRİLMİŞ PANELLERİN BURKULMA YÜKÜ TAHMİNİ İÇİN
YAPAY SİNİR AĞI TABANLI VE ADAPTİF KUADRATİK SİNİR AĞI TABANLI
ÇOKLU DOĞRULUK SEVİYELİ ALGORİTMALARIN KARŞILAŞTIRILMASI

Yaşar, Hüseyin Avni

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Ercan Gürses

Ortak Tez Yöneticisi : Doç. Dr. Hamdullah Yücel

Nisan 2023, 75 sayfa

Bu tez, uyarlanabilir aktivasyon fonksiyonlarına sahip kuadratik sinir ağlarına (KSA-
lar) dayalı çoklu doğruluk seviyeli modeller kullanarak güçlendirilmiş panellerin bur-
kulma yükünü tahmin etmek için yeni bir yaklaşım sunmaktadır. Önerilen yaklaşımın
etkinliği, çeşitli güçlendirilmiş panel konfigürasyonu üzerinde bir dizi simülasyon
yoluyla gösterilmiştir ve sonuçlar, doğruluk ve hesaplama verimliliği açısından gele-
neksel çok yönlü modelleme yöntemlerinden elde edilenlerle karşılaştırılmıştır. Sa-
yısal deneyler, önerilen modelin güçlendirilmiş panel yapılarının burkulma yüklerini
doğru ve etkin bir şekilde tahmin edebileceğini ve vekil modelin değerlendirilmesi
için gerekli hesaplama maliyetini önemli ölçüde azaltabileceğini göstermektedir. Bu
yaklaşım, çeşitli tasarım konfigürasyonlarını kolay ve hızlı bir şekilde keşfederek ve
kararlı ve verimli konfigürasyonlar bularak havacılık yapılarının tasarımını ve opti-
mizasyonunu önemli ölçüde iyileştirebilir. Genel olarak, bu çalışma, havacılık yapı-
larının burkulma yükünü tahmin etmek için çoklu doğruluk seviyeli modellemenin
potansiyelini ve bu amaç için uyarlanabilir aktivasyon fonksiyonlarına sahip KSAları
kullanmanın etkinliğini vurgulamaktadır.

Anahtar Kelimeler: Çoklu Doğruluk Modelleri, Vekil Model, Uyarlanabilir Aktivas-
yon Fonksiyonları, Yapay Sinir Ağları, Burkulma, Güçlendirilmiş Plakalar
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CHAPTER 1

INTRODUCTION

Buckling, which can lead to sudden and catastrophic failure of a structure, is a critical

concern in the design of aerospace structures, see, e.g., [8]. Accurate prediction of the

buckling load of a structure is essential for ensuring its stability and safety and is a key

challenge in the design of aerospace structures. Traditional methods for estimating

the buckling load of a structure, such as finite element analysis, are computationally

expensive and time-consuming, making it challenging to examine a wide range of

design configurations and loading conditions [39].

In recent years, surrogate modeling has been proposed as a promising approach for

addressing this challenge [30]. One type of surrogate modeling that is quite effective

is multi-fidelity modeling. Multi-fidelity modeling is a technique that uses multiple

models with varying levels of fidelity to approximate complex systems [45]. By com-

bining the predictions of these models, this approach can reduce computational bur-

den and improve prediction accuracy compared to using a single high-fidelity model.

This study proposes a novel approach for estimating the buckling load of stiffened

panels using multi-fidelity modeling based on quadratic neural networks (QNNs) with

adaptive activation functions. According to our best knowledge, this is the first study

in which adaptive activation functions and QNNs have been applied in a multi-fidelity

study for predicting buckling load in the stiffened panels. In this approach, using

QNNs can enable the model to represent a more comprehensive range of nonlinear

functions than the traditional ANNs, and using adaptive activation functions can im-

prove the model’s convergence speed and training efficiency.
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The effectiveness of the proposed approach will be demonstrated through a series of

simulations on a range of stiffened panel configurations. The results obtained using

this approach will be compared to those obtained from the traditional multi-fidelity

modeling methods in terms of accuracy and computational efficiency. For an in-

depth comparison, ANN-based multi-fidelity models with optimal hyperparameters

obtained through hyperparameter optimization will be utilized.

The proposed approach can effectively combine multiple fidelity levels to produce

more accurate and reliable predictions of the buckling load of stiffened panels while

significantly reducing the computational cost of evaluating the surrogate model. This

method also allows for more efficient optimization of the panel design and has the po-

tential for application to a wide range of real-world problems. The thesis is organized

as follows:

The second chapter provides a literature review on surrogate modeling, multi-fidelity

modeling, adaptive activation functions, and quadratic neural networks. This chap-

ter serves as a background and motivation for the work presented in the subsequent

chapters.

The third chapter presents a detailed description of the buckling analysis procedures,

including the methods and assumptions used to model the buckling behavior of stiff-

ened panels.

The fourth chapter presents an overview of the concept of multi-fidelity modeling

and examines the correction methods used to improve the accuracy of multi-fidelity

models.

The fifth chapter describes the methodology of our proposed approach in detail, in-

cluding the algorithm for training and evaluating the model. This chapter comprehen-

sively explains how our approach works and how it can be implemented in practice.

The sixth chapter presents the results of our numerical experiments and compares

the performance of our approach to existing methods. This chapter demonstrates the

effectiveness of our approach in achieving high accuracy with significantly reduced

computational cost. Last, the seventh chapter provides a discussion of the results, the

conclusion of this study, and suggestions related to future works.
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CHAPTER 2

LITERATURE REVIEW

In engineering and scientific applications, systematically formulating the design prob-

lem within an optimization framework to thoroughly exploit the advantages in design

is often reasonable. The objective functions can be evaluated by employing analyt-

ical functions or, more generally, numerical models such as finite difference, finite

volume, or finite element simulations. Since a considerable amount of evaluations

are often needed for optimization studies to achieve an optimal solution, the solution

process results in high computational costs. In order to reduce the computational

time spent on evaluations, global approximation techniques known as metamodels

or surrogate models are developed using data acquired from analytical or numerical

approaches [54]. These models are cheap to evaluate and can be used as a substi-

tute for high-fidelity simulations by providing significant time savings to execute the

optimization.

In the literature, there are several applications of surrogate modeling techniques in

the optimization of stiffened panels that are excessively used in the aerospace struc-

tures. It has been demonstrated that the time needed to find the maximum buckling

load of composite stiffened panels was effectively reduced using surrogate models

based on the radial basis functions [25], second-order polynomials [47], and neu-

ral networks [7]. In Hao’s study [22], an intelligent optimization framework was

utilized using convolutional neural networks (CNN)-based surrogate models to en-

hance the optimization performance of structural panels with curvilinear stiffeners.

Bisagni et al. [7] developed an artificial neural network (ANN)-based optimization

procedure for obtaining the minimum weight design and load-carrying capacity of
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stiffened panels subject to buckling and post-buckling. The developed network was

trained with non-linear finite element analysis results. Gomes et al. [18] conducted

an optimization study using a genetic algorithm on anisotropic laminated composites.

In this study, two alternative neural networks, radial basis and multi-layer perceptron

neural networks, were used to reduce the computational cost. Both methods were

determined to produce satisfactory solutions on an accuracy basis and to reduce the

design process time. Lanzi and Giavotto [31] investigated the performance of radial

basis functions, neural networks, and kriging surrogate models for the optimization

of axially compressed composite stiffened panels with the multi-objective function of

maximum post-buckling load and minimum weight goals. According to the results

verified by tests, three methods were found to produce acceptable results with similar

accuracy, and none of them can be identified as a superior method for this study. In

Mallela and Upadhyay [34], a neural network-based optimization tool was developed

for forecasting the shear-buckling load of composite stiffened panels under in-plane

shear loads. The designed network has been checked for generalization capabilities

utilizing test data created with finite element analysis results. Bacarreza and Aliabadi

[5] proposed a multi-objective optimization approach for laminated composite panels

in a post-buckling regime by considering the progressive failure modes of compos-

ites. This approach resulted in the maximization of load bearing capacity of stiffened

panels. Another comparison analysis was performed by Kalnins et al. [28] to check

the performance of different metamodels. They have utilized radial basis functions,

multivariate adaptive regression splines, and polynomials regression metamodels to

optimize the post-buckling attributes of curved composite stiffened structures with

damages. It was concluded that since the surrogate models used in this study have

cross-validation errors of less than 10%, they could be an efficient substitute for phys-

ical experiments in an optimization framework.

While the accuracy of metamodels is significantly dependent on the surrogate model

choice and problem type, the strategy of the design of experiments (DOE) also has a

considerable effect on the performance of metamodels. The sampling approach and

size of samples dramatically affect the accuracy of the models, and an inappropriate

sampling process might increase the computational costs. Therefore, to select exper-

imental data strategically, the design of experiment methodology should be chosen

4



carefully. It was observed that space-filling methods such as Latin Hypercube Sam-

pling (LHS) were generally used for building datasets for surrogate models [49]. In

Olsson’s study [40], LHS was used to improve the efficiency of Monte Carlo Simu-

lations by increasing the representation capacity of stochastic finite element analysis.

Ding et al. [12] employed LHS to compute fracture probability with fewer simula-

tions and acquired sufficient calculation error. Moreover, Ferrari et al. [16] chose

LHS as the sampling method to create the sample set of experimental vibration data

used for boosting the confidence level of the global optimization-based automated

model for the historic bridge. It was indicated that there is a high correlation between

the experiment and analysis results.

Surrogate models have been applied successfully and have reduced the computational

cost of various optimization problems. Since the reliability of surrogate models can

be determined based on the fidelity of training data, high-fidelity data is needed to

yield a surrogate model with high accuracy. However, the computational burden of

generating enough experiments to fit reliable metamodels is severe for most large-

scale problems. Even conducting a few high-fidelity simulations can be burdensome

for complex problems with highly nonlinear behavior. In order to overcome this

issue, the multi-fidelity modeling approach is proposed for the optimization of en-

gineering problems. Multi-fidelity models, which are implemented by incorporating

metamodels trained with low-fidelity data and metamodels trained with high-fidelity

data, can approach the accuracy obtained by high-fidelity metamodels while reducing

the computational cost critically.

Zadeh et al. [64] proposed a multi-fidelity method for achieving the collaborative op-

timization of composite beams at a reasonable cost. High-fidelity simulations had a

much higher computing cost when considering design variables, whereas low-fidelity

simulations were less accurate despite having a lower computational cost. In this

study, the presented multi-fidelity method has used fewer high-fidelity simulations

for tuning low-fidelity models to reach the accuracy level of high-fidelity models,

while the tuned model is less expensive. Peherstoler et al. [45] surveyed different

model management techniques for multi-fidelity models to differentiate how differ-

ent fidelity models are employed and combined during the multi-fidelity execution

studies. These techniques have enabled multi-fidelity models to improve the solution
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accuracy and time savings for optimization problems by leveraging low-fidelity mod-

els for acceleration and by building correction methods for representing high-fidelity

models to ensure high accuracy and convergence. One of the model management

techniques is an adaptation that generates a multi-fidelity model by making the cor-

rection of the low-fidelity model using the updates obtained from the high-fidelity

simulations. Multi-fidelity metamodels have been commonly constructed with either

additive or multiplicative correction techniques [21] by utilizing the evaluation of low

and high-fidelity simulations [37, 46, 66].

Padron et al. [41] developed the multi-fidelity method to optimize a RAE2822 wing

subject to uncertain flow conditions. The method uses polynomial chaos expansion

constructed from a low-fidelity model and a model correction to approximate the

high-fidelity statistics. Results showed that 60% to 90% computational savings can

be achieved compared to the high-fidelity method.

Multi-fidelity surrogate models are formed employing different fidelity models based

on the specific details of the given problem combined. Yoo et al. [61] created four dif-

ferent MF models based on an artificial neural network and used them for reliability

analysis and composite panel optimization. Results demonstrated that the proposed

approach could reduce the computational cost by at least half compared to traditional

methods. Tao and Sun [58] proposed a deep belief network-based multi-fidelity surro-

gate model for the robust aerodynamic design of an airfoil. In this framework, a deep

belief network was employed as a low-fidelity model, and a linear regression model

was used as a correction model. Fernández-Godino et al. [15] reviewed multi-fidelity

model (MFM) trends in optimization, uncertainty quantification, and optimization un-

der uncertainty fields. Additionally, they surveyed the proper way to determine how

multi-fidelity model savings can be achieved.

Vitali et al. [60] first proposed the idea of multi-fidelity models via fracture progres-

sion in a composite structure. The concept is to employ the correction response sur-

faces for low-fidelity models to follow the global response behavior of high-fidelity

models. Multi-fidelity models are produced by combining correction response sur-

faces with low-fidelity surrogate models; these models offer an accurate answer at

a cheap computational cost. Alexandrov et al. [3] presented the trust region-based
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model management optimization framework for the multi-fidelity aerodynamic opti-

mization of wings to reduce the computational cost. This strategy employs the first-

order additive and multiplicative correction models for low-fidelity models to satisfy

the first-order consistency constraints. These correction functions are constructed

with Taylor approximations, which make the low-fidelity models follow the results of

high-fidelity models while saving dramatic computational costs.

Park et al. [42] compared three different multi-fidelity surrogate frameworks and pro-

posed a method to assess the performance of multi-fidelity models. The method is

based on the ratio of high and low-quality simulation costs required to construct a

multi-fidelity model. They showed that multi-fidelity models are helpful for compu-

tational time savings, and prediction performances of multi-fidelity models are highly

correlated with the ratio of the sample sizes between high and low-fidelity models.

Recently, Yoo et al. [62] have proposed a multi-fidelity model-based framework that

uses considerably fewer high-fidelity models than the conventional models with the

aim of more significant computational time savings. With the help of fewer design

variables with HFM, high-fidelity simulations are reduced, and low-fidelity simula-

tions are used to explore the entire design space. The proposed multi-fidelity formula-

tion achieved a significant computational advantage compared to conventional multi-

fidelity models. Kudela et al. [30] examined the latest developments and state-of-the-

art surrogate model applications for FEM-based computations, including publications

on multi-fidelity. The review emphasizes theoretical and practical advancements in

model development and validation, sensitivity analysis, uncertainty quantification,

and surrogate-assisted optimization.

Lately, neural network-based metamodels have been widely used for engineering

problems. Deep neural networks (DNNs), a division of ANNs, have demonstrated

exceptional accomplishments in many applications, from natural language process-

ing [33] to image analysis [51], by adjusting the number of hidden layers to enhance

the functional capacity of neural networks for expressing complex functions. The

learning capacity of DNNs should be appropriately balanced with the extent of su-

pervision that is presented by training data to successfully capture patterns with high

generalization, even though DNNs with higher capacity have a high chance of cap-
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turing complex patterns of a problem in a smaller number of epochs. In this situation,

new approaches are required to expand the network’s capacity without drastically in-

creasing the number of trainable parameters, such as innovative network architectures

or new types of activation functions.

It has been observed that quadratic neural networks have been one of the promis-

ing network architectures. Fan et al. [14] suggested that quadratic networks in-

crease the capacity of networks by means of parametric efficiency and expressibil-

ity. Their study showed that complex radial functions could be approximated with

a more compact network architecture than ordinary ANNs. Nguyen et al. [38] in-

vestigated the performance of quadratic neural networks (QNNs), artificial neural

networks (ANNs), and high-order ANNs to predict the strength of foamed concrete

under compressive loading. According to the validation results, high-order ANNs

and QNNs were established to obtain higher confidence in the strength prediction

than ANNs. Bu et al. [9] applied a quadratic neural network to solve physics prob-

lems involving PDEs and showed that QNNs could be an effective tool where high

expressive power is required. They also conducted a study to demonstrate that QNNs

are superior to ANNs in the sense of faster convergence speed and better parametric

efficiency.

Adaptive activation functions have been recently developed activation functions for

enhancing learning ability. Tezel et al. [59] implemented the ANN architecture with

adaptive activation functions and compared the results of the proposed network with

the classical ANN model, including non-adaptive activation functions. It has been

shown that a model with an adaptive activation function converged faster than the

traditional model and achieved superior performance compared to the traditional one.

Lau et al. [32] investigated the performance of saturated, unsaturated, and adaptive

activation functions for DNNs to compare the misclassification rate of networks. It is

claimed that adaptive activation functions could solve the saturation problem for hy-

perbolic activation functions with two additional trainable parameters. Moreover, it

has resulted in adaptive activation functions having better generalization performance

compared to the other activation functions. Jagdap et al. [27] applied adaptive acti-

vation functions to accelerate the training speed of physics-informed neural networks

(PINNs) by introducing a scalable hyperparameter. The prospective adaptive activa-
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tion functions have better learning capability as well as preferred prediction accuracy

compared to the traditional ones. It has been shown that the suggested method signifi-

cantly improved the robustness, accuracy, and parametric efficiency of ANNs. Jagdap

et al. [26] also presented two types of locally adaptive activation functions, referred

to as neuron-wise and layer-wise, to enhance the convergence rate and performance

further and to accelerate the training process of DNNs and PINNs.

In this study, state-of-the-art ANN architectures are utilized for developing multi-

fidelity models for buckling load estimation of the stiffened panel. This work presents

a comparative study of the performance of multi-fidelity models created using ANN

and QNN with adaptive/non-adaptive activation functions. In addition, Optuna [2] is

employed as the hyperparameter optimization framework to select optimal hyperpa-

rameters for neural networks. The aim of this study is to develop a strategy in order to

generate optimal multi-fidelity models with high parametric efficiency and improved

convergence speed, in addition to significant computational cost savings with high

accuracy. Assessment of all models’ performances will be made, and multi-fidelity

models for each network architecture will be compared to the high-fidelity models.

The best-performing multi-fidelity models created with each architecture will then be

compared.
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CHAPTER 3

BUCKLING ANALYSIS OF STIFFENED PANEL

Finite element analysis of complex structures mandates a significant amount of com-

putational resources and time to achieve accurate results. The primary sources of an

increase in computational time involve nonlinearity in geometry, material properties,

connections between parts, and finite element sizes.

This study aims to develop an ANN-based computational model to determine the first

buckling load of stiffened panels with reasonable accuracy and reduced computational

time. In order to accomplish this goal, multi-fidelity surrogate models are developed

based on artificial neural networks using different fidelity models. Fidelities differ

based on the size of the elements in finite element analyses. Low-fidelity datasets are

obtained by analyzing finite element models with coarse mesh sizes, whereas high-

fidelity datasets are obtained by analyzing models with fine mesh sizes. Since dataset

quality is essential for training ANNs, a mesh convergence study is performed to

choose the optimum element size for low and high-fidelity analyses. ABAQUS [53] is

used for the structural analysis of stiffened panels. Low-high fidelity datasets involve

the results of a large number of finite element analyses at design points determined

using the sample strategies. These analyses are performed using ABAQUS, which

can run a parametric algorithm written in Python, allowing all buckling analyses to

be completed in a single step.

This chapter seeks to establish a baseline methodology for all finite element analyses

conducted in this study. Firstly, geometric dimensions and connections between parts

will be described. Details of load and boundary conditions are given next. Moreover,

mesh properties and finite element solution methodology will be represented. In the
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last step, the results of the sample analysis study for fine and coarse meshes will be

discussed.

3.1 Geometry and Dataset Description

The initial stage of finite element analysis is creating the geometry of the model. A

rectangular panel and a stringer are used to create a skin-stringer assembly. A sample

skin-stringer assembly model drawing and stringer cross-section drawing are given in

Fig 3.1a and Fig 3.1b, respectively.

Skin Panel Length 

Skin Panel Width

(a) Hat stiffened panel isometric view

Inner flange width

Fastener DiameterWeb height

Stringer thickness

Outer flange width

Skin thickness

Web width

(b) Hat type stringer cross section

Figure 3.1: Technical drawing for hat stiffened panel
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Table 3.1: Constant inputs for dataset

Variable Dimensions
Rivet Diameter 3.2 mm
Rivet Spacing 19.2 mm
Skin Panel Length 600 mm
Skin Panel Width 400 mm

Table 3.2: Variable inputs for dataset

Variable Dimensions [mm]
skin thickness 1.5, 2.0, 2.5, 3.0
stringer thickness 1.5, 2.0, 2.5, 3.0
stringer web height 20, 25, 30, 35
outer flange width 15, 20, 25, 30
stringer web width 15, 20, 25, 30
inner flange width 20, 25, 30, 35

Stringer in skin-stringer assembly is selected as the hat type, with two flanges fastened

to the skin and one upper flange. Hat section stiffeners are commonly used in the

aerospace structures since they have a structurally efficient design and are easy to

manufacture. The stringer with hat cross sections is created and connected to the

skin panel with rivets of 3.2 mm diameter. Rivet connections are simulated using

"Fastener" type connectors of ABAQUS. In order to avoid stress concentration around

the rivet holes, it is recommended that the fastener spacing on an airframe structure

should be between four and six times the fastener diameter [4]. In this thesis, the rivet

diameter is specified as 3.2 mm, the most common and smallest size, and the fastener

spacing is assigned five times of fastener diameter to all models. The wireframe view

of the finite element model of a hat-stiffened panel is given in Figure 3.2.

The designed skin panel is a 600x400 mm sheet metal plate. The width and length of

the skin panel are constant throughout the whole study. Constant inputs are given in

Table 3.1. Six design parameters influence the buckling performance of the structure.

These parameters are skin thickness, stringer thickness, stringer web height, stringer

web width, stringer inner flange width, and stringer outer flange width. Each param-

eter has four design levels. Dimensions of these parameters are determined as typical

aircraft design values and presented in Table 3.2.

13



Figure 3.2: Finite element model of hat stiffened panel

3.2 Load and Boundary Conditions

The hat-stiffened panel assembly is subjected to compression loading. Two reference

points are defined to be the master nodes of the hat-stiffened panel on the upper and

lower edges (y-direction). Kinematic coupling is assigned between these edges and

reference points. These reference points are used for loading and boundary condi-

tions.

A concentrated force is applied from the load application point, defined as RP1 in

Figure 3.3, to simulate the compressive load. The assembly is clamped at both ends

from the reference points, except the loading edge is unrestricted to move in the load-

ing direction (+y-direction). In order to simulate real-life skin-stringer connections,

displacement, and moment boundary conditions are applied to the side edges of this

panel. These boundary conditions allow rotation for side edges, while preventing

them from translating in the out-of-plane direction.
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RP1

RP2

x y

z

Figure 3.3: Compressive loading of stiffened panel

3.3 Material Properties

In this study, the material of stiffened panels is chosen as aluminum due to its light-

weight properties, which makes it ideal for aerospace applications. Aluminum offers

many options for its series. 2024-T3 clad sheet aluminum is selected for skin and

stringer structures. The shell section for chosen aluminum properties is devised and

assigned to the stiffened panel. The 2000 series are often utilized in the aerospace

structures for sheet metal parts mandating a high strength/weight ratio and fatigue re-

sistance. Fuselage and wing structures under high compression or tension are primary

application areas for this. Material properties [1] of Al 2024-T3 used in modeling are

given as follows:

• Compressive yield strength [MPa], Fcy : 296,

• Young’s modulus [MPa], E : 73084,

• Density [kg/m3], ρ : 2768,

• Poisson’s ratio, ν : 0.33.
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3.4 Mesh Quality

A mesh convergence study is being undertaken to determine the appropriate mesh

size for both high-fidelity and low-fidelity models, utilizing an extensive range of

eight analytical models with varying element sizes ranging from 2 to 20 millimeters.

The buckling analyses in Abaqus are conducted using an Intel Xeon E5-2680 v3 CPU,

which provided the high processing power needed for the complex computations re-

quired for this study. Table 3.3 includes the total computational time of buckling

analysis for each mesh size and the percentage error of each load with respect to the

first buckling load obtained from the finest mesh (2 mm).

Table 3.3: Mesh size, Error, and Time

Mesh Size (mm) Percentage Error in Load (%) Time (s)
2 0.00 47092

4 1.51 11412

6 2.90 5086

8 11.31 3142

10 11.85 2068

12 17.00 1550

15 26.35 1130

20 53.17 782

25 498.50 544

It is of utmost importance to carefully choose the proper mesh sizes when conducting

multi-fidelity simulations since it requires balancing accuracy with the computational

expenses of simulations. The present study determines mesh sizes based on the mean

absolute percentage error of buckling load and total computational time of the analy-

ses, given in Table 3.3 for 200 design points.

Upon careful consideration of the low-fidelity simulations, it has been determined

that a mesh size of 20 millimeters is selected as an optimal choice. This decision is
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based on the fact that the load percentage errors increase too fast after the 20 mm

mesh size. Therefore, choosing a larger mesh size would have increased the error

while only marginally reducing the computational cost. Figure 3.4b shows the finite

element model with a mesh size of 20 mm.

When conducting the high-fidelity simulations, a mesh size of 4 mm has been selected

to balance accuracy and computational time. It was determined that using a finer

mesh size of 2 mm would have produced more accurate results but with significantly

increased computation time. Thus, choosing a 4 mm mesh allows for achieving a less

than 2% percentage error in load which is a critical limit for this study, while keeping

the computation time within reasonable limits. Figure 3.4a shows the finite element

model with a mesh size of 4 mm.

The accuracy of the high-fidelity model (HFM) differs from the low-fidelity model

(LFM) by 35%, and LFM costs 75% less than HFM. The choice of mesh size for

the high-fidelity and low-fidelity models is based on a balance between accuracy and

computation time. The 4 mm mesh size provides good accuracy while still being

computationally efficient for the HFM. The 20 mm mesh size is sufficient for the

LFM and allows for a faster computation time.

(a) Mesh size 4 (b) Mesh size 20

Figure 3.4: Mesh size 4 and 20 mm

In addition to the mesh size, the element type is critical for the finite element model.

In this study, all parts of the hat-stiffened panel are modeled as the shell parts. In

order to mesh the shell, S4R elements, defined as a four-node element with a single

integration point (reduced integration), including hourglass control and finite mem-

brane strains, are used. According to ABAQUS documentation [53], the S4R element

type is recommended for modeling general-purpose shells. For thin shells with S4R
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elements, discrete Kirchhoff thin shell theory is applicable, whereas, for thick shells,

thick shell theory is applicable [50]. The thickness of the element determines the

theory to be used with S4R elements.

3.5 Finite Element Solution Methodology

Eigenvalue buckling analysis is used to predict structure stability under external loads.

In order to perform the analysis, the eigenvalue problem must be solved using the

equation (K0 − λK∆) · u = 0, where K0 is the stiffness matrix at base state, K∆

is the stiffness matrix induced from the incremental load, λ is the eigenvalue, and

u is the eigenvector. The critical load at which the system becomes unstable and

experiences buckling is represented by the eigenvalue λ, and the mode shape of the

system at this critical load is represented by the eigenvector u.

The ABAQUS software has two options for conducting eigenvalue buckling analysis:

the Subspace solver and Lanczos solver. Deciding on which one to choose requires

taking into account variables such as the characteristics of the problem and the de-

sired level of accuracy and convergence. The Subspace solver is generally more ef-

ficient, stable, and particularly well-suited for the large-scale systems. According to

ABAQUS documentation [53], the Lanczos solver is generally faster but may some-

times suffer from convergence issues. In this case, the Subspace solver is chosen as

the solver.

In order to successfully tackle the eigenvalue problem in ABAQUS, one must first in-

dicate "Linear Perturbation-Buckle" as the solution step and select a preferred solver.

In the Subspace solver, the number of specified eigenvalues, the vectors used per

iteration, and the maximum number of iterations must be defined. The number of

specified eigenvalues determines the number of critical loads and mode shapes that

will be solved. In contrast, the vectors used per iteration and the maximum number

of iterations control the accuracy and convergence of the solution. The vectors used

per iteration refer to the number of vectors used to construct the subspace in each

iteration of the Subspace solver. The subspace is a set of orthonormal vectors used

to iteratively solve the eigenvalue problem until the desired accuracy is achieved. In
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each iteration, the Subspace solver updates the subspace with the new vectors and re-

fines the solution until convergence or the maximum number of iterations is reached.

A higher number of iterations and vectors per iteration will result in a more accurate

and converged solution and increase the computational time.

The number of eigenvalues is set as one to obtain the first buckling load. Balancing

accuracy and computational efficiency is achieved by using 12 vectors per iteration

while limiting maximum iterations to 3000.

3.6 Finite Element Analysis Results

In this study, the purpose of FE analyses is to determine the critical buckling load of

hat-stiffened panels. Therefore, for each case, only one eigenvalue is requested. Since

the load is applied as concentrated force, the resulting eigenvalue gives the buckling

load without additional calculations.

(a) The first buckling mode shape for mesh size 4

(b) The first buckling mode shape for mesh size 20

Figure 3.5: The first buckling mode shapes for mesh size 4 and 20 mm
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In addition to the buckling load, buckling mode shapes (eigenvectors) are also pre-

dicted by this analysis. Since the magnitudes of these eigenvectors are normalized to

have maximum displacement as one, the buckling mode shapes do not represent the

actual magnitudes of deformation in the structure. The mode shapes for the fine mesh

(4 mm) and coarse mesh (20 mm) are shown in Figure 3.5a and Figure 3.5b, respec-

tively. For the hat-stiffened panel with fine mesh, the first buckling load is found to

be 33 kN, and the first buckling load with coarse mesh is 45 kN. Although the mode

shapes look similar for these meshes, the resulting loads significantly differ.

20



CHAPTER 4

MULTI-FIDELITY MODELS

Surrogate models are simple representations of a complex system by mimicking the

functional relationship between design variables and output. These surrogate models

predict complex systems with acceptable accuracy while incurring computationally

cheap evaluation costs. Therefore, surrogate models have been extensively applied

to optimization problems in different disciplines to cope with the high computational

costs brought on by expensive simulations. Kriging [52, 48], support vector machines

(SVM) [20, 11], polynomial chaos expansion (PCE) [57], artificial neural networks

(ANN) [7], radial basis functions (RBF) [10, 13], and various others are widely used

surrogate models in the optimization.

The main goal of employing surrogate models is to imitate expensive to evaluate

high-fidelity models, such as FEM-based models [7, 34, 5], using affordable statisti-

cal models. These surrogate models are created based on the input and output data

of computationally expensive simulations with high accuracy. Although the surrogate

models diminish the high computational cost of sophisticated models, it still takes sig-

nificant time to construct them for complex problems. Different techniques such as

dimensionality reduction, parallel computing, or simpler surrogate models can be em-

ployed to lower the cost of training time of surrogate models. However, high-fidelity

data is required for large-scale problems with non-linear behavior to ensure the tar-

geted accuracy. Because of the high simulation costs, gathering the high-fidelity data

needed for the model to be of the desired reliability and high accuracy is frequently

challenging. In contrast, utilizing low-fidelity data to reduce expenses may result in

unreliable models. Since a trade-off between accuracy and computational time is es-
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sential while constructing these models for low and high-fidelity data, choosing the

suitable model plays an important role.

In these circumstances, multi-fidelity methods have been proposed between these

models to balance accuracy and computational time. Different fidelity surrogate mod-

els are combined to create a more accurate overall model while retaining low-fidelity

models’ computational efficiency. In order to balance the optimization cost and accu-

racy, multi-fidelity (MF) surrogate modeling methods that can incorporate data from

high-fidelity (HF) and low-fidelity (LF) models have been suggested in the literature;

see, e.g., [42].

The multi-fidelity models are constructed based on the information from the differ-

ent fidelity models to achieve the desired accuracy at a reasonable cost. Generally,

two types of models are introduced in multi-fidelity modeling: High-Fidelity Mod-

els and Low-Fidelity Models. Low-fidelity models can be obtained by dimensional

reduction, linearization, use of simpler physics, coarser domain discretization, and

partially converged results. These models are less accurate approximations of the

high-fidelity models. The cost of acquiring high-fidelity data is higher than that of

low-fidelity data. Thus, allocating computational resources between high and low-

fidelity simulations can lower the general training expense.

Multi-fidelity modeling is a technique that involves using multiple models with dif-

ferent fidelity to make predictions. Surrogate model types of these single-fidelity

models affect the performance of multi-fidelity models. In particular, the choice of

a surrogate model can significantly impact the accuracy, reliability, and efficiency of

the multi-fidelity modeling. This study focuses on deep neural networks (DNNs) as

surrogate models for the multi-fidelity modeling. DNNs are a specific type of arti-

ficial neural network (ANN) consisting of multiple hidden layers between the input

and output layers. These hidden layers enable DNNs to model complex relationships

between inputs and outputs, making them powerful and effective for various appli-

cations. In this work, we explore different DNN alternatives to produce surrogate

models for multi-fidelity modeling.
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Multi-fidelity neural networks can be formed with a lower training cost and higher

prediction accuracy than ordinary DNNs. Low-fidelity deep neural network (LFDNN)

is trained with low-fidelity simulation results, whereas high-fidelity deep neural net-

work (HFDNN) is trained with high-fidelity simulations. Low-fidelity networks esti-

mate the overall pattern, while high-fidelity networks model local features and fluc-

tuations.

In our problem, the training data for LFDNN and HFDNN are obtained from the finite

element method (FEM). LF data are taken from the FEM simulations with coarser

spatial discretizations in this work. The fundamental goal of multi-fidelity models is

to develop metamodels for HFMs employing correction methods.

Multi-fidelity modeling commonly uses multiplicative, additive, and comprehensive

correction function approaches to combine information from high-fidelity (HFM) and

low-fidelity (LFM) models to create accurate and efficient models.

The multiplicative correction approach is given by

ŷHF (x) = β(x) · yLF (x), (4.1)

where β(x) is the ratio of LFM and HFM responses multiplied by the LFM response

to estimate the HFM response.

The additive correction approach is given by

ŷHF (x) = δ(x) + yLF (x), (4.2)

where δ(x) is the difference between the HFM and LFM responses added to the LFM

response to estimate the HFM response.

The comprehensive correction approach is represented by

ŷHF (x) = δc(x) + ρ · yLF (x), (4.3)

where the equation is similar to the additive correction approach but includes a scaling

factor ρ to weight the contribution of the LFM response. By adjusting the value of

ρ, the comprehensive correction approach can balance the accuracy and efficiency of

the resulting model.
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Multiplicative and additive correction methods are often used in multi-fidelity ap-

plications since they are relatively simple and easy to implement in many applica-

tions. These correction methods incorporate information from high-fidelity simula-

tions without requiring much additional computation. Therefore these methods are

especially beneficial when high-fidelity simulations are computationally expensive.

Additive methods capture variations where the difference between the output of the

low and high-fidelity models varies significantly. In other cases, the multiplicative

correction method may be superior, as discussed in Vitali’s study [60], as it can more

effectively capture the overall trend in the data.

In addition to these methods, the comprehensive correction method is also used in

multi-fidelity modeling. The comprehensive model is the updated version of the ad-

ditive correction method by multiplying the low-fidelity model with the scaling factor.

The scaling factor has been shown to improve the performance of multi-fidelity mod-

els using additive correction, which can have bumpiness, defined as immediate and

significant fluctuations in the difference between the HFM and LFM when combined.

Bumpiness incorporates variation and waviness, which is defined as

B(f(x)) =

∫
|f ′′(x)|2 dx, (4.4)

where B(f(x)) is bumpiness of a function f(x).

The scaling factor can be selected to minimize the error or bumpiness of the difference

model [17]. The steps involved in the scaling factor optimization study are outlined

in the Algorithm 1.

Algorithm 1 Optimizing Scaling Factor ρ using fmincon

1: Define the function (∆) as ∆ = HFdata − ρ · LFdata.

2: Define the objective function fun(ρ) = bumpiness(∆) or fun(ρ) = mape(∆).

3: Set the upper bound ub = 1 and lower bound lb = 0.

4: Set the initial guess x0 = 0.5.

5: Call the optimization function: x = fmincon(fun, x0, lb, ub).

6: Return the optimal scaling factor ρ = x.

The presented pseudo-code given in Algorithm 1 first defines the difference model ∆

as the difference between high-fidelity and scaled low-fidelity models. The objective
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function is then defined as the bumpiness or mean absolute percentage error of the

difference model. Finally, the fmincon function in MATLAB [24] is called to find the

optimal scaling factor ρ that minimizes the objective function.

After that, a deep neural network called Discrepancy Deep Neural Network (DDNN)

is trained over additive correction based on the difference between high-fidelity and

low-fidelity data. In the same way, a multiplicative deep neural network (MDNN)

is trained based on the high-fidelity and low-fidelity data ratio. Alternative multi-

fidelity networks can be created by combining predictions from LFDNN and DDNN

or LFDNN and MDNN.

Neural networks created utilizing each training dataset, such as LFMs and response

correction surfaces, are used to construct multi-fidelity surrogate models. The accu-

racy of multi-fidelity models depends on the quality of surrogate models developed

by datasets sampled using the Latin Hypercube Sampling (LHS)[35].

The pursuing multi-fidelity models are employed to compare with different high-

fidelity models,

ŷMFm(x) = βANN(x) · yANN
LF (x) (4.5)

ŷMFd
(x) = δANN(x) + yANN

LF (x) (4.6)

ŷMFc(x) = δANN
c (x) + ρ · yANN

LF (x) (4.7)

where ŷMFm , ŷMFd
, and ŷMFc are the outputs of the developed multi-fidelity surrogate

models, ρ is a constant multiplicative factor, and δANN(x), δANN
c (x), and βANN(x)

are the metamodels for the response correction function.
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CHAPTER 5

METHODOLOGY

Multi-fidelity modeling approaches have been used to reduce the computational cost

of different engineering problems [3, 42, 60, 62]. While a significant decrease in

cost can be achieved in multi-fidelity modeling with ANNs, for complex problems,

choosing an appropriate algorithm to construct multi-fidelity models is still a problem.

Depending on the complexity of the problem, high functional capacity is required for

deep networks, bringing additional performance and resource issues.

This study aims to use state-of-the-art algorithms to create optimal multi-fidelity mod-

els with high parametric efficiency and convergence speed. In Table 5.1, the proposed

algorithms, which are expected to achieve accurate results with fewer parameters, are

given. Four different multi-fidelity models are created in this framework, and detailed

evaluations are done.

It is decided to employ a conventional multi-fidelity network as a baseline approach

for the performance assessment. This baseline procedure uses five classic ANNs to

generate extensive and limited multi-fidelity models. The predictions of these multi-

fidelity and high-fidelity models are assessed in this study. In the same way, the other

algorithms are used to develop multi-fidelity models, and buckling load estimations

of these models are evaluated.

The main steps of the methodology followed for all artificial neural network ap-

proaches developed in this study are shown in Figure 5.1.
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Figure 5.1: Multi-fidelity modeling methodology for neural network architectures

In this study, the dataset is created through FEM simulations run with ABAQUS

using Python scripting. After dataset creation, the hyperparameter search space is

determined for each previously mentioned model. In Table 5.1, algorithms for buck-

ling load estimation in this research and related hyperparameters are shown. Then,

using the Optuna optimization framework [2], the hyperparameters from which the

highest-performing models obtained are chosen. After that, the best models trained

with optimal hyperparameters are selected for comparison.

Table 5.1: Hyperparameters for models

Models Hyperparameters

MLP with CAF
Activation Function, Neuron Size,
Number of Layers, Learning Rate,
Optimizer, Batch Size

MLP with AAF

Activation Function, Neuron Size,
Number of Layers, Learning Rate,
Optimizer, Batch Size, αAAF , nAAF

QMLP with CAF

Activation Function, Neuron Size,
Number of Layers, Learning Rate,
Optimizer, Batch Size

QMLP with AAF

Activation Function, Neuron Size,
Number of Layers, Learning Rate,
Optimizer, Batch Size, αAAF , nAAF
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5.1 Dataset Generation

In this study, there are six geometric design parameters, each with four levels. Defi-

nitions of these variables can be seen in Table 5.2.

Table 5.2: Input variables for dataset

Variable Explanation
tsk skin thickness
tstr stringer thickness
h stringer web height
b1 outer flange width
b2 stringer web width
b3 inner flange width

The referenced datasets for this problem are generated offline using the high-fidelity

and low-fidelity structural buckling analyses carried out with ABAQUS. The FE

model’s element size determines the fidelity type that characterizes the high-fidelity

and low-fidelity data. The high-fidelity analyses are conducted with a mesh size of 4

mm, whereas the low-fidelity analyses are made with a mesh size of 20 mm. In this

study, high-fidelity and low-fidelity data are used to build High-Fidelity and Low-

Fidelity Models, which are employed for developing the multi-fidelity models.

Multiple simulations are performed to generate the training data by sampling the

parameters in Table 5.2, and these parameters are shown in Figure 3.1b. For each

variable, minimum and maximum values are set, and the corresponding design inter-

vals are divided into four equal intervals. For the baseline high-fidelity comparison

model, the full factorial approach is used to create a dataset that includes all possible

combinations of the design parameters at a discrete number of design points. The

design points to create surrogate models for multi-fidelity models require a sampling

technique. This study uses Latin Hypercube Sampling (LHS) [23] as the sampling

method since it can provide good coverage of sample space to ensure that the exper-

iment results are representative of the underlying distribution. Also, LHS can reduce

the cost and complexity of the experiment by minimizing the number of required

samples [56]. Using LHS, suitable design points are determined for creating the data

to generate different multi-fidelity models. For generating multi-fidelity models and

accomplishing comprehensive explanations by examining their performance and cost
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comparison with single-fidelity models, datasets with a sample size of 1060, 1375,

and 3000 are sampled with LHS, and high-low fidelity analyses are carried out to

generate them.

5.2 Artificial Neural Networks

Artificial neural networks (ANNs) use the brain and nervous system processing as a

foundation to develop models that can be used to classify complex patterns and make

correct estimations. ANNs are imitations and simplifications of biological neural

networks. Like the human brain, ANNs consist of neurons organized into several

layers.

Feed-forward neural networks are a widespread neural network that is the first and

most straightforward type of artificial neural network; see, e.g., [19] for more details.

Feed-forward neural networks comprise the input layer, the hidden layers, and the

output layer. These layers consist of connected neurons which transmit input signals

to the neurons in the subsequent layers. The input layer brings the external data

into the system for further processing by the hidden layers. The output layer gives

the model’s prediction, which is the problem’s solution. The hidden layers are the

intermediate layers in which the neurons apply the weights to inputs and send them

through the neurons of the next layer.

Multi-layer perceptron (MLP) is a layered feed-forward neural network consisting of

interconnected neurons which process data through three or more layers. The basic

structure of MLP follows one input layer, at least one hidden layer, one output layer,

an activation function, and a group of weights and biases. MLPs with more than

one hidden layer are called deep ANN or deep neural networks (DNN). In MLPs,

neurons from one layer are connected to all neurons in the neighboring layer(s); in

other words, these layers are fully connected, and the connection between neurons

is constructed through the weights and bias. Once the output is generated from the

output layer, the loss function between the actual and predicted values is calculated

depending on the chosen loss metrics. In MLP, the training algorithm uses the back-

propagation algorithm to learn the dataset. During training, neuron weights are tuned
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to minimize the loss function by using a backpropagation algorithm. Overall, the neu-

ral network’s main focus is finding the optimal weight values to improve prediction

accuracy.

 

 = activation function

 =summation 

Figure 5.2: Mathematical operation steps of an artificial neuron

In Figure 5.2, the mathematical operation steps of an artificial neuron can be exam-

ined. The network produces the following output for the training set {(xi, yi)}Ni=1:

ŷ = f(x, θ) = σ(Wx+ b) = σ

( N∑
i=1

wixi + b

)
, (5.1)

where σ is the nonlinear activation function, and wi(i = 1, ..N) and b are learnable

parameters named as weight and bias terms, respectively. The model parameters are

described as θ = {W, b}, where W = {wi}Ni=1 and b = {bi}Ni=1. The backpropagation

algorithm utilizes gradient-based optimization techniques employing the loss function

L(x; θ) = d
(
y, f(x; θ)

)
. (5.2)

The loss function can be set based on the chosen loss metrics d. The following mini-

mization problem determines the optimum weights and bias terms:

θ∗ = argmin
θ
L(x; θ), (5.3)

where L(x; θ) is the loss term to be optimized. This optimization problem seeks to

minimize the loss function to reach optimum weights and biases, as given in

θt+1 ← θt − η∇θL(x; θ), (5.4)
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where η is the learning rate and θ = {W, b} is the pair of the weight and bias pa-

rameters of the neural network. In the weight update mechanism, the learning rate, a

configurable hyperparameter, acts as the step size and controls how quickly the model

weights fit the problem.

5.2.1 Activation Functions

Activation functions are classified as constant or adaptive depending on the slope of

the activation function.

5.2.1.1 Constant Activation Functions

In this training process, the activation function plays a critical role by adjusting the

outputs of neurons. For solving complex problems, nonlinear activation functions

are needed in neural network design. Nonlinear activation functions attached to each

neuron will activate the output, depending on whether the output value satisfies the

threshold. In other words, the activation function serves as a mathematical formula

to determine neuron switch on or off. Common activation functions in deep neural

networks are hyperbolic tangent, sigmoid, and rectified linear unit (ReLU). While

nowadays the most commonly used activation function is ReLU, before the discovery

of ReLU, activation functions were mainly sigmoidal functions, which are hyperbolic

tangent and sigmoid functions are defined, respectively, by

f(x) =

(
ex − e−x

ex + e−x

)
, (5.5)

f(x) =

(
1

1 + e−x

)
. (5.6)

The main problem with the sigmoidal activation functions is that their derivative tends

to be zero as x goes to plus-minus infinity (df(x)
dx
→ 0 as x → ±∞). The problem

is deepened in deep neural networks since the gradient propagates and multiplies

throughout the layers, which results in excessive training time. This phenomenon
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is called the vanishing gradient problem, which can be avoided using ReLU. The

rectified linear unit defined in (5.7) [36] has a gradient of one if the input is positive

and zero if the input is negative.

f(x) = max(0, x). (5.7)

ReLU solves the vanishing gradient problem and is faster than traditional activation

functions since the function does not require any computationally expensive opera-

tion. ReLU has many variants, such as Exponential Linear Unit (ELU), Scaled Expo-

nential Linear Unit (SELU), and Gaussian Exponential Linear Unit (GELU), which

are simple and address different issues related to the performance of activation func-

tions. Although these functions work well, it has been some interest in finding better

activation functions.

5.2.1.2 Adaptive Activation Functions

Adaptive activation functions [26, 27] introduce an additional hyperparameter alpha

(α), which changes the slope of the activation function. Adaptive activation functions

(AAF) have better learning capabilities than the constant activation functions since

it increases the convergence rate and training accuracy. Also, the vanishing gradi-

ent problem observed in sigmoidal activation functions can be solved with adaptive

activation functions thanks to additional trainable parameters.

In addition to the trainable parameter α, the scaling factor n can also be helpful. For

DNNs, choosing the correct learning rate is essential since it affects the search for the

global minimum. In adaptive activation functions, the scaling factor behaves like a

secondary learning rate toward finding minima. Figure 5.3 indicates adaptive activa-

tion functions with different α values, which change the slope of activation functions.

In order to accelerate convergence to the optimum for the network, a scaling factor

n multiplied by α can be chosen as n ≥ 1. In this case, the final form of adaptive

activation functions becomes as in (5.8- 5.10) for the hyperbolic tangent, sigmoid,

and rectified linear unit functions, respectively,

Adaptive Tanh :
(
en·α·x − e−n·α·x

en·α·x + e−n·α·x

)
, (5.8)
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Adaptive Sigmoid :
(

1

1 + e−n·α·x

)
, (5.9)

Adaptive ReLU : max(0, n · α · x). (5.10)

Adaptive activation function can be applied layerwise or neuronwise [26]. Neuron-

wise adaptive activation functions define α parameters for each neuron in the neu-

ral network, whereas layerwise adaptive activation functions define α parameters for

each layer. In this research, a layerwise adaptive activation function has been em-

ployed.

(a) Adaptive Tangent (b) Adaptive Sigmoid (c) Adaptive RELU

Figure 5.3: Adaptive activation functions with different values of slope α

5.2.2 Quadratic Neural Networks

Combining numerous neurons with nonlinear activation provides Deep Neural Net-

works (DNN) with high functional capacity. For a dense neural network, the capacity

to capture complex patterns in fewer training epochs increases as the network deep-

ens. However, training becomes more challenging for DNNs with high capacity. The

generalization performance of ANN is defined as the difference between the error on

training data and unseen data. The complexity of the neural network and the amount

of training data determines the generalization capability. Therefore, the number of

trainable parameters should be balanced appropriately with the available training data

to achieve generalization for the network.
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Figure 5.4: Mathematical operation steps of a quadratic neuron

Quadratic neural networks [9, 14, 38] are developed to approximate complex func-

tions with less trainable parameters than ordinary DNNs. In Figure 5.4, the math-

ematical operation steps of a quadratic neuron can be examined. In this network

architecture, an additional weight term (W2) is introduced for each neuron, and an

additional quadratic term ( W1 · x ◦W2 · x) is added to the output of neurons before

applying the activation function. This quadratic term provides supplemental nonlin-

earity in addition to the activation functions.

5.3 Multi-Fidelity Modeling

This study uses different artificial neural network options to develop surrogate mod-

els based on High-Fidelity Models (HFMs) and Low-Fidelity Models (LFMs). The

correction response surfaces of δ(x) and β(x) are used as the ratio and difference

between the HFMs and the LFMs to produce the multi-fidelity models.

Four alternative surrogate model choices are investigated to find an optimal multi-

fidelity model with low cost and high accuracy. These alternatives are MLP with

constant activation, MLP with adaptive activation, quadratic MLP with constant ac-

tivation, and quadratic MLP with adaptive activation functions. Although the net-

work architectures differ, the methodology for multi-fidelity models will be identical.

For each network choice, ANN creates five metamodels: High-Fidelity DNN, Low-

Fidelity DNN, Multiplicative DNN, Discrepancy DNN, and Comprehensive Discrep-
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ancy DNN. Multiplicative, Discrepancy, and Comprehensive Discrepancy DNN are

created by the difference and ratio between high and low-fidelity models, as demon-

strated in Table 5.3.

Table 5.3: Response correction models

Model Output approximation

Multiplicative DNN βANN(x) =
YHF1060(x)

YLF1060(x)

Discrepancy DNN δANN(x) = YLF1060(x)− YHF1060(x)

Comprehensive Discrepancy DNN δANN
c (x) = ρ · YLF1060(x)− YHF1060(x)

For Comprehensive Discrepancy DNN, scaling factor ρ is optimized as 0.70 by mini-

mizing bumpiness, whereas ρ is optimized as 0.75 by minimizing error. According to

sample results in Table B.1, minimizing bumpiness gives better results than minimiz-

ing error, which aligns with the literature [43]. Therefore, ρ is chosen as 0.70 from

now on.

The design points to create ANNs are obtained using the LHS for different sample

sizes. At first, the datasets with 1060 and 3000 design points are sampled using LHS.

Once the sampling has been completed, high-fidelity and low-fidelity analyses are

done with determined input parameters. Datasets are divided into training, test, and

validation sets as 70% for training, 15% for validation, and 15% for testing. For

simplicity, surrogate models will be called upon fidelity and dataset size. For ex-

ample, the low-fidelity surrogate model trained with 1060 samples dataset is called

LFM1060. In this study, LFM1060, LFM3000, HFM1060, and HFM3000 surro-

gate models are trained for Low-Fidelity and High-Fidelity DNNs, whereas Diff1060,

Diffc1060, and Ratio1060 surrogate models are trained for Discrepancy, Comprehen-

sive Discrepancy, and Multiplicative DNNs.

The multi-fidelity models are produced by combining these low-fidelity surrogate

models with discrepancy and multiplicative surrogate models, as demonstrated in

Table 5.4. Multiplicative surrogate models, also known as ratio-based models, and
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discrepancy surrogate models, also known as difference-based models, are utilized

in creating these multi-fidelity models. The extensive multi-fidelity models, MF1,

MF2, and MF3, need costly computation time since they call for the low-fidelity

models trained with a dataset with 3000 samples. On the other hand, limited multi-

fidelity models, MF4, MF5, and MF6, are cheap since they call for low-fidelity mod-

els trained with 1060 samples.

Table 5.4: Multi-Fidelity Models

Model Output approximation

MF1 ŷMF1 = βANN(x) · YLF3000(x)

MF2 ŷMF2 = δANN(x) + YLF3000(x)

MF3 ŷMF3 = 0.70 · YLF3000(x) + δANN
c (x)

MF4 ŷMF4 = βANN(x) · YLF1060(x)

MF5 ŷMF5 = δANN(x) + YLF1060(x)

MF6 ŷMF6 = 0.70 · YLF1060(x) + δANN
c (x)

5.4 Performance Evaluation Metrics

In this study, the accuracy of the model’s performance is assessed by comparing the

actual (y) and predicted (ŷ) values for each network and multi-fidelity model. R-

squared (R2), mean absolute error (MAE), mean absolute percentage error (MAPE),

and mean squared error (MSE) values are used as the performance metrics in this

work. The R-squared (R2) value measures the proportion of variance of the y value,

which is the solution for the problem. In other words, it quantifies the degree of linear

dependency between the actual and predicted value of the model. While R-squared

(R2) is close to one, the fit between the actual and predicted value is almost perfect.

Although R-squared (R2) is an essential and commonly used metric in regression

analysis, it is not sufficient on its own to determine the accuracy of the neural network
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[55]. This is because R-squared assumes linear relationships between the independent

and dependent variables, which may not hold for the nonlinear models. In addition,

R-squared only considers the variance explained by the model and does not take into

account other aspects of model performance, such as bias or error. Therefore, MAE,

MSE, and MAPE are additional metrics to assess the performance of a neural net-

work. Generally, a higher value of R2 and a lower value of other metrics result in a

decrease of loss between actual and prediction values. Definitions of these metrics

are given in (5.11- 5.14):

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − y)2
, (5.11)

LMAE =

(
1

N

N∑
i=1

|yi − ŷi|
)
, (5.12)

LMSE =

(
1

N

N∑
i=1

(yi − ŷi)
2

)
, (5.13)

LMAPE =

(
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣), (5.14)

where y and ŷ are the actual and prediction values of the model, respectively, y is the

mean of the actual values of the model, and N is the number of samples.

Finally, the number of trainable parameters is measured for each model to compare

the parametric efficiency of alternative neural network architecture used to create

multi-fidelity models.

5.5 Numerical Experiments

To implement ANN, we leverage Pytorch [44], developed by the Facebook AI re-

search team, an open-source machine-learning framework for developing and training

deep-learning models. Pytorch enables us to change activation functions and neural

network structure, in which we need to implement quadratic and adaptive activation

functions. Also, PyTorch facilitates GPU acceleration for the neural networks, which

can remarkably enhance the training efficiency of deep neural networks. In this study,
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a multi-layer perceptron neural network is adopted as a baseline model. The generic

configuration of this network with six inputs, one output, and N hidden layers is

shown in Figure 5.5.

Figure 5.5: Multi layer perceptron model

This study employs four different network structures to create multi-fidelity models,

and six surrogate models are trained for each multi-fidelity model series. Each cor-

responding surrogate model is trained with the same dataset, such as the low-fidelity

surrogate model in MLP and QMLP has the same training set. Since a detailed com-

parison is needed to reasonably compare these multi-fidelity models created with dif-

ferent architectures given in Table 5.5, an extensive hyperparameter search is needed

for every model. The performance of models is evaluated based on the performance

metrics given in Section 5.4.

Hyperparameter optimization is one of the most challenging research domains in neu-

ral network architectures, especially for DNN. While the search space includes all the

possible hyperparameters, the goal is to find the best hyperparameters which lead

to the minimum loss function. Hyperparameters in search space are similar for all

four algorithms. Hyperparameters are determined as the activation functions, neuron

size, learning rate, optimizers, and batch size for algorithms with constant activation

functions. On the other hand, two additional parameters, α and n, are added to the

hyperparameters for the algorithms with adaptive activation functions. Search space
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for these hyperparameters is determined based on the literature and the number of re-

sources allocated for this study. Although the activation functions are given in Table

5.5, search space for each architecture involves only one activation function because,

based on initial experiments, it has been observed that the ReLU is more successful

as a constant activation function and the tanh as an adaptive activation function.

Table 5.5: Hyperparameters search space

Models Hyperparameters Search Space

MLP with CAFs

Activation Function ReLU
Neuron Size [16, 256]
Number of Layers [1, 8]
Learning Rate [1× 10−5, 1× 10−2]

Optimizer Adam, Yogi, Lamb
Batch Size [50, 250]

MLP with AAFs

Activation Function Adaptive Tanh
Neuron Size [16, 256]
Number of Layers [1, 8]
Learning Rate [1× 10−5, 1× 10−2]

Optimizer Adam, Yogi, Lamb
Batch Size [50, 250]
α (AAF) [1, 2]
n (AAF) [1, 2]

QMLP with CAFs

Activation Function ReLU
Neuron Size [16, 256]
Number of Layers [1, 8]
Learning Rate [1× 10−5, 1× 10−2]

Optimizer Adam, Yogi, Lamb
Batch Size [50, 250]

QMLP with AAFs

Activation Function Adaptive Tanh
Neuron Size [16, 256]
Number of Layers [1, 8]
Learning Rate [1× 10−5, 1× 10−2]

Optimizer Adam, Yogi, Lamb
Batch Size [50, 250]
α (AAF) [1, 2]
n (AAF) [1, 2]
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Well-known optimizers (Adam [29], Yogi [65], Lamb [63]) used in literature are one

of the hyperparameters to see the effect of the optimization algorithm on the training

performance. These optimizers utilize mini-batch, a fixed portion of training sets that

are less than the actual training set. The batch size is defined as the number of sam-

ples passed through to the network at each group. It may have a significant impact on

the accuracy of the network and the generalization performance of the networks. For

comprehensive hyperparameter search, Optuna optimization framework [2], designed

for machine learning studies, has been used in this study. Optuna combines an effi-

cient search and pruning algorithm, enhancing cost-effectiveness for hyperparameter

optimization.

Intending to optimize the performance of the neural network, we have defined the ob-

jective function as the mean absolute percentage error (MAPE) of the predictions in

the test set. MAPE is selected as the objective function for the buckling load estima-

tion of the stiffened panel due to its ability to effectively represent prediction error,

mainly when working with actual values encompassing varying magnitudes. The

optimization algorithm, called Tree-structured Parzen Estimator (TPE) [6], which be-

longs to a class of Bayesian algorithms designed explicitly for optimization purposes,

is used to optimize the objective function.

In search of optimal hyperparameters, this study has opted to use TPE due to its ability

to balance exploration and exploitation. The algorithm starts by randomly selecting a

subset of hyperparameters and creates a prior probability distribution over the search

space of hyperparameters. Then algorithm updates the probability distribution after

each trial based on the results of the objective function evaluation. This capability

of TPE allows it to focus on the most promising regions of the search space while

still exploring other regions, making it a convenient choice for optimizing neural

networks’ hyperparameters.

The steps involved in conducting a hyperparameter optimization study are presented

herein through the utilization of the Algorithm 2.
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Algorithm 2 Hyperparameter Optimization Study with Optuna
1: procedure OPTIMIZE

2: Define the objective function: minimize MAPE.

3: Define the search space for the hyperparameters.

4: Create an Optuna study using TPE as the optimization algorithm.

5: Run the study.

6: Get the best hyperparameters found by the optimization.

7: Return the best hyperparameters.

8: end procedure

The study uses Optuna with the given steps in Algorithm 2 and minimizes the loss

functions defined as MAPE, resulting in the best hyperparameters for the neural net-

work. These hyperparameters are then used to train optimal neural networks, provid-

ing improved prediction accuracy.

5.5.1 Statistical Results of Generated ANNs

One trial study result is shown here to check the validation performance of the Quadratic

MLP trained with a hyperparameter set from the search space. The network is trained

with 3000 low-fidelity samples. As illustrated in Figure 5.6, the mean square error for

training and validation sets are close to each other, and the error is reasonably small.
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Figure 5.6: Training and validation loss vs. Epoch

The network continues to learn to last epochs; the best epoch is 4956. In Figure 5.7,
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Figure 5.7: True value versus Prediction

true values are given in the horizontal axes, and ANN predictions are in the vertical

axes. This figure shows the distribution of ANN predictions compared to the diagonal

line. The points around the diagonal line constitute an almost bold line means the

prediction fits almost perfectly with the actual value. Also, it means that the sample

size of the chosen dataset for ANN is sufficient for developing multi-fidelity models.

Based on these results, it can be inferred that developed ANN gives promising results

for further study.
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CHAPTER 6

RESULTS AND COMPARISONS

In this chapter, different types of multi-fidelity models are formed and examined for

their ability to model complex systems. These models comprise quadratic multi-layer

perceptrons (QMLPs) and multi-layer perceptrons (MLPs), with constant or adaptive

activation functions (CAFs and AAFs), respectively.

Within this initial section of the chapter, the individual and cross-architecture perfor-

mances of the evaluated models are presented and compared utilizing performance

metrics. The purpose here is to improve comprehension of each model’s strengths

and weaknesses while identifying any conceivable trends or patterns that may have

emerged.

In the analysis, a second section evaluates different surrogate algorithms concerning

their efficiency and effectiveness, which are MLPs and QMLPs with CAFs and AAFs.

Validation loss, time-saving, and the use of parameters are considered in this analysis.

The multi-fidelity models are evaluated in the third section of this chapter to de-

termine their generalization performance on an additional dataset. This evaluation

involves comparing the results of these models with high-fidelity analysis results for

the additional design points included in the new data set.

Eventually, the fourth section assesses the performance of multi-fidelity models based

on QMLP and AAFs on a dataset with different mesh sizes. The objective is to

ascertain these models’ efficiency and ability to handle various levels of mesh sizes.

The findings offer a significant perspective concerning the effectiveness and efficiency
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of multi-fidelity modeling for complex systems. The following sections expound

upon what these results entail while underlining how employing such models could

prove advantageous in different circumstances. Potential benefits are also highlighted

within said discussions.

6.1 Performance Comparison of Multi-Fidelity Models

In this section, the performances of four different architectures are evaluated. Each

model has been trained on a corresponding training dataset and has had extensive hy-

perparameter searches conducted on a validation dataset in order to select the model

with the best performance. The final results for each model will be reported on an

independent test dataset that is not used in the training or hyperparameter search pro-

cesses.

Figure 6.1: Normalized computational cost for different models

For each architecture, multi-fidelity models (MF1, MF2, MF3, MF4, MF5, and MF6)

and high-fidelity models (HF1375, HF3000, and HF4096) are compared using the

performance metrics; see Section 5.4. In order to normalize each model’s computa-
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tional time, the high-fidelity model’s computational time has been used as a reference.

The costs of running a high-fidelity and low-fidelity analysis are 32 seconds and 2.45

seconds, respectively.

Four multi-fidelity models are constructed in this study to balance the trade-off be-

tween accuracy and computational cost; see Table 5.4. The models MF1, MF2, and

MF3 are built using 3000 low-fidelity design points and 1060 high-fidelity design

points. In contrast, MF4, MF5, and MF6 are constructed using equal numbers of high

and low-fidelity design points, with 1060 of each. Normalization results in MF1,

MF2, and MF3 having a 1375 unit cost, whereas MF4, MF5, and MF6 have a 1220

unit cost.

In order to assess the accuracy of the multi-fidelity models and determine the high-

fidelity model equivalent, high-fidelity surrogate models using various numbers of

design points are created. Figure 6.1 shows the normalized computational costs for

the multi-fidelity and high-fidelity models, with the cost of the HF4096 model used

as the reference for normalization. The performance comparison results will be dis-

cussed in the following subsection for each architecture.

6.1.1 Comparison of Different Architectures

This section evaluates the cross-architectural performance of the different multi-fidelity

models. The results are presented in Table 6.1, which shows the performance of each

model for the MLP with CAFs, MLP with AAFs, QMLP with CAFs, and QMLP with

AAFs architectures, respectively.

Table 6.1: Comparison of different architectures

Architectures Metrics MF1 MF2 MF3 MF4 MF5 MF6 HF1375 HF3000 HF4096

MLP with CAFs
MAPE 0.970 1.687 1.511 1.471 1.943 1.890 1.164 0.610 0.284
MAE 0.702 1.189 0.959 1.029 1.322 1.325 0.627 0.326 0.149

MLP with AAFs
MAPE 0.894 1.828 1.347 1.467 2.224 1.817 1.064 0.588 0.262
MAE 0.596 1.173 0.802 1.012 1.416 1.181 0.538 0.330 0.145

QMLP with CAFs
MAPE 0.793 1.576 1.090 1.148 1.732 1.426 1.094 0.539 0.220
MAE 0.499 1.044 0.725 0.796 1.172 0.960 0.542 0.294 0.120

QMLP with AAFs
MAPE 0.662 1.273 1.035 1.097 1.617 1.341 0.793 0.510 0.193
MAE 0.480 0.857 0.657 0.722 1.062 0.865 0.398 0.257 0.101

When comparing the different multi-fidelity models within each architecture, it is
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found that ratio-based models (MF1 and MF4) performed better than the comprehen-

sive models (MF3 and MF6), and comprehensive models are better than difference-

based models (MF2-MF5) in terms of MAPE and MAE. These results suggest that

ratio-based models better capture the underlying relationships between high and low-

fidelity samples than other multi-fidelity models. Meanwhile, comprehensive models

are more adept at reducing errors than difference-based models.

Among the six multi-fidelity models in each architecture, MF1 consistently achieves

the lowest MAPE and MAE values. Compared to the high-fidelity model HF1375,

MF1 provides accurate solutions for buckling load prediction and shows a lower

MAPE. Further, while MF1 has a computational cost that is only 33% of HF4096,

it still outperforms the performance of HF1375. Thus, MF1 represents a more effi-

cient and accurate choice for situations where computational resources are limited.

Additional details on the performance comparison of models for each architecture

can be found in Appendix A.

When comparing the results of MLP with CAFs to those of MLP with AAFs, the

usage of AAFs generally improves the performance of the MLP model across most

of the fidelity levels. For MF1, the MAPE and MAE values have been reduced by

7.8% and 15.2%, respectively, compared to MLP with CAFs.

The analysis of the QMLP architecture’s impact on model performance shows that

it generally outperforms MLP with CAFs across all fidelity levels, regardless of the

activation function used. According to Table 6.1, for MF1, QMLP with CAFs de-

creases the MAPE and MAE values by 18.3% and 29.0%, respectively, compared to

MLP with CAFs.

In the comparison of the QMLP architecture’s performance using CAFs versus AAFs,

it is found that using AAFs significantly improves the model’s performance across all

fidelity levels. For MF1, the MAPE and MAE values have decreased by 16.7% and

5.8%, respectively, compared to QMLP with CAFs, as shown in Table 6.1.

Finally, comparing MLP with AAFs to QMLP with AAFs, the QMLP architecture

further improves the model’s performance. As shown in Table 6.1, QMLP with AAFs

outperforms MLP with AAFs, resulting in a reduction of 26.2% and 21.1% in MAPE
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Figure 6.2: APE distribution for multi-fidelity models with different architectures

and MAE values, respectively, for MF1.

Overall, the results suggest that the QMLP with AAFs is the most promising approach

for modeling complex systems, offering good performance with relatively low com-

putational cost. The QMLP with AAFs outperformed the other multi-fidelity model

approaches, making it a valuable tool for applications requiring efficient and accurate

predictions. In addition, as shown in Figure 6.2, the QMLP with AAFs has the high-

est probability of having a low absolute percentage error (APE) value among the four

models, followed by the QMLP with CAFs, MLP with AAFs, and MLP with CAFs

in terms of APE performance.
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6.2 Comparison of Multi-Fidelity Modeling Algorithms for Performance and

Efficiency

In the previous section, six different architectures have been evaluated for multi-

fidelity and high-fidelity models. It has been found that QMLP with AAFs outper-

forms other multi-fidelity approaches, and the MF1 model, which is a ratio-based

model that combines surrogate models of LF3000 and Ratio1060, is the best-performing

multi-fidelity model for this architecture.

This section compares the performance efficiencies of four different multi-fidelity

modeling algorithms using the LF3000 model. The LF3000 model is a low-fidelity

model used as the base for the MF1 multi-fidelity model. The results are presented in

Table 6.2, which compares the minimum validation loss, validation loss comparison,

corresponding epoch, time-saving, the number of parameters, and model size reduc-

tion for each of the four algorithms: MLP with CAFs, MLP with AAFs, QMLP with

CAFs, and QMLP with AAFs. In addition, in Figure 6.3, the validation loss graphs

for these algorithms are given.

Table 6.2: Comparison between different surrogate model algorithms for LF3000

Models Minimum
Validation
Loss

Validation
Loss
Comparison

Corresponding
Epoch

Time
Saving

Number of
Parameters

Model Size
Reduction

MLP w CAFs 0.000019 0.00% 4945 0.00% 83584 0.00%
MLP w AAFs 0.000016 20.51% 3968 19.76% 67077 19.75%
QMLP w CAFs 0.000017 15.23% 2406 51.34% 58752 29.71%
QMLP w AAFs 0.000012 36.41% 2023 59.09% 17475 79.09%

The minimum validation loss is the lowest loss value achieved during the training

process of a model. A lower validation loss generally indicates a better model per-

formance. The validation loss comparison is the percentage difference between the

current model and the model with the highest validation loss. A higher percentage

difference indicates a better model performance. According to the results in Table

6.2, the QMLP with the AAFs algorithm has the lowest minimum validation loss,

with a value of 0.000012. This corresponds to a 36.41% improvement in validation

loss compared to the MLP with the CAFs algorithm, with the highest validation loss

of 0.000019.
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Figure 6.3: Validation loss vs Epoch for LF3000 with different algorithms

The corresponding epoch is the epoch at which the minimum validation loss of MLP-

CAF is achieved. A lower epoch number indicates a faster training process. The time-

saving metric shows the percentage difference in training time between the current

model and the model with the longest training time. A higher percentage difference

indicates a more efficient model. The corresponding epoch for the QMLP with the

AAFs algorithm is also the lowest, with a value of 2023. This represents a time

saving of 59.09% compared to the MLP with the CAFs algorithm, which has the

highest corresponding epoch of 4945.

The model size reduction metric is the percentage difference in the number of pa-
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rameters between the current model and the model with the largest model size. A

higher percentage difference indicates a more efficient model in terms of model size.

In terms of the number of parameters, the QMLP with AAFs algorithm also performs

the best, with a model size reduction of 79.09% and a reduction in the number of pa-

rameters of 17475 compared to the MLP with CAFs algorithm, which has the highest

number of parameters at 83584.

Overall, these results suggest that the QMLP with AAFs algorithm is the most effi-

cient in terms of model performance and computational cost among the four multi-

fidelity modeling algorithms. It has the lowest minimum validation loss and corre-

sponding epoch, as well as the greatest time-saving and model size reduction.

6.3 Performance of QMLP-AAF on MF1 Model with New Dataset

In this section, additional finite element analyses are performed to test the ANN. The

input parameters of these analyses are given to ANN, and the results obtained with

finite element analysis and neural network are compared.

Table 6.3: Variable inputs for unseen dataset

Variable Dimensions [mm]
skin thickness 1.5, 2.0, 2.5, 3.0
stringer thickness 1.5, 2.0, 2.5, 3.0
stringer height 22, 27, 32
outer flange width 18, 22, 27
web width 18, 22, 27
inner flange width 22, 27, 32

This study needs new design space to create an additional dataset. Table 6.3 shows

new dimensions for six design parameters by following typical aircraft design values.

While skin and stringer thickness have identical search spaces to Table 3.2, the other

parameters now have interpolated dimensions. This choice is related to the fact that

skin and stringer thickness generally take particular values given in Table 6.3 in struc-

tural design for practical reasons. Using LHS, suitable design points are determined

by sampling the parameters in Table 6.3 for creating the data to compare the results

of additional finite element analysis and multi-fidelity model.
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Table 6.4: Performance of QMLP-AAF on MF1 model with unseen dataset

skt
[mm]

strt
[mm]

h

[mm]

b1
[mm]

b2
[mm]

b3
[mm]

yfem
[kN ]

ypred
[kN ]

error

[%]

Pa
ne

lC
on

fig
ur

at
io

ns
1 2.5 3.0 32.0 27.0 22.0 27.0 92.17 92.00 0.19
2 2.5 2.0 32.0 22.0 18.0 32.0 71.17 71.70 0.74
3 2.0 2.0 22.0 18.0 22.0 22.0 37.96 38.42 1.20
4 2.0 3.0 22.0 18.0 27.0 32.0 53.54 52.36 2.21
5 1.5 2.5 22.0 22.0 27.0 27.0 23.85 23.34 2.11
6 3.0 1.5 22.0 27.0 22.0 32.0 106.77 106.66 0.11
7 1.5 1.5 32.0 27.0 18.0 22.0 16.51 16.38 0.77
8 2.0 1.5 27.0 27.0 18.0 22.0 33.90 34.12 0.67
9 1.5 2.0 22.0 18.0 18.0 32.0 18.75 18.63 0.67
10 2.5 1.5 32.0 18.0 27.0 32.0 68.72 66.75 2.87
11 3.0 2.0 27.0 22.0 27.0 22.0 117.62 112.84 4.07
12 2.0 3.0 27.0 18.0 27.0 27.0 51.93 52.08 0.29
13 3.0 1.5 27.0 18.0 27.0 32.0 111.15 110.09 0.95
14 3.0 3.0 32.0 22.0 22.0 32.0 144.15 142.13 1.40
15 3.0 2.0 22.0 22.0 18.0 27.0 109.69 107.43 2.06
16 2.5 3.0 22.0 27.0 22.0 22.0 87.24 85.79 1.65
17 2.5 2.5 32.0 18.0 27.0 22.0 81.13 80.49 0.78
18 1.5 2.5 27.0 27.0 18.0 27.0 21.84 21.69 0.71
19 2.0 2.5 27.0 27.0 22.0 27.0 47.71 48.05 0.71
20 1.5 2.5 32.0 22.0 18.0 22.0 20.27 20.50 1.14

Table 6.4 presents the input parameters of the additional analyses, results of the Adap-

tive QMLP (i.e., QMLP-AAF) based MF1 model with a mesh size of 20 mm and finite

element analysis on these input parameters, and percentage error between these re-

sults. Also, the MAPE and MAE values calculated at these design points are given as

1.265% and 0.924 in Table B.2, respectively. According to these results, the model

performance on unseen data is acceptable for this problem.

Although performance demonstration on this additional dataset is enough for engi-

neering purposes, an extra study is conducted in Appendix B.3 using all six design

parameters with interpolated dimensions.

Also, in Appendix B.2, the performance comparison between different high-fidelity

and multi-fidelity models are given for Adaptive QMLP architecture using additional

design points shown in Table 6.4.
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6.4 Performance of QMLP-AAF on MF1 Model with Different Mesh Sizes

In this section, the performance of the Adaptive QMLP (i.e., QMLP-AAF) based MF1

model is evaluated using different mesh sizes for low-fidelity analysis while keeping

the mesh size of the high-fidelity analysis constant at 4 mm. Table 6.5 presents the

performance of the Adaptive QMLP-based MF1 with three different mesh sizes (12

mm, 15 mm, and 20 mm) for the low-fidelity analysis and the high-fidelity model

(HF1375) for comparison.

Table 6.5: QLMP-AAF with different mesh sizes for low-fidelity models

Metrics MF1-Mesh12 MF1-Mesh15 MF1-Mesh20 HF1375
MAPE 0.59 0.69 0.66 0.79
MAE 0.39 0.48 0.47 0.40
Max APE 4.49 10.87 9.02 4.69
Cost 1375 1375 1375 1375
Number of HF 825 950 1060 1375

It is essential to consider the mesh size when modeling complex systems, as it deter-

mines the resolution of the computational grid used to simulate the system. A finer

mesh size can provide more detailed and accurate predictions, but it also increases the

computational cost of the simulation. In order to maintain a consistent cost of 1375,

the number of high-fidelity samples reduces as the mesh size decreases; see Table 6.5.

The results show that the Adaptive QMLP-based MF1 with a mesh size of 12 mm per-

forms the best among the four models, with a mean absolute percentage error (MAPE)

of 0.59. The Adaptive QMLP-based MF1 with a mesh size of 12 mm performs better

than the Adaptive QMLP-based MF1 with a mesh size of 20 mm, which has a MAPE

of 0.66. Although the mean absolute percentage error values for both models are rel-

atively similar, the low-fidelity model with a mesh size of 12 mm still demonstrates

an improvement in MAPE of 10.66% compared to the low-fidelity model with a mesh

size of 20 mm.

Additionally, the Adaptive QMLP-based MF1 with a mesh size of 12 mm has the

lowest maximum absolute percentage error (MAX APE) value of 4.49, compared to

the MAX APE values of 9.02 for the Adaptive QMLP-based MF1 with a mesh size

of 20 mm and 4.69 for the HF1375 model. The Adaptive QMLP-based MF1 with a
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mesh size of 12 mm achieves the highest accuracy among the four models.

Figure 6.4: APE distribution of Adaptive QMLP with different mesh sizes

Figure 6.4 further illustrates the performance of the Adaptive QMLP model with dif-

ferent mesh sizes. As shown in the figure, the MF1 with mesh 12 has the highest

probability of having a low absolute percentage error (APE) value among the four

models, followed by the MF1 with mesh 20, MF1 with mesh 15, and HF1375 in

terms of APE performance.

It is worth noting that the performance of the Adaptive QMLP model is not monoton-

ically improving with decreasing mesh size. Choosing the optimal mesh size and the

number of high-fidelity samples is not a monotonous optimization problem. In order

to determine the optimal configuration, it may be necessary to consider the trade-off

between mesh size, number of high-fidelity samples, and model performance.

These results highlight the importance of choosing the appropriate mesh size and the

number of high-fidelity samples when using the Adaptive QMLP model for multi-

fidelity modeling. The Adaptive QMLP-based MF1 with a mesh size of 12 mm

achieves the best performance in terms of MAPE, MAX APE, and APE probability,
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making it a valuable tool for applications requiring accurate and efficient predictions.

However, these findings cannot be generalized. Therefore, further studies are needed

to determine the optimal combination of mesh size and the number of high-fidelity

samples for different applications.
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CHAPTER 7

DISCUSSIONS & CONCLUSIONS

7.1 Discussions

This study thoroughly explores the effectiveness of multi-fidelity models in various

scenarios, such as multi-fidelity models with different correction methods, extensive-

limited multi-fidelity models with different computational costs, multi-fidelity models

with different neural network architectures, and multi-fidelity models with different

numbers of high-fidelity samples and low-fidelity mesh size.

One significant result in this study suggests that multi-fidelity models constructed

using the multiplicative correction method surpass those formed using the additive

correction method when evaluated in terms of accuracy as aligned with the findings

of Vitali’s study [60]. This relationship is consistent with literature showing that the

correction function’s bumpiness can significantly affect the performance of multi-

fidelity models [43] because the bumpiness of ratio-based models is 0.18 while the

bumpiness of difference-based models is 0.29. Using a multiplicative correction func-

tion instead of additive correction makes the resulting error functions smoother and

easier to optimize, leading to better overall performance.

Another important finding is that comprehensive models, which combine high-fidelity

and low-fidelity data with a scaling factor optimized to minimize bumpiness, are an

improved version of difference-based models and give better results than difference-

based models [17]. The bumpiness values of the comprehensive model and difference

model are given as 0.10 and 0.29, respectively. By reducing the bumpiness of the

correction function, comprehensive models can better capture the true behavior of
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the system and make more accurate predictions. Although the bumpiness values of

the comprehensive and ratio-based models are 0.10 and 0.18, ratio-based models still

outperform the comprehensive models. Since comprehensive models are upgraded

versions of difference-based models, it is reasonable to expect that comprehensive

models are better than difference-based models; however, between comprehensive

and ratio-based models, there is no direct connection to compare their performances

based on the bumpiness values.

A detailed evaluation of the individual and cross-architecture performance of the dif-

ferent models shows that the QMLPs with AAFs perform the best overall. These

models achieve the lowest values for the error metrics. The superior performance of

the QMLP with AAFs makes it a valuable tool for applications requiring efficient and

accurate predictions.

When comparing the performance and efficiency of different surrogate algorithms,

the QMLP with AAFs algorithm emerges as the top performer. It has the lowest

minimum validation loss, the most significant time saving, and the most efficient use

of parameters. These results demonstrate the superiority of the QMLP with the AAFs

algorithm compared to the other four multi-fidelity modeling algorithms tested in

terms of model performance and computational cost.

Moreover, an analysis is undertaken to evaluate the efficiency of a multi-fidelity

model that relies on QMLP with AAFs, based on low-fidelity data gathered from var-

ious mesh sizes. Results indicate that the Adaptive QMLP-based MF1 using 12 mm

meshes produces the most favorable outcomes regarding MAPE, Max APE, and APE

probability assessments. However, the model’s non-monotonic behavior accentuates

the significance of additional investigations to determine the optimal combination of

the ideal mesh size and the number of high-fidelity samples for varying applications.

To sum up, the investigation gives significant knowledge into how multi-fidelity mod-

eling works for complex systems and brings attention to the advantages of using

QMLPs combined with AAFs in different situations. The results can guide future

research or progress on creating multi-fidelity models for predicting complicated sys-

tem performances.
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7.2 Conclusions

In this thesis, a novel approach for estimating the buckling load of stiffened panels

using multi-fidelity modeling based on quadratic neural networks (QNNs) with adap-

tive activation functions has been proposed. This study has presented the pioneering

use of QNNs with adaptive activation functions for the buckling problem and multi-

fidelity applications.

It has been found that the use of QNNs has enabled the model to represent a more

comprehensive range of nonlinear functions than traditional ANNs, and the use of

adaptive activation functions has improved the model’s convergence speed and train-

ing efficiency. The results of the numerical experiments have shown that the proposed

approach can effectively combine multiple fidelity levels to produce more accurate

and reliable predictions of the buckling load of stiffened panels while significantly

reducing the computational cost of evaluating the surrogate model. This method al-

lows for more efficient optimization of the panel design and has the potential to be

applied to a wide range of real-world problems.

7.3 Future Works

Future work in several areas might expand upon the findings of this study. One po-

tential direction for future work is to investigate the proposed multi-fidelity modeling

approach based on QNNs with adaptive activation functions on more complex prob-

lems, particularly those with high levels of nonlinearity. The ability of QNNs to

represent a comprehensive range of nonlinear functions and the use of adaptive acti-

vation functions could make this approach particularly well-suited for these types of

problems. Another area of interest is to explore the use of different types of multi-

fidelity models, such as polynomial chaos expansion (PCE) [57] or Kriging [52, 48],

and compare their performance to the QNN-based approach used in this study. In

addition, it would be valuable to apply the proposed approach to a broader range

of aerospace structures, such as curved stiffened panels, panels with other types of

stiffeners, wing boxes or fuselages, to determine its generalizability and potential for

use in more complex design problems. Furthermore, the post-buckling response and
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prediction of collapse load with multi-fidelity models could be considered. More-

over, the approach could be used in robust design optimization problems that include

additional sources of uncertainty, such as uncertainties in the material properties or

loadings, to enhance the accuracy and reliability of the predictions.

Finally, the hyperparameter optimization study conducted using Optuna can be ex-

tended to include scaling factor optimization to improve the accuracy of the pre-

dictions of the multi-fidelity models constructed using the comprehensive correction

method.
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APPENDIX A

APPENDIX

A.1 Multi-layer Perceptron with Constant Activation Functions

In this subsection, the performances of six multi-fidelity models (MF1, MF2, MF3,

MF4, MF5, and MF6) that use multi-layer perceptron with constant activation func-

tions are compared to that of three high-fidelity models (HF1375, HF3000, and

HF4096) using the MAPE and MAE. The results are presented in Table A.1.

Table A.1: MLP with constant activation function

Metrics MF1 MF2 MF3 MF4 MF5 MF6 HF1375 HF3000 HF4096
MAPE 0.970 1.687 1.511 1.471 1.943 1.890 1.164 0.610 0.284
MAE 0.702 1.189 0.959 1.029 1.322 1.325 0.627 0.326 0.149

MF1 has the lowest MAPE and MAE values among the six multi-fidelity models.

In Figure A.1, absolute percentage error (APE) distribution histograms of the multi-

fidelity models are shown. The histogram shows that the multi-fidelity models have

a similar distribution of errors, with most of the errors being under 1 percent APE.

95th percentile values of the APE distribution for each of the six models (MF1, MF2,

MF3, MF4, MF5, and MF6) are also given with red dashed lines in the figure. The

MF1 model has the lowest 95th percentile value among the six models, indicating

that it has the most accurate predictions.

When comparing MF1 to the high-fidelity models, it is noted that while MF1 is more

accurate than HF1375, high-fidelity surrogates with more than 1375 samples have

a MAPE of less than 1.164%. Using multi-fidelity models results in a considerable

amount of computational time savings. While the MF1 model provides accurate so-
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(a) MF1 (b) MF2 (c) MF3

(d) MF4 (e) MF5 (f) MF6

Figure A.1: APE distribution of MLP-based multi-fidelity models

lutions for the buckling load prediction, the computational cost of MF1 is 33% of

HF4096. MF1 has higher accuracy than the high-fidelity model HF1375, which has

an equivalent computational cost to MF1. MF1 could be a more practical choice when

computational resources are limited, as it can produce accurate predictions more effi-

ciently.

A.2 Multi-layer Perceptron with Adaptive Activation Functions

In this study, the performances of six multi-fidelity models (MF1, MF2, MF3, MF4,

MF5, and MF6) that use multi-layer perceptron with adaptive activation functions are

compared to three high-fidelity models (HF1375, HF3000, and HF4096) using the

MAPE and MAE. The results are presented in Table A.2.

Table A.2: MLP with adaptive activation function

Metrics MF1 MF2 MF3 MF4 MF5 MF6 HF1375 HF3000 HF4096
MAPE 0.894 1.828 1.347 1.467 2.224 1.817 1.064 0.588 0.262
MAE 0.596 1.173 0.802 1.012 1.416 1.181 0.538 0.330 0.145
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(a) MF1 (b) MF2 (c) MF3

(d) MF4 (e) MF5 (f) MF6

Figure A.2: APE distribution of Adaptive MLP-based multi-fidelity models

The same observations as in Appendix A.1 can be made among all multi-fidelity and

high-fidelity models.
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A.3 Quadratic Multi-layer Perceptron with Constant Activation Functions

In this subsection, we compare the performances of six multi-fidelity models (MF1,

MF2, MF3, MF4, MF5, and MF6) that use quadratic multi-layer perceptron with

constant activation functions to three high-fidelity models (HF1375, HF3000, and

HF4096) using the MAPE and MAE. The results are presented in Table A.3.

Table A.3: QMLP with constant activation function

Metrics MF1 MF2 MF3 MF4 MF5 MF6 HF1375 HF3000 HF4096
MAPE 0.793 1.576 1.090 1.148 1.732 1.426 1.094 0.539 0.220
MAE 0.499 1.044 0.725 0.796 1.172 0.960 0.542 0.294 0.120

(a) MF1 (b) MF2 (c) MF3

(d) MF4 (e) MF5 (f) MF6

Figure A.3: APE distribution of QMLP-based multi-fidelity models

The same observations as in Appendix A.1 can be made among all multi-fidelity and

high-fidelity models.

A.4 Quadratic Multi-layer Perceptron with Adaptive Activation Functions

In this subsection, the performances of six multi-fidelity models (MF1, MF2, MF3,

MF4, MF5, and MF6) that use quadratic multi-layer perceptron with adaptive acti-
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vation functions are compared to three high-fidelity models (HF1375, HF3000, and

HF4096) using the MAPE and MAE. The results are presented in Table A.4.

Table A.4: QMLP with adaptive activation functions

Metrics MF1 MF2 MF3 MF4 MF5 MF6 HF1375 HF3000 HF4096
MAPE 0.662 1.273 1.035 1.097 1.617 1.341 0.793 0.510 0.193
MAE 0.480 0.857 0.657 0.722 1.062 0.865 0.398 0.257 0.101

(a) MF1 (b) MF2 (c) MF3

(d) MF4 (e) MF5 (f) MF6

Figure A.4: APE distribution of Adaptive QMLP-based multi-fidelity models

The same observations as in Appendix A.1 can be made among all multi-fidelity and

high-fidelity models.
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APPENDIX B

APPENDIX

B.1 Comparison of Comprehensive Models with different ρ

Table B.1: Comparison of comprehensive models with different ρ

ρ = 0.70 ρ = 0.75

MAPE 1.09 1.33
MAE 0.72 0.89

This section compares two comprehensive multi-fidelity models with different scal-

ing factors to decide the objective function. Optimum scaling factors are found by

minimizing bumpiness or minimizing error. The ρ is 0.70 when the objective func-

tion is determined as bumpiness, and the ρ is 0.75 when the objective function is an

error. Table B.1 shows MAPE and MAE values on ρ values of 0.70 and 0.75 for the

MF3 model with QMLP architecture.

B.2 Comparison of Different Models on Unseen Dataset

Table B.2: Comparison of different models on unseen dataset

MF1 MF2 MF3 MF4 MF5 MF6 HF1375 HF3000 HF4096
MAPE 1.265 2.573 1.703 1.369 2.785 1.798 0.956 0.732 0.420
MAE 0.924 1.827 0.990 0.966 2.193 1.250 0.438 0.331 0.236

In this section, we compared the generalization performances of six multi-fidelity

models (MF1, MF2, MF3, MF4, MF5, and MF6) to three high-fidelity models (HF1375,

HF3000, and HF4096) on the new dataset given in Table 6.4 by using the MAPE and

MAE. The results are shown in Table B.2
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B.3 Performance of QMLP-AAF on MF1 Model with Unseen Dataset

In this section, additional finite element analyses are performed to test the ANN in

new design space which involves six design parameters with interpolated dimensions

given in Table B.3.

Table B.3: Variable inputs for unseen dataset

Variable Dimensions [mm]
skin thickness 1.75, 2.25, 2.75
stringer thickness 1.75, 2.25, 2.75
stringer height 22, 27, 32
outer flange width 18, 22, 27
web width 18, 22, 27
inner flange width 22, 27, 32

Using LHS, suitable design points are determined by sampling the parameters in Ta-

ble B.3 for creating the data to compare the results of additional finite element analysis

and multi-fidelity model.

Table B.4: Performance of QMLP-AAF on MF1 model with unseen dataset

skt
[mm]

strt
[mm]

h

[mm]

b1
[mm]

b2
[mm]

b3
[mm]

yfem
[kN ]

ypred
[kN ]

error

[%]

Pa
ne

lC
on

fig
ur

at
io

ns

1 1.75 2.25 27.5 27.5 27.5 32.5 36.78 37.26 1.30
2 2.25 2.75 32.5 22.5 27.5 32.5 74.66 72.66 2.68
3 2.25 2.75 22.5 27.5 27.5 27.5 73.41 77.93 6.17
4 2.25 2.75 32.5 22.5 27.5 22.5 68.00 66.77 1.81
5 2.75 2.25 32.5 17.5 27.5 27.5 101.78 94.62 7.04
6 2.25 2.75 27.5 17.5 22.5 32.5 65.81 65.55 0.39
7 1.75 2.75 27.5 17.5 17.5 27.5 30.73 31.63 2.91
8 2.25 1.75 22.5 17.5 17.5 32.5 49.68 51.91 4.50
9 1.75 2.25 22.5 22.5 17.5 27.5 29.23 28.80 1.46

10 2.25 1.75 22.5 27.5 22.5 32.5 55.02 56.41 2.53
11 2.75 1.75 22.5 17.5 27.5 27.5 90.51 90.69 0.20
12 2.75 1.75 27.5 17.5 22.5 22.5 83.85 85.91 2.45
13 2.75 2.25 32.5 22.5 17.5 32.5 95.78 101.58 6.06
14 2.75 2.75 27.5 22.5 27.5 22.5 111.01 111.89 0.80
15 2.75 2.25 27.5 22.5 17.5 22.5 89.36 88.03 1.49
16 2.75 1.75 22.5 27.5 22.5 22.5 86.21 84.99 1.41
17 1.75 1.75 32.5 27.5 22.5 22.5 27.94 27.15 2.84
18 1.75 1.75 32.5 17.5 17.5 32.5 26.54 27.38 3.15
19 1.75 2.25 22.5 27.5 17.5 22.5 29.22 30.03 2.77
20 1.75 2.75 32.5 27.5 22.5 27.5 36.82 36.98 0.44
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Table B.4 presents the input parameters of the additional analyses, results of the Adap-

tive QMLP (i.e., QMLP-AAF) based MF1 model with a mesh size of 20 mm, and

finite element analysis on these input parameters, and percentage error between these

results.
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