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ABSTRACT 

 

DYNAMIC MODELLING AND CONTROL OF A TWO-AXIS GIMBAL 

SYSTEM WITH MODEL REFERENCE ADAPTIVE CONTROL 

 

 

 

Barlas, Ömer Faruk 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Yiğit Yazıcıoğlu 

 

 

April 2023, 132 pages 

 

 

Providing high-speed and uninterrupted communication has become primary 

demands of today. Out of the coverage area, it is needed to establish a 

communication path with the satellites in space. Thus, gimbal systems were 

developed, that direct the antennas to the satellites with desired position accuracy. 

Application areas and performance criteria determine the design specifications of 

gimbal systems. In this study, the gimbal system assembled to the naval platform 

and used in the orientation and stabilization of a antenna was discussed. 

In this thesis, a detailed mathematical model was obtained by expressing kinematic 

relations with Denavit-Hartenberg convention and dynamic relations with Newton-

Euler method of a statically-balanced but dynamically-unbalanced two-axis gimbal 

system. Therefore, a nonlinear equation of motion was obtained, and the system was 

linearized and expressed in state space representation. According to the system 

identification tests on physical system, it was realized that the linearized system 

model has differences due to the modeling uncertainties and the structural flexibility 

of the mechanical system. The model reference adaptive control (MRAC) method 

was used by considering these differences in the control system design. Additionally, 

the control system was developed using the full-state feedback control method that 
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was used both for comparison of the controllers and as reference model in the MRAC 

method. Further to these control methods, cascaded PI control method, being 

frequently used in the industry, was developed using a straightforward gimbal model 

and compared with other methods. Finally, experiments and simulation studies were 

carried out and the results were examined and discussed. 

 

Keywords: Gimbal Systems, Mathematical Model, System Identification, Model 

Reference Adaptive Control (MRAC), Full-State Feedback Control 
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ÖZ 

 

İKİ EKSEN BİR GİMBAL SİSTEMİNİN DİNAMİK MODELLENMESİ VE 

MODEL REFERANS ADAPTİF KONTROL İLE KONTROLÜ 

 

 

 

Barlas, Ömer Faruk 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Yiğit Yazıcıoğlu 

 

 

Nisan 2023, 132 sayfa 

 

Haberleşmenin yüksek hızda ve kesintisiz olarak sağlanabilmesi günümüzdeki en 

önemli ihtiyaçlardan biri haline gelmiştir. Yerleşim bölgeleri dışında haberleşme 

kapsama alanının dışına çıkılması, uzayda yer alan haberleşme uyduları ile farklı bir 

iletişim yolu kurmayı gerektirmektedir. Bu amaçla kullanılan haberleşme antenlerini 

uydulara belirli konum hassasiyeti içerisinde yönlendirecek gimbal sistemler 

geliştirilmektedir. Uygulama alanları ve istenilen performans kriterleri gimbal 

sistemlerin tasarım isterlerini belirlemektedir. Bu çalışmada deniz platformuna 

bağlanacak olan ve bir haberleşme anteninin yönlendirilmesi ve stabilizasyonunda 

kullanılacak olan gimbal sistem ele alınmıştır. 

Bu tezde önce statik olarak dengede fakat dinamik olarak dengesiz, iki eksenli bir 

gimbal sistemin Denavit-Hartenberg ve Newton-Euler yaklaşımlarıyla kinematik ve 

dinamik ilişkileri ifade edilerek detaylı matematik modeli elde edilmiştir. Matematik 

model sonucu lineer olmayan bir hareket denklemine ulaşılmıştır ve bu denklemden 

yola çıkarak sistem lineerleştirilmiş ve durum uzayı gösteriminde ifade edilmiştir. 

Gerçekte üretilmiş sistem üzerinde yapılan sistem tanımlama çalışmaları sonucuna 

göre lineerleştirilmiş sistem modelinin modelleme belirsizlikleri ve mekanik 
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sistemin yapısal esnekliğinden dolayı farklılıklar gösterdiği anlaşılmıştır. Kontrol 

sistem tasarımında bu farklılıklar göz önüne alınarak model referans adaptif kontrol 

yöntemi kullanılmıştır. Ayrıca tam durum geri besleme kontrol yöntemi kullanılarak 

geliştirilen kontrol sistemi hem karşılaştırma amaçlı kullanılmış hem de model 

referans adaptif kontrol yönteminde referans model olarak kullanılmıştır. Bu kontrol 

yöntemlerine ilave olarak endüstride sıklıkla kullanılan kaskad yapıda PI kontrol 

yöntemi, basitleştirilmiş bir gimbal modeli kullanılarak geliştirilmiş ve diğer 

yöntemlerle karşılaştırılmıştır. Son olarak deney ve benzetim çalışmaları 

gerçekleştirilmiş; sonuçlar incelenerek, tartışılmıştır. 

 

Anahtar Kelimeler: Gimbal Sistemleri, Matematik Model, Sistem Tanımlama, 

Model Referans Adaptif Kontrol, Tam Durum Geri Besleme 
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CHAPTER 1  

1 INTRODUCTION  

Although communication technologies are highly developed today, communication 

coverage areas are mostly limited to residential areas [1]. However, the need for 

communication continues, and a way to communicate with satellites in space is 

required in order to maintain communication. These satellites are always located at 

a fixed point in space, and the line of sight (LOS) of the antennas must be directed 

to this point. Nevertheless, looking at the same point while on a moving object is 

quite difficult compared to antenna systems placed on a fixed platform. For this 

purpose, the antennas are assembled on a movable mechanical structure called 

gimbal and directed to a fixed point according to the inertial reference system. 

Gimbal usually consists of mechanical elements such as electric motor, bearings, 

gyroscope, encoders [2]. It is used to direct the objects which are expressed as 

payloads placed on it to the desired position. Although the gimbal system examined 

in this thesis includes an antenna as a payload, it has many different usage areas. 

These include target tracking with camaras, guidance of missiles, turret control, 

astronomical telescopes; one of the best-known examples is the Hubble space 

telescope.  This telescope is used to orient distant stars and galaxies very precisely 

and to take images while maintaining its position [2]. The area where the gimbal will 

be used is one of the most important factors affecting its mechanical design. Issues 

such as the useful load it carries, the disturbance effects from platform on which it is 

placed, and the desired orientation accuracy directly determine the gimbal design. 

Similarly, the structural dynamics, friction, mass unbalance properties of the gimbal 

system are decisive for the controller design. [3] 
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The gimbal system used in this study is product of ASELSAN company, carries an 

antenna as specified and will be mounted on a marine platform as demonstrated in 

Figure 1. Since it is necessary to have at least two degrees of freedom to look at a 

point in space, this gimbal system also has two degrees of freedom called azimuth 

(yaw) and elevation (pitch) axes. These are the rotation freedoms in the direction of 

two axes perpendicular to each other; the position and speed variables of the system 

are measured by encoder and gyro sensors respectively. The system consists of two 

direct drive brushless DC motors for actuation purposes. 

Although it requires kinematically and dynamically complex mathematical 

expressions, a mathematical model to be created in line with the obtaining of these 

expressions provides benefits in the design and control of gimbal systems [4]. In 

systems that have not yet reached the mechanical design stage and have not been 

physically manufactured, it provides benefits for the design of the control system as 

well as the applicability of model-based control algorithms. Today's high-capacity 

computing power enables numerous controller design trials. Therefore, a linearized 

system model was obtained by analytical mathematical expression in this study. 

Model reference adaptive control (MRAC), which is a control method that makes 

use of this linearized model, was used in the control system design.  This control 

method includes an adaptive control algorithm that changes its control signal to 

converge the response of the system to be controlled to the response of the model 

called reference model [5]. In addition, a full-state feedback control (FSFC) method 

was developed using the linearized model and the control system obtained by this 

method was used as a reference model in the model reference adaptive control 

method. Also, cascade PI control method designed with a linear decoupled gimbal 

model obtained with the assumption of independent gimbal masses. Thus, these three 

methods were compared with each other. 
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1.1 Literature Survey 

Kinematic and dynamic relations of the gimbal system are discussed when obtaining 

a mathematical model. At this stage, different methods are followed in the expression 

of relations. In the representation of kinematic relationships, the Denavit-Hartenberg 

approach, which is generally used in robotic systems, can be used, as well as the 

Lagrangian’s and Newton-Euler methods for dynamic relations. The equations of 

motion obtained by using these relations are expressed as a set of first order ordinary 

differential equations with state space representation;thus, the linear system model 

is obtained. The advantage of obtaining a linear model is that it allows the use of 

linear control system design methods. There are many studies that have been carried 

out in the literature on gimbal systems. Some of them are as follows.  

In [6], the gimbal, which has a two-axis yaw-pitch configuration, is handled statically 

and dynamically unbalance, with both Lagrangian and Newton-Euler approaches.  In 

addition, the terms of the obtained equations of motion were expressed under two 

types of disturbance terms as a result of an appropriate grouping, making the factors 

affecting the gimbal system more understandable and interpretable. The researcher 

evaluates the eliminability of these disturbance terms and proposes the feedforward 

control technique as a solution example. As another solution proposal, it is stated 

that the cross-coupling behavior between the motion axes can be prevented as a result 

of balancing the system so as to eliminate the non-zero product of inertia terms. 

In [7], the mechanisms of the gimbal systems used in imaging systems were 

compared, and the kinematic analysis of these mechanisms was performed. Within 

the scope of a sample flight scenario of the aircraft discussed in the study, these 

mechanisms were encountered through simulation. Optimum gimballed mechanism 

configurations were explained according to the purposes of the gimbal systems. 

Although the purpose and working scenario of the gimbal system were different from 

the one in this thesis, the kinematic analysis of the gimbal mechanisms in different 

configurations contributed to this study. 
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In [8], the Denavit-Hartenberg approach was used to obtain kinematic relationships 

also worked on the gimbal, which carries a camera system and stabilizes it with the 

PID control method. In this study, PID tuning methods were focused on, and it was 

stated that particle swarm optimization method gave the best results among the 

genetic algorithm, Ziegler Nichols methods. Another study, [9], using the Denavit-

Hartenberg approach to obtain kinematic relationships, and the Lagrangian approach 

for dynamic relationships. Statically balanced but dynamically unbalanced gimbal 

structure has been studied.  Equation of motion is linearized by state space 

representation; it was used to design the PI control method. The studies were limited 

to simulation as prototype was not available to use. 

In [10], a statically and dynamically unbalanced two-axis gimbal is discussed. In 

addition, platform movements are included when modeling the gimbal system and 

the performance of the designed/implemented controllers is also evaluated according 

to the platform movements. The Lagrangian approach is used to obtain the equations 

of motion. Cascaded PI is used as the controller, and it is stated that it is successful 

against base acceleration changes. In addition, in [11], the gimbal system is modeled 

with four degrees of freedom, where two of the freedom come from gimbal and the 

other two come from platform movements included in the system model. However, 

in this study, it is discussed that the mass distribution in the gimbal axes was equal 

and statically and dynamically balanced; these effects were evaluated as 

disturbances, and it is aimed to eliminate this effect among the control performance 

targets. 

The controllers used in gimbal systems are usually PI/D. This method, which is 

frequently used due to its ease of application and adequate performance in most 

cases, can include adapted and improved PID solutions in gimbal systems [12]. Some 

of these are PII controllers with two integrals [13] and dual cascaded inner PI and 

outer PID stabilization controllers [14]. They state that with such approaches, they 

reduce steady state error and improve disturbance rejection characteristic. In 

addition, in the studies [15][16], traditional methods designed to eliminate 

disturbance effects such as mechanical vibrations and signal noises arising from the 
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platform on which the system mounted were discussed and their comparisons were 

made by simulation. The effect of control system loop number on performance was 

also investigated by adapting conventional methods (such as LPV, PID) to single 

and double loop control systems. In this thesis, a linear decoupled gimbal model was 

obtained, and a two-layer control system was developed to compare the performance 

of this common method in the literature. PI controller was used in the inner control 

loop and the P controller is used in the outer control loop. 

There are also controller studies that use the LQG/LTR method as an alternative to 

PID and require a mathematical model of the system. It has been stated that the 

LQG/LTR controller is a better alternative as the system becomes nonlinear and 

complicated [17]. 

In addition to classical control methods, intelligent control methods have also been 

applied to gimbals. [18] proposed the fuzzy-knowledge-based control method by 

stating that classical control methods ignore high order dynamics and lose 

performance when the system shows nonlinear behavior. They stated that classical 

control methods respond faster when there are no nonlinear effects, but when 

nonlinear effects and disturbances are involved, the fuzzy controller gives a similar 

performance. However, they emphasized the difficulty of fuzzy controller 

application and the importance of the performance effect of fuzzy variable selection. 

Therefore, they stated that the system-specific controller design should be carefully 

selected. [19] applied the fuzzy sliding mode control method to a three-axis gimbal 

system and stated that it is successful against disturbances. They also stated that this 

controller suppresses the coupling effect between the control axes. They designed a 

PI controller for comparison and emphasized that the proposed method is successful 

against disturbance and coupling effects. 

In [20], an adaptive controller is used to take into account system uncertainties and 

various disturbance effects. Adaptive control based on Radial Basis Function Neural 

Network has improved stabilization. It is stated that they used this method together 

with state feedback control and combined both signals. According to the researchers, 
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the proposed method not only increases the stabilization sensitivity but also provides 

a more fluent motor voltage when compared to the case using only state feedback. 

[21] studied the model reference adaptive control method used with PID to improve 

the effects of nonlinear and time-varying mass unbalanced torque disturbances on 

the gimbal system. They state that the method proposed in this study improved 

robustness and tracking accuracy by 50% compared to the PID controller. In 

addition, as shown in the experimental results, it is observed that the PID controller 

has a faster response time but has more overshoot; Although the rising time 

decreased in the MRAC/PID method, it was stated that there was a significant 

improvement in the overshoot feature. 

As shown experimentally in the SYSTEM IDENTIFICATION Chapter, the gimbal 

system studied in this thesis is structurally flexible. Figure 23 shows how much the 

mathematical model obtained with the assumptions of viscous friction and rigid body 

by ignoring structural flexibility reflects the real system. In [22], researchers 

expressed the effects of the poor dynamic properties of servo systems with structural 

flexibility on the performance of the control system. They also stated that only PI/D 

controllers were not sufficient to suppress the vibrations of the mechanical system in 

its natural frequencies, and additional feedback signals might be required, but this 

time the transient response deteriorated. In [23], they studied on a gimbal system 

used for tracking objective and developed a vibration suppression controller for this 

system. However, it is stated that the source of the vibration here is not the gimbal 

system but a flexible spacecraft platform to which the gimbal system is connected. 

In addition, their main motivation for controlling vibration is to reduce the 

disturbance effects to be transferred to spacecraft, apart from the orientation 

(tracking) accuracy. For this purpose, a robust controller was preferred and as a 

result, they used the H2/H∞ control method and stated that they had a successful result 

except for some singularity problems. In [24], researchers studied on a vibration 

suppression controller for the gimbal system mounted on a flexible spacecraft. Modal 

model of the flexible platform is obtained, and the mathematical expression of the 

vibration is focused via that model. The researchers, who stated that they aimed to 
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design a simple controller to suppress the vibration, used an extension of a PD type 

controller. They expressed that they achieved an improvement in the stabilization 

performance of the gimbal system, yet the method should be modified according to 

actuator saturation limits for improvement in the tracking performance in the future. 

It can be examined as another study [25], which works on the vibration problem 

caused by the effects of flexible mounting dynamics and proposes PI as a control 

method. There are some studies that work directly on the flexibility of the gimbal 

system rather than the flexible platform dynamics [26], [27] . The researchers, who 

preferred the robust control method for multi frequency band disturbance of a 

flexible gimbal system with high stabilization performance, used the robust 

disturbance observer and H∞ optimal vibration controller methods [26]. However, 

controlling vibrations generated at high frequencies resulted in a motor current 

saturation situation, thus deteriorating the tracking accuracy. It is understood that 

controlling vibrations at high frequencies might cause tracking errors, although 

stabilization performance improves. Therefore, the control system should be 

designed for the flexible mechanical system by determining the purpose and 

bandwidth accordingly. High bandwidth may be desired for the system where 

stabilization is major criterian, but as in this study, if the tracking is a major concern, 

the bandwidth should be determined according to the transient response 

requirements, and additional improvements should be evaluated according to the 

stability of the system [28]. 

1.2 Problem Definition and Motivation 

The gimbal system studied in this thesis; is aimed at orienting the satellite 

communication antenna on a moving platform to the satellites in space as a primary 

objective. That objective in gimbal systems can be expressed as tracking. The 

antenna needs to be oriented within a certain angular position with an accuracy 

determined by the communication frequency band and the mechanical properties of 

the antenna used[1]. In this study, it is required that both azimuth and elevation 
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gimbal control axis tracks the reference input position within a certain position 

deviation (±0.5°). Communication performance decreases in the case of position 

deviation higher than this value. The criterion of communication performance is to 

minimize radio frequency signal power loss. Therefore, the antenna, which is the 

payload carried by the gimbal system, should not have an orientation error of more 

than the specified angle range.  

On the other hand, if the antenna is directed to a satellite and wants to be directed to 

a different location in order to establish communication with another satellite, it is 

aimed to be oriented to the new position within 0.5 seconds for both azimuth and 

elevation gimbal axis. This criterion must be verified with a step response. 

In addition to changes in the position and orientation of the platform, it must also 

maintain its orientation against disturbance effects such as the vibration of a nearby 

engine that can be transferred from the platform to the system. That can be 

considered as the second objective of the gimbal system, which is the stabilization 

or disturbance rejection. As can be seen in the mathematical modeling chapter, the 

effect of the movement of the platform on the gimbal system was considered as a 

disturbance effect and the robustness of the control system is expected to overcome 

this effect. For this reason, the performance criteria of the controller include keeping 

the gimbal system within the desired orientation range if the platform was exposed 

to 12° of movement with a period of 8 seconds in all three rotating axes. 
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Figure 1: Marine vehicle motions [29] 

According to the results obtained in the MATHEMATICAL MODELLING and 

SYSTEM IDENTIFICATION Chapters, it can be observed that the gimbal system 

in real behaves differently than it was defined by analytical methods due to its many 

nonlinear characteristics. As mentioned in the following chapters, the main 

nonlinearities are friction behavior and flexible structural property of the mechanical 

system. Even if the mathematical model was obtained very close to the real system, 

manufacturing tolerances and assembly process of the products caused model 

discrepancies. These effects are inherent in many real-life control systems, and after 

the linearized system is obtained and the controller is developed, it is tried to be 

adapted to by methods such as fine-tuning, which involves adaptation of controller 

gains manually on the real system. However, this method requires that each product 

be reviewed and adapted separately; and causes the system to be weak against the 

effects that are not encountered or unpredictable during fine-tuning process, but that 

the system will be exposed to during the future working life. Therefore, mentioned 

nonlinearities dominate the system behavior and result in unpredictable system 

response. Conventional control methods that consider only the modeled dynamics of 

the system and ignore the mentioned nonlinearities have lower performance than 

expected on the real system. In response to this problem, this thesis proposes a 
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method for the antenna gimbal system, model reference adaptive control, that will 

perform this operation autonomously and act against structural flexibilities and 

friction nonlinearities by regarding them as unmodeled disturbances while still using 

the linearized system in its control structure. Improving the performance of the 

gimbal control system with MRAC method is the main motivation of this study. 

As seen in the Literature Survey section, although there are applications of MRAC 

method for compensation of mass unbalanced torque disturbance [21], or regarding 

structural flexibility of gimbal systems with different types of control methods [23], 

[24], [25], [26], [27]; the proposed MRAC method with full-state feedback controller 

was to be developed for the structurally flexible antenna gimbal system with the 

assumption of viscous friction, static mass balanced, dynamically unbalanced. 

1.3 Outline of the Thesis 

The structure of the thesis is as follows. 

In Chapter 2, the two-axis gimbal system was first expressed in kinematic relations 

using the Denavit-Hartenberg convention and dynamic relationships using the 

Newton-Euler method in order to obtain a mathematical model of coupled nonlinear 

three-dimensional gimbal system. Later, a nonlinear equation of motion that governs 

the coupled gimbal model was derived from these relations. Besides, decoupled 

linear gimbal model was derived with the assumption of independent gimbal bodies 

to observe the validity of the very simple model for the specific gimbal system. The 

responses of the gimbal models were obtained to compare with each other and 

validate as well as the real physical system. Using the nonlinear equation of motion, 

the coupled system was linearized around the equilibrium point and expressed as 

state space representation. The bode plot of the linearized system is shown to express 

the characteristics of the system. 

In Chapter 3, frequency response function identification tests (FRF) were performed 

to see how well the linear system model obtained analytically in Chapter 2 reflected 
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the real system. After expressing the properties of the sine swept excitation signal 

used in the test performed, FRF plots of the actual system were shown. In addition, 

the bode plots shown in Chapter 2 and the FRF plots obtained in this chapter were 

compared with each other. 

In Chapter 4, the control system was developed using three different control 

methods. These methods are full-state feedback control, model reference adaptive 

control and cascade PI control methods. In developing the first, the linearized 

coupled system model obtained in chapter 2 was used. With the pole placement 

technique, the state feedback controller was determined to meet the desired 

specifications. The control system designed with this method was used as the 

reference model in the model reference adaptive control method. In addition, the full-

state feedback controller was also used as a nominal controller in the MRAC method. 

Then, MRAC update law, determined according to Lyapunov stability criteria, was 

adapted and designed for the gimbal system. Lastly, a cascade PI control method was 

designed by using the decoupled gimbal model. 

In Chapter 5, The control systems designed in the previous chapter were 

experimentally applied to the real system; and those were compared and evaluated 

with the simulation results. Also, the linearized and nonlinear coupled gimbal models 

were tested against the real system test conditions to observe the validity of the 

control systems based on mathematical models. 

Chapter 6, the work carried out in this thesis is summarized and future works were 

evaluated. 
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CHAPTER 2  

2 MATHEMATICAL MODELLING 

The mathematical model describes the behavior of the gimbal system in terms of set 

of equations is to obtained in this chapter. It enables to a better understanding of the 

system and puts relations between external excitations of the system and response of 

the system. Although a mathematical model of a real-world system is non-linear in 

almost all of the cases, it can be linearized around a suitable working condition to 

use control of it by linear techniques. Therefore, it is worthwhile to obtain a 

mathematical model even if it is usually a challenging producere. Here, the 

mathematical modelling of the three-dimensional two-axis gimbal system was 

achieved for both non-linear and linear representations. Besides, a very simple 

gimbal model was obtained by ignoring the interaction between the gimbal masses. 

This decoupled gimbal model was linear and governed by two independent equations 

of motion. That assumption was then compared to the coupled nonlinear 3D model 

and the real system and also used in the control design. 

2.1 Description of the System 

The two-axis gimbal system consists of three bodies, two of which are rotating 

bodies and the other one is base (reference) body, and two gimbal axis (joints) which 

represent degrees of freedom. These two revolute joints were denoted as azimuth 

axis and elevation axis. The azimuth axis enables relative rotation between body 0 

(base) and body 1 (azimuth body); similarly, the elevation axis enables relative 

rotation between body 1 (azimuth body) and body 2 (elevation body). The payload 

is, in this case, elevation body which is a satellite antenna and to be oriented as a 

purpose of the system. The system is composed of two direct drive brushless DC 
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motors as actuators and two encoders as a position sensors, all of which placed joints. 

Besides, a gyroscope is assembled on the elevation body to measure the angular 

velocity of the payload. Three ball bearings, one for the azimuth body at point O, 

two for the elevation body at points A and C are used. The following figures describe 

the gimbal system with appropriate reference frames attached on bodies and were 

explained in the Kinematic Analysis section. 

 

Figure 2: General description of the gimbal system 
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Figure 3: Rotating bodies of the gimbal system 
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2.2 Kinematic Analysis 

 

Figure 4: Kinematic representation of the body 1 (azimuth body) 
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Figure 5: Kinematic representation of the body 2 (elevation body) 

Rotating bodies shown in the figures Figure 4 and Figure 5. Besides, angular rotation 

angles 𝜃1 and 𝜃2 are denoted on the coordinate axes of the bodies. Selection rule of 
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the coordinate axes based on Denavit Hartenberg convention described in the next 

section 2.2.1. 

2.2.1 Denavit-Hartenberg (DH) Convention 

A two-axis inertially stabilized platform could be considered as a robotic 

manipulator. The gimbal is an open kinematic chain that its rigid bodies (links) 

connected to each other by revolute joints where the DC motors drive and give 

actuation energy. The end effector of the gimbal can be considered as its payload 

which is antenna in this study. Due to the special motion task of the gimbal, robotic 

manipulator, its link lengths are zero so that only the orientation of the antenna is 

allowed to manipulate. 

 

Figure 6: Denavit-Hartenberg convention [30] 

Denavit-Hartenberg (DH) convention is used to express kinematic relations of the 

two-axis gimbal system. The DH convention is applied according to the [30]. There 

is a general guideline to describe kinematics of connected rigid bodies. The links and 
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joints are numbered from 1 to 𝑚 where 𝑚 is the total number of links, 𝑖 − 𝑡ℎ joint 

connects the links 𝑖 − 1 and 𝑖. A reference frame is attached to each rigid bodies, 

and 0 − 𝑡ℎ reference frame indicates the inertial or base reference frame. A reference 

frame and origin of 𝑘 − 𝑡ℎ link are, respectively,  ℱ𝑘 and 𝑂𝑘 denoted as following, 

ℱ𝑘(𝑂𝑘) 

Basis vectors of the reference frame ℱ𝑘 are denoted as following, 

{𝑢⃗ 1
(𝑘)

, 𝑢⃗ 2
(𝑘)

, 𝑢⃗ 3
(𝑘)

}; 𝑤ℎ𝑒𝑟𝑒 𝑢𝑝𝑝𝑒𝑟𝑠𝑐𝑟𝑖𝑝𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑘 − 𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑎𝑚𝑒 

Basis vectors can be expressed in vector equations as follows. 

𝑢̅1 = [
1
0
0
] , 𝑢̅2 = [

0
1
0
] , 𝑢̅3 = [

0
0
1
] 

Selection of the reference frame components is done in compliance with DH 

convention as well. Frame origins can be selected freely. 𝑢⃗ 3
(𝑘)

 is assigned to axis of 

the joint-revolute joints in this case- with freely selected direction. 𝑢⃗ 1
(𝑘)

 is assigned 

to the common normal 𝑁𝑘 between 𝑢⃗ 3
(𝑘−1)

 and 𝑢⃗ 3
(𝑘)

. Since joint axes of the gimbal 

bodies intersecting, direction of the 𝑢⃗ 1
(𝑘)

 is selected freely. Second basis vector 𝑢⃗ 2
(𝑘)

 

is determined due to right-handed property of the reference frame; such that, 

𝑢⃗ 2
(𝑘)

= 𝑢⃗ 3
(𝑘)

× 𝑢⃗ 1
(𝑘)

 

Joint variables are rotation angle 𝜃𝑖𝑗 between 𝑢⃗ 1
(𝑖)

and 𝑢⃗ 1
(𝑗)

; and distance 𝑑𝑖𝑗 = 𝑂𝑖𝑂𝑗 

is a constant parameter. For the sake of simplicity, only the 𝑗 − 𝑡ℎ subscript is used. 

That is, 

𝜃1 = 𝜃01:  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑥𝑖𝑠 

𝜃2 = 𝜃12:  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑥𝑖𝑠 

𝑑01 = 𝑑1:  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑥𝑖𝑠 

𝑑12 = 𝑑2:  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑥𝑖𝑠 
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There are four DH parameters need to be defined before using the DH convention. 

• The twist angle, 𝛽𝑘, between the axes of 𝑢⃗ 3
(𝑘−1)

 and 𝑢⃗ 3
(𝑘)

. 

• Rotation angle, 𝜃𝑘, between the common normal 𝑢⃗ 1
(𝑘−1)

 and 𝑢⃗ 1
(𝑘)

. 

• The offset, 𝑠𝑘, between the common normal 𝑢⃗ 1
(𝑘−1)

 and 𝑢⃗ 1
(𝑘)

. 

• The effective link length, 𝑏𝑘, between the axes of 𝑢⃗ 3
(𝑘−1)

 and 𝑢⃗ 3
(𝑘)

. 

The parameters 𝛽𝑘 and 𝑏𝑘 are always constant. Since the gimbal system has only 

revolute joint, the parameter 𝑠𝑘 is constant, too. The following table consists of link 

frame origins and the four DH parameters for the studied gimbal. 

Table 1: Denavit-Hartenberg parameters 

Twist Angles 

𝛽1 = 0 𝛽2 = −𝜋/2 

Rotation Angles (jv: joint variable) 

𝜃1 = 𝑗𝑣 𝜃2 = 𝑗𝑣 

Constant Offsets 

𝑠1 = 𝑑1 𝑠2 = 0 

Effective Link Lengths 

𝑏0 = 0 𝑏1 = 0 𝑏2 = 0 

Link Frame Origins 

𝑂0 = 𝑅 𝑂1 = 𝑅 𝑂2 = 𝑅 

2.2.2 Geometric Relations of the Gimbal System 

Geometrical parameters of the gimbal system are provided below. 

Link lengths and distances indicating center of gravity, 
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𝑑1 = 261 𝑚𝑚
𝑐𝑎𝑧𝑖2 = 20 𝑚𝑚
𝑐𝑎𝑧𝑖3 = 67 𝑚𝑚
𝑐2 = 18 𝑚𝑚

𝑑2 = 115 𝑚𝑚
𝑑3 = 167 𝑚𝑚

 (2.1) 

 𝑟 𝑂𝐶𝑎𝑧𝑖
= −𝑐𝑎𝑧𝑖2𝑢⃗ 2

(1)
− 𝑐𝑎𝑧𝑖3𝑢⃗ 3

(1)
⇒ 𝑟̅𝑂𝐶𝑎𝑧𝑖

(1)
= [

0
−𝑐𝑎𝑧𝑖2

−𝑐𝑎𝑧𝑖3

] (2.2) 

 𝑟 𝑂𝐴 = −𝑑2𝑢⃗ 2
(1)

− 𝑑1𝑢⃗ 3
(1)

⇒ 𝑟̅𝑂𝐴
(1)

= −[

0
𝑑2

𝑑1

] (2.3) 

 

𝑟 𝐶𝑎𝑧𝑖𝐴
= (𝑐𝑎𝑧𝑖2 − 𝑑2)𝑢⃗ 2

(1)
+ (𝑐𝑎𝑧𝑖3 − 𝑑1)𝑢⃗ 3

(1)
⇒ 𝑟̅𝐶𝑎𝑧𝑖𝐴

(1)

= [
0

−𝑑2 + 𝑐𝑎𝑧𝑖2

𝑐𝑎𝑧𝑖3 − 𝑑1

] 
(2.4) 

  𝑟 𝐴𝑅 = 𝑑2𝑢⃗ 2
(1)

= 𝑑2𝑢⃗ 3
(2)

⇒ 𝑟̅𝐴𝑅
(1)

= [
0
𝑑2

0
] (2.5) 

  𝑟 𝐴𝐶𝑒𝑙𝑒
= (𝑐2 + 𝑑2)𝑢⃗ 2

(1)
= (𝑐2 + 𝑑2)𝑢⃗ 3

(2)
⇒ 𝑟̅𝐴𝐶𝑒𝑙𝑒

(1)
= [

0
𝑐2 + 𝑑2

0
] (2.6) 

  𝑟 𝐴𝐶 = (𝑑2 + 𝑑3)𝑢⃗ 2
(1)

= (𝑑2 + 𝑑3)𝑢⃗ 3
(2)

⇒ 𝑟̅𝐴𝐶
(1)

= [
0

𝑑2 + 𝑑3

0
] (2.7) 

  𝑟 𝐶𝑒𝑙𝑒𝐶 = (𝑑3 − 𝑐2)𝑢⃗ 2
(1)

= (𝑑3 − 𝑐2)𝑢⃗ 3
(2)

⇒ 𝑟̅𝐶𝑒𝑙𝑒𝐶
(2)

= [
0
0

𝑑3 − 𝑐2

] (2.8) 

 

𝑟 𝐶𝑎𝑧𝑖𝐶
= (𝑑3 + 𝑐𝑎𝑧𝑖2)𝑢⃗ 2

(1)
+ (𝑐𝑎𝑧𝑖3 − 𝑑1)𝑢⃗ 3

(1)
⇒ 𝑟̅𝐶𝑎𝑧𝑖𝐶

(1)

= [
0

𝑑3 + 𝑐𝑎𝑧𝑖2

𝑐𝑎𝑧𝑖3 − 𝑑1

] 
(2.9) 

  

𝑟 𝑂𝐶𝑒𝑙𝑒
= 𝑟 𝑂𝐴 + 𝑟 𝐴𝐶𝑒𝑙𝑒

= −𝑑2𝑢⃗ 2
(1)

− 𝑑1𝑢⃗ 3
(1)

+ (𝑐2 + 𝑑2)𝑢⃗ 2
(1)

⇒ 𝑟̅𝑂𝐶𝑒𝑙𝑒

(1)
= [

0
𝑐2

−𝑑1

] 
(2.10) 
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2.2.3 Body-to-Body Orientation 

Transformation matrices between reference frames, 𝐶̂(𝑖,𝑗), denotes transformation of 

reference frame from ℱ𝑖 to ℱ𝑗 and is calculated as following. 

 𝐶̂(𝑖,𝑗) = 𝑒𝑢1𝛽01𝑒𝑢3𝜃01  (2.11) 

Exponential terms of (2.11) are the rotation matrix and basic rotation matrix are 

expressed as followings. 

 𝑅̂1(𝜃) = 𝑒𝑢1𝜃 = [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

] (2.12) 

  𝑅̂2(𝜃) = 𝑒𝑢2𝜃 = [
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

] (2.13) 

  𝑅̂3(𝜃) = 𝑒𝑢3𝜃 = [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] (2.14) 

2.2.4 Angular Velocities of the Bodies 

Angular velocity, 𝜔⃗⃗ 𝑘 = 𝜔⃗⃗ 𝑘/0, of the 𝑘 − 𝑡ℎ body with respect to the inertial 

reference frame ℱ0 can be expressed as following recursive vector. 

 𝜔⃗⃗ 𝑘 = ∑ 𝜔⃗⃗ 𝑚/𝑚−1

𝑘−1

𝑚=1

, 𝑤ℎ𝑒𝑟𝑒 𝜔⃗⃗ 0 = 0 (2.15) 

It is known that, according to the DH convention, rotation axes of the bodies are 

along 𝑢⃗ 3
(𝑘)

. Therefore, 

 𝜔⃗⃗ 𝑘/𝑘−1 = 𝜃̇𝑘𝑢⃗ 3
(𝑘)

 (2.16) 

(2.15) can be written as the following matrix equation in inertial reference frame. 

𝜔̅𝑘
(0) = 𝜔̅𝑘 = 𝜔̅𝑘−1

(0) + 𝜃̇𝑘𝑢̅3
(𝑘 0⁄ )

⇒ 

 𝜔̅𝑘 = 𝜔̅𝑘−1
(0) + 𝜃̇𝑘𝐶̂

(0,k)𝑢̅3 (2.17) 
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2.2.5 Velocities of the Body Frame Origins 

Velocity, 𝑣 𝑘 = 𝑣 𝑘/0, of the 𝑘 − 𝑡ℎ body frame origin with respect to the inertial 

reference frame origin ℱ0(𝑂0) can be expressed as following recursive vector. 

 𝑣 𝑘 = 𝐷0𝑟 𝑘 = ∑ 𝐷0𝑟 𝑚/𝑚−1

𝑘−1

𝑚=1

, 𝑤ℎ𝑒𝑟𝑒 𝑣 0 = 0 (2.18) 

𝐷0𝑟 𝑘 term in above equation express that time derivative of position vector of the 

𝑘 − 𝑡ℎ body frame origin, 𝑟 𝑘 , with respect to the inertial reference frame ℱ0(𝑂0). 

2.2.6 Angular Acceleration of the Bodies 

Angular acceleration, 𝛼 𝑘 = 𝛼 𝑘/0, of the 𝑘 − 𝑡ℎ body with respect to the inertial 

reference frame ℱ0 can be expressed as following recursive vector. 

 𝛼 𝑘 = ∑ 𝛼 𝑚/𝑚−1

𝑘−1

𝑚=1

, 𝑤ℎ𝑒𝑟𝑒 𝛼 0 = 0 (2.19) 

Recalling the relation between angular acceleration and angular velocity, 

𝛼 𝑘 = 𝐷0𝜔⃗⃗ 𝑘/0 

2.2.7 Acceleration of the Body Frame Origins 

Angular acceleration, 𝑎 𝑘 = 𝑎𝑘/0, of the 𝑘 − 𝑡ℎ body frame origin with respect to the 

inertial reference frame origin ℱ0(𝑂0) can be expressed as following recursive 

vector. 

 𝑎 𝑘 = 𝐷0𝑎 𝑘 = ∑ 𝐷0𝑣 𝑚/𝑚−1

𝑘−1

𝑚=1

, 𝑤ℎ𝑒𝑟𝑒 𝑎 0 = 0 (2.20) 
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2.2.8 Kinematic Relations of the Gimbal System 

Kinematic relations of the studied gimbal are to be expressed in this section. 

Transformation matrices between successive gimbal bodies can be expressed as 

follows. 

 𝐶̂(0,1) = 𝑒𝑢1𝛽1𝑒𝑢3𝜃1 = 𝑒𝑢3𝜃1 (2.21) 

 

 𝐶̂(1,2) = 𝑒𝑢1𝛽2𝑒𝑢3𝜃2 = 𝑒−𝑢1𝜋/2𝑒𝑢3𝜃2 (2.22) 

  
𝐶̂ = 𝐶̂(0,2) = 𝐶̂(0,1)𝐶̂(1,2) = 𝑒𝑢3𝜃1𝑒−𝑢1𝜋/2𝑒𝑢3𝜃2

= 𝑒𝑢3𝜃1𝑒𝑢2𝜃2𝑒−𝑢1𝜋/2 
(2.23) 

Calculating transformation matrices by using the equations (2.21), (2.22), and (2.23), 

 𝐶̂(0,1) = [
cos 𝜃1 −sin 𝜃1 0
sin 𝜃1 cos 𝜃1 0

0 0 1

] (2.24) 

𝐶̂(1,2) = [
1 0 0
0 0 1
0 −1 0

] [
cos 𝜃2 −sin 𝜃2 0
sin 𝜃2 cos 𝜃2 0

0 0 1

] ⇒ 

 𝐶̂(1,2) = [
cos 𝜃2 −sin 𝜃2 0

0 0 1
− sin 𝜃2 −cos 𝜃2 0

] (2.25) 

𝐶̂(0,2) = [
cos 𝜃1 −sin 𝜃1 0
sin 𝜃1 cos 𝜃1 0

0 0 1

] [
cos 𝜃2 −sin 𝜃2 0

0 0 1
− sin 𝜃2 −cos 𝜃2 0

] ⇒ 

 𝐶̂(0,2) = [
cos 𝜃1 cos 𝜃2 −cos 𝜃1 sin 𝜃2 −sin 𝜃1

sin 𝜃1 cos 𝜃2 −sin 𝜃1 sin 𝜃2 cos 𝜃1

−sin 𝜃2 −cos 𝜃2 0
] (2.26) 

Angular velocity and acceleration of the antenna (second body) can be expressed as 

follows by recalling (2.17). 

𝜔̅1 = 𝜔̅1 0⁄
(0) = 𝜃̇1𝑢̅3 ⇒ 
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 𝜔̅1 = [
0
0
𝜃̇1

] (2.27) 

𝜔̅2 = 𝜔̅2 0⁄
(0) = 𝜔̅1 0⁄

(0) + 𝜔̅2 1⁄
(0) ⇒ 

𝜔̅2 = 𝜃̇1𝑢̅3 + 𝜃̇2𝑒
𝑢3𝜃1𝑢̅2 ⇒ 

𝜔̅2 = 𝜃̇1𝑢̅3 + 𝜃̇2(𝑢̅2 cos 𝜃1 − 𝑢̅1 sin 𝜃1) ⇒ 

𝜔̅2 = −𝜃̇2 sin 𝜃1 𝑢̅1 + 𝜃̇2 cos θ1 𝑢̅2 + 𝜃̇1𝑢̅3 ⇒ 

 𝜔̅2 = [

−𝜃̇2 sin 𝜃1

𝜃̇2 cos θ1

𝜃̇1

] (2.28) 

𝛼̅1 = 𝛼̅1 0⁄
(0) = 𝜔̅1̇ ⇒ 

 𝛼̅1 = [
0
0
𝜃̈1

] (2.29) 

 𝛼̅2 = 𝛼̅2 0⁄
(0) = 𝜔̇̅ = [

−𝜃̇1𝜃̇2 cos 𝜃1 − 𝜃̈2 sin 𝜃1

−𝜃̇1𝜃̇2 sin 𝜃1 + 𝜃̈2 cos 𝜃1

𝜃̈1

] (2.30) 

Location, velocity, and acceleration of the wrist point (point R) on antenna (second 

body) can be expressed as follows. 

𝑟 = 𝑟 𝑂𝑅 = 𝑟 𝑂𝐴 + 𝑟 𝐴𝑅 ⇒ 

 𝑟 = d1𝑢⃗ 3
(0)

 (2.31) 

Expressing as column matrix representation in base reference frame, 

 𝑟̅ = d1𝑢̅3 = [
0
0
𝑑1

] (2.32) 

 𝑣 r = 𝑣 𝑂𝐵 = 0 ⇒ 𝑣̅𝑟 = [
0
0
0
] (2.33) 
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  𝑎 r = 𝑎 𝑂𝐵 = 0 ⇒ 𝑎̅𝑅 = [
0
0
0
] (2.34) 

Location, velocity and acceleration of the mass center of the body 1: 

𝑟̅𝑂𝐶𝑎𝑧𝑖

(1)
= [

0
−𝑐𝑎𝑧𝑖2

−𝑐𝑎𝑧𝑖3

] ⇒ 

𝑟̅𝑂𝐶𝑎𝑧𝑖

(0)
= 𝐶̂(0,1)𝑟̅𝑂𝐶𝑎𝑧𝑖

(1)
= 𝑒𝑢3𝜃1(−𝑐𝑎𝑧𝑖2𝑢̅2 − 𝑐𝑎𝑧𝑖3𝑢̅3) ⇒ 

 𝑟̅𝑂𝐶𝑎𝑧𝑖

(0)
= 𝑐𝑎𝑧𝑖2 sin 𝜃1 𝑢̅1 − 𝑐𝑎𝑧𝑖2 cos 𝜃1 𝑢̅2 − 𝑐𝑎𝑧𝑖3𝑢̅3 (2.35) 

𝑣 𝑎𝑧𝑖 = 𝑣 𝑂𝐶𝑎𝑧𝑖
= D0𝑟 𝑂𝐶𝑎𝑧𝑖

⇒ 

𝑣̅𝑎𝑧𝑖 = 𝑟̇̅𝑂𝐶𝑎𝑧𝑖

(0)
= 𝑐𝑎𝑧𝑖2𝜃̇1 cos 𝜃1 𝑢̅1 + 𝑐𝑎𝑧𝑖2𝜃̇1 sin 𝜃1 𝑢̅2 ⇒ 

 𝑣̅𝑎𝑧𝑖 = [
𝑐𝑎𝑧𝑖2𝜃̇1 cos 𝜃1

𝑐𝑎𝑧𝑖2𝜃̇1 sin 𝜃1

0

] (2.36) 

𝑎 azi = 𝑎 𝑂𝐶𝑎𝑧𝑖
= D0𝑣 𝑎𝑧𝑖 ⇒ 

𝑎̅𝑎𝑧𝑖 = 𝑣̇̅𝑎𝑧𝑖 = 𝑐𝑎𝑧𝑖2(𝜃̈1 cos 𝜃1 − 𝜃̇1
2 sin 𝜃1)𝑢̅1 + 𝑐𝑎𝑧𝑖2(𝜃̈1 sin 𝜃1 + 𝜃̇1

2 cos 𝜃1)𝑢̅2 ⇒ 

 𝑎 azi = [

𝑐𝑎𝑧𝑖2(𝜃̈1 cos 𝜃1 − 𝜃̇1
2 sin 𝜃1)

𝑐𝑎𝑧𝑖2(𝜃̈1 sin 𝜃1 + 𝜃̇1
2 cos 𝜃1)

0

] (2.37) 

Location, velocity and acceleration of the COG of the body 2: 

𝑟̅𝑂𝐶𝑒𝑙𝑒

(1)
= [

0
𝑐2

−𝑑1

] ⇒ 

𝑟̅𝑂𝐶𝑒𝑙𝑒

(0)
= 𝐶̂(0,1)𝑟̅𝑂𝐶𝑒𝑙𝑒

(2)
= 𝑒𝑢3𝜃1(𝑐2𝑢̅2 − 𝑑1𝑢̅3) ⇒ 

𝑟 𝑂𝐶𝑒𝑙𝑒
= −𝑐2 sin 𝜃1 𝑢⃗ 1

(0)
+ 𝑐2 cos 𝜃1 𝑢⃗ 2

(0)
− 𝑑1𝑢⃗ 3

(0)
⇒ 

 𝑟̅𝑂𝐶𝑒𝑙𝑒

(0)
= −𝑐2 sin 𝜃1 𝑢̅1 + 𝑐2 cos 𝜃1 𝑢̅2 − 𝑑1𝑢̅3 (2.38) 

𝑣 𝑂𝐶𝑒𝑙𝑒
= D0𝑟 𝑂𝐶𝑒𝑙𝑒

= −𝑐2𝜃̇1 cos 𝜃1 𝑢⃗ 1
(0)

− 𝑐2𝜃̇1 sin 𝜃1 𝑢⃗ 2
(0)

⇒ 
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 𝑣̅𝑂𝐶𝑒𝑙𝑒

(0)
= [

−𝑐2𝜃̇1 cos 𝜃1

−𝑐2𝜃̇1 sin 𝜃1

0

] (2.39) 

𝑎 𝑂𝐶𝑒𝑙𝑒
= D0𝑣 𝑒𝑙𝑒

= (−𝑐2𝜃̈1 cos 𝜃1 + 𝑐2𝜃̇1
2 sin 𝜃1)𝑢⃗ 1

(0)

− (𝑐2𝜃̈1 sin 𝜃1 + 𝑐2𝜃̇1
2 cos 𝜃1)𝑢⃗ 2

(0)
⇒ 

 𝑎̅𝑂𝐶𝑒𝑙𝑒

(0)
= [

−𝑐2𝜃̈1 cos 𝜃1 + 𝑐2𝜃̇1
2 sin 𝜃1

−𝑐2𝜃̈1 sin 𝜃1 − 𝑐2𝜃̇1
2 cos 𝜃1

0

] (2.40) 

2.3 Dynamic Analysis 

Dynamic analysis describes the relation between acting forces-moments and motion 

variables that are analyzed in Kinematic Analysis section. There are two well-known 

dynamic analysis methods which are Newton-Euler and Lagrange’s methods. 

Newton-Euler method directly uses force-moment relations; that is why it is also 

called force and moment equation method, while Lagrange’s method uses energy 

relations to obtain equation of motion. The Newton-Euler method is used in the 

thesis. 

According to the CAD models, mass and inertia values are as follows. Noting that 

inertia matrices of the bodies are defined in their own reference frame. 

 𝑚1 = 6.212 𝑘𝑔 (2.41) 

 𝑚2 = 6.377 𝑘𝑔 (2.42) 

 

𝐽1
(1)

= [

𝐽111 𝐽112 𝐽113

𝐽112 𝐽122 𝐽123

𝐽113 𝐽123 𝐽133

]

= [
1.275𝑒 − 1 7.956𝑒 − 3 −7.703𝑒 − 3
7.956𝑒 − 3 8.141𝑒 − 2 −1.047𝑒 − 2

−7.703𝑒 − 3 −1.047𝑒 − 2 7.207𝑒 − 2
] 𝑘𝑔𝑚2 

(2.43) 
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𝐽2
(2)

= [
𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

]

= [
6.891𝑒 − 2 −2.880𝑒 − 3 −9.234𝑒 − 4

−2.880𝑒 − 3 8.077𝑒 − 2 −2.006𝑒 − 3
−9.234𝑒 − 4 −2.006𝑒 − 3 5.732𝑒 − 2

] 𝑘𝑔𝑚2 

(2.44) 

 

Figure 7: Free-body diagram of the azimuth body 
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Figure 8: Free-body diagram of the elevation body 
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Forces and moments shown in free body diagrams are indicated below. A force or 

moment notation such as 𝐹 01 states that force acting on body 1 from body 0. 

Resolving force and moment relations: 

 𝐹 01 = 𝐹011𝑢⃗ 1
(1)

+ 𝐹012𝑢⃗ 2
(1)

+ 𝐹013𝑢⃗ 3
(1)

 (2.45) 

 𝑇⃗ 01𝑎 = 𝑇01𝑎𝑢⃗ 3
(1)

 (2.46) 

 𝑇⃗ 01𝑑 = −𝑇01𝑑𝑢⃗ 3
(1)

;    𝑇01𝑑 = 𝑐01𝑑𝜃̇1 (2.47) 

 𝑀⃗⃗ 01𝑏 = −𝑀01𝑏1𝑢⃗ 1
(1)

− 𝑀01𝑏2𝑢⃗ 2
(1)

 (2.48) 

 𝐹 12𝐴 = 𝐹12𝐴1𝑢⃗ 1
(2)

+ 𝐹12𝐴2𝑢⃗ 2
(2)

+ 𝐹12𝐴3𝑢⃗ 3
(2)

 (2.49) 

 𝐹 12𝐶 = 𝐹12𝐶1𝑢⃗ 1
(2)

+ 𝐹12𝐶2𝑢⃗ 2
(2)

 (2.50) 

where  𝐹12𝐶3 = 0 assumed bearing located at point C has larger axial space than the 

on at point A. 

 𝑇⃗ 12𝑎 = 𝑇12𝑎𝑢⃗ 3
(2)

= 𝑇12𝑎𝑢⃗ 2
(1)

 (2.51) 

 𝑇⃗ 12𝑑 = −𝑇12𝑑𝑢⃗ 3
(2)

;    𝑇12𝑑 = 𝑐12𝑑𝜃̇3 (2.52) 

2.3.1 Newton-Euler Equations for Body 1 

Force equation: 

𝑚1𝑎 𝑎𝑧𝑖 = 𝑚1𝑔 + 𝐹 01 − 𝐹 12𝐴 − 𝐹 12𝐶 ⇒ 

Expressing in matrix representation in base reference frame, 

𝑚1𝐶̂
(1,0) [

𝑐𝑎𝑧𝑖2(𝜃̈1 cos 𝜃1 − 𝜃̇1
2 sin 𝜃1)

𝑐𝑎𝑧𝑖2(𝜃̈1 sin 𝜃1 + 𝜃̇1
2 cos 𝜃1)

0

]

= 𝑚1𝐶̂
(1,0) [

0
0
𝑔
] + [

𝐹011

𝐹012

𝐹013

] − 𝐶̂(1,2) [
𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

] − 𝐶̂(1,2) [
𝐹12𝐶1

𝐹12𝐶2

0
] ⇒ 

where,  
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[
cos 𝜃1 sin 𝜃1 0

− sin 𝜃1 cos 𝜃1 0
0 0 1

] [

𝑐𝑎𝑧𝑖2(𝜃̈1 cos 𝜃1 − 𝜃̇1
2 sin 𝜃1)

𝑐𝑎𝑧𝑖2(𝜃̈1 sin 𝜃1 + 𝜃̇1
2 cos 𝜃1)

0

] = 𝑐𝑎𝑧𝑖2 [
𝜃̈1

𝜃̇1
2

0

] 

[
cos 𝜃2 −sin 𝜃2 0

0 0 1
− sin 𝜃2 −cos 𝜃2 0

] [
𝐹12𝐴1 + 𝐹12𝐶1

𝐹12𝐴2 + 𝐹12𝐶2

𝐹12𝐴3

]

= [

(𝐹12𝐴1 + 𝐹12𝐶1) cos 𝜃2 − (𝐹12𝐴2 + 𝐹12𝐶2) sin 𝜃2

𝐹12𝐴3

−(𝐹12𝐴1 + 𝐹12𝐶1) sin 𝜃2 − (𝐹12𝐴2 + 𝐹12𝐶2) cos 𝜃2

] 

𝑚1𝑐𝑎𝑧𝑖2 [
𝜃̈1

𝜃̇1
2

0

] = 𝑚1 [
0
0
𝑔
] + [

𝐹011

𝐹012

𝐹013

]

− [

(𝐹23𝐴1 + 𝐹12𝐶1) cos 𝜃2 − (𝐹23𝐴2 + 𝐹12𝐶2) sin 𝜃2

𝐹23𝐴3

−(𝐹23𝐴1 + 𝐹12𝐶1) sin 𝜃2 − (𝐹23𝐴2 + 𝐹12𝐶2) cos 𝜃2

] ⇒ 

Writing as separate equations, 

 
𝑚1𝑐𝑎𝑧𝑖2𝜃̈1 = 𝐹011 − (𝐹12𝐴1 + 𝐹12𝐶1) cos 𝜃2

+ (𝐹12𝐴2 + 𝐹12𝐶2) sin 𝜃2 
(2.53) 

 𝑚1𝑐𝑎𝑧𝑖2𝜃̇1
2 = 𝐹012 − 𝐹12𝐴3 (2.54) 

 
0 = 𝑚1𝑔 + 𝐹013 + (𝐹12𝐴1 + 𝐹12𝐶1) sin 𝜃2 + (𝐹12𝐴2

+ 𝐹12𝐶2) cos 𝜃2 
(2.55) 

Moment equation: 

 

𝐽1 ∙ 𝛼 1 + 𝜔⃗⃗ 1 × 𝐽1 ∙ 𝜔⃗⃗ 1
= 𝑀⃗⃗ 01𝑏 + 𝑇⃗ 01𝑎 − 𝑇⃗ 12𝑎 + 𝑇⃗ 01𝑑 − 𝑇⃗ 12𝑑

+ 𝑟 𝐶𝑎𝑧𝑖𝑂
× 𝐹 01 + 𝑟 𝐶𝑎𝑧𝑖𝐴

× (−𝐹 12𝐴)

+ 𝑟 𝐶𝑎𝑧𝑖𝐶
× (−𝐹 12𝐶) 

(2.56) 

The moment equation can be written as column matrix equations as follows. 

Manipulations of the equation are provided in Appendix A. 
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[

𝐽113𝜃̈1

𝐽123𝜃̈1

𝐽133𝜃̈1

] + [
−𝐽123𝜃̇1

2

−𝐽113𝜃̇1
2

0

]

= [

−𝑀01𝑏1

−𝑀01𝑏2 − 𝑇12𝑎 + 𝑘12𝑠𝜃3 + 𝑐12𝑑𝜃̇3

𝑇01𝑎 − 𝑐01𝑑𝜃̇1

] + [
𝑐𝑎𝑧𝑖2𝐹013 − 𝑐𝑎𝑧𝑖3𝐹012

𝑐𝑎𝑧𝑖3𝐹011

−𝑐𝑎𝑧𝑖2𝐹011

]

− [

𝐹12𝐴3(𝑑1 − 𝑐𝑎𝑧𝑖3) + (𝑑2 − 𝑐𝑎𝑧𝑖2)(𝐹12𝐴1 sin 𝜃2 + 𝐹12𝐴2 cos 𝜃2)

(𝑐𝑎𝑧𝑖3 − 𝑑1)(𝐹12𝐴1 cos 𝜃2 − 𝐹12𝐴2 sin 𝜃2)

(𝑑2 − 𝑐𝑎𝑧𝑖2)(𝐹12𝐴1 cos 𝜃2 − 𝐹12𝐴2 sin 𝜃2)
]

− [

−(𝑑3 + 𝑐𝑎𝑧𝑖2)(𝐹24𝐶1 sin 𝜃2 + 𝐹24𝐶2 cos 𝜃2)

(𝑐𝑎𝑧𝑖3 − 𝑑1)(𝐹12𝐶1 cos 𝜃2 − 𝐹12𝐶2 sin 𝜃2)

−(𝑑3 + 𝑐𝑎𝑧𝑖2)(𝐹12𝐶1 cos 𝜃2 − 𝐹12𝐶2 sin 𝜃2)
] 

Writing as separate equations, 

 

𝐽113𝜃̈1−𝐽123𝜃̇1
2 = −𝑀01𝑏1 + 𝑐𝑎𝑧𝑖2𝐹013 − 𝑐𝑎𝑧𝑖3𝐹012

− 𝐹12𝐴3(𝑑1 − 𝑐𝑎𝑧𝑖3)
− (𝑑2 − 𝑐𝑎𝑧𝑖2)(𝐹12𝐴1 sin 𝜃2 + 𝐹12𝐴2 cos 𝜃2) + (𝑑3

+ 𝑐𝑎𝑧𝑖2)(𝐹24𝐶1 sin 𝜃2 + 𝐹24𝐶2 cos 𝜃2) 

(2.57) 

 

𝐽123𝜃̈1 − 𝐽113𝜃̇1
2

= −𝑀01𝑏2 − 𝑇12𝑎 + 𝑘12𝑠𝜃3 + 𝑐12𝑑𝜃̇3 + 𝑐𝑎𝑧𝑖3𝐹011

− (𝑐𝑎𝑧𝑖3 − 𝑑1)(𝐹12𝐴1 cos 𝜃2 − 𝐹12𝐴2 sin 𝜃2)
− (𝑐𝑎𝑧𝑖3 − 𝑑1)(𝐹12𝐶1 cos 𝜃2 − 𝐹12𝐶2 sin 𝜃2) 

(2.58) 

 
𝐽133𝜃̈1 = 𝑇01𝑎 − 𝑐01𝑑𝜃̇1 − 𝑐𝑎𝑧𝑖2𝐹011

− (𝑑2 − 𝑐𝑎𝑧𝑖2)(𝐹12𝐴1 cos 𝜃2 − 𝐹12𝐴2 sin 𝜃2)
+ (𝑑3 + 𝑐𝑎𝑧𝑖2)(𝐹12𝐶1 cos 𝜃2 − 𝐹12𝐶2 sin 𝜃2) 

(2.59) 

2.3.2 Newton-Euler Equations for Body 2 

Force equation: 

𝑚2𝑎 2 = 𝑚2𝑔 + 𝐹 12𝐴 + 𝐹 12𝐶 ⇒ 

Expressing in matrix representation in base reference frame, 

𝑚2𝑎̅2/0
(2)

= 𝑚2𝑔̅
(2) + 𝐹̅12𝐴

(2)
+ 𝐹̅12𝐶

(2)
⇒ 
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𝑚2𝐶̂
−1𝑎̅2/0

(0)
= 𝑚2𝐶̂

−1𝑔̅(0) + [
𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

] + [
𝐹12𝐶1

𝐹12𝐶2

0
] ⇒ 

𝑚2 [
cos 𝜃1 cos 𝜃2 sin 𝜃1 cos 𝜃2 −sin 𝜃2

−cos 𝜃1 sin 𝜃2 −sin 𝜃1 sin 𝜃2 −cos 𝜃2

−sin 𝜃1 cos 𝜃1 0
] [

−𝑐2𝜃̈1 cos 𝜃1 + 𝑐2𝜃̇1
2 sin 𝜃1

−𝑐2𝜃̈1 sin 𝜃1 − 𝑐2𝜃̇1
2 cos 𝜃1

0

]

= 𝑚2 [
cos 𝜃1 cos 𝜃2 sin 𝜃1 cos 𝜃2 −sin 𝜃2

−cos 𝜃1 sin 𝜃2 −sin 𝜃1 sin 𝜃2 −cos 𝜃2

−sin 𝜃1 cos 𝜃1 0
] [

0
0
𝑔
] + [

𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

]

+ [
𝐹12𝐶1

𝐹12𝐶2

0
] ⇒ 

𝑚2 [

−𝑐2 cos 𝜃2 𝜃̈1

𝑐2 sin 𝜃2 𝜃̈1

−𝑐2𝜃̇1
2

] = 𝑚2 [
−𝑔 sin 𝜃2

−𝑔 cos 𝜃2

0

] + [
𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

] + [
𝐹12𝐶1

𝐹12𝐶2

0
] 

Writing as separate equations, 

 −𝑚2𝑐2 cos 𝜃2 𝜃̈1 = −𝑚2𝑔 sin 𝜃2 + 𝐹12𝐴1 + 𝐹12𝐶1 (2.60) 

 𝑚2𝑐2 sin 𝜃2 𝜃̈1 = −𝑚2𝑔 cos 𝜃2 + 𝐹12𝐴2 + 𝐹12𝐶2 (2.61) 

 −𝑚2𝑐2𝜃̇1
2 = 𝐹12𝐴3 (2.62) 

Moment equation: 

 
𝐽2 ∙ 𝛼 2 + 𝜔⃗⃗ 2 × 𝐽2 ∙ 𝜔⃗⃗ 2

= 𝑇⃗ 12𝑎 + 𝑇⃗ 12𝑑 + 𝑟 𝐶𝑒𝑙𝑒𝐴 × 𝐹 12𝐴 + 𝑟 𝐶𝑒𝑙𝑒𝐶 × 𝐹 12𝐶 
(2.63) 

The moment equation can be written as column matrix equations as follows. 

Manipulations of the equation are provided in Appendix A. 
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[

𝜃̈1(−𝐽211 𝑠𝑖𝑛 𝜃2 − 𝐽212 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽213) + (−𝐽211 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽212 𝑠𝑖𝑛 𝜃2 𝜃̇1)

𝜃̈1(−𝐽212 𝑠𝑖𝑛 𝜃2 − 𝐽222 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽223) + (−𝐽212 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽222 𝑠𝑖𝑛 𝜃2 𝜃̇1)

𝜃̈1(−𝐽213 𝑠𝑖𝑛 𝜃2 − 𝐽223 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽233) + (−𝐽213 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽223 𝑠𝑖𝑛 𝜃2 𝜃̇1)

]

+ [

𝐽223(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇2

2) + 𝐽212𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2

−𝐽213(𝜃̇1
2 𝑠𝑖𝑛2 𝜃2 + 𝜃̇2

2) + 𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 (𝐽211 + 𝐽233)

𝐽212(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇1

2 𝑠𝑖𝑛2 𝜃2) + 𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 (𝐽211 − 𝐽222)

]

+ [

𝐽213𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 − 𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 (𝐽233 − 𝐽222)

𝐽212𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 − 𝐽223𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2

−𝐽213𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 + 𝐽223𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2

]

= [
0
0

𝑇12𝑎 − 𝑐12𝑑𝜃̇2

] + [
(𝑐2 + 𝑑2)𝐹12𝐴2

−(𝑐2 + 𝑑2)𝐹12𝐴1

0

] + [
(𝑐2 − 𝑑3)𝐹12𝐶2

(𝑑3 − 𝑐2)𝐹12𝐶1

0

] ⇒ 

Writing as separate equations, 

 

𝜃̈1(−𝐽211 𝑠𝑖𝑛 𝜃2 − 𝐽212 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽213)

+ (−𝐽211 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽212 𝑠𝑖𝑛 𝜃2 𝜃̇1)

+ 𝐽223(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇2

2) + 𝐽212𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2

+ 𝐽213𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 − 𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 (𝐽233 − 𝐽222)

= (𝑐2 + 𝑑2)𝐹12𝐴2 + (𝑐2 − 𝑑3)𝐹12𝐶2 

(2.64) 

 

𝜃̈1(−𝐽212 𝑠𝑖𝑛 𝜃2 − 𝐽222 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽223)

+ (−𝐽212 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽222 𝑠𝑖𝑛 𝜃2 𝜃̇1)

− 𝐽213(𝜃̇1
2 𝑠𝑖𝑛2 𝜃2 + 𝜃̇2

2)

+ 𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 (𝐽211 + 𝐽233) + 𝐽212𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2

− 𝐽223𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2

= −(𝑐2 + 𝑑2)𝐹12𝐴1 + (𝑑3 − 𝑐2)𝐹12𝐶1 

(2.65) 

 

𝜃̈1(−𝐽213 𝑠𝑖𝑛 𝜃2 − 𝐽223 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽233)

+ (−𝐽213 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽223 𝑠𝑖𝑛 𝜃2 𝜃̇1)

+ 𝐽212(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇1

2 𝑠𝑖𝑛2 𝜃2)

+ 𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 (𝐽211 − 𝐽222) − 𝐽213𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2

+ 𝐽223𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 = 𝑇12𝑎 − 𝑐12𝑑𝜃̇2 

(2.66) 

Equation of the motion can be obtained from the above Newton-Euler equations. 

Manipulations of those were provided Appendix B. The nonlinear equation of 

motion is as follows. 
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 [

1 0 0 0
0 𝐶𝑂𝑁𝑆31 0 𝐶𝑂𝑁𝑆32

0 0 1 0
0 𝐶𝑂𝑁𝑆41 0 𝐶𝑂𝑁𝑆42

]

[
 
 
 
 
𝜃̇1

𝜃̈1

𝜃̇2

𝜃̈2]
 
 
 
 

= −

[
 
 
 

𝜃̇1

𝐶𝑂𝑁𝑆33

𝜃̇2

𝐶𝑂𝑁𝑆43]
 
 
 

 (2.67) 

Defining the matrices, 

[𝑁1] = [

1 0 0 0
0 𝐶𝑂𝑁𝑆31 0 𝐶𝑂𝑁𝑆32

0 0 1 0
0 𝐶𝑂𝑁𝑆41 0 𝐶𝑂𝑁𝑆42

]  𝑎𝑛𝑑 [𝑁2] = −

[
 
 
 

𝜃̇1

𝐶𝑂𝑁𝑆33

𝜃̇2

𝐶𝑂𝑁𝑆43]
 
 
 

 

It is observed that equation of motion is nonlinear differential equation; besides, it 

depends on the elevation axis variable, 𝜃2 as can be seen from relations in Appendix. 

[𝑁1] matrix should be non-singular; otherwise, equation of motion cannot be 

calculated. Note that variations of the [𝑁1] with respect to other joint variables such 

as 𝜃1, 𝜃̇1, 𝜃̇2 are also analyzed; and it is observed that [𝑁1] is independent of them. 

The dependency of the [𝑁1] to 𝜃2 is because of inertial change of the total rotating 

mass around azimuth axis as elevation position changes. 

 

Figure 9: Determinant of augmented matrix 𝑁1 
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2.4 Decoupled Equation of Motion 

It has been shown in the previous section that the equations of motion are coupled. 

As can be seen, it was quite difficult to obtain these coupled equations of motion. 

Coupling of the gimbal axis emerges from nonzero off-diagonal product of inertia 

terms and coriolis and centrifugal forces. The coupled situation might be negligible 

or small when the nonzero off-diagonal product of inertia terms and the rotation 

velocities are very low. This simplifies the modeling considerably. Many gimbal 

studies are modeled using this simplified decoupled gimbal approach. As observed 

in (3.2)(3.3), a similar situation might be valid in the gimbal system used in this 

study. In this study, the gimbal system was modeled with the decouple approach and 

compared with the coupled model. 

In addition to the zero off-diagonal product of inertia terms, decoupled gimbal axis 

model consists of the following approaches. In the previous sections, the interactions 

of the moving bodies with each other were expressed by reaction forces such as 𝐹12𝐴. 

Assuming that the position change of the elevation body was small such that change 

in these forces is negligible, or if the elevation inertia matrix at different angles is 

constant, these two azimuth and elevation masses can be considered and modeled as 

a lumped outer gimbal mass as seen in the Figure 11. Besides, the mass named body 

2 in the coupled 3D gimbal model constructs the inner gimbal by also consisting of 

the kinematic and dynamic independency of body 1, which can be shown in the 

Figure 10 All these assumptions greatly reduce computing power and especially the 

modeling complexity. In this way, the moment equations, expressed simply along 

the rotational motion axes, form equations of the motion of the inner and outer 

gimbal masses, which are independent of each other.  
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Figure 10: Free body diagram of the decoupled inner gimbal 

 

Figure 11: Free body diagram of the decoupled outer gimbal 

𝑢⃗ 3
(𝑖𝑛𝑛𝑒𝑟)

 

𝑢⃗ 2
(𝑖𝑛𝑛𝑒𝑟)

 

𝑢⃗ 1
(𝑖𝑛𝑛𝑒𝑟)

 

−𝑇12𝑎, 𝑇𝑑2 

𝜃2 

𝑢⃗ 3
(𝑜𝑢𝑡𝑒𝑟)

 

𝑢⃗ 2
(𝑜𝑢𝑡𝑒𝑟)

 

𝑢⃗ 1
(𝑜𝑢𝑡𝑒𝑟)

 

𝑇01𝑎, −𝑇𝑑1 

𝜃1 
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The outer gimbal, composed of the azimuth body and the elevation body which is 

considered in a constant position (𝜃2 = 0) for mass calculation of the outer gimbal, 

has a static balance. Therefore, the decoupled equations of motion are calculated by 

considering the mass and inertia values as follows. 

Decoupled inertia matrices: 

 𝐽𝑜𝑢𝑡𝑒𝑟
(1)

= 𝐽𝑜𝑢𝑡𝑒𝑟 = 15.284𝑒 − 2 𝑘𝑔𝑚2 (2.68) 

 𝐽𝑖𝑛𝑛𝑒𝑟
(2)

= 𝐽𝑖𝑛𝑛𝑒𝑟 = 5.732𝑒 − 2 𝑘𝑔𝑚2 (2.69) 

Moment equation and equation of motion of the outer gimbal in the rotation axis: 

 𝐽𝑜𝑢𝑡𝑒𝑟𝜃̈1 = 𝑇01𝑎 − 𝑐01𝑑𝜃̇1 (2.70) 

Moment equation and equation of motion of the inner gimbal in the rotation axis: 

 𝐽𝑖𝑛𝑛𝑒𝑟𝜃̈2 = 𝑇12𝑎 − 𝑐12𝑑𝜃̇2 (2.71) 

Laplace transform can be applied on decoupled gimbal equations of motion because 

they are linear second order nonhomogeneous differential equations. For the zero 

initial conditions, decoupled outer gimbal plant dynamics can be expressed as 

follows where 𝐺𝑜𝑢𝑡𝑒𝑟𝑃 represents transfer function between Θ1(𝑠) and 𝑇01𝑎, 𝐺𝑜𝑢𝑡𝑒𝑟𝑃 

represents transfer function between Θ̇1(𝑠) and 𝑇01𝑎(𝑠). 

 Θ1(𝑠)(𝐽𝑜𝑢𝑡𝑒𝑟𝑠
2 + 𝑐01𝑑𝑠) = 𝑇01𝑎 (2.72) 

 𝐺𝑜𝑢𝑡𝑒𝑟𝑃 =
Θ1(𝑠)

𝑇01𝑎(𝑠)
=

1

𝑠(𝐽𝑜𝑢𝑡𝑒𝑟𝑠 + 𝑐01𝑑)
 (2.73) 

 𝐺𝑜𝑢𝑡𝑒𝑟𝑅 =
Θ̇1(𝑠)

𝑇01𝑎(𝑠)
=

𝑠Θ1(𝑠)

𝑇01𝑎(𝑠)
=

1

𝐽𝑜𝑢𝑡𝑒𝑟𝑠 + 𝑐01𝑑
 (2.74) 

Similarly, decoupled inner gimbal plant dynamics can be expressed as follows where 

𝐺𝑖𝑛𝑛𝑒𝑟𝑃 represents transfer function between Θ2(𝑠) and 𝑇12𝑎, 𝐺𝑖𝑛𝑛𝑒𝑟𝑃 represents 

transfer function between Θ̇2(𝑠) and 𝑇12𝑎(𝑠). 
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 𝐽𝑖𝑛𝑛𝑒𝑟𝜃̈2 = 𝑇12𝑎 − 𝑐12𝑑𝜃̇2 (2.75) 

 Θ2(𝑠)(𝐽𝑖𝑛𝑛𝑒𝑟𝑠
2 + 𝑐12𝑑𝑠) = 𝑇12𝑎 (2.76) 

 𝐺𝑖𝑛𝑛𝑒𝑟𝑃 =
Θ2(𝑠)

𝑇12𝑎(𝑠)
=

1

𝑠(𝐽𝑖𝑛𝑛𝑒𝑟𝑠 + 𝑐12𝑑)
 (2.77) 

 𝐺𝑖𝑛𝑛𝑒𝑟𝑅 =
Θ̇2(𝑠)

𝑇12𝑎(𝑠)
=

𝑠Θ2(𝑠)

𝑇12𝑎(𝑠)
=

1

𝐽𝑖𝑛𝑛𝑒𝑟𝑠 + 𝑐12𝑑
 (2.78) 

 

Figure 12: Excitation torques for model verification 

The validity of the mathematical models, which are coupled and decoupled models 

tested by applying time domain chirp signal shown in Figure 12 That signal was 

applied as input torques (𝑇01𝑎 and 𝑇12𝑎) on both the mathematical models and real 

gimbal system simultaneously and responses were given in Figure 13 and Figure 14. 

As observed in the figures, both mathematical models contain differences. However, 

the decoupled gimbal model behaves more inconsistently than the real system. This 

difference is mainly due to the simultaneous application of torque to both gimbal 
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axes, which arises the effect of the cross-coupling behavior of the gimbal axis; 

therefore, the coupled model represents real system more accurately. However, 

although the decoupled model is obtained with a very simple approach, it gives very 

close results. This was actually expected because the gimbal system in this study was 

specifically designed to converge to decouple assumptions. In the mechanical design 

phase, the static and dynamic distribution of the masses were tried to be balanced. 

Therefore, the decoupled gimbal model seems useful for using the early stages of the 

design and for quick and rough calculations. In the following sections, the cascade 

PI control system was developed and tested for comparison purposes by using the 

decoupled model. However, since this thesis focuses on the more general 3D coupled 

mathematical model approach, the coupled gimbal model was taken as a basis in the 

following sections. 

 

Figure 13: 𝜃1 response of the mathematical models and real system to chirp signal 
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Figure 14: 𝜃2 response of the mathematical models and real system to chirp signal 

2.5 Linearization 

In this section, the 3D coupled model was linearized. The decoupled gimbal model 

has very simple equations of motion, as seen in the previous section. In addition, 

since the thesis proceeded by considering a more general mathematical model, the 

3D coupled gimbal model was taken as a basis in the following sections. 

2.5.1 Equilibrium point 

The nonlinear equation of motion should be linearized around an equilibrium point 

to express as linear time-invariant system. Variables defining a system’s state do not 

change over time around an equilibrium point. That is, state derivative with respect 

to time is zero.  
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States, 𝑥, of the gimbal system are rotation angles and velocities of the body 1 and 

2. Inputs, 𝑢, are dc motor torques for each rotation degree. Therefore, they can be 

expressed as, 

 𝑥 = [

𝑥1

𝑥2

𝑥3

𝑥4

] =

[
 
 
 
𝜃1

𝜃̇1

𝜃2

𝜃̇2]
 
 
 

 (2.79) 

 𝑢 = [
𝑇01𝑎

𝑇12𝑎
] (2.80) 

State changes can be expressed as, 

 𝑥̇ = [

𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4

] =

[
 
 
 
 
𝜃̇1

𝜃̈1

𝜃̇2

𝜃̈2]
 
 
 
 

 (2.81) 

It can be related to the equation of motion found in previous section. 

[

0 1 0 0
0 𝐶𝑂𝑁𝑆31 0 𝐶𝑂𝑁𝑆32

0 0 0 1
0 𝐶𝑂𝑁𝑆41 0 𝐶𝑂𝑁𝑆42

] 𝑥̇ = −

[
 
 
 

𝜃̇1

𝐶𝑂𝑁𝑆33

𝜃̇2

𝐶𝑂𝑁𝑆43]
 
 
 

⇒ 

 𝑥̇ = −𝑓(𝑥, 𝑢) (2.82) 

𝑤ℎ𝑒𝑟𝑒, 𝑓(𝑥, 𝑢) = −[

0 1 0 0
0 𝐶𝑂𝑁𝑆31 0 𝐶𝑂𝑁𝑆32

0 0 0 1
0 𝐶𝑂𝑁𝑆41 0 𝐶𝑂𝑁𝑆42

]

−1

[
 
 
 

𝜃̇1

𝐶𝑂𝑁𝑆33

𝜃̇2

𝐶𝑂𝑁𝑆43]
 
 
 

 

The manipulated nonlinear equation of motion is 4𝑥1 matrix and it is dependent on 

states and inputs of the gimbal system. 

𝑓(𝑥, 𝑢) can be partitioned as follows. 
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   𝑓(𝑥, 𝑢) = [

𝑓1
𝑓2
𝑓3
𝑓4

] (2.83) 

The state changes are zero at equilibrium point; therefore, 

 𝑥̇ = 𝑓(𝑥𝑒 , 𝑢𝑒) = 0 (2.84) 

An equilibrium point that satisfies the above condition is chosen as: 

 𝑥𝑒 = [

0
0
0
0

] (2.85) 

𝑤ℎ𝑒𝑟𝑒, [𝑁2]|𝑥𝑒
= 0 ⇒ 𝑓(𝑥𝑒 , 𝑢𝑒)|𝑥𝑒

= 0 

It is observed that equilibrium points are independent of angular position variables 

because of the fact that the gimbal system is statically balanced. 

2.5.2 State space representation 

Mathematical model of a linear time invariant system can be denoted as state space 

representation, according to [31].  

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (2.86) 

 𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (2.87) 

where 𝑥 and 𝑢 are state vector and input vector respectively as defined above, 𝑦 is 

output vector, 𝐴 is state matrix, 𝐵 is input matrix, 𝐶is output matrix and 𝐷 is direct 

transmission (disturbance output) matrix. If the system has 𝑛 number of state 

variables, 𝑚 number of control input variable, 𝑞 number of output variables, 

dimensions of the matrices are then: 

• dim(𝐴) = ℝ𝑛𝑥𝑛 

• dim(𝐵) = ℝ𝑛𝑥𝑚 
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• dim(𝐶) = ℝ𝑞𝑥𝑛 

• dim(𝐷) = ℝ𝑞𝑥𝑚 

The gimbal state space representation variables are as follows. 

• 𝑛 = 4 ⇒ 𝑥(𝑡) is a 4𝑥1 vector 

• 𝑚 = 2 ⇒ u(𝑡) is a 2𝑥1 vector 

• 𝑞 = 4 ⇒ 𝑦(𝑡) is 4𝑥1 vector 

• 𝐴 is a 4𝑥4 matrix 

• 𝐵 is a 4𝑥2 matrix 

• 𝐶 is a 4𝑥4 matrix 

• 𝐷 is a 4𝑥2 matrix 

The nonlinear equation of motion that describes the state changes is to be used to 

obtain linearized state space matrices around the equilibrium point for the gimbal 

system. 

 𝐴 =
𝜕𝑓

𝜕𝑥
|
𝑥𝑒,𝑢𝑒

=

[
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑥3

𝜕𝑓1
𝜕𝑥4

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

𝜕𝑓2
𝜕𝑥4

𝜕𝑓3
𝜕𝑥1

𝜕𝑓3
𝜕𝑥2

𝜕𝑓3
𝜕𝑥3

𝜕𝑓3
𝜕𝑥4

𝜕𝑓4
𝜕𝑥1

𝜕𝑓4
𝜕𝑥2

𝜕𝑓4
𝜕𝑥3

𝜕𝑓4
𝜕𝑥4]

 
 
 
 
 
 
 
 

|

|

|

𝑥𝑒,𝑢𝑒

 (2.88) 

 𝐵 =
𝜕𝑓

𝜕𝑢
|
𝑥𝑒,𝑢𝑒

=

[
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

𝜕𝑓3
𝜕𝑢1

𝜕𝑓3
𝜕𝑢2

𝜕𝑓4
𝜕𝑢1

𝜕𝑓4
𝜕𝑢2]

 
 
 
 
 
 
 
 

|

|

|

𝑥𝑒,𝑢𝑒

 (2.89) 
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Controlled output of the gimbal system includes all the state variables; thus, output 

matrix is: 

 𝐶 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (2.90) 

The direct transmission matrix is zero matrix; that is, 

 𝐷 = [

0 0
0 0
0 0
0 0

] (2.91) 

State space matrices are found as follows by computing the partial differentiations 

at equilibrium points. 

 𝐴 = [

0 1 0 0
0 −0.0636 0 0.0022
0 0 0 1
0 0.0022 0 −0.1745

] (2.92) 

 𝐵 = [

0 0
6.35 −0.22
0 0

−0.22 17.45

] (2.93) 

2.5.3 Frequency Response of the Linearized Gimbal System 

Frequency responses of the linearized gimbal system can be represented with bode 

plots. The following figures include frequency responses for all combined input-

output pairs. Those can also be related to open loop position/velocity dynamics or 

plant dynamics. As observed in Figure 15 and Figure 17, position variables cannot 

be controlled by open loop control method due to phase and gain margins. These 

imply that they can only be controlled for very low frequencies; however desired 

settling time requirement needs to have larger bandwidth, as seen in SYSTEM 
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IDENTIFICATION. Besides, it is known that control systems should have phase and 

gain margins for robustness against disturbance and model uncertainties. 

Bode plots of the linearized system were used in SYSTEM IDENTIFICATION for 

comparison with the real system. The differences can be observed Figure 23. 

 

Figure 15: Bode plot from 𝑇01𝑎 to 𝜃1 and 𝜃̇1 
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Figure 16: Bode plot from 𝑇12𝑎 to 𝜃1 and 𝜃̇1 

 

Figure 17: Bode plot from 𝑇01𝑎 to 𝜃2 and 𝜃̇2 
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Figure 18: Bode plot from 𝑇12𝑎 to 𝜃2 and 𝜃̇2 
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CHAPTER 3  

3 SYSTEM IDENTIFICATION 

It is known that the gimbal system has several nonlinearities, most of which are not 

suitable for analytically expressing or are quite complicated to solve. It is clearly 

observed in the nonlinear equation of motion, (2.67), obtained in the 

MATHEMATICAL MODELLING – even the gimbal system modeled by ignoring 

most nonlinearities such as coulomb friction, structural flexibilities, sensor, actuator 

nonlinearities, and so on. Thus, the dynamics of the linearized gimbal system should 

be compared and validated by means of frequency response function (FRF) 

identification tests.  

There are various FRF identification test methods according to the types of the 

excitation signal type, such as swept sine, multi-sine, square sweep, and pseudo-

random sequences. Swept sine is one of the most straightforward and used FRF 

identification method. As the name suggests, it is a sine function where the frequency 

of the excitation signal increases or decreases between interested frequencies. The 

swept sine identification method is used for the gimbal system with the following 

excitation signal. 

 𝑢(𝑡) = 𝐴𝑠𝑖𝑛(𝜔(𝑡)𝑡) (3.1) 

where 𝐴 is the amplitude of the excitation signal in 𝑁𝑚, 𝜔(𝑡) is variable frequency 

in 𝐻𝑧. The signal is designed with the following properties: 

• 𝐴 = 0.5 𝑁𝑚 and 𝐴 = 0.3 𝑁𝑚 for the DC motor corresponds to azimuth and 

elevation axis. 

• Excitation frequency ranges are 1 < 𝜔(𝑡) < 100 in 𝐻𝑧 and distributed 

linearly. 

• Sampling frequency of the system is 1 𝑘𝐻𝑧. 
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The gimbal system is excited with the signal represented in (3.1), and the response 

is saved with the corresponding time information. Two independent tests are carried 

out for each input channel, and two FRFs are identified for each test; therefore, four 

FRFs are identified in total. Those are represented from Figure 19 to Figure 22.  

 

Figure 19: Bode plot of the measured real system between 𝜃1 vs 𝑇01 
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Figure 20: Bode plot of the measured real system between 𝜃1 vs 𝑇12 

 

Figure 21: Bode plot of the measured real system between 𝜃2 vs 𝑇01 



 

 

52 

 

Figure 22: Bode plot of the measured real system between 𝜃2 vs 𝑇12 

Figure 20 and Figure 21 show that cross-coupling between the gimbal axes is 

minimal. Although amplitudes change drastically around the resonance frequencies, 

amplitudes of the cross FRFs almost 30 𝑑𝐵 to 40𝑑𝐵 lower than the direct FRFs in 

the low and mid frequency regions where the system behaves like an ideal inertia 

system. The reason is that the gimbal system is designed to be statically and almost 

dynamically balanced. When the inertia matrices expressed in (2.43) and (2.44) are 

examined, it can be realized that elements of the diagonal and non-diagonal are quite 

different. Normalizing inertia matrices by dividing the largest inertia element and 

multiplying by 100 to express as percentage show that the largest non-diagonal 

inertia matrix is 8.21% and 3.57% for bodies 1 and 2, respectively. 

 
𝐽1
(1)

max(𝐽1
(1)

)
100 = [

100 6.24 −6.04
6.24 63.85 −8.21

−6.04 −8.21 56.53
] 𝑘𝑔𝑚2 (3.2) 
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𝐽2
(2)

max(𝐽2
(2)

)
100 = [

85.32 −3.57 −1.14
3.57 100 −2.48

−1.14 −2.48 70.97
] 𝑘𝑔𝑚2 (3.3) 

In Figure 19 and Figure 22, bode plots of the direct FRFs show that velocity open 

loops of the control axes behave like a rigid body, ideal inertia, with 

−20 𝑑𝑏/𝑑𝑒𝑐𝑎𝑑𝑒 slope at frequencies lower than structural flexibilities dominate. 

However, mechanical resonances emerge around frequencies around 45 𝐻𝑧 and 

30 𝐻𝑧. As observed in Figure 23, the linearized model starts not representing the real 

system after those frequencies. In addition, one of the highlighted points of the bode 

plot comparison Figure 23, is that phase information differs between velocity open 

loop responses, even in the low and mid frequency region. That indicates that the 

real system is non-minimum phase system and has delay most likely. 

This thesis proposes the model reference adaptive control method to deal with 

discrepancies. In the controller design chapter, first, the classic full-state feedback 

control is to be designed for comparison and to be used for reference model selection 

purposes. Then, model reference adaptive control method is to be developed by using 

full-state feedback controller in the first section of the CONTROL DESIGN Chapter 

as the nominal controller. The effect of the model reference controller on the 

differences between real and linearized system dynamics is to be evaluated in the 

EXPERIMENTS AND RESULTS Chapter. 
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Figure 23: Bode plot of the velocity open loops. Blue and red lines indicate 

measured real system, linearized system, respectively 
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CHAPTER 4  

4 CONTROL DESIGN 

In this chapter, three different control methods were used to develop a control system 

for the gimbal system: full-state feedback control (FSFC), model reference adaptive 

control (MRAC) and cascade PI control. FSFC and MRAC were developed by 

considering the linearized coupled gimbal model, while the cascade PI control 

method uses the linear decoupled gimbal model. After those were designed 

according to the requirements, experiments and tests were made by applying them 

to the real gimbal system, and comparison were made accordingly in the following 

chapters. 

4.1 Full-State Feedback Control 

The full-state feedback control method is a state-space design method, and it 

provides a choice of placing the closed-loop poles of the system at desired locations. 

It is similar to root-locus method where it, however, places only the dominant closed-

loop poles. The full-state feedback allows to place all the closed-poles of the system, 

if the linearized system is fully controllable and state observable. However, placing 

the poles of the system far away from the imaginary axis may result in saturation of 

the actuation due to high gain coefficients. Therefore, the location of the poles should 

be decided according to system requirements.  

The state space representation of the gimbal system is expressed in the 

MATHEMATICAL MODELLING Chapter given by (2.90)-(2.93). 
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 𝐴 = [

0 1 0 0
0 −0.0636 0 0.0022
0 0 0 1
0 0.0022 0 −0.1745

] (4.1) 

 𝐵 = [

0 0
6.35 −0.22
0 0

−0.22 17.45

] (4.2) 

 𝐶 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (4.3) 

 𝐷 = [

0 0
0 0
0 0
0 0

] (4.4) 

Controllability of the system should be checked before using the control method. 

The controllability matrix is given by 

𝑀 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵] ⇒ 

 𝑀 = [

0 0 6.356 −0.222 −0.405 0.053 0.026 −0.010
6.356 −0.222 −0.405 0.053 0.026 −0.010 −0.002 0.002

0 0 −0.222 17.454 0.053 −3.047 −0.010 0.532
−0.222 17.454 0.053 −3.057 −0.010 0.532 0.002 −0.093

] (4.5) 

The rank of the controllability matrix is found as 

 𝑟𝑎𝑛𝑘(𝑀) = 4 (4.6) 

Therefore, the linearized gimbal system is fully state controllable. 

The characteristic equation of the gimbal system is 

|𝑠𝐼 − 𝐴| = 𝑠4 + 0.238𝑠3 + 0.011𝑠2 ⇒ 

 |𝑠𝐼 − 𝐴| = 𝑠2(𝑠2 + 0.238𝑠1 + 0.011)  (4.7) 

Therefore, coefficients of the characteristic equation are 
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𝑎1 = 0.238
𝑎2 = 0.011

𝑎3 = 0
𝑎4 = 0

 (4.8) 

It is observed that there are two free s terms in characteristic equation of the gimbal 

system; thus, the open loop system behaves as an integrator. Each free s terms 

correspond to azimuth and elevation control axis. That is because of the angular 

velocity states of the linearized gimbal system is independent of position variables. 

 

Figure 24: Structure of the control system for full-state feedback control method 

The gimbal system needs to be stabilized against disturbances and track the reference 

signal. Thus, the control structure of the system is designed as shown in Figure 24. 

The reason for the selected control structure is that the system has free s terms; 

therefore, it behaves as an integrator for the position open loop. If the plant has no 

integrator, it was needed to convert reference signal path as closed loop by 

subtracting system output from reference input and inserting an integrator in the 

reference signal. 

All states of the gimbal can be measurable, so they are available to use in 𝐾𝑥 state 

feedback gain matrix. Besides, the reference input is to be followed via 𝐾𝑟 reference 

feedforward gain matrix. Thus, the control signal applied to the gimbal system is 

chosen to be 

 𝑢(𝑡) = −𝐾𝑥𝑥(𝑡) + 𝐾𝑟𝑟(𝑡) (4.9) 
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where 𝑥(𝑡) ∈ ℝ4𝑥1 is state vector, 𝑟(𝑡) ∈ ℝ4𝑥1 is reference input vector,  𝐾𝑥 ∈ ℝ2𝑥4 

state feedback gain matrix, 𝐾𝑟 ∈ ℝ2𝑥4 reference feedforward gain matrix. 

In order for the position closed loop system to have 0.5 seconds settling time, 

dominant closed loop poles should be as follows. 

 𝑡𝑠 =
4

𝑅𝑒(𝑠)
= 0.5 ⇒ 𝑅𝑒(𝑠) = 8 (4.10) 

(4.10) indicates that real part of the closed loop poles should be 8, and it is selected 

as 10 with safety factor. Imaginary part of the poles is selected as 0 considering the 

unit damping ratio 𝜁 = 1 so that the system has no oscillatory response. Therefore, 

two desired closed loop poles decided as following.  

 𝑝1,2 = 10 (4.11) 

Two other poles belong to velocity loop of the control system, they should be far 

away from the dominant poles 𝛼1,2 . They are selected as follows. 

 𝑝3,4 = 40 (4.12) 

Dominant closed loops also describe bandwidth for −3 𝑑𝐵 criteria of the closed loop 

of the control system, 

 
𝛼1,2

2𝜋
= 1.59 𝐻𝑧 (4.13) 

Characteristic equation of the desired closed loop can be computed as follows. 

(𝑠 − 𝑝1)(𝑠 − 𝑝2)(𝑠 − 𝑝3)(𝑠 − 𝑝4) = 𝑠4 − 100𝑠3 + 3300𝑠2 − 40000𝑠 + 160000 

Coefficients of the desired closed loop is, then, 

 

𝛼1 = −100
𝛼2 = 3300

𝛼3 = −40000
𝛼4 = 160000

 (4.14) 

According to [31], the state feedback gain matrix can be calculated as, 
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𝐾𝑥 = [𝛼4 − 𝑎4 𝛼3 − 𝑎3 𝛼2 − 𝑎2 𝛼1 − 𝑎1](𝑀𝑊)−1 

where 𝑀 is controllability matrix computed in (4.5), and 𝑊 is given by 

𝑊 = [

𝑎3 𝑎2 𝑎1 1
𝑎2 𝑎1 1 0
𝑎1 1 0 0
1 0 0 0

] 

 𝐾𝑥 = [
62.96 7.86 0.80 0.10
0.80 0.1 22.93 2.86

] (4.15) 

Full-state feedback controller method manipulates the open loop control system, 

forms system matrix 𝐴𝑐𝑙 and the closed loop control system as followings. 

 𝐴𝑐𝑙 = 𝐴 − 𝐵𝐾𝑥 (4.16) 

𝐺𝑐𝑙(𝑠) = 𝐶(𝑠𝐼 − 𝐴𝑐𝑙)
−1𝐵 + 𝐷 ⇒ 

 𝐺𝑐𝑙(𝑠) = 𝐶(𝑠𝐼 − 𝐴 + 𝐵𝐾𝑥)
−1𝐵 (4.17) 

Step responses of 𝜃1 and 𝜃2 for the unit step input to 𝑇01𝑎, 𝑇12𝑎, respectively, is 

shown in Figure 25 and Figure 26. As observed, 𝐾𝑟 should be designed such that 

steady state value of the step responses converge to unit amplitude. 

 

Figure 25: Step response of 𝜃1without 𝐾𝑟 adaptation 
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Figure 26: Step response of 𝜃2without 𝐾𝑟 adaptation 

Reference feedforward gain matrix 𝐾𝑟 should be equal to DC gain of the closed loop 

control system; therefore, the system can track the reference input with zero steady 

state error. 𝐾𝑟 is calculated by the following relation. 

 𝐺𝑐𝑙(𝑠) =
𝑌

𝑅𝐾𝑟
= 𝐶(𝑠𝐼 − 𝐴 + 𝐵𝐾𝑥)

−1𝐵 (4.18) 

𝐺(0) = −𝐶(𝐴 − 𝐵𝐾)−1𝐵 ⇒ 

 𝐾𝑟 = 𝐺(0)−1 = −(𝐶(𝐴 − 𝐵𝐾)−1𝐵)−1 (4.19) 

Note that, pseudo inverse method should be used while calculating (4.19); since 𝐾𝑟 

is not square matrix. 𝐾𝑟 is calculated as, 

 𝐾𝑟 = [
62.96 0 0.80 0
0.80 0 22.93 0

] (4.20) 

Similarity of the 𝐾𝑥 and 𝐾𝑟 is predicted for the systems with free integrator. 

Reference gain matrix has the same coefficient that corresponds to position variable 

gain with the state feedback gain matrix. 
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Step responses with designed 𝐾𝑟 gain is shown in Figure 26 and Figure 27. 

 

Figure 27: Step response of 𝜃1with 𝐾𝑟 adaptation 

 

Figure 28: Step response of 𝜃2with 𝐾𝑟 adaptation 
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4.2 Model Reference Adaptive Control 

Model reference adaptive control (MRAC) is an adaptive control method developed 

in the 1950s. The purpose of the MRAC is to adapt the control structure of the system 

so that the plant to be controlled behaves as the designed reference model. The 

MRAC adaptation law is driven by an error between the reference model output and 

the plant output. The method uses two control inputs; one of which is adaptive 

control input calculated by adaptation law; the latter is nominal control input of any 

kind. It combines those control inputs. MRAC structure can be divided into two 

parts. One of them is reference model that is design object and captures an ideal 

closed loop system performance. The real (nominal) system, however, does not 

behave like reference model only by using nominal controller in the presence of 

system uncertainties and disturbances. The other part, adaptive part (adjustment 

mechanism), applies a control signal to overcome those uncertainties and 

disturbances. The adaptive part calculates time-varying and nonlinear control input 

with changing parameters to nominal system. The adaptive part also composes two 

parts: the weight update law and the uncertainty parametrization which defines the 

uncertainties and disturbances as a multiplication of weights and basis functions. The 

weight update law forms the update law, relation, for the weights of the basis 

functions of the uncertainty parametrization. There are different techniques to define 

variables of the uncertainty parametrization. They can be defined as known state 

variables which is the most general method, or another frequently used neural 

network method. Radial basis functions are the most common neural network 

method used to define variable functions. Also, there are various methods for update 

law. Most commons are Lyapunov stability property and M.I.T. rules [32][33][34]. 

The structure of the MRAC method is shown in Figure 29. 
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Figure 29: Structure of the control system for MRAC method 

Nonlinear uncertain dynamical system can be represented with the following. 

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵[𝑢(𝑡) + ∆(𝑥(𝑡))] (4.21) 

where 𝑥(𝑡) ∈ ℝ𝑛 and 𝑢(𝑡) ∈ ℝ𝑚 are state vector and input vector respectively, 𝐴 ∈

ℝ𝑛𝑥𝑛 is state matrix, 𝐵 ∈ ℝ𝑛𝑥𝑚 is input matrix, ∆:ℝ𝑛 → ℝ𝑚 is system uncertainty 

and disturbance. The form of the uncertainty and disturbance of the system assumed 

as follows. 

 ∆(𝑥(𝑡)) = 𝑊𝛽(𝑥(𝑡)) (4.22) 

where 𝑊 ∈ ℝ𝑚𝑥𝑛 is an ideal constant weighting matrix and 𝛽 ∈ ℝ𝑛 is a basis 

function symbolizes the parametrization of the uncertainty and disturbances and is 

done as functions of the state of the system in this study. 

 𝛽(𝑥(𝑡)) = 𝑥(𝑡) =

[
 
 
 
𝜃1

𝜃̇1

𝜃2

𝜃̇2]
 
 
 

 (4.23) 

𝑟𝑡(𝑡) 

𝑥𝑚(𝑡) 

𝑥(𝑡) 

𝑊෡ (𝑡) 

𝑢𝑎𝑑(𝑡) 

𝑢(𝑡) 

Reference model 

Real plant 

Update law 
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The control input 𝑢(𝑡) is combined by adaptive control and nominal control inputs 

as following. 

 𝑢(𝑡) = 𝑢𝑛(𝑡) − 𝑢𝑎𝑑(𝑡) (4.24) 

where nominal control law 𝑢𝑛(𝑡) is given by 

 𝑢𝑛(𝑡) = −𝐾𝑥𝑥(𝑡) + 𝐾𝑟𝑟(𝑡) (4.25) 

where 𝐾𝑥 ∈ ℝ𝑚𝑥𝑛 is state feedback gain, 𝐾𝑟 ∈ ℝ𝑚𝑥𝑛 is reference feedforward gain, 

and 𝑟(𝑡) ∈ ℝ𝑛 is reference input. Full-state feedback controller is used as a nominal 

controller as stated above. State equation of the nominal model becomes the 

following form with applied control input. 

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵 (−𝐾𝑥𝑥(𝑡) + 𝐾𝑟𝑟(𝑡) − 𝑢𝑎𝑑(𝑡) + ∆(𝑥(𝑡))) ⇒ (4.26) 

 𝑥̇(𝑡) = (𝐴 − 𝐵𝐾𝑥)𝑥(𝑡) + 𝐵𝐾𝑟𝑟(𝑡) + 𝐵 (−𝑢𝑎𝑑(𝑡) + ∆(𝑥(𝑡))) (4.27) 

The reference model of MRAC structure can be represented as follows. 

 𝑥̇𝑚(𝑡) = 𝐴𝑚𝑥𝑚(𝑡) + 𝐵𝑚𝑟(𝑡) (4.28) 

The reference model has the same dimensions with nominal model; where 𝑥𝑚(𝑡) ∈

ℝ𝑛 is reference state vector, 𝐴𝑚 ∈ ℝ𝑛𝑥𝑛, 𝐵𝑚 ∈ ℝ𝑛𝑥𝑚.  

The purpose of the MRAC control method is to equate nominal and reference model 

responses. Therefore, the full-state feedback controller can be designed such that 

closed loop response of the nominal controller results in the reference model 

response in the absence of uncertainties and disturbances. Those are to be 

compensated with adaptive control input. Thus, nominal controller gains are 

designed to satisfy the following. 

 𝐴𝑚 = 𝐴 − 𝐵𝐾𝑥 (4.29) 

 𝐵𝑚 = 𝐵𝐾𝑟 (4.30) 

Reference model can be expressed as, 
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 𝑥̇𝑚(𝑡) = (𝐴 − 𝐵𝐾𝑥)𝑥𝑚(𝑡) + 𝐵𝐾𝑟𝑟(𝑡) (4.31) 

Adaptive control input should have same form with the assumed uncertainty and 

disturbance of the system to cancel those out. Therefore, the structure of (4.22) 

represents adaptive control input as well. However, the ideal constant weightings 𝑊 

is not known by the controller; therefore, an estimate of weightings is used in the 

adaptive control input 𝑢𝑎𝑑(𝑡) as following. 

 𝑢𝑎𝑑(𝑡) = 𝑊෡ (𝑡)𝛽(𝑥(𝑡))
𝑇

 (4.32) 

where 𝑊෡ (𝑡) is an estimate of 𝑊 with the same dimension satisfying the update law. 

It is updated, recalculated in every time step by adaptive controller. The update law 

for the MRAC is given as: 

 𝑊෡̇ (𝑡) = Γβ(t)e(t)T𝑃𝐵 (4.33) 

where Γ ∈ ℝ𝑛𝑥𝑛 is a positive-definite learning rate matrix and it increases the 

sensitivity of the update law to error between referenced and nominal systems, P ∈

ℝ𝑛𝑥𝑛 is positive-definite solution of the Lyapunov equation which is 

 𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚 + 𝑅 = 0 (4.34) 

where 𝑅 ∈ ℝ𝑛𝑥𝑛 is a positive-definite design selection matrix. Any positive-definite 

matrix can be selected to manipulate MRAC update law. The error function can be 

stated as, 

 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑚(𝑡) (4.35) 

where 𝑒(𝑡) ∈ ℝ𝑛. As stated, the aim of the MRAC method is that the error signal 

converges to zero; following relation express the statement mathematically. The 

MRAC method is said to be successful if the zero-error condition satisfies. On the 

contrary, increasing error signal drives adaptation mechanism to change weightings 

faster. 

 lim
𝑡→∞

𝑒(𝑡) = 0 (4.36) 
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Another critical point for the MRAC method, as in all control problems, is that 

stability condition of generated control input. The Lyapunov stability analysis 

handles the stability condition; however, it is out of scope of this study.  

Full-state feedback controller designed in the first section is to be used as nominal 

controller of the reference model of MRAC structure. Besides, nominal model is the 

real physical system. Thus, MRAC controller takes an action for parameter 

uncertainties and flexibility of the mechanical structure which are uncertainties and 

disturbances of the MRAC method in this study.  

Design parameters of the MRAC method are selected mostly experimentally. An 

identity matrix of 𝑅 ∈ ℝ4𝑥4 is selected for solution of Lyapunov equation (4.34).  

 𝑅 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (4.37) 

Coefficients of the learning rate Γ is selected as greater as that stability of the system 

preserved. It is observed that a larger learning rate might result in excitation of the 

high frequency signals for the closed loop system and increase high frequency error. 

Therefore, it is selected as follows. 

 Γ = [

5000 0 0 0
0 500 0 0
0 0 1000 0
0 0 0 200

] (4.38) 

4.3 Cascade PI Control 

The PID control method is widely used in single-input single-output (SISO) systems 

in industry due to its simplicity and ability to provide satisfactory performance. The 

PID controller employs traditional control approaches, enabling control design 

directly on the system in the field. Tuning methods are used to achieve desired 

performance. However, as mentioned in the introduction chapter, tuning methods are 
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manual and can weaken the automation process. Therefore, this thesis focuses on an 

adaptive control method, the model reference adaptive control (MRAC) method. 

Nevertheless, in order to make a comparison, a cascaded PI control method was also 

developed and tested in this study as it is frequently used in industry. 

The PID controller comprises three components: proportional (P), integral (I), and 

derivative (D) of the errors. The derivative term is typically avoided due to its 

tendency to amplify high-frequency noise. In multi-variable control systems, 

cascaded control loops are preferred due to their disturbance rejection capability. In 

this study, as shown in the figure, the PI control method was used to control the 

angular velocity variable in the inner control loop (rate loop) and the P control 

method was used to control the angular position variable in the outer control loop 

(position loop). The reason for using the PI control method in the inner loop is to 

eliminate disturbance effects on the system in the speed control loop before they 

appear in the position variable. The integral term (I) in the inner loop is used to 

eliminate steady-state error. The proportional term (P) is adjusted to provide system 

stability and meet transient requirements. Since the requirements for both the inner 

and outer gimbal control axes are the same, the control system was designed for each 

control axis using similar steps. 

 

Figure 30: Block diagram of cascaded P and PI control system of the outer gimbal 

Θ2(𝑠) 

Θ̇2(𝑠) 

𝑅2𝑃(𝑠) 𝐸2𝑃(𝑠) 𝑅2𝑃(𝑠) 𝐸2𝑅(𝑠) 𝑇12𝑎(𝑠) 
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Figure 31: Block diagram of cascaded P and PI control system of the inner gimbal 

In the block diagrams Figure 30 and Figure 31, transfer functions and signals denote 

as follows. 

• 𝐶𝑜𝑢𝑡𝑒𝑟𝑃 is position controller of the outer gimbal 

• 𝐶𝑜𝑢𝑡𝑒𝑟𝑅 is rate controller of the outer gimbal 

• 𝑅1𝑃(𝑠) is reference position of the outer gimbal 

• 𝑅1𝑅(𝑠) is reference velocity of the outer gimbal 

• 𝐸1𝑃(𝑠) is position error of the outer gimbal 

• 𝐸1𝑅(𝑠) is velocity error of the outer gimbal 

• 𝐶𝑖𝑛𝑛𝑒𝑟𝑃 is position controller of the inner gimbal 

• 𝐶𝑖𝑛𝑛𝑒𝑟𝑅 is rate controller of the inner gimbal 

• 𝑅2𝑃(𝑠) is reference position of the inner gimbal 

• 𝑅2𝑅(𝑠) is reference velocity of the inner gimbal 

• 𝐸2𝑃(𝑠) is position error of the inner gimbal 

• 𝐸2𝑅(𝑠) is velocity error of the inner gimbal 

For both gimbal axis, the continuous transfer function of the P type position 

controller and the PI type velocity controller are in the form of,  

 𝐶𝑃 = 𝐾𝑃 (4.39) 

Θ1(𝑠) 

Θ̇1(𝑠) 

𝑅1𝑃(𝑠) 𝐸1𝑃(𝑠) 𝑅1𝑃(𝑠) 𝐸1𝑅(𝑠) 𝑇01𝑎(𝑠) 
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 𝐶𝑅 = 𝐾𝑃 +
𝐾𝑖

𝑠
 (4.40) 

where 𝐾𝑝 and 𝐾𝑖 represents the proportional and derivative term of the controller 

respectively. PI controller can also be expressed in the form of real zero as follows. 

 𝐶𝑅 = 𝐾𝑃

(𝑠 + 𝑧)

𝑠
 (4.41) 

where the zero 𝑧 =
𝐾𝑖

𝐾𝑝
. 

As seen in the PI controller expression, the controller adds an integrator which is the 

pole at the origin and a real zero at the point −𝑧 = −
𝐾𝑖

𝐾𝑝
 to the control system. If the 

zero of the PI controller is quite small and very close to the integrator, the controller 

does not change the shape of the root locus. Yet, the steady state error drastically 

improved because of the increase of the system type by one with the integrator. The 

zero of the PI controller was set as 𝑧 = 0.1. The proportional gain 𝐾𝑝 adjusted to 

meet the requirements of each gimbal control axis via root locus approach. After the 

rate loop was designed, the proportional gain of the position controller was adjusted 

according to the transient response requirements. In the following, the controller 

design procedure was carried out for both outer and inner gimbals. 

The controller requirements are such that the dominant poles are on negative real 

axis and selected as −10 and −40 specified in (4.11) and (4.12), for position and 

rate control loops, respectively.  

4.3.1 Outer gimbal velocity loop 

The rate plant for the outer gimbal, 𝐺𝑜𝑢𝑡𝑒𝑟𝑅, has the transfer function given in the 

(2.74), and its poles are located at: 

 𝑝 = −
𝑐01𝑑

𝐽𝑜𝑢𝑡𝑒𝑟
= −0.654 (4.42) 
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The root locus of the 𝐺𝑜𝑢𝑡𝑒𝑟𝑅 is shown in the Figure 32. 

 

Figure 32: Root locus of the rate plant for the outer gimbal 

As mentioned, addition of the zero and the integrator of the PI controller does not 

change the shape of the root locus while it provides zero steady state error. After 

applying PI controller, the root locus of the rate loop became as shown in the Figure 

33 and Figure 34. 

Zoomed region of the zero location of the PI controller shows that one of the closed 

loop poles is almost identical with to the zero; therefore, they cancelled each outer 

and the resultant shape of the root locus is same. 
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Figure 33: Root locus of the outer gimbal rate control loop with PI controller 

 

Figure 34: Root locus of the outer gimbal rate control loop with PI controller 

zoomed in 
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Adjusting proportional gain of the PI controller as 𝐾𝑝 = 6 locates the pole of the rate 

loop at almost the desired location 𝑝 = −39.8 ≈ −40. Therefore, rate loop PI 

controller and the closed loop transfer function of the outer gimbal are as follows. 

 𝐶𝑜𝑢𝑡𝑒𝑟𝑅 = 6
(𝑠 + 0.1)

𝑠
 (4.43) 

 𝐺𝑐𝑙,𝑜𝑢𝑡𝑒𝑟𝑅 =
𝐶𝑜𝑢𝑡𝑒𝑟𝑅𝐺𝑜𝑢𝑡𝑒𝑟𝑅

1 + 𝐶𝑜𝑢𝑡𝑒𝑟𝑅𝐺𝑜𝑢𝑡𝑒𝑟𝑅
⇒ (4.44) 

 𝐺𝑐𝑙,𝑜𝑢𝑡𝑒𝑟𝑅 =
6𝑠 + 0.6

0.153𝑠2 + 6.1𝑠2 + 0.6
 (4.45) 

The step response of the outer gimbal velocity loop can be observed in the Figure 

35. 

 

Figure 35: Step response of the outer gimbal rate loop with PI controller 

After closed the rate loop, open loop transfer function between the position input and 

output, 𝐿𝑜𝑢𝑡𝑒𝑟𝑃, has the following transfer function and root locus shown in the 

Figure 36. 

 𝐿𝑜𝑢𝑡𝑒𝑟𝑃 = 𝐶𝑜𝑢𝑡𝑒𝑟𝑃𝐺𝑐𝑙,𝑜𝑢𝑡𝑒𝑟𝑅

1

𝑠
 (4.46) 
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Figure 36: Root locus of the outer gimbal position control loop with P controller 

As shown in the root locus, the closed loop response represents the oscillatory 

behavior for the gain higher than 𝐾𝑃 = 10.1. Also, very zoomed region of the zero 

location of the PI controller shows that one of the closed loop poles is almost 

identical to the zero; therefore, they cancelled each outer. Setting the proportional 

gain of the position controller as 𝐶𝑜𝑢𝑡𝑒𝑟𝑃 = 7.6 satisfies the requirements and the 

closed loop poles of the position loop and the transfer function are as follows. 

 𝑝1 = −10, 𝑝2 = −29.8 (4.47) 

 𝐺𝑐𝑙,𝑜𝑢𝑡𝑒𝑟𝑃 =
45.6𝑠 + 4.56

0.153𝑠3 + 6.1𝑠2 + 46.2𝑠 + 4.56
 (4.48) 

The step response of the outer gimbal position loop can be observed in the Figure 

37. 
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Figure 37: Step response of the outer gimbal position loop with P controller 

4.3.2 Inner gimbal velocity loop 

The rate plant for the inner gimbal, 𝐺𝑖𝑛𝑛𝑒𝑟𝑅, has the transfer function given in the 

(2.78), and poles located at: 

 𝑝 = −
𝑐12𝑑

𝐽𝑖𝑛𝑛𝑒𝑟
= −1.745 (4.49) 

The root locus of the 𝐺𝑖𝑛𝑛𝑒𝑟𝑅 is shown in the Figure 38. 
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Figure 38: Root locus of the rate plant for the inner gimbal 

 

Figure 39: Root locus of the inner gimbal rate control loop with PI controller 
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Figure 40: Root locus of the inner gimbal rate control loop with PI controller 

zoomed in 

Zoomed region of the zero location of the PI controller shows that one of the closed 

loop poles is almost identical with to the zero; therefore, they cancelled each outer 

and the resultant shape of the root locus is same. 

Adjusting proportional gain of the PI controller as 𝐾𝑝 = 2.2 locates the pole of the 

rate loop at desired location 𝑝 = −40. Therefore, rate loop PI controller and the 

closed loop transfer function of the outer gimbal are as follows. 

 𝐶𝑖𝑛𝑛𝑒𝑟𝑅 = 2.2
(𝑠 + 0.1)

𝑠
 (4.50) 

 𝐺𝑐𝑙,𝑖𝑛𝑛𝑒𝑟𝑅 =
𝐶𝑖𝑛𝑛𝑒𝑟𝑅𝐺𝑖𝑛𝑛𝑒𝑟𝑅

1 + 𝐶𝑖𝑛𝑛𝑒𝑟𝑅𝐺𝑖𝑛𝑛𝑒𝑟𝑅
⇒ (4.51) 

 𝐺𝑐𝑙,𝑖𝑛𝑛𝑒𝑟𝑅 =
𝑠 + 0.1

0.057𝑠2 + 1.1𝑠2 + 0.1
 (4.52) 

The step response of the inner gimbal velocity loop can be observed in the Figure 

41. 
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Figure 41: Step response of the inner gimbal rate loop with PI controller 

After closed the rate loop, open loop transfer function between the position input and 

output, 𝐿𝑖𝑛𝑛𝑒𝑟𝑃, has the following transfer function and root locus shown in the 

Figure 42. 

 𝐿𝑖𝑛𝑛𝑒𝑟𝑃 = 𝐶𝑖𝑛𝑛𝑒𝑟𝑃𝐺𝑐𝑙,𝑖𝑛𝑛𝑒𝑟𝑅

1

𝑠
 (4.53) 

 

Figure 42: Root locus of the inner gimbal position control loop with P controller 

As shown in the root locus, the closed loop response represents the oscillatory 

behavior for the gain higher than 𝐾𝑃 = 10.4. Also, very zoomed region of the zero 

location of the PI controller shows that one of the closed loop poles is almost 

identical to the zero; therefore, they cancelled each outer. Setting the proportional 
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gain of the position controller as 𝐶𝑖𝑛𝑛𝑒𝑟𝑃 = 7.85 satisfies the requirements and the 

closed loop poles of the position loop and the transfer function are as follows. 

 𝑝1 = −10, 𝑝2 = −30 (4.54) 

 𝐺𝑐𝑙,𝑜𝑢𝑡𝑒𝑟𝑃 =
17.27𝑠 + 1.727

0.057𝑠3 + 2.3𝑠2 + 17.49𝑠 + 1.727
 (4.55) 

The step response of the outer gimbal position loop can be observed in the Figure 

43. 

 

Figure 43: Step response of the inner gimbal position loop with P controller 
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CHAPTER 5  

5 EXPERIMENTS AND RESULTS 

In this chapter, the control methods designed in the CONTROL DESIGN were 

verified and evaluated with tests performed on the real system. Two types of tests 

were carried out. These were for reference tracking and disturbance rejection 

purposes. In the tracking test, the performance of the gimbal system to direct to the 

desired position angles was tested, while in the disturbance test, the maintaining the 

orientation of the gimbal system against the disturbance effects caused by the 

movement of the platform on which the gimbal system was mounted was tested. 

Apart from the tests performed directly on the physical gimbal system, the same test 

was also carried out on both the 3D coupled nonlinear and linear gimbal models, and 

the validity of the model was observed. In the tracking tests, a chirp signal as a 

position reference input shown in Figure 44 and step responses were applied. 

Besides, periodical platform position movement tests were carried out according to 

the requirement mentioned in the section 1.2 and the movement were shown in the 

Figure 91. 

5.1 Reference Tracking 

The reference input signals shown in Figure 44, were designed to excite frequencies 

from 0.1 𝐻𝑧 to 5 𝐻𝑧; however, they exceed the desired range as a property of the 

chirp signal. In addition, the response occurs at frequencies other than the applied 

input signal in nonlinear systems. Therefore, even if the tracking signal is as shown, 

the spectrum of the system's response will be such that it includes the natural 

frequency of the gimbal system. 
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Figure 44: Swept sine type reference input for gimbal angular positions 

First, tracking experiments were carried out on the linear and nonlinear coupled 

gimbal models to represent validity of the linearization. Then, for the developed full-

state feedback control system, the chirp reference input and step input were applied. 

The gimbal position variables obtained as a result of the experiment were recorded, 

and these experimental data were compared with the simulation results. Likewise, 

the same reference input and step inputs were applied to the control system 

developed by MRAC method. As stated in the controller design chapter, in this study, 

the reference model in the MRAC method is considered as the control system 

developed by full-state feedback method. Therefore, in the tests performed for the 

MRAC system, the control system before the adaptation process is the same as the 
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full-state feedback control system. Accordingly, response to swept sine reference 

input and step response were obtained for the MRAC method. In addition, the change 

of the estimated constant weight matrix in accordance with the MRAC update law is 

presented in Figure 60 and Figure 61. The error signal before and after the MRAC 

adaptation process is given by Figure 66 and Figure 67 to verify the achievement of 

the MRAC method. As stated in the first chapter, the motivation of this study was to 

increase the performance of the gimbal control axes by converging the reference 

model of the gimbal system determined in the MRAC method. For this reason, 

frequency response functions are presented in Figure 86-Figure 89. Apart from those 

two control methods, the cascade PI control system were tested for the same inputs 

to compare the performance of the gimbal control system using the decoupled gimbal 

approach. 

Both FSFC and MRAC control systems were tested in the tracking experiment of the 

nonlinear gimbal model. However, only the FSFC control system was used in the 

tracking experiments of the linear gimbal model. Because the MRAC method uses 

the FSFC control system in its structure as a reference model, it does not produce a 

different result. The MRAC method resulted in a slightly different response on the 

nonlinear gimbal model due to nonlinearity differences. As observed in the figures 

from Figure 45 to Figure 48, all the responses were pretty close to each other and 

differed only by about %1 from each other. Although the responses were almost 

identical; the MRAC control system converged the response of the FSFC control 

system applied on the nonlinear model to the FSFC control system applied on the 

linear model, which is the primary objective of the MRAC method. Besides, the step 

responses were very close to each other, as shown in the figures Figure 49 Figure 50. 

Therefore, it can be said that the control systems have the same performance on both 

the linear and nonlinear gimbal models. 
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Figure 45: Response 𝜃1 of the linear and nonlinear coupled gimbal model with 

FSFC and MRAC controller to swept sine reference input 

 

Figure 46: Response 𝜃1 of the linear and nonlinear coupled gimbal model with 

FSFC and MRAC controller to swept sine reference input zoomed in 
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Figure 47: Response 𝜃2 of the linear and nonlinear coupled gimbal model with 

FSFC and MRAC controller to swept sine reference input 

 

Figure 48: Response 𝜃2 of the linear and nonlinear coupled gimbal model with 

FSFC and MRAC controller to swept sine reference input zoomed in 
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Figure 49: 45° step response 𝜃1 of the linear and nonlinear coupled gimbal model 

with FSFC and MRAC controller 

 

Figure 50: 60° step response 𝜃1 of the linear and nonlinear coupled gimbal model 

with FSFC and MRAC controller 
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As a result of the tests performed on the control system developed with the FSFC 

method, the response of the reference tracking signal applied to the azimuth control 

axis is seen in Figure 51 and Figure 52. Likewise, the response of the reference 

tracking signal for the elevation control axis is shown in Figure 53 and Figure 54. As 

observed in the azimuth control axis, the actual system response is quite close to the 

simulation response but lower in value. When the elevation control axis is examined, 

it is observed that there is a large difference between the systems. It was seen that 

the real system generates a higher response than it should in low frequency regions, 

and it has a very low response as the frequency increases. 

 

Figure 51: Response of 𝜃1 of the gimbal system with full-state feedback control to 

swept sine reference input 
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Figure 52: Response of 𝜃1 the gimbal system with full-state feedback control to 

swept sine reference input zoomed in 

 

Figure 53: Response of 𝜃2 of the gimbal system with full-state feedback control to 

swept sine reference input 
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Figure 54: Response of 𝜃2 of the gimbal system with full-state feedback control to 

swept sine reference input zoomed in 

In Figure 55-Figure 59, different step inputs were applied on control system 

developed with FSFC method. The system behaves differently for the amplitude of 

the step input because of the actuator saturation. As a result of the 3° step input 

applied to the azimuth axis, an angular position error of about 0.11° was observed 

without any overshoot behavior, and when a 45° step input was applied, it was 

observed that it had a positional error of more than 1°, and the system showed an 

overshoot behavior. The reason for the overshoot behavior is that the motor torque 

signal produced against the high amplitude step input is saturated. Also, it is 

observed that transient characteristics were not sufficient in both step inputs. 

Besides, when a 3° step input is applied to the elevation control axis, it is observed 

that the position error is close to 0.5° which is a large tracking error. Due to the high 

steady state error, the initial position is different than 0° as seen in the Figure 59. In 

addition, it seems that the transient response of the system is far from the 

requirements. 
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Figure 55: 3° Step response of 𝜃1 of the gimbal system with full-state feedback 

control 

 

Figure 56: 3° Step response of 𝜃1 of the gimbal system with full-state feedback 

control zoomed in 
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Figure 57: 45° Step response of 𝜃1 of the gimbal system with full-state feedback 

control 

 

Figure 58: 45° Step response of 𝜃1 of the gimbal system with full-state feedback 

control zoomed in 
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Figure 59: 3° Step response of 𝜃2 of the gimbal system with full-state feedback 

control 

After the gimbal system with FSFC method tested, MRAC method was applied with 

the same reference inputs. As shown in Figure 60 and Figure 61, adaptation process 

took times 80 − 100 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 nearly for the swept sine signal. Also, elements of the 

weighting matrix change periodically due to periodic swept sine signal. As 

mentioned in section 4.2, learning rates of the MRAC update law selected such that 

the gimbal system responds quickly but not overshoot or loose stability due to high 

gain change. Besides, it is observed that 𝑊෡11 and 𝑊෡23 are greater in magnitude than 

the other coefficients of the constant weighting matrix that oscillate around 0 to 1. 
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Figure 60: Estimated constant weighting matrix elements vs time 

 

Figure 61: Estimated constant weighting matrix elements vs time zoomed in 
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Responses of the gimbal system with MRAC after the system adapted were provided 

in Figure 62-Figure 74. The system responds very close to the reference system for 

the swept sine tracking input. The response for the azimuth axis was a little smaller 

in low frequency region (early stage of the periodical swept sine signal) and little 

greater in high frequency region of the signal than reference model as shown in 

Figure 62 and Figure 63. Besides, the response for the elevation axis is smaller in 

low and high frequency region and greater in mid frequency region as shown in 

Figure 64 and Figure 65. However, it is observed that both the responses were quite 

improved compared to the control system with FSFC method shown in Figure 51-

Figure 54. In addition, the phase quantity of the elevation angle was quite enhanced. 

Although, it is not obvious in time domain responses shown in Figure 54 and Figure 

65; frequency response function present the phase relation directly given in Figure 

88. For the azimuth control axis, the difference was not such noticeable as in the 

elevation axis as shown in the Figure 86.  

 

Figure 62: Response of 𝜃1 of the gimbal system with MRAC to swept sine 

reference input 
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Figure 63: Response of 𝜃1 of the gimbal system with MRAC to swept sine 

reference input zoomed in 

 

Figure 64: Response of 𝜃2 of the gimbal system with MRAC to swept sine 

reference input 
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Figure 65: Response of 𝜃2 of the gimbal system with MRAC to swept sine 

reference input zoomed in 

Error of the angular position variables of the gimbal system between the real system 

response and reference model response for both the control systems with FSFC and 

MRAC methods were provided in Figure 66 and Figure 67. The error in azimuth 

position angle, 𝜃1, were decreased from ±0.4° to ±0.1° approximately as shown in 

Figure 66. The difference or improvement is quite larger in elevation position angle, 

𝜃2 which was changed from 2° −  4° depending on the frequency to ±0.2° at most 

as shown in Figure 67. 
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Figure 66: Error of 𝜃1of the gimbal system before and after MRAC adaptation 

 

Figure 67: Error of 𝜃2 of the gimbal system before and after MRAC adaptation 
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The step response of the gimbal system with MRAC method is provided in Figure 

68-Figure 74. As stated in the results of the FSFC method, amplitude of the step 

input resulted in different response characteristic due to actuator saturation, is also 

shown in MRAC method. The transient response of the step function differs for the 

3° and 45° step amplitude. The gimbal system presented lag behavior for the larger 

step input. However, setling time for the azimuth axis was very close to the reference 

model in both step responses.  For the elevation axis, settling time was much smaller 

than the reference model and close to the reference model in high step input 

amplitude. Therefore, it was observed that both the steady state and transient 

behavior of the gimbal system improved, especially for the elevation control axis. 

Besides, the steady state response of the gimbal system was improved in both control 

axis where it achieves position error smaller than ±0.1°. As provided in Figure 59, 

steady state error of the elevation axis was far from the requirements, while, it was 

satisfied in the MRAC method as shown in Figure 72-Figure 74. 

 

Figure 68: 3° Step response of 𝜃1 of the gimbal system with MRAC 
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Figure 69: 3° Step response of 𝜃1 of the gimbal system with MRAC zoomed in 

 

Figure 70: 45° Step response of 𝜃1 of the gimbal system with MRAC 
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Figure 71: 45° Step response of 𝜃1 of the gimbal system with MRAC zoomed in 

 

Figure 72: 3° Step response of 𝜃2 of the gimbal system with MRAC 
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Figure 73: 3° Step response of 𝜃2 of the gimbal system with MRAC zoomed in 

 

Figure 74: 60° Step response of 𝜃2 of the gimbal system with MRAC 
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As a result of the tests performed on the cascade PI control system developed based 

on decoupled gimbal model, the response of the reference tracking signal applied to 

the azimuth control axis is seen in Figure 75 and Figure 76. Likewise, the response 

of the reference tracking signal for the elevation control axis is shown in Figure 77 

and Figure 78. As observed in the azimuth control axis, the actual system response 

is close to the simulation response but lower in value over the frequency region. A 

similar situation is observed in the elevation control axis, system response is lower 

in value all over the frequency region; however, the difference is larger than the 

azimuth axis. Therefore, it can be concluded that increasing the gain of the controller 

might improve the error, but it might result in stability problems because of that 

increasing gain also alters the high frequency response. 

 

Figure 75: Response of 𝜃1 of the gimbal system with Cascade PI to swept sine 

reference input 
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Figure 76: Response of 𝜃1 of the gimbal system with Cascade PI to swept sine 

reference input zoomed in 

 

Figure 77: Response of 𝜃2 of the gimbal system with Cascade PI to swept sine 

reference input 
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Figure 78: Response of 𝜃2 of the gimbal system with Cascade PI to swept sine 

reference input zoomed in 

The step response of the gimbal system with cascade PI method provided from 

Figure 79 to Figure 85. It was observed that using integral term improves the steady 

state performance, however settling time was significantly deteriorated compared to 

the MRAC. That was clearer in the response of the elevation axis. Overall, the 

transient response was not sufficient. Although overshoot behavior was not shown 

in the azimuth axis, it was seen in the elevation axis when the high amplitude step 

response applied. This time, accumulation of the error signal due to the integral term 

resulted in overshoot as well as actuator saturation which was common to all 

methods. Accumulation of the error due to the integral term can be improved by a 

technique known as anti windup, which was not involved in this study to focus the 

scope of the thesis. 
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Figure 79: 3° Step response of 𝜃1 of the gimbal system with Cascade PI 

 

Figure 80: 3° Step response of 𝜃1 of the gimbal system with Cascade PI zoomed in 
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Figure 81: 45° Step response of 𝜃1 of the gimbal system with Cascade PI 

 

Figure 82: 45° Step response of 𝜃1 of the gimbal system with Cascade PI zoomed 

in 
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Figure 83: 3° Step response of 𝜃2 of the gimbal system with Cascade PI 

 

Figure 84: 3° Step response of 𝜃2 of the gimbal system with Cascade PI zoomed in 
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Figure 85: 60° Step response of 𝜃2 of the gimbal system with Cascade PI 

Frequency response functions of the closed loop control system of the gimbal were 

provided in Figure 86-Figure 89. The closed loop frequency response of the azimuth 

axis shown in Figure 86 indicated that MRAC method converges the frequency 

response of the control system before MRAC adaptation which is also identical to 

FSFC method to the reference model. Although the phase relations overlapped for 

all the models, amplitudes overlapped after the MRAC method for them. As 

observed in Figure 87, the closed loop bandwidth of the gimbal system increased 

from 1.9 𝐻𝑧 to 2.5 𝐻𝑧 which was almost identical with the reference model. For the 

elevation control axis, both the amplitude and phase relations of the control system 

differ from each other before the MRAC adaptation. The effect of the MRAC method 

was noticeable; even though the closed loop response after the MRAC method was 

not overlapped compared to the azimuth control axis, the change was quite greater. 

Also, it was observed that contributed phase is more significant in the mid frequency 

region, 1 𝐻𝑧, around +40° than low and high frequency regions, 0.1 𝐻𝑧 and 5 𝐻𝑧, 

around +20°. In addition, closed loop bandwidth of the elevation axis improved from 

1.1 𝐻𝑧 to 2.8 where the reference model has 3.5 𝐻𝑧 as shown in Figure 89. 

Therefore, it can be stated that MRAC method contributed more for the elevation 
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axis due to high change in system response, although the azimuth axis presented 

closer behavior to the reference model. Frequency response of the cascade PI control 

system were almost identical to FSFC (before MRAC adaptation) in azimuth axis. 

That is, both the FSFC method and the cascade PI control method exhibited similar 

frequency response performance, where the responses were observed without 

adaptation or fine-tuning process. However, the cascade PI method had better 

frequency response performance than FSFC in the elevation axis, while it had a lower 

magnitude than MRAC. 

 

Figure 86: Frequency response of 𝜃1 vs reference input of 𝜃1 



 

 

108 

 

Figure 87: Frequency response of 𝜃1 vs reference input of 𝜃1 zoomed in 

 

Figure 88: Frequency response of 𝜃2 vs reference input of 𝜃2 
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Figure 89: Frequency response of 𝜃2 vs reference input of 𝜃2 zoomed in 

5.2 Disturbance Rejection 

In addition to directing the gimbal system to the desired position (tracking), another 

requirement (stabilization) of the gimbal system is to maintain its position in 

response to the movements of the platform to which it was assembled. Although the 

main objective of the gimbal system studied in this thesis is tracking, the disturbance 

rejection performance of the control system is the second concern, while it might be 

the primary objective for other gimbal systems. Therefore, the performance criteria 

of the disturbance rejection property were limited to bound the gimbal orientation 

error to ±0.5° as specified in the section 1.2. As stated before, experiments were 
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carried out on each of the platform axes shown in Figure 1 to demonstrate the 

robustness of the control system against unmodelled disturbances. Stewart platform 

was used to simulate platform movements during these experiments. The gimbal 

system is mounted to a stewart test platform similar to the one in the Figure 90. The 

placement of the gimbal system on the stewart platform was made in such a way that 

the yaw axis and the azimuth axis were parallel, and the elevation axis was randomly 

positioned. In order to simulate desired platform movements, the periodic signal was 

applied to all three axes sequentially as in the Figure 91. This experiment was 

repeated for each FSFC, MRAC, the cascade PI control systems and, therefore, was 

performed three times in total. During the experiment performed for the MRAC 

control system, the estimated constant weighting matrix was recorded and presented 

in the Figure 92. The figure was divided into three regions on the time axis. The 

disturbance signal was applied periodically in the pitch axis until the 210 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 

in the roll axis between 210 − 355 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, and then in the yaw axis. In the regions 

where the MRAC estimated weighting matrix change reached equilibrium, the 

response of the gimbal system shown in the Figure 93-Figure 95 along with the 

responses obtained in the FSFC control system. 

 

Figure 90: Stewart platform representation [35] 
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Figure 91: Base disturbance simulation signal for all pitch, roll, and yaw axes 

 

Figure 92: Estimated constant weighting matrix change due to base disturbance 
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In Figure 93, the responses of the gimbal control systems excited in the direction of 

the pitch axis are shown. According to that, the MRAC control system had an error 

of ±0.2° in the azimuth axis and ±0.4° in the elevation axis, while the FSFC control 

system had an error of −0.4°, +0° in the azimuth axis and −0.2°, +0.6° in the 

elevation axis; also, the cascade PI control system had an error of lower than ±0.2° 

in azimuth axis and nearly ±0.4° in elevation axis . While the position deviation of 

the gimbal system was comparable in all control systems, in the FSFC control 

system, the gimbal system oscillated around a different position than 0°, that is it had 

steady state error. The control system, adapted with the MRAC method, eliminated 

the position error as experienced in the tracking case and provided the system 

oscillate around 0°, that is it eliminated steady state error. According to the gimbal 

system excited in the roll axis shown in Figure 94, responses similar to those in the 

pitch axis are observed. Position deviations are similar for both control methods and 

steady state error is eliminated by MRAC control system. As mentioned above, the 

assembly of the gimbal system to the stewart platform is made in a way that the 

azimuth axis and the yaw axis are parallel. Therefore, the disturbance movements in 

the yaw axis were directly observed in the azimuth axis, the effect on the elevation 

axis was due to the cross-coupling between the gimbal axes. When Figure 95 was 

examined, it was observed that the majority of the response in the gimbal system 

occurs in the azimuth axis, and its motion in the elevation axis is incomparably small. 

While the position error in the azimuth axis was ±0.3° in the FSFC control system, 

this value increased to ±0.4 in the MRAC control system. On the other hand, while 

the error in the elevation axis in the FSFC control system increased gradually with 

time, this error was reduced throughout time in the MRAC control system. The 

reason for this was to improve the cross-coupling effect between gimbal systems 

with the MRAC control method. The cascade PI control system handled the 

disturbance effect due to cross-coupling phenomena because of the integral term, it 

was taught. 
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Figure 93: Gimbal orientation change due to base pitch disturbance 

 

Figure 94: Gimbal orientation change due to base roll disturbance 
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Figure 95: Gimbal orientation change due to base yaw disturbance 

 



 

 

115 

CHAPTER 6  

6 DISCUSSION AND CONCLUSION 

In the MATHEMATICAL MODELLING chapter, first the 3D coupled nonlinear 

statically balanced but dynamically unbalanced gimbal system was modelled. Then, 

with the decoupled gimbal axis approach, the gimbal system was modelled as two 

dependent gimbal control axis. These models were validated by comparison with 

tests performed on a physical gimbal system. As expected, the coupled nonlinear 

gimbal model better represented the system behavior, while the decoupled gimbal 

model, although obtained with a very simple approach, had a response that was not 

far from the real system. The nonlinear coupled gimbal model was linearized to be 

used in the designing of the control systems discussed in this thesis. 

Frequency domain based system identification tests were performed to observe the 

differences between the real system, and the gimbal system assumed as rigid masses 

in this study. As a result of the mechanical gimbal system being composed of flexible 

masses contrary to the assumption, it was figured out that the differences in 

frequency responses caused the real system to behave differently from the modeled 

ones. 

Three control methods:full-state feedback control, model reference adaptive control 

and the cascade PI control methods were developed in CONTROL DESIGN 

Chapter, implemented on real system, and experiments were carried out to verify and 

compare the control methods. It was concluded that the full-state feedback control 

method did not provide sufficient performance as designed and shown in 

simulations. Implementing the MRAC method used for the purpose of unmodeled 

uncertainties and nonlinearities emerged from friction and structural flexibility 

provided quite improvement in the real gimbal system. It enabled the gimbal system 

to both lower steady state error and higher closed loop control bandwidth, which also 
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presented in improved transient response of the system. In addition, it was stated that 

the effectiveness of the MRAC method was more noticeable in the elevation axis as 

provided in EXPERIMENTS AND RESULTS Chapter. The reason behind it was 

thought that nonlinear effects and uncertainties were more dominant in the elevation 

axis compared to the azimuth axis. One of the performance criteria of the gimbal 

system was to have 0.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 settling time and satisfied with MRAC method, 

whereas the FSFC method did not meet the requirement. In addition, it was observed 

that high amplitude position demand resulted in a worsening in the transient behavior 

of the gimbal system due to actuator saturation; yet the transient requirement could 

have been provided for the large position demands as well. Besides, the cascade PI 

control method using the decoupled gimbal models was tested. It was observed that 

it had improved steady state behavior due to integral term, whereas the transient 

performance of it was not sufficient. It was commented that fine-tuning methods 

might improve the transient characteristics, yet the stability of the gimbal system 

should be noticed. Therefore, the straightforward cascade PI control method can be 

an alternative with fine tuning methods. 

As another design requirement, this study also included the disturbances from the 

platform where the gimbal system was assembled and intended to present 

performance of the control system, which evaluated as the robustness of it against 

these disturbances. Experiments were carried out by assembling the gimbal system 

on the stewart platform in order to simulate the marine vehicle. According to the 

experimental results, MRAC method reduced the steady state error in the tracking 

working condition. Although it did not provide an overall improvement in the error 

amplitude, it was observed that the cross-coupling effect of the MRAC method was 

improved, especially during the tests performed on the yaw axis. For the disturbance 

rejection performance of the cascade PI control system, it satisfied the requirements 

as in the other methods It was observed all control systems developed were robust 

enough against disturbances, and the gimbal system was stabilized within an angle 

error of less than 0.5°. 
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To conclude, the MRAC method provided the desired performance on the two-axis 

gimbal system. In this method, nonlinear effects and uncertainties were assumed to 

be in terms of system states, and adaptive control signal were derived accordingly. 

However, this seems to be a very general and poor estimate for a very complex 

gimbal system. This work, it was leading the use of radial basis functions being 

neural network method, which are often used in the MRAC method, to estimate such 

nonlinear effects. In future studies, this method can be used to predict nonlinear 

behavior in the gimbal system. In addition, throughout this study, it was noticed that 

a prominent nonlinear and dominant effect in the gimbal system, other than the 

mechanical structural flexibility, was friction. It was thought that by defining the 

friction in more detail, its contribution to the performance would be noticeable. 

Therefore, the friction feature of the gimbal system will be examined in detail in the 

future. 
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APPENDICES 

A. Dynamic Relations 

Moment equation for the body 1, (2.56), is rewritten. 

𝐽1 ∙ 𝛼 1 + 𝜔⃗⃗ 1 × 𝐽1 ∙ 𝜔⃗⃗ 1

= 𝑀⃗⃗ 01𝑏 + 𝑇⃗ 01𝑎 − 𝑇⃗ 12𝑎 + 𝑇⃗ 01𝑑 − 𝑇⃗ 12𝑑 + 𝑟 𝐶𝑎𝑧𝑖𝑂
× 𝐹 01

+ 𝑟 𝐶𝑎𝑧𝑖𝐴
× (−𝐹 12𝐴) + 𝑟 𝐶𝑎𝑧𝑖𝐶

× (−𝐹 12𝐶) 

Individual terms of the (2.56) can be expressed in matrix form in reference frame of 

body 1 as follows. 

𝐽1
(1)

𝛼̅1
(1)

= 𝐽1
(1)

𝐶̂(1,0)𝛼̅1
(0)

= [

𝐽111 𝐽112 𝐽113

𝐽112 𝐽122 𝐽123

𝐽113 𝐽123 𝐽133

] [
cos 𝜃1 −sin 𝜃1 0
sin 𝜃1 cos 𝜃1 0

0 0 1

]

𝑡

[
0
0
𝜃̈1

] ⇒ 

 𝐽1
(1)

𝛼̅1
(1)

= [

𝐽113𝜃̈1

𝐽123𝜃̈1

𝐽133𝜃̈1

] (A.1) 

Note that cross product operation is applied in matrix representation by using skew 

symmetric matrix property. 

𝜔̃1
(1)

𝐽1𝜔̅1
(1)

= 𝑠𝑘𝑒𝑤 ([
0
0
𝜃̇1

]) [
𝐽111 𝐽112 𝐽113

𝐽112 𝐽122 𝐽123

𝐽113 𝐽123 𝐽133

] [
0
0
𝜃̇1

] ⇒ 

𝜔̃1
(1)

𝐽1𝜔̅1
(1)

= [
0 −𝜃̇1 0

𝜃̇1 0 0
0 0 0

] [

𝐽113𝜃̇1

𝐽123𝜃̇1

𝐽133𝜃̇1

] ⇒ 

 𝜔̃1
(1)

𝐽1𝜔̅1
(1)

= [
−𝐽123𝜃̇1

2

−𝐽113𝜃̇1
2

0

] , 𝐸𝑞𝑛. (A.2) 

[𝑟 𝐶𝑎𝑧𝑖𝑂
× 𝐹 01]

(1)
= 𝑠𝑘𝑒𝑤(𝑟̅𝐶𝑎𝑧𝑖𝑂

(1)
) [

𝐹011

𝐹012

𝐹013

] ⇒ 

[𝑟 𝐶𝑎𝑧𝑖𝑂
× 𝐹 01]

(1)
= [

0 −𝑐𝑎𝑧𝑖3 𝑐𝑎𝑧𝑖2

𝑐𝑎𝑧𝑖3 0 0
−𝑐𝑎𝑧𝑖2 0 0

] [
𝐹011

𝐹012

𝐹013

] ⇒ 
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 [𝑟 𝐶𝑎𝑧𝑖𝑂
× 𝐹 01]

(1)
= [

𝑐𝑎𝑧𝑖2𝐹013 − 𝑐𝑎𝑧𝑖3𝐹012

𝑐𝑎𝑧𝑖3𝐹011

−𝑐𝑎𝑧𝑖2𝐹011

] (A.3) 

[𝑟 𝐶𝑎𝑧𝑖𝐴
× (−𝐹 12𝐴)]

(1)
= −𝑠𝑘𝑒𝑤(𝑟̅𝐶𝑎𝑧𝑖𝐴

(1)
)𝐶̂(1,2) [

𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

] ⇒ 

[𝑟 𝐶𝑎𝑧𝑖𝐴
× (−𝐹 12𝐴)]

(1)

= − [

0 𝑑1 − 𝑐𝑎𝑧𝑖3 −𝑑2 + 𝑐𝑎𝑧𝑖2

𝑐𝑎𝑧𝑖3 − 𝑑1 0 0
𝑑2 − 𝑐𝑎𝑧𝑖2 0 0

] [
cos 𝜃2 −sin 𝜃2 0

0 0 1
− sin 𝜃2 −cos 𝜃2 0

]

𝑡

[
𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

] ⇒ 

 

[𝑟 𝐶𝑎𝑧𝑖𝐴
× (−𝐹 12𝐴)]

(1)

= [

𝐹12𝐴3(𝑑1 − 𝑐𝑎𝑧𝑖3) + (𝑑2 − 𝑐𝑎𝑧𝑖2)(𝐹12𝐴1 sin 𝜃2 + 𝐹12𝐴2 cos 𝜃2)

(𝑐𝑎𝑧𝑖3 − 𝑑1)(𝐹12𝐴1 cos 𝜃2 − 𝐹12𝐴2 sin 𝜃2)

(𝑑2 − 𝑐𝑎𝑧𝑖2)(𝐹12𝐴1 cos 𝜃2 − 𝐹12𝐴2 sin 𝜃2)
] 

(A.4) 

[𝑟 𝐶𝑎𝑧𝑖𝐶
× (−𝐹 12𝐶)]

(1)
= −𝑠𝑘𝑒𝑤(𝑟̅𝐶𝑎𝑧𝑖𝐶

(1)
)𝐶̂(1,2) [

𝐹12𝐶1

𝐹12𝐶2

0
] ⇒ 

[𝑟 𝐶𝑎𝑧𝑖𝐶
× (−𝐹 12𝐶)]

(1)

= − [

0 𝑑1 − 𝑐𝑎𝑧𝑖3 𝑑3 + 𝑐𝑎𝑧𝑖2

𝑐𝑎𝑧𝑖3 − 𝑑1 0 0
−(𝑑3 + 𝑐𝑎𝑧𝑖2) 0 0

] [
cos 𝜃2 −sin 𝜃2 0

0 0 1
− sin 𝜃2 − cos 𝜃2 0

]

𝑡

[
𝐹12𝐶1

𝐹12𝐶2

0
]

⇒ 

 

[𝑟 𝐶𝑎𝑧𝑖𝐶
× (−𝐹 12𝐶)]

(1)

= [

−(𝑑3 + 𝑐𝑎𝑧𝑖2)(𝐹24𝐶1 sin 𝜃2 + 𝐹24𝐶2 cos 𝜃2)

(𝑐𝑎𝑧𝑖3 − 𝑑1)(𝐹12𝐶1 cos 𝜃2 − 𝐹12𝐶2 sin 𝜃2)

−(𝑑3 + 𝑐𝑎𝑧𝑖2)(𝐹12𝐶1 cos 𝜃2 − 𝐹12𝐶2 sin 𝜃2)
] 

(A.5) 

Moment equation for the body 2, (2.63), is rewritten. 

𝐽2 ∙ 𝛼 2 + 𝜔⃗⃗ 2 × 𝐽2 ∙ 𝜔⃗⃗ 2 = 𝑇⃗ 12𝑎 + 𝑇⃗ 12𝑑 + 𝑟 𝐶𝑒𝑙𝑒𝐴 × 𝐹 12𝐴 + 𝑟 𝐶𝑒𝑙𝑒𝐶 × 𝐹 12𝐶  

Individual terms of the (2.63) can be expressed in matrix form in reference frame of 

body 2 as follows. 

𝐽2
(2)

𝛼̅2
(2)

= [
𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

] 𝐶̂(2,0)𝛼̅2
(0)

⇒ 
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𝐽2
(2)

𝛼̅2
(2)

= [
𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

] [
cos 𝜃1 cos 𝜃2 sin 𝜃1 cos 𝜃2 −sin 𝜃1

−cos 𝜃1 sin 𝜃2 −sin 𝜃1 sin 𝜃2 −cos 𝜃1

−sin 𝜃1 cos 𝜃1 0
] [

−𝜃̇1𝜃̇2 cos 𝜃1 − 𝜃̈2 sin 𝜃1

−𝜃̇1𝜃̇2 sin 𝜃1 + 𝜃̈2 cos 𝜃1

𝜃̈1

]

⇒ 

 

𝐽2
(2)

𝛼̅2
(2)

= [

𝜃̈1(−𝐽211 𝑠𝑖𝑛 𝜃2 − 𝐽212 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽213) + (−𝐽211 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽212 𝑠𝑖𝑛 𝜃2 𝜃̇1)

𝜃̈1(−𝐽212 𝑠𝑖𝑛 𝜃2 − 𝐽222 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽223) + (−𝐽212 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽222 𝑠𝑖𝑛 𝜃2 𝜃̇1)

𝜃̈1(−𝐽213 𝑠𝑖𝑛 𝜃2 − 𝐽223 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽233) + (−𝐽213 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽223 𝑠𝑖𝑛 𝜃2 𝜃̇1)

] 
(A.6) 

𝜔̃2
(2)

𝐽2𝜔̅2
(2)

= 𝑠𝑘𝑒𝑤(𝜔̅2
(2)

) [
𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

] 𝜔̅2
(2)

⇒ 

𝜔̃2
(2)

𝐽2𝜔̅2
(2)

= 𝑠𝑘𝑒𝑤(𝐶̂(2,0)𝜔̅2
(0)) [

𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

] 𝐶̂(2,0)𝜔̅2
(0) ⇒ 

𝜔̃2
(2)

𝐽2𝜔̅2
(2)

= 𝑠𝑘𝑒𝑤 ([
cos 𝜃1 cos 𝜃2 sin 𝜃1 cos 𝜃2 −sin 𝜃1

−cos 𝜃1 sin 𝜃2 −sin 𝜃1 sin 𝜃2 −cos 𝜃1

−sin 𝜃1 cos 𝜃1 0
] [

−𝜃̇2 sin 𝜃1

𝜃̇2 cos θ1

𝜃̇1

]) [
𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

]… 

[
cos 𝜃1 cos 𝜃2 sin 𝜃1 cos 𝜃2 −sin 𝜃1

−cos 𝜃1 sin 𝜃2 −sin 𝜃1 sin 𝜃2 −cos 𝜃1

−sin 𝜃1 cos 𝜃1 0
] [

−𝜃̇2 sin 𝜃1

𝜃̇2 cos θ1

𝜃̇1

] ⇒ 

𝜔̃2
(2)

𝐽2𝜔̅2
(2)

= 𝑠𝑘𝑒𝑤 ([

−𝜃̇1 sin 𝜃2

−𝜃̇1 cos 𝜃2

𝜃̇2

]) [
𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

] [

−𝜃̇1 sin 𝜃2

−𝜃̇1 cos 𝜃2

𝜃̇2

] ⇒ 

𝜔̃2
(2)

𝐽2𝜔̅2
(2)

= [

0 −𝜃̇2 −𝜃̇1 cos 𝜃2

𝜃̇2 0 𝜃̇1 sin 𝜃2

𝜃̇1 cos 𝜃2 −𝜃̇1 sin 𝜃2 0

] [
𝐽211 𝐽212 𝐽213

𝐽212 𝐽222 𝐽223

𝐽213 𝐽223 𝐽233

] [

−𝜃̇1 sin 𝜃2

−𝜃̇1 cos 𝜃2

𝜃̇2

] ⇒ 

 

𝜔̃2
(2)

𝐽2𝜔̅2
(2)

= [

𝐽223(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇2

2) + 𝐽212𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 + 𝐽213𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 − 𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 (𝐽233 − 𝐽222)

−𝐽213(𝜃̇1
2 𝑠𝑖𝑛2 𝜃2 + 𝜃̇2

2) + 𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 (𝐽211 + 𝐽233) + 𝐽212𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 − 𝐽223𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2

𝐽212(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇1

2 𝑠𝑖𝑛2 𝜃2) + 𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 (𝐽211 − 𝐽222) − 𝐽213𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 + 𝐽223𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2

] (A.7) 
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[𝑟 𝐶𝑒𝑙𝑒𝐴 × 𝐹 12𝐴]
(2)

= 𝑠𝑘𝑒𝑤(𝑟̅𝐶𝑒𝑙𝑒𝐴
(2)

) [
𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

] ⇒ 

[𝑟 𝐶𝑒𝑙𝑒𝐴 × 𝐹 12𝐴]
(2)

= [
0 𝑐2 + 𝑑2 0

−𝑐2 − 𝑑2 0 0
0 0 0

] [
𝐹12𝐴1

𝐹12𝐴2

𝐹12𝐴3

] ⇒ 

 [𝑟 𝐶𝑒𝑙𝑒𝐴 × 𝐹 12𝐴]
(2)

= [
(𝑐2 + 𝑑2)𝐹12𝐴2

−(𝑐2 + 𝑑2)𝐹12𝐴1

0

] (A.8) 

[𝑟 𝐶𝑒𝑙𝑒𝐶 × 𝐹 12𝐶]
(2)

= 𝑠𝑘𝑒𝑤(𝑟̅𝐶𝑒𝑙𝑒𝐶
(2)

) [
𝐹12𝐶1

𝐹12𝐶2

0
] 

[𝑟 𝐶𝑒𝑙𝑒𝐶 × 𝐹 12𝐶]
(2)

= [
0 𝑐2 − 𝑑3 0

𝑑3 − 𝑐2 0 0
0 0 0

] [
𝐹12𝐶1

𝐹12𝐶2

0
] ⇒ 

 [𝑟 𝐶𝑒𝑙𝑒𝐶 × 𝐹 12𝐶]
(2)

= [
(𝑐2 − 𝑑3)𝐹12𝐶2

(𝑑3 − 𝑐2)𝐹12𝐶1

0

] (A.9) 
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B. Equation of Motion 

Solving (2.60) and (2.61) for  𝐹12𝐶1 and 𝐹12𝐶2, 

𝐹12𝐶1 = −𝑚2𝑐2 cos 𝜃2 𝜃̈1 + 𝑚2𝑔 sin 𝜃2 − 𝐹12𝐴1 

𝐹12𝐶2 = 𝑚2𝑐2 sin 𝜃2 𝜃̈1 + 𝑚2𝑔 cos 𝜃2 − 𝐹12𝐴2 

Substituting 𝐹12𝐶1 and 𝐹12𝐶2 into (2.65), 

𝜃̈1(−𝐽212 𝑠𝑖𝑛 𝜃2 − 𝐽222 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽223) + (−𝐽212 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽222 𝑠𝑖𝑛 𝜃2 𝜃̇1)

− 𝐽213(𝜃̇1
2 𝑠𝑖𝑛2 𝜃2 + 𝜃̇2

2) + 𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 (𝐽211 + 𝐽233)

+ 𝐽212𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 − 𝐽223𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2

= −(𝑐2 + 𝑑2)𝐹12𝐴1

+ (𝑑3 − 𝑐2)(−𝑚2𝑐2 𝑐𝑜𝑠 𝜃2 𝜃̈1 + 𝑚2𝑔 𝑠𝑖𝑛 𝜃2 − 𝐹12𝐴1) ⇒ 

𝜃̈1(−𝐽212 𝑠𝑖𝑛 𝜃2 − 𝐽222 𝑐𝑜𝑠 𝜃2 + (𝑑3 − 𝑐2)𝑚2𝑐2 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽223)

+ (−𝐽212 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽222 𝑠𝑖𝑛 𝜃2 𝜃̇1) − 𝐽213(𝜃̇1
2 𝑠𝑖𝑛2 𝜃2 + 𝜃̇2

2)

+ 𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 (𝐽211 + 𝐽233) + 𝐽212𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2

− 𝐽223𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 − (𝑑3 − 𝑐2)𝑚2𝑔 𝑠𝑖𝑛 𝜃2 = −(𝑑2 + 𝑑3)𝐹12𝐴1

⇒ 

Defining the dependent variables so that 𝐹12𝐴1 can be expressed as follows. 

 𝐶𝑂𝑁𝑆11 =
−𝐽212 𝑠𝑖𝑛 𝜃2 − 𝐽222 𝑐𝑜𝑠 𝜃2 + (𝑑3 − 𝑐2)𝑚2𝑐2 𝑐𝑜𝑠 𝜃2

−(𝑑2 + 𝑑3)
  (B.1) 

 𝐶𝑂𝑁𝑆12 =
𝐽223

−(𝑑2 + 𝑑3)
 (B.2) 

 

𝐶𝑂𝑁𝑆13

=
𝐽222 𝑠𝑖𝑛 𝜃2 𝜃̇1 − 𝐽213(𝜃̇1

2 𝑠𝑖𝑛2 𝜃2 + 𝜃̇2
2) + 𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 (𝐽211 + 𝐽233)

−(𝑑2 + 𝑑3)

+
−𝐽223𝜃̇1

2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 − (𝑑3 − 𝑐2)𝑚2𝑔 𝑠𝑖𝑛 𝜃2

−(𝑑2 + 𝑑3)
 

(B.3) 

 𝐹12𝐴1 = 𝜃̈1𝐶𝑂𝑁𝑆11 + 𝜃̈2𝐶𝑂𝑁𝑆12 + 𝐶𝑂𝑁𝑆13 (B.4) 

Substituting 𝐹12𝐶1 and 𝐹12𝐶2 into, (2.64), 
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𝜃̈1(−𝐽211 𝑠𝑖𝑛 𝜃2 − 𝐽212 𝑐𝑜𝑠 𝜃2 − (𝑐2 − 𝑑3)𝑚2𝑐2 𝑠𝑖𝑛 𝜃2) + 𝜃̈2(𝐽213)

+ (−𝐽211 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽212 𝑠𝑖𝑛 𝜃2 𝜃̇1) + 𝐽223(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇2

2)

+ 𝐽212𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2 + 𝐽213𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2

− 𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 (𝐽233 − 𝐽222) − (𝑐2 − 𝑑3)𝑚2𝑔 𝑐𝑜𝑠 𝜃2

= (𝑑2 + 𝑑3)𝐹12𝐴2 ⇒ 

Defining the dependent variables so that 𝐹12𝐴2 can be expressed as follows. 

 𝐶𝑂𝑁𝑆21 =
−𝐽211 𝑠𝑖𝑛 𝜃2 − 𝐽212 𝑐𝑜𝑠 𝜃2 − (𝑐2 − 𝑑3)𝑚2𝑐2 𝑠𝑖𝑛 𝜃2

𝑑2 + 𝑑3
 (B.5) 

 𝐶𝑂𝑁𝑆22 =
𝐽213

𝑑2 + 𝑑3
 (B.6) 

 

𝐶𝑂𝑁𝑆23

=
−𝐽211 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽212 𝑠𝑖𝑛 𝜃2 𝜃̇1 + 𝐽223(𝜃̇1

2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇2
2) 𝑠𝑖𝑛 𝜃2

𝑑2 + 𝑑3

+
+𝐽212𝜃̇1𝜃̇2 + 𝐽213𝜃̇1

2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 − 𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 (𝐽233 − 𝐽222)

𝑑2 + 𝑑3

+
−(𝑐2 − 𝑑3)𝑚2𝑔 𝑐𝑜𝑠 𝜃2

𝑑2 + 𝑑3
 

(B.7) 

 𝐹12𝐴2 = 𝜃̈1𝐶𝑂𝑁𝑆21 + 𝜃̈2𝐶𝑂𝑁𝑆22 + 𝐶𝑂𝑁𝑆23 (B.8) 

Substituting 𝐹12𝐶1 and 𝐹12𝐶2 into (2.53) to solve for 𝐹011. 

𝐹011 = 𝑚1𝑐𝑎𝑧𝑖2𝜃̈1 + (−𝑚2𝑐2 𝑐𝑜𝑠 𝜃2 𝜃̈1 + 𝑚2𝑔 𝑠𝑖𝑛 𝜃2) 𝑐𝑜𝑠 𝜃2

− (𝐹12𝐴2 + 𝑚2𝑐2 𝑠𝑖𝑛 𝜃2 𝜃̈1 + 𝑚2𝑔 𝑐𝑜𝑠 𝜃2) 𝑠𝑖𝑛 𝜃2 ⇒ 

 𝐹011 = (𝑚1𝑐𝑎𝑧𝑖2 − 𝑚2𝑐2)𝜃̈1 (B.9) 

Substituting 𝐹12𝐶1, 𝐹12𝐶2 and 𝐹011 into (2.59) to expressing the resultant equation in 

terms of 𝜃̈1 and 𝜃̈2. 

𝐽133𝜃̈1 = 𝑇01𝑎 − 𝑐01𝑑𝜃̇1 − 𝑐𝑎𝑧𝑖2 ((𝑚1𝑐𝑎𝑧𝑖2 − 𝑚2𝑐2)𝜃̈1)

− (𝑑2 − 𝑐𝑎𝑧𝑖2)(𝐹12𝐴1 𝑐𝑜𝑠 𝜃2 − 𝐹12𝐴2 𝑠𝑖𝑛 𝜃2)

+ (𝑑3 + 𝑐𝑎𝑧𝑖2) ((−𝑚2𝑐2 𝑐𝑜𝑠 𝜃2 𝜃̈1 + 𝑚2𝑔 𝑠𝑖𝑛 𝜃2 − 𝐹12𝐴1) 𝑐𝑜𝑠 𝜃2

− (𝑚2𝑐2 𝑠𝑖𝑛 𝜃2 𝜃̈1 + 𝑚2𝑔 𝑐𝑜𝑠 𝜃2 − 𝐹12𝐴2) 𝑠𝑖𝑛 𝜃2) ⇒ 
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𝜃̈1(𝐽133 + (𝑑3 + 𝑐𝑎𝑧𝑖2)𝑚2𝑐2 𝑐𝑜𝑠 𝜃2)

= 𝑇01𝑎 − 𝑐01𝑑𝜃̇1 − 𝑐𝑎𝑧𝑖2 ((𝑚1𝑐𝑎𝑧𝑖2 − 𝑚2𝑐2)𝜃̈1)

− 𝐹12𝐴1(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2 + 𝐹12𝐴2(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2 ⇒ 

𝜃̈1(𝐽133 + (𝑑3 + 𝑐𝑎𝑧𝑖2)𝑚2𝑐2 𝑐𝑜𝑠 𝜃2)

= 𝑇01𝑎 − 𝑐01𝑑𝜃̇1 − 𝑐𝑎𝑧𝑖2 ((𝑚1𝑐𝑎𝑧𝑖2 − 𝑚2𝑐2)𝜃̈1)

− (𝜃̈1𝐶𝑂𝑁𝑆11 + 𝜃̈2𝐶𝑂𝑁𝑆12 + 𝐶𝑂𝑁𝑆13)(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2

+ (𝜃̈1𝐶𝑂𝑁𝑆21 + 𝜃̈2𝐶𝑂𝑁𝑆22 + 𝐶𝑂𝑁𝑆23)(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2 ⇒ 

 

𝜃̈1(𝐽133 + (𝑑3 + 𝑐𝑎𝑧𝑖2)𝑚2𝑐2 𝑐𝑜𝑠 𝜃2 + 𝑐𝑎𝑧𝑖2(𝑚1𝑐𝑎𝑧𝑖2 − 𝑚2𝑐2)
+ 𝐶𝑂𝑁𝑆11(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2

− 𝐶𝑂𝑁𝑆21(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2)

+ 𝜃̈2(𝐶𝑂𝑁𝑆12(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2

− 𝐶𝑂𝑁𝑆22(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2)

= 𝑇01𝑎 − 𝑐01𝑑𝜃̇1 − 𝐶𝑂𝑁𝑆13(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2

+ 𝐶𝑂𝑁𝑆23(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2 

(B.10) 

Defining the dependent variables so that (B.10) can be expressed as follows. 

 

𝐶𝑂𝑁𝑆31 = 𝐽133 + (𝑑3 + 𝑐𝑎𝑧𝑖2)𝑚2𝑐2 𝑐𝑜𝑠 𝜃2

+ 𝑐𝑎𝑧𝑖2(𝑚1𝑐𝑎𝑧𝑖2 − 𝑚2𝑐2)

+ 𝐶𝑂𝑁𝑆11(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2

− 𝐶𝑂𝑁𝑆21(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2 

(B.11) 

 
𝐶𝑂𝑁𝑆32 = 𝐶𝑂𝑁𝑆12(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2

− 𝐶𝑂𝑁𝑆22(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2 
(B.12) 

 
𝐶𝑂𝑁𝑆33 = −(𝑇01𝑎 − 𝑐01𝑑𝜃̇1 − 𝐶𝑂𝑁𝑆13(𝑑2 + 𝑑3) 𝑐𝑜𝑠 𝜃2

+ 𝐶𝑂𝑁𝑆23(𝑑2 + 𝑑3) 𝑠𝑖𝑛 𝜃2) 
(B.13) 

 𝜃̈1𝐶𝑂𝑁𝑆31 + 𝜃̈2𝐶𝑂𝑁𝑆32 + 𝐶𝑂𝑁𝑆33 = 0 (B.14) 

Substituting 𝐹12𝐶1, 𝐹12𝐶2 and 𝐹011 into (2.66) to expressing the resultant equation in 

terms of 𝜃̈1 and 𝜃̈2. 
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𝜃̈1(−𝐽213 𝑠𝑖𝑛 𝜃2 − 𝐽223 𝑐𝑜𝑠 𝜃2) + 𝜃̈2(𝐽233) − 𝐽213 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2

+ 𝐽223 𝑠𝑖𝑛 𝜃2 𝜃̇1 + 𝐽212(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇1

2 𝑠𝑖𝑛2 𝜃2)

+ 𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 (𝐽211 − 𝐽222)

− 𝐽213𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 + 𝐽223𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2

− (𝑇12𝑎 − 𝑐12𝑑𝜃̇2) = 0 

(B.15) 

Defining the dependent variables so that (B.16)(B.15) can be expressed as follows. 

 𝐶𝑂𝑁𝑆41 = −𝐽213 𝑠𝑖𝑛 𝜃2 − 𝐽223 𝑐𝑜𝑠 𝜃2 (B.16) 

 𝐶𝑂𝑁𝑆42 = 𝐽233 (B.17) 

 

𝐶𝑂𝑁𝑆43 = −𝐽213 𝑐𝑜𝑠 𝜃2 𝜃̇1𝜃̇2 + 𝐽223 𝑠𝑖𝑛 𝜃2 𝜃̇1

+ 𝐽212(𝜃̇1
2 𝑐𝑜𝑠2 𝜃2 − 𝜃̇1

2 𝑠𝑖𝑛2 𝜃2)

+ 𝜃̇1
2 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 (𝐽211 − 𝐽222)

− 𝐽213𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝜃2 + 𝐽223𝜃̇1𝜃̇2 𝑠𝑖𝑛 𝜃2

− (𝑇12𝑎 − 𝑐12𝑑𝜃̇2) 

(B.18) 

 𝜃̈1𝐶𝑂𝑁𝑆41 + 𝜃̈2𝐶𝑂𝑁𝑆42 + 𝐶𝑂𝑁𝑆43 = 0 (B.19) 

(B.14) and (B.19) can be expressed in matrix representation as follows. 

 [
𝐶𝑂𝑁𝑆31 𝐶𝑂𝑁𝑆32

𝐶𝑂𝑁𝑆41 𝐶𝑂𝑁𝑆42
] [

𝜃̈1

𝜃̈2

] = − [
𝐶𝑂𝑁𝑆33

𝐶𝑂𝑁𝑆43
] (B.20) 

Expanding the (B.20) to involve gimbal angular velocity terms, 

 [

0 1 0 0
0 𝐶𝑂𝑁𝑆31 0 𝐶𝑂𝑁𝑆32

0 0 0 1
0 𝐶𝑂𝑁𝑆41 0 𝐶𝑂𝑁𝑆42

]

[
 
 
 
 
𝜃̇1

𝜃̈1

𝜃̇2

𝜃̈2]
 
 
 
 

= −

[
 
 
 

𝜃̇1

𝐶𝑂𝑁𝑆33

𝜃̇2

𝐶𝑂𝑁𝑆43]
 
 
 

 (B.21) 
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