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Abstract: Shunting inhibitory cellular neural networks with compartmental periodic unpredictable
coefficients and inputs is the focus of this research. A new algorithm is suggested, to enlarge the set
of known unpredictable functions by applying diagonalization in arguments of functions of several
variables. Sufficient conditions for the existence and uniqueness of exponentially stable unpredictable
and Poisson stable outputs are obtained. To attain theoretical results, the included intervals method
and the contraction mapping principle are used. Appropriate examples with numerical simulations
that support the theoretical results are provided. It is shown how dynamics of the neural network
depend on a new numerical characteristic, the degree of periodicity.
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1. Introduction

In 1988 [1], Chua and Yang introduced the concept of cellular neural networks (CNNs),
which are arrays of dynamical systems. The authors used CNNs for image processing prob-
lems and solving partial differential equations [2]. These publications sparked widespread
interest in CNNs among researchers, and since then, many new applications of CNNs have
been introduced.

A class of CNNs, shunting inhibitory cellular neural networks (SICNNs), was pro-
posed by Bouzerdoum and Pinter in 1993 [3]. They are biologically inspired networks in
which the synaptic interactions among neurons are mediated via a nonlinear mechanism
called shunting inhibition. In the Ref. [4], the application of SICNNs for medical diagno-
sis, which is based on some given symptoms and initial data, was shown. SICNNs are
very useful for image processing since they can provide contrast and edge enhancement.
The SICNNs algorithm allows to achieve a balance between enhancing the dark region,
and at the same time retaining the colours in the bright [5,6]. The neural networks have
been widely applied in various fields such as psychophysics, robotics, perception, and
adaptive pattern recognition [7–9]. The variable and continuous-time excitatory inputs
guarantee rich dynamics for SICNNs, as well as for shunting inhibitory artificial neural
networks [4,5]. Exceptionally, if they are chaotic, the case will be under investigation of the
present research.

It is known that dynamics of the neural networks is very complex, and play an
important role in applications. Thus, many studies have been devoted to the study of
SICNNs. In particular, the existence and stability of periodic [10,11], anti-periodic [12–14],
almost periodic [15–17] and pseudo-periodic solutions [18,19] have been investigated.
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In its original formulation [3], the model of SICNNs is as follows. Consider a two-
dimensional grid of cells, and denote by Cij, i = 1, . . . , m, j = 1, . . . , n, the cell at the (i, j)
position of the mesh. In SICNNs, neighboring cells exert shunting-type mutual inhibitory
interactions. The following differential equation describes the dynamics of the cell Cij,

x′ij(t) = −aijxij(t)− ∑
Ckl∈Nr(i,j)

Ckl
ij f (xkl(t))xij(t) + vij(t), (1)

where xij is the activity of the cell Cij; aij is the passive decay rate of the cell activity; Ckl
ij ≥ 0

is the connection of postsynaptic activity of the cell Ckl transmitted to the cell Cij; f (s) is the
activation function; vij(t) is the external input to cell Cij; and the r-neighborhood Nr(i, j) of
Cij is

Nr(i, j) = {Ckl : max(|k− i|, |l − j|) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n},

with fixed natural numbers m and n.
Currently, only a few studies have investigated the Poisson stable and unpredictable

motions of shunting-type cellular neural networks. For instance, the dynamics of the SIC-
NNs (1), where the inputs vij(t) are unpredictable, was investigated in [20]. Unpredictable
oscillations of SICNNs with delay,

x′ij(t) = −aijxij(t)− ∑
Ckl∈Nr(i,j)

Ckl
ij f (xkl(t− τ))xij(t) + Lij(t), (2)

were considered in the Ref. [21]. In system (2), inputs Lij(t) are piecewise constant
functions, which have not been approved for unpredictability, while in our research they
are continuous unpredictable functions obtained through the compartmental algorithm.

In the Ref. [22], the following symmetrical impulsive SICNNs with a generalized
piecewise constant argument,

x′ij(t) = aij(t)xij(t)− ∑
Chl∈Nr(i,j)

Chl
ij (t) f (xhl(γ(t)))xij(t) + vij(t), t 6= θk,

∆xij(t) |t=θk= bij(t)xij(θk)− ∑
Dhl∈Nr(i,j)

Chl
ij (t)g(xhl(θk))xij(θk) + hijk, (3)

was considered, and sufficient conditions for the existence and uniqueness of Poisson stable
solutions were obtained.

The following neural model is in the focus of our study,

x′ij(t) = −(aij(t) + bij(t))xij(t)− ∑
ckl∈Nr(i,j)

ckl
ij (t) f (xkl(t))xij(t) + vij(t), (4)

where the coefficients aij(t) are continuous periodic functions; the components bij(t),
connection weights ckl

ij (t) and inputs vij(t) are compartmental periodic unpredictable
functions; the activation function f (s) is continuous.

The dynamics of SICNNs (4), where the functions aij(t) are periodic, bij(t), vij(t) are
Poisson stable, and connection weights ckl

ij are constants, were investigated in the Ref. [23].
This time, all coefficients are time-varying functions, and have a more complex structure
that combines periodicity and unpredictability. The Poisson stable and unpredictable
solutions of the neural network (4) are under investigation.

It is indisputable that any theory of functions with applications should be accompanied
by a number of methods of construction as well as numerical presentations of the functions.
They can be simple algebraic operations, Fourier series and results of theory of operators.
The methods of construction as well as numerical analysis of the unpredictable solutions
are also on the agenda. A novel way to determine unpredictable functions is suggested,
which is rooted at the compartmental paradigm. We start with functions of two variables,
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which are unpredictable in one of them, and in another are periodic. The domains of the
functions are narrowed to diagonals of the argument spaces. The method of diagonals is
known for quasi-periodic functions or almost periodic functions [24,25]. In the present
study, the diagonalization is made on an essentially new level, since dependence on the two
variables is significantly different. This is why it is of large interest to look for conditions
such that functions on diagonals admit the unpredictability.

Despite many papers on almost periodic and Poisson stable functions, there are
no numerical examples, neither for the functions nor solutions, if they are not quasi-
periodic. However, the needs of the industry and particularly neuroscience and other
modern areas demand numerical presentation of dynamics to support theories. Our study
meets the challenges, since we construct several Poisson stable and unpredictable func-
tions numerically, utilizing the merits of the logistic equation. One can emphasise that
even for Poisson stable functions, which have been researched for about a century, the
concrete samples of functions appeared for the first time in our papers [26,27]. The nu-
merical experiments are advantageous, since they are accompanied by newly developed
strong instruments of the functions simulations. They are convenient for synchroniza-
tion of chaos. Delta synchronization has been introduced, which works for gas discharge-
semiconductor systems [28,29], where even the generalized synchronization [30] is not
effective. A numerical test for the unpredictable dynamics was suggested in the Ref. [31],
and strange attractors were discovered [32]. Moreover, we constructed algorithms which
allow to see the contribution of periodicity and the unpredictability for the compartmental
dynamics [33]. They are based on the concept of the degree of periodicity. It was learnt that
very similar time series can be seen in industrial experiments [34–38], and this is a strong
argument for the application of our results. We believe that the study of the compartmental
functions will shed more light on the problem of the transition from quasi-periodicity to
chaos [39,40].

The rest of the paper is organized as follows. In Section 2, the basic and novel
definitions are presented. Special relations between periodicity and unpredictability in
compartmental arguments are determined to establish the unpredictability of compart-
mental functions. They are formulated in terms of time sequences. The lemma on the
existence of an equivalent integral equation is provided as a key technical step in the
analysis. The conditions for neural networks that are sufficient to obtain the results of the
article are announced. Section 3 contains the main results of our study. Using the method of
included intervals [26,27] and a contraction mapping principle, it is strictly proved that the
Poisson stable and unpredictable motions, which are exponentially stable, are present in
the dynamics of the SICNNs (4). In Section 4, discontinuous and continuous unpredictable
functions are defined through the solution of the logistic map. A parameter, the degree
of periodicity, which strongly affects the behaviour of the neural network is introduced.
Numerical examples with illustrations confirming the feasibility of theoretical results are
given. Finally, prospects of the obtained results for chaos control and synchronization in
neural networks are discussed in Section 5.

2. Preliminaries

The definitions of the Poisson stable and unpredictable function are as follows.

Definition 1 ([41]). A bounded function g(t) : R→ Rn is called Poisson stable if there exists a
sequence tp, tp → ∞ as p → ∞, such that the sequence of functions g(t + tp) converges to g(t)
uniformly on each bounded interval of R.

Definition 2 ([42]). A bounded function g : R → Rn is said to be unpredictable if there exist
positive numbers ε0, δ and sequences tp → ∞, sp → ∞ as p→ ∞, such that ‖g(t+ tp)− g(t)‖ →
0 uniformly on compact subsets of R and ‖g(t + tp)− g(t)‖ > ε0 for each t ∈ [sp − δ, sp + δ]
and p ∈ N.
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The sequence tp, p = 1, 2, . . . , is called the convergence sequence in Definitions 1, 2, and
correspondingly, we shall say about the convergence property, while the existence of positive
numbers ε0, δ and sequence sp is said to be the separation property.

It is easily seen, reading the last two definitions, that all unpredictable functions make
a subset of Poisson stable functions specified with an additional property of separation.
It was proved in our studies [42] that the property guarantees chaotic dynamics of the
unpredictable motion. Loosely speaking, one can say that an unpredictable function is a
Poisson stable function with assigned chaotic behaviour.

Definition 3 ([33]). A function g(t) : R→ Rn is called a compartmental periodic unpredictable
function, if g(t) = G(t, t), where G(u, v) is a bounded continuous function, periodic in u uniformly
with respect to v, and unpredictable in v uniformly with respect to u, that is, there exist positive
numbers ω, ε0, δ and sequences tp → ∞, sp → ∞ as p → ∞, such that G(u + ω, v) = G(u, v)
for all u, v ∈ R, sup

u∈R
‖G(u, v + tp)− G(u, v)‖ → 0 uniformly on bounded intervals of v, and

‖G(u, v + tp)− G(u, v)‖ > ε0 for v ∈ [sp − δ, sp + δ], u ∈ R and p ∈ N.

Remark 1. To say that function g(t) in the last definition is a compartmental periodic unpredictable
function does not mean that it is unpredictable in the sense of Definition 2. The question of whether
the function on the diagonal is unpredictable will be answered under the conditions of Lemma 1.

Let us consider the convergence sequence tp, p = 1, 2, . . . , and a fixed positive number
ω. One can write that tp = θp(mod ω), where 0 ≤ θp < ω, p = 1, 2, . . . . There exists a
subsequence θpl , l = 1, 2, . . . , which tends to a real number θω. Consequently, one can
find a subsequence tpl , l = 1, 2, . . . , such that tpl → θω(mod ω) as l → ∞. The number
θω is called a Poisson shift for the convergence sequence tp. Denote by T ω the set of all
Poisson shifts. The number κω = in f T ω, 0 ≤ κω < ω, is said to be the Poisson number for
tp, p = 1, 2, . . . . We say that the convergence sequence satisfies kappa property with respect
to the ω if κω = 0.

The following lemma is a main auxiliary result of the paper.

Lemma 1. Let a bounded function F(u, v) : R× R → Rn, is ω−periodic in u. The function
f (t) = F(t, t) is unpredictable if the following conditions are valid:

(i) For each ε > 0 there exists a positive number η such that ‖F(t + s, t) − F(t, t)‖ < ε if
|s| < η, t ∈ R;

There exist positive numbers ε0, δ and sequences tp, sp both of which diverges to infinity as p→ ∞,
such that

(ii) The sequence tp satisfies kappa property with respect to the ω;
(iii) ‖F(t, t + tp)− F(t, t)‖ → 0, uniformly on each bounded interval I ⊂ R of t;
(iv) inf

[sp−δ,sp+δ]
‖F(t, t + tp)− F(t, t)‖ > ε0, p ∈ N.

Proof. Let us fix a bounded interval I ∈ R, and a positive number ε. By assumption
(ii), one can write, without loss of generality, that tp → 0(mod ω) as p → ∞. Therefore,
conditions (i) and (iii) imply that the following inequalities are valid:

sup
R×R
‖F(t + tp, t)− F(t, t)‖ < ε

2
(5)

and

sup
R×I
‖F(t, t + tp)− F(t, t)‖ < ε

2
, (6)

for sufficiently large p.
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Using inequalities (5) and (6), we obtain that

‖ f (t + tp)− f (t)‖ = ‖F(t + tp, t + tp)− F(t, t)‖ ≤

‖F(t + tp, t + tp)− F(t, t + tp)‖+ ‖F(t, t + tp)− F(t, t)‖ < ε

2
+

ε

2
= ε,

for all t ∈ I. That is, f (t + tp) converges to f (t) on each arbitrary bounded time interval
uniformly, and the function f (t) satisfies the convergence property.

Conditions (i) and (ii) imply that sup
R
‖F(t+ tp, t)− F(t, t)‖ < ε0

2
for sufficiently large

p. Applying assumption (iv), one can obtain that

‖ f (t + tp)− f (t)‖ = ‖F(t + tp, t + tp)− F(t, t)‖ ≥

‖F(t + tp, t + tp)− F(t + tp, t)‖ − ‖F(t + tp, t)− F(t, t)‖ > ε0 −
ε0

2
=

ε0

2
,

for all t ∈ [sp − δ, sp + δ], p ∈ N. Thus, the separation property is valid. The lemma
is proved.

Remark 2. If the conditions of Lemma 1 are valid, then function F(u, v) admits properties of
Definition 3. This is why the lemma provides conditions for unpredictability of a compartmental
periodic function.

Using the theory of differential equations [43], one can verify that the following lemma
is true.

Lemma 2. In order for a bounded on R function y(t) = (yij(t)), i = 1, . . . , m, j = 1, . . . , n, to be
a solution of (4), it is necessary and sufficient that it satisfies the integral equation

yij(t) = −
∫ t

−∞
e−
∫ t

s aij(u)du
(

bij(s)yij(s) + ∑
ckl∈Nr(i,j)

ckl
ij (s) f (ykl(s))yij(s)− vij(s)

)
ds, (7)

for all i = 1, . . . , m, j = 1, . . . , n.

Throughout the paper, we will use the norm ‖v‖ = max
(i,j)

∣∣vij
∣∣, i = 1, . . . , m, j = 1, . . . , n,

where |·| is the absolute value. In what follows, we consider the activation function f in the
domain (−H, H), where H is a fixed positive number.

Suppose that Q is a set of functions φ(t) = (φij(t)), i = 1, 2, . . . , m, j = 1, 2, . . . , n, with
the norm ‖φ(t)‖0 = maxi,j ‖φij(t)‖, such that all φij(t) are Poisson stable with a common
convergence sequence tp, p = 1, 2, . . . , and |φij(t)| < H, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Define on Q the operator T as Tφ(t) = (Tijφ(t)), i = 1, . . . , m, j = 1, . . . , n, where

Tijφ(t) ≡ −
∫ t

−∞
e−
∫ t

s aij(u)du
(

bij(s)φij(s) + ∑
ckl∈Nr(i,j)

ckl
ij (s) f (φkl(s))φij(s)− vij(s)

)
ds. (8)

The following assumptions are needed for system (4):

(C1) functions aij(t), i = 1, . . . , m, j = 1, . . . , n, are ω-periodic, and
∫ ω

0 aij(s)ds > 0;
(C2) functions bij(t), ckl

ij (t) and vij(t) are compartmental periodic unpredictable such that

bij(t) = Bij(t, t), ckl
ij (t) = Ckl

ij (t, t), vij(t) = Vij(t, t), where the functions Bij(u, v),

Ckl
ij (u, v) and Vij(u, v) are ω−periodic in u uniformly with respect to v, and unpre-

dictable in v with common sequences tp, sp, p = 1, 2, . . . , uniformly with respect
to u;

(C3) convergence sequence tp, p = 1, 2, . . . , satisfies the kappa property;
(C4) sup|s|<H | f (s)| = m f , where m f is a positive number;
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(C5) there exists a constant L > 0 such that | f (s1)− f (s2)| ≤ L|s1− s2| if |s1| < H, |s2| < H.

Condition (C1) implies that there exist constants Kij ≥ 1 and λij > 0, which satisfy

e−
∫ t

s aij(u)du ≤ Kije
−λij(t−s), t ≥ s,

for all i = 1, . . . , m, j = 1, . . . , n.
For the sake of simplicity, the following notations will be used.

mb
ij = sup

t∈R
|bij(t)|, mc

ij = ∑
Ckl∈Nr(i,j)

sup
t∈R
|ckl

ij (t)|, mv
ij = sup

t∈R
|vij(t)|,

for each i = 1, 2, . . . , m, j = 1, 2, . . . , n.
We assume that the following conditions are satisfied.

(C6)
Kijmv

ij

λij − Kijmb
ij − Kijmc

ijm f
< H, i = 1, . . . , m, j = 1, . . . , n;

(C7) Kij(mb
ij + mc

ij(m f + LH)) < λij, i = 1, . . . , m, j = 1, . . . , n.

3. Main Results

This part of the manuscript considers the existence of the dynamics, which is described
in the Preliminary section. The discussion is fulfilled by researching dynamics of operator
T in the space Q. We will show that it is invariant and contractive in the set, and prove
the existence of Poisson stable dynamics for the neural networks. Next, the existence of
the unpredictable solution is approved, to guarantee chaotic features in the dynamics. The
exponential stability of the solution is verified under suggested conditions.

Lemma 3. Assume that conditions (C1)–(C6) are valid. Then T is an invariant operator in Q.

Proof. Let φ(t) ∈ Q. We have that

|Tijφ(t)| ≤ |
∫ t

−∞
e−
∫ t

s aij(u)du
(

bij(s)φij(s) + ∑
ckl∈Nr(i,j)

ckl
ij (s) f (φkl)(s)φij(s)− vij(s)

)
ds| ≤

∫ t

−∞
Kije

−λij(t−s)
(
|bij(s)||φij(s)|+ ∑

ckl∈Nr(i,j)
|ckl

ij (s)|| f (φkl)(s)||φij(s)|+ |vij(s)|
)

ds ≤

Kij

λij
(mb

ij H + mc
ijm f H + mv

ij),

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n. By condition (C6), we obtain that |Tijφ(t)| < H,
i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Next, we prove that the sequence of the functions Tijφ(t + tp), i = 1, 2, . . . , m,
j = 1, 2, . . . , n, uniformly converges to Tijφ(t) on each bounded interval of R. Let us
fix a bounded interval [α, β] ⊂ R, and a positive number ε. There exist numbers ξ > 0 and
γ < α, such that the following inequalities are valid for all i = 1, 2, . . . , m, j = 1, 2, . . . , n,

2Kij

λij
e−λij(α−γ)

(
3mb

ijH + 3mc
ijm f H + mc

ijLH2 + 2mv
ij

)
<

ε

2
, (9)

Kij

λij
(eξ(β−γ) − 1)

(
2mb

ijH + mc
ijm f H + mv

ij

)
<

ε

4
, (10)

Kijξ

λij

(
mb

ij + H + mc
ijm f + mc

ijLH + mnm f H + 1
)
<

ε

4
. (11)
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The proof technique given below is called the method of included intervals, since the interval
[α, β] is contained in [γ, β] [26].

Applying condition (C3), one can take a sufficiently large number p such that |bij(t +
tp)− bij(t)| < ξ, |cij(t + tp)− cij(t)| < ξ, |vij(t + tp)− vij(t)| < ξ, |φij(t + tp)− φij(t)| < ξ,
i = 1, 2, . . . , m, j = 1, 2, . . . , n, for t ∈ [γ, β]. Moreover, due to condition (C1), it is correct
that |aij(t + tp)− aij(t)| < ξ for all t ∈ R. We have that

|Tijφ(t + tp)− Tijφ(t)| ≤ |
∫ t

−∞
e−
∫ t

s aij(u+tp)du
(

bij(s + tp)φ(s + tp) +

∑
ckl∈Nr(i,j)

ckl
ij (s + tp) f (φkl(s + tp))φij(s + tp)− vij(s + tp)

)
ds +

∫ t

−∞
e−
∫ t

s aij(u)du
(

bij(s)φ(s) + ∑
ckl∈Nr(i,j)

ckl
ij (s) f (φkl(s))φij(s)− vij(s)

)
ds| ≤

∫ t

−∞
|e−

∫ t
s aij(u+tp)du − e−

∫ t
s aij(u)du|

∣∣∣bij(s + tp)φ(s + tp) +

∑
ckl∈Nr(i,j)

ckl
ij (s + tp) f (φkl(s + tp))φij(s + tp)− vij(s + tp)

∣∣∣ds +

∫ t

−∞
e−
∫ t

s aij(u)du
∣∣∣bij(s + tp)φ(s + tp)− bij(s)φ(s) +

∑
ckl∈Nr(i,j)

ckl
ij (s + tp) f (φkl(s + tp))φij(s + tp)−

∑
ckl∈Nr(i,j)

ckl
ij (s) f (φkl(s))φij(s)− vij(s + tp) + vij(s)

∣∣∣ds.

Consider the last inequality separately on intervals (−∞, γ] and (γ, t]. Applying
inequalities (9)–(11), we obtain

I1 =
∫ γ

−∞
|e−

∫ t
s aij(u+tp)du − e−

∫ t
s aij(u)du|

∣∣∣bij(s + tp)φ(s + tp) +

∑
ckl∈Nr(i,j)

ckl
ij (s + tp) f (φkl(s + tp))φij(s + tp)− vij(s + tp)

∣∣∣ds +

∫ γ

−∞
e−
∫ t

s aij(u)du
∣∣∣bij(s + tp)φ(s + tp)− bij(s)φ(s) +

∑
ckl∈Nr(i,j)

ckl
ij (s + tp) f (φkl(s + tp))φij(s + tp)−

∑
ckl∈Nr(i,j)

ckl
ij (s) f (φkl(s))φij(s)− vij(s + tp) + vij(s)

∣∣∣ds ≤

∫ γ

−∞
2Kije

−λij(t−s)
(

mb
ijH + mc

ijm f H + mv
ij

)
ds +∫ γ

−∞
Kije

−λij(t−s)
(

4mb
ijH + 2Hm f mc

ij + 2mc
ijLH2 + 2mc

ijHm f + 2mv
ij

)
ds ≤

2Kij

λij
e−λij(α−γ)

(
3mb

ijH + 3mc
ijm f H + mc

ijLH2 + 2mv
ij

)
<

ε

2
(12)

and
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I2 =
∫ t

−γ
|e−

∫ t
s aij(u+tp)du − e−

∫ t
s aij(u)du|

∣∣∣bij(s + tp)φ(s + tp) +

∑
ckl∈Nr(i,j)

ckl
ij (s + tp) f (φkl(s + tp))φij(s + tp)− vij(s + tp)

∣∣∣ds +

∫ t

γ
e−
∫ t

s aij(u)du
∣∣∣bij(s + tp)φ(s + tp)− bij(s)φ(s) +

∑
ckl∈Nr(i,j)

ckl
ij (s + tp) f (φkl(s + tp))φij(s + tp)−

∑
ckl∈Nr(i,j)

ckl
ij (s) f (φkl(s))φij(s)− vij(s + tp) + vij(s)

∣∣∣ds ≤

≤
∫ t

γ
Kije

−λij(t−s)(eξ(β−γ) − 1)
(

2mb
ijH + mc

ijm f H + mv
ij

)
ds +∫ t

γ
Kije−λ(t−s)

(
mb

ijξ + Hξ + mc
ijm f ξ + mc

ijLHξ + mnξm f H + ξ
)

ds ≤

Kij

λij
(eξ(β−γ) − 1)

(
2mb

ijH + mc
ijm f H + mv

ij

)
+

Kij

λij
ξ
(

mb
ij + H + mc

ijm f + mc
ijLH + mnm f H + 1

)
<

ε

4
+

ε

4
=

ε

2
. (13)

Inequalities (12) and (13) give that |Tijφ(t + tp)− Tijφ(t)| ≤ I1 + I2 < ε for all i =
1, 2, . . . , m, j = 1, 2, . . . , n, if t ∈ [α, β]. Therefore, TQ ⊆ Q.

Lemma 4. Conditions (C1)–(C7) imply that T is a contraction operator in Q.

Proof. Let ϕ and ψ be members of Q. It is true that the inequality

|Tij ϕ(t)− Tijψ(t)| ≤
∫ t

−∞
e−
∫ t

s aij(u)du
(
|bij(s)(ϕ(s)− ψ(s))|+

∑
ckl∈Nr(i,j)

ckl
ij (s)(| f (ϕkl(s))ϕij(s)− f (ϕkl(s))ψij(s)|+

| f (ϕkl(s))ψij(s)− f (ψkl(s))ψij(s))|
)

ds ≤
Kij

λij

(
mb

ij + mc
ij(m f + LH)

)
‖ϕ− ψ‖0

is valid for all i = 1, 2, . . . , m, j = 1, 2, . . . , n. Therefore, it is true that ‖Tϕ − Tψ‖0 ≤
Kij(mb

ij + mc
ij(m f + LH))

λij
‖ϕ− ψ‖0, and by condition (C7), operator T is contractive in

Q.

Theorem 1. If the assumptions (C1)–(C7) are valid, then the neural network (4) has a unique,
exponentially stable Poisson stable solution.

Proof. Let us show that the set Q is complete. Consider a sequence φk(t) in Q, which
converges on R to a limit function φ(t). Fix a section I ⊂ R. We have that

‖φ(t + tp)− φ(t)‖ ≤ ‖φ(t + tp)− φk(t + tp)‖+ ‖φk(t + tp)− φk(t)‖+ ‖φk(t)− φ(t)‖. (14)

One can take sufficiently large numbers p and k such that each term on the right-hand-
side of (14) is smaller than ε

3 for an arbitrary ε > 0 and t ∈ I. The inequality (14) implies
that φ(t + tp) converges to φ(t) uniformly on I. That is, the set Q is complete.
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By the contraction mapping principle, duo to Lemmas 3 and 4, there exists a unique
Poisson stable solution, z(t) ∈ Q of the system (4), such that the sequences z(t + tp)
converges to z(t) uniformly on each of the bounded intervals of R.

Now, let us discuss the stability of the solution z(t). It is true that

zij(t) = e−
∫ t

t0
aij(u)duzij(t0)−

∫ t

t0

e−
∫ t

s aij(u)du
(

bij(s)zij(s) + ∑
ckl∈Nr(i,j)

ckl
ij (s) f (zkl(s))zij(s)− vij(s)

)
ds,

for all i = 1, . . . , m, j = 1, . . . , n.
If x(t) = (xij(t)), i = 1, . . . , m, j = 1, . . . , n, is another solution of the neural network (4),

then

xij(t) = e−
∫ t

t0
aij(u)duxij(t0)−

∫ t

t0

e−
∫ t

s aij(u)du
(

bij(s)xij(s) + ∑
ckl∈Nr(i,j)

ckl
ij (s) f (xkl(s))xij(s)− vij(s)

)
ds.

Using the formula

xij(t)− zij(t) = e−
∫ t

t0
aij(u)du(xij(t0)− zij(t0)

)
−
∫ t

t0

e−
∫ t

t0
aij(u)du ×(

∑
ckl∈Nr(i,j)

ckl
ij (s) f (xkl(s))xij(s)− ∑

ckl∈Nr(i,j)
ckl

ij (s) f (zkl(s))zij(s)
)

ds =

e−
∫ t

t0
aij(u)du(xij(t0)− zij(t0)

)
−
∫ t

t0

e−
∫ t

t0
aij(u)du

(
∑

ckl∈Nr(i,j)
ckl

ij (s) f (xkl(s))xij(s)−

∑
ckl∈Nr(i,j)

ckl
ij (s) f (zkl(s))xij(s) + ∑

ckl∈Nr(i,j)
ckl

ij (s) f (zkl(s))xij(s)−

∑
ckl∈Nr(i,j)

ckl
ij (s) f (zkl(s))zij(s)

)
ds,

we obtain that

|xij(t)− zij(t)| ≤ e−
∫ t

t0
aij(u)du|xij(t0)− zij(t0)|+

∫ t

t0

e−
∫ t

t0
aij(u)du

(
bij(s)(xij(s)− zij(s)) +

∑
ckl∈Nr(i,j)

ckl
ij (s)| f (xkl(s))− f (zkl(s))||xij(s)|ds + ∑

ckl∈Nr(i,j)
ckl

ij (s)| f (zkl(s))||xij(s)− zij(s)|
)

ds ≤

Kije
−λij(t−t0)|xij(t0)− zij(t0)|+

∫ t

t0

Kije
−λij(t−t0)(mb

ij + mc
ij(LH + m f ))|xij(s)− zij(s)|ds,

is valid for all i = 1, 2, . . . , m, j = 1, 2, . . . , n.
Applying the Gronwall–Bellman lemma, one can attain that

|xij(t)− zij(t)| ≤ Kij|xij(t0)− zij(t0)|e
(Kij(mb

ij+mc
ij(LH+m f H))−λij)(t−t0), t > t0.

Consequently, z(t) is exponentially stable in accordance with condition (C7).

Theorem 2. Assume that conditions (C1)–(C7) are fulfilled. Then the neural network (4) possesses
a unique exponentially stable unpredictable solution.

Proof. According to Theorem 1, under conditions (C1)–(C7) there exists a unique expo-
nentially stable solution z(t), which satisfies the convergence property. Now, we will prove
that the separation property for the solution z(t) is true. Condition (C2) implies that for
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functions vij(t), i = 1, . . . , m, j = 1, . . . , n, there exists a sequence sp and positive numbers
ε0, δ such that |vij(t + tp)− vij(t)| > ε0 for each t ∈ [sp − δ, sp + δ] and p ∈ N.

It is true that

zij(t) = zij(sp)−
∫ t

sp
aij(s)zij(s)ds−

∫ t

sp
bij(s)zij(s)ds−∫ t

sp
∑

ckl∈Nr(i,j)
ckp

ij (s) f (zkp(s))ωij(s)ds +
∫ t

sp
vij(s)ds

and

zij(t + tp) = zij(tp + sp)−
∫ t

sp
aij(s + tp)zij(s + tp)ds−

∫ t

sp
bij(s + tp)zij(s + tp)ds−∫ t

sp
∑

ckl∈Nr(i,j)
ckl

ij (s + tp) f (zkl(s + tp))ωij(s + tp)ds +
∫ t

ss
vij(s + tp)ds.

Therefore, we have that

zij(t + tp)− zij(t) = zij(tp + sp)− zij(sp)−
∫ t

sp
aij(s + tp)ij(s + tp)ds +∫ t

sp
aij(s)zij(s)ds−

∫ t

sp
bij(s + tp)zij(s + tp)ds +

∫ t

sp
bij(s)zij(s)ds−∫ t

sp
∑

ckl∈Nr(i,j)
ckl

ij (s + tp) f (zkl(s + tp))ωij(s + tp)ds +

∫ t

sp
∑

ckl∈Nr(i,j)
ckl

ij (s) f (zkl(s))ωij(s)ds−
∫ t

ss
vij(s + tp)ds +

∫ t

sp
vij(s)ds.

Denote ma
ij = sup

t∈R
|aij(t)|. One can fix positive numbers l, k and δ1 such that the

following inequalities are satisfied:
δ1 < δ; (15)

|aij(t + s)− aij(s)| < ε0(
1
l
+

2
k
), t ∈ R, (16)

|cij(t + s)− cij(s)| < ε0(
1
l
+

2
k
), t ∈ R, (17)

δ1

[
ε0

(
1− (

1
l
+

2
k
)(ma

ij + H + mb
ij + LH + mc

ijm f + mnm f H)
)
− 2H(mb

ij + mc
ijm f )

]
>

3ε0

2l
, (18)

|zij(t + s)− zij(t)| < ε0 min(
1
k

,
1
4l
), t ∈ R, |s| < δ1. (19)

Consider the following two alternatives: (i) |zij(tp + sp) − zij(sp)| < ε0/l;
(ii) |zij(tp + sp)− zij(sp)| ≥ ε0/l.

(i) Using (19), for each i = 1, 2, . . . , m, j = 1, 2, . . . , n, one can show that

|zij(t + tp)− zij(tp)| ≤ |zij(t + tp)− zij(sp + tp)|+ |zij(sp + tp)− zij(sp)|+

|zij(sp)− zij(t)| <
ε0

l
+

ε0

k
+

ε0

k
= ε0(

1
l
+

2
k
), (20)
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if t ∈ [sp, sp + δ1]. Therefore, the condition (C4) and inequalities (15)–(19) imply that

|zij(t + tp)− zij(t)| ≥
∫ t

sp
|vij(s + tp)− vij(s)|ds− |zij(tp + sp)− zij(sp)| −∫ t

sp
|aij(s + tp)zij(s + tp)|ds +

∫ t

sp
|aij(s)ijzij(s)|ds−

∫ t

sp
|bij(s + tp)zij(s + tp)|ds +∫ t

sp
|bij(s)ijzij(s)|ds−

∫ t

sp
| ∑

ckl∈Nr(i,j)
ckl

ij (s + tp) f (zkl(s + tp))zij(s + tp)|ds +

∫ t

sp
| ∑

ckl∈Nr(i,j)
ckl

ij (s) f (zkl(s))zij(s)|ds > ε0δ1 −
ε0

l
− ε0δ1(

1
l
+

2
k
)(ma

ij + H)−

2δ1mb
ij H − ε0δ1(

1
l
+

2
k
)mb

ij − 2δ1mc
ijm f H − ε0δ1(

1
l
+

2
k
)(LH + mc

ijm f + mnm f H) =

δ1

(
ε0 − 2mb

ij H − 2mc
ijm f H − ε0(

1
l
+

2
k
)(ma

ij + H + mb
ij + LH + mc

ijm f + mnm f H)
)

− ε0

l
≥ ε0

2l
,

for t ∈ [sp, sp + δ1].
(ii) If |zij(tp + sp)− zij(sp)| ≥ ε0/l, it is not difficult to find that (18) implies:

|zij(t + tp)− zij(t)| ≥ |zij(tp + sp)− zij(sp)| − |zij(sp)− zij(t)| −

|zij(t + tp)− zij(tp + sp)| >
ε0

l
− ε0

4l
− ε0

4l
=

ε0

2l
,

for t ∈ [sp − δ1, sp + δ1] and p ∈ N. Thus, we can conclude that z(t) is an unpredictable
solution with positive numbers δ1

2 , ε0
2l and sequences tp, sp.

4. Degree of Periodicity and Numerical Simulations

This part of the article emphasises application significance of the theoretical achieve-
ments in the Section 3. Unpredictable continuous and discontinuous functions are con-
structively determined through discrete Poisson stable and unpredictable motions of the
logistic equation. A special technical characteristic, the degree of periodicity, is introduced,
which allows to estimate contributions of periodic and unpredictable arguments to the
behaviour of the neural network. This can be useful for analysis of experimental data in
industries [34–38], and this is a strong argument for the application of our results. Finally,
two numerical examples with sophisticated dynamics can be seen below.

In the Ref. [42], it was proved that the logistic map

λi+1 = νλi(1− λi), i ∈ Z. (21)

admits an unpredictable solution µi, i ∈ Z, if ν ∈ [3 + (2/3)1/2, 4]. That is, there exist
sequences ζp → ∞, ηp → ∞ as p→ ∞, and a positive number ε0 such that µi+ζp tends to
µi for each i in a bounded interval of integers and |µζp+ηp − µηp | > ε0 for p ∈ N.

Discontinuous unpredictable function. Consider the function π(t) = µiξ(t − ih), t ∈
(ih, (i + 1)h], i ∈ Z, where µi is an unpredictable solution of the logistic Equation (21),
ξ(t) : (0, h]→ Rn, n ∈ N, is a continuous function, and h is a positive number. Assume that
there exist positive numbers δ, s and ε1 such that [s− δ, s + δ] ⊂ (0, h] and ‖ξ(t)‖ > ε1 for
each t ∈ [s− δ, s + δ].

Let us show that the function π(t) is unpredictable. Fix an interval of real numbers
(α, β) and a number i ∈ Z such that (α, β) ⊂ [(i− 1)h, (i + s + 1)h], where s is a natural
number. Then for tp = ζph, p ∈ N, and t ∈ (jh, (j + 1)h], i− 1 ≤ j ≤ i + s, we have that
t + ζph ∈ ((j + ζp)h, (j + ζp + 1)h], and ξ(t− (j + ζp)h) = ξ(t− jh).
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Denote M = supt∈(0,h] ‖ξ(t)‖. For a fixed positive number ε, and sufficiently large
number p, it is true that |µj+ζp − µj| < ε

M , i− 1 ≤ j ≤ i + s. Therefore, for t ∈ (lh, (l + 1)h],
where l is a fixed integer number from i− 1 to i + s, one can obtain that

‖π(t + tp)− π(t)‖ = ‖π(t + ζph)− π(t)‖ = ‖µl+ζp ξ(t− (l + ζp)h)− µlξ(t− lh)‖ =
|µl+ζp − µj|‖ξ(t− lh)‖ ≤ |µl+ζp − µl |M < ε.

The last inequality is valid for all i− 1 ≤ l ≤ i + s. Consequently, ‖π(t+ tp)−π(t)‖ <
ε if t ∈ (α, β). Thus, the function π(t) satisfies the convergence property.

We have that there exists a positive number ε0, and the sequence ηp, ηp → ∞ as
p→ ∞, such that |µζp+ηp − µηp | > ε0 for each p ∈ N.

From tp = ζph, p = 1, 2, · · · , and t ∈ (ηph + s− δ, ηph + s + δ] it follows that t + tp =
t+ ζph ∈ ((ζp + ηp)h+ s− δ, (ζp + ηp)h+ s+ δ]. Therefore, ξ(t+ tp) = ξ(t− (ζp + ηp)h) =
ξ(t− ηph), p = 1, 2, · · · . We obtain that

‖π(t + tp)− π(t)‖ = ‖µζp+ηp ξ(t− (ζp + ηp)h)− µηp ξ(t− ζph)‖ =
|µζp+ηp − µηp |‖ξ(t− ηph)‖ > ε0ε1 > 0, (22)

for all t ∈ (ηph+ s− δ, ηph+ s+ δ], p = 1, 2, · · · . Thus, the function π(t) satisfies separation
property, and one can conclude that it is unpredictable with positive numbers ε∗ = ε0ε1, δ,
and sequences tp = ζph, sp = ηph + s, p = 1, 2, · · · .

Continuous unpredictable function. Using the function π(t), we construct an integral
function Ξ(t) =

∫ t
−∞ e−α(t−s)π(s)ds, where α is a positive real number. The function Ξ(t)

is bounded on R such that supt∈R ‖Ξ(t)‖ ≤
Mπ
α , where Mπ = supt∈R ‖π(t)‖.

Let us discuss the unpredictability of the function Ξ(t). Firstly, we shall approve the
convergence property. Fix an interval [a, b] ⊂ R and a number ε > 0. Applying the method
of included intervals [26], we will show that Ξ(t + tp)→ Ξ(t) uniformly on [a, b]. There exist
numbers ξ > 0 and c < a, such that the following inequalities are valid, 2Mπ

α e−α(a−c) < ε
2

and ξ
α [1− e−α(b−c)] < ε

2 . Let p be a large enough number, such that ‖π(t + tp)− π(t)‖ < ξ
on [c, b]. We obtain that

‖Ξ(t + tp)− Ξ(t)‖ = ‖
∫ t

−∞
e−α(t−s)(π(s + tp)− π(s))ds‖ =

‖
∫ c

−∞
e−α(t−s)(π(s + tp)− π(s))ds +

∫ t

c
e−α(t−s)(π(s + tp)− π(s))ds‖ ≤∫ c

−∞
e−α(t−s)2Mπds +

∫ t

c
e−α(t−s)ξds ≤ 2Mπ

α
e−α(a−c) +

ξ

α
[1− e−α(b−c)] <

ε

2
+

ε

2
= ε,

for all t ∈ [a, b]. Thus, ‖Ξ(t + tk)− Ξ(t)‖ → 0 as k → ∞ uniformly on the interval [a, b],
and the convergence property is fulfilled.

Next, we verify that the separation property is correct. Due to the unpredictability of
the function π(t), we have that ‖π(t+ tp)−π(t)‖ > ε∗ for t ∈ [sp− δ, sp + δ]. Fix a natural
number p and positive δ1 < δ such that 2Mπδ1

α [1− e−αδ1 ] < ε∗
3α . Consider two alternative

cases: (i) ‖Ξ(tp + sp)− Ξ(sp)‖ < 2δ1ε∗

3α , (ii) ‖Ξ(tp + sp)− Ξ(sp)‖ ≥ 2δ1ε∗

3α .
It is easily seen that the following relation holds

Ξ(t + tp)− Ξ(t) = Ξ(tp + sp)− Ξ(sp) +
∫ t

sp
e−α(t−s)(π(s + tp)− π(s))ds. (23)

(i) From the last relation, we obtain that
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‖Ξ(t + tp)− Ξ(t)‖ ≥ ‖
∫ t

sp
e−α(t−s)(π(s + tp)− π(s))ds‖ − ‖Ξ(tp + sp)− Ξ(sp)‖ >∫ t

sp
e−α(t−s)ε∗ds− 2δ1ε∗

3α
≥ δ1ε∗

α
− 2δ1ε∗

3α
=

δ1ε∗

3α
(24)

for t ∈ [sp − δ1, sp + δ1].
(ii) Using the relation (23), we obtain that

‖Ξ(t + tp)− Ξ(t)‖ ≥ ‖Ξ(tp + sp)− Ξ(sp)‖ − ‖
∫ t

sp
e−α(t−s)(π(s + tp)− π(s))ds‖ >

2δ1ε∗

3α
−
∫ t

sp
e−α(t−s)2Mπds ≥ 2δ1ε∗

3α
− 2Mπδ1

α
[1− e−αδ1 ] >

δ1ε∗

3α
(25)

for t ∈ [sp − δ1, sp + δ1]. The inequalities (24) and (25) prove that the separation property
is valid. Thus, the function Ξ(t) is unpredictable with positive numbers ε1 = δ1ε∗

3α , δ1 and
sequences tp, sp.

Below, we will use the continuous unpredictable function Ξ(t) =
∫ t
−∞ e−3(t−s)π(s)ds,

where π(t) = µi cos(t− ih), t ∈ (ih, (i + 1)h], i ∈ Z, as a component of compartmental
periodic unpredictable coefficients. The number h is said to be the length of step of functions
π(t) and Ξ(t). For compartmental periodic unpredictable functions, the number ∇ = ω/h,
is called the degree of periodicity.

Let us consider the following compartmental periodic unpredictable function f (t) =
G(t, t) = 2 cos(0.1t)Ξ(t) + sin(0.2t). The function G(u, v) is 20π−periodic in u uniformly
with respect to v, and unpredictable in v uniformly with respect to u. For the function f (t)
the degree of periodicity is equal to 200. In Figure 1 the graph of function f (t) is shown.

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

t

f
(t
)

Figure 1. The graph of compartmental periodic unpredictable function f (t). The length of step
h = 0.1π, and degree of periodicity ∇ = 200.

The following lemma is used in the examples.

Lemma 5 ([33]). Assume that bounded function g(u) : Rn → Rn, satisfies the inequalities
L1‖u1 − u2‖ ≤ ‖g(u1)− g(u2)‖ ≤ L2‖u1 − u2‖, where L1, L2 are positive constants, for all
u1, u2 ∈ Rn. Then the function g(ψ(t)) is unpredictable, provided that ψ(t) : R → Rn is an
unpredictable function.

Example 1. Let us consider the system:

dxij(t)
dt

= −(aij(t) + bij(t))xij(t)− ∑
ckl∈N1(i,j)

ckl
ij (t) f (xkl(t))xij(t) + vij(t), (26)
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with i = 1, 2, j = 1, 2, 3, and f (s) = 0.25 tanh(s). The functions c11
ij (t) = 0.2 sin(2t)Ξ(t), c12

ij (t)
= 0.1 sin(t)Ξ(t), c13

ij (t) = 0.3 cos(2t)Ξ(t), c21
ij (t) = 0.3 sin(2t)Ξ(t), c22

ij (t) = 0.1 cos(t)Ξ(t)
and c23

ij (t) = 0.2 sin(t)Ξ(t) are compartmental periodic unpredictable. The functions aij(t),
i = 1, 2, j = 1, 2, 3, are 2π−periodic: a11(t) = 3 + sin(t), a12(t) = 2 + cos(t), a13(t) =
4 + sin(2t), a21(t) = 5 + cos(4t), a22(t) = 3 + cos(2t), a23(t) = 2 + sin(t). According
Lemma 5, the functions bij(t) and perturbation vij(t) are compartmental periodic unpredictable:
b11(t) = cos(4t)Ξ(t), b12(t) = sin(2t) tanh(Ξ(t)), b13(t) = sin(4t)Ξ(t), b21(t) = cos(2t)
arctan(Ξ(t)), b22(t) = sin(t)Ξ(t), b23(t) = cos(4t)Ξ(t), v11(t) = 3 sin(2t)Ξ(t), v12(t) =
arctan(Ξ(t)) + 0.5 cos(2t), v13(t) = 4 sin(t)Ξ(t), v21(t) = 3 sin(t) arctan(Ξ(t)), v22(t) =
0.4 cos(2t)Ξ(t), v23(t) = cos(2t)Ξ(t). Condition (C1) is satisfied, and Kij = 1.5, i = 1, 2,
j = 1, 2, 3, λ11 = 6π, λ12 = 4π, λ13 = 8π, λ21 = 10π, λ22 = 6π, λ23 = 4π. Condition
(C3) is valid since the elements of the convergence sequence tp are multiples of the length of step
h and the period ω is equal to 2π. Conditions (C4)–(C7) are satisfied with H = 0.8, m f = π/8,
L = 0.25, max(i,j) mc

ij = 2/15, max(i,j) mb
ij = 1/3, mv

11 = 1, mv
12 = 5/6, mv

13 = 4/3, mv
21 = 1,

mv
22 = 2/15 and mv

23 = 1/3.
By Theorem 2, the neural network (26) has a unique exponentially stable unpredictable solution

z(t) = (zij(t)), i = 1, 2, j = 1, 2, 3. Figures 2 and 3 show the solution x(t) = (xij(t)), i = 1, 2,
j = 1, 2, 3, with the length of step h = 2π and h = 8π, respectively. The solution x(t) exponentially
converges to the unpredictable solution z(t).

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

t

x
1
1

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

t

x
1
2

0 20 40 60 80 100

−0.1

−0.05

0

0.05

0.1

0.15

t

x
1
3

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

t

x
2
1

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

t

x
2
2

0 20 40 60 80 100

−0.6

−0.4

−0.2

0

0.2

0.4

t

x
2
3

Figure 2. The time series of the solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of the system (26) with
initial values x11(0) = 0.2, x12(0) = 0.3, x13(0) = 0.1, x21(0) = 0.2, x22(0) = 0.1, x23(0) = 0.1, and
the degree of periodicity ∇ = 1.
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Figure 3. The graph of the solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of SICNNs (26) with the initial
values x11(0) = 0.2, x12(0) = 0.3, x13(0) = 0.1, x21(0) = 0.2, x22(0) = 0.1, x23(0) = 0.1, and the
degree of periodicity ∇ = 1/4.
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Example 2. Let us take into account the SICNNs (26) with a11(t) = 3 + sin(0.1t), a12(t) =
2 + cos(0.1t), a13(t) = 4 + sin(0.2t), a21(t) = 5 + cos(0.4t), a22(t) = 3 + cos(0.2t), a23(t) =
2 + sin(0.1t), v11(t) = 3 sin(0.2t)Ξ(t), v12(t) = arctan(Ξ(t)) + 0.5 cos(0.2t), v13(t) =
4 sin(0.1t)Ξ(t), v21(t) = 3 sin(0.1t) arctan(Ξ(t)), v22(t) = 0.4 cos(0.2t)Ξ(t), v23(t) =
cos(0.2t)Ξ(t). The functions bij(t) and ckl

ij (t) are the same as in Example 1. The period ω is
equal to 20π. In Figure 4, the graph of the solution of SICNNs (26) with the length of step h = 0.2π
and the degree of periodicity ∇ = 100 is demonstrated.
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Figure 4. The graph of the solution x(t) = (xij(t)), i = 1, 2, j = 1, 2, 3, of SICNNs (26) with the initial
values x11(0) = 0.2, x12(0) = 0.3, x13(0) = 0.1, x21(0) = 0.2, x22(0) = 0.1, x23(0) = 0.1, and the
degree of periodicity ∇ = 100.

Analysing the numerical simulations above, one can make interesting observations
concerning dominance of periodicity and unpredictability in compartmental functions.
Figures 2 and 3 show that the unpredictability prevails if∇ ≤ 1. More precisely, periodicity
is not seen if ∇ = 1 at all, and it appears only locally on isolated intervals, if ∇ < 1. In
contrast, if ∇ > 1, one can see in Figures 1 and 4 that the graphs admit a clear periodic
shape, which is enveloped by the unpredictability.

5. Conclusions

In this paper, we considered SICNNs with variable compartmental unpredictable
coefficients and inputs. Sufficient conditions were obtained to ensure the existence of
exponentially stable unpredictable and Poisson stable solutions. Effectiveness of neural
networks strongly depend on the selection of the right inputs [7–9]. Obviously, one can
consider them not to be constant, but variable. In this case, there are two significantly
different sorts of continuous-type inputs, regular (such as periodic, almost periodic, and
recurrent) [10–17], and irregular or chaotic [44,45]. The choice of chaotic bias is an effective
approach, since it is rich for infinitely many various motions, and periodic and almost
periodic [46] are among them. The motions can be stabilized by different methods of
control [47]. Recently, we have started to work with chaotic dynamics being focused on
a single motion, the unpredictable point. The point is an unpredictable function [42], if
the space is a functional one. The dynamics on the closure of the trajectory was named
Poincaré chaos. Thus, all benefits of neural networks with chaotic inputs are also valid
for the unpredictable dynamics in neuroscience. Additionally, new characteristics to
synchronize have been determined [28,29], the convergence and divergence sequences.
The characteristics make convenient circumstances for collective analysis of the neural
networks. It deserves to be mentioned that the reduction in chaotic analysis to a single
motion provides new possibilities for numerical simulations of neural networks, and
this was seen in the present paper. We compared Figures 1–4 with experimental data in
the Ref. [34–38], and it was found that they are surprisingly similar. It means that the
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compartmental motions can find applications in solutions of industrial problems. Finally,
the effectiveness of the compartmental approach to the unpredictability was shown by
analysis of contributions of periodicity and unpredictability in the outputs, and it was
just the first step in the direction of application of the research, since the next ones will
be connected to control of chaos, which will be applied to the compartments’ parameters
separately. Moreover, it will be productive if the compartmental nature of the dynamics
will be taken into account for synchronization research [28,29,47–49].

Author Contributions: M.A.: conceptualization; methodology; investigation. M.T.: investigation;
supervision; writing—review and editing. A.Z.: software; investigation; writing—original draft. All
authors have read and agreed to the published version of the manuscript.

Funding: M. Akhmet and A. Zhamanshin have been supported by 2247-A National Leading Re-
searchers Program of TUBITAK, Turkey, N 120C138. M. Tleubergenova has been supported by the
Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant No.
AP14870835).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their sincere gratitude to the referees for the helpful
criticism and valuable suggestions, which helped to improve the paper significantly.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chua, L.; Yang, L. Cellular neural networks: Theory. IEEE Trans. Circuits Syst. 1988, 35, 1257–1272. [CrossRef]
2. Chua, L.; Yang, L. Cellular neural networks: Applications. IEEE Trans. Circuits Syst. 1988, 35, 1273–1290. [CrossRef]
3. Bouzerdoum, A.; Pinter, R. Shunting inhibitory cellular neural networks: Derivation and stability analysis. IEEE Trans. Circuits

Syst. I Fundam. Theory Appl. 1993, 40, 215–221. [CrossRef]
4. Arulampalam, G.; Bouzerdoum, A. Application of shunting inhibitory artificial neural networks to medical diagnosis. In

Proceedings of the 7th Australian and New Zealand Intelligent Information Systems Conference, ANZIIS 2001, University of
Western, Perth, WA, Australia, 18–20 November 2001; pp. 89–94.

5. Cheung, H.N.; Bouzerdoum, A.; Newland, W. Properties of shunting inhibitory cellular neural networks for colour image
enhancement. In Proceedings of the 6th International Conference on Neural Information Processing, Perth, WA, Australia, 16–20
November 1999; pp. 1219–1223.

6. Hammadou, T.; Bouzerdoum, A. Novel image enhancement technique using shunting inhibitory cellular neural networks. IEEE
Trans. Consum. Electron. 2001, 47, 934–940. [CrossRef]

7. Carpenter, G.A.; Grossberg, S. The ART of adaptive pattern recognition by a selforganizing neural network. Computer 1988, 21,
77–88. [CrossRef]

8. Pinter, R.B.; Olberg, R.M.; Warrant, E. Luminance adaptation of preferred object size in identified dragonfly movement detectors.
In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Cambridge, MA, USA, 14–17 November
1989; pp. 682–686.

9. Fukushima, K. Analysis of the process of visual pattern recognition by the neocognitron. Neural Netw. 1989, 2, 413–420. [CrossRef]
10. Li, Y.; Wang, L.; Fei, Y. Periodic Solutions for Shunting Inhibitory Cellular Neural Networks of Neutral Type with Time-Varying

Delays in the Leakage Term on Time Scales. J. Appl. Math. 2014, 2014, 496396. [CrossRef]
11. Li, Y.K.; Liu, C.C.; Zhu, L.F. Global exponential stability of periodic solution for shunting inhibitory CNNs with delays. Phys. Lett.

A 2005, 337, 46–54. [CrossRef]
12. Fan, Q.Y.; Shao, J.Y. Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying and

continuously distributed delays. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1655–1663. [CrossRef]
13. Peng, G.; Li, L. Anti–periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays.

Nonlinear Anal. Real World Appl. 2009, 10, 2434–2440. [CrossRef]
14. Huang, C.; Wen, S.; Huang, L. Dynamics of anti–periodic solutions on shunting inhibitory cellular neural networks with

multi-proportional delays. Neurocomputing 2019, 357, 47–52. [CrossRef]
15. Ou, C. Almost periodic solutions for shunting inhibitory cellular neural networks. Nonlinear Anal. Real World Appl. 2019, 10,

2652–2658. [CrossRef]

http://doi.org/10.1109/31.7600
http://dx.doi.org/10.1109/31.7601
http://dx.doi.org/10.1109/81.222804
http://dx.doi.org/10.1109/30.982811
http://dx.doi.org/10.1109/2.33
http://dx.doi.org/10.1016/0893-6080(89)90041-5
http://dx.doi.org/10.1155/2014/496396
http://dx.doi.org/10.1016/j.physleta.2005.01.008
http://dx.doi.org/10.1016/j.cnsns.2009.06.026
http://dx.doi.org/10.1016/j.nonrwa.2008.05.001
http://dx.doi.org/10.1016/j.neucom.2019.05.022
http://dx.doi.org/10.1016/j.nonrwa.2008.07.004


Mathematics 2023, 11, 1367 17 of 18

16. Li, Y.; Meng, X. Almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks of neutral type
with time delays in the leakage term. Int. J. Syst. Sci. 2018, 49, 2490–2505. [CrossRef]

17. Li, Y.; Wang, C. Almost periodic solutions of shunting inhibitory cellular neural networks on time scales. Commun. Nonlinear Sci.
Numer. Simul. 2018, 17, 3258–3266. [CrossRef]

18. Lu, Y.; Ji, D. Pseudo almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed
delays. J. Inequalities Appl. 2017, 2017, 242. [CrossRef] [PubMed]

19. Zhang, A. Pseudo Almost Periodic Solutions for SICNNs with Oscillating Leakage Coefficients and Complex Deviating Argu-
ments. Neural Process. Lett. 2017, 45, 183–196. [CrossRef]

20. Akhmet, M.; Seilova, R.; Tleubergenova, M.; Zhamanshin, A. Shunting inhibitory cellular neural networks with strongly
unpredictable oscillations. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105287. [CrossRef]

21. Fen, M.O.; Tokmak Fen, F. Unpredictable oscillations of SICNNs with delay. Neurocomputing 2021, 464, 119–129. [CrossRef]
22. Akhmet, M.; Tleubergenova, M.; Seilova, R.; Nugayeva, Z. Poisson Stability in Symmetrical Impulsive Shunting Inhibitory

Cellular Neural Networks with Generalized Piecewise Constant Argument. Symmetry 2022, 14, 1754. [CrossRef]
23. Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Dynamics of Shunting Inhibitory Cellular Neural Networks with Variable

Two-Component Passive Decay Rates and Poisson Stable Inputs. Symmetry 2022, 14, 1162. [CrossRef]
24. Corduneanu, C. Almost Periodic Oscillations and Waves; Springer: New York, NY, USA, 2009.
25. Besicovitch, A. Almost Periodic Functions; Dover: Cambridge, UK, 1954.
26. Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Modulo periodic Poisson stable solutions of quasilinear differential equations.

Entropy 2021, 23, 1535. [CrossRef]
27. Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Compartmental Poisson Stability in Non-autonomous Differential Equations.

In: Nonlinear Dynamics and Complexity; Pinto, C.M., Ed.; Springer: Cham, Switzerland, 2022; pp. 1–23.
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