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ABSTRACT

TRANSFER LEARNING FOR BRAIN DECODING

Eryol, Erkin

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Fatoş T. Yarman Vural

February 2023, 120 pages

Understanding the human brain is a long-standing challenge in science. In this thesis,

we focus on the brain decoding problem, where we estimate a cognitive state from

functional magnetic resonance imaging (fMRI) images, to uncover the mechanisms

in the brain-behavior relationship. However, due to the costly data acquisition pro-

cess, fMRI studies are generally performed with a limited number of subjects in an

experiment. Furthermore, the indirectly taken measurements introduce difficulties in

the analysis of brain mechanisms.

With the increase in the available brain decoding datasets in recent years, transfer

learning methods become applicable on brain decoding studies in neuroscience do-

main. In this thesis, we utilize the available data and knowledge in the neuroscience

domain to improve the performance of a different but related brain decoding study,

that we refer as transfer learning for brain decoding. We suggest two approaches on

transfer learning for brain decoding.

In the first approach, we propose a novel Structured Multi-Layer Perceptron, utilizing

a brain atlas. We observe that the Structured MLP model trained only on the target

dataset has on-par classification and convergence time performance with the three
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dimensional convolutional neural network model, that is pre-trained on a large source

dataset.

In the second approach, we work on transfer learning between small-scale datasets

that follows a common experimental paradigm. We propose Hierarchical Group PCA

and its supervised variant for transferable feature generation that regards the session,

subject and dataset relations. In the experiments, both methods outperform the state-

of-the-art method, steadily on all transfer learning cases.

Keywords: transfer learning, feature alignment, learning with inductive bias, brain

decoding, canonical correlation analysis
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ÖZ

BEYİN ÇÖZÜMLEME İÇİN TRANSFER ÖĞRENME

Eryol, Erkin

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Fatoş T. Yarman Vural

Şubat 2023 , 120 sayfa

İnsan beynini anlamak, bilimde uzun zamandır süregelen önemli bir problemdir. Bu

tezde, beyin-davranış ilişkisindeki mekanizmaları ortaya çıkarmak için fonksiyonel

manyetik rezonans görüntüleme (fMRI) verilerinden bilişsel bir durumu kestirmek

üzere beyin çözümleme problemine odaklanıyoruz. fMRI görüntüleri üzerinde çalış-

mak, maliyetli veri toplama süreci nedeniyle zordur. Sonuç olarak, fMRI çalışmaları

genellikle az sayıda denekle gerçekleştirilir.

Son yıllarda mevcut beyin çözümleme veri setlerinin artmasıyla birlikte, nörobilim

alanındaki beyin çözümleme çalışmalarında transfer öğrenme yöntemleri uygulanabi-

lir hale gelmiştir. Bu tezde, beyin çözümleme için transfer öğrenme olarak adlandırdı-

ğımız, farklı ama ilişkili küçük ölçekli beyin çözümleme çalışmasının performansını

iyileştirmek için nörobilim alanındaki mevcut veri ve bilgiden faydalanıyoruz. Beyin

çözümleme için transfer öğrenmeye ilişkin iki yaklaşım öneriyoruz.

İlk yaklaşımda, bir beyin atlası kullanarak özgün bir Yapılandırılmış Çok Katmanlı

Algılayıcı önerdik. Yalnızca hedef veri seti üzerinde eğitilen Yapılandırılmış Çok Kat-

manlı Algılayıcı modelinin, büyük bir kaynak veri seti üzerinde önceden eğitilmiş
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olan üç boyutlu evrişimli sinir ağı modeli ile eşit sınıflandırma ve yakınsama süresi

performansına sahip olduğunu gözlemledik.

İkinci yaklaşımda, ortak bir deneysel paradigma ile elde edilmiş küçük ölçekli veri

kümeleri üzerinde çalıştık. Bu yöntem, oturum, konu ve veri kümesi ilişkilerini dik-

kate alarak kümeler arasında transfer edilebilir öznitelikler üretmektedir. Deneylerde,

önerilen her iki yöntemin de mevcut transfer öğrenme yöntemlerine göre daha iyi

performans sağladığı gösterilmiştir.

Anahtar Kelimeler: transfer öğrenme, öznitelik hizalama, model varsayımı ile öğ-

renme, beyin çözümleme, kanonik korelasyon analizi
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CHAPTER 1

INTRODUCTION

Understanding the human brain is one of the most important and long-standing chal-

lenges in science. The advancements in non-invasive measurement technologies have

opened many new windows to observe the brain mechanisms related to our behavior

in the last three decades. Functional magnetic resonance imaging (fMRI), devel-

oped in the early 90’s, makes it possible to non-invasively measure the active regions

in the brain. The fMRI is a big step ahead in measuring the brain activities with

relatively higher space and time resolution, compared to the positron emission to-

mography technology. With the advancements of the new measurement technologies,

neuroscience has become a vast and interdisciplinary research area.

In this thesis, among many problems in Neuroscience, we focus on the brain decoding

problem, which requires the development of computational models for representing

the cognitive models based on the neural data, such as fMRI signals. The mathe-

matical tools in Computer Science, specifically the state of the art Machine Learning

methods offer very powerful representation techniques for brain data. Thus, the re-

search on the computational models of human brain lies at the intersection of Com-

puter Science and Neuroscience.

Brain decoding experiments are designed to capture the active brain regions about

a cognitive state from brain signals recorded as fMRI images to uncover the mech-

anisms in the brain-behavior relationship, as illustrated in figure 1.1. As it can be

seen from this figure, a subject is exposed to a series of cognitive stimulus, such as

listening to music or watching a series of images or videos. During this time span,

at each time instant, the brain activities in a brain volume are recorded, generating a

spatio-temporal fMRI data for the set of stimulus. Then, the brain decoding problem

1



Subject

Classifier

House

Face

Stimuli fMRI Data
Decoded 

Label

Figure 1.1: Brain decoding involves a set of stimuli presented to a subject, and the

estimation of the stimuli from the fMRI signals. In the figure, the subject is presented

two images; a house and a face image. Corresponding brain signals are input to a

classifier to distinguish the presented images.

involves estimating the input stimuli from the fMRI recordings.

Brain decoding is an important tool in many neuroscience applications. Brain de-

coding methods help the analysis of higher cognitive functions, that involve multiple

brain regions and highly varying brain responses. Furthermore, successful estimation

of brain activity that corresponds to an external stimuli is the main tool in brain-

computer interfaces. Brain decoding is also used in the discovery of biomarkers for

detecting diseases and monitoring their progression, that is a non-invasive probe to

measure the change in brain activity to a disease related stimuli.

Unfortunately, the fMRI data acquisition process is quite costly, time-consuming and

it requires technical supervision, due to the limitations of fMRI technology and the

magnetic field created by the fMRI equipment. The constraints imposed by the ex-

perimental setups limit the number of samples for each cognitive process, which

creates serious training problems of the data hungry Machine Learning algorithms.

Furthermore, the fMRI technology can only capture the brain activities as indirect

measurements of blood oxygenation level. The measurements of the same stimulus

on different subjects result in a large data discrepancy. This is also observed on dif-

ferent sessions of the same subject. The variations of the fMRI recordings for the

same external stimulus results in a large data discrepancy in the analysis of brain

mechanisms.

In Neuroscience domain, one of the most significant problems is the reproducibility

problem (Marek et al., 2022). We expect the outcome of a brain decoding experiment
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to hold, when the experiment is reproduced under the same conditions. However, ob-

taining the same experimental conditions is not possible, since there is a great deal of

variation in brain signals, even when the same subject repeats the same experiment.

As a result, findings in one neuroscience experiment may not hold, when it is repro-

duced in a similar environment. Reproducibility in a similar environment is referred

as generalization problem in the Machine Learning literature.

There are two main challenges in the generalization performance of an estimated

computational model for decoding the brain from fMRI data. The first challenge

stems from the insufficient number of the fMRI data samples, where the number of

samples measured in each cognitive state is much smaller than the dimension of the

feature space. The fMRI image consists of a large number of volumetric elements

(N ≈ 107), called voxels, each of which corresponds to a dimension of the feature

space. On the other hand, due to the technological limitations, for each cognitive

class the number of samples are at most around couple of hundreds. The second chal-

lenge is rooted in the noise embedded in the fMRI samples. It is expected that the set

of active neuron populations under the same external condition should not vary sig-

nificantly among different sessions, subjects and datasets. However, there is a large

variation in the set of active neuron populations, even between two sequential ses-

sions of a single subject. The difference in the active neuron population set increases

between sessions of two different subjects, and further increases between sessions of

subjects from two different datasets.

Transfer learning (TL) methods apply the data and knowledge, gained in one prob-

lem domain to another related problem domain, where the former domain is referred

as the source domain and the latter is referred as the target domain. Transfer learn-

ing includes a wide range of applications, depending on the form of source domain

representation, transferred to the target domain.

One application of transfer learning is based on a model representation, where the

performance of a model on target dataset is improved with the help of a model trained

on source dataset. In this application type, the trained model is the form of source

domain representation. Another application of transfer learning utilizes the available

domain knowledge representation as a set of priors on the target domain.
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As the amount of statistically sufficient data increases in the source domain, model

based transfer learning becomes more viable. In the limited data regime, priors based

on source domain knowledge have a higher impact on target model performance,

compared to the model based transfer learning.

Transfer learning is prone to negative transfer, where the source domain represen-

tation degrades the performance of the model on the target domain. There are two

main causes of negative transfer learning. The first cause is learning features that

are unrelated to the problem at hand, called spurious features. The spurious feature

problem is often addressed by constraining the model to learn under domain-specific

prior information. The distribution discrepancy between source and target datasets is

managed by adapting or aligning the distributions of the source and target datasets.

The second cause is the discrepancy in data distributions between source and target

datasets.

From the data perspective, we observe two main problems in the neuroscience do-

main. Firstly, most of the previous studies are carried out on small scale datasets,

that have a limited number of subjects (N < 30 subjects). There are numerous small

scale datasets, however their limited sample size becomes a limiting factor in the re-

production of the findings in these studies (Turner et al., 2018). Considering the high

dimension of the feature space, which is about 107 voxels, these datasets are far from

statistical sufficiency to learn and generalize a cognitive state. Fortunately, some of

the available small scale datasets are obtained from studies that investigate a common

cognitive task in the experiment. Secondly, a large sample size is a natural remedy

for the reproducibility problem. However there are only a few large scale datasets,

that include both a large number of subjects and tasks. Human Connectome (Van Es-

sen et al., 2013) and UK BioBank (Sudlow et al., 2015) projects are examples that

host a large-scale dataset. Yet, the diversity of tasks is not sufficient. The cognitive

task in a given target domain may not match a common cognitive task in these large

scale datasets.

In this thesis, our major goal is to utilize the data and domain-specific knowledge in

the Neuroscience literature to improve the performance of a different but related brain

decoding studies, that we refer as transfer learning for brain decoding. In the context
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of this thesis, we follow two transfer learning approaches. In the first approach, we

incorporate domain-specific structural information on large scale fMRI datasets and

we propose the Structured Multi-Layer Perceptron. The large sample size enables

applying the data hungry multi-layer perceptron for the brain decoding problem. We

inform the model of the voxel labels, defined in a given anatomical brain map, called

a brain atlas. In the second approach, we reduce inter-session, inter-subject and inter-

dataset differences to generate a large scale source dataset. The proposed model

learns to generate features on source datasets, and the model improves brain decoding

performance in a related target dataset.

1.1 Motivation and Contribution of this Thesis

In the last decade, there is a drastic increase in the number of online repositories,

which follow open science practices. These repositories to host various small-scale

datasets with diverse tasks. Popular examples include, OpenNeuro (Markiewicz et

al., 2021, formerly named OpenfMRI Poldrack and Gorgolewski, 2017) which hosts

the raw data, and the Neurovault project (Gorgolewski et al., 2015), which hosts the

statistical maps of numerous neuroscience studies. There are few large-scale projects,

namely Human Connectome Project (HCP) (Barch, 2013) and UK Biobank (Sudlow

et al., 2015) project, that focus on the ground up acquisition of fMRI data. These

projects lead to an increase in the size and number of datasets available to the re-

searchers, paving the way for the transfer learning methods to be utilized in the brain

decoding problem. Frégnac, 2017 argues that the trend of increase in the available

studies may help the neuroscience field reach new breakthroughs in understanding

the brain-behavior relationship.

The size of the datasets has a great impact on the methodologies, developed for the

brain decoding problem. Based on the size and type of the datasets, the research

studies on transfer learning methods for brain decoding can be grouped under two

headings.

1. Across-tasks TL; a large-scale model with a rich set of features trained on vast

number samples of varying brain mechanisms, that learns from a diverse set of
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tasks and re-calibrated to a target task.

2. Single-task TL; a deterministic model trained on a small scale datasets, that

generalizes to a target task with a common underlying brain mechanism.

In this thesis, we propose solutions based on spatial priors and aligned features to

improve transfer learning on the brain decoding problem.

Brain decoding studies on fMRI data either focus on a subset of voxels, called the re-

gion of interest, or consider coarse-grained statistics of whole-brain data. It is a new

research direction to work on fine-grained whole-brain fMRI images. Furthermore,

transfer learning on the fine-grained whole-brain data introduces new problems. Due

to the limited fMRI data in the brain decoding domain, coarse grained statistics im-

prove the transferability of a model trained on this new data form.

In our first study, we propose a novel model on fine-grained whole-brain fMRI data,

called Structured Multi-Layer Perceptron. In this model, prior information of the

fMRI data structure, called a brain atlas, is utilized. We compare the Structured MLP

with a three-dimensional convolutional neural network model on transfer learning

experiments. In these experiments, we observe that the Structured MLP model trained

only on the target dataset has on-par classification and convergence time performance

with the three dimensional convolutional neural network model, that is pre-trained on

a large source dataset.

In the second study, we propose a transfer learning solution between datasets that

follow a common experimental paradigm. The datasets are acquired from the sub-

jects that perform a common set of tasks. We assume that there is a relatively small

task-related pattern variation in these datasets, hence a series of linear transforma-

tions on the data representation can reduce the task-related pattern variation between

these dataset, as opposed to nonlinear transformations. We further assume that there

are multiple small-scale source datasets that follow the same experimental paradigm

of the small-scale target dataset. We propose an improvement on generalized canon-

ical correlation analysis objective function for the feature alignment based transfer

learning problem, where we align source and target samples to obtain a common

transferable hierarchical data representation. Each fMRI recording sample is ob-
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tained in a data acquisition session from a subject of an experiment(dataset), hence

each sample carry a session-subject-dataset tag. The subsumption relation between

the datasets, subjects and sessions (session ⊂ subject ⊂ dataset) also forms the

expected similarity of brain responses, namely two different sessions of the same

subject are expected to be more similar compared to two sessions from two differ-

ent subjects. We obtain generalizable features by extending the previous state of the

art model (Yousefnezhad et al., 2020), incorporating brain regions as an invariant in

the feature generation process. We further improve this representation with covari-

ance profiles of brain regions. We achieve a substantial improvement compared to the

state of the art brain decoding studies.

1.2 Summary of the Thesis

The thesis is organized in five chapters.

In chapter two, we define the concepts regarding functional magnetic resonance imag-

ing technology. The steps that raw fMRI images go through, called preprocessing, are

defined in this chapter. Furthermore, we give the mathematical notation used through-

out the thesis.

In chapter three, we explain our Structured Multi-layer Perceptron model. We overview

the literature on recent transfer learning methods for brain decoding with a focus on

imposing a spatially structured bias on MLP models. We define the Human Con-

nectome Project (HCP) Barch et al., 2013 dataset in detail. We compare the exper-

imental results on HCP for the baseline 3D convolutional model and our Structure

Multi-Layer Perceptron model in classification and convergence time criteria.

In chapter four, we develop a "feature alignment" model to generate transferable fea-

tures. We overview the literature on hyperalignment in neuroscience domain, critique

the shortcomings in recent work and give a background on generalized canonical

correlation analysis. The recent benchmark in single-task transfer learning for brain

decoding and our suggested method are defined in this chapter. We show that the

suggested models improve the recent work in single-source and multi-source transfer

learning experiments.
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In chapter five, a summary of the thesis is given. We discuss the strengths and weak-

nesses of the two approaches of transfer learning for the brain decoding problem. We

give future research directions for each of the proposed models in this thesis.
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CHAPTER 2

NATURE OF FMRI DATA AND PREPROCESSING METHODS

In this chapter, details of datasets, preprocessing of fMRI data, acquisition of fMRI

data and analysis of fMRI data are overviewed. In "datasets" section, we explain

the neuroscience experiment types and the dataset, used in the following chapters.

The raw fMRI recording goes through a series of steps, called preprocessing, that

improve the fMRI image quality and standardize each fMRI recording to a common

criteria. In the preprocessing of the fMRI data section, we define the intermediate

steps that remove the irrelevant components of the fMRI recording. In acquisition of

the fMRI data section, we define the terms related to the data acquisition process. In

the analysis of the fMRI data section, we briefly explain the traditional methods used

for fMRI analysis.

2.1 Nature of fMRI Data

It is known that an active brain volume consumes relatively more oxygen in blood

than a passive brain volume (deoxygenation) (Poldrack et al., 2011). The fMRI de-

vice scans for changes in blood oxygenation, called blood oxygenation level depen-

dent (BOLD) signal, as a measure of brain activity. The oxygenation-deoxygenation

process follows a specific pattern, called haemodynamic response, where the con-

sumed oxygen is over-compensated for, creating a peak, and falls back to a balance

level after a short amount of time.

The fMRI device controls and measures the magnetic field. The magnetic field of

the fMRI device forces atoms to be aligned in a specific polarization. At the event

of neutralization of the magnetic field, the atoms retain their initial polarization over
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a time period. Different brain tissues are distinguished by the time they obtain their

initial polarization, measured by the fMRI device. This time dependent process makes

the fMRI technology less effective in temporal resolution but more effective in spatial

resolution.

In the context of this thesis, we refer to a dataset as the blood oxygen level dependent

(BOLD) signal recordings in an fMRI experiment. The design of an fMRI experiment

can be categorized into three groups; resting state experiment, task related experiment

and naturalistic paradigm experiment.

The neutral brain state is referred as the resting state. Hence resting state experiments

investigate patterns that distinguish subjects based on their neutral brain states.

On the other hand, the task related experiment refers to introducing an external stimuli

to investigate the related brain activation patterns. There are two approaches in the

task related experiment; event related task and block related task. The choice between

event and block related task depends on the timing of successive stimuli. Due to

the haemodynamic response curve, BOLD signal peaks in ≈ 5 seconds after the

application of the stimuli and returns to the resting state in ≈ 15 seconds. Therefore,

in an experiment with two or more different stimuli, switching from one stimuli to

the other requires a time-period for the BOLD signal to turn back to the resting state.

In a block task experiment, a stimuli is introduced in blocks of time intervals, that

reduces the required resting period before switching to another stimuli. In an event

related task experiment, the stimuli can be in an arbitrary.

In the naturalistic experiment type, the subjects in the experiment goes through the

same experience, i.e. an story audio or video clip, rather than a specific timed stimuli.

Based on the order and duration of the stimuli during the experiment, there are two

types of datasets. The term homogeneous dataset refers to the experiment design,

where the stimuli sequence and duration of each stimuli is the same for all data acqui-

sition sessions. Naturalistic experiments, where all subjects watch the same video clip

or listen to the same audio clip, produce homogeneous datasets. The heterogeneous

dataset term refers to an arbitrarily applied stimuli sequence and duration. Most of

the task-fMRI datasets are in this category.
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In the third chapter of this thesis, we work on datasets from the Human Connectome

Project (HCP) Van Essen et al., 2013. There are seven different tasks in the HCP

project, each comprised of a set of subtasks. Further details can be found in chapter

3.

In the fourth chapter of this thesis, hierarchical feature alignment for single task trans-

fer learning, we work on four response-inhibition datasets, acquired in two separate

studies. Further details can be found in chapter 4.

2.2 Preprocessing of fMRI Data

In the following, we briefly explain the several sources of noise in the data acquisition

process, stemming from both the human factors and the data acquisition technology.

The embedded noise is partially reduced by a series of initial steps, that form the

preprocessing pipeline. This section briefly summarizes the common preprocessing

steps in the Handbook of Functional MRI Data Analysis by Poldrack et al., 2011.

fMRI technology scans each unit of brain volume (voxel) as a function of time. In

other words, at each time instant a single measurement of BOLD signal is recorded at

a voxel, which consists of several thousand neurons. In order to generate the BOLD

signals of the entire brain volume, we need to synchronize the measurements of the

BOLD signals, recorded sequentially. A single three dimensional image is obtained

by scanning one two-dimensional slice of the three-dimensional volume at a time.

The time it takes to scan the whole brain is called the repetition time (TR). At each

repetition duration, the timing of slices can slightly change. Synchronization of slices

over repetitions is called slice timing correction.

Head movements of a subject generates a heavy noise in the measured brain volume

consistency. This noise is handled by the registration of consecutive brain snapshots

through time. One traditional registration method estimates a rigid body transform

for three dimensional translation and rotation.

As mentioned in slice timing correction, a three-dimensional fMRI image is com-

posed of two-dimensional sequential slices. A higher number of two-dimensional
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slices lead to a higher spatial resolution. However, the time required to record all

two-dimensional slices increases as the number of slices increase. Hence, the time

resolution decreases as the number of slices increases. This forms a trade-off between

the space and time resolution. The fMRI device allows to improve temporal resolu-

tion at the cost of spatial resolution by skipping two-dimensional slices, resulting in

less two-dimensional scans per three-dimensional volume and a lower TR. A common

strategy to benefit from high spatial and temporal resolution involves, firstly, taking

a high spatial resolution snapshot. Secondly, images that have a low spatial resolu-

tion and high temporal resolution, are registered onto the static high-spatial resolution

image.

Among subjects, although the brain anatomy is common, there are variations in var-

ious tissue shapes and sizes. Therefore, a registration of individual brain anatomy

among subjects is required, called the co-registration step. In this step, brain volume

of multiple subjects are registered among each other.

Several projects, i.e. Talairach, MNI, have worked on obtaining an anatomical com-

mon brain atlas from a large number of subjects. Registering of a subject’s anatomy

(high spatial resolution image) to the common brain template is referred as normaliza-

tion.In order to further increase the signal to noise ratio of the spatio-temporal image,

a Gaussian filter is applied to the entire three-dimensional brain volume. This step is

referred as smoothing.

There are two common types of artifacts in the time domain; linear trends and low

frequency artifacts. These artifacts are reduced by linear detrending and high-pass

filtering referred as the filtering stage.

The above steps are minimal preprocessing stages, and can be further extended with

quality control of output signals at each preprocessing stage.

2.3 Acquisition of fMRI Data

The data acquisition involves a subject entering the magnetic field of the functional

magnetic resonance imaging (fMRI) device. In a task-fMRI experiment, a subject en-
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Figure 2.1: Voxel average intensities in a region l, at a time point t ∈ {0, .., T} forms

the regional time-series signal. Each time-point t belongs to a class, depending on the

external stimuli in the experiment. Regions l ∈ {0, .., L} are defined by a given brain

atlas with L regions.

ters the magnetic field of the fMRI device, and conveys a given task, that is related to

the hypothesis of the experiment. The experiments are carried out in sessions, where

a session refers to the uninterrupted time interval that the brain signals are recorded

based on the design of the experiment. In the context of this thesis, a dataset refers

to the fMRI recordings with the associated task labels, obtained in an experiment.

A single session includes sequential brain images from a single subject, where each

image is labeled with the task-related cognitive state, a single brain volume is a three

dimensional recording of BOLD signals, and the smallest volumetric measurement

unit is called a voxel. A brain atlas is a parcellation of voxels into regions, where

voxels in each region is grouped under a region name. The brain atlas can be acquired

either based on anatomical differences among brain tissues or based on activation

patterns of voxel groups.

Region time-series data, illustrated in figure 2.1, is the average voxel intensity per

region over the session time-course. During a session, each time-point in the session

time course is assigned a cognitive state, related to the external stimuli.
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2.4 Notation for Formal Representation of fMRI Data

Throughout the thesis, we use the following notation to represent various quantities

of fMRI data.

In mathematical notation, the smallest spatial measurement unit is called a voxel,

X(w, h, d) ∈ R, where w ∈ W , h ∈ H , d ∈ D refer to indices in width, height

and depth dimensions, and W, H, D refers to the size of each dimension. There

are W × H × D voxels in a single image. Each session r ∈ Z is composed of

t ∈ Tr time-points of three dimensional images, forming a four-dimensional matrix,

Xr(w, h, d, t), where, Tr is the time duration for session r, and R is the set of all

sessions.

In an experiment, there are multiple sessions, r, per subject, s, and multiple subjects,

s, in a single dataset, d, indexed Xr,s,d. Note that each session data, r, belongs to a

subject, s, and each subject is part of a dataset, d, thus forming an hierarchy among

sessions.

In the normalization step of the preprocessing pipeline, each subject’s brain volume

is registered onto a common brain anatomy, called a brain atlas. The normalization

step maps the voxels of a brain atlas A, represented as a three dimensional matrix

of the same size of a single brain image X . Each voxel of the brain atlas A(w, h, d)

is assigned a label l ∈ 0, ..., L, where l is the identifier of an anatomical brain re-

gion. A brain region with identifier l involves a set of voxels X(wl, hl, dl), where

(wl, hl, dl) are voxel indices, such that A(wl, hl, dl) = l. Brain regional time series

data is formed by taking the average intensity of voxels with the same brain region

identifier, illustrated in figure 2.1.

2.5 Chapter Summary and Conclusion

In this chapter, we defined the basic terminology that we use throughout the thesis.

The fMRI technology related details are explained in the "Nature of fMRI Data"

section. In the next section, "Preprocessing of fMRI Data", we explain the steps in

the pipeline that takes the raw fMRI device measurements to the design matrix values
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Table 2.1: Notation used in the thesis

Variable Explanation

W ∈ Z, H ∈ Z, D ∈ Z Width, height, depth dimension sizes

X ∈ RW×H×D 3D BOLD signal snapshot

X(i, j, k) ∈ R BOLD intensity value of the voxel indexed at (i,j,k)

r, s, d Session, subject and dataset index

Tr Number of time-points in session r

Xr ∈ RTr×W×H×D 4D data from session r with Tr time-points

Xr,s,d 4D data from session r, subject s, dataset d

A ∈ RW×H×D Brain atlas, a parcellation of the voxels in X

A(i, j, k) = l ∈ Z The brain region label l of the voxel indexed at (i,j,k)

X(wli , hli , dli) ∈ R ith voxel BOLD intensity in the brain region indexed

l

X l
r ∈ RTr Mean BOLD time-series data of brain region indexed

l, in session r

li ∈ L L is the set of brain region labels, there are |L| differ-

ent labels

that we use in the analysis of the fMRI data. In the "Acquisition of fMRI Data"

section, we define the terms related to the acquisition of fMRI data. In the "Notation"

section, we explain the mathematical definition of the common terms referred in the

remainder of the thesis. In "Analysis of fMRI data for Brain Decoding" section, we

overview the two traditional methods to analyze the fMRI data for the brain decoding

problem.

In the next chapter, we propose an ANN model that incorporates a brain atlas that

jointly reduces session differences and classifies the cognitive states.
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CHAPTER 3

STRUCTURED MULTI LAYER PERCEPTRON FOR ACROSS-TASK

TRANSFER LEARNING

Brain decoding introduces a way to probe the mechanisms that lead to a cognitive

behavior. In the brain decoding problem, we record the fMRI data of a subject, who

responds to different external stimuli. We train a classifier on the recorded data, where

the external stimulus is the class information. The trained model allows researchers

to analyze the role of brain regions that leads to a behavior under the same stimuli

type.

The non-invasive exploration of functional relation between brain readings and sub-

ject behavior is an important asset of brain decoding research. Furthermore, brain de-

coding enables designing markers of certain diseases and allows tracking the progress

of these diseases.

The variation in brain readings make the solution of the brain decoding problem a

great challenge. It is difficult to estimate the subject-specific variation of the brain

readings. Hence, an important obstacle is the estimation of individual-to-individual

and time-to-time differences in brain readings. Transfer learning methods are pro-

posed in the literature to reduce the negative effect of the variation in brain readings.

In transfer learning, we utilize the source data or domain knowledge, to improve the

performance of a model on a related target dataset.

In this chapter, we propose a model that jointly learns to normalize the differences

between different sessions of data and classify the brain readings. In the context of

this chapter, we treat the domain knowledge as the source information in our model

for the transfer learning problem, opposed to a source dataset.
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Multiple studies (Gao, 2019; Wang, 2020) have shown that transfer learning improves

model performance in brain decoding. In this work, we adapt a recent multi-layer

perceptron (MLP) model (Tolstikhin et al., 2021) to the brain decoding problem. In

our model, called Structured Multi-Layer Perceptron (MLP), we suggest a flexible

model, based on the MLP-Mixing block (Tolstikhin et al., 2021), with the following

properties. Structured MLP decomposes an fMRI image into volumetric patches.

The patched representation allows treating each patch individually. In other words,

we can both discard irrelevant patches and group together relevant patches. Recall

that, a brain atlas is a three dimensional fMRI image mask that defines the volume

of each brain region. The structured MLP utilizes a brain atlas, called Automated

Anatomical Labeling (Tzourio-Mazoyer et al., 2002), in the normalization layer.

Structured MLP enables training on the whole brain fMRI images with approximately

107 voxels, where traditional methods are not practically applicable on such large

amount of parameters. On the downside, it is hard to stabilize the convergence of the

structured MLP model, and it is difficult to interpret the converged model, due to the

black box structure of the non-linear neural network.

Furthermore, we re-implement a recent study by Wang, 2020, that proposes a three

dimensional convolutional neural network for the brain decoding problem. We show

the superior performance of our structured MLP on the convergence speed compared

to the recent study.

In the following sections, firstly, we review the literature of structured learning and

transfer learning methods, that inspired us to develop the suggested MLP algorithm.

Secondly, we define our Structured MLP model in detail. Thirdly, we compare our

method to the baseline three dimensional convolutional neural network. In the final

section, we summarize our work and discuss the strengths and weaknesses of our

model.

3.1 Literature Overview

In this section, we explain the transfer learning method, called fine-tuning. Then, we

survey how spatial information is integrated into a model, where we overview the
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methods in the general ML research and the neuroscience applications.

3.1.1 Fine-tuning for Transfer Learning

Yosinski et al., 2014 shows that early layers of a convolutional neural network learn

"Gabor-like" weights, which are linear filters used in texture analysis. The linear

filter-like early layer weights are general features that can generalize across many

vision tasks. Besides, the final convolution layers learn dataset specific weights. This

suggests that there is a transition from general to task specific features from initial to

last layers. They measure the "generality-specificity" of each layer of a convolutional

neural network model by freezing the first k convolutional layers of a pre-trained

model with N layers, and remaining layers are retrained on target dataset. This routine

evaluates the generality of the first k layers of the neural network.

Fine-tuning is the transfer learning method in the brain decoding application, that we

compare with our proposed model performance.

Negative transfer refers to the case where applying the transfer learning method wors-

ens the performance of a model on a target dataset. In the following, we explain the

reasons behind negative transfer.

3.1.2 Reducing the Negative Transfer Between the Source and Target Datasets

by Co-Registered fMRI Recordings

In Neuroscience domain, neural network models with a large training set are applied

in the following studies; Wang, 2020, Y. Zhang et al., 2020, Gao, 2019 and Thomas

and Samek, 2019. Transfer learning experiments on these models are limited to fine-

tuning of pre-trained models on large scale datasets. However, fine-tuning is prone

to negative transfer due to two reasons. Firstly, the learned features might fail to

capture the common activation patterns of the task at hand on both source and target

datasets, yet still match on nuisance features, for instance the head motion related

error in the BOLD signal in both datasets. Secondly, although the learned features

are a good representation of the mechanism of the task on the source distribution,
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they may worsen the performance on the target dataset, due to the high discrepancy

between the distributions of the datasets.

In the next subsection, we survey models that incorporate the available spatial prior

information, which may reduce negative transfer learning. In the next subsection,

we survey the methods on incorporating spatial prior information, that we refer as

"spatially structured bias".

3.1.3 Survey on Incorporating Spatially Structured Bias

In domains with a spatial structure, spatial regularization methods allow specializa-

tion of model parameters to the spatial coordinates. Spatial regularization has been

an active topic in Neuroscience, on neural network models (Q. Wu et al., 2016), on

support vector machines (Sun et al., 2019), on graphical models (Cai et al., 2020) and

on linear models (Beer et al., 2018). It has also attracted attention in machine learning

field (Bach et al., 2012; Hernández-garcía and König, 2016; Kim, 2018; Kong et al.,

2016; Scardapane et al., 2017; R. Wu and Kamata, 2018).

General-purpose Computer Vision methods presented in this section can be trivially

generalized to the three dimensional spatial processing in the brain decoding prob-

lem. We group the methods in this section as non-local methods, context encoding

with conditional random fields, set constraints in supervision and non-regular spatial

methods.

Wang et al., 2018 introduces non-local networks to avoid the drawback of standard

convolution. Assuming the image is partitioned into non-overlapping, equal size win-

dows in a lattice form, a patch is the single window of image where patch neighbor-

hood is the set of other patches that share a border with the center patch. In standard

convolution, distant (non-neighboring) patches of image are related only after multi-

ple convolution layers. Authors formulate

yi =
1

C(x)

∑
∀j

f(xi, xj)g(xj), (3.1)

where xi is an input patch at each position i, g is a unary embedding, f is a pair-
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wise embedding, j are non-neighbor patch indices and C(x) normalizes over all non-

neighbor patch indices j, C(x) =
∑
∀j f(xi, xj).

f and g are shown to be general functions, where f can be a kernel embedding or

a Gaussian embedding, and g can be any local function, for instance convolution

operation.

Context encoding with conditional random fields is another method to impose spa-

tially structured bias. Lin et al., 2016 aim to explicitly model object and background

pairs. They employ convolutional sub-networks to model unary and pairwise rela-

tions between patches, and extract multi-scale features with convolution modules.

The brain anatomical regions are formed by a set of voxels. Voxels in each brain

region are assumed to be permutation invariant, such that the order of voxels inside

a brain region are arbitrary. A recent work by Fayyaz and Gall, 2020 proposed con-

straining temporal transformer with sets, that are permutation invariant, for action

recognition problem.

Another approach to impose a structural bias is through normalization of the artificial

neural network. The normalization methods are applied in two distinct approaches.

In the first approach, Ioffe and Szegedy, 2015 and Li et al., 2019 apply normalization

to the tensor feature map, which is the activation function output. In the second

approach, Qiao et al., 2020 normalizes the weights of the convolution kernel. Figure

3.1 illustrates the recent normalization methods, used in convolutional models, where

batch norm (Ioffe and Szegedy, 2015), layer norm (Ba et al., 2016), instance norm

(Ulyanov et al., 2017), group norm (Y. Wu and He, 2018) operate on the tensor feature

map and weight standardization (Qiao et al., 2020) normalizes the convolution kernel

weights.

In Z. Zhang et al., 2019 and Wang et al., 2019, authors impose structure by grouping

the indices of the channel dimension in a convolutional neural network. L. Chen et al.,

2020 and Norouzi, 2022 impose structure as stochastic weight pruning via modifying

the dropout regularization (Hinton et al., 2012) method.

An important feature of Alexnet (Krizhevsky et al., 2012) is the distribution of the

computation to multiple lanes via grouping the channels.
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Figure 3.1: Recent normalization methods. Batch norm operates all samples in a

batch. Layer norm operates on the channel dimension of each sample. Instance norm

operates on a single channel of a single sample. Group norm operates on a uniform

group of channels in a single sample. Weight standardization normalizes the kernel

itself, and the rest operate on the feature tensor map. Illustration from Qiao et al.,

2020.

Z. Zhang et al., 2019 generalizes grouped convolutions with an adjacency matrix to

represent the relationship between input and output set of channels. They expose the

adjacency matrix as a learnable set of parameters.

Batch normalization (Ioffe and Szegedy, 2015), illustrated in 3.1, estimates the chan-

nel mean and standard deviation of all batch samples. Each sample is normalized by

the channel mean and standard deviation. At test time, running average statistics is

used for normalization. A drawback of batch normalization is the dependency be-

tween batch size and tensor feature statistics, which causes a distribution mismatch

between training and test sets, in addition to the test set data distribution difference.

Another normalization method, layer normalization, finds standardization parameters

over all channels of a single sample in a minibatch.

Instance normalization (Ulyanov et al., 2017) operates over a single channel and sin-

gle sample.
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Weight normalization (Qiao et al., 2020) method standardizes filters rather than the

channels. Batch normalization does not work well on small batch size. Grouped

normalization works similar to layer normalization, where the standardization is not

on all but groups of channels for a single sample. Hence, this operation is not affected

by the drawbacks of the batch normalization.

Grouped normalization (Y. Wu and He, 2018) mitigates the drawback of Batchnorm

(Ioffe and Szegedy, 2015), where the change of minibatch size in training and test sets

degrades the model performance. Qiao et al., 2020 improves grouped normalization

with weight standardization, where they simply standardize the weight matrix in the

convolutional layer .

Li et al., 2019 proposes positional normalization, that defines the normalization pa-

rameters (µ, σ) as follows,

µb,h,w =
1

C

C∑
c=1

Xb,c,h,w,

σb,h,w =
1

C

√√√√ C∑
c=1

(Xb,c,h,w − µb,h,w)2 + ε, (3.2)

where tensor features Xb,c,h,w are normalized across the channel dimension c ∈ C,

and normalization parameters µb,h,w and σb,h,w are defined for each spatial location

(h,w) and batch index b. The normalization parameters are estimated by marginaliz-

ing out the channel dimension.

In standard grouped convolution, there are equal number of channels per group, C
G

,

where C is the number of channels and G is the number of groups. We denote the

output features of a layer as oi,j . The channels oi,j are split into each group ogi,j . We

define oi,j in terms of ogi,j . The output feature at coordinate (i,j) for group g, ogi,j , is

found as follows,

ogi,j =
k−1∑
m=0

k−1∑
n=0

f(i+m)(j+n)wmn, (3.3)
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where f is the feature map, i ∈ {1, .., H}, j ∈ {1, ...,W}, (W,H) are width, height

dimensions, wmn are the kernel weights, and m,n are indices on the kernel of size

k × k.

The output features oi,j are defined as,

oi,j = o1
i,j ∪ o2

i,j ∪ ... ∪ oGi,j, (3.4)

where i ∈ {1, .., H}, j ∈ {1, ...,W}, (W,H) are width, height dimensions and ogi,j is

the gth output feature group for (i, j)th coordinate.

Dynamic grouping relaxes the group norm by allowing arbitrary connections between

input and output channels. The dynamic grouping (Z. Zhang et al., 2019 ) is given

below,

oi,j =
k−1∑
m=0

k−1∑
n=0

f(i+m)(j+n)(U � wmn), (3.5)

where the same notation in equation 3.3 is applied and, additionally, U ∈ {0, 1}Cin×Cout

is the binary grouping matrix, that maps the input to the output channels.

The soft grouping method in the literature is based on stochastic weight pruning

method, called dropout. Dropout is used for stochastically pruning network weights

to reduce overfitting and stabilizing training. Originally, this method is applied with

constant probability on all image or intermediate feature locations. Spatial constraints

is imposed on dropout in L. Chen et al., 2020 and Norouzi, 2022.

In this thesis, we work on a spatially structured bias, defined by a brain atlas. The

recent studies on the brain decoding problem apply the spatially structured bias on

artificial neural networks. In the following, we overview the recent methods on the

brain decoding problem that incorporates a brain atlas on artificial neural networks.
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3.1.4 ANN with a Spatially Structured Bias on fMRI Data

Habeeb and Koyejo, 2020 and Aydöre et al., 2019 propose methods to incorporate a

brain atlas for brain decoding problem on fMRI data.

In Aydöre et al., 2019, fully connected layer weights are masked with a binary group-

ing matrix. Rather than learning the grouping dynamically, they use a clustering

method to generate a bank of candidate matrices via Ward clustering, before training.

One sample is taken from the bank and used for masking the weights. One drawback

of this method is that the grouping matrix is only applied at the initial layer, rather

than intermediate ones.

Habeeb and Koyejo, 2020 proposes fixed grouping layer as a modified MLP layer.

The fixed grouping layer takes x ∈ Rnin,cin as input, where nin is the number of

input vectors and cin is the input vector length. The layer output z ∈ nou≈, ou≈ is

calculated as,

z = A(xv � u) + b,

where A is a binary matrix of size nout, nin that maps the number of input vectors to

the number of output vectors, v ∈ cin, cout maps the input vector length to the output

vector length, u ∈ nin, cout and b ∈ nout, cout is the bias. The pattern in the binary

matrix A defines the spatial grouping of samples. Parameters u, v and b are learned

via backpropagation algorithm. Fixed grouping layer is evaluated on GLM contrast

maps of the Human Connectome Project dataset. This method is shown to outperform

three-dimensional convolution on the brain decoding problem, where the input and

the kernel are three dimensional matrices. Furthermore, as a baseline method, they

propose to apply CoordConv (Liu et al., 2018) on 3D convolution, which incorporates

brain region labels as an additional channel information.

3.1.5 Literature Survey for the Background of Suggested Structured MLP

In the suggested Structured MLP, we employ a multi-layer perceptron. Furthermore,

we compared our structured MLP model with a three dimensional convolutional neu-

ral network.
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In the following subsections, firstly, we overview the multi-layer perceptron model.

Secondly, we define the convolutional neural network model. Thirdly, we define the

three dimension convolutional neural network that is proposed for the brain decoding

problem. The first two subsections, multi-layer perceptron and convolutional neural

network definitions, are summarized from Duda et al., 2001 and Mitchell, 1997.

3.1.5.1 Multi Layer Perceptron

The perceptron is a single neuron that assigns a weight value to each dimension of

the input and applies a threshold on the weighted input. The output of the threshold

function forms a decision surface, defined in the input space, where each sample

is assigned a label depending on which side of the decision surface it lies on. The

perceptron function f is defined as follows,

f(x) = sgn(w · x), (3.6)

where x = [1, x1, ..., xN ] is the input vector, w are the weights w = [w0, w1, ..., wN ],

the dot product of w and x is
∑

iwixi and sgn() is the sign function. The sign

function for some scalar input s is

sgn(s) =

 1, if s > 0,

−1, otherwise.
(3.7)

The weights w that define the decision surface are learned from data. The perceptron

training rule updates the weights w as,

wi ← wi + η(t− sgn(wi · xi))xi,

where η is a constant, called the learning rate and the second term updates the weights

in the direction that reduces the distance between target t and perceptron output. The

perceptron converges to the optimum solution when the samples are linearly separable

and may not converge otherwise.
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The delta rule asymptotically converges to the minimum error weights w in the lin-

early non-separable case. The delta rule searches for the best weight parameters w via

gradient descent algorithm. This rule measures the training error J that is summed

over all samples,

J(W ) =
1

2

∑
i∈D

(ti − w · x)2,

where ti is the label of ith sample, w ·xi is the output for the ith sample in the training

set D. The weights w are updated in the steepest decrease direction with respect to

the training error,

∇J(w) =

[
∂J

δw0

,
∂J

δw1

, ..,
∂J

δwn

]
.

Therefore, the gradient descent update is

w ← w − η∇J(w).

Multi-layer perceptron (MLP), also referred as multi-layer neural network, is com-

posed of three types of layers; an input layer, single or multiple hidden layers and an

output layer. Hidden and output layers include multiple neurons. For a network with

K output neurons, kth neuron output is as follows,

netk = f(
H∑
j=1

a(ojwkj + bj)), (3.8)

where a is the activation or thresholding unit function, H is the number of neurons in

the previous hidden layer, j is the index of the neuron among the hidden layer neurons,

oj is the output of jth neuron’s activation in the layer, wkj is the weight between kth

output neuron and jth hidden layer neuron, bj is the scalar, called the bias of the

neuron.

The error function J is computed starting from the weights of the output layer neu-

rons. The error function J , sequentially propagates backward layer by layer with the

chain rule, given below,

∂J

∂wji

=
∂J

∂oj

∂oj
netj

netj
∂wji

, (3.9)

where oj is the jth hidden unit output.
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3.1.5.2 Convolutional Neural Network

Some of the concepts in structured MLP are based on the convolutional neural net-

work (CNN) architecture. We briefly define these concepts in this subsection.

In a convolutional neural network, a convolution kernel moves over spatial coordi-

nates and weights of this kernel is optimized to reduce an error function J, in equation

3.9. In a convolutional neural network, the number of weight parameters is a function

of the number of kernels. Compared to a fully-connected MLP, CNN reduces the

number of parameters to optimize. For a whole spatial sliding operation, the kernel

weights are shared at each location of the image. For two dimensional inputs, i.e. a

2D image, translations of the image produce the same shared weights and the same

output. The two dimensional kernel is k ∈ Rwk,hk , where the image patch of size

wk × hk is called the receptive field of the first layer kernel. In the implementation

of a CNN, each kernel produces a channel of the image that is the resulting kernel

output at each spatial coordinate. The number of channels is equal to the number of

kernels. In a CNN implementation, the number of channels is referred as the depth

dimension, d. The number of kernels at each layer is not constant, hence for each

layer, the number of inputs are formed by the output channels of the previous layer.

With no loss of generality, a convolutional neural network can be generalized to three

dimensions, where a kernel has a 3 dimensional receptive field.

Note that a fully connected MLP layer becomes equivalent to a CNN, when the 2

conditions are met;

• the kernel size of a CNN layer is equal to the whole image/channel size,

• the number of kernels at one CNN layer is equal to the number of MLP neurons

in the next layer.

These conditions form a one-to-all relation between channel output of one kernel and

channel input of the next layer, hence channels are fully connected.
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Figure 3.2: The architecture used in Wang, 2020 that implements a 3D CNN model.

Image from Wang, 2020 is used under CC BY license.

3.1.6 3D Convolutional Neural Network Baseline Method

We reproduced the brain decoding method of Wang, 2020 that learns a set of spatially

global filters. In the model, 3D brain snapshots of 27 sequential time points are used

as input. They treat each time sample as an input channel and reduce the number of

channels with 1x1x1 kernels. In temporal domain, 1x1x1 convolution is used to learn

an intermediate semantic representation of 3 time-points in the first layer.

Next, 3D convolutional layers with skip connection, called residual blocks, are ap-

plied. Each residual block includes a convolution layer with 3x3x3 size kernels,

Rectified Linear Unit (ReLU) activation and batch normalization (BN). Four resid-

ual blocks are applied in the proposed architecture.

Finally, two fully connected layers are used to generate the final output via softmax

function.

The training routine involves a temporal data augmentation method where a different

time sub-interval is sampled from the total time interval.

Spatial input size and number of channels in each layer is shown in the figure 3.2.
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Figure 3.3: Structured MLP accepts four dimensional fMRI data. The model de-

composes input into patches of non-overlapping, equal sized patches. It adapts mixer

blocks (Tolstikhin et al., 2021) and applies regional normalization, where per-voxel

region information is obtained from a brain atlas. Finally, the temporal and spatial

dimensions are pooled sequentially.

3.2 Structured MLP for Across-Task Transfer learning

In our suggested structured MLP model, we engineer an Artificial Neural Network

(ANN) model, that incorporates a common spatial map across subjects, provided by

the brain anatomic atlas. The model is illustrated in figure 3.3.

As explained in chapter 2, fMRI images go through well-established co-registration

steps that leave a common coordinate space among subjects. Furthermore, behavior-

specific brain activation maps that are related to certain tasks, often has a form of

spatial affinity to a voxel population. We aim to follow the spatial guidance and build

a model that implements necessary inductive biases on whole brain fMRI images.

As illustrated in the figure 3.3, we firstly form volumetric patches of voxels. Secondly,

we encode the spatial image through a series of mixer block layers. Thirdly, we apply

regional normalization, where a region is a set of patches with the same region label,

which are obtained from a brain atlas. Finally, we sequentially pool the temporal and

spatial dimensions and predict the cognitive task.
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3.2.1 Data Representation Challenges

Recall that fMRI technology generates a collection of voxel intensity values, which

forms a brain volume at each time instant. Therefore, the data has four dimensions in

width, height, depth and time.

In the following, we explain the difficulties in working with the four dimensional

fMRI data and the model design challenges. We aim to address these challenges in

our model.

Inferring functional similarities or dissimilarities of voxels from fMRI data depends

on changes in signal intensities over time. However, 4D fMRI data has a much lower

temporal resolution compared to the spatial resolution.

The statistically sufficient number of samples required to fit a model grows exponen-

tially in the number of data dimensions. Unfortunately, the 4D fMRI data has a very

high number of dimensions (N ≈ 107), compared to the available number of samples

(N < 103).

However, contrary to general computer vision problems, spatial registration and brain

atlas labeling of 3D fMRI image coordinates provide an approximately common

anatomical region label for each voxel at each time. Furthermore, certain stimuli

excite a common brain activation pattern across different runs of data acquisition ses-

sions. Therefore, applying a brain atlas as a static graph over the 3D coordinates of

an fMRI image can generalize better compared to assuming a uniform lattice. Incor-

porating the brain atlas in the model definition introduces a model design challenge.

Allowing functional specialization of model parameters in a region, introduces an im-

portant challenge in formalizing the brain decoding problem. Convolutional neural

networks share kernel parameters among all positions for translation invariance. The

structure in the spatial domain of fMRI data contradicts the shared parameter assump-

tion. Each anatomical/functional region has characteristic properties. Region specific

non-shared parameters can address the characteristic spatial properties in the data.

However the number of required parameters increases in multiples of the number of

regions, leading to an impractically large model. Therefore, keeping the number of
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learnable parameters manageable introduces another challenge depending on the data

and domain properties.

A further problem is the large variation in fMRI patterns across the subjects that

perform the same cognitive task. Although the number and shape of the anatomical

regions are assumed to be the same for all subjects, there are significant differences

in functional role of these regions across subjects. Therefore, the dynamic structure

needs to be accommodated in the architecture.

fMRI experiments often select a target set of voxels in the region of interest (ROI).

This requires ways to omit/choose regions and work on a specific set of regions across

subjects. The flexibility of the model in grouping or discarding voxels is a common

requirement in the brain decoding problem.

In the next section, we address the data representation challenges and introduce the

proposed Structured MLP model.

3.2.2 Structured MLP Model

In this section, we define the Structured MLP model, which has three main com-

ponents. The first component decomposes the fMRI image into non-overlapping

uniform volumes, called patches. The second component modifies the MLP-block

(Tolstikhin et al., 2021) that regards the temporal order of three dimensional volumes

in the channel dimension. The third component is the final fully connected layer that

reduces the temporal and spatial dimension sequentially.

We start with the definition of the patch decomposition, illustrated in 3.4. The four

dimensional fMRI image sample is reprepsented by a tensor, X ∈ RW,H,D,T , where

W,H,D, T denotes width, height, depth and time dimensions respectively. We split

the three dimensional coordinatesW,H,D into non-overlapping cubic volumes, called

patches. A patch Pi is defined such that Pi ∈ Rpw,ph,pd,T and pw, ph, pd << W,H,D.

Therefore, an image sample X is given as,

X =

Np⋃
i=1

Pi,

where Np = W/pw ×H/ph ×D/pd is the number of patches in an image.
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Table 3.1: Chapter 3 - Structured MLP notation

Variable Explanation

P, T Number of patches and time-points in a session sam-

ple

X̄ ∈ R(T,P ) Design matrix of size P × T
pw, ph, pd Width, height, depth dimension sizes of a patch p

xp ∈ Rpw×ph×pd 3D patch data of pw×ph×pd voxels indexed p, where

X =
⋃

p xp.

Np ∈ Z Number of patches in a 3D fMRI image, Np =

W/pw ×H/ph ×D/pd
XRi

Patches in the ith brain atlas region Ri

A ∈ RW,H,D Brain atlas A

ai Set of voxel labels in patch i

lai Brain region label of brain atlas patch i

µ(.), σ(.) Column mean and standard deviation w.r.t. input ma-

trix

γ, β Scale and bias scalar values

Mk kth mixer block

W MLP layer weight

ReLU(.) Rectified Linear Unit thresholding function, that as-

signs 0 to all negative values in the input.
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Figure 3.4: Illustration of time-series data for a single patch p1 ∈ Rn.

As we mention in section 2.3, brain atlas A ∈ RW×H×D has the same three dimen-

sional size as a single snapshot of the fMRI image X . A(w, h, d) = l ∈ Z, where

l ∈ Z is a brain region label. We partition the brain atlas A into patches as follows,

A =

Np⋃
i=1

ai,

where ai ∈ Rpw,ph,pd is the ith patch.

We set the label of a brain atlas patch, as follows,

li = mode(ai),

where mode is the most recurring element in a vector, ai is the set of voxels for ith

brain atlas patch.

After the image is partitioned into patches at each time-point, the resulting design

matrix X̄ ∈ R(T,P ) is obtained, where T is the number of time-points and P is the
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Figure 3.5: Ilustration of the proposed Structured MLP architecture for the brain

decoding problem.
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Figure 3.6: MLP mixer block is used to introduce non-linearity.

number of patches.

Once the design matrix is constructed, it is fed to a series of Mixer blocks. In the

following, we firstly explain the mixer block, illustrated in 3.6. Secondly, we define

the regional normalization method proposed in this work.

Mixer Block Mixer Block is proposed in Tolstikhin et al., 2021 and illustrated in

3.5. The MLP blocks apply layer normalization (Ba et al., 2016) of per-batch MLP

features. Layer normalization is defined as follows,

yi = γx̂i + β, x̂ij =
xij − µi√
σ2
i + ε

, µi =
1

m

m∑
j=1

xij, σ2
i =

1

m

m∑
j=1

(xij − µi)

where xij is the γ and β are the scale and bias parameters, which are learned from

data.

In our model, the time dimension in a session is introduced to the neural network on

the channel dimension. LetMk be the kth mixer block and Y = Mk(X) be the output

of the block Mk. There are two steps in block, Mk.

Step 1: Time mixing step is defined as follows,

U∗,i = X∗,i +W2V(W1Layernorm(X)∗,i), i = 1...T,

where V is the activation function, X∗,i denotes column i of the design matrix X , W1
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Figure 3.7: Patch and timepoint embedding in multi-layer perceptrons.

and W2 are MLP layer weights, V is the activation function and Layernorm is the

normalization function. This step illustrated as "MLP 1" in figure 3.7.

Step 2: Patch (token) mixing step is defined as follows,

Yj,∗ = Xj,∗ +W4V(W3Layernorm(X)j,∗), j = 1...P,

where V is the activation function, X∗,i denotes row i of the design matrix X , W3

and W4 are MLP layer weights, σ is the activation functions and layernorm is the

normalization function. This step illustrated as "MLP 2" in figure 3.7.

At both steps, the MLP is applied as a residual operation, called a skip connection.

Regional normalization, proposed in this work, applies layer normalization separately

to each brain region, as follows,

yRi
= Layernorm(PRi

), x ∈ RP×T P ∈ R1, R2, ..., RN .

where we define a separate layer normalization step for each set of patches that belong

to the same brain region Ri.

The pooling block in the proposed model firstly marginalizes out the time dimension,

followed by the pooling of the spatial dimension.
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3.3 Experimental Results

In this section, first, we explain Human Connectome Project (Van Essen et al., 2013)

dataset properties and the Automated Anatomical Labeling (Tzourio-Mazoyer et al.,

2002) brain atlas. Then, we report the results of the reproduced method (Wang, 2020).

Finally, Structured MLP experiment details and outcomes are shown. The models are

compared in test set performance and convergence time in the experiments.

3.3.1 Human Connectome Project Dataset

Human connectome project (HCP) provides a publicly available and open dataset

with over 300TB of static and dynamic data. We have used this data in two ways;

the minimally preprocessed 4D task data and 3D contrast maps of task data. In

this dataset, there are 1200 subjects, each with the resting-state and the task specific

recordings.

The main motivation behind choosing the cognitive tasks are three-fold. Firstly, the

selected tasks are repeatable and across subject variation is relatively low. Secondly,

the selected tasks are complementary in the evoked brain activations. Thirdly, the ac-

tivation patterns in the selected tasks cover a relatively wide range of voxels. Further

details of the task paradigms and the data acquisition details are reported in Barch,

2013.

There are 7 tasks in the HCP task-fMRI experiments. The subtask at each time point

in the experiment duration is listed in the HCP event documents (tsv files). In table

3.2, the tasks, the number of scans of each task, the duration of the experiment for

each task and the related subtask of each task are listed.

In the following, we give a brief summary of each task.

In the working memory (WM) task, the subject is shown a series of pictures sequen-

tially. There are four types of pictures; place, tool, face and body part types. For each

picture, the subject answers one of the two predefined questions. The first question is

whether the current picture is of same type as the two-previous picture (2-back). The

second question is whether the current picture is of same type as the first picture in
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the series (0-back).

In the gambling task, the subject plays a card game versus a computer program. In

the card game, card numbers range in [0 − 9]. The subject bids an amount of money

and guesses whether the computer picked a card that is more or less than 5. The

program determines the card to evoke a reward or a punishment effect, depending on

the bid and guess of the subject.

In the motor task, the subject is asked to do one of the following; tap left or right

fingers, squeeze left or right toes or move their tongue.

In the language processing task, there are two subtasks; story and math. In the story

subtask, the subject listens a short story and answers a two-choice question about the

topic of the story. In the math subtask, the subject listens to questions that demand

basic mathematical operations; addition and subtraction of two numbers. The sub-

ject answers the mathematical operation question by selecting one of the two given

choices, with a button push.

In the social cognition task, the subject watches a video clip of moving objects of

three shapes; square, circle and triangle. The subject answers whether there is a

connection between the shapes and the object movements in the video clip. The

positive answer, that a connection exists between the movement and the shape of the

object, is referred as the theory of mind (TOM) subtask. The negative answer, that no

obvious connection exists, is referred as random subtask.

In the relational task, there are two subtasks; relational and control. In the relational

subtask, the subject is introduced objects on a screen. There are two objects on the

top side of the screen and two objects on the bottom side of the screen. The objects

differ in only one of the two attributes; the shape or the texture. The subject answers

whether the difference (shape or texture) between the top side object attributes is the

same between the bottom side object attributes. In the control subtask, two objects

are on the top side of the screen, one object is on the bottom side of the screen, and

an attribute name text is in the middle of the screen. The subject looks at the attribute

name in the middle of the screen and decides whether one of the top side objects share

that attribute with the bottom object.
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Table 3.2: HCP dataset properties.

Task # scans Duration Subtasks

1. Working Memory 405 5:01 0-back,

2-back

2. Motor 284 3:34 Left foot, Right foot,

Left hand, Right hand,

Tongue

3. Emotion 176 2:16 Fear,

Neutral

4. Gambling 253 3:12 Reward,

Punish

5. Language 316 3:57 Math,

Story

6. Social 274 3:27 Theory of mind,

Random

7. Relational 232 2:56 Relation,

Control

The training procedure depends on long file-read operations, which requires a fast

storage device. We limit the number of subjects to fit the 1 TB fast storage device.

We chose the samples which have both left to right and right to left phase encoding

runs for all 7 tasks in table 3.2. We break down each session into time intervals of

subtasks to optimize file I/O during training.

3.3.2 Automated Anatomical Labeling Brain Atlas

Automated Anatomical Labeling (AAL) Tzourio-Mazoyer et al., 2002 brain atlas is

a hand labeled single-subject brain fMRI volume in high resolution. AAL is used

as a reference for brain fMRI images, such that the fMRI image is projected onto

this volume and the coordinates of the projected image are labeled according to the

readily annotated volume labels. There are 116 regions in AAL brain atlas.
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Figure 3.8: Automated anatomical labeling atlas. Each color shows a different

anatomical region.

In the following subsection, we give the results of the reproduced 3D convolutional

model, that is trained on a source dataset. The pre-trained model is fine-tuned in the

transfer learning experiments. Then, we show the results for the two transfer learning

experiments on two different target datasets, namely datasets of Motor and Working

Memory subtasks. Finally, we show the superior convergence performance of the

propose Structured MLP model.

3.3.3 Results of the Reproduced 3D Convolutional Model

In this subsection, we reproduce the results of the 3D convolutional model (Wang,

2020). The 3D convolutional model sequentially applies one dimensional temporal

pooling and three dimensional spatial pooling. The temporal pooling is applied on

the time dimension of the four dimensional fMRI data. The proposed 3D convolution

model accepts a constant number of samples in the time dimension. In the training

phase, 27 consecutive frames are sampled from the session interval as the input. In

the testing phase, always the first 27 samples are used, so that the testing criterion is

the same on all epochs.

The spatial pooling is applied on a three dimensional volume. We observed that 40%

of the voxels in the 3D volume (91×109×91 voxels) is the empty/non-relevant space

outside the brain volume. We discard the empty voxels at each border, and select the

minimal cubic volume, resulting in 75× 93× 81 voxels.

Our goal is to distinguish between the subtasks (conditions) of the target dataset.
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Table 3.3: The table of subtasks that form the source and target datasets. model

is trained on a dataset of 7 subtasks, one from each task, as listed on the source

column. There are two transfer learning experiments. The first experiment aims to

distinguish subtasks of the working memory task, listed on the target 1 column. The

second experiment aims to distinguish subtasks of the motor task, listed on the target

2 column.

Task Source Target 1 Target 2

1. Working Memory 2-back places 0-back body,

2-back body

2. Motor Right hand Left foot,

Right foot,

Left hand,

Tongue

3. Emotion Fear

4. Gambling Loss

5. Language Story

6. Social Mental

7. Relational Relation

There are two transfer learning experiments; on working memory task, and on motor

task. We list the subtasks of each task that are included in the source dataset and the

two target datasets in table 3.3.

The main training routine distinguishes between the seven subtasks, shown in the

source column of the table 3.3. There is a single subtask from each task of the HCP

task-fMRI dataset in the source dataset. Human Connectome Project provides a sec-

ondary dataset, called test-retest, along with the main dataset, that repeats the same

experiments in the HCP task-fMRI dataset on a new set of subjects. In the test-retest

dataset, there are no intersecting subjects with the main dataset.

In the transfer learning experiments, we utilize a pre-trained model on the source

dataset, given in the table 3.3. The pre-trained convolutional layer weights do not get
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updated in the backpropagation algorithm. The remaining fully connected layers are

re-trained on the target dataset, referred as fine-tuning (Yosinski et al., 2014). Note

that target dataset has 60 subjects to demonstrate the transfer learning between a large

source dataset and a small target dataset.

The number of samples for each of the subtasks that are listed in table 3.3 are as

follows.

• For 60 subjects of the target sets,

– 0-back body:120, 2-back body:119

– left foot:239, left hand:239, right foot:239, tongue:240.

• For 1095 subjects of the source set,

– 2-back places:2164, fear:5858, loss:4338, mental:5251, present-story:8372,

relation:6241, right hand:4324.

Performance of a classifier is measured by the four cases, true positives, true nega-

tives, false positives and false negatives. A true positive (tp) is a hit, positive predic-

tion for positive sample, in classification context. A false negative (fn) is a miss, a

negative prediction for a positive sample. A false positive is the type-1 error, a false

alarm, a positive prediction for a negative sample. A false positive (fp) is a positive

prediction for a negative sample. We report precision, recall and f1-score, which are

defined based on these four cases; tp, fp, tn and fn. Precision is the ratio of true

positives (tp) to true positive and false positives

precision =
tp

tp+ fp
.

Recall is the ratio of true positives to the sum of true positives and false negatives,

recall
tp

tp+ fn
.

F1-score is the harmonic mean of precision and recall;

F1 = 2× 2× tp
2tp+ fp+ fn

.

A confusion matrix lists how many times a class i ∈ (1..C) is classified as class

j ∈ (1..C), where C is the number of classes. In the confusion matrix results, the
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Table 3.4: The performances of the source dataset training phase on the representative

subtask of each seven tasks. Each result shows Mean(Std.) over repeated runs.

Task(Subtask) Precision Recall F1-score

Gambling (loss) 0.89(0.03) 0.91(0.02) 0.90(0.01)

WM (2bk-places) 0.96(0.02) 0.93(0.02) 0.94(0.02)

Motor (right-hand) 0.99(0.00) 0.99(0.02) 0.99(0.00)

Social (mental) 0.98(0.01) 0.95(0.02) 0.97(0.01)

Relational (relational) 0.93(0.02) 0.96(0.02) 0.94(0.02)

Emotion (fear) 0.98(0.01) 0.97(0.02) 0.97(0.01)

Language (present-story) 0.98(0.02) 0.98(0.02) 0.98(0.01)

confusion matrix figures show the number of times the row header is classified as

the column header. Hence, the diagonal cells show the correctly classified cases and

non-diagonal cells show the incorrectly classified cases. We used two color maps for

the correctly and incorrectly classified cases. The correctly classified samples lie on

the diagonal of the confusion matrix and the diagonal cells follow a blue color map.

The incorrectly classified samples on the non-diagonal cells are assigned a red color

map.

The hardware environment includes an 8-core processor, a graphics processor with

8GB ram, 48GB system ram and solid state disk storage with 1TB disk space. The

software environment is Nibabel for file reading operations, PyTorch for model train-

ing and Nilearn for visualization purposes.

We selected the subjects, who has samples for all of the seven tasks. One subtask-per-

task data takes 1.2 TB storage space. We further limit the number of subjects to 823

that fits the 1TB fast access disk type. We split the task data file into smaller files of

subtasks, for instance an emotion task fMRI file is split into fear and neutral subtask

files.

We used ADAM optimizer with empirically selected learning rate lr = 000.1, β =

0.9, 0.999 and weight decay 10−5. The learning rate is reduced on plateau with a

factor of 0.1 after 3 consecutive epochs of non-decreasing validation loss. We spare
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Table 3.5: All→WM subtasks transfer learning results.

Condition Precision Recall F1-score

0bk-body 0.92(0.03) 0.88(0.05) 0.90(0.02)

2bk-body 0.89(0.04) 0.92(0.04) 0.91(0.02)

43 subjects to simulate the low sample size target dataset.

The training procedure is validated by shuffling the subjects randomly in each run

of the experiment. Table 3.4 shows the results for the one-subtask-per-task training

routine.

In our experiments, we observed that gambling and relational tasks are the least dis-

tinguishable among others. The reproduced results are 3% lower than the reported

performance. In the original article, mean(std) accuracy is 93.7% (±1.9%). The miss-

ing 300 subjects may have a role in the performance of our implementation, due to

our hardware limitations. We observed that gambling task is the worst performing

task, which is also in accordance with the MVPA literature (Onal et al., 2017).

3.3.3.1 Working Memory Task Transfer Learning Experiment Results

In the first transfer learning experiment, 2-back and 0-back body subtasks of the

Working Memory task, in the Target 1 column of the table 3.3, are classified. In

the literature, the working memory target subtasks are known to evoke a distributed

activity response Barch, 2013, which makes it hard to apply traditional MVPA meth-

ods.

The Motor and Working Memory experiments are run on a limited set of 60 subjects.

We show the effect of fine-tuned models on the Working Memory target task perfor-

mance. The 3D convolutional model is pretrained on the source dataset and fine-tuned

to the Working Memory target dataset. We report the mean and standard deviation on

10 runs of the experiment. The 27 time-point session chunks of a subject is split into

training, validation and test sets.
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Precision, Recall and F1-score for each subtask are listed in 3.5. We observed the con-

fusion matrix in figure 3.9. The model reached test set accuracy of 0.90%(±0.02%).

3.3.3.2 Motor Task Transfer Learning Experiment Results

Motor related subtasks include distinguishing between right hand, right foot, left

hand, left foot and tongue movement induced brain signal recordings. The Motor

target subtasks, in the Target 2 column of the table 3.3, have a local activity response

inside the motor cortex brain region Barch, 2013.

The Motor target task experiments are run on the same number of subjects and fine-

tuning method for transfer learning, as in the Working Memory transfer learning ex-

periment. The 3D convolutional model is pretrained on the source dataset and fine-

tuned to the Working Memory target dataset.

Precision, Recall and F1-score for each subtask are listed in table 3.6. We ob-

served the confusion matrix in figure 3.10. The test set accuracy of the model is

0.85%(±0.02%).

The highest confusion is observed between the subtasks of the left and the right foot

samples, which is also observed in the original work.
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Figure 3.9: 3D convolutional model confusion matrix for the Working Memory sub-

task. Each cell shows the average number of samples.
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Figure 3.10: Wang, 2020 confusion matrix for the Motor subtasks.

3.3.4 Structured MLP Solution

In Structured MLP implementation, we used ADAM optimizer (Kingma and Ba,

2015) with 0.0001 learning rate. We multiply the learning rate with 0.1 every three

epochs when the loss reaches a plateau. For implementation convenience, we discard

the empty fMRI image borders to obtain the 90 × 90 × 90 volume of voxels. We

use batches of 3 samples, where each sample is a four dimensional matrix with 27

time-points. We split the subject samples in 0.7 training, 0.1 validation, 0.2 testing

ratio, and randomize the samples as a stochastic validation. There are 60 subjects in

the experiment.

Table 3.6: All→Motor subtasks transfer learning results

Condition Precision Recall F1-score

Left Hand 0.95(0.01) 0.90(0.05) 0.93(0.03)

Tongue 0.87(0.03) 0.95(0.01) 0.91(0.02)

Right Foot 0.74(0.02) 0.76(0.03) 0.75(0.01)

Left Foot 0.82(0.01) 0.77(0.04) 0.79(0.03)
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Table 3.7: The performances of the suggested Structured MLP on Working Memory

subtasks.

Condition Precision Recall F1-score

0-Back 0.85(0.03) 0.83(0.02) 0.84(0.00)

2-Back 0.84(0.01) 0.85(0.04) 0.84(0.01)

3.3.4.1 Working Memory Task Experiment Results

In the working memory task classification, the model distinguishes the conditions "0-

Back" and "2-Back", listed in the table 3.3. Precision, recall and f1-score results are

shown in the table 3.7. The confusion matrix 3.11 shows the mean values for each

cell over random partitioning of the data.

The test set accuracy of the model is 0.84%(±0.01%).

3.3.4.2 Motor Task Experiment Results

In the Motor task classification, there are four subtasks, namely, "Left Hand", "Tongue",

"Right Foot" and "Left Foot", shown in table 3.3. The accuracy score for the Motor

task classification experiment is 83.00(2.16)%. Table 3.8 lists the precision, recall

and f1-score results.

Figure 3.13 shows the "Right Foot" and "Left Foot" classes have a lower classification

result, compared to other tuples of classes. This result is in line with the finding in
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Figure 3.11: Structured MLP Confusion matrix for the Working Memory subtasks.
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Table 3.8: The performances of the suggested Structured MLP on Motor subtasks

Condition precision recall f1-score

Left Hand 0.92(0.01) 0.88(0.06) 0.90(0.04)

Tongue 0.87(0.05) 0.94(0.01) 0.90(0.03)

Right Foot 0.74(0.02) 0.68(0.09) 0.70(0.05)

Left Foot 0.76(0.04) 0.79(0.06) 0.77(0.03)

Wang, 2020.

3.3.5 Convergence Results

As expected, we observed that the representation learned from seven task data dramat-

ically speeds up convergence on subtask learning via fine-tuning compared to training

from scratch on the subtask, seen in figure 3.12.

This is consistent for both the working memory and motor subtasks. It takes 3-6

epochs for the fine-tuned model to converge. After convergence, fine-tuned model

also outperformed the one trained from scratch on the subtask data.
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Figure 3.13: Structured MLP Confusion matrix for Motor subtask.
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Figure 3.12: Motor task accuracy for 1- 3D convolutional model trained on Motor

task target dataset, 2- 3D convolutional model trained on the source dataset with seven

tasks and fine-tuned to the Motor task target dataset, 3- Structured MLP trained on

Motor task target dataset.

Figures 3.12 and 3.14 shows the training set convergence curves for the three cases.

In the first case, 3D convolutional model is trained only on the target dataset. In the

second case, 3d convolutional model is trained on the source dataset and finetuned to

the target dataset. In the third case, our model structured MLP is trained only on the

target dataset.

In figure 3.12, the green curve shows the convergence of the structured MLP model

is very close to the curve of fine-tuned 3D convolutional model. Both the fine-tuned

and structured MLP curves are significantly above the target-only trained 3D convo-

lutional model. Note that fine-tuned model requires a large source dataset comprised

of one subtask from each of the seven tasks in table 3.3.

In figure 3.14, the green curve shows the structured MLP model slightly slower than

the curve of fine-tuned 3D convolutional model. The target-only trained 3D convolu-
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Figure 3.14: Working memory task accuracy for 1- 3D convolutional model trained

on Working Memory task target dataset, 2- 3D convolutional model trained on the

source dataset with seven tasks and fine-tuned to the Working Memory task target

dataset, 3- Structured MLP trained on Motor task target dataset.

tional model convergence is significantly slower than the two other cases.

3.4 Chapter Conclusion

In this chapter, we show that MLP blocks with structured normalization can reduce

the convergence time and improve transfer learning runtime performance for time-

critical applications of MLP methods for brain decoding. Our work is part of an early

research on fine-grained whole brain models, where the literature in brain decoding

is applied on either local fine grained data or coarse whole brain data. Due to being

an early research, we encountered problems in the implementation of the model and

optimization of model parameters under hardware constraints. We observed that the

performance of the Structured MLP model is close to the pretrained 3D convolutional

model in two transfer learning experiments.
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In the proposed MLP-Mixer (Tolstikhin et al., 2021) variant, the encoded feature

resolution is equal on successive application of MLP blocks. We utilized the equal

resolution over layers to apply normalization over brain regions. However, the equal

resolution introduces a big overhead in space requirement of the model, which forced

us to use a small batch size. As a future work, MLP-blocks can be applied to a larger

neighborhood in the patch lattice graph at successive layers to imitate the decreasing

resolution in the convolutional model, that solves the space requirement overhead.

An important contribution of Wang, 2020 is their saliency analysis, where they com-

pare saliency maps of fMRI model with GLM results. The similarity of the learned

saliency of samples with their GLM maps potentially has also ties with a recent theo-

retical work of Hu, 2019 that shows deep models learn increasingly complex features

throughout training. We also saw that activation peaks at similar locations in the

GLM maps and the gradient maps. However, the saliency extraction method, namely

guided backpropagation is known to be highly data dependent (Adebayo et al., 2018).

Deep learning methods are vulnerable to class prediction changes due to small changes

in the input, referred as adversarial vulnerability problem, which makes it hard to in-

terpret the model. The inter-session and inter-subject changes in the fMRI samples

is a big obstacle in the generalization ability of the suggested non-linear model. In

the literature, adversarial attacks are such small perturbations designed to result in the

largest change in its representation, that exploits the vulnerability of the deep models.

In the brain decoding problem, this is especially important. The brain decoding model

is the interpretation of the data for exploratory purposes. In neuroscience, black box

models are traditionally avoided due to the interpretability problem. The solution

in Wang, 2020 is also vulnerable to small perturbations. One proposed method to

reduce adversarial vulnerability is via averaging out the gradients around an input,

called SmoothGrad (Smilkov et al., 2017). McClure et al., 2020 works on improv-

ing the approach in Wang, 2020 by a method similar to SmoothGrad (Smilkov et al.,

2017) that aims to have smoother loss surfaces by training the model further with

samples that are injected adversarial noise. However, neither of these solutions are a

panacea for black-box models. We investigate a more reliable approach in the second

part of the thesis, that is inherently interpretable.
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Recent MLP models are resolution sensitive (Liu et al., 2022), where the model does

not generalize to a dataset of a different resolution. Resolution sensitivity of a model

is problematic in transfer learning tasks where source and target dataset resolutions

may differ. This is an open problem in recent MLP-Mixer variants, and a weakness

in our model.

Furthermore, we also observed that our MLP variant is hard to stabilize compared

to the 3D convolutional model Wang, 2020 and the test results are on par with the

reproduced results of the 3D convolutional model Wang, 2020. The major problem

in the MLP variant is the inter-subject and inter-session alignment problem. The

reported results are affected by inter-session and inter-subject changes. As a future

work, subject alignment is an important improvement to our MLP-Mixer variant, as

the unsupervised domain adaptation goal in Gao, 2019.

We used Automated Anatomical Labeling map (Tzourio-Mazoyer et al., 2002) as

a structural prior information. We propose a flexible model that can accommodate

a subject-specific or sample-specific atlas on its pipeline, which further widens ap-

plicable prior information types. As in the work of Aydöre et al., 2019, a bank of

structural maps, learned from data, is a possible future direction. Our work can also

be improved by adopting more recent brain atlases, i.e. Schaefer (Schaefer et al.,

2018) brain atlas or MMP (Glasser et al., 2016) brain atlas.

Linear models are preferred for explainability, interpretability, stability and smooth-

ness concerns in neuroscience literature, as proposed in Saxe et al., 2020. The lit-

erature on linear models also enable many potential directions in a computation-

ally tractable way. In the next chapter, we propose a transferable feature generation

method to improve transfer learning performance in an unsupervised manner, without

using target dataset class labels in the calibration process, as opposed to fine-tuning

method that requires target dataset class labels.
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CHAPTER 4

FEATURE ALIGNMENT FOR SINGLE-TASK TRANSFER LEARNING

Nowadays, there are numerous publications whose fMRI experiment data is hosted on

publicly available online repositories, such as OpenNeuro (Markiewicz et al., 2021).

Unfortunately, in most of the datasets, the number of subjects is less than 30 (Turner

et al., 2018), due to the costly fMRI data acquisition process. Turner et al., 2018 show

that the experiment replicability increases with the number of available subjects in an

experiment (sample size of an experiment). Hence, the degree of replicability of the

limited sample size experiments is relatively low.

Some studies investigate a common cognitive task to prove a hypothesis in an exper-

iment. The articles by Aron et al., 2007 and Xue et al., 2008 follow the common

"stop-go" cognitive task, where a subject is asked to repeat an action, until a stop

signal is given. Likewise, there is a wide range of publications on naturalistic exper-

iments, such as the audio clip listening or the movie watching experiments in Haxby

et al., 2011.

As explained in section 2.3, fMRI data is collected from a subject in multiple sessions.

The dataset acquired in an experiment is comprised of multiple subjects and sessions.

Each fMRI sample, recorded in a session of a cognitive experiment is represented

by a vector of voxel activations in the activation space, where the dimension is the

number of voxels in a brain volume at each time instant. The session vectors of a

single subject is assumed to be closer in the activation space compared to vectors

from different subjects. Furthermore, the session vectors are assumed to be further

apart for two subjects from that of two different datasets, compared to two subjects

from a single dataset. This observation allows us to form a three level hierarchy of
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Figure 4.1: Feature alignment on samples from two sessions of the same subject.

Each point is a sample recorded in the session, colored with the class label. The

d1..k are the spatial dimensions. The feature alignment increases the classification

performance compared to directly aggregating the session samples.

variability among samples of fMRI datasets. At the first level, data variations among

the sessions of the same subject are the lowest. At the second level, the data variations

are relatively higher among the subjects which come from the same dataset. At the

third level, the data variations are the highest among the different datasets.

Each cognitive task evokes a different pattern of voxel activations. Thus, datasets with

a common cognitive task evoke a common pattern of voxel activations. However, the

common pattern of voxel activations drift between sessions, subjects and datasets in

an increasing level, as defined in the hierarchy of data variability. In the context

of the this chapter, we refer reducing the drift between session samples as feature

alignment. Figure 4.1 illustrates the alignment of samples from two sessions of the

same subject, where the aligned session samples of the same subject form the subject

specific shared space. The color of the vectors indicate the different class of the

cognitive states in the figure. The aggregation of samples with feature alignment

allows discarding the subject specific activations and allows learning a task-specific

model, compared to the aggregation of samples without a feature alignment step.

In this chapter, we apply transfer learning between small sample size datasets with

a common cognitive task, namely the "stop-go" task. Considering the fact that there
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is a hierarchical variability among the samples of inter-sessions, inter-subject and

inter-dataset, we suggest a new feature alignment method, called hierarchical feature

alignment. Then, we apply transfer learning methods to the aligned features using

linear models. This approach increases the generalization problem of artificial neural

network models, applied on fMRI dataset, with limited sample sizes.

Transfer learning on limited sample size fMRI data pose a difficult problem stem-

ming from the hierarchy of variability. We shift our efforts from artificial neural

network model normalization to reducing experiment induced noise with linear trans-

formation of different sessions, subjects and datasets to a common feature space. We

take into consideration the hierarchy of variability and align the data features at each

level sequentially, called hierarchical feature alignment, which significantly improves

transfer learning performance on the brain decoding problem.

In this chapter, we incorporate a brain template (AAL by Tzourio-Mazoyer et al.,

2002) as the common ground to align the session data. Recall that, naturalistic exper-

iments investigate brain signals of subjects while watching a movie clip or listening

to an audio-story. Since the clip or audio sample is common for all subjects, at any

time-point, the label of the cognitive state is also the same for all subjects. The data

with a common label sequence is referred as homogeneously labeled data in the liter-

ature. If there is no common label sequence for each data acquisition session, the data

is referred as heterogeneously labeled data. Our model does not require each session

to have the same label sequence on the time dimension, hence it can be used in a

wide range of heterogeneously labeled datasets. We also propose two hierarchical

feature alignment methods; namely hierarchical group principal component analysis

(H-PCA) and its variant that integrates the label information, supervised hierarchical

group principal component analysis (SH-PCA). We follow the common benchmark

proposed in Zhou et al., 2018. Our suggested methods, H-PCA and SH-PCA outper-

forms the state of the art approach in Yousefnezhad et al., 2020.

This chapter is organized in 5 sections. In the literature survey section, we explain the

related work in both neuroscience literature and, in general, pattern analysis/machine

learning literature. In section 4.2, we give the derivation of generalized canonical cor-

relation analysis (GCCA) method, which is the basis of this chapter. In section 4.3,
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we propose a GCCA based transfer learning approach with a brain atlas as the com-

mon ground between session samples. In section 4.3, we define a modified projection

function that improves the alignment of session data. In section 4.4, we explain a pre-

liminary analysis and show our experimental results. In section 4.5, we summarize

our work and give future research directions.

4.1 Literature Survey on Feature Alignment for Brain Decoding

The background of transfer learning methods used in neuroscience literature can be

traced back to principal component analysis (PCA, Pearson, 1901) and canonical

correlation analysis (CCA, Hotelling, 1936).

Krzanowski, 1979 proposes a PCA-based method to find a common representation

among multiple datasets in reduced dimensions, where PCA is applied on combined

covariance matrices of data groups. Multiview learning involves alignment of differ-

ent views of data to find a common variation. Canonical correlation analysis (CCA,

Hotelling, 1936) maximizes the correlation between two data groups by applying a

different linear transformation on each data group. Generalized canonical correlation

analysis (GCCA, Kettenring, 1971) extend CCA to more than two sets. In the litera-

ture, there are different formulations for GCCA, such as sum of correlations (sumcor)

and maximum variation (maxvar). Akaho, 2007 apply kernel method to CCA. Mul-

tiview learning is also a popular approach in transfer learning, where multi-modal or

multi-source data can be used as views of the same target concept, as suggested in

P.-h. Chen, 2017.

In Neuroscience literature, hyperalignment (Haxby et al., 2011) aligns subject pairs

with Procrustean transformation (Schönemann and Carroll, 1970) to reach a common

coordinate space over all pairs.

4.1.1 Hyperalignment and Transfer Learning in Neuroscience

Hyperalignment is a feature alignment method to reduce inter-subject variability across

the subjects of an fMRI dataset.
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A popular hyperalignment method, called Shared Response Model (SRM, P. Chen

et al., 2015), decomposes a session matrix of size T × N into two matrices of size

T ×k and k×N , where T is the number of timepoints, N is the number of topological

points and k (k < T , k < N ) is the reduced dimension size. SRM is proposed on

naturalistic paradigm datasets, specifically movie watching, where the T × k matrix

is assumed to be common among all session samples. The common T × k matrix

is used to aggregate multi-subject fMRI samples, as well as subjects from different

datasets with the same movie watching task. There is a wide range of variants for

SRM. Examples include the local SRM based on searchlight (H. Zhang et al., 2016),

autoencoder SRM (P. Chen et al., 2016) and SRM for heterogeneous data (Nastase

et al., 2020).

SRM variants are searchlight SRM (H. Zhang et al., 2016), autoencoder SRM (P.

Chen et al., 2016) and SRM for heterogeneous data (Nastase et al., 2020).

H. Zhang et al., 2018 apply SRM as a transfer learning method for the brain decoding

problem. They enforce one subject to be part of both a source dataset and a target

dataset, where both datasets are acquired under the same naturalistic paradigm cog-

nitive tasks. The shared k ×N subject specific topological matrix is treated as a link

between the source and target datasets. Then, a linear transformation is estimated to

align the common subject topological matrices between the two datasets. Learned lin-

ear transformation is applied to session data of all other subjects in the target dataset,

as a means to align the source and target datasets.

Recently, Shared Space Transfer Learning method (SSTL), suggested by Yousefnezhad

et al., 2020, applied an hierarchical feature alignment layer that jointly decorrelates

session, subject and dataset views of the data via the solution of two sequential eigen-

problems, borrowing the approach in Rastogi et al., 2015. In SSTL, the joint feature

alignment applies GCCA followed by PCA. In another recent work by Karakasis et

al., 2022, a two level GCCA method is proposed for the joint decorrelation of subject

and dataset views of the data.

Representation of session data via a network of brain regions is a common task in

neuroscience. Brain region networks are studied in the following publications in the

literature on transfer learning for brain decoding. Nastase et al., 2020 increases inter-
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subject correlation via a brain template. A hyperalignment technique is also suggested

by Rustamov and Guibas, 2016 and Yousefnezhad and Zhang, 2017 utilizing a brain

template.

Brain template based hyperalignment is realized in Rustamov and Guibas, 2016 and

Yousefnezhad and Zhang, 2017.

Proposed models in P. Chen et al., 2015 and Yousefnezhad et al., 2020 are limited to

homogeneous data. Additionally, SRM originally utilizes a subject that exists in both

the source and target datasets as an additional anchor point.

The dimension reduction is an important operation to discard irrelevant variation em-

bedded in fMRI data. In the next subsection, we survey the literature on utilizing class

label information in projection of the input data to a relatively lower dimensional sub-

space.

4.1.2 Supervision in Dimension Reduced Representation

The dimension reduced representation methods, PCA and CCA, optimize an unsu-

pervised objective function that disregards class labels.

In the brain decoding domain, Yousefnezhad et al., 2021 propose supervised hyper-

alignment for multiple subjects in a dataset using fisher discriminant analysis method.

The Supervised PCA method proposed in Barshan et al., 2011 employs an empiri-

cal measure of the Hilbert-Schmidt independence criterion (Gretton et al., 2005) to

impose dependence between the kernel matrix of samples and the kernel matrix of

labels.

4.1.3 Variational Autoencoder (VAE)

In the experimentation section of this chapter, we compare our proposed methods

to the variational autoencoder (VAE, Kingma and Welling, 2014), which are briefly

explained below.
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Table 4.1: Chapter 4 - Hierarchical Feature Alignment notation

Variable Explanation

N = (W ×H ×D) Number of voxels

T Number of timepoints

XN ∈ NT×N Spatio-temporal data matrix

XR ∈ RT×N Region averaged time-series data matrix

XROI ∈ RT×Z The set of Z voxel time-series in a region of interest

A ∈ ZW,H,D Brain atlas A is a matrix of integer labels.

U, S, V = SV D(.) Singular left and right vectors, U, V and singular val-

ues S

SV Dk Truncated singular value decomposition of k dimen-

sions

Xk Rank-k approximation of matrix X via SVD

cov(.) Covariance matrix

proj(.) Projection matrix

X̄r ∈ RTr×k k dimensional representation of data from session r

Cr Covariance matrix of data from session r

Gs,d Transformation matrix of subject s in dataset d

tr(.) Trace operator

||.||F Frobenius Norm

I Identity matrix

Wd Transformation matrix for dataset d

Dfinal Final set of transformed sessions

I Identity matrix

KL(P ||Q) Kullback-Leibler divergence of dist. P from dist. Q

L Loss value in VAE formulation

β Hyperparameter in VAE formulation
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Figure 4.2: Illustration of the Variational Autoencoder (Kingma and Welling, 2014).

The encoder estimates a Gaussian distribution withN (µx, σx) iteratively. The ranom

variable ε is sampled from a standard Gaussian distribution. The latent representa-

tion z = ε × σx + µx is a sample from the encoder Gaussian distribution. Decoder

reconstructs X as X’ on input vector z.

VAE is illustrated in figure 4.2, where input sample X is reconstructed as X ′, ε is

sampled from N(0, I), z is the latent representation of the sample X ,

z = ε× σx + µx.

The VAE loss function is defined as follows,

L = ||X −X ′||+KL(q(z|x)||N (0, I)), (4.1)

where KL denotes the Kullback-Leibler divergence, X is the input sample, X’ is the

reconstructed sample, q is the encoder distribution. Encoder network estimates µx

and σx from data. VAE is trained via backpropagation algorithm, which requires each

block in the network to be differentiable. The non-differentiable sampling operation

is stochastically estimated by sampling ε from a standard Gaussian and using (µx,σx)

to scale and offset ε, which is called the reparametrization trick.

The β-VAE (Higgins et al., 2017) loss function is defined as follows,

L = ||X −X ′||+ βKL(q(z|x)||N (0, I)), (4.2)

where the hyperparameter β on the KL term favors orthogonal features.
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The σ-VAE (Rybkin et al., 2021) loss function is defined as follows,

L = ||X −X ′||+KL(q(z|x)||N (0, D)), (4.3)

where D is a diagonal covariance matrix that replaces the identity covariance matrix.

D is estimated from the empirical covariance matrix of the decoder block of VAE.

The diagonal covariance matrix

D = (σ∗)2I,

where

(σ∗)2 =
∑
i

(xi − µi)
2.

Conditional VAE (Sohn et al., 2015) proposed a method to include side information

into the unsupervised VAE training procedure. The side information is simply added

to both the input in one-hot form and the latent vector z.

4.1.4 A Critique for Transfer Learning Methods for Brain Decoding

The methods, briefly overviewed in the previous section poses some important prob-

lems in brain decoding, as criticized below. These problems inspired us to suggest

new feature alignment methods by revising the GCCA method, given in the next sec-

tion.

In a heterogeneously labeled dataset, the samples can be arranged to obtain a homo-

geneously labeled dataset, referred as temporal synchronization. Figure 4.3 illustrates

the temporal synchronization steps, proposed by P. Chen et al., 2015. The given time-

series data, in figure 4.3-a, do not have a common class label sequence. The following

steps show how some of the samples are re-indexed and discarded to obtain a com-

mon class label sequence among the two time-series data. Figure 4.3-b illustrates

the arrangement such that the cognitive states with the same class label are grouped

together by reordering the samples in the session time duration. An equal order of

cognitive states is maintained among the samples of each session. In the second step,

illustrated in figure 4.3-c, the number of samples for each cognitive state is truncated
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(a) Initially, the two time series data have arbitrary class labels (not

temporally synchronized).

(b) Each cognitive state is grouped together by re-ordering of samples.

(c) Among the two time-series data, the number of samples are trun-

cated to that cognitive state with the smallest number of samples.

Figure 4.3: Temporal synchronization strategy maintains homogeneity of class labels

among the two heterogeneously labeled data groups, proposed in "Shared response

model" P. Chen et al., 2015. Illustration from the author’s presentation slides.

to match the lowest number of samples in a cognitive state across all subjects. The

application by Yousefnezhad et al., 2020 follow this strategy as well, to apply transfer

learning on datasets, given by Aron et al., 2007 and Xue et al., 2008.

A common class label order in both the source and target datasets is a vulnerability

that needs to be addressed. Westfall et al., 2017 propose time-point randomization

tests. Otherwise, the common time dimension can cause inflated or misleading suc-

cess rates of transfer learning among datasets. Westfall et al., 2017 report that in

single site neuroscience experiments, 60% of recent work have vulnerabilities on re-

ports of between subject or between session comparisons.
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Temporal synchronization strategy, illustrated in 4.3, has been criticized in reviews of

Yousefnezhad et al., 2020 as it may cause to leak information that results in learning

the specific ordering of data, which may result in shortcut learning Geirhos et al.,

2020.

On the other hand, data with arbitrarily ordered class labels do not require time-point

randomization tests.

High dimensional (N=106) feature vectors of fMRI samples require a large memory

throughout the data processing and decoding steps. Constraining the spatial dimen-

sion with a region of interest (ROI), as in Yousefnezhad et al., 2020, still necessitates

a large memory requirement (number of dimensions N~104). Although the online

methods are proposed to manage the memory requirements, these methods are prone

to accumulation of errors. Reducing the memory requirement in an fMRI transfer

learning task on the high-dimensional fMRI data is usually a neglected problem in

the fMRI literature.

Another issue observed in transfer learning methods is the non-linearity that does not

guarantee preserving certain properties of the data, such as the covariance of data

dimensions. Linear models, like PCA, center and rotate the data around the origin,

hence the linear models preserve the covariance of dimensions in the transformed

data.

In Neuroscience, it is important to utilize a method that mathematically guarantees

to preserve the common property among the data groups. In the feature alignment

problem, we define an anchor property of data. Hence, if the common property is

inferred from the data, such as the covariance of data dimensions, linear methods

become a powerful tool in aligning the data groups for the transfer learning methods

for brain decoding.

4.2 Generalized Canonical Correlation Analysis

Generalized canonical correlation analysis (GCCA) is an essential method in the state

of the art transfer learning models for brain decoding.
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In canonical correlation analysis (CCA), given two groups of data, we aim to maxi-

mize the correlation of the two data groups by finding a separate transformation for

each group. GCCA generalizes CCA to multiple data groups. In this section, we ex-

plain the maximum variance (max-var) formulation of GCCA. Max-var formulation

estimates a common space G in objective function with a closed form solution. We

briefly explain generalized canonical correlation analysis of Kettenring, 1971. The

details of optimization is available in Ghojogh and Crowley, 2019.

Formally speaking, given the session data is represented by X . The projection matrix

of X is defined as follows,

P = Proj(X) = X(XTX)−1XT .

Then, minimizing the objective function of generalized canonical correlation is de-

fined as,

min
G,{Kj}Jj=1

J∑
j=1

∥∥G−XT
j Kj

∥∥2

F
, s.t. GTG = I, (4.4)

whereXj are the observed session data,Kj are a mapping forXj ,G is an orthonormal

matrix.

Choosing K = (XTX)−1XTG, such that XK = Proj(X)G = PG, leads to a

closed form solution of max-var GCCA.

Our goal is to minimize the following cost function with respect to G, as follows,

J∑
j=1

‖G− PjG‖2
F =

J∑
j=1

‖(I − Pj)G‖2
F (4.5)

=
J∑

j=1

tr((GT (I − Pj)
T (I − Pj)G)) =

J∑
j=1

tr((GT (I2 + P 2
j − 2IPj)G))

=
J∑

j=1

tr((GT (I2 + P 2
j − 2IPj)G)) =

J∑
j=1

tr((GT (I + Pj − 2Pj)G))

=
J∑

j=1

tr((GT (I − Pj)G)).
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The above minimization equation is equivalent to the following maximization prob-

lem,

max
G

J∑
j=1

tr((GT (Pj)G)). (4.6)

Thus, minimizing the objective function in equation 4.4 is equivalent to maximizing

the following objective function,

max
G

tr(GT (
J∑

j=1

Pj)G) s.t. GTG = I. (4.7)

The Lagrangian for equation 4.7 is solved as follows,

L = tr(GTMG)− tr(λT (GTG− I)), (4.8)

∂L
∂G

= 2MG− 2Gλ,

MG = Gλ,

where M =
∑J

j=1 Pj and λ are the Lagrange multipliers.

Note that the rows of the orthogonal matrix G are the eigenvectors of matrix M =∑J
j=1 Pj corresponding to the eigenvalue λ, where j is the index of each group of

data.

4.3 Hierarchical Feature Alignment

When employed to heterogeneously recorded sparse data, the available techniques

mostly provide a poor decoding performances in a transfer learning schema.

In this section, we create a shared feature space by extracting the common informa-

tion, embedded across all sessions and subjects of multiple source datasets to improve

the decoding performance of a small size heterogeneous target dataset, based on ses-

sion covariance matrices. We extended the method suggested by Yousefnezhad et
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al., 2020 to heterogeneously labeled datasets for the transfer learning task, where the

common dimension among datasets is defined by an anatomical brain atlas. Bar-

shan et al., 2011 inspired our work to minimize a kernelized statistical independence

criterion between data and class labels as an intermediate step in our label-guided

solution.

4.3.1 Our Contributions

In this work, we use the automated anatomical labeling (AAL) brain atlas to construct

the brain region time-series data, which is much lower dimensional (N ≈ 102) than

the voxel representation (N ≈ 109) in the state of the art method. This approach

eliminates the need for large memory requirements and complicated, error-prone on-

line methods. Furthermore, brain region time-series data is more interpretable, owing

to the enforced anatomical coherence by the brain atlas (P. Chen et al., 2016). Addi-

tionally, the brain atlas representation removes the requirement of having equal time

label sequence and equal session time duration.

We detect low-dimensional common structures in fMRI data of subject groups who

perform the same cognitive task via Generalized Canonical Correlation Analysis. The

common structure is then used as the anchor point for aligning data.

In this setting, the high-variation directions in the feature space are assumed to be

task related. On the contrary, low-variation directions are assumed to be relatively

less task related and carry relatively more private and non-transferable information.

We propose a method that assigns the optimal importance weight to each direction,

that is not covered in the recent literature.

We propose two Hierarchical Feature Alignment methods, that outperform the state-

of-the-art method in transfer learning for brain decoding.

Our first method generates aligned features, based on the relation of session covari-

ance matrices, inspired by max-var formulation of generalized canonical correlation

analysis.

Our second methods is the class label guided variant of the supervised transfer learn-
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ing (H-PCA) method using the Hilbert-Schmidt independence criterion, referred as

supervised H-PCA (SH-PCA).We augment generalized canonical correlation analy-

sis with label supervision and utilize this in a transfer learning setting. We apply

label supervision such that the data representation is further transformed to reduce

the correlation distance between data features and class label distribution. We use

this learned transformation as the transferred component of data in the testing phase.

4.3.2 Problem Definition

In the transfer learning for brain decoding problem, there are multiple small scale

datasets available for a common task. Each dataset d ∈ D has S subjects. A neural

image in the dataset d is a discrete Spatio-temporal signal, represented by the matrix

XN ∈ RNxT , where T is the number of brain volumes, each of which is obtained at

time instant ti, for i = 1, ..., T , and there is a total of N voxels on each brain volume.

The entries of the fMRI data matrix, XN = [xij], shows the intensity of voxel vj at

time instance ti.

A subject, s, is given a stimulus, which forces a change in the cognitive state ci ∈
{0, 1} at time ti. The number of time samples, T , and the number of subjects, S, vary

across the sessions and datasets.

Instead of using all of the N voxels of a brain volume, we obtain the average time

series for each anatomical region and represent our features in the data matrix, XR ∈
RRxT , where R is the number of anatomical regions. Hence, the entries of XR show

the average intensity value of all voxels, which reside in the anatomical region, r =

1, ..., R, measured at time ti.

Mathematically speaking, suppose that the time series of voxel, vj , is represented by

a vector, xj = [x1j, ..., xTj], as the jth row of the design matrix, XN . Then, each

anatomical region, r, is represented by average voxel intensity values which reside in

that anatomical region by the following vector,

xr =
1

Nr

∑
∀xj∈r

xj, (4.9)
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where the region averaged fMRI data matrix is represented byXR = [x1,x2, ...,xR]T ∈
RR×T , where R is the number of anatomical regions and T is the number of time

samples in a session of a subject. x̂r ∈ RT is the time series which represents the

anatomic region r, Nr is the total number of voxels in region r 4.9. For simplicity,

we set X = XR.

The length T of the time series can vary among sessions, subjects, and datasets. The

brain regions are determined by the Automated Anatomical Labeling (AAL) brain

template, which segments N voxels into R anatomical regions.

We train our transfer learning model on source datasets DS , where |DS| ≥ 1, and

evaluate it on a target dataset DT , where DS ∩DT = ∅, |DT | = 1. Our main goal is

to train a model MS on source data and improve the performance of a model MT on

target dataset.

4.3.3 Brain Atlas Aligned GCCA

Recall that in naturalistic paradigm experiments, subjects watch the same video/au-

dio clip and corresponding session data are analyzed for common features related to

the clip. The session data are therefore "synchronized" in time by the same clip, in-

troduced as the external stimuli. The synchronized time dimension is utilized as the

common ground for transfer learning. However, the main line of work in neuroscience

follow task-fMRI paradigm, where the time dimension class labels are arbitrary.

The state of the art method, SSTL (Yousefnezhad et al., 2020), apply generalized

canonical correlation analysis on the common time dimension of each data group, that

is only applicable to naturalistic paradigm datasets. The state of the art method works

on a region of interest which is a set of J voxels,XROI ∈ [xw1,h1,d1 , xw2,h2,d2 , ..., xwJ ,hJ ,dJ ],

that are functionally relevant to the cognitive task. The time dimension label sequence

Y = {y1, y2, ..., yT} is assumed to be equal for each session. Hence, in equation 4.4,

the common space matrix is

G ∈ RT×T .

The dependence on the temporal dimension T does not allow the model to be applied

on heterogeneously labeled data. Authors used the temporal alignment to obtain the
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common time dimension on all datasets. Refer to subsection 4.1.4 for details on

temporal synchronization.

We represent the brain voxels X ∈ RW,H,D, that has N = W ×H ×D = 91× 109×
91 ≈ 107 spatial dimensions, with the brain template AAL, that has 116 dimen-

sions. The brain template partitions voxel coordinates spatially, in an anatomically

and functionally coherent way. Hence it is a suitable common ground among subjects

in a transfer learning setting, in other words, the same brain template applies to all of

the subjects in the experiment.

Mathematically, a single fMRI voxel x(w, h, d) ∈ R is a BOLD intensity value at

coordinate (w, h, d), where w ∈ [1,W ], h ∈ [1, H], d ∈ [1, D]. A brain template A ∈
ZW,H,D is a matrix of brain region labels, and each coordinate (w, h, d) is assigned a

label l, such that A(w, h, d) = l ∈ Z. There are R brain regions, L = {l1, l2, ..., lR}
in the brain template A. We average the BOLD intensities of the voxels that have the

same label li to represent the region Ri. We denote a session data as Xr,s,d ∈ NR×T ,

where r,s,d are session, subject and dataset indices, R is the number of regions and T

is the number of time-points in the session. In a session, each time-point is labeled

with a cognitive state label y ∈ {0, 1}.

We mitigate the dependency on the time dimension with a brain region representation

and using the brain template as the common dimension among session data. In the

resulting GCCA formulation, the common space matrix is

G ∈ RR×R.

Furthermore, each session data have the common spatial dimension R that enables

the transfer learning goal across datasets. The dependence on the spatial dimension

allow our model to utilize heterogeneously labeled data. We refer the brain atlas

aligned SSTL variant as SSTL-V in the experiment section of this chapter.

4.3.4 Hierarchical Feature Alignment

Figure 4.4 shows the block diagram representation of the hierarchical feature align-

ment method, which consists of feature alignment and transfer learning modules in

both training and transfer phases. In the training phase, the algorithm estimates three
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Figure 4.4: Overall view of "Hierarchical feature alignment" framework, modified to

work on brain atlas alignment, where global alignment matrix W is transferred to the

transfer phase and the classifier weights Θ are used as-is in the evaluation of transfer

phase.

transformation matrices to align the data matrices hierarchically across the sessions,

subjects and datasets. Then, a classifier is trained with source dataset(s) and tested on

a target dataset, which is aligned with the global transformation matrix, obtained in

the training phase. In this section, we propose two new methods for the hierarchical

feature alignment block in the figure 4.4. We adopt the transfer learning routine in

SSTL (Yousefnezhad et al., 2020). The hierarchical feature alignment block is revised

by the brain atlas aligned GCCA.

Let us explain the two feature alignment modules, namely, hierarchical-group princi-

pal component analysis and class label guided low-dimensional representation in the

following subsections.

4.3.4.1 Hierarchical Group Principal Component Analysis

The major assumption of the suggested method is that there exists a common struc-

ture of patterns across all sessions, subjects and datasets, induced by the common
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cognitive task.

We aim to find a correspondence between lower dimensional representation of each

data group in Hierarchical-group principal component analysis, such that transformed

data group representations reflect the common pattern.

In order to estimate the common patterns embedded in the noisy fMRI readings, first

we reduce the dimension of the feature space by principal component analysis (PCA)

via singular value decomposition (SVD). Then, we estimate a transformation matrix

at each level of session-subject-dataset hierarchy to generate a shared space, using

generalized canonical correlation analysis.

We propose to scale projection method by eigenvalues to improve feature correspon-

dence, matching the extreme points of the spectrum. Scaled projections come up in

various fields, where the projection is weighted/scaled by the eigenvalues. Eigenvalue

scaling emphasizes the eigenvectors that correspond to a larger portion of the variance

and penalizes eigenvectors that correspond to a smaller portion of the variance. For

instance, Seo and Kim, 2013 propose to scale subspace projections with eigenvalues

for principal component analysis. We implement a similar idea on maxvar-GCCA

to expand the eigenvalue distance, that potentially makes it easier to align multiple

datasets in finding the subspace of the common variance. Further theoretical back-

ground can be found in Hanke and Neumann, 1993, regarding the geometry of scaled

projections.

A projection matrix is a form of covariance matrix. Thus, the projection matrix also

admits the covariance matrix properties. Our approach can be traced back to the anal-

ysis of composite covariance matrices, used in Fukunaga-Koontz transform (FKT),

(Fukunaga and Koontz, 1970), where composite covariance matrices of positive and

negative class labeled samples are aggregated for feature extraction in a binary clas-

sification problem. Koles et al., 1990 uses composite covariance matrices to find the

common features among two groups in common spatial pattern analysis.

Singular value decomposition of a matrix X is defined as its decomposition into the

orthonormal left and right matrices of singular vectors and a diagonal matrix of sin-

gular values.
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Principal component analysis is the optimal low dimensional closed form represen-

tation, according to Eckart-Young-Mirsky theorem (Eckart and Young, 1936). The

theorem states that the lower rank approximation, obtained with principal compo-

nent analysis via singular value decomposition is the globally optimal estimation. In

this respect, our method estimates the best possible feature aggregation in the least

squares sense.

Mathematically, a low-rank representation of the data matrix X can be obtained by

selecting the top-k rows of U , the top-k diagonals of S and the top-k columns of V

as follows,

Xk = UkSkV
T
k . (4.10)

For notational convenience, we define U = Uk, S = Sk and V = Vk. Recall that

principal component analysis decomposes the covariance matrix of a mean-centered

data matrix into the scale (eigenvalue) and direction (eigenvector) components. The

covariance matrix of Xk is defined as,

XT
k Xk = (V SUT )(USV T )

= V S2V T

A = V S → AAT = V S2V T ,

XT
k Xk = AAT . (4.11)

The above formulation enables us to represent the covariance matrix in terms ofAAT ,

where A = V S. In this representation, truncated right singular vectors, V and, sin-

gular value matrix, S are sufficient to find the covariance matrix.

At this point, we note that maxvar-GCCA (Kettenring, 1971) utilizes a linear projec-

tor, referred as proj,
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proj(Xk) = Xk(XT
k Xk)−1XT

k ,

= USV T (V SUTUSV T )−1V SUT ,

= UUT (4.12)

which is a special case of a covariance matrix used for aligning data. Note that

"Shared Space Transfer Learning" (SSTL) and brain atlas aligned representation (SSTL-

V), in subsection 4.3.3, utilize the standard projection function.

Recall that the maxvar-GCCA finds the eigenvectors of the sum of linear projectors

UUT , using equation 4.12. This task is simply achieved by maximizing equation 4.13

for J groups of data, [Xk]j .

max
G

tr[GT (
J∑

j=1

UjU
T
j )G] s.t. GTG = I, (4.13)

Equation 4.13 applies principal component analysis on the sum of linear projectors.

Contrary to alignment on temporal dimension with G ∈ RT×k in equation 4.11, we

align on the spatial domain where G ∈ RR×k.

The scaled projection function is defined as,

projscaled(Xk) = (US)(US)T = cov(XT
k ), (4.14)

where the scaled projection leads to the covariance of principal components, US,

which is equal to the covariance of brain regions.

In our objective function, we assign a high credit to high variance directions in the

feature alignment process with the scaling profile that is based on eigenvalues of

the reduced rank data matrix. Starting from the above definitions, we modify the

objective function of maxvar-GCCA, which operates on the sum of linear projectors

in equation 4.12, such that it operates on the sum of scaled projectors, in equation

4.14. We scale the linear projector by corresponding eigenvalues, which ultimately
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corresponds to the covariance of brain regions, defined by principal component US,

which is the multiplication of left singular vectors and diagonal matrix of singular

values. We find the eigenvectors of the sum of covariance matrices US2UT , rather

than the sum of linear projectors UUT , in equation 4.13.

Note that, the sum of scaled projection matrices, M =
∑N

i UiSi, is written in the

matrix form, as follows,

M = [(U0S0)(U1S1)...(UNSN)][(U0S0)(U1S1)...(UNSN)]T , (4.15)

form the matrix in equation 4.15, similar to the idea in Savostyanov, 2014.

Next, we estimate the transformation matrices in the reduced space at the levels of

the session, subject and dataset hierarchy with scaled linear projectors.

Mathematically, let the covariance of each session’s principal components be repre-

sented by

Cr = Ur,s,dS
2
r,s,dU

T
r,s,d,

where the subscripts, r, s, and d indicate session, subject, and dataset indices, re-

spectively, and Xr,s,d = Ur,s,dSr,s,dV
T
r,s,d. Then, we can estimate the subject-specific

transformation matrix, Gs,d that maximizes the variation of the sum of covariance

matrices Cr for a single subject s, as follows,

max
Gs,d

tr[GT
s,d(
∑
r

Cr)Gs,d] s.t. Gs,dG
T
s,d = I. (4.16)

Estimation of the subject-specific transformation matrix, Gs,d, in equation 4.16 en-

ables us to prioritize the higher variance direction by multiplying the unit direction U

and scale S, rather than using only the unit direction U in equation 4.12.

Once the subject-specific transformation matrix Gs,d is estimated, the dataset-specific

Wd transformation matrix is estimated via linear Karhunen-Loeve (KL) transform, as

in Yousefnezhad et al., 2020, as follows,

max
Wd

tr[(W T
d (
∑
s

Gs,d)Wd)] s.t. WdW
T
d = I. (4.17)
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Finally, we repeat the KL transform of equation 4.17 to estimate the global, inter-

dataset matrix W , as follows,

max
W

tr[(W T (
∑
d

Wd)W )] s.t. WW T = I. (4.18)

The estimated matrices, Gs,d, Wd and W , can be used to align the fMRI data matrix

in each dataset, for each subject and session. Hence, the covariance of each sample

is represented in the transformed space by Dfinal in 4.19, whose rows are the samples

used in the classification step,

Dfinal = CrGs,dWdW, (4.19)

where Cr is the covariance of principal components and Gs,d,Wd,W are "session-

subject", "subject-dataset" and "dataset-global" mappings, respectively. The final data

representation is of size N × k, where N is the number of samples and k is the lower

rank number used in SVD.

In the transfer phase, we recalculate the subject-specific transform matrix, Gs,d and

the dataset transform matrix Wd. However, we use the same global transformation

matrix, W in the transfer phase.

4.3.4.2 Label Guided Low-Dimensional Representation

Finally, we apply supervision on the hierarchical group principal component analysis

in our experimentation.

In this subsection, we explain the suggested class label guidance method for esti-

mating the common variation structure among data groups. We follow the super-

vised principal component analysis method, suggested in Barshan et al., 2011 in our

hierarchical-group formulation. We apply label guidance using Hilbert-Schmidt in-

dependence criterion (HSIC, Gretton et al., 2005) which measures independence be-

tween two distributions.

Recall that subject level transformation matricesGs are found by principal component
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analysis, in equation 4.16. We find the label-guided alternative Ḡs via kernel version

of supervised principal component analysis. We first explain the direct supervised

PCA and then define the kernelized version.

We seek the subspace Ḡs that maximizes the statistical dependence between rotated

session principle components, ḠT
s Cr and label matrix Y , where each row of Y is a

one-hot encoded label vector. For this purpose, we use the Hilbert-Schmidt indepen-

dence criterion, which measures the degree of statistical independence.

An empirical estimate of the Hilbert-Schmidt independence criterion between projec-

tion sum, CR =
∑R

r Cr, and label variable Y is given as follows,

HSIC(CR, Y ) =
1

(n− 1)2
tr(CL), (4.20)

where C = CT
RCR and L = Y TY are mean-centered gram matrices and n is the

number of samples.

We find B that maximizes the dependence between C and L, as follows,

max
B

tr(BTCRLC
T
RB) s.t. BTB = I, (4.21)

where L = Y TY and C = CT
RCR are mean centered gram matrices.

Solution of equation 4.21 is the set of eigenvectors u for eigendecomposition of

CRLC
T
R .

We obtain the kernelized formulation of supervised PCA with variable substitutions

in equation 4.21, as follows,

max
Ḡs

tr(ḠT
sKCKLKCḠs) s.t. ḠT

sKCḠs = I, (4.22)

where we substitute CR with a kernel φ(CR), we set KC = φ(CR)Tφ(CR), the opti-

mization parameter B is substituted with φ(CR)Ḡs and we optimize for Ḡs.

Equation 4.22 is a generalized eigenvalue problem, where Ḡs are generalized eigen-

vectors of KCKLKC . We obtain the label guided variant of our method, referred

as supervised hierarchical group PCA (SH-PCA), by using 4.22 in place of equation

4.16.
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Algorithm 1 Label guided generalized canonical correlation analysis

Definitions

rs, sd, d r:session, s:subject, d:dataset

Xrs,sd Data from each session

Prs,sd = X(XT
rs,sd

Xrs,sd)˘1XT
rs,sd

Projection matrix

implemented via SVD

Gsd Subject specific

SH − PCA Supervised Hierarchical Group PCA

SVM Support vector machine

X̂ds , X̂dt Source, target aligned data

Aligned features

for each dataset d * multi-source case

for each subject sd
Gsd = SH − PCA(

∑
rs
Prs,sd) G, common proj. subspace over rs

for each dataset d

G =
⋃
Gsd Union of projection subspace matrices

W = eigvec(cov(G− µG)) W, principal components of G

{X̂rs,d = Prs,dGsW}r,s X̂ , new features

Transfer learning evaluation

Ms = SVM(X̂d=source) Train model Ms on source data

Ms(X̂d=target) Evaluate model on unseen target data
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4.4 Experimental Results

In this section, we firstly give details about the stop-go paradigm for testing response

inhibition, studies carried out under this paradigm, and details of the datasets ac-

quired in related response inhibition experiments. Then, we give the results of our

change point analysis, based on ROI data. Finally, on a brain template representation,

we show the results of the two proposed methods of hierarchical feature alignment;

hierarchical-group principal component analysis (H-PCA) and its supervised variant

(SH-PCA).

4.4.1 The Cognitive Paradigm in the Datasets

In our transfer learning experiments, we work on data that is acquired on stop-signal

paradigm that tests response inhibition. In the Stop-Signal paradigm, a subject re-

peats an action (initiation) and stops the action immediately on a given signal (inhibi-

tion). The common properties of brain signals on response inhibition is tested in this

approach.

The neuroscience studies assume that language and motor systems have common

mechanisms for response inhibition, where the same regions are involved in non-

language motor functions and speech production.

Depending on the cognitive task, different stimuli are designed in Aron et al., 2007

and Xue et al., 2008 and applied for transfer learning in Zhou et al., 2018. We worked

on 4 datasets, where the subjects are asked to inhibit the following actions on stimuli;

1. Word: Vocally reading non-necessarily meaningful words,

2. Manual: Pressing a button depending on the letter shown on a screen,

3. Vocal: Vocally reading one letter, (Xue et al., 2008)

4. Signal: pressing a button depending on the arrow direction on screen (Aron

et al., 2007).

In these datasets, data acquisition from each subject is in two sessions. The number
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Table 4.2: Dataset naming and details. We distinguish successful-unsuccessful stop

states.

Experiment details Label distribution

Dataset
Subject Session Time Successful Unsuccessful

# # points stop stop

Word 20 2 [45,51] 705 1046

Manual 20 2 [45,51] 783 993

Vocal 20 2 [45,51] 665 1030

Signal 13 2 [43,50] 821 896

of time-points vary between sessions. The samples belong to one of the two classes;

successful stop and unsuccessful stop, depending on the response time of the subject

to the stop signal. Further details can be found on table 4.2.

We experiment on transfer learning between multiple small scale source datasets to a

small scale target dataset. We initially used the hosted preprocessed datasets which

are based on region-of-interest (ROI) voxels. We improved the data preprocessing by

excluding the irrelevant time points, labeled as "junk" or "go". We used a whole-brain

parcellation, called Automated Anatomical Labeling (AAL, Tzourio-Mazoyer et al.,

2002).

The datasets are publicly available on OpenNeuro. The repositories for Aron et al.,

2007 and Xue et al., 2008 are DS000007 1 and DS000008 2. We preprocessed the data

using fMRIprep 3 neuroimaging preprocessing tool Esteban et al., 2020. We extract

region mean time series data with automated anatomical labeling (AAL) template.

1 https://openneuro.org/datasets/ds000007/versions/00001
2 https://openneuro.org/datasets/ds000008/versions/00001
3 fMRIPrep-21.0.0
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4.4.2 Temporal Change-point Analysis

In this subsection, we perform a preliminary analysis on response inhibition datasets

with a simple problem, where we showcase the performance of a basic heuristic on

temporally synchronized datasets. The simple problem is defined as follows. We

assume that cognitive state toggles only once during a session, such that the first k

samples are from the first cognitive state and the remaining T-k samples are from

the second cognitive state in a session of T samples. We estimate the state change

time-point k (temporal change-point) and the cognitive states before and after the

time-point k, as part of this initial analysis.

We analyze the Word, Manual and Signal datasets, defined in the subsection 4.4.1.

There are 4 labels in each of the datasets; "junk", "failed", "go" and "successful". We

classify the fMRI images, labeled "successful" and "failed". The originally heteroge-

neous datasets are temporally synchronized, such that the samples of each cognitive

state are grouped together. The temporally synchronized datasets are hosted as part

of the study by Yousefnezhad et al., 2020. We refer the reader to section 4.1.4 for

details of temporal synchronization.

We start with an oracle method that is aware of the initial state of the subject and

we only estimate the state-change time-point with a basic heuristic method. The non-

oracle method assumes transition direction is also unknown. There two cognitive

states in the dataset, hence, if the oracle method detects the change point correctly,

it can classify all of the time points correctly. As the basic heuristic to find the state

change time-point, we use the time-difference function t − tf on time series data,

where tf is the f time-points delayed time series data and the maximum on this func-

tion is taken to be the change-point.

In mathematical notation, X ∈ RT×N , where T is the number of time-points in the

session and N is the number of voxels in the region of interest. Mean time-series

data is Xmean(t) = 1
N

∑N
i=1 X(t, i), where t ∈ (1..T ). The time-difference signal is

Xtimediff (t) = Xmean(t)−Xmean(t−f), where f is a given time delay and t ∈ [f..T ].

The basic heuristic finds the time-point t,

arg max
t

Xtimediff (t).
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Figure 4.5: Heuristic prediction and class label superimposed on time-difference sig-

nal

We split the time-series data into chunks of c consecutive samples, such that there

are T−f
c

chunks of data. Let k denote the estimated change time-point, we take

equal number of chunks from the two intervals, (f..k) and (k..T), such that there are

min(k−f
c

,T−k
c

) chunks in both intervals.

As the classifier function, we tested with both a support vector machine (SVM) and

a 2-layer multi-layer perceptron (MLP) and observed no significant difference. We

list the MLP results below. We use the MLP implementation of Scikit-Learn library

(Pedregosa et al., 2011). There are 100 parameters in the hidden layer. We use the

rectified linear unit activation and the ADAM (Kingma and Ba, 2015) optimizer with

10−4 learning rate. We establish leave one subject out cross-validation, where we

keep one subject’s data out in each fold. In each fMRI image, the spatial dimension

is constrained to a region of interest (ROI) that is common among all datasets. The

ROI is composed of 19174 voxels. One hyperparameter of our analysis method is the

size of each chunk in number of time-points. We repeat the experiment for varying

chunk sizes in the plots of this subsection.

In the following experiments, we train a classifier on a source dataset and evaluate it

on a target dataset. We use the basic heuristic change point based classifier, illustrated

in 4.5.

In the following, we list the classification results for varying data chunk size c for

three cases, in-dataset, between single datasets, and between multiple source datasets

to single target dataset.

In figures 4.6 and 4.7, we list results for single and multiple source transfer learning.
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In the figure captions, datasets are defined with a single letter as given below. Blue

line is the mean accuracy of the model trained only on the target dataset, that is on

the right side of the arrow.

Chunk size takes values [2, 5, 10, 12, 15, 18, 20, 24, 28, 30]. Each point in the

plot shows the result of 10-fold cross validation mean, and the error bar around the

point shows the standard deviation of cross-validation. The letter definitions for each

dataset are as follows. A, B and D stand for "Word", "Manual" and "Signal" datasets.

Figures show the source and target datasets in the following form, Source→ Target.

Figure 4.6: 10-fold stratified cross-validation accuracy for single source dataset to

single target dataset transfer learning
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Due to the sampling method around the change point, increasing the chunk size re-

duces the number of samples that can be obtained. This happens when the detected

change point is close to the start or end of the time-series, which becomes a limit-

ing factor for number of samples that can be taken. For dataset D (stopconditional

dataset), this case was prevalent and models trained on other datasets have performed

even better than the model trained on D.

In most of the cases, there is a steady increasing trend of accuracy as chunk size

increases. The plots in both single and multiple source datasets validate this observa-

tion.

Multiple source datasets improve transfer learning performance. We observe in plots

[A→D, B→D] and [AB→D], that, when D is the target dataset, performance sur-

passes %85 while average single dataset best performance is %78.5. We also ob-

served that when there are multiple source datasets [AB→D, AD→B], target-only

training (blue line) is surpassed at a lower chunk size (|c|=15, 12), compared to single

source cases [A→D, B→D] (|c|=[18,20]).

Figure 4.7: 10-fold stratified cross-validation accuracy for multiple source datasets to

single target dataset transfer learning
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In this preliminary experiment, we locate a large-variance time-point and take sam-

ples around that point. When we do not consider this variant of sampling around a

critical point, we observe that a multi-layer perceptron or a support vector machine

can not distinguish between classes.

Our analysis leads to the following outcomes. Multiple source datasets improve trans-

fer learning performance. Multiple source datasets allow a lower chunk size com-

pared to single source transfer learning. The results support the utility of multiple

datasets in small scale transfer learning tasks, from the perspective of required chunk

size and overall performance.

One drawback of our method is that it requires the whole time interval of a subject.

Furthermore, the temporal synchronization allows the simple heuristic that perform

well, which groups the time-points of each cognitive together. The most important

drawback is due to the unrealistic and simple problem setting, since, in reality, there

are multiple changes of cognitive states in a session duration and the order of the

cognitive states are arbitrary.

In the following subsections, we replace temporal alignment with spatial alignment.

Furthermore, instead of using the data hosted in the recent study, we preprocess the

raw data from scratch for reproducibility. We use recent preprocessing a standardized

preprocessing tool-chain for a reproducible result.

4.4.3 Template-aligned GCCA

This section is a revised version of Eryol and Vural, 2022b presented at IEEE SIU

conference. Instead of using the hosted dataset in Yousefnezhad et al., 2020, we pre-

process the raw data hosted on OpenNeuro repository with fMRIprep tool by Esteban

et al., 2018.

We classify the aligned data samples with Support vector machine (Cortes and Vap-

nik, 1995) with radial basis function kernel.

We employ leave-one-subject-out (LOSO) cross-validation (CV) for all TL cases and

methods. The figures also include the standard deviation for each point on the curve
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Figure 4.8: Single dataset in source set. Positive value shows the additional increase

in performance of SSTL-V (Eryol and Vural, 2022b), with respect to the baseline

method.

with bars. Each result table is also available in the appendix. We observed that the

model has a low standard deviation on LOSO CV.

In our experimentation setting, we evaluate transfer learning from source set com-

posed of a single dataset in figure 4.8 and two-dataset combinations in figure 4.9. In

both figures, each cell of the matrix shows the difference of classification performance

between template-aligned samples and standard principal component analysis.

The row headers in both figures show the source datasets and column headers shows

the target datasets, used in the transfer learning experiment. Each cell shows the per-

formance improvement over the baseline method, when SSTL-V is used for feature

alignment.

In the figures, the cells which have a common dataset in both source and target set

are ignored in the overall comparison tables in the next section, as these are not valid

transfer learning cases. We observe a large performance improvement with respect to

the baseline in figure 4.9 for the cases, where "Signal" is the target dataset (the last

column). This result is important since the "Signal" dataset belongs to the separate

study, and the datasets "Word", "Manual" and "Vocal" belong to a common study.
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Figure 4.9: Two datasets in source set. Positive value shows the additional increase

in performance of SSTL-V (Eryol and Vural, 2022b), with respect to the baseline

method.

4.4.4 Hierarchical Feature Alignment with Brain Region Covariance and Su-

pervised GCCA

This section is a revised version of Eryol and Vural, 2022a presented at IEEE BIBE

conference, organized in 3 parts. We firstly explain the transfer learning setting. Sec-

ondly, we show the results versus recent state of the art method. Thirdly, we list

figures of transformation matrices, visualized on the brain template/atlas.

4.4.4.1 Transfer learning setting

The transfer learning setting in Yousefnezhad et al., 2020 works on non-intersecting

source and target datasets. During model training, the source dataset/s are aligned

on session-subject-dataset hierarchy. The support vector machine (SVM) model is

trained on generated features in the feature alignment step.

The same feature alignment process is repeated for the target dataset with one excep-

tion, the global parameter W is transferred from the training phase, hence G and W

parameters are recalculated. It is important to note that the classifier is not retrained

on target data nor it is partially adapted to the target dataset.
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4.4.4.2 Hierarchical Feature Alignment Results

In the experiments, SVM uses radial basis function (RBF) kernel. The lower dimen-

sion number takes values k = [10, 20, 30, 40], for reduced rank SVD. As suggested

in Barshan et al., 2011, for SH-PCA, a linear kernel is used. The incremental PCA

method proposed in Brand, 2002 is followed in Yousefnezhad et al., 2020 to manage

the space complexity of their model. Our suggested data representation with AAL

template reduces the number of spatial dimensions dramatically that does not require

using an incremental PCA method.

In the following experiment H-PCA stands for the hierarchical feature alignment

method and SH-PCA stand for the label-guided H-PCA. SSTL-V stands for the tem-

plate aligned GCCA method.

We group the methods used in the experimentation based on label-guided, drift-

aware and multi-dataset properties. The baselines with label-guided property learn

a representation of input data taking the label information into consideration. Drift-

awareness refers to handling of the data distribution discrepancy between groups of

data that are known in advance, i.e. between sessions of the same subject. Hierar-

chy property refers to methods that accommodate the subsumption relation between

groups of data.

The following baselines learn a low dimensional representation; SSTL-V, PCA, con-

ditional VAE (Sohn et al., 2015), β-VAE (Higgins et al., 2017) and σ-VAE (Rybkin

et al., 2021). In the RAW case, we simply use the data with no feature generation and

evaluate the trained SVM model on the target dataset.

We adopt the leave-one-subject-out technique to rule out subject specific results. An

experiment is repeated for each subject where in each repetition, we remove one

subject’s data, corresponding to∼16 single source repetitions and∼32 times multiple

source dataset repetitions. on figures 4.10 and inside parentheses on table 4.4.

Three of the datasets (Word, Manual, Vocal) used in our results are obtained from the

study Xue et al., 2008, while the last one (Stop) is from a separate study Aron et al.,

2007.
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Table 4.3: Baseline method properties. (+: template-aligned version of the state-

of-the-art method (Yousefnezhad et al., 2020), *:Conditional-VAE Sohn et al., 2015

adapted to β-VAE Higgins et al., 2017)

Methods Label-guided Drift-aware Hierarchy

RAW X X X

PCA X X X

β-VAE in Higgins et al., 2017 X X X

σ-VAE in Rybkin et al., 2021 X X X

Conditional β-VAE * X X X

SSTL-V in Eryol and Vural, 2022b + X X X

SH-PCA in Eryol and Vural, 2022a X X X

H-PCA in Eryol and Vural, 2022a X X X

In the figure 4.10, we show the results where the source and target datasets are from

separate studies, which introduces an additional challenge.The relatively high perfor-

mances of the proposed methods (around 85%) for the independent dataset "Stop",

shows the robustness of the suggested feature alignment model for transfer learning

settings for brain decoding.

Figure 4.10 shows the comparative accuracy of the suggested methods.Since RAW

and PCA methods employ data sets with no feature alignment, the dimension of the

feature space is constant for label-guided, drift-aware and multi-dataset experiments,

as shown in table 4.4. In table 4.4, a valid case has no intersection between source

and target datasets. The single source dataset and multi-source dataset results are

the two parts of the table. We report the mean and standard deviation for each cell

on the table. The RAW method has no lower dimensional representation and the

same result applies for all k-values. Figure 4.10 indicates that the SSTL-V method

significantly improves the performance of the PCA method. Furthermore, our H-

PCA and its supervised version, SH-PCA have superior performances compared to

SSTL-V method.

In figure 4.10, we observe that the unsupervised transfer learning method, H-PCA,
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outperforms other methods in single source cases. On the other hand, for the multi-

source cases, the supervised method, SH-PCA, performs better than the unsupervised

variant. We saw that, SSTL-V, has the highest standard deviation among the top three

methods. Table 4.4 also supports the results in figure 4.10. In single-source case,

our H-PCA improves the state-of-the-art method of SSTL-V by 5.6% in accuracy on

average. In the multi-source cases, our supervised variant SH-PCA performs slightly

better than H-PCA and outperforms the state-of-the-art method by 4.5% on average.

Simply performing PCA on data and classifying the lower dimensional representation

is on par with using the raw data, and is very close to chance level.

The VAE variants depend on the beta parameter. The results for the beta parameter

sweep for each across-study transfer learning case are in the figure 4.11. We also list

the convergence plots up to 300k epochs in figure 4.12.
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Table 4.4: Mean transfer learning over all valid cases. k: number of dimensions in

the lower dimensional representation. (*: BIBE, **: Eryol and Vural, 2022b modified

work of Yousefnezhad et al., 2020). β-VAE in Higgins et al., 2017, σ-VAE in Rybkin

et al., 2021, conditional VAE in Sohn et al., 2015

Methods k=10 k=20 k=30 k=40

Single source

RAW 0.54(0.03) 0.54(0.03) 0.54(0.03) 0.54(0.03)

PCA 0.55(0.02) 0.54(0.02) 0.54(0.02) 0.54(0.02)

β-VAE 0.55(0.02) 0.54(0.02) 0.54(0.02) 0.54(0.02)

σ-VAE 0.55(0.03) 0.56(0.02) 0.56(0.00) 0.55(0.03)

Conditional β-VAE 0.55(0.02) 0.54(0.02) 0.54(0.02) 0.54(0.02)

SSTL-V ** 0.77(0.01) 0.78(0.01) 0.77(0.01) 0.77(0.01)

H-PCA* 0.82(0.01) 0.83(0.02) 0.83(0.02) 0.83(0.02)

SH-PCA* 0.81(0.01) 0.82(0.01) 0.82(0.01) 0.82(0.01)

Multi source

RAW 0.55(0.04) 0.55(0.04) 0.55(0.04) 0.55(0.04)

PCA 0.55(0.03) 0.54(0.03) 0.53(0.03) 0.53(0.02)

β-VAE 0.55(0.02) 0.54(0.02) 0.54(0.02) 0.54(0.02)

σ-VAE 0.55(0.03) 0.55(0.03) 0.55(0.03) 0.55(0.03)

Conditional β-VAE 0.55(0.02) 0.54(0.02) 0.54(0.02) 0.54(0.02)

SSTL-V ** 0.78(0.02) 0.82(0.04) 0.82(0.05) 0.82(0.05)

H-PCA* 0.83(0.01) 0.84(0.01) 0.85(0.01) 0.85(0.01)

SH-PCA* 0.85(0.01) 0.85(0.00) 0.86(0.01) 0.86(0.01)
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Figure 4.10: Transfer between independent studies; source dataset from Xue et al.,

2008→ target dataset from Aron et al., 2007. Left hand side of the arrow shows the

source dataset(s) and right hand side shows the target dataset. Each bar shows the

accuracy averaged over low-dimensional representation feature size with standard

deviation error bars.
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Figure 4.11: Performance of VAE variants over varying beta values. Transfer between

independent studies; Xue et al., 2008→Aron et al., 2007. Subfigures a-c) have single

and subfigures d-f) have multi source datasets in TL task.
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Figure 4.12: Sample convergence plots for β-VAE. Each plot shows the change of

loss over epochs for a source dataset, latent dimension size and β value. Total of

300k epochs, latent dimensions set [10, 20, 30, 40], β values [0.1, 0.25, 0.50, 0.75, 1,

2, 4, 8, 16, 32, 64]. Note that σ-VAE Rybkin et al., 2021 adds a closed form parameter

to estimate the β value.
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4.4.5 Visualization of Region Specific Weights

In this section, we show the visualization of learned coefficients. The objective func-

tion of GCCA is of the form in equation 4.23.

min
G,R

J∑
j=0

‖G−XR‖2
F (4.23)

The max-var solution, used in our previous work Eryol and Vural, 2022a, has a closed

form solution. In this formulation, view-coefficient Rj is substituted such that XjRj

is the projection of view Xj on the common subspace G, in equation 4.24, where

Rj = (XT
j Xj)

−1XT
j G.

min
G

J∑
j=0

∥∥G−Xj(X
T
j Xj)

−1XT
j G
∥∥2

F
(4.24)

Both the GCCA and successive PCA operations generate linear combination of fea-

ture dimensions. We find the top three weighted dimensions each corresponding to a

brain region.

Recall that, in our feature alignment solution, we apply GCCA at subject level over

sessions, such that Gs is the subject specific subspace. Below we show subject-

specific z-score maps of Pr,s,dGs,dWd, which are transformed samples on AAL tem-

plate on the left column and mean Gs,d per dataset d.

In the following figures 4.14 and 4.15, we investigate the role of alignment weights

on the original data dimensions that correspond to brain regions on AAL atlas. The

dimensions with a higher weight have a bigger role in the alignment process. We

show the sorted brain region occurrence counts as bar plots per dataset in figures

4.14 and 4.15. For word dataset, left rolandic operculum stands out, that is related

to visceral sensation and stress in Sutoko et al., 2020. Right supramarginal gyrus

is related to language perception and processing Wikipedia, 2022, that occurs for the

manual dataset. For both vocal and stop datasets, temporal pole occurs as the common

dimension, which is associated to semantic memory in Muzio, 2022.
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(a) Word S0 (b) Word Smean

(c) Manual S0 (d) Manual Smean

(e) Vocal S0 (f) Vocal Smean

(g) Stop S0 (h) Stop Smean

Figure 4.13: Visualization of subject and dataset specific multipliers per region. The

region names are the top-2 highest absolute magnitude dimensions.
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Figure 4.14: Word and manual dataset bar plots for the occurrence count of each

region in the top 10 highest weighted regions per dataset, and weights Gs,dWdW .
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Figure 4.15: Vocal and stop dataset bar plots for the occurrence count of each region

in the top 10 highest weighted regions per dataset, and weights Gs,dWdW .
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4.4.5.1 Ablation study

We adopt a permutation based significance test in Ojala and Garriga, 2009. This

method generates an empirically random dataset from the original one to test the null

hypothesis that samples and labels are independent. The random set is generated via

permutation of labels on samples. Since this step is infeasible to compute, they gen-

erate a limited number of randomized datasets as a Monte Carlo approximation. We

apply this method to test the significance in transfer learning, rather than supervised

learning.

Given a dataset D = {Xi, yi}, i ∈ [1, N ] and permutation function π; randomized

dataset is calculated as D̂ = {Xi, π(y)i}. The p-value 4.25 is the ratio of randomized

datasets whose performance is higher than the non-random dataset.

p =
| D′ ∈ D̂ : e(f,D′) ≤ e(f,D) | +1

k + 1
(4.25)

The figures are generated for 100 random permutations of labels (2 fold cross-valida-

tion due to time constraints) as the null hypothesis. The red line shows the score on

original data and blue bars are the histogram of scores over randomized data. p-value

for raw data, data aligned by SSTL-V and data aligned by SH-PCA are 0.01, 0.06,

0.01, in respective order.

This is a preliminary result that shows gCCA based alignment method with label

augmentation SH-PCA is more stable compared to SSTL-V. This ablation study is

performed on single dataset.
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(a) Non-aligned raw data (b) H-PCA aligned data

Figure 4.16: Randomization test shows the impact of feature alignment under re-

peated experiments with label randomization. Red line shows performance with real

labels, bars shows the randomized label performance histogram.
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4.5 Chapter Conclusion

In the temporal change analysis experiment, we start with the assumption that there

is a change-point during the experiment timeline. We build a model to predict this

change-point. The experiment is carried out on the readily-preprocessed datasets that

carried a potential problem of temporal alignment. We show that the exceptional

success is weakly related to the data itself.

In the following methods, firstly, we avoided the shortcomings of temporal alignment.

Secondly, we preprocessed the data from scratch and removed out-of-interest labels

from the data (i.e. samples labeled as "junk", "go"). The removed out-of-interest

labels form the majority classes and form an imbalanced label distribution. Further-

more, in a transfer learning setting, the common aspect of data aggregation needs to

be of equal size, such as an equal number of time-points or spatial regions/locations.

In the benchmark datasets, the common aspect should be different than the temporal

dimension, since data acquisition duration and presented stimulus order varies among

sessions. We proposed variations of the previous work that aligns data on spatial as-

pect of the data. Another point in our improvements is the standardization of the

spatial dimension among subjects with a brain atlas. The previous work follows a re-

gion of interest (ROI), formed by set of voxels, however the number of voxels in the

ROI vary between subjects. We used a brain atlas to form a spatial standardization

that enables transfer learning on the spatial domain, where each spatial dimension

corresponds to the same brain region of the brain atlas among all subjects.

In this work, we proposed two new feature alignment methods for transfer learning

on brain decoding data, using a modified maximum variance generalized canonical

correlation analysis (maxvar-GCCA) method at its core. The first suggestion in this

work is to use a maxvar-GCCA-like solution that suppresses low variance directions

and emphasizes high variance directions in the feature space. The second method

proposes to utilize the valuable label information in building the feature space.

Both methods hierarchically estimate transformation matrices to align multiple ses-

sions, subjects, and datasets. This hierarchical alignment reduces the inter-session,

inter-subject, inter-dataset variances and keeps the label-dependent variation at a low-
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dimensional representation step. The suggested approach avoids losing valuable in-

formation related to the target stop-signal paradigm.

Both methods outperform the state-of-the-art alignment method (template based vari-

ant of Yousefnezhad et al., 2020 based on standard maxvar-GCCA), and steadily in

all single-source and multi-source datasets and varying lower-dimensional represen-

tations. We observe that the highest impact in the superior performance of our method

is the novel maxvar-GCCA-like high-variance-sensitive solution.

The datasets used in our transfer learning setting are part of two studies. An important

simulation of the performance of our method in the wild is its performance on an

unseen data from a new study. Our proposed method is, also, more successful than

standard maxvar-GCCA based state-of-the-art method on the target dataset obtained

from an independent study.
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CHAPTER 5

SUMMARY AND CONCLUSION

Brain decoding studies generally follow one of the two practices in fMRI data analy-

sis; they either consider a region of interest or a coarse whole-brain data. Fine-grained

whole-brain models are a new direction of brain decoding research. Imposing coarse-

grained structural prior information is an important part of fine-grained whole-brain

models. Furthermore, the limited data problem and varying task-related patterns in

each task-fMRI session data introduce difficulties in transfer learning for brain de-

coding. Due to computational constraints, fine-grained whole-brain models should

locally adapt to changes of patterns among data acquisition sessions.

In our first study, we propose a new four dimensional multi-layer perceptron model,

called the Structured MLP model, on minimally preprocessed whole-brain fMRI im-

ages from the Human Connectome Project task-fMRI dataset (Barch, 2013). In this

study, we suggest a model on whole-brain fine-grained data, that is a new research di-

rection. The structured MLP model decomposes each three dimensional fMRI image

into non-overlapping volumetric patches. In the 3D convolutional baseline model,

the convolution operation reduces the resolution of the encoded features at each suc-

cessive layer. The decreasing resolution limits our ability to impose the same spatial

constraint at each layer. Structured MLP model keeps the resolution of the input three

dimensional image equivalent to the encoded features by the MLP block. Equivalent

resolution in the encoded feature representation allows us to apply the brain atlas, as

the prior for normalization with respect to brain regions, at any intermediate feature

in the successive application of the MLP blocks. The most important problem in

brain decoding on fMRI images is the change of patterns in the data across sessions,

subjects and datasets. The voxels that have a role in the brain-behavior relationship
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vary across subjects, however they generally reside in the same brain region defined

by the brain atlas. Batch normalization is a well-studied method that reduces the co-

variate shift Ioffe and Szegedy, 2015 during training. Another application of batch

normalization is for reducing the discrepancy between datasets. The across session

change is addressed in the Structured MLP via a regional normalization method, a

special form of batch normalization that is decomposed into regions. We follow a

specific batch sampling procedure, where we initially learn intra-session differences

among classes. Then, we learn inter-subject differences. The advantage of the Struc-

tured MLP is that it shows on-par performance in convergence time, compared to the

pre-trained 3D convolutional model, where the pre-training necessitates a large scale

source dataset. The drawback of the Structured MLP is that it is hard to manage the

number of parameters, due to two reasons. Firstly, the intermediate features that have

an equivalent resolution in the Structured MLP model introduces a large parameter

overhead. Secondly, the number of parameters in our MLP-Mixer (Tolstikhin et al.,

2021) variant depends on the patch size, where reducing the patch size in the three

dimensional volume increases the number of patches exponentially. It is hard to in-

terpret, stabilize and smoothen the model parameters, due to the the black-box nature

of the model, opposed to the hierarchical feature alignment methods. Furthermore,

our hardware constraints have been a limiting factor in exploring a larger set of hy-

perparameters and subject sets, due to the large number of parameters of Structured

Multi-layer Perceptron.

In our second study, we generate transferable features from multiple source datasets

that improves the brain decoding performance on the target dataset. We follow the

transfer learning benchmark in Yousefnezhad et al., 2020. The proposed feature align-

ment models preserve the covariance of brain regions at successive linear transforma-

tions, applied at session, subject and dataset levels . Furthermore, we proposed a su-

pervised variant of the transferable feature generation method, inspired by Barshan et

al., 2011. The core method, called Hierarchical-Group Principal Component Analysis

(H-PCA), suppresses low variance directions and emphasizes high variance directions

in the feature space. The supervised variant, called Supervised Hierarchical-Group

Principal Component Analysis, imposes dependency on labels in the core method,

H-PCA. We experiment on transfer learning performance across independent studies,
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Xue et al., 2008 and Aron et al., 2007, that follow the common stop-go paradigm.

There are four datasets of stop-go paradigm, where three datasets are obtained from

the first study and one dataset is obtained from the second study. In the experiments,

we report the transfer learning performance for two cases; "single source dataset to

target dataset" and "multiple source datasets to target dataset" transfer learning ex-

periments. We see that H-PCA method outperforms the baselines steadily in both

single source and multiple source transfer learning experiments. A limitation in our

model is the brain region mean time-series representation of the whole-brain fMRI

images, that discards local patterns in a region. Furthermore, we require the num-

ber of spatial dimensions to be equal for all subjects in an experiment, which avoids

using the proposed method for a ROI representation, where number of voxels may

vary across subjects. The linear methods become computationally infeasible on raw

whole-brain images due to hardware constraints, as opposed to the MLP model in the

third chapter.

A general comparison between the two approaches, Structured MLP and Hierarchical

Feature Alignment, is given in the table 5.1.

The application areas of black-box methods are generally in biomarker design, that

can require real-time monitoring, 4D whole brain processing for disease tracking and

preventive medicine. But the reliability-wise, this approach is still an early-stage

research. On the other hand, linear methods with well-known behavior are more

reliable.

As a future work, for both studies, we plan to adapt recent brain atlases to improve

our work, for instance Schaefer (Schaefer et al., 2018) brain atlas or Multi-model

Parcellation (Glasser et al., 2016) brain atlas. We foresee that the Structured MLP

model is suitable for disease biomarker design problems, namely early detection and

progression monitoring of the Alzheimer’s Disease or Attention-Deficit Hyperactiv-

ity Disease. Finally, we plan to utilize the Hierarchical Feature Alignment model

on aligning neural network features to reduce distribution discrepancy in the neural

network representations.
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