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ABSTRACT

BIAS CORRECTION FOR NON-EXTREME AND EXTREME VALUES
FOR PRECIPITATION

Korpinar, Ahmet
Master of Science, Civil Engineering
Supervisor : Prof. Dr. Elgin Kentel

April 2023, 134 pages

Regional climate models are crucial in climate change impact analysis. Short-term
and long-term effects of climate change need to be investigated to plan necessary
mitigation measures and to lower the impacts. Regional climate models allow
analysis of the effects of climate change in smaller scales such as regions and nations
and consequently leads to the development of more effective management strategies.
One of the most commonly used products of regional climate models is precipitation
predictions. For flood risk analysis, especilly extreme precipitations are crucial.
However, raw data obtained from the regional climate model have errors. To obtain
reliable predictions, the data should be bias corrected first. The basic principle of
bias correction is to reduce the bias in raw data. Bias correction is also region-
specific due to climate conditions of the area. In this study, three alternatives for a
commonly used bias correction method, the Distribution Based Scaling method, are
proposed. Alternatives proposed in this study differ from the original method by
division point of data and fitted distributions to extreme part of the data. Performance
assesment for these methods are done for 53 meteorological stations located at



different regions of Turkey, and the most effective methods are identified.
Performances of alternative methods proposed in this study did not provide
significant improvements compared to the original method. Future changes in
extreme precipitation according to bias corrected RCM outputs are investigated

spatially as well.

Keywords: Daily Precipitation, Bias Correction, Extreme Values, Distribution Based
Scaling, Climate Change
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0z

UC VE UC OLMAYAN YAGIS DEGERLERI iCiN YANLILIK
DUZELTMESI

Korpinar, Ahmet
Yiiksek Lisans, Insaat Miihendisligi
Tez Yoneticisi: Prof. Dr. Elgin Kentel

Nisan 2023, 134 sayfa

Iklim degisikligi etkisi analizinde bdlgesel iklim modellerinin yeri ¢ok kritiktir.
Iklim degisikliginin agiga cikaracag: sorunlarin azaltilmasi ve bu sorunlara karsi
onlemler alinabilmesi i¢in kisa ve uzun vadedeki etkilerinin incelenmesi gerekir.
Bolgesel iklim modelleri, tilkeler ve bolgeler gibi kiigiik ¢aplarda iklim degisikligi
etkilerinin analizini miimkiin kilar. Dolayisiyla bu etkileri yonetebilmek i¢in daha
etkin stratejilerin gelistirilebilmesine Onciilikk eder. Bolgesel iklim modellerinin en
sik kullanilan sonuglarindan biri de yagis tahminidir. Ozellikle taskin risk analizleri
icin u¢ yagis degerleri cok dnemlidir. Ancak bolgesel iklim modelinden elde edilen
islenmemis veri yanllik igerir. Giivenilir tahminler yapabilmek i¢in islenmemis
verilere Oncelikle yanhlik diizeltmesi yapilmasi gerekir. Bu da gozlemlenen veri ile
modelden elde edilen veri arasindaki farkin dikkate alinmasiyla yapilir. Yanlilik
diizeltmeleri iklim kosullarindan dolay1 bolgeden bolgeye degisir. Bu calismada
Tiirkiyenin farkli bélgeleri i¢in Dagilim Temelli Olgeklendirme ydntemine iig
alternatif yontem sunulmus ve bu yoOntemler kullanilarak yanlilik diizeltmesi

yapilmistir. Alternatif yontemler orjinal yontemden veriyi bdlme noktast ve

vii



kullanilan istatiksel dagilimlar agisindan farklidir. Tirkiye’nin farkli bolgelerinden
53 meteoroloji istasyonu i¢in performans degerlendirilmesi yapilmis ve en etkili
yontem belirlenmistir. Bu ¢alismada onerilen alternatif yontemlerin performanslari
orjinal yontemden kayda deger olciide iyi degillerdir. Gelecege yonelik yanlilik
diizeltmesi yapilmis yagis tahminlerindeki u¢ deger degisimleri de mekansal olarak

incelenmistir.

Anahtar Kelimeler: Giinliik Yagis, Yanlilik Diizeltme, Ug Degerler, Dagilim
Temelli Olgeklendirme, iklim Degisimi
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CHAPTER 1

INTRODUCTION

Climate change is a phenomenon that has various effects on the world we live in. It
is changing the conditions of the biosphere gradually. Floods, draughts, and
temperature anomalies are the most common expected changes. Changes in different
aspects may also occur due to these fundamental changes. Under these
circumstances, adapting to new conditions becomes a must to survive. To estimate
the changes, climate models are introduced in the past years. These models are called
global climate models (GCM) and regional climate models (RCM). They estimate
the hydrometeorological parameters like precipitation, temperature, wind pressure,
etc. in different scales. Coordinated Regional Climate Downscaling Experiment
(CORDEX) has an important role in developing and improving GCMs and RCMs.
CORDEX also provides a database containing GCM and RCM outputs for public
access with the help of World Climate Research Programme (WCRP).

Although GCM and RCM outputs are useful for climate change analysis, these
outputs are biased. The main reasons for these biases are mostly associated with
regions of complex terrains like high-altitude or wet, humid regions within the
related area, limited spatial resolution, simplified physics, and incomplete
knowledge of climate systems (Ayugi et al., 2020). These outputs should be bias
corrected before their utilization in any analysis (Casanueva et al., 2016; Teutschbein
& Seibert, 2012). To fulfill this need, various bias correction methods have been
developed through the years. The main idea behind the bias correction techniques is
an application of a transformation procedure to adjust the outputs of RCMs or GCMs
according to the observed data (Teutschbein & Seibert, 2012). These methods are
ranging from simple scaling techniques to rather more sophisticated quantile



mapping (QM) techniques. QM techniques generally perform better than other bias
correction techniques (Ayugi et al., 2020; Enayati et al., 2021; Grillakis et al., 2013;
Heo et al., 2019; Douglas Maraun, 2013). QM implements statistical transformations
for the post-processing of GCM and RCM outputs (Enayati et al., 2021).

These statistical transformations can be separated into three major groups. They are
distribution derived transformations, parametric transformations, and nonparametric
transformations. Distribution derived transformations use distribution functions of
observed datasets and model outputs. Parametric transformations use linear or
nonlinear equations with free parameters to fit to observed dataset and model
outputs. Nonparametric transformations use empirical cumulative distribution
functions (CDF) or nonparametric regressions of observed datasets and model
outputs. However, applying a single transformation to the whole dataset may cause
some issues in the bias correction of precipitation. This is due to daily precipitation
distributions being typically heavily skewed towards low-intensity values (Yang et
al., 2010). Yang et al. (2010) proposed an alternative method called Distribution
Based Scaling (DBS). This method tries to overcome the aforementioned problem
by dividing the datasets at the 95" percentile and fitting two different gamma
distributions for the non-extreme part and extreme part of the datasets. By dividing
the dataset, the extreme part of the datasets can be represented after bias correction
without the influence of the non-extreme part. DBS has better performance overall
due to the ability to consider the extreme parts of the datasets. Although it has better
performance, a fixed cut point at the 95" quantile can be considered as a weakness.
In flood risk analysis, the most extreme precipitations may cause the most harm.
Considering the most extreme precipitation values at the 99" quantile and beyond as
extreme part for the bias correction may lead to more accurate extreme value

predictions for flood risk analysis.

In this study, the 99" percentile is used as the cut point for the extreme part of the
datasets. Another addition introduced in this study is to fit Generalized Pareto (GP)
and lognormal (LOGN) distributions to the extreme part of the dataset. LOGN
distribution is selected because it is identified as the best fitting distribution to the



extreme part of the observed data. Moreover, GP distribution is selected to assess the

efficiency of an extreme value distribution.

The main contribution of this study is that three alternative methods of DBS are
developed using different distributions and cut points and their performances with
the original DBS method and Linear Scaling method are compared. A wide study
area considering 53 MSs is another contribution to the literature. With high number
of MSs, the performance of bias corrections, and changes in maximum precipitation

values of near, middle, and far future are discussed in a spatial manner as well.

The organization of this study can be summed up in the five following chapters.
Chapter 2 consists of the literature review on GCMs, RCMs, and bias correction
methods. Chapter 3 consists of details and the development of the proposed methods.
Information about the study area and the observed data, and model outputs regarding
to study area are presented in Chapter 4. In Chapter 5 the performance assessment
statistics of the proposed methods, the discussion of these performance assessment
statistics, and expected future changes in precipitation are provided. Finally,

highlights of this study and remarks for future studies are given in Chapter 6.






CHAPTER 2

LITERATURE REVIEW

2.1 CORDEX, GCMs, and RCMs

Climate models are developed to predict future climate. Formulations of physical
laws are the basis of the climate models with carbon emission scenarios. They can
be examined in two major categories which are GCMs and RCMs according to their
resolutions. While RCMs have finer resolutions, GCMs let researchers have a
general idea on a global scale. The resolution of GCMs is around 1000 km by 1000
km. Thus, GCMs do not provide local or regional predictions. Orographic
precipitation, conventional processes, and local scale hydrologic processes are
relatively poorly represented by GCMs (Fujihara et al., 2008; Sato et al., 2013).
Resolutions of GCMs are not sufficient for precipitation assessment in regions where
the topography is particularly complex. Because complex topography is a significant
factor for local processes (Lakku & Behera, 2022; Lun et al., 2021; Park et al., 2020;
Salathé, 2003; Schmidli et al., 2006; Stefanidis et al., 2020; Sunyer et al., 2015). On
the other hand, RCM resolutions are finer than GCMS’. They can have 25 km by 25
km resolutions. These kinds of predictions require more complex mechanics which
RCMs have.

To meet the need for estimations in finer resolutions, RCMs are developed with the
help of dynamic downscaling (Fujihara et al., 2008). Dynamical downscaling is a
method that uses GCMs as boundary conditions to acquire finer resolution models
(Kara & Yucel, 2015). However, RCMs have biases due to conceptualizations that
are not perfect and/or biases that are already present in GCMs (Casanueva et al.,
2016; Fujihara et al., 2008; Teutschbein & Seibert, 2012). The most common biases



are the occurrence of too many wet days with low intensity or incorrect estimation
of extreme temperatures, and incorrect seasonal variations of precipitation
(Christensen et al., 2008; Ines & Hansen, 2006; Teutschbein & Seibert, 2010).

To help the development of GCMs, RCMs, and downscaling, CORDEX is
established worldwide by WCRP. The European branch of CORDEX is called
EURO-CORDEX. EURO-CORDEX has a database that contains different RCMs
and GCMs. This database is an open access platform to promote the studies on
climate change. There is also a list that problems and issues related to different
GCMs and RCMs are listed. That list is called Errata Table and it is also accessible
from the website of EURO-CORDEX. This list is updated periodically to inform the
users about the current situations of GCMs and RCMs. Studies conducted using
GCMs and RCMs in Turkey are summarized in Yoleri (2022).

2.2 Bias Correction Methods

There are many different bias correction methods in the literature. They have a range
from simple scaling methods to more sophisticated methods like quantile mapping.
Most common methods in the literature are compared under the name of comparison
method in a number of review articles (Enayati et al., 2021; Ghimire et al., 2019;
Gudmundsson et al., 2012; Luo et al., 2018; Mendez et al., 2020; Teutschbein &
Seibert, 2012). Bias correction methods that are commonly investigated in the review
articles are Linear Scaling, Local Intensity Scaling, Variance Scaling, Power
Transformation, Distribution Mapping, Empirical Quantile Mapping, and Delta-
change method. Bias correction methods can be examined in two main groups which
are scaling methods and statistical transformation methods. Linear Scaling, Local
Intensity Scaling, and Variance Scaling are scaling methods. Power Transformation,
Distribution Mapping, Empirical Quantile Mapping, and Delta-change methods are
statistical transformation methods. These methods are also referred to as Quantile
Mapping methods. Several quantile mapping methods have been developed in the

past decade with the effort of having a better correction method.



Linear Scaling (LS) is a bias correction method that focuses on correcting the means
of model outputs by using correction factors obtained through means of observed
data (Lenderink et al., 2007). Correction factors are obtained for each month by using
long-term monthly means. Then model outputs are bias corrected by multiplying
them with these correction factors. There are several studies that use this method for
bias correction of precipitation. Most of these studies focus on the comparison of
various methods (Ghimire et al., 2019; Luo et al., 2018; Mendez et al., 2020;
Teutschbein & Seibert, 2012). LS can be considered as the simplest bias correction
method (Luo et al., 2018). As the cost of its simplicity, it cannot be used in flood risk
analysis which use extreme events since correction factors lead to underestimation

of extreme events (Haerter et al., 2011).

Local Intensity Scaling is a bias correction method that focuses on correcting the
means of model outputs by using correction factors and the wet day threshold
(Schmidli et al., 2006). This method is very similar to the LS method. The main
difference between the LS and the Local Intensity Scaling methods is that the Local
Intensity Scaling method introduces a wet day threshold before calculating the
correction factors for each month using long-term monthly means. With the wet day
threshold, wet day frequencies are also corrected. The Local Intensity Scaling
method corrects both means and wet day frequencies of model outputs. It can be said
that the Local Intensity Scaling method is an upgraded version of the LS method.
There are many studies in which comparison of the Local Intensity Scaling method
with others are provided (Ghimire et al., 2019; Luo et al., 2018; Mendez et al., 2020;
Teutschbein & Seibert, 2012).

Variance Scaling is a bias correction method that focuses on correcting the means
and variances of model outputs by using correction factors (Chen, Brissette, &
Leconte, 2011; Chen, Brissette, Poulin, et al., 2011). This method is very similar to
the Local Intensity Scaling method. The main difference between Variance Scaling
and Local Intensity Scaling methods is that the Variance Scaling method introduces
a step for the correction of variance for model outputs on top of the mean of model

outputs. However, Variance Scaling is used for bias correction of temperature only



(Ghimire et al., 2019; Luo et al., 2018; Mendez et al., 2020; Teutschbein & Seibert,
2012).

These three methods are the most common scaling methods in the literature. It can
be seen that there is a progression in these methods starting with bias correcting the
mean of model outputs, then correcting wet day frequency is added for bias
correction of precipitation and correcting the variance of model outputs is added for

bias correction of temperature.

The main principle behind the statistical transformation methods, also known as
quantile mapping methods, is to fit a distribution or function to observed data and

model outputs, then apply the mapping procedure to bias correct the model outputs.

The Power Transformation method is a quantile mapping method that uses
parametric transformation functions to use for the mapping procedure (Leander et
al., 2008; Leander & Buishand, 2007; Maraun et al., 2010). Generally, a non-linear
exponential form is used to allow differences in variances. The most common non-
linear forms used in the Power Transformation method, their theoretical background,
and the determination of related parameters are explained in Maraun et al. (2010)
and Piani et al. (2010). After the parameters are determined, quantile mapping is

applied for bias correction.

Distribution Mapping is a very common quantile mapping method. The main idea is
to fit a single theoretical distribution to the observed data and model outputs, then
using CDFs of the fitted distributions, mapping is conducted (Ines & Hansen, 2006).
Several theoretical distributions are used in the literature. Exponential, Gamma,
Bernoulli, Lognormal and their combinations like Bernoulli-Gamma, Bernoulli-
Exponential, etc. (Block et al., 2009; Boe et al., 2007; Grillakis et al., 2013;
Gudmundsson et al., 2012; Heo et al., 2019; Johnson & Sharma, 2011; Sun, 2011).

Empirical Quantile Mapping is another very common quantile mapping method. It
can also be referred to as Quantile Mapping. The main idea behind this method is to

apply the mapping procedure to empirical CDFs of observed data and model outputs



(Boe et al., 2007). The main difference between Distribution Mapping and Empirical
Quantile Mapping methods is that the Empirical Quantile Mapping method is a non-
parametric method since it uses empirical CDFs. Studies using this method conclude
its performance is very good for historic bias correction (Ayugi et al., 2020;
Feigenwinter et al., 2018; Kim et al., 2021; Douglas Maraun, 2013; Piani et al., 2010;
Wilcke et al., 2013).

The Delta Change method is another quantile mapping method that focuses on bias
correction of future projections. The main idea behind this method is to use
anomalies in future projections of model outputs for bias correction of future
projections directly (Graham, Andreaasson, et al., 2007). Anomalies between the
historic period and projection periods are superimposed to the observed data,
generally on a monthly basis. The Delta Change method is used in a number of
studies (Bosshard et al., 2011; Graham, Andreaasson, et al., 2007; Graham,
Hagemann, et al., 2007; Moore et al., 2008; Olsson et al., 2009).

DBS is another quantile mapping method that has a distinct feature. That feature is
that DBS introduces a partition point to the observed data and modeled data at the
95" quantile. Then, call the part lower than the partition point non-extreme part and
call the part higher than the partition point extreme part. After the partition, Gamma
Distributions are fitted to both non-extreme and extreme parts of the observed and
modeled data (Yang et al., 2010). This method is introduced for bias correction of
future projections as well, to compete with Delta Change method. The reason for
partitioning the data is to bias correct the extremes of the datasets more accurately.
Since low intensity data points have high frequencies in precipitation, a single
distribution fitted to data is affected by them. By partitioning, high intensity values
are not affected by the high frequency and low intensity data points. By doing that,
underestimation of the extreme values due to bias correction is avoided (Yang et al.,
2010). It is observed that the DBS method worked as intended and improved the bias
correction of extreme parts of the datasets in comparison to the Distribution Mapping
method (Pastén-Zapata et al., 2020; Rana et al., 2014; Seaby et al., 2013; van
Roosmalen et al., 2011).



The current study is conducted within the scope of a TUBITAK project, and the main
goal of the project is to carry out flood risk analysis. Since the DBS method
outperforms other QM methods due to its distinct feature and bias correction of
extreme values it is preferred in this study.

When the thesis studies conducted in METU are checked, it is seen that bias
correction is a part of some studies as well. There are also studies that used radar-
based data for their bias correction in their studies however, bias correction methods
used in radar-based data are not covered in this study. Summary of bias correction
parts of other thesis studies can be seen in Table 2.1. Used MS numbers, and applied

bias correction methods are the focus of this table.

Table 2.1. Studies Conducted in METU in which Bias Correction is Carried Out

Author MS Number Bias Correction Method

(Engin, 2015) 2 stream gauges LS

(Ozkaya, 2017) | 13 MS, 18 satellite data | Quantitative Precipitation Estimate

(Yousefi, 2020) | 17 radar data Mean Field Bias, Local Additive Bias,
Local Multiplicative Bias

(Caktu, 2022) 2 MS, 3 stream gauges | Quantile Mapping

(Barkis, 2022) 8 MS LS

(Ersoy, 2022) 374 MS LS

In this study, 53 MSs are used with 17 RCMs. RCM outputs are bias corrected with
five different methods which are LS, DBS, DBS 99, DBS 99 GP, and
DBS_99 LOGN. Latest three of these methods are developed in this study. High
number of MSs are also utilized to analyze the results in a spatial manner.

10



CHAPTER 3

METHODOLOGY

The aim of this study is to correct the biases in the RCM model outputs of
precipitation with respect to the observed data using the DBS method and to forecast

the changes in extreme parts of the model outputs.

The steps followed in this study can be seen in Figure 3.1. In this study two types of
data are used: observations and RCM outputs (from hereafter used interchangeably
with model outputs). Observations are obtained from Turkish State Meteorological
Services, and RCM outputs are obtained from the CORDEX database (ESGF-DKRZ
- Home | ESGF-CoG, n.d.). As the second step, statistical analysis of data is carried
out. Within the statistical analysis, a quality check (QC) algorithm is applied to the
observations at the Meteorological stations (MS). The main reason for applying QC
is to evaluate if the MS has sufficient data. Then stationarity check and trend analysis
is carried out to understand the general behavior of the precipitation regime in the
region. Finally, possible distributions for the extreme part of the observed data (i.e.
higher part than the partition point) are determined to develop alternative DBS
methods for this study. Six most common distributions and GP distribution are
evaluated. The third step is bias correction where LS, DBS, DBS 99 GP, and
DBS 99 LOGN methods, which are summarized below, are used to correct the
biases in RCM outputs. LS is used as a benchmark in this study. The next step is the
performance evaluation of the bias correction methods and selecting the best three
RCMs. Finally, forecasting extreme values by using bias corrected model outputs
and two different ensembles are done. First ensemble is the Simple Mean Ensemble
(SME) which is constructed using 17 RCMs and the second one is the
Superensemble (SE) which is constructed using the best performing three RCMs.
Ensembles are constructed to overcome the downsides of the single model analysis

like increase in uncertanity and variability.
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Figure 3.1. Flowchart of the study

The modified DBS methods used in this study are summarized below:

1) DBS_99: In this approach, instead of partitioning the data into two at the 95
percentile, data is divided into two at the 99" percentile. Gamma distributions
are fitted to both parts.

2) DBS_99 GP: In this approach similar to DBS_99, partitioning is done at the
99" percentile but instead of fitting Gamma distribution to both parts, GP
distribution is used for the extreme part and gamma distribution is fitted to

the non-extreme part.
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3) DBS_99 LOGN: In this approach similar to DBS_99, partitioning is done at
the 99™ percentile but instead of fitting gamma distribution to both parts,
LOGN distribution is used for the extreme part and gamma distribution is

fitted to the non-extreme part.

3.1 Statistical Checks

3.1.1 Quality Check

In this study, daily precipitation data of 53 MSs from Turkey are used. Study area
covers the southern and south-eastern regions of Turkey. Dataset is obtained from
Turkish State Meteorological Services and consists of the period between 1976 and
2010. Initially, 521 MSs are identified in the study area however, QC is applied
before starting to analysis. MSs having no data after 2010 are removed due to
inability to represent the situation of the last decade. Steps of the QC are explained

below:

1. Months with more than 10 days of missing daily precipitation observation
are marked as unreliable months and removed from the dataset.

2. Seasons with more than 1 month of missing data are marked as unreliable
seasons and removed from the dataset.

3. Years with more than 1 season of missing data are marked as unreliable years
and removed from the dataset.

4. Years with all zero entries are marked as unreliable years and removed from
the dataset.

After the QC, MSs with minimum 35 years of reliable data are selected to be used in
the analysis. 53 MSs having daily precipitation from 1976 to 2010 in the study area
passed the QC and used in this study.

13



3.1.2 Stationarity Check

Stationarity Check is done for all observed data and uncorrected model outputs. For
the stationarity check, two most common stationarity tests are used. They are the
Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test (Moravej, 2016). These two tests are considered as complimentary to
each other due to the difference of their null hypothesis (Kwiatkowski et al., 1992).
The null hypothesis of the ADF test is that the series has a unit root while the null
hypothesis of the KPSS test is that the series has no unit root. Since the null
hypothesis of these two tests are opposites of each other, comparing the results of
these two tests give more accurate indication of the stationarity of the series
(Kwiatkowski et al., 1992).

3.1.21  The ADF Test

The ADF test is a unit root test. The null hypothesis of the test is that the series has
a unit root which means the series is non-stationary while the alternative hypothesis
is that the series has no unit root which means the series is stationary. Main principle
of this test is to eliminate autocorrelation in the data by adding lagged values of
dependent variable to the existing variable while allowing for higher-order serial
correction in time series. Linear regression model with both a constant and a linear
trend used for the ADF test is shown below (Dickey, 2014):

i (1)

Ay =p+yt+38y,q + Z BiAye—i + &

i=1

where Ay; IS y; — y:—1, Y:—;is the difference of y, at lag i, § is the coefficient of
observed data at time t — 1, u is the intercept constant also called as drift, y is the

coefficient on a time trend, p is the lag order of autoregressive process, f5; Is
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autoregressive coefficient, t and i are the time indices, and &; is a sequence of

independent random variables with a mean of zero and variance of 2 = 0 at time ¢.

The ADF statistic is calculated according to the model given in Equation (1) is
(Dickey, 2014):
5 ()

ADF = —
SE(8)

where § is the expected value of & for observed data and SE (8) is the standard error

for §.

3.1.22  The KPSS Test

The KPSS test also uses a linear regression model for the decision of the stationarity.
The null hypothesis is that the series is stationary while the alternative hypothesis is
that the series is non-stationary. Linear regression model used for KPSS test is
(Kwiatkowski et al., 1992):

YtZT‘t+ﬁt+St t:1,...,T (3)
Te =Tp—q + U us~N(0, o) (4)

where Y; is the time series, r; is the random walk, S, is the deterministic trend, ¢, is
stationary error term, t is the time index, T is the number of observations, and u; is

the independent and identically distributed random variable.

The KPSS statistic is calculated according to the model given in Equation (3) is
(Kwiatkowski et al., 1992):

1 < )
t=1

Q| »»
gnof o
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oY ©)

j=1

(7)

T
62 = lim var(z )
T—oo
t=1

where T is the sample size and 62 is a consistent estimate of the variance of ..

3.1.3 Trend Analysis

For trend analysis, Mann Kendall (MK) test and Sen’s Slope Estimator (SSE) are
used. Slope values obtained from SSE are treated as trends. By using MK test it is
checked whether these trends are significant or not.

MK test checks whether a significant monotonic trend is present in the data. Its null
hypothesis is that there is no monotonic trend in data while its alternative hypothesis
is that there is a monotonic trend in data. Formula of test statistic is as follows (Mann,
1945):

S = nz_f zn: sign (xj — xl-) ©

i=1 j=i+1
where n is the number of observations, x; and x; are the sequential data values (j >
i), and sign (x; — x;) is the function given in Equation (9).

+1 if (xj —x;) >0 (9)

sign (xj —x;){ 0 if (xj—x;)=0
-1 lf (x] —xl-) <0

Then Z which depends on variance of S is calculated.

n(n—1)(2n+5) = X1_; t,(t, — D(2t, +5) (10)
18

var(S) =
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S—1 (11)

7;;gif5>0

Z 0ifS=0
S+1
ifS<0

Jvar(S)
where, q is the tied group’s number and t,, is the value of the overall data of pt" tied

group (p =1,2,3,...,n).

SSE is used to obtain the magnitude of the trend in data. It is a nonparametric
procedure for the estimation of the slopes of time series. Formula used for SSE is
(Sen, 1968):

Xj — X;
= Median (%—" (12)

where g is the estimated slope, x; and x; are data values at times j and i, respectively,

) for1<i<j<n

and n is the number of time periods. Positive slopes indicate increasing trend while

negative slopes indicate decreasing slope.

3.1.4 Identification of the Best Fitting Distribution for the Extreme Part

Six commonly used distributions are checked for their goodness of fit and compared
with gamma distribution for the extreme part of the observed data. These
distributions are normal, uniform, exponential, logistic, lognormal, and Weibull
distributions. In addition to these six distributions a commonly used extreme value
distribution, the generalized Pareto distribution is also checked. Best fitting
distribution among these seven distributions to the extreme part of the observed data
is identified. Akaike Information Criterion (AIC) is used for comparing the
distributions and determining which distribution is more suitable. AIC for gamma
distribution is calculated as well for comparison. AIC is calculated by the following
formula (Akaike, 1974):

AIC = 2K —logL (13)
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where K is the number of independently adjusted parameters and L is the maximum
likelihood. Lower AIC value means better goodness of fit. As a result of this analysis,
lognormal distribution is identified as the best fitting distribution to the extreme part
of the observed data. This result lead to development of DBS 99 LOGN Method as
explained in Section 3.5.5.

3.2 Bias Correction Methods

3.21 The LS Method

As a benchmark, one of the rather simpler scaling methods is used for the bias
correction of the model outputs. The method used as a benchmark is the LS method.
LS method focuses on correcting the means of model outputs by correction factors
obtained through means of observed data. In total, 12 correction factors are
calculated for each month of the year. The correction factor for each month is the
ratio of the long-term mean of observed data of the related month to the long-term
mean of model outputs. Then, model outputs are bias corrected by multiplying them
with these correction factors. The formula used for the LS method is (Lenderink et
al., 2007):

Tss,ll (14)

Pcor = Prem IP
RCM,1

where Pcopr is corrected data, Prcy, is model outputs, Pygs, is long term mean of
observed data of month i, Prcy,, is long term mean of model outputs of month i

where1 <i <12.

3.2.2 The DBS Method

In DBS, the data is divided into two parts at the 95" percentile. Because distribution
of daily precipitation data is heavily skewed towards low intensities, distribution

parameters are highly influenced by values with high frequency (Haylock et al.,
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2006). By partitioning the data, extreme values may be represented without the
influence of values with low intensity and high frequency. The parts composed of
the data below the 95" percentile and over the 95™ percentile can be referred to as
the non-extreme part and the extreme part, respectively. Moreover, threshold for the
wet day is introduced to the data to eliminate the drizzling effect (i.e., very small
precipitation values generated by climate models). All the observed data with lower
than the selected threshold value is replaced by zero. After partitioning, gamma
distributions are fitted to the non-extreme and extreme parts. Gamma distribution
has two-parameters, scale (a) and shape (f) parameters. Its CDF, F(z) is formulated
as follows (Wilks, 1995):

2 15
Fz) = Vr(fﬁ(;) (15)

where z is the modeled variable, I'(i) is Gamma function and y (i, a) is the lower
incomplete Gamma function. Details of Gamma function and lower incomplete

Gamma function are as follows (Arfken, 1985):

@) = (-1 (16)

where i is any positive number.

y(i,a) = jati‘le‘tdt (17

0

where i and a are any positive numbers, and t is the integration variable.

Then mapping procedure is used to bias correct each datapoint in the non-extreme

part and the extreme part with Equations (18) and (19), respectively:

Peng = FO_I\llE (Fune(Pune)) (18)

Pcg = Fog (Fug (Pug)) (19)
where Py is the corrected non-extreme data, F,y: is the inverse CDF of the
observed non-extreme data, F,y is the CDF of modeled non-extreme data, Py g iS

the modeled non-extreme data, P, is the corrected extreme data, F,;} is the inverse
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CDF of the observed extreme data, Fy,z is the CDF of the modeled extreme data, and

Py 1s the modeled extreme data.

The steps followed for the DBS method are listed below:

1.
2.
3.

9.

Determine a threshold for wet days for the observed data, Thopserved-
Replace all the observed data lower than the threshold with zero.

Find the corresponding quantile of the threshold value for the observed
data, QT hopservea-

Find the value corresponding to QT hppserveq fOr the model outputs (data
to be bias corrected). Call it the threshold for the model outputs, Thyge;-
Replace all model outputs lower than Thy,q4.; With zero.

Divide the observed data and model outputs into two parts at their 95
quantiles.

Fit gamma distribution to non-extreme parts of the observed data and the
model outputs.

Fit gamma distribution to extreme parts of the observed data and the
model outputs.

Apply the mapping procedure to correct bias.

10. Check the performance of bias correction using performance statistics.

Without the wet day threshold, drizzling effect may have a negative impact on bias

correction (Teutschbein & Seibert, 2012). Quantile values may change, and the

partition of the datasets may be affected. So, the wet day threshold is introduced to

avoid these problems. The most commonly used threshold values are 0.1 mm/day or
1 mm/day (Teutschbein & Seibert, 2012; Yang et al., 2010). In this study, 1 mm/day

is used as Thopserved-

Steps 1 and 2 are used to correct the observed data with respect to the wet day

threshold. Steps 3 and 4 are used to correct the model outputs with respect to the wet

day threshold. First, Thy,qe; 1S calculated as follows:

Thyoder = FR_ClM (Fogs (ThObserved)) (20)
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where F/y, is the inverse of CDF of model outputs and F, 5, is the CDF of observed
data. By using Equation (13) the Thy,q4e:1S Calculated and the model outputs below

Thyoqe; are replaced by zero in Step 5.

In Step 6, after both observed data and model outputs are corrected for the wet day
threshold, they are partitioned into extreme and non-extreme parts at their 95"
quantiles. In Steps 7 and 8, gamma distributions are fitted to both parts of the
observed data and model outputs using the Maximum Likelihood Estimation (MLE).

Thus, a total of 4 gamma distributions are fitted.

Step 9 consists of the mapping procedure which uses CDFs of the observed data and
model outputs to obtain bias correct the model outputs. Bias corrected model outputs,

P.or is obtained using the following equation (Yang et al., 2010):

Pcor = Fons(Frem(Prem)) (21)
where Pyc), is the model outputs, Frc,, is the CDF of the model outputs, F, 2 is the
inverse CDF of the observed data. The graphical representation of this mapping

procedure is shown in Figure 3.2.

08 1.0
I

Probability (-)
08
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PRCM B CDF of observed data

2 ) B CDF of modeled data
T T T \ T T

10 20 30 40 50 60

Precipitation (mm/day)

Figure 3.2. Mapping Procedure
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3.2.3

DBS_99 Method

Using a 95™ percentile for the partition of data and fitting gamma distributions to

both parts may not be optimal for the bias correction of the most extreme parts. In

this approach, instead of partitioning the data into two at the 95" percentile, data is

divided into two at the 99" percentile. Similar to DBS method, gamma distributions

are fitted to both parts. Thus, all the steps other than Step 6 of DBS are the same for

this method. In Step 6 instead of using 95" percentiles, 99" percentiles are used. The

steps followed for the DBS_BM method are listed below:

1.
2.
3.

10.

3.24

Determine a threshold for wet days for the observed data, Thypserved-
Replace all the observed data lower than the threshold with zero.

Find the corresponding quantile of the threshold value for the observed
data, QT hopservea-

Find the value corresponding to QT hopserveq TOr the model outputs (data
to be bias corrected). Call it the threshold for the model outputs, Thyoge:-
Replace all model outputs lower than Thy,q; With zero.

Divide the observed data and model outputs into two parts at their 99"
quantiles.

Fit gamma distribution to non-extreme parts of the observed data and the
model outputs.

Fit gamma distribution to extreme parts of the observed data and the
model outputs.

Apply the mapping procedure to correct bias.

Check the performance of bias correction using performance statistics.

DBS_99 GP Method

It is thought that using distributions related to extreme values (e.g., Gumbel,

generalized extreme value, generalized Pareto) may be more representative for the

extreme part of the data (Katz, 2013; Cooley, 2013) and GP distribution is used
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instead of gamma distribution for the extreme part. CDF of GP distribution, F(z) is
formulated as follows (Jenkinson, 1955):

P =1- [t (2E) )

where z is the selected variable for modeling, u is location parameter, o is scale

parameter, and ¢ is shape parameter.

In this approach similar to DBS_99, partitioning is done at 99" percentile, but instead
of fitting gamma distribution to both parts, GP distribution is used for the extreme
part while gamma distribution is fitted to the non-extreme part. Thus, the only
difference from DBS_99 is in Step 8, where GP distribution is fitted to extreme part

of both observed data and model outputs.

1. Determine a threshold for wet days for the observed data, Thopserved-

N

Replace all the observed data lower than the threshold with zero.

3. Find the corresponding quantile of the threshold value for the observed
data, QT hopservea-

4. Find the value corresponding to QT hopserveq fOr the model outputs (data
to be bias corrected). Call it the threshold for the model outputs, Thyoge:-

5. Replace all model outputs lower than Thy,qe; With zero.

6. Divide the observed data and model outputs into two parts at their 99"
quantiles.

7. Fit gamma distribution to non-extreme parts of the observed data and the
model outputs.

8. Fit GP distribution to extreme parts of the observed data and the model
outputs.

9. Apply the mapping procedure to correct bias.

10. Check the performance of bias correction using performance statistics.
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3.2.5

DBS_99L OGN Method

In this approach similar to DBS_99, partitioning is done at 99" percentile, but instead

of fitting gamma distribution to both parts, LOGN distribution is used for the extreme

part while gamma distribution is fitted to the non-extreme part. CDF of LOGN

distribution, F(z) is formulated as follows (Forbes et al., 2010):

F(z) = o ((lnx; - ,u> (23)

where z is the selected variable for modeling, u is location parameter, o is scale

parameter, and @ is the CDF of the standard normal distribution. Thus, the only
difference from DBS_99 is in Step 8, where LOGN distribution is fitted to extreme

part of both observed data and model outputs.

1.
2.
3.

9.

Determine a threshold for wet days for the observed data, Thypserved-
Replace all the observed data lower than the threshold with zero.

Find the corresponding quantile of the threshold value for the observed
data, QT hopservea-

Find the value corresponding to QT hopserveq TOr the model outputs (data
to be bias corrected). Call it the threshold for the model outputs, Thyoge:-
Replace all model outputs lower than Thy,q4.; With zero.

Divide the observed data and model outputs into two parts at their 99"
quantiles.

Fit gamma distribution to non-extreme parts of the observed data and the
model outputs.

Fit LOGN distribution to extreme parts of the observed data and the
model outputs.

Apply the mapping procedure to correct bias.

10. Check the performance of bias correction using performance statistics.
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3.3 Performance Evaluation

3.3.1 Performance Statistics

In this study, performances of different bias correction methods are evaluated using
the following three statistics; the mean absolute error (MAE), the root mean square
error (RMSE) and the percent bias (PBIAS):

1 24
MAE:EZ”DOBS_PCORl ( )
) (25)
RMSE = EZ(POBS - PCOR)Z
Pogs — P 26
PBIAS:Z( 0BS COR)xloo (26)
ZPOBS

where n is the number of datapoints. These statistics are also calculated for model
outputs (i.e., in Equations (24), (25) and (26) Pgcp is used instead of Pop) to
evaluate the improvement due to bias correction. Since RMSE is sensitive to outliers,
its value will be much higher than the value of MAE if a model has a few large
outliers. By checking both MAE and RMSE and comparing them provides the

information about outliers in errors (Hodson, 2022).

3.3.2 Selecting the Best Performing Bias Correction Method

A scoring system based on PBIAS values is developed to select the best performing
bias correction method. For each MS, the following steps are conducted:

1. Methods are sorted according to their PBIAS values from the lowest to the

highest for each RCM (i.e., the best performing model placed at the top).
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2. Since five methods are compared, scores are assigned to each method from
5 to 1 so that the best performing method gets 5 points and the worst
performing method gets 1 point.

3. Total score for each method is calculated for each MS.

4. The mean of total scores is obtained for each method.

At the end of this procedure each method has a score that represents the performance
of that method for all MSs.

3.4  Forecasting

Two different ensemble approaches are used to generate model outputs in this study
in addition to the RCM outputs. These approaches are SME and SE. SME and SE
approaches are similar to each other. Main difference between them is the weight
assigned to each RCM (Mesta Yoleri, 2022). While SME gives equal weight to each
RCM, SE gives weights to RCM based on Multiple Linear Regression (MLR). While
constructing ENS2, basic assumptions for linear regression are not checked and this
situation is a limitation of the current study. These ensembles are calculated for each
MS. They are refered to as ENS1 and ENS2 from now on, for SME and SE,
respectively. In this study, ENS1 and ENS2 are calculated with the bias corrected
RCM outputs, using all the RCM models and the best performing three RCM
outputs, respectively.

Following formula is used for ENS1 (Cane & Milelli, 2010):

Lo (27)
ENS1 = POBS' + M Z(PRCM,]' - PRCM.])
j=1

where P,z IS the mean of observed series, j = 1,2, ..., M is the number of RCM,

M = 17 inthis study (all 17 RCMs are used for ensembling in ENS1), Pgcy j is the
model outputs of RCM number j , and Pgcy,; is the mean of model outputs of RCM

number j.
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Following formula is used for ENS2 (Cane & Milelli, 2010):

N (28)
ENS2 = Ppgs + Z aj(PRCMJ - PRCM,J)
=1

where P,gs IS the mean of observed series, j = 1,2, ..., N is the number of RCM,
N = 3 inthis study (3 best RCMs are used for ensembling in ENS2), a; is the weight
of RCM number j, Py, ; is the model outputs of RCM number j , and Pgcy, is the

mean of model outputs of RCM number ;.

By using the best three bias-corrected RCMs and ensembles constructed in this
study, changes in mean extreme precipitations are calculated for projection periods.
The projection period is seperated into three parts as near, middle, and far future
which cover the periods 2011-2040, 2041-2070, 2071-2100, respectively. Sample
sizes of the time series used for ensembling for future periods range between 10800
and 10957 (i.e., 360 x 30to 365.25 x 30). Means of the extreme parts are
calculated for the observed data, bias corrected model outputs (correction is carried
out using the best performing method), and ensembles. Partition point for the
extreme part is is selected as the partition point of the best performing method.
Percent change in the mean of extreme parts and whole datasets are calculated by the

following formula:

Pr— Py
Percent Change = 5 * 100
0

(29)

where P is the mean of the projection period (three periods used in this study are

near, middle, and far future), P, is the mean of the observed period.
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CHAPTER 4

CASE STUDY AND RCMS

4.1  Study Area

Selected 53 MSs are located at different elevations and varying climate zones
according to Koppen Climatic Zones (Beck et al., 2018). Effects of elevation,
proximity to sea and climate zones are investigated in the analysis as well. Locations
of MSs are labeled as white circles and given with K&ppen Climatic Zones in Figure

4.1 and characteristics of MSs can be seen in Table 4.1.

T Arid, steppe, cold {BSK) ) ——y
Temperate, dry summer, hot summer (Csa}
BN Cold. dry summer, hot summer (Dsa)

K3

I Cold, dry summer, warm summer {Dsh}
B Cold, dry summer, cold summer {Dsc)

Figure 4.1. Koppen Climatic Zones (Beck et al., 2018) and Locations of MSs in the
Study Area

As it can be seen in Figure 4.1, five different climates are observed in the study area.
Legend on Figure 4.1 shows the typical climatic conditions regarding the colors
associated with codes given by them (Beck et al., 2018). BSk refers to cold semi-

arid climate, Csa refers to hot-summer Mediterranean climate, Dsa refers to
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Mediterranean-influenced hot-summer humid continental climate, Dsb refers to
Mediterranean-influenced warm-summer humid continental climate, and Dsc refers
to Mediterranean-influenced subarctic climate. MSs on the shoreline are influenced
by Csa. As the distance to sea increases MSs are more influenced by colder
continental climates like Dsa, Dsh, Dsc. Twenty-seven of the MSs are in the Csa
zone and 19 of the MSs are in the BSk zone which makes 87% of all the MSs.

Table 4.1. Characteristics of 53 MSs

MS# | MSID | Latitude | Longitude | Elevation (m) | Dist. to Sea (km) | Climate Type
1 17090 39.744 37.002 1294 149 BSk
2 17162 39.185 36.081 1182 231 BSk
3 17191 38.651 32.922 973 247 Dsa
4 17196 38.687 35.500 1094 223 BSk
5 17239 | 38.369 31.430 1002 171 Csa
6 17242 37.678 31.746 1141 103 Dsa
7 17244 37.984 32.574 1031 166 BSk
8 17246 37.193 33.220 1018 113 BSk
9 17248 37.526 34.049 1046 96 BSk
10 17250 37.959 34.680 1211 127 BSk
11 17255 37.576 36.915 572 85 Csa
12 17261 37.059 37.351 854 44 Csa
13 17262 36.709 37.112 640 4 Csa
14 17265 37.755 38.278 672 94 Csa
15 17300 36.906 30.799 64 6 Csa
16 17310 36.551 31.980 6 0 Csa
17 17320 36.069 32.865 2 0 Csa
18 17330 | 36.382 33.937 10 9 Csa
19 17340 | 36.781 34.603 7 0 Csa
20 17351 37.004 35.344 23 38 Csa
21 17370 36.592 36.158 4 0 Csa
22 17372 36.205 36.151 104 33 Csa
23 17375 | 36.302 30.146 2 0 Csa
24 17684 40.162 38.075 1164 86 Dsh
25 17716 39.893 37.747 1338 122 Dsh
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Table 4.1. (continued)

26 17734 39.362 38.114 1121 175 BSk
27 17754 39.079 33.066 1005 272 BSk
28 17762 39.243 37.389 1521 202 BSk
29 17798 38.821 31.726 1148 257 BSk
30 17802 38.725 36.390 1542 202 BSk
31 17832 38.276 31.894 1036 170 BSk
32 17836 38.374 35.480 1204 167 BSk
33 17837 38.452 35.791 1402 171 BSk
34 17840 38.478 36.504 1599 178 Dsb
35 17866 38.024 36.482 1344 129 Dsb
36 17870 38.204 37.198 1137 177 BSk
37 17898 37.427 31.849 1129 83 Csa
38 17900 37.566 32.790 1014 134 BSk
39 17902 37.715 33.526 996 141 BSk
40 17906 37.548 34.487 1453 84 BSk
41 17908 37.434 35.819 112 58 Csa
42 17926 37.057 30.191 1017 44 Csa
43 17928 36.989 32.456 1552 63 Dsb
44 17936 37.251 35.063 240 55 Csa
45 17952 36.737 29.912 1095 61 Csa
46 17954 36.790 31.441 38 4 Csa
47 17958 36.627 34.338 7 0 Csa
48 17960 37.015 35.796 30 19 Csa
49 17962 36.824 36.198 29 2 Csa
50 17974 36.272 32.305 21 2 Csa
51 17979 36.769 35.790 34 0 Csa
52 17981 36.568 35.389 22 1 Csa
53 17986 36.081 35.949 4 0 Csa
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4.2

RCMs used in this study are obtained from EURO-CORDEX published through
ESGF (ESGF-DKRZ - Home | ESGF-CoG, n.d.). Step by step guide for obtaining
the data can be accessed at https://cordex.org/data-access/esgf/. There is a publicly
published table for the known issues about the RCMs within CORDEX. It is called
Errata Table and can be accessed at https://euro-cordex.net/078730/index.php.en.
Errata Table is used for the selection of RCMs in this study. When the most recent
version of Errata Table is inspected, which is dated to 30.01.2021, 17 RCMs are
selected from the table labeled as with no known issues or solved issues. List of

RCMs used in this study can be seen in Table 4.2. RCP 8.5 scenario is used for the

study.

RCMs

Table 4.2. RCMs used in this study

Model ID | Driving GCM RCM
RCM1 CNRM-CM5 CCLM4-8-17
RCM2 CNRM-CM5 ALADING3
RCM3 CNRM-CM5 RCA4
RCM4 EC-EARTH HIRHAMS
RCM5 EC-EARTH CCLM4-8-17
RCM6 EC-EARTH RACMOE22E
RCM7 EC-EARTH RCA4
RCM8 CM5A-MR WRF331F
RCM9 CM5A-MR WRF381P
RCM10 CM5A-MR RCA4
RCM11 | HadGEM2-ES CCLM4-8-17
RCM12 | HadGEM2-ES RACMOE22E
RCM13 | HadGEM2-ES RCA4
RCM14 | MPI-ESM-LR CCLM4-8-17
RCM15 | MPI-ESM-LR | REMO2009(r1i1p1)
RCM16 | MPI-ESM-LR | REMO2009(r2i1pl)
RCM17 | NoRESM1-M HIRHAMb5

32



https://cordex.org/data-access/esgf/

CHAPTER 5

RESULTS AND DISCUSSIONS

As shown in Figure 3.1, precipitation time series of RCM outputs are bias corrected
with LS, DBS, DBS_99, DBS 99 GP, and DBS_99 LOGN methods. Within the
scope of this study R programming language is used for all checks, analysis and bias
correction procedures with the help of 3 packages. The first one is the “openxlsx”
package (Walker & Braglia, 2018). It is used for importing observed data and model
outputs from excel files. The second one is the “extRemes” package (Gilleland,
2022). 1t is used for fitting GP distributions into extreme parts for DBS 99 GP
method. The third one is the “tseries” package used for stationarity and trend analyis.
The rest of the analysis are carried out by the base package of R. Summary of the

use of the packages can be seen in Table 5.1.

Table 5.1. Packages Used in this Study

Package | Used Step

openxlIsx | For transferring data from excel files to the R environment

tseries For stationarity check and trend analysis

extRemes | For fitting the GP distribution

Base R The rest of the analysis

The study area has 53 MSs and 17 RCMs are used in this study. Bias correction is
done for each RCM dataset at the closest grid to each MS. In total 4505 (i.e., 53x17
times 5 different bias correction methods) different bias corrected time series are
generated. MAE, RMSE and PBIAS are used to compare the performances of five
different bias correction approaches used in this study. These performance statistics

are calculated for uncorrected version of model outputs as well.
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RCM data are divided into two parts as historic period and projection period. 1976-
2010 period is used as the historic period and 2011-2100 period is used as the

projection period.

Although historic period for RCM outputs are provided up to 2005, to utilize the full
time range of observed data (i.e., 1976-2010), projected RCM outputs from 2006 to
2010 are used as the historic period in this study. As stated in the Guidance for
EURO-CORDEX (Benestad et al., 2017), historic period of RCM outputs are
generated with observed climate datasets, known historical changes in greenhouse
gas concentrations, solar radiation, etc. while future period of RCM outputs are
initialized with conditions of historic period and forced with different RCP scenarios.
Outputs generated with these two types of approaches are combined to obtain the
historic model outputs in the current study. This fact should be recognized while

making inferences about the outcomes.

Observed values in the historic period are used for parameter estimation for
distribution fitting. These parameters are used for the bias correction of the
projection period as well. The most of the MSs in Turkey are converted to automatic
stations starting 2000s (Y1lmaz & Darende, 2021). However, it is stated by Yilmaz
and Darende (2021) that some of the manual and automatic entries are not consistent

with each other.

In Section 5.1, results of statistical checks are given. In Section 5.2, CDFs of extreme
parts of the data corrected by DBS, DBS 99, DBS 99 GP, and DBS_99 LOGN
methods are given and discussed. In Section 5.3, performance statistics of LS, DBS,
DBS 99, DBS 99 GP, and DBS 99 LOGN methods are compared and best
performing method is determined. Observed vs modeled plots are also checked for
comparing the results of bias correction methods. In Section 5.4 estimated changes
in extreme precipitation by the best method and ensembles for projection period are

presented.
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51 Results of Statistical Checks

51.1 Stationarity Check

ADF test results and KPSS test results are obtained for observed data and all model
outputs. If both tests conclude as stationary then the time series is represented by S,
if both tests conclude as non-stationary then the time series is represented by NS.
Otherwise, the time series is represented by IN meaning inconsistent results from the
tests. Based on this analysis most of the observed data and model outputs are
identified as S. The results are given in Appendix A.

51.2 Trend Analysis

Results of SSE and MK test are obtained for observed data and model outputs for
95% confidence interval. Trend values from SSE for all RCMs are given in Table
5.2. Green cells mean significant positive trend while red cells mean significant
negative trend. Uncolored cells are without significant trend. As it can be seen in
Table 5.2, observed data at most of the MSs have significant trends. Twenty-nine out
of 53 MSs show significant negative trend. However, not all of the RCMs have
significant trends. RCM3, RCM 7, RCM 8, RCM 10, RCM 11, RCM 13, RCM16,
and RCM 17 have no significant trend for almost all MS locations. Significant trends
in observed data and model outputs tend to be negative for most of the time.
However, there are some significant positive trends as well. Results show only MS
24, MS 29, and MS 33 have significant positive trend for observed data. RCM 5, and
RCM 9 shows significant positive trends for most of the MS locations as well.

Remaining RCMs tend to have a significant negative trend.
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Table 5.2. SSE and MK Test Results for All RCMs
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5.1.3 Determination of Best Fitting Distributions

Seven most commonly used distributions and the GP distribution are fitted to
extreme part of the observed data (i.e., with a partition point of 99" quantile) and
compared using AIC for each MS. AIC values are given in Table 5.3. In Table 5.3,
Nor., Uni., Exp., Log., Logn. means normal distribution, uniform distribution,
exponential distribution, logistic distribution, and lognormal distribution,
respectively. Lowest AIC value for each MS is marked as bold. As can be seen in
Table 5.3, the lowest AIC values are generally obtained for the lognormal
distribution. Thus, DBS_99 LOGN method is developed and evaluated as an
alternative bias correction method. AIC values for GP distribution are also checked

and given in Table 5.3.

Table 5.3. AIC Values for Alternative Distributions

MS# | Nor. | Uni. | Exp. | Log. | Logn. | Weibull | Gamma | GP
1 827 937 | 1061 | 795 | 776* 847 791 819
2 887 | 921 | 1063 | 860 | 826 890 843 876
3 813 879 | 1021 | 796 769 823 781 805
4 855 911 | 1065 | 831 804 866 818 847
5 958 | 964 | 1152 | 953 | 922 962 932 951
6 1020 | 1080 | 1170 | 990 | 954 1017 973 1013
7 912 989 | 1063 | 874 842 910 861 904
8 856 973 | 1067 | 836 811 868 823 851
9 892 | 986 | 1036 | 848 | 815 888 836 885
10 814 | 899 | 995 | 784 | 757 821 773 802
11 951 | 1079 | 1213 | 926 909 977 921 939
12 926 959 | 1163 | 918 893 938 902 920
13 929 | 960 | 1135 | 916 | 887 937 899 919
14 954 | 992 | 1223 | 940 | 919 973 929 947
15 1322 | 1308 | 1457 | 1321 | 1282 1314 1292 1318
16 1245 | 1289 | 1380 | 1219 | 1178 1238 1197 1238
17 1129 | 1192 | 1339 | 1117 | 1090 1138 1101 1121
18 1147 | 1204 | 1250 | 1109 | 1064 1129 1087 1135
19 1149 | 1276 | 1261 | 1114 | 1070 1135 1091 1140
20 1143 | 1163 | 1270 | 1126 | 1083 1133 1099 1138
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Table 5.3. (continued)

21 | 1133 | 1246 | 1233 | 1085 | 1043 | 1115 | 1067 | 1126

22 | 1333 | 1529 | 1361 | 1249 | 1191 | 1281 | 1228 | 1328

23 | 1233 | 1345 | 1355 | 1185 | 1146 | 1222 | 1170 | 1227

24 | 812 | 853 | 1045 | 800 | 775 | 825 | 785 | 806

25| 855 | 1004 | 1085 | 825 | 805 | 876 | 818 | 848

26 | 826 | 869 | 1038 | 803 | 778 | 838 | 792 | 815

27 | 888 | 1069 | 1040 | 838 | 808 | 891 | 828 | 879

28 | 836 | 874 | 1035 | 820 | 790 | 844 | 803 | 827

29 | 920 | 987 | 1084 | 903 | 871 | 921 | 884 | 916

30 | 838 | 890 | 1032 | 805 | 779 | 847 | 796 | 825

31| 959 | 1115 | 1126 | 914 | 887 | 964 | 906 | 951

32 | 878 | 955 | 1055 | 860 | 825 | 880 | 840 | 868

33 | 816 | 843 | 1045 | 807 | 781 | 827 | 791 | 805

34| 926 | 1040 | 1115 | 898 | 870 | 934 | 885 | 911

35| 971 | 1045 | 1182 | 948 | 920 | 983 | 935 | 961

36 | 843 | 846 | 1061 | 836 | 807 | 851 | 817 | 838

37 | 1058 | 1077 | 1261 | 1037 | 1008 | 1066 | 1022 | 1049

38 | 840 | 884 | 1035 | 828 | 797 | 846 | 809 | 829

39 | 888 | 950 | 1039 | 867 | 833 | 886 | 847 | 875

40 | 890 | 973 | 1036 | 853 | 817 | 887 | 838 | 881

41 | 1148 | 1223 | 1280 | 1117 | 1078 | 1140 | 1097 | 1140

42 | 1030 | 1164 | 1130 | 985 | 942 | 1012 | 965 | 1017

43 | 923 | 935 | 1191 | 922 | 900 | 936 | 907 | 910

44 | 1204 | 1346 | 1329 | 1167 | 1129 | 1195 | 1148 | 1191

45 | 906 | 916 | 1164 | 903 | 880 | 919 | 887 | 898

46 | 1195 | 1274 | 1384 | 1172 | 1143 | 1201 | 1157 | 1189

47 | 1124 | 1235 | 1247 | 1090 | 1051 | 1114 | 1070 | 1112

48 | 1095 | 1208 | 1267 | 1059 | 1029 | 1100 | 1048 | 1084

49 | 1076 | 1095 | 1294 | 1066 | 1037 | 1085 | 1048 | 1068

50 | 1077 | 1111 | 1295 | 1071 | 1041 | 1085 | 1051 | 1068

51 | 1146 | 1240 | 1310 | 1120 | 1087 | 1147 | 1103 | 1134

52 | 1185 | 1280 | 1299 | 1146 | 1105 | 1172 | 1127 | 1177

53 | 1187 | 1344 | 1292 | 1135 | 1095 | 1171 | 1119 | 1178

*bold values are the lowest for each MS.

38



5.2

5.2.1

Results of Bias Correction Methods

The DBS Method Results

CDFs of the bias corrected extreme parts by DBS for 9 MSs are given in Figure 5.1.

Red line in the plots represent the CDF of extreme part of the observed data. Light

gray shadow is the range of CDFs of the uncorrected model outputs (i.e., 17

uncorrected RCM outputs) and dark gray shadow is the range of CDFs of the

corrected model outputs. Reamining CDFs are given in Appendix B.
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Figure 5.1. CDF of the extreme part of selected MSs (DBS)
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It is expected that dark gray shadow has a narrower range than light gray shadow
and dark gray shadow is in the vicinity of the red line. As it can be seen in Figure
5.1, expected results are aciheved. It can be said that gamma distribution works well
for bias correction of the extreme part of model outputs.

5.2.2 The DBS_99 Method Results

CDFs of the bias corrected extreme parts by the DBS_99 method of 9 MSs are given
in Figure 5.2. Reamining CDFs are given in Appendix B.
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As it can be seen in Figure 5.2, expected outcome is obtained with this method as
well. Dark gray shadow is narrower than the light gray shadow and it is in the vicinity
of the red line. Comparing with the CDFs with Figure 5.1, it can be said that ranges
of both uncorrected and corrected model outputs increased with the change of

partition point. In other words, DBS_99 does not perform as good as DBS.

523 The DBS_99 GP Method Results

CDFs of the bias corrected extreme parts by the DBS_99 GP method of 9 MSs are
given in Figure 5.3. Reamining CDFs are given in Appendix B.
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Figure 5.3. CDF of the extreme part of selected MSs (DBS_99 GP)
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In Figure 5.3, the light gray shadow can barely be seen which means that corrected
and uncorrected range of CDFs with DBS_99 GP method is very similar, unlike
DBS and DBS_99 methods. In other words, the performance of DBS_99 GP is not
as good as DBS or DBS_99. The reason for this may be the fact that sample size is
very important when extreme value distributions such as generalized extreme value
(GEV) and GP are used (Butler, Heffernan, Tawn, & Flather, 2007; Butler,
Heffernan, Tawn, Flather, et al., 2007; Coles, 2001; Davison, 2005).

In this study, 99" quantile is used as the partitioning point for the extreme part of the
data set. This led to a sample size of 127 in our study. In the literature, the GP
distribution is identified to be suitable for the Peak Over Threshold (POT) approach
(Coles, 2001; Davison, 2005). Hosking & Wallis (2016) stated that sample sizes
between 200 and 500 gave better performance with MLE when GP distribution is
used. Thus, sample size is identified as one of the reasons for the poor performance
of DBS_99 GP method.

It is also clearly seen that for most of the MSs the range of observed data is much
smaller than the bias corrected range. For example, the red line for the MS 8, starts
around 20 mm/day and ends around 60 mm/day while, the start of the dark gray
shadow is between 20 mm/day and 30 mm/day, and the end of the dark gray shadow
is between 30 mm/day and 120 mm/day. Due to use of GP distribution, the range of
data is uncorrectly widened. These results indicate that GP is not a suitable
distribution to be used in bias correction, especially when the length of time series is

limited (i.e. observation period is short).

524 The DBS_99 LOGN Method Results

CDFs of the bias corrected extreme parts by the DBS_99 method of 9 MSs are given
in Figure 5.4. Reamining CDFs are given in Appendix B.
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Figure 5.4. CDF of the extreme part of selected MSs (DBS_99 LOGN)

As it can be seen in Figure 5.4, the dark gray shadow is narrower than the light gray
shadow and it is in the vicinity of the red line. Comparing with the CDFs with Figure
5.2, it can be said that ranges of both uncorrected and corrected model outputs are
very similar. It can be said that the performances of the DBS method with LOGN

distribution and gamma distribution are similarly.
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53 Performance Evaluation

53.1 Selecting The Best Three RCMs

Mean performance statistics (means of 53 stations) for uncorrected version of model
outputs are given in Table 5.4. Box plots of PBIAS, RMSE and MAE are given in
Figure 5.5, Figure 5.6, and Figure 5.7, respectively.

Table 5.4. Mean Performance Statistics for RCMs

RCM # | PBIAS (%) | RMSE (mm/day) | MAE (mm/day)
1 -55.08 8.39 3.43
2 -50.47 8.41 3.39
3 8.77* 7.11 2.64
4 21.43 7.31 2.55
5 -1.90 7.53 2.79
6 14.34 7.03 2.60
7 22.15 6.98 2.49
8 -29.52 7.87 3.15
9 -43.00 7.60 3.23
10 33.91 6.61 2.32
11 -33.03 8.70 3.38
12 -16.99 8.02 3.19
13 3.16 7.69 2.87
14 -25.41 8.02 3.09
15 -26.20 9.49 3.38
16 -28.18 9.79 341
17 19.41 7.46 2.58

Average -10.98 7.88 297

*Bold values are the smallest three values.
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Since our goal is to correct biases, the best performing three RCMs are selected to
be analyzed in more detail. The more the PBIAS value is close to zero, the better the
performance. The smallest absolute PBIAS values are marked in bold in Table 5.4.
RCM 3, RCM 5, and RCM 13 have less than 10% mean PBIAS values so they are
chosen as the best performing three RCMs. They will be referred to as the best-three
RCMs from hereafter. The reason for choosing the best-three RCMs is to investigate
the improvement by bias correction methods in more detail. Considering the average
PBIAS, RMSE, and MAE values given in Table 5.4, the best-three RCMs have better

than average performances in terms of RMSE and MAE as well.
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5.3.2 Performance Parameters

PBIAS is used to determine the best method for each MS. PBIAS values are given
for best-three RCMs for each MS in Table 5.5. M represents the MS number, U
represents the uncorrected, LS represents corrected by LS method, D1 represents
corrected by DBS method, D2 represents corrected by DBS 99, D3 represents
corrected by DBS 99 GP, and D4 represents corrected by DBS 99 LOGN in Table
5.5. Best PBIAS values are marked with green excluding the LS method. RMSE and
MAE values are given in Appendix C.

Table 5.5. Comparison of PBIAS values

RCM3 RCM5 RCM13
M U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 U LS D1 D2 D3 D4
1 -51 [ 00 | -13 | -3.0 -7.8 -30 | -19 | 0.0 | -0.8 | -19 -2.6 -1.9 | -39 | 0.0 0.2 -0.6 -6.7 -0.6
2 29 0.0 | 0.2 0.8 5.9 0.8 -1 0.0 | -09 | -20 0.6 -2.0 33 0.0 0.0 25 55 2.4
3 -38 [ 00 | -1.0 | -38 -6.6 -3.8 5 0.0 0.1 -1.0 2.0 -1.0 | 27 | 0.0 0.3 -1.7 -5.9 -1.7
4 38 0.0 | -0.7 0.3 7.0 0.3 -17 | 00 | -1.1 | -26 -1.0 -2.6 44 0.0 1.0 2.1 8.8 2.1
5 11 00 | -13 | -34 2.3 -3.4 6 0.0 | -0.7 | -29 3.2 -2.9 10 00 | 05 | -1.7 2.0 -1.8
6 14 00 | -11 | -28 3.2 -2.8 10 0.0 | -09 | -26 4.1 -2.7 8 00 | 05 | -1.1 3.4 -11
7 0 0.0 | -09 | -24 17 -2.4 1 00 | -03 | -19 2.8 -1.9 4 00 | 0.7 | -3.0 21 -3.1
8 33 0.0 0.6 -0.5 6.9 -0.6 2 0.0 0.2 -14 1.6 -15 30 0.0 0.2 -0.8 7.4 -0.8
9 30 0.0 0.1 -0.1 5.9 -01 | 46 | 0.0 | -08 | -22 -6.4 -2.2 36 0.0 0.1 1.0 9.5 11
10 | -39 | 00 | -1.1 | -29 -7.4 -29 | -40 | 0.0 | -0.7 | -34 -5.1 -34 | -28 | 0.0 | -0.7 | -12 -6.0 -11
11 26 0.0 0.9 22 4.4 22 16 0.0 0.2 0.3 33 0.3 10 0.0 2.1 3.8 -0.4 3.8
12 | -19 | 00 | -1.8 | -28 -2.6 -2.8 12 0.0 0.1 0.9 1.9 0.9 -46 | 0.0 | -1.3 | -2.4 -6.6 -2.4
13 | 25 | 00 | -08 | -18 -5.0 -1.8 3 0.0 0.1 0.7 2.2 0.6 -42 | 0.0 0.4 -0.8 -7.1 -0.8
14 1 0.0 | -03 0.9 -3.0 0.9 -29 | 0.0 0.0 0.1 -1.4 0.1 -42 | 0.0 0.3 1.0 -13.2 1.0
15 16 00 | -13 | -38 11.6 -3.9 -2 0.0 | -14 | -40 6.1 -4.0 3 0.0 0.1 -2.5 72 -2.5
16 18 0.0 | -09 | -11 6.0 -11 14 0.0 0.3 0.5 34 0.3 -1 00 | -10 | -17 3.2 -1.7
17 53 0.0 1.0 2.6 14.2 2.6 21 0.0 15 25 17 2.2 37 0.0 0.9 21 9.9 21
18 26 0.0 0.2 14 8.4 1.6 2 00 [ -1.0 | -18 15 -1.8 18 0.0 0.2 13 4.8 13
19 42 0.0 0.7 22 10.6 22 6 0.0 | -0.4 0.0 1.0 0.0 28 0.0 0.5 2.9 6.4 29
20 | -26 | 00 | -1.5 | -39 0.0 -3.9 12 0.0 | -06 | -12 4.7 -15 | 40 | 0.0 | -08 | -31 -5.8 -3.1
21 14 0.0 0.1 0.0 4.8 0.1 36 0.0 0.7 14 9.7 15 3 0.0 0.6 0.4 3.0 0.4
22 7 0.0 0.8 4.0 20.5 4.3 64 0.0 1LE) 4.3 184 4.6 76 0.0 L4l 3.2 20.4 3.6
23 13 00 [ <10 | -1.2 2.6 -1.0 -7 00 [ -08 | -11 -5.8 -1.1 -4 0.0 | 20 | -26 -2.5 -2.5
24 | -13 | 00 | -0.1 | -0.9 -2.2 -09 | -34 | 0.0 | 11 | -30 -4.5 -3.0 -8 0.0 0.9 12 -2.6 12
25 22 0.0 0.6 19 3.8 18 -8 0.0 | -04 | -21 -0.7 -2.1 26 0.0 e 4.0 3.4 4.0
26 29 0.0 0.3 17 55 17 -25 | 00 | 06 [ -1.0 -3.8 -1.0 26 0.0 15 2.7 3.8 2.7
27 | -20 | 00 | <15 | -32 -3.2 -3.2 14 00 [ -03 | -01 3.4 01 | -12 | 0.0 | -06 | -0.7 -35 -0.6
28 4 00 [ -15 | -06 0.3 -0.7 -8 00 [ -02 | -02 1.6 -0.2 0 0.0 0.4 22 12 22
29 | <17 | 00 | -23 | -44 -0.6 -4.5 18 0.0 | -06 | -0.4 6.7 -0.4 -3 00 | .12 | -26 13 -2.7
30 4 0.0 | -06 [ -1.0 -0.6 -10 | -38 | 0.0 | 09 | -27 -4.7 -2.7 4 0.0 j1#2) 14 14 14
31 24 00 [ -16 | -2.7 6.0 -2.7 -7 00 | -12 | -25 1.9 -2.5 23 0.0 | .10 | -20 6.3 -2.0
32 | 66 | 00 | -14 | 10 | -142 | -11 | 41 | 00 | -5 | -2.6 -6.2 -26 | -53 | 0.0 [ -0.4 15 -14.5 15
33 16 00 [ 02 | 0.2 29 -02 | -10 | 0.0 | 03 | -16 0.7 -1.7 21 0.0 1.3 1.9 4.1 1.9
34 13 0.0 0.2 -0.2 37 -0.2 -9 00 | -01 | -17 0.5 -17 15 0.0 0.7 0.1 4.3 0.1
3 | -31 | 00 [ -0.9 | -26 -3.7 -26 | -15 | 0.0 | 05 | -11 -2.3 -11 | 44 | 0.0 | 03 | -21 -5.6 -2.1
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Table 5.5. (continued)

36 -20 0.0 -0.7 -1.3 -4.2 -1.3 -18 0.0 -1.4 -1.2 -3.8 -1.2 -21 0.0 -0.4 -0.2 -3.9 -0.2
37 56 0.0 -1.6 -2.0 112 -2.0 36 0.0 -1.2 -1.8 8.7 -1.8 50 0.0 -15 -11 111 -1.2
38 -29 0.0 -1.0 -4.0 -6.6 -4.0 11 0.0 -04 | -13 41 -14 | -26 0.0 -1.0 -34 -4.4 -34
39 -8 0.0 -0.5 -1.3 18 -13 -6 0.0 -04 | -15 2.3 -1.7 -2 0.0 -0.4 -1.2 2.3 -11
40 -7 0.0 -0.6 -0.9 -1.1 -0.9 -105 0.0 -0.7 -2.5 -16.1 -2.5 6 0.0 0.8 14 1.8 15
41 6 0.0 -0.6 0.1 2.3 0.2 1 0.0 -0.7 -1.2 0.6 -1.3 -4 0.0 0.4 15 -2.1 16
42 4 0.0 -1.7 -2.9 19 -2.9 -33 0.0 -15 | -33 -2.6 -3.3 3 0.0 -0.7 -1.2 -0.2 -1.2
43 42 0.0 -1.7 -1.9 7.1 -2.0 2 0.0 -15 -2.7 14 -2.7 35 0.0 -2.0 -3.1 6.2 -3.1
44 10 0.0 -1.5 -3.0 1.4 -3.0 -11 0.0 -0.8 -2.0 -1.8 -2.1 0 0.0 -0.8 -1.3 -1.5 -1.3
45 67 0.0 0.5 13 17.7 13 -5 0.0 -0.7 -1.3 -0.6 -1.3 61 0.0 0.4 2.0 16.2 2.0
46 9 0.0 -1.1 -1.5 2.7 -1.4 15 0.0 -0.6 -1.5 2.8 -15 -7 0.0 -0.6 -1.1 15 -1.1
47 36 0.0 0.4 2.0 9.9 2.0 14 0.0 -0.2 0.1 23 -0.1 17 0.0 0.5 21 3.8 21
48 12 0.0 -1.3 -3.1 5.0 -31 22 0.0 -05 | -1.8 5.8 -1.8 -2 0.0 -0.7 -2.3 2.7 -2.2
49 40 0.0 0.2 1.6 8.2 16 28 0.0 0.3 0.9 4.7 0.8 32 0.0 1.0 2.6 6.6 2.6
50 4 0.0 -0.7 -0.5 1.6 -0.4 3 0.0 0.3 2.1 -1.6 21 -15 0.0 0.7 0.6 -1.6 0.6
51 17 0.0 -1.8 -3.6 6.3 -3.6 13 0.0 -0.3 -0.4 1.6 -0.6 -12 0.0 -14 -3.7 -0.1 -3.7
52 16 0.0 -1.3 -34 7.0 -3.2 38 0.0 -0.2 0.1 113 0.1 -21 0.0 -11 -33 -0.8 -3.2
53 15 0.0 -0.8 -17 4.8 -1.6 8 0.0 -0.3 -0.6 2.9 -0.5 8 0.0 -0.6 -13 4.2 -1.2
M represents the MS number, U represents the uncorrected, LS represents corrected by LS method, D1 represents corrected by DBS method, D2 represents corrected
by DBS_99, D3 represents corrected by DBS_99_GP, and D4 represents corrected by DBS_99_LOGN. Best PBIAS values are marked with green excluding LS.

All bias correction methods used in this study improved the performance parameters
compared to those for the uncorrected series. Unfortunately, the methods proposed
in this study rarely worked better than the original DBS method. As can be seen in
Table 5.5, DBS 99 DBS 99 GP and DBS 99 LOGN performed best only for a few
of the MSs. For the rest of the MSs, DBS method performed the best.

According to the results it can be said that changing the partition point from 95"
quantile to 99" quantile did not cause an improvement. The purpose of changing it
from 95™ quantile to 99" quantile was to represent extreme part more efficiently.
However, it also reduced the sample size for distribution fitting. It is seen that
tradeoff between the sample size and the representation of extreme part of the data

is not favorable.

To select the best performing bias correction method, steps described in Chapter

3.3.2 are followed and the results are given in Table 5.6.
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Table 5.6. Scores of Bias Correction Methods

Method Score
LS 84
DBS 64
DBS_99 41

DBS 99 GP | 26
DBS_99 _LOGN | 40

As it can be seen in Table 5.5, PBIAS values corrected by LS method are almost zero
and this leads to LS having the highest score when only PBIAS is considered as the
performance criteria. Since LS method focuses on correcting means of model
outputs, it is an expected result. However, correcting only means of model outputs
may lead to underestimation or overestimation of extreme values as can be seen in
Figure 5.8. QM methods are suggested to overcome this deficiency (Ghimire et al.,
2019; Luo et al., 2018; Mendez et al., 2020; Teutschbein & Seibert, 2012). Thus,
DBS is identified as the best performing method in this study.

5.3.3 Observed versus Corrected and Uncorrected Model Outputs

Observed versus bias corrected and uncorrected model outputs are plotted for best
three RCMs. Observed vs modeled plots of RCM 3 for the first 8 MSs are given in
Figure 5.8. Purple points represent the uncorrected model outputs. Results corrected
by DBS, DBS_99, DBS 99 GP, DBS 99 LOGN are represented with the colors
black, red, blue, and green, respectively. An identity line is also introduced to the
plots to make interpretation easier. Plots of RCM 3 for the remaining MSs, plots of
RCM 5 and RCM 13 for all MSs are given in Appendix D.
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Figure 5.8. Observed versus bias-corrected and uncorrected modeled plots of RCM
3 for MS1 to MS8

Points getting closer to the identity line means the bias correction method corrected
the model outputs better. As it can be seen in Figure 5.8, the closest points to the
identity line are mostly black which means bias correction with DBS worked better
than the other methods. On the other hand, DBS_99 GP method resulted in points
further away from the identity line. There is always either a considerable
underestimation or overestimation with the DBS_99 GP method (i.e., the furthest
points to the identity line are blue points most of the time). LS tends to underestimate

or overestimate especially for the extreme values as well. Observed versus bias
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corrected and uncorrected model outputs also show that DBS is the best performing

method which is consistent with the results presented in Chapter 5.3.2.

54  Forecasting

Projection period for this study is selected as 2011-2100 and forecasting is done for
this period. This period is separated to three parts as 2011-2040, 2041-2070, and
2071-2100 to represent near, middle, and far future, respectively. Percentage changes
in mean extreme precipitations comparing the historic period are calculated for these
periods. Bias corrected outputs of the best three RCMs with DBS method and outputs
of ensembles constructed for this study (i.e., ENS1 and ENS2) are used for the
calculation of changes in mean extreme precipitations. Since the DBS method is
selected as the best performing method, 95" quantile is used as the partition point to

obtain the mean extreme precipitations.

Box plots of the whole daily precipitation time series for the first 9 MSs for near
future are prepared and given in Figure 5.9. However, since the goal of this study is
to analyze extreme values, the box plots box plots for the extreme parts of the best
three RCMs and ensembles are prepared for the near, middle, and far future for all
MSs. Uncorrected RCM outputs are also included in these plots for comparison. Box
plots of the extreme parts of first 9 MSs are given in Figure 5.10, Figure 5.11, and
Figure 5.12 for the near, mid, and far future, respectively. The rest of the box plots

are given in Appendix E.
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In Figures 5.9 t0 5.12, O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data,
uncorrected RCM 3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13
outputs, RCM 3 outputs corrected by DBS method, RCM 5 outputs corrected by
DBS method, RCM 13 outputs corrected by DBS method, ENS1, and ENS2,
respectively. Since the whole time series contain high number of zero values, their
means are very low. This situation leads box plots to perceive most of the non-zero

values as outliers as can be seen in Figure 5.9. Similar situation if valid for the near,
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Figure 5.9. Box Plots of Whole Datasets (2011-2040).

middle, and far future for all the MSs.
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Figure 5.10. Box Plots of Extreme Parts (2011-2040).

Here O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data, uncorrected RCM
3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13 outputs, RCM 3 outputs
corrected by DBS method, RCM 5 outputs corrected by DBS method, RCM 13
outputs corrected by DBS method, ENS1, and ENS2, respectively.
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Basic statistical properties of extreme parts of the aforementioned time series can be
seen in Figure 5.10. Slight increases and decreases in the mean values compared to
the observed data can be seen for the near future. However, the most striking fact in
Figure 5.10 are the results of ensembles. It can be seen that both ensembles have
very low mean values and very small ranges compared to the other datasets. For
example, the ranges of the extreme parts of RCM 3, RCM 5, and RCM 13 for MS1
for the near future are 8 — 68 mm/day, 10 — 76 mm/day, and 8 — 41 mm/day,
respectively. On the other hand, the ranges of ENS1 and ENS2 for MS1 for the near
future are 4 — 10 mm/day and 2 — 5 mm/day, respectively. As it can be seen, there is
a drastic decrease in the range of ensembles compared to the best three RCMs. This
drastic decrease in the ranges of data which is valid for the rest of the MSs as well,
leads to almost 100% decrease in the mean extreme precipitation forecasts of the
future periods. Thus, it is concluded that ensembles using SME and SE approaches
results in poor extreme precipitation forecasts due to incorrect reduction in the range
of data. Same problem can be observed in the box plots for middle and far future as
well as shown in Figure 5.11 and Figure 5.12, respectively.
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Figure 5.11. Box Plots of Extreme Parts (2041-2070).

Here O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data, uncorrected RCM
3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13 outputs, RCM 3 outputs
corrected by DBS method, RCM 5 outputs corrected by DBS method, RCM 13
outputs corrected by DBS method, ENS1, and ENS2, respectively.
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Here O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data, uncorrected RCM
3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13 outputs, RCM 3 outputs
corrected by DBS method, RCM 5 outputs corrected by DBS method, RCM 13

Figure 5.12. Box Plots of Extreme Parts (2071-2100).

outputs corrected by DBS method, ENS1, and ENS2, respectively.

To discuss the changes in mean extreme precipitation spatially, maps with a color
scale of -100% (represented with red) to 100% (represented with green) are given in

Figure 5.13 to Figure 5.27 for near, middle, and far future. The summary of the
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results is given in Table 5.7. To see the changes between near, middle, and far future,
percentage changes for RCM 3, RCM 5, and RCM 13 are given in Table 5.8 as well.
Color code used in Table 5.8 shows whether the change compared to the previous
period is increasing or decreasing. For example, if the mean extreme precipitation of
2071-2100 period is less than the mean extreme precipitation of 2041-2070 period,
then the cell containing the value for 2071-2100 period is red.

Change in Mean Extreme
Precipiatation (%) o

Figure 5.13. Percent Change in Mean Extreme Precipitation for RCM 3 (2011-
2040)

There are some slight increases and decreases with RCM 3 in near future as it can be
seen in Figure 5.13. It can be said that decreases are mostly cumulated in the middle
section of the shoreline. The rest of the MSs show slight increases. As the distance
to sea increases, MSs that have increasing trend are more frequent. Decreases in the
study area are up to 12% while increases are up to 22%. On the average 5% increase
is expected according to RCM 3 in the study area in the near future. In total, 11 MSs
will suffer a decrease while 42 MSs will have an increase in the near future in the

mean extreme precipitation (i.e., 2011-2040).
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Figure 5.14. Percent Change in Mean Extreme Precipitation for RCM 5 (2011-
2040)

As can be seen in Figure 5.14, there is more variety in terms of increase or decrease
when RCM 5 outputs are used for near future. It can be said that decreases are mostly
encountered on the shoreline. Most of the MSs on the shoreline are expected to
experience a decrease in the mean extreme precipitation. Some MSs located in the
north-east of the study area are expected to experience a decrease as well. Up to 78%
decrease in the mean extreme precipitation is expected to happen in the study area
while increases up to 48% are forecasted. On the average 5% decrease is expected
according to RCM 5 outputs in the study area in the near future. In total 32 MSs will
suffer a decrease while 21 MSs will have an increase in near future in mean extreme

precipitation.
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Figure 5.15. Percent Change in Mean Extreme Precipitation for RCM 13 (2011-
2040)

The results with RCM 13 are similar to those of RCM 3 for the near future as it can
be seen in Figure 5.15. There are some slight increases and decreases within the
study area. It can be said that decreases are mostly cumulated in the middle section
and the west part of the shoreline. The rest of the MSs show slight increases, mostly.
As the distance to sea increases, MSs that have increase are more frequent. Decrease
in the mean extreme precipitation in the study area is up to 16% while increase is up
to 21%. On the average 3% increase in the mean extreme precipitation is expected
according to RCM 13 outputs in the study area in near future. In total 19 MSs are
forecasted to experience a decrease while 34 MSs will have an increase in the near

future.
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Figure 5.16. Percent Change in Mean Extreme Precipitation for ENS1 (2011-2040)
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Figure 5.17. Percent Change in Mean Extreme Precipitation for ENS2 (2011-2040)

ENS1 and ENS2 results are given in Figure 5.16 and Figure 5.17, respectively. Both
ensembles show significant decreases reaching almost 100%. Decrease in ranges of
the data obtained through ensembles (see Figure 5.10) led to underestimation of the

extreme parts.
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Figure 5.18. Percent Change in Mean Extreme Precipitation for RCM 3 (2041-
2070)

There are some slight increases and decreases with RCM 3 for the middle future as
it can be seen in Figure 5.18. It can be said that decreases are mostly cumulated in
the middle section of the shoreline. The rest of the MSs show slight increases. As the
distance to sea increases, MSs that have increasing trends get more frequent.
Decreases in the study area are up to 12% while increases are up to 22%. On the
average 6% increase is expected according to RCM 3 in the study area for the middle
future. In total, 7 MSs are forecasted to experience a decrease while 46 MSs will
have an increase in the middle future (i.e., 2041-2070) compared to the historic

period.
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Figure 5.19. Percent Change in Mean Extreme Precipitation for RCM 5 (2041-
2070)

As can be seen in Figure 5.19, the increases and decreases are more pronounced for
RCM 5 for the middle future. It can be said that decreases are mostly encountered
on the shoreline. Most of the MSs on the shoreline are expected to experience a
decrease. Some decreases are also present in the north-east of the study area.
Decreases in the study area are up to 80% while increases are up to 55%. On the
average, 1% decrease is expected according to RCM 5 in the study area for middle
future. In total, 29 MSs are forecasted to experience a decrease while 24 MSs are

expected to have an increase in the middle future.
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Figure 5.20. Percent Change in Mean Extreme Precipitation for RCM 13 (2041-
2070)

The results with RCM 13 mostly show slight increases and decreases for the middle
future as can be seen in Figure 5.20. It can be said that decreases are mostly
cumulated in the middle section and west part of the shoreline. The rest of the MSs
generally show slight increases. Decreases in the study area are up to 13% while
increases are up to 24%. On the average 7% increase in the mean extreme
precipitation is expected according to RCM 13 in the study area for the middle future.
In total 14 MSs are expected to have ta decrease while 39 MSs will have an increase
for the middle future.
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Figure 5.21. Percent Change in Mean Extreme Precipitation for ENS1 (2041-2070)
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Figure 5.22. Percent Change in Mean Extreme Precipitation for ENS2 (2041-2070)

Problem with ensembles is also present for the middle future as it can be seen in
Figure 5.21 and Figure 5.22. Both ensembles show almost 100% decrease in the

whole study area.
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Figure 5.23. Percent Change in Mean Extreme Precipitation for RCM 3 (2071-
2100)

There are some slight increases and decreases predicted with RCM 3 for the far
future as can be seen in Figure 5.23. While up to 8% decrease is predicted, the
increase is expected to reach 33%. On the average 14% increase is expected
according to RCM 3 in the study are for the far future. In total 8 MSs are forecasted
to experience a decrease while 45 MSs will have an increase for the far future (i.e.,

2071-2100) compared to the historic period.
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Figure 5.24. Percent Change in Mean Extreme Precipitation for RCM 5 (2071-
2100)

As can be seen in Figure 5.24, considerable increases and decreases are predicted
with RCM 5 for the far future. It can be said that decreases are mostly encountered
on the shoreline and near the shoreline. Most of the MSs on the shoreline are
expected to experience a decrease. MSs that are far from the shoreline show
increasing trends most of the time. Decreases in the study area are up to 78% while
increases are up to 80%. On average 1% increase is expected according to RCM 5 in
the study area in the far future. In total 28 MSs forecasted to experience ta decrease
while 25 MSs will have an increase in the far future.
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Figure 5.25. Percent Change in Mean Extreme Precipitation for RCM 13 (2071-
2100)

The results with RCM 13 shows mostly slight increases and decreases for the future
(see Figure 5.25). Decreases in the study area are up to 21% while increases are up
to 41%. On the average 13% increase is expected according to RCM 13 in the study
area for the far future. In total 14 MSs are forecasted to experience a decrease while

39 MSs will have an increase in far future.
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Figure 5.26. Percent Change in Mean Extreme Precipitation for ENS1 (2071-2100)

Change in Mean Extreme
Precipiatation (%) L\LLA/\/
LR

@
0
4100 @
' )
@
@

Figure 5.27. Percent Change in Mean Extreme Precipitation for ENS2 (2071-2100)
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Problem with ensembles is also present for the far future as can be seen in Figure
5.26 and Figure 5.27. Both ensembles show almost 100% decrease in the whole study

area.

Changes according to maps shown in Figure 5.13 to Figure 5.27 are summarized in
Table 5.7 where Min. shows the biggest decrease, max. shows the biggest increase,
avg. shows the average change in the whole study area, # of dec. shows the number
of MSs that experiences a decrease, and # of inc. shows the number of MSs that have
an increase. It can be said that RCM 3 and RCM 13 give similar results. They tend
to have smaller changes compared to RCM 5 for all three periods. Ensembles show
almost constant drastic decreases for all MSs for all three periods. Since there is no
increase with ensemble results, max. values are given as NA. The average change in
the mean extreme precipitation for the whole study area tend to increase with time
for all three RCMs. The number of MSs that are forecasted to experience a decrease
in the mean extreme precipitation tend to decrease with time for all three RCMs.
Thus, it can be concluded that the mean extreme precipitation in the study area is
expected to increase.
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Table 5.7. Basic Statistics of Changes in Projection Period

2011-2040 2041-2070 2071-2100
min. -12 -12 -8
max. 17 22 33
RCM3 avg. 3 6 14
# of dec. 17 7 8
# of inc. 36 46 45
min. -78 -80 -78
max. 48 55 80
RCM5 avg. -5 0 1
# of dec. 32 29 28
# of inc. 21 24 25
min. -16 -13 -21
max. 21 24 41
ReMI avg. 4 7 13
° # of dec. 19 14 14
# of inc. 34 39 39
min. -79 -78 -79
max. NA NA NA
ENS1 avg. -76 -76 -75
# of dec. 53 53 53
# of inc. 0 0 0
min. -95 -95 -95
max. NA NA NA
ENS2 avg. -91 -91 -90
# of dec. 53 53 53
# of inc. 0 0 0

Min. represents the biggest decrease, max. represents the biggest
increase, avg. represents the average change in study area, # of dec.
represents the number of MSs that suffer a decrease, and # of inc.

represents the number of MSs that have an increase.
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To compare the changes in the mean values of extreme precipitation series and whole
series with near, middle, and far future for each MS, Table 5.8 and Table 5.9 are
constructed. In these tables, N is the near future (i.e., 2011-2040), M is the middle
future (i.e., 2041-2070), and F is the far future (i.e., 2071-2100). Green cells show
an increase, while red cells show a decrease compared to the previous period. In
Table 5.8, RCM 3 shows that slight increases are expected for most of the MSs for
the near future (i.e., 2011-2040 period). For the middle future (i.e., 2041-2070
period), half of the MSs will have smaller mean extreme precipitations compared to
the near future. For the far future (i.e., 2071-2100 period), only 9 MSs will have
smaller mean extreme precipitations compared to the middle future. RCM 5 shows
that most of the MSs will experience decreases in the mean extreme precipitations.
Fifteen MSs will have decreases in the middle future compared to the near future.
RCM 13 shows that the most of MSs will have increases. RCM 3 and RCM 13 tend
to have similar results for the projection period while RCM 5 tends to stand against
them. RCM 5 shows a decrease, when RCM 3 and RCM 13 show an increase, most
of the time. RCM 5 also shows more drastic changes compared to RCM 3 and RCM
13 when maximum increase and decrease for each RCM are considered. However,
at the end of the projection periods all three RCMs agree on the fact that most of the
MSs will experience increased mean extreme precipitation. As it can be seen in Table
5.8, there are some oscillations in trends for some MSs (i.e., increase followed by
decrease followed by increase or vise versa). When the locations of these MSs are
checked, it is seen that these MSs are on the shoreline or near to the shoreline, most
of the time. The reason for these oscillations may be the effect of urbanization.
Shoreline and its vicinity are commonly experience high degree of urbanization
which may result in the MSs in this zone to stay very close to the buildings. This

may cause incorrect readings at these stations.
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Table 5.8. Percent Changes in Mean Extreme Precipitation for the Projection

Period
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Table 5.8. (continued)

M is MS number. N is near future (i.e., 2011-2040), M is middle future (i.e., 2041-2070), and F is far future (i.e., 2071-2100). Green

cells show an increase, while red cells show a decrease comparing to previous period.

Percent changes in the mean precipitations for the projection period are given in
Table 5.9 where RCM 3 shows oscillating trends in mean precipitations for the
projection periods starting with an increase in the near future for most of the MSs.
RCM 5 shows a decrease in the near future for almost all MSs, then increases and
decreases are shown almost evenly for the study area. RCM 13 shows a steady
decrease for the whole projection period for half of the MSs, while the other half
tends to have oscillating trends. Both ensembles show increase in the near future for
all MSs and decreases for the rest of the projection periods for most of the MSs.
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Table 5.9. Percent Changes in the Mean Precipitation for the Projection Period

ENS2

ENS1

10

RCM 13

10

RCM 5

33

RCM 3

12

10
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10

14
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11

10

10
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12
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15
12
10
18
12
11

10
13
14
13
13
11
14
14
15
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11
13
11

12
11

13
11

10
11
12
13
14
15
16
17
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19
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21

10
10

11

11
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27

10
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17
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10
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11

13

10

10

10

11

11
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10
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10

11
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17

10

11
10

12

25
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28
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32
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35

36
37
38
39
40
41

14

42
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Table 5.9. (continued)

M is MS number. N is near future (i.e., 2011-2040), M is middle future (i.e., 2041-2070), and F is far future (i.e., 2071-2100). Green

cells show an increase, while red cells show a decrease comparing to previous period.
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CHAPTER 6

CONCLUSIONS

Bias correction of daily precipitation time series with five different bias correction

methods for 53 locations in the southern and south-eastern regions of Turkey is

conducted in this study. Daily precipitation time series of the observations and 17

RCM outputs are identified as stationary in the study area. Expected changes in the

mean extreme precipitation for the near, middle, and futures are calculated using

bias-corrected RCMs and their ensembles. The following conclusions are reached:

All bias correction methods used in this study improved the performance
parameters (i.e, PBIAS, RMSE, and MAE) compared to those of the
uncorrected model outputs. Thus, bias-corrected model outputs should be
used in climate change analysis.

Three variations of the DBS method, namely DBS 99, DBS 99 GP, and
DBS 99 LOGN are developed in this study. These variations did not
improve the overal performance compared to the original method. Use of GP
distribution is found to be not suitable for the mapping procedure, especially
when data is limited .

The LS method, which is the simplest bias correction method, performs very
well in correcting biases. However, it results in over and underestimation of
extreme values which is stated in the literature as well. So use of the LS
method is not suggested if future forecasts are going to be used for the
analysis of extreme events such as floods or droughts.

The performance of LOGN distribution in the representation of extreme daily
precipitation is very similar to that of the gamma distribution. AIC values of
both distributions are very similar, LOGN distribution has even smaller AIC
values for the MSs in the study area. Moreover, performance parameters

calculated for bias corrected model outputs with DBS 99 and
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DBS 99 LOGN are very similar to each other. Thus LOGN distribution is a
good canditate for quantile based bias correction methods.

Changing the partition point from 95" to 99" quantile did not improve the
performance of the DBS method. All three methods developed in this study
use 99" quantile while original method uses 95" quantile and all three
methods are outperformed by the original method. Thus, the original DBS
method is identified as the most suitable bias correction approach compared
to those suggested in this study.

An increase in the mean extreme precipitation is expected for most of the
study area for the projection period (i.e., 2011-2100).

MSs which are generally located at the shoreline showed oscillating trends
(i.e., increase followed by decrease followed by increase or vise versa) in the
mean extreme precipitation. Thus, a continous increase or decrease is not
expected in the mean extreme precipitation for the whole projection period
for these MSs. This result suggests that for extreme events such as floods,
rather than regional, local mitigation strategies may be more beneficial and
effective along the shoreline.

Ensembling using mean or MLR results in accumulating all the data around

mean values, thus is not suitable when the goal is to study extreme events.

For future work:

Newly proposed bias-correction methods with fixed partition points did not
imporve the bias-correction performance of the original DBS method. As
future work, identifying dynamic partition points for each location may be
studied.

In the literature it is seen that separating data into two parts improved the
performance comparing to no separating. Effects of separating data into more

than two parts may be studied as well.
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APPENDICES

A. Stationarity Tests Results

A.1 Combined Results of ADF and KPSS tests for whole datasets
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A.1 (continued)
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A.2 Combined Results of ADF and KPSS tests for extreme parts

RCMs
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A.2 (continued)
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B. CDFs of Remaining MSs

B.1 CDFs of Remaining MSs Corrected by DBS Method
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B.2 CDFs of Remaining MSs Corrected by DBS_99 Method
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B.3 CDFs of Remaining MSs Corrected by DBS 99 GP Method
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B.4 CDFs of Remaining MSs Corrected by DBS 99 LOGN Method
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RMSE and MAE Values of Remaining MSs for the Best Three RCMs

MAE Values of Remaining MSs

RCM3 RCM5 RCM13
M 9) LS D1 D2 D3 D4 U LS D1 D2 D3 D4 U LS D1 D2 D3 D4
1 5.4 4.4 4.8 4.7 51 4.7 4.8 4.6 47 4.7 4.8 4.7 5.6 4.9 4.8 4.8 52 4.8
2 4.1 4.7 4.7 4.7 4.4 4.7 4.4 4.6 47 4.6 45 4.6 43 6.0 4.8 4.8 4.6 4.8
3 4.4 3.8 4.2 4.2 43 4.2 3.9 4.1 4.2 4.1 4.0 4.1 4.6 4.2 4.3 4.2 4.5 4.2
4 3.9 52 4.7 4.6 43 4.6 4.6 4.3 4.6 4.6 45 4.6 4.0 6.2 4.7 47 4.4 4.7
5 6.1 6.4 6.9 6.8 6.4 6.8 6.1 6.4 6.8 6.8 6.3 6.8 6.3 7.1 6.9 6.9 6.6 6.9
6 6.0 6.4 6.8 6.7 6.3 6.7 6.0 6.4 6.7 6.7 6.2 6.7 6.3 6.9 6.8 6.8 6.5 6.8
7 4.2 4.2 4.5 4.5 43 4.5 4.2 4.3 45 4.5 43 4.5 4.2 4.6 4.6 45 4.3 4.5
8 3.9 4.5 4.5 4.5 4.2 4.5 4.2 4.4 45 4.4 43 4.4 3.9 51 4.6 45 4.2 4.5
9 3.6 4.3 4.1 4.0 3.9 4.1 45 3.7 4.0 4.0 4.2 4.0 34 5.0 4.1 4.1 37 4.1
10 4.6 4.0 4.2 4.2 45 4.2 45 3.9 4.2 4.2 43 4.2 4.7 4.8 4.2 4.2 4.5 4.2
11 77 8.9 8.4 8.4 8.2 8.4 7.8 8.7 8.4 8.4 8.2 8.4 9.0 119 8.7 8.7 9.2 8.7
12 6.7 6.3 6.7 6.7 6.7 6.7 6.5 71 6.8 6.8 6.7 6.8 7.8 6.9 6.9 6.9 73 6.9
13 6.5 5.9 6.1 6.1 6.3 6.1 6.0 6.2 6.1 6.2 6.0 6.2 7.2 6.6 6.3 6.3 6.7 6.3
14 8.9 9.0 85 8.5 9.0 8.5 9.9 9.0 8.6 85 9.4 85 113 105 8.8 8.8 10.6 8.8
15 154 16.6 185 18.4 15.9 18.4 16.9 177 18.8 18.8 16.9 18.8 172 194 193 19.2 17.4 19.2
16 132 14.4 148 15.0 138 15.0 145 16.1 153 153 14.9 155 14.6 16.7 154 155 14.6 155
17 103 135 126 127 114 127 139 15.6 13.0 13.0 14.4 13.0 113 18.0 132 132 122 132
18 78 9.0 8.7 8.8 8.2 8.8 85 9.1 9.0 9.0 8.6 8.9 8.4 115 9.0 9.1 8.8 9.1
19 8.0 10.2 9.2 9.2 8.6 9.2 9.1 10.0 9.3 9.3 9.2 9.3 8.7 123 9.3 9.4 9.2 9.4
20 9.3 8.6 95 9.6 9.1 9.6 8.9 103 9.8 9.8 9.1 9.9 10.6 9.5 9.8 9.8 10.0 9.8
21 8.6 9.3 9.4 9.5 8.9 9.5 8.0 9.8 9.4 95 8.7 95 9.2 10.0 9.6 9.6 9.3 9.6
22 112 16.8 14.4 14.6 12.6 145 115 15.8 14.4 147 127 14.6 114 211 14.9 15.1 12.9 15.0
23 12.9 14.2 14.0 14.0 135 13.9 15.1 15.8 143 141 15.2 141 141 157 143 143 143 143
24 4.7 5.2 4.6 4.6 47 4.6 4.9 4.4 47 4.6 4.7 4.6 5.0 5.9 4.7 4.7 5.0 4.7
25 4.9 6.0 53 5.4 53 5.4 5.2 51 53 53 5.2 53 5.2 77 55 55 5.6 55
26 3.9 49 4.4 4.4 4.2 4.4 47 43 4.4 4.4 45 4.4 4.2 6.2 4.5 45 4.5 45
27 4.6 43 47 4.6 4.6 4.6 43 4.7 4.6 4.6 45 4.6 4.9 4.7 4.7 4.7 4.9 4.7
28 4.4 4.4 4.6 4.5 45 4.5 4.4 4.4 4.6 4.5 4.4 4.5 4.6 51 4.6 4.6 4.7 4.6
29 5.2 4.9 5.6 55 53 55 4.8 53 5.4 55 5.0 55 5.2 5.2 5.6 55 53 55
30 4.4 4.3 45 4.5 4.5 4.5 4.8 4.2 4.5 4.5 4.6 4.5 4.5 5.0 4.6 4.6 4.6 4.6
31 4.8 53 57 57 5.2 57 53 54 57 5.7 5.4 5.6 4.9 6.0 5.8 57 53 57
32 57 4.3 45 4.4 53 4.5 4.9 4.1 4.5 4.4 4.6 4.4 6.1 51 4.6 4.6 5.6 4.6
33 4.3 4.7 4.7 4.6 4.5 4.6 4.5 4.5 4.7 4.6 4.5 4.6 4.5 54 4.8 4.8 4.7 4.8
34 5.1 57 5.6 5.6 5.4 5.6 55 54 57 5.7 55 5.7 5.2 6.6 5.8 5.8 55 5.8
35 7.6 6.7 7.2 72 7.2 72 7.4 71 7.2 7.2 7.2 7.2 8.4 77 74 7.4 77 7.4
36 5.1 4.7 4.9 4.8 51 4.8 5.0 4.8 4.8 4.8 4.9 4.8 53 5.2 4.9 4.9 51 4.9
37 7.6 9.7 9.7 9.6 8.6 9.6 7.9 9.5 9.7 9.6 8.7 9.7 7.8 109 9.9 9.9 8.8 9.9
38 4.6 4.1 4.4 4.3 4.5 4.3 3.9 4.3 4.3 4.3 4.1 4.3 4.5 4.2 4.4 4.4 4.4 4.4
39 3.8 3.7 4.0 4.0 3.9 4.0 3.9 4.0 4.1 4.1 3.9 4.1 3.9 4.0 4.1 4.1 3.9 4.1
40 4.2 4.2 4.2 4.2 4.2 4.2 5.6 3.8 4.1 4.1 4.8 4.1 4.1 5.2 4.2 4.2 4.2 4.2
41 10.0 101 10.4 105 10.2 105 10.4 10.9 10.7 10.7 10.5 10.8 11.3 117 10.7 10.8 112 10.8
42 5.2 53 57 5.6 5.4 5.6 5.8 53 57 5.7 5.6 5.7 55 5.7 5.8 57 5.7 57
43 6.4 7.9 7.8 77 7.1 77 7.2 74 7.8 77 7.4 77 6.4 8.1 7.9 7.8 71 7.8
44 113 120 124 122 11.8 122 12.3 126 12.3 122 12.2 122 12.4 126 125 12.4 126 12.4
45 4.9 7.2 6.4 6.4 5.6 6.4 6.4 6.4 6.5 6.5 6.4 6.5 5.1 8.7 6.6 6.5 5.8 6.5
46 14.0 147 151 151 14.4 151 14.3 16.2 15.6 15.4 14.9 15.4 15.7 181 158 15.9 153 15.9
47 79 9.5 9.0 9.0 8.4 9.0 9.0 9.5 9.3 9.1 9.3 9.2 8.9 127 9.2 9.3 9.2 9.3
48 8.8 9.3 10.0 9.9 9.1 9.9 8.8 10.2 10.1 10.0 9.3 10.0 9.6 10.3 10.2 10.2 9.7 10.2
49 9.7 125 114 114 10.7 114 10.3 131 11.4 113 11.0 114 10.4 132 116 11.6 11.2 11.6
50 10.6 11.0 11.0 11.0 108 11.0 115 121 11.0 111 116 111 120 12.9 113 114 11.6 114
51 9.8 105 115 114 103 114 114 121 119 11.6 1.7 11.6 1.2 117 117 116 111 116
52 9.9 107 115 115 103 115 9.8 124 1.7 117 105 117 1.7 11.6 117 118 11.4 118
53 104 113 1.7 117 109 117 11.0 12.0 1.7 117 1.2 117 11.0 12.6 11.9 120 112 120
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C.2 MAE Values of Remaining MSs

RCM3 RCM5 RCM13
M U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 U LS D1 D2 D3 D4
1 25 (20|21 (2121|2122 |20 |20 |20 |21 |20 | 25 |21 |21 |21 |22]| 21
2 1.6 19 | 19 | 19 | 18 19 |1 19 | 19 | 19 19 119 (19| 17 | 20 | 19 | 19 | 19 1.9
3 1.9 16 | 16 | 16 | 16 16 | 15 | 16 | 15 16 | 15 | 16 | 18 16 | 16 | 16 | 16 1.6
4 15 19 [ 19 | 18 | 18 18 | 20 | 1.8 | 18 18 | 18 | 1.8 | 15 19 | 19 | 19 | 18 1.9
5 25 | 26 | 27 27 | 26 | 27 | 25 | 26 [ 26 | 27 | 26 | 27 | 25 | 26 | 27 | 27 | 26 | 27
6 22 (24 | 24 | 25 | 24 | 25 | 23 | 24 | 24 | 24 | 23 | 24 | 24 | 24 | 24 | 24 | 24 | 24
7 15 15| 15 | 15 | 15 15|15 | 15 | 15 15|15 | 15 | 15 16 | 16 | 16 | 15 1.6
8 13 16 | 16 | 16 | 15 16 | 16 | 16 | 16 16 | 15 | 16 | 14 | 16 | 16 | 16 | 15 1.6
9 12 15| 14 | 14 | 14 14 | 18 | 14 | 14 | 14 | 15 | 14 | 12 15| 14 | 14 | 14 | 14
10 | 1.9 16 | 16 | 1.6 | 16 16 | 19 | 16 | 16 16 | 16 | 1.6 | 19 16 | 16 | 16 | 17 1.6
11 | 30 [ 34 | 34 |33 |33 |33 |31 |34 |34(34|33|34)|35]|36|35]35]|36]|35
12 | 28 | 26 | 26 | 26 [ 26 | 26 | 25 | 27 | 26 | 26 | 26 | 26 | 33 | 26 | 28 | 28 | 28 | 28
13 (25|22 (23|23 (23|23 |22 | 23|23 |23 |22 | 23|29 |23 |23 | 24| 24 | 24
14 [ 33 |1 33 (33|33 (33|33 (38|33 (33|33 (34|33 |42 | 34|34 | 34|37 | 34
15 | 48 | 52 | 53 | 54 | 49 | 54 | 55 | 54 | 55 [ 55 | 53 | 55 | 55 | 54 | 56 | 57 | 54 | 57
16 | 47 | 52 | 5.2 52 | 50| 52 |50|53 (53 |53]|52]|53]|55]|54]56]|56]|54]56
17 | 33 | 44 | 44 | 43 | 41 | 43 | 41 | 45 | 44 | 44 | 44 | 44 | 39 | 46 | 47 | 46 | 44 | 46
18 | 24 | 27 | 27 27 | 26 |27 | 28 | 28 | 28 |28 | 28 |28 | 26 |28 | 28 |28 | 28 [ 28
19 [ 23 |1 29 (29 | 28 (27 | 28 [ 28 | 29 [ 29 | 29 [ 29 | 29 [ 26 | 29 | 29 | 29 | 29 | 29
20 | 36 | 31 | 32 32 132 |32 |30 |32 (3232|3132 40| 32)|33 | 34| 34| 34
21 | 33|36 |35 |35 |34 |35|29 |36 |35 (35|34 |35)|36 |36 |36 36]| 36|36
22 | 34 | 53 | 52 51| 46 [ 51 | 37 (54 |52 (51| 47 (51| 36 |55 ]| 55|55 | 49 [ 54
23 | 42 | 45 | 46 | 46 | 45 | 46 | 48 | 46 | 47 | 47 | 48 | 47 | 48 | 45 | 48 | 48 | 48 | 48
24 | 20 19 [ 19 | 19 | 19 19 [ 22 | 19 | 19 19 (19 | 19 | 21 | 20 | 20 | 20 | 20 | 20
25 | 22 | 24 | 24 | 24 | 24 | 24 | 25 | 24 | 24 | 24 | 24 | 24 | 22 | 26 | 25 | 25 | 25 | 25
26 | 1.6 18 | 1.8 | 1.8 | 1.7 18 | 20 | 1.8 | 18 18 | 1.8 | 1.8 | 17 19 | 18 | 1.8 | 18 18
27 | 20 18 | 18 | 1.8 | 18 18 | 1.7 | 1.8 | 18 18 | 18 | 1.8 | 20 18 | 18 | 1.8 | 19 18
28 | 1.9 18 | 19 | 18 | 18 18 | 19 | 18 | 18 18 | 18 | 1.8 | 19 19119 | 19 | 19 1.9
29 | 23 | 21 | 22 22 |22 | 22 |20 |22 (22 |22 | 21|22 |22 | 22|22 | 22|22]| 22
30 | 1.9 19 | 19 | 19 | 19 19 | 22 | 18 | 19 19 | 19 | 19 | 19 19 119 | 19 | 19 1.9
31|18 |21 |21 |21 |20 |21 |21 |21 |21 (21|21 |21 |19 |21 |21 )21 |20]|21
32 | 23 17 17 17 1 19 17 |21 | 17| 18 18 | 18 | 1.8 | 23 18 | 18 | 1.8 | 19 18
33 | 17 19 | 18 | 1.8 | 18 18 | 19 | 18 | 18 18 | 18 | 1.8 | 18 19119 | 19 | 19 1.9
34 | 22 |24 | 24 | 24 | 23 | 24| 25| 24| 24 |24 | 24| 24|23 | 25| 25| 25 | 24 | 25
3% | 32| 28|28 |29 |29 |29 |30 |28 | 28|28 |29 |28 |36 |29 |30 30|31 |30
36 | 20 19 | 19 [ 19 | 19 19 | 20 | 1.8 | 18 18 | 18 | 1.8 | 21 19 119 | 19 | 19 1.9
37 | 27 |36 |37 |37 |34 |37 (30|36 |36 |37 ]|34]|37)|28]|36 |37 |37 ]|35]37
38 | 18 15| 16 | 16 | 16 16 | 15 | 16 | 15 15| 15 | 15| 18 16 | 16 | 1.6 | 16 16
39 | 14 14 | 14 | 14 | 13 14 | 14 | 14 | 14 | 14 | 13 | 14 | 14 | 14 | 14 | 14 | 14 | 14
40 | 16 15| 15 | 15 | 15 15| 23 | 15| 15 15| 16 | 15 | 15 16 | 15 | 15 | 15 15
41 | 39 | 41 | 41 | 40 | 40 | 40 | 41 | 41 | 41 | 41 | 41 | 41 | 43 | 42 | 42 | 41 | 42 | 41
42 | 18 19 | 19 | 19 | 19 19 |22 | 19| 19 19 |19 | 19 | 19 19 |1 19 | 19 | 19 1.9
43 124 |30 (313129 (31]29 (3030303030 25 |30]31|31]30]|31
44 | 40 | 42 | 43 | 43 | 42 | 43 | 45 | 43 | 43 | 43 | 43 | 43 | 44 | 43 | 44 | 44 | 44 | 44
45 | 16 | 23 [ 23 | 22 |20 |22 | 24 | 23|23 | 23 |23 |23 |17 |24 | 23 | 23| 21| 23
46 | 50 | 52 [ 53 | 53 | 52 [ 53 | 51 | 54 | 55 | 55 | 54 | 55 [ 59 | 55 | 57 | 57 | 56 | 57
47 | 23 | 28 | 28 | 28 | 27 | 28 | 27 | 28 | 28 | 28 | 28 | 28 [ 27 | 29 | 29 | 29 | 29 | 29
48 | 33 | 35 | 35| 36 |34 36|32 (35|35 |36 (34|36 |37 36|37 ]|37]36]|37
49 | 37 | 46 | 45 | 45 | 44 | 45 | 40 | 46 | 45 | 45 | 44 | 45 | 40 | 46 | 46 | 46 | 45 | 46
50 | 39 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 [ 40 | 40 | 40 | 46 | 42 | 42 | 42 | 43 | 42
51 | 37 | 40 | 41 | 41 | 39 | 41 | 38 | 41 | 41 [ 41 | 40 | 41 | 44 | 40 | 42 | 42 | 41 | 42
52 | 35|37 |38 |38 |36 |38 (31|38 | 38|38 36|38 43| 38|39 ]| 40| 39|40
53 | 39 | 42 | 42 | 42 | 41 | 42 | 41 | 43 | 43 | 43 | 42 | 43 | 42 | 43 | 44 | 44 | 43 | 44
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D. Observed versus Bias Corrected and Uncorrected Model Outputs

D.1 Observed versus bias corrected and uncorrected model outputs of RCM 3
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D.2 Observed versus bias corrected and uncorrected model outputs
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D.3 Observed versus bias corrected and uncorrected model outputs of RCM 13
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E. Box Plots of Extreme Parts of Remaining MSs

E.1 Box Plots of Extreme Parts (2011-2040)
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E.2 Box Plots of Extreme Parts (2041-2070)
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