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Regional climate models are crucial in climate change impact analysis. Short-term 

and long-term effects of climate change need to be investigated to plan necessary 

mitigation measures and to lower the impacts. Regional climate models allow 

analysis of the effects of climate change in smaller scales such as regions and nations 

and consequently leads to the development of more effective management strategies. 

One of the most commonly used products of regional climate models is precipitation 

predictions. For flood risk analysis, especilly extreme precipitations are crucial. 

However, raw data obtained from the regional climate model have errors. To obtain 

reliable predictions, the data should be bias corrected first. The basic principle of 

bias correction is to reduce the bias in raw data. Bias correction is also region-

specific due to climate conditions of the area. In this study, three alternatives for a 

commonly used bias correction method, the Distribution Based Scaling method, are 

proposed. Alternatives proposed in this study differ from the original method by 

division point of data and fitted distributions to extreme part of the data. Performance 

assesment for these methods are done for 53 meteorological stations located at 
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different regions of Turkey, and the most effective methods are identified. 

Performances of alternative methods proposed in this study did not provide 

significant improvements compared to the original method. Future changes in 

extreme precipitation according to bias corrected RCM outputs are investigated 

spatially as well. 

Keywords: Daily Precipitation, Bias Correction, Extreme Values, Distribution Based 

Scaling, Climate Change  
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ÖZ 

 

UÇ VE UÇ OLMAYAN YAĞIŞ DEĞERLERİ İÇİN YANLILIK 

DÜZELTMESİ 
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İklim değişikliği etkisi analizinde bölgesel iklim modellerinin yeri çok kritiktir. 

İklim değişikliğinin açığa çıkaracağı sorunların azaltılması ve bu sorunlara karşı 

önlemler alınabilmesi için kısa ve uzun vadedeki etkilerinin incelenmesi gerekir. 

Bölgesel iklim modelleri, ülkeler ve bölgeler gibi küçük çaplarda iklim değişikliği 

etkilerinin analizini mümkün kılar. Dolayısıyla bu etkileri yönetebilmek için daha 

etkin stratejilerin geliştirilebilmesine öncülük eder. Bölgesel iklim modellerinin en 

sık kullanılan sonuçlarından biri de yağış tahminidir. Özellikle taşkın risk analizleri 

için uç yağış değerleri çok önemlidir. Ancak bölgesel iklim modelinden elde edilen 

işlenmemiş veri yanlılık içerir. Güvenilir tahminler yapabilmek için işlenmemiş 

verilere öncelikle yanlılık düzeltmesi yapılması gerekir. Bu da gözlemlenen veri ile 

modelden elde edilen veri arasındaki farkın dikkate alınmasıyla yapılır. Yanlılık 

düzeltmeleri iklim koşullarından dolayı bölgeden bölgeye değişir. Bu çalışmada 

Türkiyenin farklı bölgeleri için Dağılım Temelli Ölçeklendirme yöntemine üç 

alternatif yöntem sunulmuş ve bu yöntemler kullanılarak yanlılık düzeltmesi 

yapılmıştır. Alternatif yöntemler orjinal yöntemden veriyi bölme noktası ve 
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kullanılan istatiksel dağılımlar açısından farklıdır. Türkiye’nin farklı bölgelerinden 

53 meteoroloji istasyonu için performans değerlendirilmesi yapılmış ve en etkili 

yöntem belirlenmiştir. Bu çalışmada önerilen alternatif yöntemlerin performansları 

orjinal yöntemden kayda değer ölçüde iyi değillerdir. Geleceğe yönelik yanlılık 

düzeltmesi yapılmış yağış tahminlerindeki uç değer değişimleri de mekansal olarak 

incelenmiştir.  

Anahtar Kelimeler: Günlük Yağış, Yanlılık Düzeltme, Uç Değerler, Dağılım 

Temelli Ölçeklendirme, İklim Değişimi 
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CHAPTER 1  

1 INTRODUCTION  

Climate change is a phenomenon that has various effects on the world we live in. It 

is changing the conditions of the biosphere gradually. Floods, draughts, and 

temperature anomalies are the most common expected changes. Changes in different 

aspects may also occur due to these fundamental changes. Under these 

circumstances, adapting to new conditions becomes a must to survive. To estimate 

the changes, climate models are introduced in the past years. These models are called 

global climate models (GCM) and regional climate models (RCM). They estimate 

the hydrometeorological parameters like precipitation, temperature, wind pressure, 

etc. in different scales. Coordinated Regional Climate Downscaling Experiment 

(CORDEX) has an important role in developing and improving GCMs and RCMs. 

CORDEX also provides a database containing GCM and RCM outputs for public 

access with the help of World Climate Research Programme (WCRP).  

Although GCM and RCM outputs are useful for climate change analysis, these 

outputs are biased. The main reasons for these biases are mostly associated with 

regions of complex terrains like high-altitude or wet, humid regions within the 

related area, limited spatial resolution, simplified physics, and incomplete 

knowledge of climate systems (Ayugi et al., 2020). These outputs should be bias 

corrected before their utilization in any analysis (Casanueva et al., 2016; Teutschbein 

& Seibert, 2012). To fulfill this need, various bias correction methods have been 

developed through the years. The main idea behind the bias correction techniques is 

an application of a transformation procedure to adjust the outputs of RCMs or GCMs 

according to the observed data (Teutschbein & Seibert, 2012). These methods are 

ranging from simple scaling techniques to rather more sophisticated quantile 
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mapping (QM) techniques. QM techniques generally perform better than other bias 

correction techniques (Ayugi et al., 2020; Enayati et al., 2021; Grillakis et al., 2013; 

Heo et al., 2019; Douglas Maraun, 2013). QM implements statistical transformations 

for the post-processing of GCM and RCM outputs (Enayati et al., 2021).  

These statistical transformations can be separated into three major groups. They are 

distribution derived transformations, parametric transformations, and nonparametric 

transformations. Distribution derived transformations use distribution functions of 

observed datasets and model outputs. Parametric transformations use linear or 

nonlinear equations with free parameters to fit to observed dataset and model 

outputs. Nonparametric transformations use empirical cumulative distribution 

functions (CDF) or nonparametric regressions of observed datasets and model 

outputs. However, applying a single transformation to the whole dataset may cause 

some issues in the bias correction of precipitation. This is due to daily precipitation 

distributions being typically heavily skewed towards low-intensity values (Yang et 

al., 2010). Yang et al. (2010) proposed an alternative method called Distribution 

Based Scaling (DBS). This method tries to overcome the aforementioned problem 

by dividing the datasets at the 95th percentile and fitting two different gamma 

distributions for the non-extreme part and extreme part of the datasets. By dividing 

the dataset, the extreme part of the datasets can be represented after bias correction 

without the influence of the non-extreme part. DBS has better performance overall 

due to the ability to consider the extreme parts of the datasets. Although it has better 

performance, a fixed cut point at the 95th quantile can be considered as a weakness. 

In flood risk analysis, the most extreme precipitations may cause the most harm. 

Considering the most extreme precipitation values at the 99th quantile and beyond as 

extreme part for the bias correction may lead to more accurate extreme value 

predictions for flood risk analysis. 

In this study, the 99th percentile is used as the cut point for the extreme part of the 

datasets. Another addition introduced in this study is to fit Generalized Pareto (GP) 

and lognormal (LOGN) distributions to the extreme part of the dataset. LOGN 

distribution is selected because it is identified as the best fitting distribution to the 
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extreme part of the observed data. Moreover, GP distribution is selected to assess the 

efficiency of an extreme value distribution.  

The main contribution of this study is that three alternative methods of DBS are 

developed using different distributions and cut points and their performances with 

the original DBS method and Linear Scaling method are compared. A wide study 

area considering 53 MSs is another contribution to the literature. With high number 

of MSs, the performance of bias corrections, and changes in maximum precipitation 

values of near, middle, and far future are discussed in a spatial manner as well.    

The organization of this study can be summed up in the five following chapters. 

Chapter 2 consists of the literature review on GCMs, RCMs, and bias correction 

methods. Chapter 3 consists of details and the development of the proposed methods. 

Information about the study area and the observed data, and model outputs regarding 

to study area are presented in Chapter 4. In Chapter 5 the performance assessment 

statistics of the proposed methods, the discussion of these performance assessment 

statistics, and expected future changes in precipitation are provided. Finally, 

highlights of this study and remarks for future studies are given in Chapter 6. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 CORDEX, GCMs, and RCMs 

Climate models are developed to predict future climate. Formulations of physical 

laws are the basis of the climate models with carbon emission scenarios. They can 

be examined in two major categories which are GCMs and RCMs according to their 

resolutions. While RCMs have finer resolutions, GCMs let researchers have a 

general idea on a global scale. The resolution of GCMs is around 1000 km by 1000 

km. Thus, GCMs do not provide local or regional predictions. Orographic 

precipitation, conventional processes, and local scale hydrologic processes are 

relatively poorly represented by GCMs (Fujihara et al., 2008; Sato et al., 2013). 

Resolutions of GCMs are not sufficient for precipitation assessment in regions where 

the topography is particularly complex. Because complex topography is a significant 

factor for local processes (Lakku & Behera, 2022; Lun et al., 2021; Park et al., 2020; 

Salathé, 2003; Schmidli et al., 2006; Stefanidis et al., 2020; Sunyer et al., 2015). On 

the other hand, RCM resolutions are finer than GCMS’. They can have 25 km by 25 

km resolutions. These kinds of predictions require more complex mechanics which 

RCMs have.  

To meet the need for estimations in finer resolutions, RCMs are developed with the 

help of dynamic downscaling (Fujihara et al., 2008). Dynamical downscaling is a 

method that uses GCMs as boundary conditions to acquire finer resolution models 

(Kara & Yucel, 2015). However, RCMs have biases due to conceptualizations that 

are not perfect and/or biases that are already present in GCMs (Casanueva et al., 

2016; Fujihara et al., 2008; Teutschbein & Seibert, 2012). The most common biases 
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are the occurrence of too many wet days with low intensity or incorrect estimation 

of extreme temperatures, and incorrect seasonal variations of precipitation 

(Christensen et al., 2008; Ines & Hansen, 2006; Teutschbein & Seibert, 2010).  

To help the development of GCMs, RCMs, and downscaling, CORDEX is 

established worldwide by WCRP. The European branch of CORDEX is called 

EURO-CORDEX. EURO-CORDEX has a database that contains different RCMs 

and GCMs. This database is an open access platform to promote the studies on 

climate change. There is also a list that problems and issues related to different 

GCMs and RCMs are listed. That list is called Errata Table and it is also accessible 

from the website of EURO-CORDEX. This list is updated periodically to inform the 

users about the current situations of GCMs and RCMs. Studies conducted using 

GCMs and RCMs in Turkey are summarized in Yoleri (2022).   

2.2 Bias Correction Methods 

There are many different bias correction methods in the literature. They have a range 

from simple scaling methods to more sophisticated methods like quantile mapping. 

Most common methods in the literature are compared under the name of comparison 

method in a number of review articles (Enayati et al., 2021; Ghimire et al., 2019; 

Gudmundsson et al., 2012; Luo et al., 2018; Mendez et al., 2020; Teutschbein & 

Seibert, 2012). Bias correction methods that are commonly investigated in the review 

articles are Linear Scaling, Local Intensity Scaling, Variance Scaling, Power 

Transformation, Distribution Mapping, Empirical Quantile Mapping, and Delta-

change method. Bias correction methods can be examined in two main groups which 

are scaling methods and statistical transformation methods. Linear Scaling, Local 

Intensity Scaling, and Variance Scaling are scaling methods. Power Transformation, 

Distribution Mapping, Empirical Quantile Mapping, and Delta-change methods are 

statistical transformation methods. These methods are also referred to as Quantile 

Mapping methods. Several quantile mapping methods have been developed in the 

past decade with the effort of having a better correction method.  
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Linear Scaling (LS) is a bias correction method that focuses on correcting the means 

of model outputs by using correction factors obtained through means of observed 

data (Lenderink et al., 2007). Correction factors are obtained for each month by using 

long-term monthly means. Then model outputs are bias corrected by multiplying 

them with these correction factors. There are several studies that use this method for 

bias correction of precipitation. Most of these studies focus on the comparison of 

various methods (Ghimire et al., 2019; Luo et al., 2018; Mendez et al., 2020; 

Teutschbein & Seibert, 2012). LS can be considered as the simplest bias correction 

method (Luo et al., 2018). As the cost of its simplicity, it cannot be used in flood risk 

analysis which use extreme events since correction factors lead to underestimation 

of extreme events (Haerter et al., 2011). 

Local Intensity Scaling is a bias correction method that focuses on correcting the 

means of model outputs by using correction factors and the wet day threshold 

(Schmidli et al., 2006). This method is very similar to the LS method. The main 

difference between the LS and the Local Intensity Scaling methods is that the Local 

Intensity Scaling method introduces a wet day threshold before calculating the 

correction factors for each month using long-term monthly means. With the wet day 

threshold, wet day frequencies are also corrected. The Local Intensity Scaling 

method corrects both means and wet day frequencies of model outputs. It can be said 

that the Local Intensity Scaling method is an upgraded version of the LS method. 

There are many studies in which comparison of the Local Intensity Scaling method 

with others are provided (Ghimire et al., 2019; Luo et al., 2018; Mendez et al., 2020; 

Teutschbein & Seibert, 2012). 

Variance Scaling is a bias correction method that focuses on correcting the means 

and variances of model outputs by using correction factors (Chen, Brissette, & 

Leconte, 2011; Chen, Brissette, Poulin, et al., 2011). This method is very similar to 

the Local Intensity Scaling method. The main difference between Variance Scaling 

and Local Intensity Scaling methods is that the Variance Scaling method introduces 

a step for the correction of variance for model outputs on top of the mean of model 

outputs. However, Variance Scaling is used for bias correction of temperature only 
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(Ghimire et al., 2019; Luo et al., 2018; Mendez et al., 2020; Teutschbein & Seibert, 

2012).  

These three methods are the most common scaling methods in the literature. It can 

be seen that there is a progression in these methods starting with bias correcting the 

mean of model outputs, then correcting wet day frequency is added for bias 

correction of precipitation and correcting the variance of model outputs is added for 

bias correction of temperature.  

The main principle behind the statistical transformation methods, also known as 

quantile mapping methods, is to fit a distribution or function to observed data and 

model outputs, then apply the mapping procedure to bias correct the model outputs.  

The Power Transformation method is a quantile mapping method that uses 

parametric transformation functions to use for the mapping procedure (Leander et 

al., 2008; Leander & Buishand, 2007; Maraun et al., 2010). Generally, a non-linear 

exponential form is used to allow differences in variances. The most common non-

linear forms used in the Power Transformation method, their theoretical background, 

and the determination of related parameters are explained in Maraun et al. (2010) 

and Piani et al. (2010). After the parameters are determined, quantile mapping is 

applied for bias correction.  

Distribution Mapping is a very common quantile mapping method. The main idea is 

to fit a single theoretical distribution to the observed data and model outputs, then 

using CDFs of the fitted distributions, mapping is conducted (Ines & Hansen, 2006). 

Several theoretical distributions are used in the literature. Exponential, Gamma, 

Bernoulli, Lognormal and their combinations like Bernoulli-Gamma, Bernoulli-

Exponential, etc. (Block et al., 2009; Boe et al., 2007; Grillakis et al., 2013; 

Gudmundsson et al., 2012; Heo et al., 2019; Johnson & Sharma, 2011; Sun, 2011).  

Empirical Quantile Mapping is another very common quantile mapping method. It 

can also be referred to as Quantile Mapping. The main idea behind this method is to 

apply the mapping procedure to empirical CDFs of observed data and model outputs 
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(Boe et al., 2007). The main difference between Distribution Mapping and Empirical 

Quantile Mapping methods is that the Empirical Quantile Mapping method is a non-

parametric method since it uses empirical CDFs. Studies using this method conclude 

its performance is very good for historic bias correction (Ayugi et al., 2020; 

Feigenwinter et al., 2018; Kim et al., 2021; Douglas Maraun, 2013; Piani et al., 2010; 

Wilcke et al., 2013). 

The Delta Change method is another quantile mapping method that focuses on bias 

correction of future projections. The main idea behind this method is to use 

anomalies in future projections of model outputs for bias correction of future 

projections directly (Graham, Andreáasson, et al., 2007). Anomalies between the 

historic period and projection periods are superimposed to the observed data, 

generally on a monthly basis. The Delta Change method is used in a number of 

studies (Bosshard et al., 2011; Graham, Andreáasson, et al., 2007; Graham, 

Hagemann, et al., 2007; Moore et al., 2008; Olsson et al., 2009). 

DBS is another quantile mapping method that has a distinct feature. That feature is 

that DBS introduces a partition point to the observed data and modeled data at the 

95th quantile. Then, call the part lower than the partition point non-extreme part and 

call the part higher than the partition point extreme part. After the partition, Gamma 

Distributions are fitted to both non-extreme and extreme parts of the observed and 

modeled data (Yang et al., 2010). This method is introduced for bias correction of 

future projections as well, to compete with Delta Change method. The reason for 

partitioning the data is to bias correct the extremes of the datasets more accurately. 

Since low intensity data points have high frequencies in precipitation, a single 

distribution fitted to data is affected by them. By partitioning, high intensity values 

are not affected by the high frequency and low intensity data points. By doing that, 

underestimation of the extreme values due to bias correction is avoided (Yang et al., 

2010). It is observed that the DBS method worked as intended and improved the bias 

correction of extreme parts of the datasets in comparison to the Distribution Mapping 

method (Pastén-Zapata et al., 2020; Rana et al., 2014; Seaby et al., 2013; van 

Roosmalen et al., 2011).  
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The current study is conducted within the scope of a TUBITAK project, and the main 

goal of the project is to carry out flood risk analysis. Since the DBS method 

outperforms other QM methods due to its distinct feature and bias correction of 

extreme values it is preferred in this study.  

When the thesis studies conducted in METU are checked, it is seen that bias 

correction is a part of some studies as well. There are also studies that used radar-

based data for their bias correction in their studies however, bias correction methods 

used in radar-based data are not covered in this study. Summary of bias correction 

parts of other thesis studies can be seen in Table 2.1. Used MS numbers, and applied 

bias correction methods are the focus of this table. 

Table 2.1. Studies Conducted in METU in which Bias Correction is Carried Out  

Author MS Number Bias Correction Method 

(Engin, 2015) 2 stream gauges LS 

(Özkaya, 2017) 13 MS, 18 satellite data Quantitative Precipitation Estimate 

(Yousefi, 2020) 17 radar data Mean Field Bias, Local Additive Bias, 

Local Multiplicative Bias 

(Çaktu, 2022) 2 MS, 3 stream gauges Quantile Mapping 

(Barkış, 2022) 8 MS LS 

(Ersoy, 2022) 374 MS LS 

 

In this study, 53 MSs are used with 17 RCMs. RCM outputs are bias corrected with 

five different methods which are LS, DBS, DBS_99, DBS_99_GP, and 

DBS_99_LOGN. Latest three of these methods are developed in this study. High 

number of MSs are also utilized to analyze the results in a spatial manner.  
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CHAPTER 3  

3 METHODOLOGY  

The aim of this study is to correct the biases in the RCM model outputs of 

precipitation with respect to the observed data using the DBS method and to forecast 

the changes in extreme parts of the model outputs. 

The steps followed in this study can be seen in Figure 3.1. In this study two types of 

data are used: observations and RCM outputs (from hereafter used interchangeably 

with model outputs). Observations are obtained from Turkish State Meteorological 

Services, and RCM outputs are obtained from the CORDEX database (ESGF-DKRZ 

- Home | ESGF-CoG, n.d.). As the second step, statistical analysis of data is carried 

out. Within the statistical analysis, a quality check (QC) algorithm is applied to the 

observations at the Meteorological stations (MS). The main reason for applying QC 

is to evaluate if the MS has sufficient data. Then stationarity check and trend analysis 

is carried out to understand the general behavior of the precipitation regime in the 

region. Finally, possible distributions for the extreme part of the observed data (i.e. 

higher part than the partition point) are determined to develop alternative DBS 

methods for this study. Six most common distributions and GP distribution are 

evaluated. The third step is bias correction where LS, DBS, DBS_99_GP, and 

DBS_99_LOGN methods, which are summarized below, are used to correct the 

biases in RCM outputs. LS is used as a benchmark in this study. The next step is the 

performance evaluation of the bias correction methods and selecting the best three 

RCMs. Finally, forecasting extreme values by using bias corrected model outputs 

and two different ensembles are done. First ensemble is the Simple Mean Ensemble 

(SME) which is constructed using 17 RCMs and the second one is the 

Superensemble (SE) which is constructed using the best performing three RCMs. 

Ensembles are constructed to overcome the downsides of the single model analysis 

like increase in uncertanity and variability. 
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Figure 3.1. Flowchart of the study 

 

The modified DBS methods used in this study are summarized below: 

1) DBS_99: In this approach, instead of partitioning the data into two at the 95th 

percentile, data is divided into two at the 99th percentile. Gamma distributions 

are fitted to both parts. 

2) DBS_99_GP: In this approach similar to DBS_99, partitioning is done at the 

99th percentile but instead of fitting Gamma distribution to both parts, GP 

distribution is used for the extreme part and gamma distribution is fitted to 

the non-extreme part. 

Obtain Data

• Observed Data

• RCM Outputs

Statistical 
Checks

• Quality Check

• Stationarity Check

• Trend Analysis

• Distributions

Bias 
Correction

• LS

• DBS

• DBS_99

• DBS_99_GP

• DBS_99_LOGN

Performance

• Selecting Best Three 
RCMs

• Performance 
Parameters

•Observed vs modeled
Plots

Forecasting

• RCMs

• Ensembles



 

 

13 

3) DBS_99_LOGN: In this approach similar to DBS_99, partitioning is done at 

the 99th percentile but instead of fitting gamma distribution to both parts, 

LOGN distribution is used for the extreme part and gamma distribution is 

fitted to the non-extreme part. 

3.1 Statistical Checks 

3.1.1 Quality Check 

In this study, daily precipitation data of 53 MSs from Turkey are used. Study area 

covers the southern and south-eastern regions of Turkey. Dataset is obtained from 

Turkish State Meteorological Services and consists of the period between 1976 and 

2010. Initially, 521 MSs are identified in the study area however, QC is applied 

before starting to analysis. MSs having no data after 2010 are removed due to 

inability to represent the situation of the last decade. Steps of the QC are explained 

below: 

1. Months with more than 10 days of missing daily precipitation observation 

are marked as unreliable months and removed from the dataset. 

2. Seasons with more than 1 month of missing data are marked as unreliable 

seasons and removed from the dataset. 

3. Years with more than 1 season of missing data are marked as unreliable years 

and removed from the dataset. 

4. Years with all zero entries are marked as unreliable years and removed from 

the dataset. 

After the QC, MSs with minimum 35 years of reliable data are selected to be used in 

the analysis. 53 MSs having daily precipitation from 1976 to 2010 in the study area 

passed the QC and used in this study.  
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3.1.2 Stationarity Check 

Stationarity Check is done for all observed data and uncorrected model outputs. For 

the stationarity check, two most common stationarity tests are used. They are the 

Augmented Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) test (Moravej, 2016). These two tests are considered as complimentary to 

each other due to the difference of their null hypothesis (Kwiatkowski et al., 1992). 

The null hypothesis of the ADF test is that the series has a unit root while the null 

hypothesis of the KPSS test is that the series has no unit root. Since the null 

hypothesis of these two tests are opposites of each other, comparing the results of 

these two tests give more accurate indication of the stationarity of the series 

(Kwiatkowski et al., 1992).  

3.1.2.1 The ADF Test 

The ADF test is a unit root test. The null hypothesis of the test is that the series has 

a unit root which means the series is non-stationary while the alternative hypothesis 

is that the series has no unit root which means the series is stationary. Main principle 

of this test is to eliminate autocorrelation in the data by adding lagged values of 

dependent variable to the existing variable while allowing for higher-order serial 

correction in time series. Linear regression model with both a constant and a linear 

trend used for the ADF test is shown below (Dickey, 2014): 

 

Δ𝑦𝑡 = 𝜇 + 𝛾𝑡 + 𝛿𝑦𝑡−1 +∑𝛽𝑖

𝜌

𝑖=1

Δ𝑦𝑡−𝑖 + 𝜀𝑡 
(1) 

 

where Δ𝑦𝑡 is 𝑦𝑡 − 𝑦𝑡−1,  𝑦𝑡−𝑖  is the difference of 𝑦𝑡 at lag 𝑖, 𝛿 is the coefficient of 

observed data at time 𝑡 − 1, 𝜇 is the intercept constant also called as drift, 𝛾 is the 

coefficient on a time trend, 𝜌 is the lag order of autoregressive process, 𝛽𝑖 is 



 

 

15 

autoregressive coefficient, 𝑡 and 𝑖 are the time indices, and 𝜀𝑡 is a sequence of 

independent random variables with a mean of zero and variance of 𝜎2 = 0 at time 𝑡.  

The ADF statistic is calculated according to the model given in Equation (1) is 

(Dickey, 2014): 

 
𝐴𝐷𝐹 =

𝛿

𝑆𝐸(𝛿)
 

(2) 

 

where 𝛿 is the expected value of 𝛿 for observed data and 𝑆𝐸(𝛿) is the standard error 

for 𝛿. 

3.1.2.2 The KPSS Test 

The KPSS test also uses a linear regression model for the decision of the stationarity. 

The null hypothesis is that the series is stationary while the alternative hypothesis is 

that the series is non-stationary. Linear regression model used for KPSS test is 

(Kwiatkowski et al., 1992): 

 𝑌𝑡 = 𝑟𝑡 + 𝛽𝑡 + 𝜀𝑡         𝑡 = 1,… , 𝑇 (3) 

 𝑟𝑡 = 𝑟𝑡−1 + 𝑢𝑡              𝑢𝑡~𝑁(0, 𝜎𝑢
2) (4) 

 

where 𝑌𝑡 is the time series, 𝑟𝑡 is the random walk, 𝛽𝑡 is the deterministic trend, 𝜀𝑡 is 

stationary error term, 𝑡 is the time index, 𝑇 is the number of observations, and 𝑢𝑡 is 

the independent and identically distributed random variable. 

The KPSS statistic is calculated according to the model given in Equation (3) is 

(Kwiatkowski et al., 1992): 

 

𝐾𝑃𝑆𝑆 =
1

𝑇2
∑

𝑠̂𝑡
2

𝜎̂∞2

𝑇

𝑡=1

 

(5) 
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𝑠̂𝑡 =∑𝜀𝑗

𝑡

𝑗=1

 

(6) 

 

𝜎̂∞
2 = lim

𝑇→∞
𝑣𝑎𝑟(∑𝑟𝑡

𝑇

𝑡=1

) 
(7) 

 

where 𝑇 is the sample size and 𝜎̂2 is a consistent estimate of the variance of 𝑢̂𝑡. 

3.1.3 Trend Analysis 

For trend analysis, Mann Kendall (MK) test and Sen’s Slope Estimator (SSE) are 

used. Slope values obtained from SSE are treated as trends. By using MK test it is 

checked whether these trends are significant or not.  

MK test checks whether a significant monotonic trend is present in the data. Its null 

hypothesis is that there is no monotonic trend in data while its alternative hypothesis 

is that there is a monotonic trend in data. Formula of test statistic is as follows (Mann, 

1945):  

 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛 (𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

(8) 

 where 𝑛 is the number of observations, 𝑥𝑖 and 𝑥𝑗 are the sequential data values (𝑗 >

𝑖), and 𝑠𝑖𝑔𝑛 (𝑥𝑗 − 𝑥𝑖) is the function given in Equation (9). 

 

𝑠𝑖𝑔𝑛 (𝑥𝑗 − 𝑥𝑖) {

+1  𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0 

0  𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1  𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

 

(9) 

Then 𝑍 which depends on variance of 𝑆 is calculated.  

 
𝑣𝑎𝑟(𝑆) =

𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)
𝑞
𝑝=1

18
 

(10) 
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𝑍

{
 
 

 
 

𝑆 − 1

√𝑣𝑎𝑟(𝑆)
  𝑖𝑓 𝑆 > 0 

0  𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑣𝑎𝑟(𝑆)
  𝑖𝑓 𝑆 < 0

 

(11) 

where, 𝑞 is the tied group’s number and 𝑡𝑝 is the value of the overall data of 𝑝𝑡ℎ tied 

group (𝑝 = 1, 2, 3, . . . , 𝑛).  

SSE is used to obtain the magnitude of the trend in data. It is a nonparametric 

procedure for the estimation of the slopes of time series. Formula used for SSE is 

(Sen, 1968): 

 𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
)    𝑓𝑜𝑟 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 

(12) 

where 𝛽 is the estimated slope, 𝑥𝑗 and 𝑥𝑖 are data values at times 𝑗 and 𝑖, respectively, 

and 𝑛 is the number of time periods. Positive slopes indicate increasing trend while 

negative slopes indicate decreasing slope.  

3.1.4 Identification of the Best Fitting Distribution for the Extreme Part 

Six commonly used distributions are checked for their goodness of fit and compared 

with gamma distribution for the extreme part of the observed data. These 

distributions are normal, uniform, exponential, logistic, lognormal, and Weibull 

distributions. In addition to these six distributions a commonly used extreme value 

distribution, the generalized Pareto distribution is also checked. Best fitting 

distribution among these seven distributions to the extreme part of the observed data 

is identified. Akaike Information Criterion (𝐴𝐼𝐶) is used for comparing the 

distributions and determining which distribution is more suitable. 𝐴𝐼𝐶 for gamma 

distribution is calculated as well for comparison. 𝐴𝐼𝐶 is calculated by the following 

formula (Akaike, 1974): 

 𝐴𝐼𝐶 = 2𝐾 − log 𝐿 (13) 
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where 𝐾 is the number of independently adjusted parameters and 𝐿 is the maximum 

likelihood. Lower 𝐴𝐼𝐶 value means better goodness of fit. As a result of this analysis, 

lognormal distribution is identified as the best fitting distribution to the extreme part 

of the observed data. This result lead to development of DBS_99_LOGN Method as 

explained in Section 3.5.5. 

3.2 Bias Correction Methods 

3.2.1 The LS Method 

As a benchmark, one of the rather simpler scaling methods is used for the bias 

correction of the model outputs. The method used as a benchmark is the LS method. 

LS method focuses on correcting the means of model outputs by correction factors 

obtained through means of observed data. In total, 12 correction factors are 

calculated for each month of the year. The correction factor for each month is the 

ratio of the long-term mean of observed data of the related month to the long-term 

mean of model outputs. Then, model outputs are bias corrected by multiplying them 

with these correction factors. The formula used for the LS method is (Lenderink et 

al., 2007): 

 
𝑃𝐶𝑂𝑅 = 𝑃𝑅𝐶𝑀  [

𝑃𝑂𝐵𝑆,𝑖̅̅ ̅̅ ̅̅ ̅

𝑃𝑅𝐶𝑀,𝑖̅̅ ̅̅ ̅̅ ̅̅
] 

(14) 

where 𝑃𝐶𝑂𝑅 is corrected data, 𝑃𝑅𝐶𝑀 is model outputs, 𝑃𝑂𝐵𝑆,𝑖̅̅ ̅̅ ̅̅ ̅ is long term mean of 

observed data of month 𝑖, 𝑃𝑅𝐶𝑀,𝑖̅̅ ̅̅ ̅̅ ̅̅  is long term mean of model outputs of month 𝑖 

where 1 ≤ 𝑖 ≤ 12. 

3.2.2 The DBS Method 

In DBS, the data is divided into two parts at the 95th percentile. Because distribution 

of daily precipitation data is heavily skewed towards low intensities, distribution 

parameters are highly influenced by values with high frequency (Haylock et al., 
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2006). By partitioning the data, extreme values may be represented without the 

influence of values with low intensity and high frequency. The parts composed of 

the data below the 95th percentile and over the 95th percentile can be referred to as 

the non-extreme part and the extreme part, respectively. Moreover, threshold for the 

wet day is introduced to the data to eliminate the drizzling effect (i.e., very small 

precipitation values generated by climate models). All the observed data with lower 

than the selected threshold value is replaced by zero. After partitioning, gamma 

distributions are fitted to the non-extreme and extreme parts. Gamma distribution 

has two-parameters, scale (𝛼) and shape (𝛽) parameters. Its CDF, 𝐹(𝑧) is formulated 

as follows (Wilks, 1995): 

 
𝐹(𝑧) =

𝛾(𝛽, 𝑧
𝛼
)

Γ(𝛽)
 

(15) 

where 𝑧 is the modeled variable, Γ(𝑖) is Gamma function and 𝛾(𝑖, 𝑎) is the lower 

incomplete Gamma function. Details of Gamma function and lower incomplete 

Gamma function are as follows (Arfken, 1985):  

 Γ(𝑖) = (𝑖 − 1)! (16) 

where 𝑖 is any positive number.  

 
𝛾(𝑖, 𝑎) = ∫ 𝑡𝑖−1𝑒−𝑡𝑑𝑡

𝑎

0

 
(17) 

where 𝑖 and 𝑎 are any positive numbers, and 𝑡 is the integration variable.    

Then mapping procedure is used to bias correct each datapoint in the non-extreme 

part and the extreme part with Equations (18) and (19), respectively:  

 𝑃𝐶𝑁𝐸 = 𝐹𝑂𝑁𝐸
−1 (𝐹𝑀𝑁𝐸(𝑃𝑀𝑁𝐸)) (18) 

 𝑃𝐶𝐸 = 𝐹𝑂𝐸
−1(𝐹𝑀𝐸(𝑃𝑀𝐸)) (19) 

where 𝑃𝐶𝑁𝐸 is the corrected non-extreme data, 𝐹𝑂𝑁𝐸
−1  is the inverse CDF of the 

observed non-extreme data, 𝐹𝑀𝑁𝐸 is the CDF of modeled non-extreme data, 𝑃𝑀𝑁𝐸 is 

the modeled non-extreme data, 𝑃𝐶𝐸 is the corrected extreme data, 𝐹𝑂𝐸
−1 is the inverse 
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CDF of the observed extreme data, 𝐹𝑀𝐸  is the CDF of the modeled extreme data, and 

𝑃𝑀𝐸  is the modeled extreme data. 

The steps followed for the DBS method are listed below: 

1. Determine a threshold for wet days for the observed data, 𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

2. Replace all the observed data lower than the threshold with zero. 

3. Find the corresponding quantile of the threshold value for the observed 

data, 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

4. Find the value corresponding to 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 for the model outputs (data 

to be bias corrected). Call it the threshold for the model outputs, 𝑇ℎ𝑀𝑜𝑑𝑒𝑙. 

5. Replace all model outputs lower than 𝑇ℎ𝑀𝑜𝑑𝑒𝑙 with zero. 

6. Divide the observed data and model outputs into two parts at their 95th 

quantiles. 

7. Fit gamma distribution to non-extreme parts of the observed data and the 

model outputs. 

8. Fit gamma distribution to extreme parts of the observed data and the 

model outputs.  

9. Apply the mapping procedure to correct bias. 

10. Check the performance of bias correction using performance statistics. 

Without the wet day threshold, drizzling effect may have a negative impact on bias 

correction (Teutschbein & Seibert, 2012). Quantile values may change, and the 

partition of the datasets may be affected. So, the wet day threshold is introduced to 

avoid these problems. The most commonly used threshold values are 0.1 mm/day or 

1 mm/day (Teutschbein & Seibert, 2012; Yang et al., 2010). In this study, 1 mm/day 

is used as 𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑.  

Steps 1 and 2 are used to correct the observed data with respect to the wet day 

threshold. Steps 3 and 4 are used to correct the model outputs with respect to the wet 

day threshold. First, 𝑇ℎ𝑀𝑜𝑑𝑒𝑙 is calculated as follows: 

 𝑇ℎ𝑀𝑜𝑑𝑒𝑙 = 𝐹𝑅𝐶𝑀
−1 (𝐹𝑂𝐵𝑆(𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)) (20) 
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where 𝐹𝑅𝐶𝑀
−1  is the inverse of CDF of model outputs and 𝐹𝑂𝐵𝑆 is the CDF of observed 

data. By using Equation (13) the 𝑇ℎ𝑀𝑜𝑑𝑒𝑙is calculated and the model outputs below 

𝑇ℎ𝑀𝑜𝑑𝑒𝑙 are replaced by zero in Step 5.  

In Step 6, after both observed data and model outputs are corrected for the wet day 

threshold, they are partitioned into extreme and non-extreme parts at their 95th 

quantiles. In Steps 7 and 8, gamma distributions are fitted to both parts of the 

observed data and model outputs using the Maximum Likelihood Estimation (MLE). 

Thus, a total of 4 gamma distributions are fitted.  

Step 9 consists of the mapping procedure which uses CDFs of the observed data and 

model outputs to obtain bias correct the model outputs. Bias corrected model outputs, 

𝑃𝐶𝑂𝑅 is obtained using the following equation (Yang et al., 2010): 

 𝑃𝐶𝑂𝑅 = 𝐹𝑂𝐵𝑆
−1 (𝐹𝑅𝐶𝑀(𝑃𝑅𝐶𝑀)) (21) 

where 𝑃𝑅𝐶𝑀 is the model outputs, 𝐹𝑅𝐶𝑀 is the CDF of the model outputs, 𝐹𝑂𝐵𝑆
−1  is the 

inverse CDF of the observed data. The graphical representation of this mapping 

procedure is shown in Figure 3.2. 

 

 

Figure 3.2. Mapping Procedure 

𝑃𝑅𝐶𝑀 𝑃𝐶𝑂𝑅 
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3.2.3 DBS_99 Method 

Using a 95th percentile for the partition of data and fitting gamma distributions to 

both parts may not be optimal for the bias correction of the most extreme parts. In 

this approach, instead of partitioning the data into two at the 95th percentile, data is 

divided into two at the 99th percentile. Similar to DBS method, gamma distributions 

are fitted to both parts. Thus, all the steps other than Step 6 of DBS are the same for 

this method. In Step 6 instead of using 95th percentiles, 99th percentiles are used. The 

steps followed for the DBS_BM method are listed below: 

1. Determine a threshold for wet days for the observed data, 𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

2. Replace all the observed data lower than the threshold with zero. 

3. Find the corresponding quantile of the threshold value for the observed 

data, 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

4. Find the value corresponding to 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 for the model outputs (data 

to be bias corrected). Call it the threshold for the model outputs, 𝑇ℎ𝑀𝑜𝑑𝑒𝑙. 

5. Replace all model outputs lower than 𝑇ℎ𝑀𝑜𝑑𝑒𝑙 with zero. 

6. Divide the observed data and model outputs into two parts at their 99th 

quantiles. 

7. Fit gamma distribution to non-extreme parts of the observed data and the 

model outputs. 

8. Fit gamma distribution to extreme parts of the observed data and the 

model outputs. 

9. Apply the mapping procedure to correct bias. 

10. Check the performance of bias correction using performance statistics. 

3.2.4 DBS_99_GP Method 

It is thought that using distributions related to extreme values (e.g., Gumbel, 

generalized extreme value, generalized Pareto) may be more representative for the 

extreme part of the data (Katz, 2013; Cooley, 2013) and GP distribution is used 
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instead of gamma distribution for the extreme part. CDF of GP distribution, 𝐹(𝑧) is 

formulated as follows (Jenkinson, 1955):   

 
𝐹(𝑧) = 1 − [1 + 𝜉 (

𝑧 − 𝜇

𝜎
)]
−1/𝜉

 
(22) 

where 𝑧 is the selected variable for modeling, 𝜇 is location parameter, 𝜎 is scale 

parameter, and 𝜉 is shape parameter.  

In this approach similar to DBS_99, partitioning is done at 99th percentile, but instead 

of fitting gamma distribution to both parts, GP distribution is used for the extreme 

part while gamma distribution is fitted to the non-extreme part. Thus, the only 

difference from DBS_99 is in Step 8, where GP distribution is fitted to extreme part 

of both observed data and model outputs.  

1. Determine a threshold for wet days for the observed data, 𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

2. Replace all the observed data lower than the threshold with zero. 

3. Find the corresponding quantile of the threshold value for the observed 

data, 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

4. Find the value corresponding to 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 for the model outputs (data 

to be bias corrected). Call it the threshold for the model outputs, 𝑇ℎ𝑀𝑜𝑑𝑒𝑙. 

5. Replace all model outputs lower than 𝑇ℎ𝑀𝑜𝑑𝑒𝑙 with zero. 

6. Divide the observed data and model outputs into two parts at their 99th 

quantiles. 

7. Fit gamma distribution to non-extreme parts of the observed data and the 

model outputs. 

8. Fit GP distribution to extreme parts of the observed data and the model 

outputs. 

9. Apply the mapping procedure to correct bias. 

10. Check the performance of bias correction using performance statistics. 
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3.2.5 DBS_99LOGN Method 

In this approach similar to DBS_99, partitioning is done at 99th percentile, but instead 

of fitting gamma distribution to both parts, LOGN distribution is used for the extreme 

part while gamma distribution is fitted to the non-extreme part. CDF of LOGN 

distribution, 𝐹(𝑧) is formulated as follows (Forbes et al., 2010):   

 
𝐹(𝑧) = Φ(

(𝑙𝑛𝑥) − 𝜇

𝜎
) 

(23) 

where 𝑧 is the selected variable for modeling, 𝜇 is location parameter, 𝜎 is scale 

parameter, and Φ is the CDF of the standard normal distribution. Thus, the only 

difference from DBS_99 is in Step 8, where LOGN distribution is fitted to extreme 

part of both observed data and model outputs.  

1. Determine a threshold for wet days for the observed data, 𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

2. Replace all the observed data lower than the threshold with zero. 

3. Find the corresponding quantile of the threshold value for the observed 

data, 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

4. Find the value corresponding to 𝑄𝑇ℎ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 for the model outputs (data 

to be bias corrected). Call it the threshold for the model outputs, 𝑇ℎ𝑀𝑜𝑑𝑒𝑙. 

5. Replace all model outputs lower than 𝑇ℎ𝑀𝑜𝑑𝑒𝑙 with zero. 

6. Divide the observed data and model outputs into two parts at their 99th 

quantiles. 

7. Fit gamma distribution to non-extreme parts of the observed data and the 

model outputs. 

8. Fit LOGN distribution to extreme parts of the observed data and the 

model outputs. 

9. Apply the mapping procedure to correct bias. 

10. Check the performance of bias correction using performance statistics. 
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3.3 Performance Evaluation 

3.3.1 Performance Statistics 

In this study, performances of different bias correction methods are evaluated using 

the following three statistics; the mean absolute error (MAE), the root mean square 

error (RMSE) and the percent bias (PBIAS): 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑃𝑂𝐵𝑆 − 𝑃𝐶𝑂𝑅| 

(24) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑂𝐵𝑆 − 𝑃𝐶𝑂𝑅)2 

(25) 

 
𝑃𝐵𝐼𝐴𝑆 =

∑(𝑃𝑂𝐵𝑆 − 𝑃𝐶𝑂𝑅)

∑𝑃𝑂𝐵𝑆
× 100 

(26) 

 

where 𝑛 is the number of datapoints. These statistics are also calculated for model 

outputs (i.e., in Equations (24), (25) and (26) 𝑃𝑅𝐶𝑀 is used instead of 𝑃𝐶𝑂𝑅) to 

evaluate the improvement due to bias correction. Since RMSE is sensitive to outliers, 

its value will be much higher than the value of MAE if a model has a few large 

outliers. By checking both MAE and RMSE and comparing them provides the 

information about outliers in errors (Hodson, 2022).  

3.3.2 Selecting the Best Performing Bias Correction Method 

A scoring system based on PBIAS values is developed to select the best performing 

bias correction method. For each MS, the following steps are conducted: 

1. Methods are sorted according to their PBIAS values from the lowest to the 

highest for each RCM (i.e., the best performing model placed at the top). 
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2. Since five methods are compared, scores are assigned to each method from 

5 to 1 so that the best performing method gets 5 points and the worst 

performing method gets 1 point. 

3. Total score for each method is calculated for each MS. 

4. The mean of total scores is obtained for each method.   

At the end of this procedure each method has a score that represents the performance 

of that method for all MSs.  

3.4 Forecasting 

Two different ensemble approaches are used to generate model outputs in this study 

in addition to the RCM outputs. These approaches are SME and SE. SME and SE 

approaches are similar to each other. Main difference between them is the weight 

assigned to each RCM (Mesta Yoleri, 2022). While SME gives equal weight to each 

RCM, SE gives weights to RCM based on Multiple Linear Regression (MLR). While 

constructing ENS2, basic assumptions for linear regression are not checked and this 

situation is a limitation of the current study. These ensembles are calculated for each 

MS. They are refered to as ENS1 and ENS2 from now on, for SME and SE, 

respectively. In this study, ENS1 and ENS2 are calculated with the bias corrected 

RCM outputs, using all the RCM models and the best performing three RCM 

outputs, respectively.  

Following formula is used for ENS1 (Cane & Milelli, 2010): 

 

𝐸𝑁𝑆1 = 𝑃𝑂𝐵𝑆̅̅ ̅̅ ̅̅ +
1

𝑀
 ∑(𝑃𝑅𝐶𝑀,𝑗 − 𝑃𝑅𝐶𝑀,𝑗̅̅ ̅̅ ̅̅ ̅̅ )

𝑀

𝑗=1

 

  

(27) 

where 𝑃𝑂𝐵𝑆̅̅ ̅̅ ̅̅  is the mean of observed series, 𝑗 = 1,2, … ,𝑀 is the number of RCM, 

𝑀 = 17 in this study (all 17 RCMs are used for ensembling in 𝐸𝑁𝑆1), 𝑃𝑅𝐶𝑀,𝑗 is the 

model outputs of RCM number 𝑗 , and 𝑃𝑅𝐶𝑀,𝑗̅̅ ̅̅ ̅̅ ̅̅  is the mean of model outputs of RCM 

number 𝑗. 
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Following formula is used for ENS2 (Cane & Milelli, 2010): 

 

𝐸𝑁𝑆2 = 𝑃𝑂𝐵𝑆̅̅ ̅̅ ̅̅ +  ∑𝑎𝑗(𝑃𝑅𝐶𝑀,𝑗 − 𝑃𝑅𝐶𝑀,𝑗̅̅ ̅̅ ̅̅ ̅̅ )

𝑁

𝑗=1

 

  

(28) 

where 𝑃𝑂𝐵𝑆̅̅ ̅̅ ̅̅  is the mean of observed series, 𝑗 = 1,2, … ,𝑁 is the number of RCM, 

𝑁 = 3 in this study (3 best RCMs are used for ensembling in 𝐸𝑁𝑆2), 𝑎𝑗 is the weight 

of RCM number 𝑗, 𝑃𝑅𝐶𝑀,𝑗 is the model outputs of RCM number 𝑗 , and 𝑃𝑅𝐶𝑀,𝑗̅̅ ̅̅ ̅̅ ̅̅  is the 

mean of model outputs of RCM number 𝑗.  

By using the best three bias-corrected RCMs and ensembles constructed in this 

study, changes in mean extreme precipitations are calculated for projection periods. 

The projection period is seperated into three parts as near, middle, and far future 

which cover the periods 2011-2040, 2041-2070, 2071-2100, respectively. Sample 

sizes of the time series used for ensembling for future periods range between  10800 

and 10957 (i.e., 360 × 30 to 365.25 × 30). Means of the extreme parts are 

calculated for the observed data, bias corrected model outputs (correction is carried 

out using the best performing method), and ensembles. Partition point for the 

extreme part is is selected as the partition point of the best performing method. 

Percent change in the mean of extreme parts and whole datasets are calculated by the 

following formula:  

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔𝑒 =

𝑃𝑃̅̅ ̅ − 𝑃𝑂̅̅ ̅ 
𝑃𝑂̅̅ ̅

∗ 100 

  

(29) 

where 𝑃𝑃̅̅ ̅ is the mean of the projection period (three periods used in this study are 

near, middle, and far future), 𝑃𝑂̅̅ ̅ is the mean of the observed period.  
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CHAPTER 4  

4 CASE STUDY AND RCMS 

4.1 Study Area 

Selected 53 MSs are located at different elevations and varying climate zones 

according to Köppen Climatic Zones (Beck et al., 2018). Effects of elevation, 

proximity to sea and climate zones are investigated in the analysis as well. Locations 

of MSs are labeled as white circles and given with Köppen Climatic Zones in Figure 

4.1 and characteristics of MSs can be seen in Table 4.1. 

 

Figure 4.1. Köppen Climatic Zones (Beck et al., 2018) and Locations of MSs in the 

Study Area 

 

As it can be seen in Figure 4.1, five different climates are observed in the study area.     

Legend on Figure 4.1 shows the typical climatic conditions regarding the colors 

associated with codes given by them (Beck et al., 2018). BSk refers to cold semi-

arid climate, Csa refers to hot-summer Mediterranean climate, Dsa refers to 
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Mediterranean-influenced hot-summer humid continental climate, Dsb refers to 

Mediterranean-influenced warm-summer humid continental climate, and Dsc refers 

to Mediterranean-influenced subarctic climate. MSs on the shoreline are influenced 

by Csa. As the distance to sea increases MSs are more influenced by colder 

continental climates like Dsa, Dsb, Dsc. Twenty-seven of the MSs are in the Csa 

zone and 19 of the MSs are in the BSk zone which makes 87% of all the MSs.  

Table 4.1. Characteristics of 53 MSs 

MS # MS ID Latitude Longitude Elevation (m) Dist. to Sea (km) Climate Type 

1 17090 39.744 37.002 1294 149 BSk 

2 17162 39.185 36.081 1182 231 BSk 

3 17191 38.651 32.922 973 247 Dsa 

4 17196 38.687 35.500 1094 223 BSk 

5 17239 38.369 31.430 1002 171 Csa 

6 17242 37.678 31.746 1141 103 Dsa 

7 17244 37.984 32.574 1031 166 BSk 

8 17246 37.193 33.220 1018 113 BSk 

9 17248 37.526 34.049 1046 96 BSk 

10 17250 37.959 34.680 1211 127 BSk 

11 17255 37.576 36.915 572 85 Csa 

12 17261 37.059 37.351 854 44 Csa 

13 17262 36.709 37.112 640 4 Csa 

14 17265 37.755 38.278 672 94 Csa 

15 17300 36.906 30.799 64 6 Csa 

16 17310 36.551 31.980 6 0 Csa 

17 17320 36.069 32.865 2 0 Csa 

18 17330 36.382 33.937 10 9 Csa 

19 17340 36.781 34.603 7 0 Csa 

20 17351 37.004 35.344 23 38 Csa 

21 17370 36.592 36.158 4 0 Csa 

22 17372 36.205 36.151 104 33 Csa 

23 17375 36.302 30.146 2 0 Csa 

24 17684 40.162 38.075 1164 86 Dsb 

25 17716 39.893 37.747 1338 122 Dsb 
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Table 4.1. (continued) 

26 17734 39.362 38.114 1121 175 BSk 

27 17754 39.079 33.066 1005 272 BSk 

28 17762 39.243 37.389 1521 202 BSk 

29 17798 38.821 31.726 1148 257 BSk 

30 17802 38.725 36.390 1542 202 BSk 

31 17832 38.276 31.894 1036 170 BSk 

32 17836 38.374 35.480 1204 167 BSk 

33 17837 38.452 35.791 1402 171 BSk 

34 17840 38.478 36.504 1599 178 Dsb 

35 17866 38.024 36.482 1344 129 Dsb 

36 17870 38.204 37.198 1137 177 BSk 

37 17898 37.427 31.849 1129 83 Csa 

38 17900 37.566 32.790 1014 134 BSk 

39 17902 37.715 33.526 996 141 BSk 

40 17906 37.548 34.487 1453 84 BSk 

41 17908 37.434 35.819 112 58 Csa 

42 17926 37.057 30.191 1017 44 Csa 

43 17928 36.989 32.456 1552 63 Dsb 

44 17936 37.251 35.063 240 55 Csa 

45 17952 36.737 29.912 1095 61 Csa 

46 17954 36.790 31.441 38 4 Csa 

47 17958 36.627 34.338 7 0 Csa 

48 17960 37.015 35.796 30 19 Csa 

49 17962 36.824 36.198 29 2 Csa 

50 17974 36.272 32.305 21 2 Csa 

51 17979 36.769 35.790 34 0 Csa 

52 17981 36.568 35.389 22 1 Csa 

53 17986 36.081 35.949 4 0 Csa 
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4.2 RCMs 

RCMs used in this study are obtained from EURO-CORDEX published through 

ESGF (ESGF-DKRZ - Home | ESGF-CoG, n.d.). Step by step guide for obtaining 

the data can be accessed at https://cordex.org/data-access/esgf/. There is a publicly 

published table for the known issues about the RCMs within CORDEX. It is called 

Errata Table and can be accessed at https://euro-cordex.net/078730/index.php.en. 

Errata Table is used for the selection of RCMs in this study. When the most recent 

version of Errata Table is inspected, which is dated to 30.01.2021, 17 RCMs are 

selected from the table labeled as with no known issues or solved issues. List of 

RCMs used in this study can be seen in Table 4.2. RCP 8.5 scenario is used for the 

study.  

Table 4.2. RCMs used in this study 

Model ID Driving GCM RCM 

RCM1 CNRM-CM5 CCLM4-8-17 

RCM2 CNRM-CM5 ALADIN63 

RCM3 CNRM-CM5 RCA4 

RCM4 EC-EARTH HIRHAM5 

RCM5 EC-EARTH CCLM4-8-17 

RCM6 EC-EARTH RACMOE22E 

RCM7 EC-EARTH RCA4 

RCM8 CM5A-MR WRF331F 

RCM9 CM5A-MR WRF381P 

RCM10 CM5A-MR RCA4 

RCM11 HadGEM2-ES CCLM4-8-17 

RCM12 HadGEM2-ES RACMOE22E 

RCM13 HadGEM2-ES RCA4 

RCM14 MPI-ESM-LR CCLM4-8-17 

RCM15 MPI-ESM-LR REMO2009(r1i1p1) 

RCM16 MPI-ESM-LR REMO2009(r2i1p1) 

RCM17 NoRESM1-M HIRHAM5 

 

https://cordex.org/data-access/esgf/
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CHAPTER 5  

5 RESULTS AND DISCUSSIONS 

As shown in Figure 3.1, precipitation time series of RCM outputs are bias corrected 

with LS, DBS, DBS_99, DBS_99_GP, and DBS_99_LOGN methods. Within the 

scope of this study R programming language is used for all checks, analysis and bias 

correction procedures with the help of 3 packages. The first one is the “openxlsx” 

package (Walker & Braglia, 2018). It is used for importing observed data and model 

outputs from excel files. The second one is the “extRemes” package (Gilleland, 

2022). It is used for fitting GP distributions into extreme parts for DBS_99_GP 

method. The third one is the “tseries” package used for stationarity and trend analyis. 

The rest of the analysis are carried out by the base package of R. Summary of the 

use of the packages can be seen in Table 5.1. 

Table 5.1. Packages Used in this Study 

Package Used Step 

openxlsx For transferring data from excel files to the R environment 

tseries For stationarity check and trend analysis 

extRemes For fitting the GP distribution 

Base R The rest of the analysis 

 

The study area has 53 MSs and 17 RCMs are used in this study. Bias correction is 

done for each RCM dataset at the closest grid to each MS. In total 4505 (i.e., 53x17 

times 5 different bias correction methods) different bias corrected time series are 

generated. MAE, RMSE and PBIAS are used to compare the performances of five 

different bias correction approaches used in this study. These performance statistics 

are calculated for uncorrected version of model outputs as well. 
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RCM data are divided into two parts as historic period and projection period. 1976-

2010 period is used as the historic period and 2011-2100 period is used as the 

projection period.  

Although historic period for RCM outputs are provided up to 2005, to utilize the full 

time range of observed data (i.e., 1976-2010), projected RCM outputs from 2006 to 

2010 are used as the historic period in this study. As stated in the Guidance for 

EURO-CORDEX (Benestad et al., 2017), historic period of RCM outputs are 

generated with observed climate datasets, known historical changes in greenhouse 

gas concentrations, solar radiation, etc. while future period of RCM outputs are 

initialized with conditions of historic period and forced with different RCP scenarios. 

Outputs generated with these two types of approaches are combined to obtain the 

historic model outputs in the current study. This fact should be recognized while 

making inferences about the outcomes. 

Observed values in the historic period are used for parameter estimation for 

distribution fitting. These parameters are used for the bias correction of the 

projection period as well. The most of the MSs in Turkey are converted to automatic 

stations starting 2000s (Yılmaz & Darende, 2021). However, it is stated by Yilmaz 

and Darende (2021) that some of the manual and automatic entries are not consistent 

with each other. 

In Section 5.1, results of statistical checks are given. In Section 5.2, CDFs of extreme 

parts of the data corrected by DBS, DBS_99, DBS_99_GP, and DBS_99_LOGN 

methods are given and discussed. In Section 5.3, performance statistics of LS, DBS, 

DBS_99, DBS_99_GP, and DBS_99_LOGN methods are compared and best 

performing method is determined. Observed vs modeled plots are also checked for 

comparing the results of bias correction methods. In Section 5.4 estimated changes 

in extreme precipitation by the best method and ensembles for projection period are 

presented. 
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5.1 Results of Statistical Checks 

5.1.1 Stationarity Check 

ADF test results and KPSS test results are obtained for observed data and all model 

outputs. If both tests conclude as stationary then the time series is represented by S, 

if both tests conclude as non-stationary then the time series is represented by NS. 

Otherwise, the time series is represented by IN meaning inconsistent results from the 

tests. Based on this analysis most of the observed data and model outputs are 

identified as S. The results are given in Appendix A.  

5.1.2 Trend Analysis 

Results of SSE and MK test are obtained for observed data and model outputs for 

95% confidence interval. Trend values from SSE for all RCMs are given in Table 

5.2. Green cells mean significant positive trend while red cells mean significant 

negative trend. Uncolored cells are without significant trend. As it can be seen in 

Table 5.2, observed data at most of the MSs have significant trends. Twenty-nine out 

of 53 MSs show significant negative trend. However, not all of the RCMs have 

significant trends. RCM3, RCM 7, RCM 8, RCM 10, RCM 11, RCM 13, RCM16, 

and RCM 17 have no significant trend for almost all MS locations. Significant trends 

in observed data and model outputs tend to be negative for most of the time. 

However, there are some significant positive trends as well. Results show only MS 

24, MS 29, and MS 33 have significant positive trend for observed data. RCM 5, and 

RCM 9 shows significant positive trends for most of the MS locations as well. 

Remaining RCMs tend to have a significant negative trend.  
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Table 5.2. SSE and MK Test Results for All RCMs 

M O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 0.00 0.01 0.01 0.00 0.00 0.03 0.01 0.00 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.00 

2 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.01 0.00 0.00 

3 0.02 0.02 0.01 0.00 0.04 0.05 0.02 0.01 0.00 0.03 0.00 0.01 0.03 0.00 0.04 0.01 0.01 0.00 

4 0.03 0.01 0.01 0.01 0.04 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.00 

5 0.03 0.03 0.01 0.01 0.04 0.03 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.00 0.03 0.01 0.01 0.00 

6 0.00 0.02 0.01 0.01 0.06 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.00 0.04 0.02 0.01 0.00 

7 0.01 0.02 0.01 0.01 0.06 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.02 0.00 0.03 0.02 0.01 0.00 

8 0.02 0.03 0.01 0.02 0.04 0.03 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.00 0.04 0.02 0.00 0.01 

9 0.00 0.02 0.02 0.01 0.07 0.01 0.03 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.04 0.02 0.00 0.01 

10 0.01 0.02 0.02 0.01 0.06 0.02 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.03 0.01 0.00 0.00 

11 0.03 0.01 0.01 0.02 0.08 0.07 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.04 0.03 0.00 0.01 

12 0.03 0.02 0.01 0.00 0.09 0.10 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.04 0.03 0.01 0.00 

13 0.03 0.02 0.01 0.00 0.08 0.11 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.04 0.02 0.01 0.01 

14 0.02 0.01 0.00 0.01 0.13 0.07 0.03 0.01 0.01 0.02 0.00 0.01 0.01 0.00 0.04 0.03 0.00 0.01 

15 0.03 0.02 0.01 0.00 0.13 0.09 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.04 0.03 0.01 0.01 

16 0.02 0.02 0.00 0.01 0.09 0.09 0.02 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.03 0.02 0.01 0.01 

17 0.02 0.02 0.01 0.02 0.08 0.10 0.03 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.04 0.02 0.01 0.00 

18 0.02 0.02 0.01 0.03 0.06 0.06 0.03 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.04 0.02 0.01 0.01 

19 0.01 0.02 0.00 0.02 0.03 0.09 0.05 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.04 0.02 0.00 0.01 

20 0.03 0.02 0.00 0.02 0.04 0.11 0.05 0.00 0.01 0.02 0.01 0.00 0.02 0.01 0.05 0.02 0.00 0.00 

21 0.01 0.02 0.01 0.01 0.00 0.10 0.07 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.04 0.01 0.00 0.00 

22 0.01 0.02 0.01 0.01 0.02 0.08 0.06 0.02 0.02 0.01 0.00 0.01 0.01 0.00 0.05 0.02 0.01 0.02 

23 0.01 0.03 0.00 0.00 0.07 0.07 0.04 0.02 0.00 0.00 0.00 0.02 0.01 0.01 0.04 0.02 0.01 0.01 

24 0.02 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.01 

25 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.02 0.00 0.00 0.00 

26 0.02 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.01 0.00 0.00 

27 0.03 0.01 0.01 0.01 0.05 0.05 0.01 0.01 0.01 0.02 0.00 0.01 0.03 0.00 0.04 0.01 0.00 0.00 

28 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.03 0.00 0.01 0.01 0.00 0.03 0.01 0.00 0.01 

29 0.04 0.02 0.01 0.01 0.04 0.04 0.01 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.03 0.02 0.01 0.00 

30 0.00 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.01 0.03 0.01 0.01 0.01 0.00 0.03 0.01 0.00 0.00 

31 0.00 0.02 0.01 0.01 0.04 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.00 0.03 0.02 0.01 0.00 

32 0.00 0.01 0.02 0.01 0.05 0.01 0.01 0.00 0.01 0.03 0.00 0.02 0.01 0.00 0.03 0.02 0.00 0.00 

33 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.03 0.00 0.01 0.01 0.00 0.04 0.01 0.00 0.00 

34 0.00 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.03 0.02 0.00 0.00 

35 0.03 0.02 0.02 0.01 0.04 0.02 0.00 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.04 0.02 0.00 0.01 

36 0.03 0.01 0.02 0.01 0.06 0.04 0.00 0.01 0.01 0.02 0.00 0.01 0.02 0.00 0.03 0.02 0.00 0.00 

37 0.01 0.03 0.01 0.01 0.04 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.03 0.02 0.01 0.00 

38 0.01 0.02 0.02 0.01 0.06 0.05 0.01 0.02 0.00 0.02 0.01 0.01 0.02 0.00 0.04 0.02 0.01 0.00 

39 0.01 0.02 0.01 0.01 0.06 0.06 0.00 0.01 0.00 0.02 0.00 0.01 0.02 0.00 0.04 0.01 0.01 0.01 

40 0.02 0.02 0.02 0.02 0.06 0.00 0.03 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.04 0.02 0.00 0.01 

41 0.02 0.01 0.00 0.01 0.06 0.06 0.01 0.00 0.02 0.03 0.00 0.01 0.01 0.01 0.04 0.02 0.00 0.00 

42 0.00 0.02 0.01 0.01 0.08 0.01 0.00 0.02 0.00 0.02 0.00 0.01 0.02 0.01 0.04 0.02 0.01 0.00 

43 0.03 0.03 0.02 0.01 0.05 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.00 0.03 0.01 0.01 0.01 

44 0.02 0.01 0.00 0.02 0.06 0.03 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.05 0.02 0.00 0.00 

45 0.00 0.03 0.01 0.01 0.03 0.02 0.02 0.02 0.00 0.02 0.00 0.02 0.02 0.01 0.04 0.02 0.01 0.01 

46 0.02 0.02 0.01 0.01 0.12 0.08 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.03 0.02 0.01 0.01 

47 0.02 0.02 0.00 0.03 0.03 0.10 0.06 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.04 0.02 0.01 0.01 

48 0.02 0.02 0.01 0.01 0.04 0.11 0.05 0.00 0.01 0.02 0.00 0.00 0.01 0.01 0.05 0.02 0.00 0.00 

49 0.01 0.02 0.01 0.01 0.01 0.09 0.05 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.04 0.01 0.00 0.00 

50 0.01 0.02 0.00 0.01 0.08 0.10 0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.03 0.02 0.01 0.01 

51 0.01 0.02 0.00 0.01 0.05 0.13 0.05 0.00 0.01 0.03 0.00 0.00 0.01 0.00 0.04 0.02 0.00 0.01 

52 0.03 0.02 0.01 0.01 0.02 0.14 0.07 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.04 0.02 0.01 0.00 

53 0.01 0.02 0.00 0.01 0.00 0.10 0.06 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.04 0.01 0.00 0.01 

M represents MS number, O represents observed series, and numbers from 1 to 17 represent RCM numbers. Red means negative and green means positive trends. 



 

 

37 

5.1.3 Determination of Best Fitting Distributions 

Seven most commonly used distributions and the GP distribution are fitted to 

extreme part of the observed data (i.e., with a partition point of 99th quantile) and 

compared using AIC for each MS. AIC values are given in Table 5.3. In Table 5.3, 

Nor., Uni., Exp., Log., Logn. means normal distribution, uniform distribution, 

exponential distribution, logistic distribution, and lognormal distribution, 

respectively. Lowest AIC value for each MS is marked as bold. As can be seen in 

Table 5.3, the lowest AIC values are generally obtained for the lognormal 

distribution. Thus, DBS_99_LOGN method is developed and evaluated as an 

alternative bias correction method. AIC values for GP distribution are also checked 

and given in Table 5.3. 

Table 5.3. AIC Values for Alternative Distributions 

MS # Nor. Uni. Exp. Log. Logn. Weibull Gamma GP 

1 827 937 1061 795 776* 847 791 819 

2 887 921 1063 860 826 890 843 876 

3 813 879 1021 796 769 823 781 805 

4 855 911 1065 831 804 866 818 847 

5 958 964 1152 953 922 962 932 951 

6 1020 1080 1170 990 954 1017 973 1013 

7 912 989 1063 874 842 910 861 904 

8 856 973 1067 836 811 868 823 851 

9 892 986 1036 848 815 888 836 885 

10 814 899 995 784 757 821 773 802 

11 951 1079 1213 926 909 977 921 939 

12 926 959 1163 918 893 938 902 920 

13 929 960 1135 916 887 937 899 919 

14 954 992 1223 940 919 973 929 947 

15 1322 1308 1457 1321 1282 1314 1292 1318 

16 1245 1289 1380 1219 1178 1238 1197 1238 

17 1129 1192 1339 1117 1090 1138 1101 1121 

18 1147 1204 1250 1109 1064 1129 1087 1135 

19 1149 1276 1261 1114 1070 1135 1091 1140 

20 1143 1163 1270 1126 1083 1133 1099 1138 
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Table 5.3. (continued) 

21 1133 1246 1233 1085 1043 1115 1067 1126 

22 1333 1529 1361 1249 1191 1281 1228 1328 

23 1233 1345 1355 1185 1146 1222 1170 1227 

24 812 853 1045 800 775 825 785 806 

25 855 1004 1085 825 805 876 818 848 

26 826 869 1038 803 778 838 792 815 

27 888 1069 1040 838 808 891 828 879 

28 836 874 1035 820 790 844 803 827 

29 920 987 1084 903 871 921 884 916 

30 838 890 1032 805 779 847 796 825 

31 959 1115 1126 914 887 964 906 951 

32 878 955 1055 860 825 880 840 868 

33 816 843 1045 807 781 827 791 805 

34 926 1040 1115 898 870 934 885 911 

35 971 1045 1182 948 920 983 935 961 

36 843 846 1061 836 807 851 817 838 

37 1058 1077 1261 1037 1008 1066 1022 1049 

38 840 884 1035 828 797 846 809 829 

39 888 950 1039 867 833 886 847 875 

40 890 973 1036 853 817 887 838 881 

41 1148 1223 1280 1117 1078 1140 1097 1140 

42 1030 1164 1130 985 942 1012 965 1017 

43 923 935 1191 922 900 936 907 910 

44 1204 1346 1329 1167 1129 1195 1148 1191 

45 906 916 1164 903 880 919 887 898 

46 1195 1274 1384 1172 1143 1201 1157 1189 

47 1124 1235 1247 1090 1051 1114 1070 1112 

48 1095 1208 1267 1059 1029 1100 1048 1084 

49 1076 1095 1294 1066 1037 1085 1048 1068 

50 1077 1111 1295 1071 1041 1085 1051 1068 

51 1146 1240 1310 1120 1087 1147 1103 1134 

52 1185 1280 1299 1146 1105 1172 1127 1177 

53 1187 1344 1292 1135 1095 1171 1119 1178 

*bold values are the lowest for each MS. 
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5.2 Results of Bias Correction Methods 

5.2.1 The DBS Method Results 

CDFs of the bias corrected extreme parts by DBS for 9 MSs are given in Figure 5.1. 

Red line in the plots represent the CDF of extreme part of the observed data. Light 

gray shadow is the range of CDFs of the uncorrected model outputs (i.e., 17 

uncorrected RCM outputs) and dark gray shadow is the range of CDFs of the 

corrected model outputs. Reamining CDFs are given in Appendix B. 

 

Figure 5.1. CDF of the extreme part of selected MSs (DBS) 
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It is expected that dark gray shadow has a narrower range than light gray shadow 

and dark gray shadow is in the vicinity of the red line. As it can be seen in Figure 

5.1, expected results are aciheved. It can be said that gamma distribution works well 

for bias correction of the extreme part of model outputs. 

5.2.2 The DBS_99 Method Results 

CDFs of the bias corrected extreme parts by the DBS_99 method of 9 MSs are given 

in Figure 5.2. Reamining CDFs are given in Appendix B. 

 

Figure 5.2. CDF of the extreme part of selected MSs (DBS_99) 
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As it can be seen in Figure 5.2, expected outcome is obtained with this method as 

well. Dark gray shadow is narrower than the light gray shadow and it is in the vicinity 

of the red line. Comparing with the CDFs with Figure 5.1, it can be said that ranges 

of both uncorrected and corrected model outputs increased with the change of 

partition point. In other words, DBS_99 does not perform as good as DBS.  

5.2.3 The DBS_99_GP Method Results 

CDFs of the bias corrected extreme parts by the DBS_99_GP method of 9 MSs are 

given in Figure 5.3. Reamining CDFs are given in Appendix B. 

 

Figure 5.3. CDF of the extreme part of selected MSs (DBS_99_GP) 
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In Figure 5.3, the light gray shadow can barely be seen which means that corrected 

and uncorrected range of CDFs with DBS_99_GP method is very similar, unlike 

DBS and DBS_99 methods. In other words, the performance of DBS_99_GP is not 

as good as DBS or DBS_99. The reason for this may be the fact that sample size is 

very important when extreme value distributions such as generalized extreme value 

(GEV) and GP are used (Butler, Heffernan, Tawn, & Flather, 2007; Butler, 

Heffernan, Tawn, Flather, et al., 2007; Coles, 2001; Davison, 2005).  

In this study, 99th quantile is used as the partitioning point for the extreme part of the 

data set. This led to a sample size of 127 in our study. In the literature, the GP 

distribution is identified to be suitable for the Peak Over Threshold (POT) approach 

(Coles, 2001; Davison, 2005). Hosking & Wallis (2016) stated that sample sizes 

between 200 and 500 gave better performance with MLE when GP distribution is 

used. Thus, sample size is identified as one of the reasons for the poor performance 

of DBS_99_GP method. 

It is also clearly seen that for most of the MSs the range of observed data is much 

smaller than the bias corrected range. For example, the red line for the MS 8, starts 

around 20 mm/day and ends around 60 mm/day while, the start of the dark gray 

shadow is between 20 mm/day and 30 mm/day, and the end of the dark gray shadow 

is between 30 mm/day and 120 mm/day. Due to use of GP distribution, the range of 

data is uncorrectly widened. These results indicate that GP is not a suitable 

distribution to be used in bias correction, especially when the length of time series is 

limited (i.e. observation period is short). 

 

5.2.4 The DBS_99_LOGN Method Results 

CDFs of the bias corrected extreme parts by the DBS_99 method of 9 MSs are given 

in Figure 5.4. Reamining CDFs are given in Appendix B. 
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Figure 5.4. CDF of the extreme part of selected MSs (DBS_99_LOGN) 

 

As it can be seen in Figure 5.4, the dark gray shadow is narrower than the light gray 

shadow and it is in the vicinity of the red line. Comparing with the CDFs with Figure 

5.2, it can be said that ranges of both uncorrected and corrected model outputs are 

very similar. It can be said that the performances of the DBS method with LOGN 

distribution and gamma distribution are similarly. 
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5.3 Performance Evaluation 

5.3.1 Selecting The Best Three RCMs 

Mean performance statistics (means of 53 stations) for uncorrected version of model 

outputs are given in Table 5.4. Box plots of PBIAS, RMSE and MAE are given in  

Figure 5.5, Figure 5.6, and Figure 5.7, respectively. 

 

Table 5.4. Mean Performance Statistics for RCMs 

RCM # PBIAS (%) RMSE (mm/day) MAE (mm/day) 

1 -55.08 8.39 3.43 

2 -50.47 8.41 3.39 

3 8.77* 7.11 2.64 

4 21.43 7.31 2.55 

5 -1.90 7.53 2.79 

6 14.34 7.03 2.60 

7 22.15 6.98 2.49 

8 -29.52 7.87 3.15 

9 -43.00 7.60 3.23 

10 33.91 6.61 2.32 

11 -33.03 8.70 3.38 

12 -16.99 8.02 3.19 

13 3.16 7.69 2.87 

14 -25.41 8.02 3.09 

15 -26.20 9.49 3.38 

16 -28.18 9.79 3.41 

17 19.41 7.46 2.58 

Average -10.98 7.88 2.97 

*Bold values are the smallest three values. 
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Figure 5.5. PBIAS of the RCMs for all 53 MSs 

 

Figure 5.6. RMSE of the RCMs for all 53 MSs 
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Figure 5.7. MAE of the RCMs for 53 MSs 

 

Since our goal is to correct biases, the best performing three RCMs are selected to 

be analyzed in more detail. The more the PBIAS value is close to zero, the better the 

performance. The smallest absolute PBIAS values are marked in bold in Table 5.4. 

RCM 3, RCM 5, and RCM 13 have less than 10% mean PBIAS values so they are 

chosen as the best performing three RCMs. They will be referred to as the best-three 

RCMs from hereafter. The reason for choosing the best-three RCMs is to investigate 

the improvement by bias correction methods in more detail. Considering the average 

PBIAS, RMSE, and MAE values given in Table 5.4, the best-three RCMs have better 

than average performances in terms of RMSE and MAE as well.  
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5.3.2 Performance Parameters 

PBIAS is used to determine the best method for each MS. PBIAS values are given 

for best-three RCMs for each MS in Table 5.5. M represents the MS number, U 

represents the uncorrected, LS represents corrected by LS method, D1 represents 

corrected by DBS method, D2 represents corrected by DBS_99, D3 represents 

corrected by DBS_99_GP, and D4 represents corrected by DBS_99_LOGN in Table 

5.5. Best PBIAS values are marked with green excluding the LS method. RMSE and 

MAE values are given in Appendix C. 

Table 5.5. Comparison of PBIAS values 

 RCM3 RCM5 RCM13 

M U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 

1 -51 0.0 -1.3 -3.0 -7.8 -3.0 -19 0.0 -0.8 -1.9 -2.6 -1.9 -39 0.0 0.2 -0.6 -6.7 -0.6 

2 29 0.0 -0.2 0.8 5.9 0.8 -1 0.0 -0.9 -2.0 0.6 -2.0 33 0.0 0.0 2.5 5.5 2.4 

3 -38 0.0 -1.0 -3.8 -6.6 -3.8 5 0.0 0.1 -1.0 2.0 -1.0 -27 0.0 0.3 -1.7 -5.9 -1.7 

4 38 0.0 -0.7 0.3 7.0 0.3 -17 0.0 -1.1 -2.6 -1.0 -2.6 44 0.0 1.0 2.1 8.8 2.1 

5 11 0.0 -1.3 -3.4 2.3 -3.4 6 0.0 -0.7 -2.9 3.2 -2.9 10 0.0 -0.5 -1.7 2.0 -1.8 

6 14 0.0 -1.1 -2.8 3.2 -2.8 10 0.0 -0.9 -2.6 4.1 -2.7 8 0.0 -0.5 -1.1 3.4 -1.1 

7 0 0.0 -0.9 -2.4 1.7 -2.4 1 0.0 -0.3 -1.9 2.8 -1.9 4 0.0 -0.7 -3.0 2.1 -3.1 

8 33 0.0 0.6 -0.5 6.9 -0.6 2 0.0 0.2 -1.4 1.6 -1.5 30 0.0 0.2 -0.8 7.4 -0.8 

9 30 0.0 0.1 -0.1 5.9 -0.1 -46 0.0 -0.8 -2.2 -6.4 -2.2 36 0.0 0.1 1.0 9.5 1.1 

10 -39 0.0 -1.1 -2.9 -7.4 -2.9 -40 0.0 -0.7 -3.4 -5.1 -3.4 -28 0.0 -0.7 -1.2 -6.0 -1.1 

11 26 0.0 0.9 2.2 4.4 2.2 16 0.0 0.2 0.3 3.3 0.3 10 0.0 2.1 3.8 -0.4 3.8 

12 -19 0.0 -1.8 -2.8 -2.6 -2.8 12 0.0 0.1 0.9 1.9 0.9 -46 0.0 -1.3 -2.4 -6.6 -2.4 

13 -25 0.0 -0.8 -1.8 -5.0 -1.8 3 0.0 0.1 0.7 2.2 0.6 -42 0.0 0.4 -0.8 -7.1 -0.8 

14 -1 0.0 -0.3 0.9 -3.0 0.9 -29 0.0 0.0 0.1 -7.4 0.1 -42 0.0 0.3 1.0 -13.2 1.0 

15 16 0.0 -1.3 -3.8 11.6 -3.9 -2 0.0 -1.4 -4.0 6.1 -4.0 3 0.0 0.1 -2.5 7.2 -2.5 

16 18 0.0 -0.9 -1.1 6.0 -1.1 14 0.0 0.3 0.5 3.4 0.3 -1 0.0 -1.0 -1.7 3.2 -1.7 

17 53 0.0 1.0 2.6 14.2 2.6 21 0.0 1.5 2.5 1.7 2.2 37 0.0 0.9 2.1 9.9 2.1 

18 26 0.0 0.2 1.4 8.4 1.6 2 0.0 -1.0 -1.8 1.5 -1.8 18 0.0 0.2 1.3 4.8 1.3 

19 42 0.0 0.7 2.2 10.6 2.2 6 0.0 -0.4 0.0 1.0 0.0 28 0.0 0.5 2.9 6.4 2.9 

20 -26 0.0 -1.5 -3.9 0.0 -3.9 12 0.0 -0.6 -1.2 4.7 -1.5 -40 0.0 -0.8 -3.1 -5.8 -3.1 

21 14 0.0 0.1 0.0 4.8 0.1 36 0.0 0.7 1.4 9.7 1.5 3 0.0 0.6 0.4 3.0 0.4 

22 77 0.0 0.8 4.0 20.5 4.3 64 0.0 1.9 4.3 18.4 4.6 76 0.0 1.1 3.2 20.4 3.6 

23 13 0.0 -1.0 -1.2 2.6 -1.0 -7 0.0 -0.8 -1.1 -5.8 -1.1 -4 0.0 -2.0 -2.6 -2.5 -2.5 

24 -13 0.0 -0.1 -0.9 -2.2 -0.9 -34 0.0 -1.1 -3.0 -4.5 -3.0 -8 0.0 0.9 1.2 -2.6 1.2 

25 22 0.0 0.6 1.9 3.8 1.8 -8 0.0 -0.4 -2.1 -0.7 -2.1 26 0.0 1.9 4.0 3.4 4.0 

26 29 0.0 0.3 1.7 5.5 1.7 -25 0.0 -0.6 -1.0 -3.8 -1.0 26 0.0 1.5 2.7 3.8 2.7 

27 -20 0.0 -1.5 -3.2 -3.2 -3.2 14 0.0 -0.3 -0.1 3.4 -0.1 -12 0.0 -0.6 -0.7 -3.5 -0.6 

28 -4 0.0 -1.5 -0.6 0.3 -0.7 -8 0.0 -0.2 -0.2 1.6 -0.2 0 0.0 0.4 2.2 1.2 2.2 

29 -17 0.0 -2.3 -4.4 -0.6 -4.5 18 0.0 -0.6 -0.4 6.7 -0.4 -3 0.0 -1.2 -2.6 1.3 -2.7 

30 -4 0.0 -0.6 -1.0 -0.6 -1.0 -38 0.0 -0.9 -2.7 -4.7 -2.7 4 0.0 1.2 1.4 1.4 1.4 

31 24 0.0 -1.6 -2.7 6.0 -2.7 -7 0.0 -1.2 -2.5 1.9 -2.5 23 0.0 -1.0 -2.0 6.3 -2.0 

32 -66 0.0 -1.4 -1.0 -14.2 -1.1 -41 0.0 -1.5 -2.6 -6.2 -2.6 -53 0.0 -0.4 1.5 -14.5 1.5 

33 16 0.0 -0.2 -0.2 2.9 -0.2 -10 0.0 -0.3 -1.6 0.7 -1.7 21 0.0 1.3 1.9 4.1 1.9 

34 13 0.0 0.2 -0.2 3.7 -0.2 -9 0.0 -0.1 -1.7 0.5 -1.7 15 0.0 0.7 0.1 4.3 0.1 

35 -31 0.0 -0.9 -2.6 -3.7 -2.6 -15 0.0 -0.5 -1.1 -2.3 -1.1 -44 0.0 -0.3 -2.1 -5.6 -2.1 
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Table 5.5. (continued) 

36 -20 0.0 -0.7 -1.3 -4.2 -1.3 -18 0.0 -1.4 -1.2 -3.8 -1.2 -21 0.0 -0.4 -0.2 -3.9 -0.2 

37 56 0.0 -1.6 -2.0 11.2 -2.0 36 0.0 -1.2 -1.8 8.7 -1.8 50 0.0 -1.5 -1.1 11.1 -1.2 

38 -29 0.0 -1.0 -4.0 -6.6 -4.0 11 0.0 -0.4 -1.3 4.1 -1.4 -26 0.0 -1.0 -3.4 -4.4 -3.4 

39 -8 0.0 -0.5 -1.3 1.8 -1.3 -6 0.0 -0.4 -1.5 2.3 -1.7 -2 0.0 -0.4 -1.2 2.3 -1.1 

40 -7 0.0 -0.6 -0.9 -1.1 -0.9 -105 0.0 -0.7 -2.5 -16.1 -2.5 6 0.0 0.8 1.4 1.8 1.5 

41 6 0.0 -0.6 0.1 2.3 0.2 1 0.0 -0.7 -1.2 0.6 -1.3 -4 0.0 0.4 1.5 -2.1 1.6 

42 4 0.0 -1.7 -2.9 1.9 -2.9 -33 0.0 -1.5 -3.3 -2.6 -3.3 3 0.0 -0.7 -1.2 -0.2 -1.2 

43 42 0.0 -1.7 -1.9 7.1 -2.0 2 0.0 -1.5 -2.7 1.4 -2.7 35 0.0 -2.0 -3.1 6.2 -3.1 

44 10 0.0 -1.5 -3.0 1.4 -3.0 -11 0.0 -0.8 -2.0 -1.8 -2.1 0 0.0 -0.8 -1.3 -1.5 -1.3 

45 67 0.0 0.5 1.3 17.7 1.3 -5 0.0 -0.7 -1.3 -0.6 -1.3 61 0.0 0.4 2.0 16.2 2.0 

46 9 0.0 -1.1 -1.5 2.7 -1.4 15 0.0 -0.6 -1.5 2.8 -1.5 -7 0.0 -0.6 -1.1 1.5 -1.1 

47 36 0.0 0.4 2.0 9.9 2.0 14 0.0 -0.2 0.1 2.3 -0.1 17 0.0 0.5 2.1 3.8 2.1 

48 12 0.0 -1.3 -3.1 5.0 -3.1 22 0.0 -0.5 -1.8 5.8 -1.8 -2 0.0 -0.7 -2.3 2.7 -2.2 

49 40 0.0 0.2 1.6 8.2 1.6 28 0.0 0.3 0.9 4.7 0.8 32 0.0 1.0 2.6 6.6 2.6 

50 4 0.0 -0.7 -0.5 1.6 -0.4 3 0.0 0.3 2.1 -1.6 2.1 -15 0.0 0.7 0.6 -1.6 0.6 

51 17 0.0 -1.8 -3.6 6.3 -3.6 13 0.0 -0.3 -0.4 1.6 -0.6 -12 0.0 -1.4 -3.7 -0.1 -3.7 

52 16 0.0 -1.3 -3.4 7.0 -3.2 38 0.0 -0.2 0.1 11.3 0.1 -21 0.0 -1.1 -3.3 -0.8 -3.2 

53 15 0.0 -0.8 -1.7 4.8 -1.6 8 0.0 -0.3 -0.6 2.9 -0.5 8 0.0 -0.6 -1.3 4.2 -1.2 

M represents the MS number, U represents the uncorrected, LS represents corrected by LS method, D1 represents corrected by DBS method, D2 represents corrected 

by DBS_99, D3 represents corrected by DBS_99_GP, and D4 represents corrected by DBS_99_LOGN. Best PBIAS values are marked with green excluding LS. 

 

All bias correction methods used in this study improved the performance parameters 

compared to those for the uncorrected series. Unfortunately, the methods proposed 

in this study rarely worked better than the original DBS method. As can be seen in 

Table 5.5, DBS_99 DBS_99_GP and DBS_99_LOGN performed best only for a few 

of the MSs. For the rest of the MSs, DBS method performed the best.  

According to the results it can be said that changing the partition point from 95th 

quantile to 99th quantile did not cause an improvement. The purpose of changing it 

from 95th quantile to 99th quantile was to represent extreme part more efficiently. 

However, it also reduced the sample size for distribution fitting. It is seen that 

tradeoff between the sample size and the representation of extreme part of the data 

is not favorable.  

To select the best performing bias correction method, steps described in Chapter 

3.3.2 are followed and the results are given in Table 5.6. 
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Table 5.6. Scores of Bias Correction Methods  

Method Score 

LS 84 

DBS 64 

DBS_99 41 

DBS_99_GP 26 

DBS_99_LOGN 40 

 

As it can be seen in Table 5.5, PBIAS values corrected by LS method are almost zero 

and this leads to LS having the highest score when only PBIAS is considered as the 

performance criteria. Since LS method focuses on correcting means of model 

outputs, it is an expected result. However, correcting only means of model outputs 

may lead to underestimation or overestimation of extreme values as can be seen in 

Figure 5.8. QM methods are suggested to overcome this deficiency (Ghimire et al., 

2019; Luo et al., 2018; Mendez et al., 2020; Teutschbein & Seibert, 2012). Thus, 

DBS is identified as the best performing method in this study. 

 

5.3.3 Observed versus Corrected and Uncorrected Model Outputs 

Observed versus bias corrected and uncorrected model outputs are plotted for best 

three RCMs. Observed vs modeled plots of RCM 3 for the first 8 MSs are given in 

Figure 5.8. Purple points represent the uncorrected model outputs. Results corrected 

by DBS, DBS_99, DBS_99_GP, DBS_99_LOGN are represented with the colors 

black, red, blue, and green, respectively. An identity line is also introduced to the 

plots to make interpretation easier. Plots of RCM 3 for the remaining MSs, plots of 

RCM 5 and RCM 13 for all MSs are given in Appendix D. 
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Figure 5.8. Observed versus bias-corrected and uncorrected modeled plots of RCM 

3 for MS1 to MS8 

Points getting closer to the identity line means the bias correction method corrected 

the model outputs better. As it can be seen in Figure 5.8, the closest points to the 

identity line are mostly black which means bias correction with DBS worked better 

than the other methods. On the other hand, DBS_99_GP method resulted in points 

further away from the identity line. There is always either a considerable 

underestimation or overestimation with the DBS_99_GP method (i.e., the furthest 

points to the identity line are blue points most of the time). LS tends to underestimate 

or overestimate especially for the extreme values as well. Observed versus bias 
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corrected and uncorrected model outputs also show that DBS is the best performing 

method which is consistent with the results presented in Chapter 5.3.2.  

5.4 Forecasting 

Projection period for this study is selected as 2011-2100 and forecasting is done for 

this period. This period is separated to three parts as 2011-2040, 2041-2070, and 

2071-2100 to represent near, middle, and far future, respectively. Percentage changes 

in mean extreme precipitations comparing the historic period are calculated for these 

periods. Bias corrected outputs of the best three RCMs with DBS method and outputs 

of ensembles constructed for this study (i.e., ENS1 and ENS2) are used for the 

calculation of changes in mean extreme precipitations. Since the DBS method is 

selected as the best performing method, 95th quantile is used as the partition point to 

obtain the mean extreme precipitations.  

Box plots of the whole daily precipitation time series for the first 9 MSs for near 

future are prepared and given in Figure 5.9. However, since the goal of this study is 

to analyze extreme values, the box plots box plots for the extreme parts of the best 

three RCMs and ensembles are prepared for the near, middle, and far future for all 

MSs. Uncorrected RCM outputs are also included in these plots for comparison. Box 

plots of the extreme parts of first 9 MSs are given in Figure 5.10, Figure 5.11, and 

Figure 5.12 for the near, mid, and far future, respectively. The rest of the box plots 

are given in Appendix E. 
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Figure 5.9. Box Plots of Whole Datasets (2011-2040). 

In Figures 5.9 to 5.12, O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data, 

uncorrected RCM 3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13 

outputs, RCM 3 outputs corrected by DBS method, RCM 5 outputs corrected by 

DBS method, RCM 13 outputs corrected by DBS method, ENS1, and ENS2, 

respectively. Since the whole time series contain high number of zero values, their 

means are very low. This situation leads box plots to perceive most of the non-zero 

values as outliers as can be seen in Figure 5.9. Similar situation if valid for the near, 

middle, and far future for all the MSs. 
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Figure 5.10. Box Plots of Extreme Parts (2011-2040). 

Here O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data, uncorrected RCM 

3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13 outputs, RCM 3 outputs 

corrected by DBS method, RCM 5 outputs corrected by DBS method, RCM 13 

outputs corrected by DBS method, ENS1, and ENS2, respectively. 
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Basic statistical properties of extreme parts of the aforementioned time series can be 

seen in Figure 5.10. Slight increases and decreases in the mean values compared to 

the observed data can be seen for the near future. However, the most striking fact in 

Figure 5.10 are the results of ensembles. It can be seen that both ensembles have 

very low mean values and very small ranges compared to the other datasets. For 

example, the ranges of the extreme parts of RCM 3, RCM 5, and RCM 13 for MS1 

for the near future are 8 – 68 mm/day, 10 – 76 mm/day, and 8 – 41 mm/day, 

respectively. On the other hand, the ranges of ENS1 and ENS2 for MS1 for the near 

future are 4 – 10 mm/day and 2 – 5 mm/day, respectively. As it can be seen, there is 

a drastic decrease in the range of ensembles compared to the best three RCMs. This 

drastic decrease in the ranges of data which is valid for the rest of the MSs as well, 

leads to almost 100% decrease in the mean extreme precipitation forecasts of the 

future periods. Thus, it is concluded that ensembles using SME and SE approaches 

results in poor extreme precipitation forecasts due to incorrect reduction in the range 

of data. Same problem can be observed in the box plots for middle and far future as 

well as shown in Figure 5.11 and Figure 5.12, respectively.  
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Figure 5.11. Box Plots of Extreme Parts (2041-2070). 

Here O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data, uncorrected RCM 

3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13 outputs, RCM 3 outputs 

corrected by DBS method, RCM 5 outputs corrected by DBS method, RCM 13 

outputs corrected by DBS method, ENS1, and ENS2, respectively. 
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Figure 5.12. Box Plots of Extreme Parts (2071-2100). 

Here O, 3U, 5U, 13U, 3D, 5D, 13D, E1, and E2 are observed data, uncorrected RCM 

3 outputs, uncorrected RCM 5 outputs, uncorrected RCM 13 outputs, RCM 3 outputs 

corrected by DBS method, RCM 5 outputs corrected by DBS method, RCM 13 

outputs corrected by DBS method, ENS1, and ENS2, respectively. 

 

To discuss the changes in mean extreme precipitation spatially, maps with a color 

scale of -100% (represented with red) to 100% (represented with green) are given  in 

Figure 5.13 to Figure 5.27 for near, middle, and far future. The summary of the 
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results is given in Table 5.7. To see the changes between near, middle, and far future, 

percentage changes for RCM 3, RCM 5, and RCM 13 are given in Table 5.8 as well. 

Color code used in Table 5.8 shows whether the change compared to the previous 

period is increasing or decreasing. For example, if the mean extreme precipitation of 

2071-2100 period is less than the mean extreme precipitation of 2041-2070 period, 

then the cell containing the value for 2071-2100 period is red. 

 

 

Figure 5.13. Percent Change in Mean Extreme Precipitation for RCM 3 (2011-

2040) 

There are some slight increases and decreases with RCM 3 in near future as it can be 

seen in Figure 5.13. It can be said that decreases are mostly cumulated in the middle 

section of the shoreline. The rest of the MSs show slight increases. As the distance 

to sea increases, MSs that have increasing trend are more frequent. Decreases in the 

study area are up to 12% while increases are up to 22%. On the average 5% increase 

is expected according to RCM 3 in the study area in the near future. In total, 11 MSs 

will suffer a decrease while 42 MSs will have an increase in the near future in the 

mean extreme precipitation (i.e., 2011-2040). 
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Figure 5.14. Percent Change in Mean Extreme Precipitation for RCM 5 (2011-

2040) 

As can be seen in Figure 5.14, there is more variety in terms of increase or decrease 

when RCM 5 outputs are used for near future. It can be said that decreases are mostly 

encountered on the shoreline. Most of the MSs on the shoreline are expected to 

experience a decrease in the mean extreme precipitation. Some MSs located in the 

north-east of the study area are expected to experience a decrease as well. Up to 78% 

decrease in the mean extreme precipitation is expected to happen in the study area 

while increases up to 48% are forecasted. On the average 5% decrease is expected 

according to RCM 5 outputs in the study area in the near future. In total 32 MSs will 

suffer a decrease while 21 MSs will have an increase in near future in mean extreme 

precipitation.  
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Figure 5.15. Percent Change in Mean Extreme Precipitation for RCM 13 (2011-

2040) 

The results with RCM 13 are similar to those of RCM 3 for the near future as it can 

be seen in Figure 5.15. There are some slight increases and decreases within the 

study area. It can be said that decreases are mostly cumulated in the middle section 

and the west part of the shoreline. The rest of the MSs show slight increases, mostly. 

As the distance to sea increases, MSs that have increase are more frequent. Decrease 

in the mean extreme precipitation in the study area is up to 16% while increase is up 

to 21%. On the average 3% increase in the mean extreme precipitation is expected 

according to RCM 13 outputs in the study area in near future. In total 19 MSs are 

forecasted to experience a decrease while 34 MSs will have an increase in the near 

future. 
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Figure 5.16. Percent Change in Mean Extreme Precipitation for ENS1 (2011-2040)  

 

Figure 5.17. Percent Change in Mean Extreme Precipitation for ENS2 (2011-2040) 

ENS1 and ENS2 results are given in Figure 5.16 and Figure 5.17, respectively. Both 

ensembles show significant decreases reaching almost 100%. Decrease in ranges of 

the data obtained through ensembles (see Figure 5.10) led to underestimation of the 

extreme parts.  
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Figure 5.18. Percent Change in Mean Extreme Precipitation for RCM 3 (2041-

2070) 

There are some slight increases and decreases with RCM 3 for the middle future as 

it can be seen in Figure 5.18. It can be said that decreases are mostly cumulated in 

the middle section of the shoreline. The rest of the MSs show slight increases. As the 

distance to sea increases, MSs that have increasing trends get more frequent. 

Decreases in the study area are up to 12% while increases are up to 22%. On the 

average 6% increase is expected according to RCM 3 in the study area for the middle 

future. In total, 7 MSs are forecasted to experience a decrease while 46 MSs will 

have an increase in the middle future (i.e., 2041-2070) compared to the historic 

period. 
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Figure 5.19. Percent Change in Mean Extreme Precipitation for RCM 5 (2041-

2070) 

As can be seen in Figure 5.19, the increases and decreases are more pronounced for 

RCM 5 for the middle future. It can be said that decreases are mostly encountered 

on the shoreline. Most of the MSs on the shoreline are expected to experience a 

decrease. Some decreases are also present in the north-east of the study area. 

Decreases in the study area are up to 80% while increases are up to 55%. On the 

average, 1% decrease is expected according to RCM 5 in the study area for middle 

future. In total, 29 MSs are forecasted to experience a decrease while 24 MSs are 

expected to have an increase in the middle future.  
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Figure 5.20. Percent Change in Mean Extreme Precipitation for RCM 13 (2041-

2070) 

The results with RCM 13 mostly show slight increases and decreases for the middle 

future as can be seen in Figure 5.20. It can be said that decreases are mostly 

cumulated in the middle section and west part of the shoreline. The rest of the MSs 

generally show slight increases. Decreases in the study area are up to 13% while 

increases are up to 24%. On the average 7% increase in the mean extreme 

precipitation is expected according to RCM 13 in the study area for the middle future. 

In total 14 MSs are expected to have ta decrease while 39 MSs will have an increase 

for the middle future. 
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Figure 5.21. Percent Change in Mean Extreme Precipitation for ENS1 (2041-2070) 

 

 

Figure 5.22. Percent Change in Mean Extreme Precipitation for ENS2 (2041-2070) 

Problem with ensembles is also present for the middle future as it can be seen in 

Figure 5.21 and Figure 5.22. Both ensembles show almost 100% decrease in the 

whole study area. 
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Figure 5.23. Percent Change in Mean Extreme Precipitation for RCM 3 (2071-

2100) 

There are some slight increases and decreases predicted with RCM 3 for the far 

future as can be seen in Figure 5.23. While up to 8% decrease is predicted, the 

increase is expected to reach 33%. On the average 14% increase is expected 

according to RCM 3 in the study are for the far future. In total 8 MSs are forecasted 

to experience a decrease while 45 MSs will have an increase for the far future (i.e., 

2071-2100) compared to the historic period. 
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Figure 5.24. Percent Change in Mean Extreme Precipitation for RCM 5 (2071-

2100) 

As can be seen in Figure 5.24, considerable increases and decreases are predicted 

with RCM 5 for the far future. It can be said that decreases are mostly encountered 

on the shoreline and near the shoreline. Most of the MSs on the shoreline are 

expected to experience a decrease. MSs that are far from the shoreline show 

increasing trends most of the time. Decreases in the study area are up to 78% while 

increases are up to 80%. On average 1% increase is expected according to RCM 5 in 

the study area in the far future. In total 28 MSs forecasted to experience ta decrease 

while 25 MSs will have an increase in the far future.  
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Figure 5.25. Percent Change in Mean Extreme Precipitation for RCM 13 (2071-

2100) 

The results with RCM 13 shows mostly slight increases and decreases for the future 

(see Figure 5.25). Decreases in the study area are up to 21% while increases are up 

to 41%. On the average 13% increase is expected according to RCM 13 in the study 

area for the far future. In total 14 MSs are forecasted to experience a decrease while 

39 MSs will have an increase in far future. 
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Figure 5.26. Percent Change in Mean Extreme Precipitation for ENS1 (2071-2100) 

 

 

Figure 5.27. Percent Change in Mean Extreme Precipitation for ENS2 (2071-2100) 
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Problem with ensembles is also present for the far future as can be seen in Figure 

5.26 and Figure 5.27. Both ensembles show almost 100% decrease in the whole study 

area. 

Changes according to maps shown in Figure 5.13 to Figure 5.27 are summarized in 

Table 5.7 where Min. shows the biggest decrease, max. shows the biggest increase, 

avg. shows the average change in the whole study area, # of dec. shows the number 

of MSs that experiences a decrease, and # of inc. shows the number of MSs that have 

an increase. It can be said that RCM 3 and RCM 13 give similar results. They tend 

to have smaller changes compared to RCM 5 for all three periods. Ensembles show 

almost constant drastic decreases for all MSs for all three periods. Since there is no 

increase with ensemble results, max. values are given as NA. The average change in 

the mean extreme precipitation for the whole study area tend to increase with time 

for all three RCMs. The number of MSs that are forecasted to experience a decrease 

in the mean extreme precipitation tend to decrease with time for all three RCMs. 

Thus, it can be concluded that the mean extreme precipitation in the study area is 

expected to increase. 
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Table 5.7. Basic Statistics of Changes in Projection Period 

 2011-2040 2041-2070 2071-2100 

RCM3 

min. -12 -12 -8 

max. 17 22 33 

avg. 3 6 14 

# of dec. 17 7 8 

# of inc. 36 46 45 

RCM5 

min. -78 -80 -78 

max. 48 55 80 

avg. -5 0 1 

# of dec. 32 29 28 

# of inc. 21 24 25 

RCM1

3 

min. -16 -13 -21 

max. 21 24 41 

avg. 4 7 13 

# of dec. 19 14 14 

# of inc. 34 39 39 

ENS1 

min. -79 -78 -79 

max. NA NA NA 

avg. -76 -76 -75 

# of dec. 53 53 53 

# of inc. 0 0 0 

ENS2 

min. -95 -95 -95 

max. NA NA NA 

avg. -91 -91 -90 

# of dec. 53 53 53 

# of inc. 0 0 0 

Min. represents the biggest decrease, max. represents the biggest 

increase, avg. represents the average change in study area, # of dec. 

represents the number of MSs that suffer a decrease, and # of inc. 

represents the number of MSs that have an increase. 
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To compare the changes in the mean values of extreme precipitation series and whole 

series with near, middle, and far future for each MS, Table 5.8 and Table 5.9 are 

constructed. In these tables, N is the near future (i.e., 2011-2040), M is the middle 

future (i.e., 2041-2070), and F is the far future (i.e., 2071-2100). Green cells show 

an increase, while red cells show a decrease compared to the previous period. In 

Table 5.8, RCM 3 shows that slight increases are expected for most of the MSs for 

the near future (i.e., 2011-2040 period). For the middle future (i.e., 2041-2070 

period), half of the MSs will have smaller mean extreme precipitations compared to 

the near future. For the far future (i.e., 2071-2100 period), only 9 MSs will have 

smaller mean extreme precipitations compared to the middle future. RCM 5 shows 

that most of the MSs will experience decreases in the mean extreme precipitations. 

Fifteen MSs will have decreases in the middle future compared to the near future. 

RCM 13 shows that the most of MSs will have increases. RCM 3 and RCM 13 tend 

to have similar results for the projection period while RCM 5 tends to stand against 

them. RCM 5 shows a decrease, when RCM 3 and RCM 13 show an increase, most 

of the time. RCM 5 also shows more drastic changes compared to RCM 3 and RCM 

13 when maximum increase and decrease for each RCM are considered. However, 

at the end of the projection periods all three RCMs agree on the fact that most of the 

MSs will experience increased mean extreme precipitation. As it can be seen in Table 

5.8, there are some oscillations in trends for some MSs (i.e., increase followed by 

decrease followed by increase or vise versa). When the locations of these MSs are 

checked, it is seen that these MSs are on the shoreline or near to the shoreline, most 

of the time. The reason for these oscillations may be the effect of urbanization. 

Shoreline and its vicinity are commonly experience high degree of urbanization 

which may result in the MSs in this zone to stay very close to the buildings. This 

may cause incorrect readings at these stations.  
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Table 5.8. Percent Changes in Mean Extreme Precipitation for the Projection 

Period 

 RCM 3 RCM 5 RCM 13 ENS1 ENS2 

M N M F N M F N M F N M F N M F 

1 14 -9 18 48 -2 7 5 16 17 -76 3 8 -87 -4 5 

2 21 1 6 -12 6 10 5 8 20 -76 3 11 -91 1 4 

3 11 -7 14 6 7 5 8 1 1 -77 -1 9 -94 2 1 

4 16 -4 11 -33 9 7 -6 27 5 -76 1 6 -91 -1 7 

5 19 -7 14 43 -2 12 2 1 10 -77 0 -1 -91 -1 3 

6 17 -5 7 -20 9 5 8 11 -4 -76 -3 4 -95 2 2 

7 3 -3 8 -10 7 13 19 3 -5 -78 0 8 -95 1 3 

8 4 2 18 -37 3 20 20 -8 27 -77 -2 6 -93 1 10 

9 -2 7 7 -24 11 13 -8 16 19 -78 2 2 -94 3 4 

10 12 -8 15 3 20 5 7 9 8 -77 -2 11 -93 1 4 

11 1 1 10 -23 5 14 2 -1 2 -73 -7 2 -87 0 9 

12 1 1 5 21 2 4 4 -7 0 -73 -8 1 -88 1 4 

13 0 2 6 28 -1 1 15 -11 2 -74 -9 -1 -89 1 6 

14 2 -7 8 36 3 -12 -4 -6 -1 -73 -9 1 -88 -3 0 

15 9 8 -5 -1 -8 -10 -8 7 -7 -77 -3 -3 -90 5 -1 

16 4 0 2 -2 14 -18 14 -2 4 -75 1 5 -87 -1 4 

17 4 0 2 -22 -1 -13 -5 3 -5 -73 -9 1 -88 0 3 

18 -2 5 -4 -8 -1 -14 -9 -3 6 -76 -9 2 -91 2 1 

19 -3 -2 2 -17 16 -22 -2 0 -12 -75 -2 1 -93 1 -2 

20 -5 15 8 7 -6 -12 0 0 0 -77 -1 4 -93 5 2 

21 -11 4 8 29 13 -4 5 -4 0 -75 -5 -2 -91 5 1 

22 -10 -2 4 -20 -4 -1 -3 12 -5 -73 -10 0 -90 -2 2 

23 7 13 -20 34 -5 -15 -5 -8 0 -75 -7 -6 -89 4 -11 

24 9 -2 8 1 7 18 2 5 26 -76 0 15 -91 1 6 

25 11 -4 17 -8 5 21 7 6 22 -75 -1 15 -89 -2 12 

26 -6 13 12 -51 24 23 -4 13 13 -77 7 9 -91 8 7 

27 16 -5 14 14 3 3 9 0 1 -76 0 7 -92 -1 4 

28 5 5 20 -10 14 18 3 15 18 -76 4 14 -90 6 11 

29 15 -1 4 3 10 4 12 0 11 -77 2 3 -94 1 1 

30 5 2 22 -17 11 21 4 17 11 -76 5 10 -92 1 11 

31 13 0 10 -17 7 6 13 -2 9 -77 2 1 -95 1 2 

32 14 -6 14 43 9 16 2 10 9 -76 0 11 -88 2 11 

33 8 -6 15 -27 13 22 0 8 12 -77 6 12 -92 -2 10 

34 3 -3 15 -27 15 16 5 13 13 -75 3 8 -91 -1 9 

35 1 -4 21 -33 10 15 0 6 10 -74 -2 4 -90 1 10 

36 2 0 14 -13 16 20 13 -1 9 -75 0 3 -90 9 13 

37 6 -1 0 -42 7 6 -1 8 6 -75 -7 1 -91 1 0 

38 3 -1 2 15 10 1 21 2 2 -78 3 -1 -91 5 -1 

39 3 3 15 -13 20 5 13 5 17 -79 12 3 -92 3 8 

40 6 6 3 -34 7 14 -16 32 3 -77 -2 9 -93 3 5 
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Table 5.8. (continued) 

41 -2 3 16 20 -13 -7 -1 -4 -3 -76 -4 9 -91 1 9 

42 12 10 -7 -9 -15 4 -2 2 -2 -78 1 -7 -94 5 -3 

43 1 5 -1 -20 -4 3 12 -1 10 -76 -3 3 -92 1 3 

44 -2 -7 4 13 8 -16 -1 -9 -12 -76 -4 -1 -92 1 -4 

45 22 0 -2 -78 -11 11 2 -6 9 -74 -7 -4 -89 -1 0 

46 5 -3 -3 10 3 -12 6 4 6 -75 -3 -1 -87 -2 -1 

47 -3 5 -3 -11 11 -13 -3 3 -12 -76 -2 -1 -92 2 -1 

48 0 10 13 2 -4 -12 12 -4 2 -77 2 2 -92 3 4 

49 2 2 2 19 5 -13 -3 11 3 -74 -2 -8 -91 1 -2 

50 6 -4 16 0 8 -15 7 -2 5 -73 -4 4 -89 -1 7 

51 7 13 -1 -14 1 -12 7 -6 6 -75 -2 3 -92 4 -1 

52 0 10 2 -4 2 -10 8 -9 -7 -75 0 0 -91 5 0 

53 -12 4 5 2 -6 -3 5 -3 -6 -74 -10 -4 -91 0 0 

M is MS number. N is near future (i.e., 2011-2040), M is middle future (i.e., 2041-2070), and F is far future (i.e., 2071-2100). Green 

cells show an increase, while red cells show a decrease comparing to previous period. 

 

Percent changes in the mean precipitations for the projection period are given in 

Table 5.9 where RCM 3 shows oscillating trends in mean precipitations for the 

projection periods starting with an increase in the near future for most of the MSs. 

RCM 5 shows a decrease in the near future for almost all MSs, then increases and 

decreases are shown almost evenly for the study area. RCM 13 shows a steady 

decrease for the whole projection period for half of the MSs, while the other half 

tends to have oscillating trends. Both ensembles show increase in the near future for 

all MSs and decreases for the rest of the projection periods for most of the MSs. 
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Table 5.9. Percent Changes in the Mean Precipitation for the Projection Period 

 RCM 3 RCM 5 RCM 13 ENS1 ENS2 

M N M F N M F N M F N M F N M F 

1 10 0 12 33 0 0 10 3 8 3 -4 -1 10 0 0 

2 13 -6 3 -38 4 5 3 3 1 1 -4 -4 2 0 0 

3 6 -3 9 0 0 -3 3 1 -3 6 -6 -3 3 0 0 

4 6 -2 8 -55 6 6 -3 6 -1 2 -1 -3 5 0 0 

5 14 -9 4 10 -1 -5 -4 2 -2 9 -6 -6 7 0 0 

6 16 -6 -1 -36 0 -1 -2 4 -7 7 -8 -6 1 0 0 

7 8 -8 8 -23 2 4 4 6 -8 6 -6 -3 2 0 0 

8 8 -7 10 -54 2 10 1 -3 9 11 -9 -6 7 0 0 

9 0 1 8 -47 9 3 -11 8 5 3 -2 -4 4 0 0 

10 6 -8 7 -14 12 -2 -3 6 -3 4 -4 -5 3 0 0 

11 -1 -12 5 -44 1 -1 -7 -11 -2 10 -8 -10 12 -1 0 

12 1 -10 7 9 -6 -9 -4 -6 -2 13 -10 -10 13 -1 0 

13 3 -10 12 2 -3 -10 -1 -6 -6 14 -9 -10 15 -1 0 

14 -3 -12 11 -3 -2 -17 -9 -9 0 13 -9 -10 12 -1 0 

15 13 -7 -9 -31 -9 -26 -6 -6 -15 13 -7 -15 10 0 -1 

16 11 -14 2 5 0 -21 -1 -2 -13 11 -5 -11 18 -1 -1 

17 6 -14 2 -23 -5 -21 -11 0 -21 14 -10 -15 12 -1 0 

18 -2 -11 -6 -36 -3 -23 -13 -4 -15 14 -11 -13 11 -1 -1 

19 -4 -10 3 -31 3 -24 -9 -4 -18 15 -8 -13 9 0 0 

20 -1 0 7 -18 -7 -21 -1 -6 -9 12 -6 -10 10 0 0 

21 -5 -8 11 11 3 -11 -3 -6 -6 11 -8 -9 10 0 0 

22 -7 -12 4 -49 -7 -16 -8 -2 -8 13 -9 -12 9 -1 0 

23 10 -6 -18 27 -12 -25 -6 -11 -16 11 -12 -19 9 -1 -2 

24 3 -1 9 -28 10 17 7 -5 15 0 -2 2 6 0 1 

25 4 -4 7 -41 9 7 5 -5 7 4 -3 -3 7 0 0 

26 -5 1 11 -65 19 19 1 -1 8 4 -3 -4 5 0 1 

27 8 -5 9 1 -1 -3 6 -4 -3 8 -4 -5 7 0 0 

28 4 5 13 -29 9 6 7 6 7 3 -2 -2 8 0 1 

29 9 2 1 -20 4 -6 5 -1 2 6 -5 -5 2 0 0 

30 4 3 10 -30 4 10 3 6 5 5 -2 -3 7 0 0 

31 10 -5 9 -39 3 -3 1 2 -3 8 -6 -5 2 0 0 

32 8 -8 9 7 6 6 1 1 -2 3 -5 -5 8 0 1 

33 4 0 8 -52 11 11 -2 4 -2 5 -3 -4 5 0 0 

34 1 -5 8 -38 3 2 -3 4 3 6 -5 -6 5 0 0 

35 -1 -11 12 -37 0 1 -4 -2 -4 12 -9 -9 11 0 0 

36 1 -2 17 -37 10 11 7 -4 10 8 -6 -5 7 0 1 

37 11 -8 -5 -62 3 1 -6 2 -7 10 -9 -11 8 0 0 

38 10 -5 2 -3 2 -3 4 7 -3 8 -6 -5 9 0 0 

39 5 -5 7 -23 12 -4 1 6 4 5 -3 -4 7 0 0 

40 0 5 4 -42 8 1 -9 5 0 6 -2 -6 4 0 0 

41 -1 -7 9 -30 -6 -17 -9 -7 -10 9 -7 -9 8 0 0 

42 14 -3 -12 -43 -16 -9 1 -4 -4 7 -10 -13 0 0 0 
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Table 5.9. (continued) 

43 9 0 0 -46 -4 0 -4 5 2 10 -7 -9 8 0 0 

44 0 -10 3 -15 2 -26 -7 -10 -15 16 -8 -12 10 0 0 

45 17 -13 -7 -88 0 7 -3 -10 -6 12 -10 -15 9 -1 0 

46 13 -17 -1 -5 -6 -18 -4 -3 -11 8 -5 -12 11 -1 0 

47 -3 -7 1 -25 3 -24 -11 -1 -17 15 -8 -13 11 0 0 

48 3 -1 9 -29 -6 -18 1 -7 -8 7 -5 -9 5 0 0 

49 3 -9 8 -20 -3 -12 -7 -3 -3 6 -5 -9 5 0 0 

50 10 -13 6 -6 1 -20 -3 -1 -13 10 -6 -12 13 -1 0 

51 4 1 5 -21 0 -18 -1 -6 -5 8 -4 -10 8 0 0 

52 1 1 7 -21 -2 -21 0 -6 -13 10 -6 -12 10 0 0 

53 -5 -4 4 -17 -6 -20 -3 -8 -11 9 -7 -13 8 0 0 

M is MS number. N is near future (i.e., 2011-2040), M is middle future (i.e., 2041-2070), and F is far future (i.e., 2071-2100). Green 

cells show an increase, while red cells show a decrease comparing to previous period. 
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CHAPTER 6  

6 CONCLUSIONS 

Bias correction of daily precipitation time series with five different bias correction 

methods for 53 locations in the southern and south-eastern regions of Turkey is 

conducted in this study. Daily precipitation time series of the observations and 17 

RCM outputs are identified as stationary in the study area. Expected changes in the 

mean extreme precipitation for the near, middle, and futures are calculated using 

bias-corrected RCMs and their ensembles. The following conclusions are reached: 

• All bias correction methods used in this study improved the performance 

parameters (i.e, PBIAS, RMSE, and MAE) compared to those of the 

uncorrected model outputs. Thus, bias-corrected model outputs should be 

used in climate change analysis.  

• Three variations of the DBS method, namely DBS_99, DBS_99_GP, and 

DBS_99_LOGN are developed in this study. These variations did not 

improve the overal performance compared to the original method. Use of GP 

distribution is found to be not suitable for the mapping procedure, especially 

when data is limited . 

• The LS method, which is the simplest bias correction method, performs very 

well in correcting biases. However, it results in over and underestimation of 

extreme values which is stated in the literature as well. So use of the LS 

method is not suggested if future forecasts are going to be used for the 

analysis of extreme events such as floods or droughts. 

• The performance of LOGN distribution in the representation of extreme daily 

precipitation is very similar to that of the gamma distribution. AIC values of 

both distributions are very similar, LOGN distribution has even smaller AIC 

values for the MSs in the study area. Moreover, performance parameters 

calculated for bias corrected model outputs with DBS_99 and 
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DBS_99_LOGN are very similar to each other. Thus LOGN distribution is a 

good canditate for quantile based bias correction methods. 

• Changing the partition point from 95th to 99th quantile did not improve the 

performance of the DBS method. All three methods developed in this study 

use 99th quantile while original method uses 95th quantile and all three 

methods are outperformed by the original method. Thus, the original DBS 

method is identified as the most suitable bias correction approach compared 

to those suggested in this study.   

• An increase in the mean extreme precipitation is expected for most of the 

study area for the projection period (i.e., 2011-2100).  

• MSs which are generally located at the shoreline showed oscillating trends 

(i.e., increase followed by decrease followed by increase or vise versa) in the 

mean extreme precipitation. Thus, a continous increase or decrease is not 

expected in the mean extreme precipitation for the whole projection period 

for these MSs. This result suggests that for extreme events such as floods, 

rather than regional, local mitigation strategies may be more beneficial and 

effective along the shoreline.                    

• Ensembling using mean or MLR results in accumulating all the data around 

mean values, thus is not suitable when the goal is to study extreme events. 

For future work: 

• Newly proposed bias-correction methods with fixed partition points did not 

imporve the bias-correction performance of the original DBS method. As 

future work, identifying dynamic partition points for each location may be 

studied. 

• In the literature it is seen that separating data into two parts improved the 

performance comparing to no separating. Effects of separating data into more 

than two parts may be studied as well. 
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APPENDICES 

A. Stationarity Tests Results  

A.1 Combined Results of ADF and KPSS tests for whole datasets 

 RCMs 

M O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 S S S S IN S IN S IN S S S S S IN S S S 

2 S S S S S IN IN S S S S S S S IN S IN S 

3 S S S S S S S S S IN S S S S IN S S S 

4 S S S S IN IN IN S S S S S S S IN S IN S 

5 S IN S S S S IN S S S S S S S IN S S S 

6 S IN S S S IN IN S S S S S S S IN S S IN 

7 S S S S S IN IN S S S S S S S IN S S IN 

8 S S S S IN IN IN S S S S S S S IN S S S 

9 S S S S S IN IN S S S S S S S IN S S S 

10 S S S S S S IN S S S S S S S IN S S S 

11 S S S IN IN IN S S S S S S S S IN S S S 

12 S S S S S S S S S S S S S S IN S S S 

13 S S S S S S S S S S S S S S IN S S S 

14 S S S S S S IN S S S S S S S IN S S S 

15 S S S S S IN S S S S S S S S S S S S 

16 S S S S S S S S S S S S S S S S S S 

17 S S S S S S IN S S S S S S S S S S S 

18 S S S IN S IN S S S S S S S S IN S S S 

19 S S S IN S IN S S S S S S S S IN S S S 

20 S S S S S S S S S S S S S S IN S S S 

21 S S S S S S S S S S S S S S IN S S S 

22 S S S S IN IN S S S S S S S S IN S S S 

23 S S S S IN S IN S S S S S S S IN S S S 

24 S S S S S IN IN S S IN S S S S IN S S IN 

25 S S S S IN IN IN S S S S S S S IN S S S 

26 S S S S IN IN IN S S S S S S S IN S S IN 

27 S S S S S S S S S S S S S S IN S S IN 

28 S S S S S IN IN S S IN S S S S IN S S IN 

29 S IN S S S IN IN S S S S S S S IN S S IN 

30 S S S S S IN IN S S S S S S S IN S S S 

31 S IN S S IN IN IN S S S S S S S IN S S S 

32 S S S S S S S IN S IN S S S S IN S S S 

33 S S S S IN IN IN IN S IN S S S S IN S S S 

34 S S S S S IN IN S S S S S S S IN S S S 
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A.1 (continued) 

35 S S S S S IN IN S S S S S S S IN S S S 

36 S S S S S IN IN S S S S S S S IN S S IN 

37 S IN S S IN IN IN S S S S S S S IN S S IN 

38 S IN S S S S IN S S S S S S S IN S S S 

39 S IN S S S IN IN S S S S S S S IN S S IN 

40 S S S S S IN IN S S IN S S S S IN S IN S 

41 S S S IN S IN S S S S S S S S IN S S S 

42 S IN S S S IN S S S S S S S S IN S S S 

43 S IN S S S IN IN S S S S S S S S S S S 

44 S S S IN S S S S S S S S S S IN S S S 

45 S IN S S IN IN S S S S S S S S S S S S 

46 S S S S S S S S S S S S S S S S S S 

47 S S S IN S S S S S S S S S S IN S S S 

48 S S S S IN IN S S S S S S S S IN S S S 

49 S S S S IN S S S S S S S S S S S S S 

50 S S S S S S IN S S S S S S S S S S S 

51 S S S S S S S S S S S S S S IN S S S 

52 S S S S S S S S S S S S S S IN S S S 

53 S S S S S S S S S S S S S S IN S S S 

 

A.2 Combined Results of ADF and KPSS tests for extreme parts 

 RCMs 

M O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 S S S S S S S S S S S S S S S S S S 

2 S S S S S S S IN S S IN S S S S S S S 

3 S IN S S S S S S S S S S S S S S S S 

4 S S S S S S S S S IN S S S S S S S S 

5 S S S S IN IN S S S S S S S S S S S S 

6 S S S S S S IN S S S IN S S S S S S S 

7 S S IN S S IN S S S S S IN S S S S S S 

8 S S S S IN IN S S S S S S S S S IN S S 

9 S S S S S S S S IN S S S S S S S S S 

10 S S S S S S S S S S S S S S S S S S 

11 IN S S S S S S S IN S S S S S S S S S 

12 S S S S S S S S S S S S S S S S S S 

13 S S S S S S S S S S S S S S S S S S 

14 S S S S S S IN S S S S S S S S S S S 

15 S S S S S S IN S S S S S S S S S IN S 

16 S S S S S S IN S IN IN S S S S S S S S 

17 S S S IN S S IN S IN S S S S S IN S S S 
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A.2 (continued) 

18 S S S S S S S S S IN S S S S S S IN S 

19 IN S S S S S S S S S S S S S S S S S 

20 S S S IN S S S S S S S S S S S S S S 

21 S S S S S S S S S S S S S S S S S S 

22 S S S IN IN IN S S S S S S S S S IN S S 

23 S S S S IN S S S IN S S S S S S S S S 

24 S S S S S S S S S S S S S S S S S S 

25 S S S S S S S S S S S S S S S S S S 

26 S S S S S IN S S S S S S S S S S S S 

27 S S S S S S S S S S S S IN S S S S S 

28 S S S S S S S S S S S S S S S S S S 

29 S S S S S IN S S S S S S S S S S S S 

30 S S S S S S S S S S S S S S S IN S S 

31 S S S S S S IN S S S S S S S IN S S S 

32 S S S S S S IN IN S S S S S S S S S S 

33 S S S IN S S S S S S S S S S S S S S 

34 S S S S S S S S S S S S S S S S S S 

35 S S S IN S S S S S S S S S S S S S S 

36 S S S S S S S S S S S S S S S S S S 

37 S S S S S S S S S S S S S IN S S S S 

38 S S S S S S S S S IN S S S S S S S S 

39 S S S S S S S S S S S IN S S S S S S 

40 IN S IN S S S S S S S IN S S S S S S S 

41 S S S S IN S S S IN S S S S S S S S S 

42 S S S S S S S S S S S S S S S S S S 

43 IN S S S S S IN S S S S S S S S S S S 

44 S S S S S S S S S S S S S S S IN S S 

45 S S S S S S S S S S S S S S S S S S 

46 S S S S S S S S IN S S IN S IN S S S S 

47 IN S S S S S S S S S S S S S S S IN S 

48 S S S S S S S IN S S S S S S S S S IN 

49 S IN IN S S S S S S S S S S S S S S S 

50 S S S S S S IN S S IN S S S S S S S S 

51 S S S S S S IN S S S S S S S S S S S 

52 S S S S S S S S S S S S IN S S S S S 

53 S S S S S S S S S S S S S S S S S S 
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B. CDFs of Remaining MSs 

B.1 CDFs of Remaining MSs Corrected by DBS Method 
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B.2 CDFs of Remaining MSs Corrected by DBS_99 Method 
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B.3 CDFs of Remaining MSs Corrected by DBS_99_GP Method 
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B.4 CDFs of Remaining MSs Corrected by DBS_99_LOGN Method 
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C. RMSE and MAE Values of Remaining MSs for the Best Three RCMs 

C.1 MAE Values of Remaining MSs 

 RCM3 RCM5 RCM13 

M U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 

1 5.4 4.4 4.8 4.7 5.1 4.7 4.8 4.6 4.7 4.7 4.8 4.7 5.6 4.9 4.8 4.8 5.2 4.8 

2 4.1 4.7 4.7 4.7 4.4 4.7 4.4 4.6 4.7 4.6 4.5 4.6 4.3 6.0 4.8 4.8 4.6 4.8 

3 4.4 3.8 4.2 4.2 4.3 4.2 3.9 4.1 4.2 4.1 4.0 4.1 4.6 4.2 4.3 4.2 4.5 4.2 

4 3.9 5.2 4.7 4.6 4.3 4.6 4.6 4.3 4.6 4.6 4.5 4.6 4.0 6.2 4.7 4.7 4.4 4.7 

5 6.1 6.4 6.9 6.8 6.4 6.8 6.1 6.4 6.8 6.8 6.3 6.8 6.3 7.1 6.9 6.9 6.6 6.9 

6 6.0 6.4 6.8 6.7 6.3 6.7 6.0 6.4 6.7 6.7 6.2 6.7 6.3 6.9 6.8 6.8 6.5 6.8 

7 4.2 4.2 4.5 4.5 4.3 4.5 4.2 4.3 4.5 4.5 4.3 4.5 4.2 4.6 4.6 4.5 4.3 4.5 

8 3.9 4.5 4.5 4.5 4.2 4.5 4.2 4.4 4.5 4.4 4.3 4.4 3.9 5.1 4.6 4.5 4.2 4.5 

9 3.6 4.3 4.1 4.0 3.9 4.1 4.5 3.7 4.0 4.0 4.2 4.0 3.4 5.0 4.1 4.1 3.7 4.1 

10 4.6 4.0 4.2 4.2 4.5 4.2 4.5 3.9 4.2 4.2 4.3 4.2 4.7 4.8 4.2 4.2 4.5 4.2 

11 7.7 8.9 8.4 8.4 8.2 8.4 7.8 8.7 8.4 8.4 8.2 8.4 9.0 11.9 8.7 8.7 9.2 8.7 

12 6.7 6.3 6.7 6.7 6.7 6.7 6.5 7.1 6.8 6.8 6.7 6.8 7.8 6.9 6.9 6.9 7.3 6.9 

13 6.5 5.9 6.1 6.1 6.3 6.1 6.0 6.2 6.1 6.2 6.0 6.2 7.2 6.6 6.3 6.3 6.7 6.3 

14 8.9 9.0 8.5 8.5 9.0 8.5 9.9 9.0 8.6 8.5 9.4 8.5 11.3 10.5 8.8 8.8 10.6 8.8 

15 15.4 16.6 18.5 18.4 15.9 18.4 16.9 17.7 18.8 18.8 16.9 18.8 17.2 19.4 19.3 19.2 17.4 19.2 

16 13.2 14.4 14.8 15.0 13.8 15.0 14.5 16.1 15.3 15.3 14.9 15.5 14.6 16.7 15.4 15.5 14.6 15.5 

17 10.3 13.5 12.6 12.7 11.4 12.7 13.9 15.6 13.0 13.0 14.4 13.0 11.3 18.0 13.2 13.2 12.2 13.2 

18 7.8 9.0 8.7 8.8 8.2 8.8 8.5 9.1 9.0 9.0 8.6 8.9 8.4 11.5 9.0 9.1 8.8 9.1 

19 8.0 10.2 9.2 9.2 8.6 9.2 9.1 10.0 9.3 9.3 9.2 9.3 8.7 12.3 9.3 9.4 9.2 9.4 

20 9.3 8.6 9.5 9.6 9.1 9.6 8.9 10.3 9.8 9.8 9.1 9.9 10.6 9.5 9.8 9.8 10.0 9.8 

21 8.6 9.3 9.4 9.5 8.9 9.5 8.0 9.8 9.4 9.5 8.7 9.5 9.2 10.0 9.6 9.6 9.3 9.6 

22 11.2 16.8 14.4 14.6 12.6 14.5 11.5 15.8 14.4 14.7 12.7 14.6 11.4 21.1 14.9 15.1 12.9 15.0 

23 12.9 14.2 14.0 14.0 13.5 13.9 15.1 15.8 14.3 14.1 15.2 14.1 14.1 15.7 14.3 14.3 14.3 14.3 

24 4.7 5.2 4.6 4.6 4.7 4.6 4.9 4.4 4.7 4.6 4.7 4.6 5.0 5.9 4.7 4.7 5.0 4.7 

25 4.9 6.0 5.3 5.4 5.3 5.4 5.2 5.1 5.3 5.3 5.2 5.3 5.2 7.7 5.5 5.5 5.6 5.5 

26 3.9 4.9 4.4 4.4 4.2 4.4 4.7 4.3 4.4 4.4 4.5 4.4 4.2 6.2 4.5 4.5 4.5 4.5 

27 4.6 4.3 4.7 4.6 4.6 4.6 4.3 4.7 4.6 4.6 4.5 4.6 4.9 4.7 4.7 4.7 4.9 4.7 

28 4.4 4.4 4.6 4.5 4.5 4.5 4.4 4.4 4.6 4.5 4.4 4.5 4.6 5.1 4.6 4.6 4.7 4.6 

29 5.2 4.9 5.6 5.5 5.3 5.5 4.8 5.3 5.4 5.5 5.0 5.5 5.2 5.2 5.6 5.5 5.3 5.5 

30 4.4 4.3 4.5 4.5 4.5 4.5 4.8 4.2 4.5 4.5 4.6 4.5 4.5 5.0 4.6 4.6 4.6 4.6 

31 4.8 5.3 5.7 5.7 5.2 5.7 5.3 5.4 5.7 5.7 5.4 5.6 4.9 6.0 5.8 5.7 5.3 5.7 

32 5.7 4.3 4.5 4.4 5.3 4.5 4.9 4.1 4.5 4.4 4.6 4.4 6.1 5.1 4.6 4.6 5.6 4.6 

33 4.3 4.7 4.7 4.6 4.5 4.6 4.5 4.5 4.7 4.6 4.5 4.6 4.5 5.4 4.8 4.8 4.7 4.8 

34 5.1 5.7 5.6 5.6 5.4 5.6 5.5 5.4 5.7 5.7 5.5 5.7 5.2 6.6 5.8 5.8 5.5 5.8 

35 7.6 6.7 7.2 7.2 7.2 7.2 7.4 7.1 7.2 7.2 7.2 7.2 8.4 7.7 7.4 7.4 7.7 7.4 

36 5.1 4.7 4.9 4.8 5.1 4.8 5.0 4.8 4.8 4.8 4.9 4.8 5.3 5.2 4.9 4.9 5.1 4.9 

37 7.6 9.7 9.7 9.6 8.6 9.6 7.9 9.5 9.7 9.6 8.7 9.7 7.8 10.9 9.9 9.9 8.8 9.9 

38 4.6 4.1 4.4 4.3 4.5 4.3 3.9 4.3 4.3 4.3 4.1 4.3 4.5 4.2 4.4 4.4 4.4 4.4 

39 3.8 3.7 4.0 4.0 3.9 4.0 3.9 4.0 4.1 4.1 3.9 4.1 3.9 4.0 4.1 4.1 3.9 4.1 

40 4.2 4.2 4.2 4.2 4.2 4.2 5.6 3.8 4.1 4.1 4.8 4.1 4.1 5.2 4.2 4.2 4.2 4.2 

41 10.0 10.1 10.4 10.5 10.2 10.5 10.4 10.9 10.7 10.7 10.5 10.8 11.3 11.7 10.7 10.8 11.2 10.8 

42 5.2 5.3 5.7 5.6 5.4 5.6 5.8 5.3 5.7 5.7 5.6 5.7 5.5 5.7 5.8 5.7 5.7 5.7 

43 6.4 7.9 7.8 7.7 7.1 7.7 7.2 7.4 7.8 7.7 7.4 7.7 6.4 8.1 7.9 7.8 7.1 7.8 

44 11.3 12.0 12.4 12.2 11.8 12.2 12.3 12.6 12.3 12.2 12.2 12.2 12.4 12.6 12.5 12.4 12.6 12.4 

45 4.9 7.2 6.4 6.4 5.6 6.4 6.4 6.4 6.5 6.5 6.4 6.5 5.1 8.7 6.6 6.5 5.8 6.5 

46 14.0 14.7 15.1 15.1 14.4 15.1 14.3 16.2 15.6 15.4 14.9 15.4 15.7 18.1 15.8 15.9 15.3 15.9 

47 7.9 9.5 9.0 9.0 8.4 9.0 9.0 9.5 9.3 9.1 9.3 9.2 8.9 12.7 9.2 9.3 9.2 9.3 

48 8.8 9.3 10.0 9.9 9.1 9.9 8.8 10.2 10.1 10.0 9.3 10.0 9.6 10.3 10.2 10.2 9.7 10.2 

49 9.7 12.5 11.4 11.4 10.7 11.4 10.3 13.1 11.4 11.3 11.0 11.4 10.4 13.2 11.6 11.6 11.2 11.6 

50 10.6 11.0 11.0 11.0 10.8 11.0 11.5 12.1 11.0 11.1 11.6 11.1 12.0 12.9 11.3 11.4 11.6 11.4 

51 9.8 10.5 11.5 11.4 10.3 11.4 11.4 12.1 11.9 11.6 11.7 11.6 11.2 11.7 11.7 11.6 11.1 11.6 

52 9.9 10.7 11.5 11.5 10.3 11.5 9.8 12.4 11.7 11.7 10.5 11.7 11.7 11.6 11.7 11.8 11.4 11.8 

53 10.4 11.3 11.7 11.7 10.9 11.7 11.0 12.0 11.7 11.7 11.2 11.7 11.0 12.6 11.9 12.0 11.2 12.0 
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C.2 MAE Values of Remaining MSs 

 RCM3 RCM5 RCM13 

M U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 U LS D1 D2 D3 D4 

1 2.5 2.0 2.1 2.1 2.1 2.1 2.2 2.0 2.0 2.0 2.1 2.0 2.5 2.1 2.1 2.1 2.2 2.1 

2 1.6 1.9 1.9 1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.7 2.0 1.9 1.9 1.9 1.9 

3 1.9 1.6 1.6 1.6 1.6 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.8 1.6 1.6 1.6 1.6 1.6 

4 1.5 1.9 1.9 1.8 1.8 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.5 1.9 1.9 1.9 1.8 1.9 

5 2.5 2.6 2.7 2.7 2.6 2.7 2.5 2.6 2.6 2.7 2.6 2.7 2.5 2.6 2.7 2.7 2.6 2.7 

6 2.2 2.4 2.4 2.5 2.4 2.5 2.3 2.4 2.4 2.4 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 

7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.5 1.6 

8 1.3 1.6 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.5 1.6 1.4 1.6 1.6 1.6 1.5 1.6 

9 1.2 1.5 1.4 1.4 1.4 1.4 1.8 1.4 1.4 1.4 1.5 1.4 1.2 1.5 1.4 1.4 1.4 1.4 

10 1.9 1.6 1.6 1.6 1.6 1.6 1.9 1.6 1.6 1.6 1.6 1.6 1.9 1.6 1.6 1.6 1.7 1.6 

11 3.0 3.4 3.4 3.3 3.3 3.3 3.1 3.4 3.4 3.4 3.3 3.4 3.5 3.6 3.5 3.5 3.6 3.5 

12 2.8 2.6 2.6 2.6 2.6 2.6 2.5 2.7 2.6 2.6 2.6 2.6 3.3 2.6 2.8 2.8 2.8 2.8 

13 2.5 2.2 2.3 2.3 2.3 2.3 2.2 2.3 2.3 2.3 2.2 2.3 2.9 2.3 2.3 2.4 2.4 2.4 

14 3.3 3.3 3.3 3.3 3.3 3.3 3.8 3.3 3.3 3.3 3.4 3.3 4.2 3.4 3.4 3.4 3.7 3.4 

15 4.8 5.2 5.3 5.4 4.9 5.4 5.5 5.4 5.5 5.5 5.3 5.5 5.5 5.4 5.6 5.7 5.4 5.7 

16 4.7 5.2 5.2 5.2 5.0 5.2 5.0 5.3 5.3 5.3 5.2 5.3 5.5 5.4 5.6 5.6 5.4 5.6 

17 3.3 4.4 4.4 4.3 4.1 4.3 4.1 4.5 4.4 4.4 4.4 4.4 3.9 4.6 4.7 4.6 4.4 4.6 

18 2.4 2.7 2.7 2.7 2.6 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.6 2.8 2.8 2.8 2.8 2.8 

19 2.3 2.9 2.9 2.8 2.7 2.8 2.8 2.9 2.9 2.9 2.9 2.9 2.6 2.9 2.9 2.9 2.9 2.9 

20 3.6 3.1 3.2 3.2 3.2 3.2 3.0 3.2 3.2 3.2 3.1 3.2 4.0 3.2 3.3 3.4 3.4 3.4 

21 3.3 3.6 3.5 3.5 3.4 3.5 2.9 3.6 3.5 3.5 3.4 3.5 3.6 3.6 3.6 3.6 3.6 3.6 

22 3.4 5.3 5.2 5.1 4.6 5.1 3.7 5.4 5.2 5.1 4.7 5.1 3.6 5.5 5.5 5.5 4.9 5.4 

23 4.2 4.5 4.6 4.6 4.5 4.6 4.8 4.6 4.7 4.7 4.8 4.7 4.8 4.5 4.8 4.8 4.8 4.8 

24 2.0 1.9 1.9 1.9 1.9 1.9 2.2 1.9 1.9 1.9 1.9 1.9 2.1 2.0 2.0 2.0 2.0 2.0 

25 2.2 2.4 2.4 2.4 2.4 2.4 2.5 2.4 2.4 2.4 2.4 2.4 2.2 2.6 2.5 2.5 2.5 2.5 

26 1.6 1.8 1.8 1.8 1.7 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.7 1.9 1.8 1.8 1.8 1.8 

27 2.0 1.8 1.8 1.8 1.8 1.8 1.7 1.8 1.8 1.8 1.8 1.8 2.0 1.8 1.8 1.8 1.9 1.8 

28 1.9 1.8 1.9 1.8 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 

29 2.3 2.1 2.2 2.2 2.2 2.2 2.0 2.2 2.2 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 

30 1.9 1.9 1.9 1.9 1.9 1.9 2.2 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 

31 1.8 2.1 2.1 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.9 2.1 2.1 2.1 2.0 2.1 

32 2.3 1.7 1.7 1.7 1.9 1.7 2.1 1.7 1.8 1.8 1.8 1.8 2.3 1.8 1.8 1.8 1.9 1.8 

33 1.7 1.9 1.8 1.8 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 

34 2.2 2.4 2.4 2.4 2.3 2.4 2.5 2.4 2.4 2.4 2.4 2.4 2.3 2.5 2.5 2.5 2.4 2.5 

35 3.2 2.8 2.8 2.9 2.9 2.9 3.0 2.8 2.8 2.8 2.9 2.8 3.6 2.9 3.0 3.0 3.1 3.0 

36 2.0 1.9 1.9 1.9 1.9 1.9 2.0 1.8 1.8 1.8 1.8 1.8 2.1 1.9 1.9 1.9 1.9 1.9 

37 2.7 3.6 3.7 3.7 3.4 3.7 3.0 3.6 3.6 3.7 3.4 3.7 2.8 3.6 3.7 3.7 3.5 3.7 

38 1.8 1.5 1.6 1.6 1.6 1.6 1.5 1.6 1.5 1.5 1.5 1.5 1.8 1.6 1.6 1.6 1.6 1.6 

39 1.4 1.4 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

40 1.6 1.5 1.5 1.5 1.5 1.5 2.3 1.5 1.5 1.5 1.6 1.5 1.5 1.6 1.5 1.5 1.5 1.5 

41 3.9 4.1 4.1 4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.3 4.2 4.2 4.1 4.2 4.1 

42 1.8 1.9 1.9 1.9 1.9 1.9 2.2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 

43 2.4 3.0 3.1 3.1 2.9 3.1 2.9 3.0 3.0 3.0 3.0 3.0 2.5 3.0 3.1 3.1 3.0 3.1 

44 4.0 4.2 4.3 4.3 4.2 4.3 4.5 4.3 4.3 4.3 4.3 4.3 4.4 4.3 4.4 4.4 4.4 4.4 

45 1.6 2.3 2.3 2.2 2.0 2.2 2.4 2.3 2.3 2.3 2.3 2.3 1.7 2.4 2.3 2.3 2.1 2.3 

46 5.0 5.2 5.3 5.3 5.2 5.3 5.1 5.4 5.5 5.5 5.4 5.5 5.9 5.5 5.7 5.7 5.6 5.7 

47 2.3 2.8 2.8 2.8 2.7 2.8 2.7 2.8 2.8 2.8 2.8 2.8 2.7 2.9 2.9 2.9 2.9 2.9 

48 3.3 3.5 3.5 3.6 3.4 3.6 3.2 3.5 3.5 3.6 3.4 3.6 3.7 3.6 3.7 3.7 3.6 3.7 

49 3.7 4.6 4.5 4.5 4.4 4.5 4.0 4.6 4.5 4.5 4.4 4.5 4.0 4.6 4.6 4.6 4.5 4.6 

50 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.6 4.2 4.2 4.2 4.3 4.2 

51 3.7 4.0 4.1 4.1 3.9 4.1 3.8 4.1 4.1 4.1 4.0 4.1 4.4 4.0 4.2 4.2 4.1 4.2 

52 3.5 3.7 3.8 3.8 3.6 3.8 3.1 3.8 3.8 3.8 3.6 3.8 4.3 3.8 3.9 4.0 3.9 4.0 

53 3.9 4.2 4.2 4.2 4.1 4.2 4.1 4.3 4.3 4.3 4.2 4.3 4.2 4.3 4.4 4.4 4.3 4.4 
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D. Observed versus Bias Corrected and Uncorrected Model Outputs 

D.1 Observed versus bias corrected and uncorrected model outputs of RCM 3  

 

MS 9 MS 10 MS 11 

MS 12 MS 14 

MS 19 MS 18 

MS 13 

MS 17 MS 16 MS 15 
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MS 23 MS 25 

MS 31 MS 30 MS 29 

MS 24 

MS 28 MS 27 MS 26 

MS 20 MS 21 MS 22 

MS 32 MS 33 
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MS 37 MS 39 

MS 45 MS 44 MS 43 

MS 38 

MS 42 MS 41 MS 40 

MS 34 MS 35 MS 36 

MS 46 MS 47 
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D.2 Observed versus bias corrected and uncorrected model outputs 

 

MS 1 MS 2 MS 3 

MS 4 MS 6 

MS 11 MS 10 

MS 5 

MS 9 MS 8 MS 7 
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MS 23 MS 22 MS 21 

MS 16 
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MS 30 
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MS 43 MS 45 
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MS 44 

MS 48 MS 47 MS 46 

MS 40 MS 41 MS 42 

MS 52 MS 53 
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D.3 Observed versus bias corrected and uncorrected model outputs of RCM 13 
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MS 16 
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MS 12 MS 13 MS 14 
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MS 37 MS 36 MS 35 

MS 30 
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MS 44 

MS 48 MS 47 MS 46 
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E. Box Plots of Extreme Parts of Remaining MSs 

E.1 Box Plots of Extreme Parts (2011-2040) 
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MS 21 MS 20 MS 19 

MS 14 
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MS 33 MS 32 MS 31 

MS 26 
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E.2 Box Plots of Extreme Parts (2041-2070) 
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MS 13 MS 15 

MS 21 MS 20 MS 19 
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MS 33 MS 32 MS 31 

MS 26 

MS 30 MS 29 MS 28 

MS 22 MS 23 MS 24 
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E.3 Box Plots of Extreme Parts (2071-2100) 
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