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ABSTRACT 

 

 

A DEEP NEURAL NETWORK BASED PRODUCT METADATA VALIDATION 

APPROACH FOR ONLINE MARKETPLACES 

 

 

 

Alataş Şükrü 

MSc., Department of Information Systems 

Supervisor: Prof. Dr. Altan Koçyiğit 

 

April 2023, 72 pages 

 

As e-commerce has become increasingly popular during the pandemic, online 

marketplaces have seen a surge in merchants offering various products. A critical factor 

in the success of these marketplaces is the user experience they provide, largely dependent 

on features like efficient product search, fast filtering, and attractive product images. 

However, maintaining the data quality of product metadata and images can be challenging, 

especially as the number of products grows exponentially. To address this issue, this 

research proposes a novel approach using an AI-based automated image validation model 

for validating product images and an AI-based classification model to validate product 

metadata in an automated fashion. Our approach offers several advantages over traditional 

methods, including handling complex and noisy data and adapting to various challenging 

product categories, such as fashion items. We demonstrate the effectiveness of this 

approach through comparisons with traditional methods and in different settings, 

ultimately showing strong support for the use of AI in product metadata validation for 

online marketplaces. 

 

Keywords: Metadata Validation, Deep Neural Networks, CNN, Online Marketplaces 
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ÖZ 

 

 

ÇEVRİMİÇİ PAZARYERLERİ İÇİN DERİN SİNİR AĞLARINA DAYALI ÜRÜN 

ÜSTBİLGİSİ GEÇERLEME YAKLAŞIMI 

 

 

 

Alataş Şükrü 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Altan Koçyiğit 

 

Nisan 2023, 72 sayfa 

 

Pandemi sırasında e-ticaret giderek daha popüler hale geldiğinden, çevrimiçi 

pazaryerlerinde çeşitli ürünler sunan satıcı sayılarında ciddi bir artış görüldü. Bu pazar 

yerlerinin başarısındaki kritik faktör, verimli ürün arama, hızlı filtreleme ve çekici ürün 

resimleri gibi özelliklere bağlı olarak sağladıkları kullanıcı deneyimidir. Ancak, özellikle 

ürün sayısının üstel arttığı bir ortamda, ürün üst verilerinin ve görüntülerinin veri kalitesini 

korumak pazar yerleri için zor olmaktadır. Bu sorunu ele almak için bu araştırma, ürün 

resimlerini doğrulamak için yapay zeka tabanlı otomatikleştirilmiş bir görüntü geçerleme 

modeli ile ürün üst verilerini otomatik bir şekilde doğrulamak için yine yapay zeka tabanlı 

bir sınıflandırma modeli kullanan yeni bir yaklaşım önermektedir. Yaklaşımımız, 

karmaşık ve gürültülü verileri işleme ve moda ürünleri gibi çeşitli zorlu ürün 

kategorilerine uyum sağlama dahil olmak üzere geleneksel yöntemlere göre çeşitli 

avantajlar sunmaktadır. Bu çalışmada, yaklaşımımızın etkinliğini, geleneksel yöntemlerle 

ve farklı ortamlarda karşılaştırmalar yaparak gösteriyor ve çevrimiçi pazar yerleri için 

ürün üst verileri doğrulamasında yapay zekanın kullanımına yönelik güçlü destek 

sağlıyoruz. 

 

 Anahtar Sözcükler: Üst Veri Geçerleme, Derin Sinir Ağları, CNN, Çevrimiçi Pazaryerleri 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

In this chapter, we give a brief introduction about the problem we aim to solve. Then we 

explain our motivation, objectives, and the scope of the research. At the end of this 

chapter, we give the details about the organization of this document. 

1.1. Motivation 

Online marketplaces have thousands of merchants selling products on their websites. 

Some of them have a specific market to aim for, and some of them do not. For example, 

according to revenue, Wayfair.com is one of the top online marketplaces, specifically 

aiming at the home decoration and furniture market. Merchants willing to sell their 

products through Wayfair.com can sell only a certain set of home and home decorations 

products. On the other hand, Amazon.com is the biggest online marketplace according to 

revenue and has no specific market to aim for. Almost all the products can be sold on 

Amazon online. However, in both situations, whether an online marketplace aims at a 

specific market or not, there are thousands of categories and different sets of metadata 

attributes for every product defined. Some of these metadata have a specific set of options, 

like brand and color. Some of them are free text or numerical attributes, like dimensions, 

weight, etc. Additionally, almost every product has one or more images uploaded to a 

CDN system. These metadata and images are essential factors for a better customer 

experience and also a significant driver of the marketplace's success (Blanco et al., 2010; 

Kim & Lennon, 2008; Li et al., 2016; Zhao et al., 2009).  

When customers are willing to buy a product that fits the concept in their mind, the search 

and filter facilitate the buying decision and play an essential role in their experience on 

the website. They want to find the best match to their search definitions. So, suppose a 

marketplace has a better metadata selection, and the customer wants to buy a product for 
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the category. In that case, the customer can easily filter the products and find the best 

match. So, this improves the shopping experience of the customer very much. Suppose 

the filtered products have exciting, good-looking images and a better description. The 

customer is more likely willing to buy the product (Blanco et al., 2010; Kim & Lennon, 

2008). This drives the marketplace to better sales figures and greater market share. On the 

other hand, if a marketplace would not have a good set of defined metadata and images 

for its products, customers cannot find the product quickly. They cannot make a buying 

decision easily. This results in lower revenue in the end. 

Data quality is another aspect of the problem. Thus, the merchants usually upload the 

product metadata and images; Marketplaces use predefined product metadata and images 

for several products to improve the data quality and the user experience. They merge the 

product records from different merchants into one unified product record, and customers 

see one product record for a specific product. While the customer wants to see the product 

page, the merchants selling the same product are listed on the product page as a list. The 

price point is selected as the lowest between them. Otherwise, they have thousands of 

different metadata and images for the same product. Customers see the same product 

repeatedly in the search results and listing pages with different titles, descriptions, 

metadata, and images. This kind of experience hardens the marketplace usage for the 

customers who try to find the best match at a lower price point. 

While marketplaces try to unify this metadata into their product databases and allow 

merchants to use this predefined product database, certain product categories cannot easily 

be unified from merchant to merchant. Fashion, clothing, and shoes are examples of these 

categories. Marketplaces have to rely on merchants' metadata and images for these 

categories. Every merchant designs these products differ from each other, so they cannot 

be unified. 

Another aspect of the problem is different metadata standards for a product vary according 

to the marketplace. Every marketplace has a different set of metadata for a certain product 

category. For example, one marketplace may have eight predefined color names for an 

item of clothing, and the other has free text for color names. It is hard to align the metadata 

and data quality for the merchants selling products in more than one marketplace. 

Sometimes it is possible to convert the metadata if it can be converted programmatically, 

but sometimes, do not. Also, some of the metadata cannot be validated digitally. For 

example, the material of a product could not easily be extracted by using its images. For 

example, Wayfair.com is aiming home decoration market and has eight different material 

categories (100% Cotton, Turkish Cotton, Egyptian-Quality Cotton, Cotton Blend, Rayon 

from Bamboo, Terry Cloth, Linen, and Polyester) for towels, while Amazon.com have 

only two (Cotton and Microfiber). For both marketplaces, it is almost impossible to 

validate the material using images. Material metadata for some products may also be hard 

to validate physically because some materials can only be validated by experts or in the 

lab. 
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While data quality is a key factor for buying decisions, merchants do not always have 

well-written descriptions, correct attributes, or good-looking images. Even if they have 

good quality data, validating and converting this bulky data to different marketplaces is 

time-consuming. This is also a problem in the marketplaces; as mentioned before, the 

metadata quality is a key factor for a marketplace's success. Customers' shopping 

experience is highly tied to the data quality served in the marketplace. Marketplaces need 

to improve data quality by validating and correcting the metadata and images provided by 

the merchants, especially in categories that do not allow the use of unified metadata and 

images. 

1.2. Objectives and Scope 

The marketplaces have millions of products listed with tens of millions of metadata to 

validate and correct. However, they also do not have a validated ground truth that helps 

them train the models that can be used in the automated validation processes. In this 

research, we propose a new way to create a ground truth from the unrefined bulk dataset, 

which is our first objective. Our second objective in this research is to offer a new model 

to be used in the validation process that gets images of the products and validates the 

metadata. 

Our research aims to address the problem defined in the previous section with the 

limitation of the data available in the field. Our proposed model needs product images, 

product metadata that can be defined as classes, and a human classifier that needs to 

classify metadata using certain rules and restrictions defined beforehand. The approach 

presumes the existence of these entities. Also, the performance of this study may vary 

according to the quality of input product images and the human subject. 

1.3. Solution Perspective 

This section focuses on providing potential solutions to the problem identified in the 

previous sections. These solutions are based on the findings from the literature review.  

In the literature, a few pieces of research are found on product metadata/attributes 

validation. There are four related works in the literature. They can be separated into two 

groups: 

The first group uses product descriptions to validate product metadata. They are using 

different methodologies to validate the proposed product metadata values. Although they 

use textual data, they are quite different approaches to the problem.  

The second group of the solution uses CV and OCR techniques to understand the product 

images and extract some valuable information from the product images. This methodology 

is similar to our perspective by using product images. However, they use CV and OCR 

techniques, while we use CNN to identify and validate the product metadata.  
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Overall, these solutions aim to address the challenges identified in the problem statement, 

but they use different perspectives and techniques. 

1.4. Organization 

This thesis consists of five chapters and sections under them. This first chapter is the 

introductory chapter that gives brief information about the problem, the motivation behind 

the research, and the solution perspectives. The second chapter focuses on the background 

information about the tools and techniques used in the proposed methodology. This 

section also covers the related work proposed in the literature. The third chapter is about 

the proposed methodology. It covers all the details about the proposed solution. The fourth 

chapter covers the experiment we conducted to realize the methodology stated in the 

previous chapter. The fourth chapter consists of the results and the discussions about the 

experiment's results. The final chapter is the concluding chapter, which consists of a 

summary of the research results and future work. 
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CHAPTER 2 

 

 

2. BACKGROUND AND RELATED WORK 

 

 

 

In this chapter, we give brief background information about the components of the 

solution space and address the previous related work in the literature. 

2.1. Background 

This section gives brief information about tools and techniques related to the solution 

space of the methodology proposed in the research.  

2.1.1. Deep Neural Networks (DNNs) 

Deep neural networks (DNNs) are artificial intelligence (AI) algorithms that have gained 

significant attention in recent years due to their ability to achieve state-of-the-art 

performance in various applications. DNNs are composed of multiple layers of 

interconnected nodes, each processing input data and passing it on to the next layer for 

further processing (Goodfellow et al., 2016). This hierarchical structure allows DNNs to 

learn complex patterns and relationships in data, making them particularly effective for 

tasks such as classification, image recognition, natural language processing, and machine 

translation. One of the key characteristics of DNNs is their ability to learn and adapt to 

new data without the need for explicit programming. This is achieved through the use of 

backpropagation. This training algorithm adjusts the weights and biases of the network 

based on the error between the predicted output and the actual output. Over time, the 

network learns to make more accurate predictions, allowing it to generalize to new data. 

Recent developments in DNNs have focused on increasing the size and complexity of the 

network to improve performance. These large-scale networks, known as deep learning 

networks, can have hundreds of layers and millions of parameters, allowing them to learn 

more complex patterns and relationships in data. However, these networks require 
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significant computational resources and data to train, making them challenging to 

implement in practice. Despite these challenges, the potential benefits of DNNs are 

significant. 

In the field of computer vision, DNNs have been used to achieve near-human levels of 

performance in tasks such as object recognition and image classification (LeCun et al., 

1989; Voulodimos et al., 2018). In natural language processing, DNNs have been used to 

improve machine translation and enable the development of conversational AI systems. 

In healthcare, DNNs have been used to identify patterns in medical images and predict 

patient outcomes (Lundervold & Lundervold, 2019). 

Overall, DNNs represent a promising approach to AI that has the potential to improve the 

performance of a wide range of applications. While challenges remain in terms of 

scalability and practical implementation, ongoing research and development in this area 

are likely to continue to drive advancements in the capabilities of DNNs. 

2.1.2. Convolutional Neural Networks (CNNs) 

Convolutional neural networks (CNNs) are a type of deep neural network specifically 

designed to work with one or more dimensional input data. One of CNN's most well-

known sub-type is using 2D input data such as images. CNNs are composed of a series of 

interconnected layers, each of which performs a specific function in processing the input 

data (LeCun et al., 1998). 

At a high level, CNNs are composed of multiple layers of interconnected nodes known as 

neurons. These neurons receive input from the previous layer, process it using a non-linear 

activation function, and pass the output to the next layer. The first layer of a CNN receives 

input from the raw data, which in the case of image analysis, would be the image's pixel 

values. The first layer in a CNN is the input layer, which receives the raw input data, 

followed by a series of convolutional layers, which apply a series of filters to the input 

data, extracting features and patterns from it (LeCun et al., 1998). The network learns 

these filters based on the input data and the desired output during the training process. 

These convolutional layers are followed by a series of pooling layers, which down-sample 

the output of the convolutional layers, reducing the dimensionality of the data and making 

it easier for the network to process.  This may be followed by another convolutional layer 

– pooling layer pair or one or more fully-connected layers, which use the output of the 

pooling layers to make a final decision or prediction. 

One of the key advantages of CNNs is their ability to learn features from the input data 

rather than requiring them to be hand-crafted by the user. This allows CNNs to be applied 

to various tasks, such as image classification, object detection, and segmentation. Another 

advantage of CNNs is their ability to exploit the spatial structure of the input data, 

allowing them to make highly efficient use of the available computational resources. This 

allows CNNs to be applied to tasks involving large amounts of data, such as video analysis 

and medical imaging. Despite these advantages, CNNs also have some limitations, such 



7 

 

as their reliance on large amounts of training data and the potential for overfitting if the 

network is not properly regularized. 

CNNs are a powerful tool for image and video analysis and have demonstrated their 

effectiveness in various tasks. Their ability to extract features from raw data and their 

efficient use of computational resources make them a promising approach for solving 

complex real-world problems. 

 

2.1.3. Color Spaces 

Color spaces are a fundamental concept in the field of color science. They are used to 

represent and manipulate colors in various applications. These spaces provide a 

standardized way to represent colors in a form that computer systems can understand and 

process. 

One of the most commonly used color spaces is the RGB (Red, Green, Blue) color space, 

which is based on the human visual system and how it processes colors. Another popular 

color space is the CMYK (Cyan, Magenta, Yellow, Key/Black) color space, which is used 

in printing applications. This color space represents colors as a combination of the four 

subtractive primary colors. A value between 0 and 100 represents each color channel. This 

color space is designed to produce consistent color reproduction on printed materials. 

However, it is not suitable for display on electronic devices. 

In addition to these popular color spaces, there are also a variety of other color spaces that 

have been developed for specific applications, such as the Lab color space for accurate 

color reproduction, the HSL (Hue, Saturation, Lightness) color space for intuitive color 

manipulation, HSV (Hue, Saturation, Value) and the YUV (Y – Luminance/Brightness, 

U – Blue Projection, V – Red Projection) color space for video compression (Schwarz et 

al., 1987). 

2.1.3.1.RGB Color Space 

The RGB color space is a three-dimensional model (see Figure 1 RGB color space in 3D 

representation) in which colors are created by mixing red, green, and blue light (Joblove 

& Greenberg, 1978). This color space is based on the primary colors of light, red, green, 

and blue, and it is used to create a wide range of colors on digital displays, such as TVs, 

computers, and smartphones. 
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Figure 1 RGB color space in 3D representation1 

The RGB color space is also known as the "additive" color space because the primary 

colors are combined to create different colors. For example, when the red and green light 

is mixed, they create yellow light. When red and blue light is mixed, they create magenta 

light. And when green and blue light is mixed, they create cyan light.  

One of the key benefits of the RGB color space is that it is intuitive and easy to understand. 

Most people are familiar with the primary colors of light, and the concept of mixing colors 

is something that many people are familiar with from childhood. This makes it easy for 

people to use the RGB color space to create and manipulate colors on digital devices. 

Another benefit of the RGB color space is that digital devices and software widely support 

it. Virtually all digital displays and software programs that deal with color support the 

RGB color space, which makes it a convenient and versatile choice for many applications. 

Despite these benefits, the RGB color space does have some limitations. For example, the 

range of colors produced in the RGB color space is relatively limited compared to other 

color spaces, such as the CMYK color space. This means that some colors, such as very 

saturated greens or purples, may be difficult to produce accurately in the RGB color space. 

Additionally, the RGB color space is not well suited for printing applications. Because the 

RGB color space is based on the primary colors of light, the colors produced are not the 

same as those produced using the primary colors of pigments, such as cyan, magenta, 

 

 

1 (RGB Color Model - Wikipedia, 2022) 
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yellow, and black. This means that colors that are created in the RGB color space may not 

match the colors that are produced when they are printed on paper. 

2.1.3.2.HSV Color Space 

The HSV color space, also known as the HSB color space, is a cylindrical model of color 

that separates hue, saturation, and value into three dimensions. This color space is often 

used in image editing and computer graphics due to its intuitive representation of color 

and its ability to easily manipulate the saturation and value of a color (Joblove & 

Greenberg, 1978). 

The hue of color in the HSV color space is represented by a number from 0 to 360, with 

0 being red, 120 being green, and 240 being blue. This angle around the color wheel allows 

for easy identification and manipulation of the primary and secondary colors. The 

saturation of a color in the HSV color space is represented by a percentage, with 0% being 

a shade of gray and 100% being the purest and most vibrant form of the hue. This allows 

for the adjustment of the vibrancy and intensity of a color. The value of a color in the HSV 

color space is represented by a percentage, with 0% being black and 100% being white. 

This allows for the adjustment of the lightness or darkness of a color (Figure 2). 

 

Figure 2 HSV color space in cylindrical representation2 

Chroma and saturation are terms often used interchangeably, but they have slightly 

different meanings. Chroma refers to the intensity or vividness of a color. In contrast, 

saturation refers to the purity or richness of color. In other words, chroma measures how 

 

 

2 (HSL and HSV - Wikipedia, 2022) 
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bright or intense a color is, while saturation measures how pure or intense a color is. For 

example, a color with high chroma will be very bright and vivid, while a color with high 

saturation will be pure and rich in tone. 

When we use chroma (calculated as Saturation * Value) instead of saturation, the resulting 

shape is a circular cone in three-dimensional space. This shape is more suitable for 

calculating distances between two HSV colors in Euclidean space. Because, the 

cylindrical representation of the HSV color space has a plane instead of a vertex for black. 

The circular cone representation has a point/vertex instead of a plane for the color black 

(Figure 3)(HSL and HSV - Wikipedia, 2022). 

 

Figure 3 HSV color space in circular cone representation3 

One advantage of the HSV color space is its ability to preserve the relationships between 

colors when manipulating saturation and value. In other color spaces, adjusting the 

saturation or value can result in a shift in the hue of a color. However, in the HSV color 

space, the hue remains unchanged. Another advantage is its ability to easily create 

complementary colors by adjusting the hue by 180 degrees. This allows for quick and easy 

color balancing in designs and artwork. 

2.1.3.3.HSL Color Space 

The HSL color space, also known as the Hue-Saturation-Lightness color space, is a model 

used to represent colors more intuitively and perceptually uniformly than other color 

spaces. At its core, the HSL color space is based on the three primary colors: red, green, 

and blue, like RGB color space. In the HSL color space, colors are represented by hue, 

 

 

3 (HSL and HSV - Wikipedia, 2022) 
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saturation, and lightness. The hue is the basic color, red, green, or blue. The saturation 

represents the intensity or purity of the color, with higher saturation indicating a more 

intense color and lower saturation indicating a paler color. Finally, the lightness represents 

the brightness of the color, with higher lightness indicating a brighter color and lower 

lightness indicating a darker color. 

While the hue value can be an angle between 0 and 360 degrees, Saturation and Lightness 

values can take values between 0 and 1. HSL color space can be formed as a cylinder 

(Figure 4) (Joblove & Greenberg, 1978). 

 

Figure 4 HSL color space in cylindrical representation4 

When we plot hue and lightness against chroma instead of saturation, likewise HSV color 

space, the resulting model becomes a bi-cone that is a three-dimensional geometric shape 

with a circular base and two parallel, conical sides that meet at a point on top which is 

more suitable for calculating distances between two HSL colors in Euclidean space 

(Joblove & Greenberg, 1978). Because, the cylindrical representation of the HSL color 

space has two planes (black and white) at the top and bottom instead of a vertex. These 

planes have different distance values instead of one, which is misleading (Figure 4). The 

chroma can be calculated after the color is converted from HSL color space to HSV color 

space: 

𝑉𝑎𝑙𝑢𝑒 = 𝐿 + 𝑆 ∗ min(𝐿, 1 − 𝐿) 

 

 

4 (HSL and HSV - Wikipedia, 2022) 
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𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛′ = {
0 𝑉𝑎𝑙𝑢𝑒 = 0

2 (1 −
𝐿

𝑉𝑎𝑙𝑢𝑒
) 𝑉𝑎𝑙𝑢𝑒 ≠ 0

 

 
𝐶ℎ𝑟𝑜𝑚𝑎 = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛′ ∗ 𝑉𝑎𝑙𝑢𝑒 

 

 

Figure 5 HSL color space in circular bi-cone representation5 

One of the key advantages of the HSL color space is its perceptually uniform nature. This 

means that changes in hue, saturation, and lightness values will have the same visual 

impact regardless of the starting color. For example, increasing the lightness of a color by 

50% will always result in the same visual change, regardless of whether the starting color 

is red, green, or blue. 

2.1.4. Distance Algorithms 

Distance algorithms are a set of mathematical calculations that are used to determine the 

distance between two points. This distance algorithm is commonly used in various fields, 

such as geometry, physics, and engineering. It is also used in machine learning algorithms 

for data clustering and classification. 

One of the most commonly used distance algorithms is the Euclidean distance, named 

after the Greek mathematician Euclid. The Euclidean distance is a fundamental concept 

in mathematics and geometry. It measures the straight-line distance between two points 

 

 

5 (HSL and HSV - Wikipedia, 2022) 
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in a Euclidean space. It is a mathematical space in which coordinates and distances 

represent points calculated using the Pythagorean theorem. 

In addition to the Euclidean distance, there are other distance algorithms, such as the 

Manhattan distance and the Minkowski distance. The Manhattan distance is calculated by 

taking the sum of the absolute differences between the coordinates, while the Minkowski 

distance is a generalized version of the Euclidean and Manhattan distances. 

These distance algorithms have different applications and properties. They are chosen 

based on the specific requirements of the problem at hand. For instance, the Euclidean 

distance is suitable for problems involving continuous variables, while the Manhattan 

distance is more suitable for problems involving discrete variables. 

2.1.4.1.Euclidean Distance for RGB Color Space 

The Euclidean distance between two points in a 3D environment, denoted by d(x, y), is 

calculated by taking the square root of the sum of the squares of the differences between 

the coordinates of the three points. For example, suppose we have two points in a cubic, 

A, and B, with coordinates (x1, y1, z1) and (x2, y2, z2), respectively. In that case, the 

Euclidean distance between them is: 

 

𝑑(𝐴, 𝐵) =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2  

 

The Euclidean distance is a useful measure in many applications. For example, it is used 

to calculate the distance of two colors between two colors in RGB color space. While Red, 

Green, and Blue represent a color in RGB color space, we can calculate the distance in 

two colors with the help of the Euclidean distance formula: 

 

𝑑(𝐴, 𝐵) =  √(𝑅1 − 𝑅2)2 + (𝐺1 − 𝐺2)2 + (𝐵1 − 𝐵2)2  

 

As a result, when the range for each color is presumed between 0 to 255, the maximum 

distance in the RGB color space can be calculated as the distance between black and 

white, which is ~ 441.6729. 

2.1.4.2.Euclidean Distance for HSV and HSL Color Space 

The Euclidean distance for HSV and HSL Color Spaces measures the distance between 

two points in a circular cone / bi-cone shape. This measure uses the Hue and Chroma of 
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the two colors and the Euclidean distance formula (How Can I Calculate Distance from 

Two Pixels HSV?, 2022). 

To calculate the distance, we first need to find the chroma (C) with the help of Saturation 

(S) and Value (V) for the HSV color space. When using HSL color space, we need to first 

convert the HSL color to HSV with the formula defined in the previous section; then, we 

can calculate the chroma.  

After calculating the chroma, then we can find the x value. y value and the z value of the 

coordinates of the colors with the help of the Hue (H) angle, as shown in the formula 

below. 

 

𝐶 = 𝑉 ∗ S 
𝑥 = 𝐶 ∗ cos(𝐻) 
𝑦 = 𝐶 ∗ sin(𝐻) 
𝑧 = 𝑉 

 

Once we have the coordinates, we can apply the Euclidean Distance formula between two 

points to find the distance between the two colors in the HSL color space.  

 

𝑑(𝐴, 𝐵) =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 

 

When we apply the conversion on the Euclidean distance formula, the final formula is 

shown in the formula for HSV and HSL Color Spaces. 

𝑑𝐻𝑆𝑉(𝐴, 𝐵) =  √(𝑉1 − 𝑉2)2 + 𝑆1
2𝑉1

2 + 𝑆2
2𝑉2

2 − 2𝑆1𝑆2𝑉1𝑉2 cos(𝐻1 − 𝐻2) 

𝑑𝐻𝑆𝐿(𝐴, 𝐵) =  √(𝐿1 − 𝐿2)2 + 𝑆1
2𝑉1

2 + 𝑆2
2𝑉2

2 − 2𝑆1𝑆2𝑉1𝑉2 cos(𝐻1 − 𝐻2) 

 

2.1.5. Quantization 

In image processing, quantization refers to reducing the number of bits used to represent 

the color information of an image. This is typically done to compress the image, allowing 

for more efficient storage and transmission of the data (Orchard et al., 1991). 
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There are several different approaches to quantization, each with its advantages and 

disadvantages. One commonly used approach is uniform quantization, where possible 

color values are divided into equal intervals. This approach is simple to implement and 

can provide good results for images with smooth color gradients. Another approach is 

non-uniform quantization, where the range of possible color values is divided into 

intervals of varying sizes. This approach can provide better results for images with 

complex color patterns. However, it is more computationally intensive and can result in 

larger file sizes. 

One major limitation of quantization is that it can cause a loss of image quality, resulting 

in visible distortion or artifacts in the processed image. To mitigate this, advanced 

techniques such as dithering and error diffusion can be used to distribute the quantization 

error across the image in a more visually pleasing manner. 

2.1.6. CV and Image Processing 

Computer vision is a rapidly growing field that has numerous applications in a wide range 

of industries. It involves using advanced algorithms and techniques to enable computers 

to interpret and understand visual data from the world around them (Vandoni, 1996). 

The origins of computer vision can be traced back to the 1950s and 1960s, when 

researchers began to explore the potential of using computers to analyze and interpret 

visual data. One of the early pioneers in this field was David Marr, who developed the 

first computational vision model (Marr, 1982). 

Since then, the field of computer vision has continued to evolve and expand, driven by 

advances in technology, algorithms, and hardware. Some of the key developments in this 

domain have included the development of image recognition algorithms, using deep 

learning techniques, and using high-performance computing resources. 

One area of research in computer vision focuses on object recognition. This involves 

developing algorithms to identify and classify objects in an image or video based on their 

visual characteristics. For example, a computer vision system might be trained to 

recognize different types of vehicles, animals, or household objects. 

Another important area of research in computer vision is image segmentation. This 

involves dividing an image into separate regions based on its visual characteristics, such 

as color, texture, or shape. This can help to identify and isolate specific objects or regions 

of interest within an image. 

Today, computer-vision technology is used in many applications, including surveillance, 

medical imaging, and self-driving cars. In surveillance, computer-vision systems are being 

used to monitor public spaces, detect suspicious behavior, and alert authorities in real-

time. In medical imaging, computer-vision systems analyze medical images, such as X-

rays and MRIs, and identify abnormalities or conditions, such as cancer (Lundervold & 
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Lundervold, 2019). Furthermore, in self-driving cars, computer-vision systems are being 

used to provide the vehicle with the ability to perceive and navigate its environment. 

Despite the many advances that have been made in computer-vision technology, there are 

still significant challenges and obstacles that must be overcome in order for this field to 

continue to grow and thrive. Some key challenges in this domain include more 

sophisticated algorithms, more efficient and scalable hardware, and better integration with 

other AI technologies. 

At the same time, many opportunities and potential benefits come with the development 

of computer-vision technology. Some of these include the potential to improve safety and 

security, the potential to improve the accuracy and efficiency of medical diagnoses, and 

the potential to enable new forms of automation and transportation. 

2.2. Related Work 

In this section, we are elaborating on similar works that aim to address the challenges we 

stated as the problem statement. While lots of different research has been conducted for 

product metadata extraction and product recommendation (Deng et al., 2022; Ghani et al., 

2006; Ghosh et al., 2023; Kumar & Saladi, 2022a, 2022b; Lin et al., 2021; Miami & Zeng, 

2015; Petrovski & Bizer, 2017; Qiu et al., 2015; Rezk et al., 2019; Q. Wang et al., 2020a, 

2020b; Wong et al., 2008; Yang et al., 2022a, 2022b; Zhang et al., 2022; Zheng et al., 

2018), there are very few works conducted in the product metadata validation area. We 

have searched the literature and found two groups of similar work; the first group of 

research uses textual descriptions of the product to validate the product metadata. The 

second group uses product images with CV and OCR techniques to validate the product 

metadata. These studies are summarized in the following part: 

CAVE: Correcting Attribute Values in E-commerce Profiles 

This study is one of the recent papers about this area, published in October 2022. In this 

paper, the authors propose a system named CAVE (Correcting Attribute Values in E-

commerce) for product metadata validation (Sabeh et al., 2022). This paper aims to 

validate, correct, and enrich product metadata using the Question Answering (QA) 

models, including BERT, DistilBERT, RoBERTa, ALBERT, and XLNET. CAVE is 

trained on datasets generated from the Amazon Review Dataset.  

The proposed model learns information from titles and product attributes tables placed in 

the product description's HTML, using encoder and language models. Then, they use these 

data to validate and correct attribute values. The model also can enrich existing product 

descriptions with new attribute values extracted from titles. The work was presented at the 

31st ACM International Conference on Information & Knowledge Management 

Conference (CIKM '22). The published conference proceeding does not have any 

evaluation for the proposed model. The overview of the proposed architecture is shown in 

Figure 6. 
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Figure 6 CAVE model architecture 

The proposed architecture process Amazon Review Dataset and extract product metadata 

question-answer data from it. Then, it trains the QA models with these training data. After 

that, the user sends the product information via GUI. The model scrapes the product 

attributes from the HTML table in the product description and the product title from the 

product data and corrects them using QA models. 

E-commerce Product Attribute Value Validation and Correction Based on 

Transformers 

A transformer-based approach was proposed in this research to validate product attribute 

values using the product profile and suggest correct values when errors are detected (le 

Yu Haozheng Tian & Velkoski, 2022).  

This approach can be applied to all textual metadata types. It uses a RoBERTa-based 

Natural Language Inference (NLI) model that has been extended for e-commerce product 

metadata value validation by comparing structured product information to the most 

relevant content selected from unstructured product profiles. In addition, the model is also 

used to recommend correct values. This feature reduces manual effort in real-life 

scenarios. As a result, the model has achieved PRAUC scores of 0.889 for contradictory, 

0.864 for neutral, and 0.950 for entailed examples in a total of 8247 examples testing data. 

Automatic Validation of Textual Attribute Values in E-commerce Catalog by 

Learning with Limited Labeled Data 

Authors propose to develop an automatic validation approach that verifies the correctness 

of textual attribute values for products using product descriptions (Y. Wang et al., 2020).  
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They have proposed a meta-learning latent variable approach called MetaBridge to 

validate the textual attribute values of products from various categories as an NFI task in 

the few-shot learning setting. This approach involves a meta-learning latent variable 

model that simultaneously processes signals obtained from product profiles and textual 

attribute values. According to them, this model can significantly reduce annotation costs 

by effectively utilizing labeled data from limited categories. Regarding the PRAUC score, 

their model MetaBridge showed a 3.66% improvement over Meta-SGD and 3.33% 

compared to BERT. 

An Automated Computer Vision System for Extraction of Retail Food Product 

Metadata 

An automation method was proposed to enhance the extraction of unstructured product 

metadata from food product label images using computer vision, machine learning, optical 

character recognition, and natural language processing (Gundimeda et al., 2019).  

The overall process flow is shown in Figure 7. The process starts with background 

removal that uses computer vision similar to our baseline methods. Then, the automatic 

image quality classification step uses image data to extract product metadata with OCR 

combining other techniques. The output of this step is processed with NLP in the attribute 

extraction step. After that, the product metadata is validated with the extracted data against 

existing metadata. 

 

Figure 7 The process flow for the automated system for extraction of retail food product metadata 

This approach also includes an automatic image quality classification system to identify 

images and a technique to improve the quality of images using traditional computer vision 

algorithms to enhance text detection and OCR and NLP-based metadata extraction 

accuracy.  

To assess the performance of their proposed solution, the authors conducted an experiment 

using a real dataset with 352 food products from 53 brands, which contained 955 images 

(including front, back, and side view product images). After the experiment, it was found 

that their approach had a 0.9810 accuracy score on nutrition metadata validation and 

0.9879 on net weight/volume validation. 
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CHAPTER 3 

 

 

3. METHODOLOGY 

 

 

 

In this chapter, we elaborate on our proposed methodology in detail. First, we give the 

problem definition and explain the research questions. Then, we expound the 

methodology into two main concepts, and we explain these concepts at every step. 

3.1. Problem Definition 

Improving the data quality of product metadata is a time-consuming job for the merchants 

and also for the marketplaces. The first reason for that is the count of the products. The 

marketplaces have millions of different products to be sold in their databases. These 

results in tens of millions of metadata attributes plus millions of product images to validate 

and correct. It is a costly decision to make this validation by the labor workforce. As a 

remediation, marketplaces try to develop internal automation tools to improve the data 

quality of the metadata and validate product images. These tools get input data from the 

uploaded information by the merchants and try to validate the metadata. For example, a 

tool can determine whether a product is placed in the wrong category with image 

verification. It gathers and processes all the images previously served in a category and 

finds out that the newly uploaded product is in the wrong category. Alternatively, a tool 

can easily correct grammar mistakes in a product description uploaded by a merchant.  

These tools primarily bear the data already in the marketplace, uploaded by merchants, 

like product images. The data quality of the product images is a common problem for 

these tools used to improve the metadata. Merchants can upload images shot in improper 

lighting or angle. Products can be placed in the frame improperly (Figure 8).  
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Figure 8 Improper shoe product image samples 

Also, some of the product images created by the merchants include improper graphical 

elements like logos, campaign badges, size charts, or different kinds of text (product 

description, company contact information, etc.). These problems allow the internal tools 

to output incorrect results. So, these tools can easily miss details or make a wrong decision. 

For example, some of the images already served by the marketplace may have some 

defects, like containing size charts, shots from an improper angle, etc., that cause the tool 

to miss the defects on the newly uploaded images. Alternatively, the tool can correct all 

the grammar mistakes in the description. However, it may not handle the wrong 

description of the product or misleads the customers. 

The last problem is human error and human subjectivity. Even if a marketplace has enough 

human resources to handle the validation of every product in its database, people can 

easily miss a detail on the product and outputs a worse-quality in data. Also, some 

metadata attributes have a vague description by nature. For example, color is one of the 

top filter data for clothing products. It defines the main visual conception of the product 

and provides guidance to the buying decision.  

Despite this, color is a very subjective matter and has many different naming and 

classifications. For example, while RGB color space has more than 16 million colors, 

many marketplaces try to classify these colors into 8 to 10 color classes. In this 

circumstance, one person may classify a clothing product to one color; one other is to 

another. Some product categories also have different visual conceptions by its nature. For 

example, while shoe category has all the problems mentioned before. 

Additionally, the conception of the color of a shoe varies from the other fashion/clothing 

categories. A small bow can determine the shoe's color on the top, or the primary color of 

a shoe varies from person to person who focuses on a different part of the shoe. These 

examples are shown in Figure 9. The shoe on the left is considered a white shoe by the 

customers of the small white bow. Different personnel may classify the shoe on the right 

as black, white, red, or multi-color. 
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Figure 9 Shoe product image samples 

As stated before, the marketplaces have millions of products and tens of millions of 

product metadata and images uploaded. In terms of validation and correcting, the labor 

workforce cannot handle this bulk data manually. They need to automate this process. But 

when using automation, there are data quality-related problems with uploaded images and 

metadata. The product images can contain unrelated graphical items, improper posing, or 

other quality-related problems that mislead the tools. Also, input metadata contains human 

error and subjectivity. Suppose a classification model is trained with this data. In that case, 

the resulting model may suffer from these problems, and the results may not show the 

actual accuracy. This situation reveals a paradox: the tools created for validation and 

correction also need validated input data to work properly. As a result, It is harder to serve 

correct metadata for every product in marketplaces with millions of products inside. This 

directly affects customer experience and the success of a marketplace. 

In this research, we aim to offer a new methodology to validate and correct metadata 

attributes of products by using their images, even if the metadata and the product images 

are not of good quality. 

3.2. Methodology 

We aim to offer a new model in this research to lessen the aforementioned problems. First, 

we use machine learning models to automatize the process. It is crucial to handle a large 

amount of bulk data. Second, we offer to create a ground truth with manual sampling and 

validation. This dataset is used to compare our classification model's output. We also 

create an image validation model with the sampling output and manual validation step. 

We use this model to validate raw images after. So that we can remove unrelated images 

from the dataset with the help of this model, and finally, we can use validated bulk images 

to create a classifier to improve the metadata. And we compare the results of this model 

with the run made with ground truth.  

Our methodology has two main steps: validation model preparation and classification. In 

the first step, the ground truth is prepared by sampling and manual validation. Then image 

validation model is trained with the outputs (Figure 10). 
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Figure 10 Methodology First step overview 

In the second step, the artifact of the first step is used with the raw dataset to create a 

validated dataset in the beginning. Then metadata classification model is used on ground 

truth and validated dataset separately. In the final, the two results of the model are 

compared (Figure 11). 

 

Figure 11 Methodology Second step overview 

3.2.1. Sampling and Manual Validation 

In this step, we aim to create a ground truth dataset with sampling and manual validation. 

This is a manual process conducted by an expert. In the beginning, the number of the 

target image is determined. This number can change according to metadata and the 

properties of the validation model to be created after the selection. We offer to select an 

equal number of images for each class of metadata. This improves the resulting validation 

model accuracy and decreases the model's bias. If we select more images for a class, it 

may create a bias in this class in the resulting model. Also, the resulting model may miss 

the details of the other classes more. 

Then, a set of rules must be defined preliminarily before the selection begins. These rules 

are used to define the properties of a valid image to be selected and the class of the image. 

These rules help us to decrease the subjectivity of the human workforce. Every selected 

image and the class of the image needs to comply with these rules. 

After that, the sampling stage begins. We offer random sampling to avoid bias. First, a set 

of images was randomly selected from the raw dataset. The first image is analyzed against 

the rules defined. If the image is valid according to the rules, then the class selection is 

made according to the rules. The resulting image and the class are recorded. If an image 

cannot comply with the rules, then this image is also recorded as an invalid image to be 
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used in the validation model to be created later. The predefined class and the resulting 

classes are also compared to calculate the accuracy of the predefined classes. The 

sampling stage is finished when the selected images have reached the predefined number. 

3.2.2. Image Validation Model Training 

In this step, we use valid and invalid image samples from the previous step to create a 

validation model. This model validates input images and removes the invalid images from 

the dataset. This helps us decrease the effect of invalid images, including additional 

graphical items, improper posing, angle, etc. As a result, the classification model gets only 

valid input images. We do not add the misclassified images into the process in this step. 

These images are only used to find the ratio of the misclassification of the raw dataset. 

3.2.3. Image Validation 

In this step, we use the model created in the previous step to validate bulk raw image data. 

This process classifies input images as valid or invalid. Then we remove invalid images 

to clear the dataset and improve the data quality. As a result, a dataset that has validated 

images has resulted in this step. 

3.2.4. Image Classification Model Training 

In this step, we use images to train a classification model to classify products against 

selected metadata. But in the first step, we train the model with a ground truth dataset 

created in the early stages of the process. We record the resulting metrics of the model. 

Then, we train the model again with the predefined classes. After that, we compare the 

results with the ground truth model results. In the comparison, we use the misclassification 

statistics from the previous stage and the ground truth classification metrics to understand 

the efficiency of our classification model in terms of statistics.  
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CHAPTER 4 

 

 

4. EXPERIMENTAL WORK 

 

 

 

In this chapter, we give the details about the experiment we performed to realize the 

effectiveness of the model we proposed in the previous chapter. At the beginning of the 

chapter, we elaborate on the dataset and the features we used in the experiment. Then we 

give details about the steps performed in the experiment, implementation details, and 

experimental settings. And finally, we explain the results and findings after the 

experiment. 

4.1. Dataset 

In this experiment, we use the Amazon Berkeley Objects (ABO)6 dataset, a large-scale 

dataset designed to train 3D models of products with real images (Collins et al., 2021). 

ABO dataset contains product catalog images, metadata, and 3D models of products sold 

on Amazon websites worldwide. The ABO dataset contains 147,702 products and 398,212 

product images, along with the metadata of the products. 

The metadata of the products is placed into 16 files encoded with UTF-8 and gzip-

compressed. Every line corresponds to a product as a JSON object. Every product 

metadata JSON has common sub-sections listed in Table 1.  

 

 

6 https://amazon-berkeley-objects.s3.amazonaws.com/index.html 
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Table 1 ABO dataset metadata table 

Metadata Section Description 

brand Brand name 

bullet_point Important features of the products 

color Color of the product as text (available in different languages) 

color_code Color of the product as HTML color code 

country Country of the marketplace, as an ISO_3166-1 alpha-2 code 

domain_name The domain name of the marketplace where the product is 

found. 

fabric_type Description of product fabric 

finish_type Description of product finish 

item_dimensions Dimensions of the product (height, width, length) 

item_id The product reference id. 

item_keywords Keywords for the product 

item_name The product name 

item_shape Description of the product shape 

item_weight The product weight 

main_image_id The main product images. 

marketplace Retail website name (Amazon, AmazonFresh, AmazonGo) 

material Description of the product material 

model_name Model name 

model_number Model number 

model_year Model year 

node Location of the product in the category tree 

other_image_id Other available images for the product 

pattern Product pattern 

product_description Product description as HTML  

product_type Product type (category) 

spin_id Reference to the 360º View image sequence. 

style Style of the product 

3dmodel_id Reference to the 3d model of the product. 

 

There are 576 different types of products listed in the dataset. The top 20 product types 

according to the count of the item listed in (Table 2) 

Table 2 ABO dataset product type distribution 

Product Type Count 

CELLULAR_PHONE_CASE 64853 

SHOES 12965 

GROCERY 6546 

HOME 5264 
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Table 2 (cont.) ABO dataset product type distribution 

Product Type Count 

HOME_BED_AND_BATH 3082 

HOME_FURNITURE_AND_DECOR 2255 

CHAIR 2100 

BOOT 2009 

SANDAL 1845 

FINERING 1540 

HEALTH_PERSONAL_CARE 1449 

FINENECKLACEBRACELETANKLET 1377 

ACCESSORY 1362 

SOFA 1199 

OFFICE_PRODUCTS 1152 

FINEEARRING 1137 

PET_SUPPLIES 1064 

SPORTING_GOODS 972 

TABLE 935 

HARDWARE_HANDLE 860 

 

Each product has one or more images in various sizes. Also, some of the products have 

3d models and images taken from different angles. 

4.2. Product and Metadata Selection 

The preliminary step in the experiment is the selection of the product category and 

selecting the metadata attribute to improve. It needs to have two characteristics: selected 

metadata could be extracted from the images of the product. The second one is it needs to 

be metadata that can be represented as classes.  

The dataset has 576 different kinds of products and their metadata attributes. We select 

the "SHOES" category and the "color" metadata to improve. Shoes have the characteristics 

and the problems we defined in the previous chapter, that is, a fashion product that is hard 

to merge with other products and has a different visual perception from other fashion 

products, and every shoe has various forms, sizes, and concepts. Especially the color of 

the shoes does not always mean the main or dense color of the product. Usually, the color 

of a shoe is defined by a part of the shoe. So, it is hard to find the color of shoes by 

primitive techniques like using the color histogram. For example, the shoes shown in 

(Figure 12) have an intense white color spectrum, while it is pink shoes. 
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Figure 12 Sample shoe image in pink color 

The color attribute, in general, also suffers from human subjectivity more than other 

metadata attributes. It is hard to classify some colors close to the primary colors' transition 

points. Visual perception of a color may vary according to light, posing, and other factors 

in the product image. 

4.3. Experiment Design 

In this section, we detail the experiment step by step. There are two main concepts in our 

experiment. The first step is the dataset processing steps using different kinds of tools and 

techniques. These steps are marked as blue in Figure 13. Every step results in a new dataset 

marked as orange in Figure 13. The second concept is the metadata improvement model 

runs on every resulting dataset, marked as green in Figure 13. On every new run for 

improvement, we use image data to improve the selected metadata with the help of CNN. 

We also use baseline algorithms to compare the results of our proposed model. We also 

compare the results of those runs to see the differences between datasets resulting from 

the processing phases. 
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Figure 13 Experiment overview 

4.3.1. Dataset Processing Steps and Artifacts 

This concept has four main steps, three resulting datasets, and a validation model artifact. 

4.3.1.1.Data Cleaning, Preprocessing Step 

This step uses the raw images and their metadata and results in the unrefined dataset used 

in the first improvement run. This step covers the removal of incomplete and inconsistent 

data first. While the improvement run uses product images to improve the metadata, the 

products with no image data are removed. Then, metadata conversion may apply. Suppose 

the metadata is a free text or numerical kind of metadata. In that case, a conversion needs 

to be conducted to convert text or numerical data into classes needed by the improvement 

run. After that metadata conversion, an image refinement is made on the image data. While 

there is a specific image size restriction for the CNN models, image resizing and scale 

may be needed according to the image data. Also, color correction and image 

preprocessing (like brightness and contrast modifications) may need to be according to 

the input image data. 

After these steps, the unrefined dataset is ready to use in the first improvement run. This 

dataset has unrefined metadata and image data for a certain product category. 

4.3.1.2.Manual Validation Step 

In this step, a manual validation process is conducted by an expert. The expert randomly 

selects an equal number of samples for each class, according to considered metadata. The 
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validation process covers both image data and metadata. The process starts with image 

validation. The expert validates the image data with a ruleset defined before the beginning 

of the validation process to minimize the subjectivity of the expert. These rules need to 

cover the characteristics of a valid image, like pose, quality parameters, etc. The expert 

selects the images that only fit the rules defined in the ruleset. Then it validates metadata. 

The expert selects only data with valid metadata according to the valid image according 

to the predefined ruleset.  

After these steps, the manually validated dataset is ready for the second improvement run. 

This dataset includes a manually validated small subset of the unrefined metadata and 

image data for a certain product category. 

4.3.1.3.Validation Model Training 

This step covers creating an image validation model from the manually validated dataset's 

image data. A predefined CNN model, AlexNet, is used for training the model. The input 

dataset is split into training, validation, and test datasets with 60%, 20%, and 20% ratios 

similar to the improvement run. The input dataset includes the dropped invalid images. 

Then the model training is conducted with the hyperparameters defined. 

The resulting model can classify images into two categories: valid and invalid. A valid 

class is used to express that the image is valid, according to the predefined ruleset, that 

can be used in the further metadata validation process. In contrast, an invalid class 

expresses that the image is invalid and cannot be used in the following metadata validation 

process. We can use this general image validation model to validate the unrefined dataset's 

image data in the next step. This model helps us to remove invalid images from the dataset. 

After the training, the validation model is used in the next step in inference mode. 

4.3.1.4.Automatic Validation Using Validation Model 

In this step, we use the general validation model to validate the images in the unrefined 

dataset. The model is used to classify all the images into two categories, valid and invalid. 

We drop invalid image data and metadata accordingly. Only valid images and related 

metadata are selected into the refined dataset with the help of the validation model. 

After this step, the refined dataset is ready for the last improvement run. This dataset 

includes an automatically validated subset of the unrefined metadata and image data for a 

certain product category. 

4.3.2. Metadata Improvement Runs 

Metadata improvement runs are applied to the resulting dataset three times, to the 

unrefined dataset, manually validated dataset, and refined dataset. CNN and baseline 

methods are applied separately to the input dataset on every run. All the results are 

collected first and then compared together. The inline schema of every run is shown in 

(Figure 14).  
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The input image data and selected metadata attribute data are combined first. Then this 

combined dataset is shuffled on a random basis. Then the resulting dataset is split into 

training, validation, and testing sub-datasets with 60%, 20%, and 20% consecutively for 

the CNN training and testing. This dataset is also used with baseline methods in a single, 

not separated manner. 

 

Figure 14 Experiment validation step in detail 

After each run, we combined the results and discussed the outputs. Also, we compare the 

results of different improvement runs with different datasets mentioned before. We report 
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accuracy, precision, recall, and f1 scores for every class on the dataset for CNN and 

baseline methods. 

4.3.2.1.Convolutional Neural Network (CNN) 

We use the AlexNet model as CNN on every improvement run (Krizhevsky et al., 2017). 

The model's top-5 error rate in 1000 different output classes is 15.3% which is 10.8 lower 

(better) than the best-performing model to date.  

The alternative models are ResNet18 and VGG-Net11 (He et al., 2015; Simonyan & 

Zisserman, 2014). We take a random subset of 2000 images from the raw dataset and split 

it into training, validation, and testing datasets with the 60%, 20%, and 20% rule. Then, 

we run these three candidate models with the selected dataset in different hyperparameter 

settings. After that, we take the best-performing model according to the validation dataset 

accuracy and select AlexNet with a 0.7345 accuracy score. ResNet18 model performed 

0.7267, and VGG-Net11 performed 0.7326 accuracy score in their best-performing 

hyperparameter settings. 

The original paper of AlexNet uses images with 224 x 224 pixels in width and height 

consecutively, with RGB channels. It has five convolutional layers, three max-pooling 

layers, and three fully connected layers at the end. We use PyTorch implementation7 , 

which is slightly different from the original architecture (Krizhevsky & Inc, 2014) (Table 

3) 

  

 

 

7 https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py 
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Table 3 CNN AlexNet PyTorch Implementation Architecture 

Layer Details 

Convolutional 3 channels, 224x224, kernel:11x11, stride:4, padding:2 

ReLU  

Max Pooling 64 channels, 55x55, kernel:3x3, stride:2 

Convolutional 64 channels, 27x27, kernel:5x5, padding:2 

ReLU  

Max Pooling 192 channels, 27x27, kernel:3x3, stride:2 

Convolutional 192 channels, 13x13, kernel:3x3, padding:1 

ReLU  

Convolutional 384 channels, 13x13, kernel:3x3, padding:1 

ReLU  

Convolutional 256 channels, 13x13, kernel:3x3, padding:1 

ReLU  

Max Pooling 256 channels, 13x13, kernel:3x3, stride:2 

Adaptive Avg. Pool 256 channels, 6x6 

Flatten  

Dropout  

Linear 9216 

ReLU  

Dropout  

Linear 4096 

ReLU  

Linear 4096 

SoftMax 11 

 

The input image size should be greater or equal to 224x224 pixels with three channels. 

The first convolutional layer is applied with an 11x11 kernel size, 64 output channels, a 

stride of 4 pixels, and padding of 2 pixels. ReLU and max pooling are applied to the output 

of the first convolutional layer with kernel size 3x3, stride 2 pixels.  

The second convolutional layer is applied with a 5x5 kernel size, 192 output channels, and 

padding of 2 pixels. Then, ReLU and max pooling are applied with kernel size 3x3 pixels 

and stride 2 pixels. After that, three consecutive convolutional are applied with kernel size 

3x3, and padding is 1 pixel. There are ReLU between them, not max pooling layers. The 

first of these three is applied with 384 output channels, and the remaining two are applied 

with 256 output channels. After the last one, max pooling is applied with kernel size 3x3 

pixels with stride 2 pixels. 

At the end of the convolutional part, an average adaptive pool is applied with 6x6 pixels. 

Then the fully connected part is started with two sequential composite layers consisting 

of one dropout layer connected with a fully connected layer with 4096 output and ReLU 
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function. In the end, one fully connected layer is placed to connect 4096 features to the 

resulting classes with the softmax function. 

This model converts 224x224 pixel RGB images into probability distributions of classes 

at the end. Then we use the argmax function to select the resulting class of the model. 

4.3.2.2.Baseline Methods 

To compare the performance of our approach, we developed baseline methods, which are 

functions that get input images and output a class of metadata with mathematical 

calculations. These methods use different statistical functions to aggregate image data into 

a classification. They are used as a baseline in the methodology to compare and prove the 

effectiveness of the proposed CNN model. 

These methods are closely related to the selected metadata attribute. For example, suppose 

the selected metadata is color information. In that case, baseline methods aggerate the 

color information from the pixels of the images into one color class. Or, if the selected 

metadata is the pattern information, the patterns in the image are collected by the method 

and output a single pattern class. 

4.4. Performance Evaluation Metrics 

We use precision (regular, macro avg, weighted avg), recall (regular, macro avg, weighted 

avg), f1-score (regular, macro avg, weighted avg), and accuracy metrics while we measure 

the performance of the CNN and baseline models. We use the confusion matrix to compare 

the true and the predicted classes. We also use a loss-epoch and accuracy-epoch plot to 

see the effectiveness of the CNN model through each epoch. 

Additionally, we measure the timing of each model. We report the measurements for each 

model, including CNN and baseline models, separately for each run in the result section. 

After the experiment, we compare the results of each run.  

4.5. Baseline Algorithms Selection 

We use three quantization algorithms and four pairwise distance algorithms as baseline 

algorithms. All the algorithms get input of all pixels of the input image as an array and 

output a probability distribution of 11 possible classes. The image is classified as multi-

color if two or more colors have the possibility of more than 25%. If not, we select the 

highest probability as the main color class. The general perspective of a baseline algorithm 

is shown in Figure 15. 
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Figure 15 Baseline algorithm general perspective 

The background removal from the images before processing is conducted with the help of 

an algorithm proposed by Suzuki & be (1985). The OpenCV library implementation of 

the algorithm is used. 

If needed, we use the softmax function when converting distance vectors into probability 

distributions of the possible 11 main color classes. However, we convert the distance 

vector by dividing them by the max distance of the color space. The distance vector 

conversion and softmax function formula:  

𝑧𝑖 =
𝑑𝑚𝑎𝑥

𝑑𝑖
 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗11
𝑗=1

 

We generate a 4x4 pixels image in RGB color space to use in the examples for explaining 

the baseline methods. The example image pixel values are shown in Table 4. We use three 

classes only to simplify the example calculations, black (R:0, G:0, B:0), white (R:255, 

G:255, B:255), and gray (R:128, G:128, B:128).  

Table 4 Example 4x4 image pixel RGB values 

 
#1 #2 #3 #4 

#1 (69, 201, 33) (34, 134, 70) (129, 100, 73) (139, 173, 72) 

#2 (191, 252, 191) (49, 239, 39) (145, 172, 240) (24, 41, 25) 

#3 (65, 26, 229) (127, 216, 160) (251, 2, 169) (124, 68, 122) 

#4 (105, 91, 174) (118, 118, 189) (206, 31, 245) (165, 191, 208) 

 

4.5.1. Quantization Based Baseline Algorithms 

In general, quantization algorithms summarize the colors of an image and decrease the 

palette usage of a digital image. In this way, they are used as an image compression 

technique. This study uses quantization algorithms as an image's main color identification 
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algorithm. They take the image and try to output a single-color point for the whole image. 

So, they summarize the whole image into one color. We take that one color as the primary 

color of the image and find the pairwise distance of this color and the color classes. Then 

we convert these distances into a probability distribution of 11 possible outcomes. We use 

Modified Median Color Quantization (MMCQ), OctTree Quantization and Modified 

MMCQ (pngquant) Quantization algorithms (Gervautz & Purgathofer, 1988). 

MMCQ quantization aggregates 16 pixels of the example image to one RGB (68, 204, 36) 

color. The Euclidean distances of this color to the color classes and the probability 

distribution of example three classes are shown in Table 5. 

Table 5 MMCQ quantization example result 

 black white gray 

Distances 218.03 292.46 133.57 

Result 19.00% 11.00% 69.00% 

 

OctTree quantization aggregates 16 pixels of the example image to one RGB (155, 181, 

224) color. The Euclidean distances of this color to the color classes and the probability 

distribution of example three classes are shown in Table 6. 

Table 6 OctTree quantization example result 

 black white gray 

Distances 327.05 128.21 112.93 

Result 5.00% 37.00% 59.00% 

 

Modified MMCQ (pngquant) quantization aggregates 16 pixels of the example image to 

one RGB (125, 134, 145) color. The Euclidean distances of this color to the color classes 

and the probability distribution of example three classes are shown in Table 7. 

Table 7 Modified MMCQ quantization example result 

 black white gray 

Distances 234.68 209.90 19.28 

Result 0.00% 0.00% 100.00% 

4.5.2. Pairwise Distance Based Baseline Algorithms 
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The pairwise distance algorithm calculates the pairwise distance of each image pixel with 

the color classes. This distance is calculated with the Euclidean distance formula for the 

RGB color space. For the HSL color space, we use the circular bi-cone distance formula 

extracted with the help of Euclidean distance. This algorithm outputs a matrix with color 

classes in one of the axes while all the pixel colors are in the other. We use four techniques 

to aggregate this matrix into the probability distribution of the main color classes.  

4.5.2.1.Pairwise Distance Quantiles 

In the first technique, we use quantiles. We sort the distances against each main color 

class. Then we take the distance value at 0.25, 0.5, and 0.75 quantiles and convert them 

into probability distribution of the main color classes. We use the linear calculation of the 

quantiles stated as “Definition 7” by Hyndman & Fan (1996). 

The pairwise distances of the example image sorted by each class are shown in Table 8. 

 

Table 8 The pairwise distances of the example image sorted by each class 

 black white gray 

Q1  

53.69 90.56 60.44 

155 120 61.72 

178.75 138.62 62.62 

186.75 164.12 63.34 

Q2 

215 204.62 72.69 

222.62 229.5 93.62 

233.25 231.62 108.31 

239.5 236.5 110.62 

Q3 

247.12 264.25 121.5 

252.12 267.25 133.5 

297.25 270.25 152.75 

302.5 294.5 156.75 

Q4 

321.5 298.75 162.75 

327 299 170.25 

329 312.5 170.88 

369.5 390 180.75 

 

The distances for 0.25, 0.50, and 0.75 quantiles and the resulting probability distributions 

are shown in Table 9. 
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Table 9 Pairwise distance quantiles of the example image 

 black white gray 

0.25 Distance 207.94 194.50 70.35 

0.25 Result 1.52% 1.76% 96.72% 

0.50 Distance 243.31 250.38 116.06 

0.50 Result 10.79% 10.25% 78.96% 

0.75 Distance 307.25 295.56 158.25 

0.75 Result 16.87% 17.85% 65.28% 

 

4.5.2.2.Pairwise ArgMin 

We take the minimum distance for each pixel to the main color classes in the second 

pairwise distance technique. Then we count them and convert them into class probability 

distribution of the main color classes using the percentage. We called this algorithm 

“Pairwise ArgMin.” 

The pairwise distance of each pixel to the class points, the argmin class of each pixel, the 

count of selected classes, and the result are shown in Table 10. 

Table 10 Pairwise ArgMin result of the example image 

 black white gray ArgMin 

1 215 294.5 133.5 gray 

2 369.5 90.56 152.75 white 

3 239.5 298.75 156.75 gray 

4 222.62 236.5 63.34 gray 

5 155 312.5 110.62 gray 

6 247.12 299 162.75 gray 

7 297.25 164.12 93.62 gray 

8 252.12 204.62 62.62 gray 

9 178.75 270.25 61.72 gray 

10 329 138.62 121.5 gray 

11 302.5 267.25 180.75 gray 

12 321.5 229.5 170.88 gray 

13 233.25 231.62 72.69 gray 

14 53.69 390 170.25 black 

15 186.75 264.25 60.44 gray 

16 327 120 108.31 gray 
 

Count 1 1 14  

Result 6.25% 6.25% 87.50%  
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4.5.2.3.Pairwise Mean 

In the third one, we take the average distance value of all the distances from each pixel to 

the main color classes. And we convert them into probability distribution of the main color 

classes. This algorithm is called “Pairwise Mean.” 

The mean distance of the pairwise distances is shown in Table 10, and the result of the 

algorithm is shown in Table 10. 

Table 11 Pairwise mean result of the example image 

 black white gray 

Mean Distance 245.66 238.25 117.66 

Result 10.95% 11.58% 77.46% 

 

4.5.2.4.Array Mean ArgMin 

In the last pairwise algorithm, we take the mean value of all pixels in the image called the 

center point. Then, we calculate the distance between this center point and the main color 

points. And convert these distances into probability distribution of the main color classes. 

We called this algorithm “Array Mean ArgMin.” 

The mean of the pixels of the example image is RGB (121, 128, 140). This color’s pairwise 

distances and the result are shown in Table 12. 

Table 12 Array Mean ArgMin result of the example image 

 black white gray 

Distance 225.0 217.5 13.9 

Result 0.00% 0.00% 100.00% 

4.6. Model Implementation and Experiment Settings 

4.6.1. Implementation Details 

We implemented the experiment model in Python Jupiter notebooks and published it in 

the GitHub repository8. We use PyTorch and other common Python libraries (NumPy, 

 

 

8 https://github.com/alatas/MSThesis 
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matplotlib, etc.) in the implementation. The steps of the experiment are implemented in 

separate Jupyter notebooks. Each notebook can be run on a local personal computer or 

Google Colab environment. There is an option to use Google Drive as the persistent 

storage while using Google Colab in the notebooks. 

We use 11 color classes "black," "white," "gray," "red," "green," "blue," "orange," 

"purple," "yellow," "pink," "brown," and "multi-color." The distances between selected 

color classes in HSV and HSL color spaces are shown in Figure 16. 

 

Figure 16 HSV and HSL distance matrices 

 

We compared HSV and HSL color spaces before the implementation to find a more 

suitable color space for the experiment with the matrices shown in Figure 16. HSL color 

space has lower distance values for close color classes. For example, HSL has 0.4181, 

HSV has a 0.7550 value for the Red/Pink distance, while both color spaces have a 1.0000 

distance value between Black/White. Similarly, HSV has a 0.9342 distance value, while 

HSL has a 0.8784 distance value between Yellow/Brown. According to this comparison, 

we decided to use HSL color space instead of HSV color space. Also, we use RGB color 

space, the most common color space. In the implementation, notebooks have the option 

to switch between color spaces. The distance algorithm used in baseline algorithms 

changes according to the color space used. The rest of the experiment is not changing 

according to the color space. 

The HTML color names define these RGB and HSL color points. The RGB and HSL 

values of these classes are shown in (Table 13). 
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Table 13 Class center points in RGB and HSL color spaces 

Color RGB Value HSL Value 

Black [0, 0, 0] [0, 0.0, 0.0] 

White [255, 255, 255] [0, 0.0, 1.0] 

Gray [128, 128, 128] [0, 0.0, 0.5] 

Red [255, 0, 0] [0, 1.0, 0.5] 

Green [0, 255, 0] [120, 1.0, 0.5] 

Blue [0, 0, 255] [240, 1.0, 0.5] 

Orange [255, 165, 0] [39, 1.0, 0.5] 

Purple [128, 0, 128] [300, 1.0, 0.25] 

Yellow [255, 255, 0] [60, 1.0, 0.5] 

Pink [255, 192, 203] [350, 1.0, 0.88] 

Brown [165, 42, 42] [0, 0.59, 0.40] 

 

The dataset has text color names and HTML color codes for each product. We examine 

the HTML color codes provided with the random sampling method. We took 100 random 

samples and checked them with the actual images. Most HTML codes are close to the 

actual primary color of sample images. But, when we use the HTML color provided, we 

need to convert them to a color class with a method like Euclidean distance. Also, most 

marketplaces do not have a well-defined color point for the metadata. So, we decided to 

use text color names and a conversion matrix to convert text color names into color 

classes. The conversion table is shown in Table 14.  

Table 14 Text color attribute to the color classes conversion table 

Color Classes Text Color Attribute 

"multi-color" "multi" 

"black" "black", "asphalt", "caviar", "graphite", "Schwarz" 

"white" "white", "ivory" 

"gray" "gray", "grey", "chrome", "silver", "steel", "charcoal", "nickel", 

"aluminum", "anthracite", "ash", "dove", "fog", "iron", "pewter", 

"platinum", "slate", "sliver", "smoke", "stainless" 

"red" "red", "rose", "bordeaux", "burgundy", "maroon", "merlot", 

"autumn", "berry", "brick", "burgandy", "cherry", "garnet", 

"mahogany", "maron" 

"green" "green", "mint", "olive", "alligator", "aloe", "cadet", "emerald", 

"lagoon", "lemongrass", "sage", "seafoam", "sod", "teal", 

"turquoise" 

"blue" "blue", "navy", "aqua", "denim", "azure", "blau", "bule", "sapphire", 

"sky" 

"orange" "orange", "fire", "flame", "fawn", "pumpkin", "rust" 

"purple" "purple", "amethyst", "fuchsia", "heather", "lavender", "lilac", 

"magenta" 



42 

 

Table 14 (cont.) Text color attribute to the color classes conversion table 

Color Classes Text Color Attribute 

"yellow" "yellow", "gold", "amber", "brass", "butter", "canary", "citrine", 

"flax" 

"pink" "pink", "blush", "champagne", "linen" 

"brown" "brown", "beige", "biege" "braun", "bronze", "camel", "caramel", 

"sand", "tan", "walnut", "acorn", "antique", "barnwood", "chestnut", 

"chocolate", "cognac", "ecru", "hemp", "khaki", "oak", "saddle", 

"taupe", "wenge" 

 

The product is ignored and removed from the dataset if the color name is not defined, or 

not in the list stated in Table 14. Additionally, if a text includes different two-color classes 

(like “navy black”, or “brown black”), it is defined as multi-color. 

The experiment is run with two multi-color options. In the first option, we consider a 

multi-color class like the other color classes. In the second option, we do not use the multi-

color as a color class and force the models to choose one of the main color classes. We 

select the color with the highest probability in baseline algorithms when using the single-

color option. We report the results with multi-color and single-color options separately. 

We use 60% training, 20% validation, and 20% testing separation while training the CNN 

models.  

4.6.2. Hyperparameter Tuning 

On hyperparameter tuning, we use a two-phased approach. In the first phase, we use a grid 

search with a broad set of possible parameters. After that phase, we select the best-

performing set of hyperparameters from the first phase and run the second phase with a 

new set of hyperparameters close to the first phase's output. For the first phase, all possible 

hyperparameters are shown in Table 15.  

Table 15 Hyperparameter set for the first phase 

Hyperparameter Possible Values 

learning_rate [0.1, 0.01, 0.001, 0.0001, 1e-05, 1e-06] 

optimizer ["Adam", "RMSprop", "SGD"] 

dropout [0.05, 0.1, 0.15, 0.2 ] 

batch_size [16, 32, 64, 128] 
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We use the Optuna9 framework in hyperparameter tuning (Akiba et al., 2019).  In the first 

phase, we use the “GridSampler” sampler, which suggests all combinations of parameters 

in the given search space during the study. The first phase has 288 (7 x 3 x 4 x 4) available 

combinations of all possible hyperparameter values shown in Table 15. We select the best-

performing set of hyperparameters according to the testing dataset accuracy score. Then, 

we select a new set of hyperparameters for the second phase with the help of four plots 

drawn by the outputs of the first phase. These plots are the “Intermediate Values Plot,” 

“Optimization History Plot,” “Parallel Coordinate Plot,” and “Hyperparameter 

Importance Plot.” The Intermediate Values Plot shows the accuracy score after each epoch 

for all the trials. The Optimization History Plot shows the best accuracy score after each 

trial. The Parallel Coordinate Plot shows each trial's set of selected hyperparameters and 

output accuracy. The hyperparameter importance plot shows the importance of each 

hyperparameter in percentage according to the accuracy score (see Appendix A for the 

details). 

In the second phase, we use “TPESampler,” which uses the Tree-structured Parzen 

Estimator algorithm. This sampler fits one Gaussian Mixture Model (GMM) (represented 

as ‘l(x)’) to the set of parameter values associated with the best objective values. Then it 

fits another GMM (represented as ‘g(x)’) to the remaining parameter values. In the end, 

TPE chooses the parameter value x that maximizes the ratio l(x)/g(x)  (Bergstra et al., n.d., 

2013; Optuna.Samplers.TPESampler — Optuna 3.1.0 Documentation, n.d.; Ozaki et al., 

2020, 2022). We run the second phase for a total of 500 trials. On each trial, Optuna selects 

a new hyperparameter set and runs the model to achieve a better accuracy score on the 

testing dataset. Ultimately, we select the best-performing set of hyperparameters 

according to the accuracy score on the testing dataset. 

Additionally, we use the “prune” feature on the Optuna framework on both phases to 

release resources for the trials are already have worse accuracy scores on the run. Optuna 

decides that the current trial could be pruned according to the current accuracy score on 

each epoch. We use the “median pruner” algorithm to decide on prune for the current trial. 

The median pruner decides to prune the current trial if the current trial’s best intermediate 

result is worse than the median of intermediate results of previous trials at the same step. 

We conducted two hyperparameter tuning sessions for two models. In the first model, we 

use the manually validated image dataset to tune hyperparameters for Unrefined Dataset 

Improvement Run, Manually Validated Dataset Improvement Run, and Refined Dataset 

Improvement Run. We run these sessions for 120 epochs in total. We use the automatic 

validation dataset in the second model to tune hyperparameters for Automatic Validation 

Model Training Run. We run these experiments for 60 epochs in total.  

 

 

9 https://optuna.org/ 
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We conducted these two tuning sessions separately in two color spaces, RGB and HSL.  

4.7. Results 

We conducted eight hyperparameter sessions and 26 experiments over three different 

datasets. We define the results under five sections. In the first section, we give the results 

of the hyperparameter tuning sessions. And we give the results of the Automatic 

Validation Model; then, we give the results of the runs of three different runs on different 

color spaces and models. 

4.7.1. Hyperparameter Tuning Results 

The results of the phases for each hyperparameter tuning session are shown in Table 16 

(see Appendix A for the details). 

Table 16 Hyperparameter Tuning Results 

 Dataset Improvement Run Hyperparameter Tuning 

 RGB Color Space HSL Color Space 

 First Phase Second Phase First Phase Second Phase 

Best Accuracy: 0.8163 0.8265 0.7193 0.75 

Batch Size: 16 16 32 16 

Dropout:  0.15 0.15 0.1 0.11 

Learning Rate:  0.0001 0.0001 0.0001 0.00008 

Optimizer: RMSProp RMSProp RMSProp RMSProp 

     

 Automatic Validation Model Hyperparameter Tuning 

 RGB Color Space HSL Color Space 

 First Phase Second Phase First Phase Second Phase 

Best Accuracy: 0.9558 0.9676 0.9205 0.9264 

Batch Size: 16 16 32 16 

Dropout:  0.15 0.13 0.05 0.07 

Learning Rate:  0.00001 0.00005 0.0001 0.00006 

Optimizer: RMSProp RMSProp Adam Adam 

 

4.7.2. Automatic Validation Model Results 

After the manual validation process with an expert, we extracted 1092 valid and classified 

images for 11 classes. We tried to take a hundred validated image samples for each class. 

However, the purple and orange classes did not have enough validated 100 images at the 

end. Finally, we found 1092 valid, 609 invalid, and 715 misclassified images in 2416 

images. If we ignore the multi-color class, there is a total of 654 misclassified, 555 invalid 

images, and 992 valid images in 2201 total images. 
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The automatic validation model training run is conducted on the same CNN AlexNet 

model. The model performed a 0.9294 accuracy score on RGB color space and a 0.9059 

accuracy score on HSL color space on the testing dataset between “invalid” and “valid” 

classes. RGB model run is completed in 414.54 seconds, while the HSL model run is 

completed in 786.25 seconds. The summary is shown in Table 17, and some of the sample 

misclassified images on Figure 17. (see Appendix A for the details) 

After the model was finalized, we compared RGB and HSL accuracy scores. We run the 

RGB model on the unrefined dataset. In the manually validated dataset, the invalid image 

ratio was 25.20%. The model marked 5744 images out of 21454 images. The invalid ratio 

is 26.77%, which is consistent with the manually validated dataset's invalid ratio. 

Table 17 Automatic validation model run results summary 

  Precision Recall F1 Score Support 

R
G

B
 C

o
lo

r 
S

p
ac

e invalid 0.9391 0.8640 0.9000 125 

valid 0.9244 0.9674 0.9455 215 

accuracy   0.9294  

macro avg 0.9318 0.9157 0.9227 
340 

weighted avg 0.9298 0.9294 0.9287 

  Precision Recall F1 Score Support 

H
S

L
 C

o
lo

r 
S

p
ac

e 

invalid 0.8974 0.8400 0.8678 125 

valid 0.9103 0.9442 0.9269 215 

accuracy   0.9059  

macro avg 0.9039 0.8921 0.8974 
340 

weighted avg 0.9056 0.9059 0.9052 
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Figure 17 Sample Images that cannot be accurately classified in the Test Dataset 

After the automatic image validation process, as mentioned in section 4.3.2, we conducted 

metadata improvement runs in three steps over three datasets: the unrefined dataset, the 

manually validated dataset, and the refined dataset.  

4.7.3. Unrefined Dataset Improvement Runs 

This run is conducted over the dataset containing the raw images and metadata. For RGB 

Color Space, the CNN AlexNet model performed a 0.7891 accuracy score in 2865.16 

seconds with the single-color mode and a 0.6909 accuracy score in 3194.93 seconds with 

the multi-color mode. The best baseline method performed a 0.4076 accuracy score in 
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98.8010 seconds in single-color mode and a 0.3468 accuracy score in 53.09 seconds in 

multi-color mode. 

For HSL Color Space, the CNN AlexNet model performed a 0.7540 accuracy score in 

5519.77 seconds with the single-color mode and a 0.6506 accuracy score in 6201.11 

seconds with the multi-color mode. The best baseline method performed a 0.4277 

accuracy score in 44.44 seconds in single-color mode and a 0.3535 accuracy score in 97.38 

seconds in multi-color mode. The summary is shown in Table 18. (see Appendix A for 

the details) 

  

 

 

10 The duration for the baseline methods doesn’t include the pairwise distance calculation duration. The 

average durations are 190 image per second for RGB color space and 40 image per second for HSL color 

space. 



48 

 

Table 18 Unrefined dataset improvement run result summary 
    P
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p
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o
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S
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g
le

 C
o
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C
N

N
 A

le
x
N

et
 

M
o

d
el

 RGB 
macro avg 0.6564 0.5882 0.6095 

0.7891 

3703 
weighted avg 0.7896 0.7891 0.7862 

HSL 
macro avg 0.5590 0.5236 0.5326 

0.7540 
weighted avg 0.7531 0.7540 0.7515 

B
es

t 
B

as
el

in
e 

M
et

h
o
d

 RGB 
macro avg 0.4034 0.2305 0.1831 

0.4076 

18592 
weighted avg 0.5564 0.4076 0.3336 

HSL 
macro avg 0.4387 0.2563 0.2135 

0.4277 
weighted avg 0.5576 0.4277 0.3515 

         

M
u

lt
i-

C
o
lo

r 

C
N

N
 A

le
x
N

et
 

M
o

d
el

 RGB 
macro avg 0.6069 0.5467 0.5624 

0.6909 

4290 
weighted avg 0.6735 0.6909 0.6750 

HSL 
macro avg 0.5239 0.4876 0.4935 

0.6506 
weighted avg 0.6333 0.6506 0.6361 

B
es

t 
B

as
el

in
e 

M
et

h
o
d

 RGB 
macro avg 0.3402 0.2101 0.1578 

0.3468 

21454 
weighted avg 0.4061 0.3468 0.2698 

HSL 
macro avg 0.2736 0.2382 0.1902 

0.3535 
weighted avg 0.3614 0.3535 0.2867 
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4.7.4. Manually Validated Dataset Improvement Runs 

This run is conducted over the dataset containing the selected images and their metadata. 

For RGB Color Space, the CNN AlexNet model performed a 0.7806 accuracy score in 
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520.04 seconds with the single-color mode and a 0.6651 accuracy score in 547.82 seconds 

with the multi-color mode. The best baseline method performed a 0.3347 accuracy score 

in 1.91 seconds in single-color mode and a 0.2873 accuracy score in 2.12 seconds in multi-

color mode.  

For HSL Color Space, the CNN AlexNet model performed a 0.7041 accuracy score in 

936.43 seconds with the single-color mode and a 0.6193 accuracy score in 1034.46 

seconds with the multi-color mode. The best baseline method performed a 0.3609 

accuracy score in 0.64 seconds in single-color mode and a 0.3068 accuracy score in 2.25 

seconds in multi-color mode. The summary is shown in Table 19. (see Appendix A for 

the details) 
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Table 19 Manually validated dataset improvement run result summary 
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M
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d
el

 RGB 
macro avg 0.7064 0.6933 0.6923 

0.7806 

196 
weighted avg 0.7982 0.7806 0.7816 

HSL 
macro avg 0.6702 0.6388 0.6423 

0.7041 
weighted avg 0.7308 0.7041 0.7067 

B
es

t 
B

as
el

in
e 

M
et

h
o
d

 RGB 
macro avg 0.3669 0.2856 0.2167 

0.3347 

992 
weighted avg 0.3785 0.3347 0.2436 

HSL 
macro avg 0.2547 0.3016 0.2231 

0.3609 
weighted avg 0.2718 0.3609 0.2627 

         

M
u

lt
i-

C
o
lo

r 

C
N

N
 A

le
x
N

et
 

M
o

d
el

 RGB 
macro avg 0.6621 0.6728 0.6445 

0.6651 

 218 
weighted avg 0.6939 0.6651 0.6580 

HSL 
macro avg 0.6322 0.6153 0.6010 

0.6193 
weighted avg 0.6242 0.6193 0.6010 

B
es

t 
B
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el

in
e 

M
et

h
o
d

 RGB 
macro avg 0.2535 0.2398 0.1855 

0.2873 

1092 
weighted avg 0.2704 0.2873 0.2192 

HSL 
macro avg 0.2626 0.2806 0.2143 

0.3068 
weighted avg 0.2556 0.3068 0.2326 
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4.7.5. Refined Dataset Improvement Runs 

This run is conducted over the dataset containing the automatically validated images and 

their metadata. For RGB Color Space, the CNN AlexNet model performed a 0.8383 

accuracy score in 2368.36 seconds with the single-color mode and a 0.7279 accuracy score 
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in 2594.60 seconds with the multi-color mode. The best baseline method performed a 

0.4331 accuracy score in 37.56 seconds in single-color mode and a 0.3664 accuracy score 

in 44.44 seconds in multi-color mode. 

For HSL Color Space, the CNN AlexNet model performed a 0.7986 accuracy score in 

4751.72 seconds with the single-color mode and a 0.6820 accuracy score in 4739.08 

seconds with the multi-color mode. The best baseline method performed a 0.4532 

accuracy score in 48.50 seconds in single-color mode and a 0.3733 accuracy score in 42.09 

seconds in multi-color mode. The summary is shown in Table 20. (see Appendix A for 

the details) 
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Table 20 Refined dataset improvement run result summary 
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 RGB 
macro avg 0.7226 0.5986 0.6217 

0.8383 

2721 
weighted avg 0.8351 0.8383 0.8335 

HSL 
macro avg 0.5997 0.5624 0.5721 

0.7986 
weighted avg 0.7989 0.7986 0.7966 

B
es

t 
B

as
el

in
e 

M
et

h
o
d

 RGB 
macro avg 0.4321 0.2432 0.1965 

0.4331 

13596 
weighted avg 0.5888 0.4331 0.3537 

HSL 
macro avg 0.5333 0.2753 0.2369 

0.4532 
weighted avg 0.5989 0.4532 0.3727 

         

M
u
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i-

C
o
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r 

C
N

N
 A
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x
N

et
 

M
o

d
el

 RGB 
macro avg 0.6330 0.5940 0.5975 

0.7279 

3142 
weighted avg 0.7151 0.7279 0.7157 

HSL 
macro avg 0.5848 0.5306 0.5521 

0.6820 
weighted avg 0.6818 0.6820 0.6793 

B
es

t 
B

as
el

in
e 

M
et

h
o
d

 RGB 
macro avg 0.3868 0.2197 0.1670 

0.3664 

15710 
weighted avg 0.4576 0.3664 0.2827 

HSL 
macro avg 0.2747 0.2530 0.2056 

0.3733 
weighted avg 0.3279 0.3733 0.3027 
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4.8. Discussion 

The best performance for the automatic validation model is conducted in the RGB color 

space. The model is ~0.03 more accurate in RGB color space. The recall score for invalid 
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image class is the worse in the experiment, which is 0.8640 and 0.8400 for RGB and HSL 

color spaces, respectively. This shows us the model has worse performance while 

predicting invalid images. In contrast, the model has 0.9674 and 0.9442 recall scores for 

valid images, showing that the model performs better while predicting valid images.  

The accuracy scores of all the runs of different settings are summarized in Table 21.  

Table 21 Accuracy results summary 

   

Automatic 

Validation 

Model 

Unverified 

Dataset 

Manually 

Verified 

Dataset 

Refined 

Dataset 

S
in

g
le

 C
o
lo

r 

C
N

N
 

A
le

x
N

et
 

M
o

d
el

 RGB 

0.9294 

0.7891 0.7806 0.8383 

HSL 0.7540 0.7041 0.7986 

B
es

t 

B
as

el
in

e 

M
et

h
o
d

 

RGB 

X 

0.4076 0.3347 0.4331 

HSL 0.4277 0.3609 0.4532 

M
u

lt
i-

C
o
lo

r 

C
N

N
 

A
le

x
N

et
 

M
o

d
el

 RGB 

0.9059 

0.6909 0.6651 0.7279 

HSL 0.6506 0.6193 0.6820 

B
es

t 

B
as

el
in

e 

M
et

h
o
d

 

RGB 

X 

0.3468 0.2873 0.3664 

HSL 0.3535 0.3068 0.3733 

 

In general terms, CNN AlexNet models performed better in RGB color space, while 

baseline methods scored better in HSL color space. The accuracy difference between color 

spaces in both settings is around ~0.03 except for the manually verified dataset run in the 

CNN AlexNet model, which is ~0.08 for single color and ~0.05 for multi-color. When we 

compare confusion matrices of manually validated datasets run with single color settings 

for RGB and HSL color space (see Figure 18), the classification accuracy dropped 

significantly for white and black. 
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Figure 18 Comparing RGB (Right) HSL (Left) color space performance for the manually validated dataset 

in a single color setting 

The most significant drop is in the gray class. The precision score for gray is dropped to 

0.4231. When we compare two confusion matrices for the gray class, we see the HSL 

model misclassified 12 black and white shoes as gray. Four of them are actually black, 

and 8 of them are white. When comparing the failed classification samples of two white 

shoes (Figure 19), we see that these misclassified images are highly white intense shoes. 

The model predicts these images as gray in HSL color space. 

 

Figure 19 Misclassified Image Sample (Gray) 

The automatic validation model removed 26.77% of images (5744 invalid images out of 

21454 total images) as invalid in the unrefined dataset. This ratio was similarly 25.29% in 

the expert decision sessions. After this removal, the accuracy rate of the CNN AlexNet 

Model and baseline methods are increased by ~0.04 after automatic image validation is 

applied to the unrefined dataset.  

The best accuracy score is 0.8383 with the refined dataset, RGB color space on a single 

color setting. All of these accuracy scores are calculated towards the defined classes in the 

dataset. But, we recorded a significant count of images misclassified in the raw dataset 
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according to the outputs of the manual validation process. We examined 2416 images in 

total; 609 are invalid, 715 are misclassified, and 1092 are valid. The misclassified image 

ratio is 29.59% (715 images out of 2416) on a multi-color included setting. When we 

ignore the multi-color class, the ratio becomes 29.71% (654 images out of 2201 images 

total). These ratios include the invalid images in the total image numbers when we remove 

the invalid images from the total image counts: the ratio increases to 39.56% for multi-

color (715 over 1807), 39.73% (654 over 1646) for single color setting. 

When we look at the randomly chosen failed 36 sample images from the run (see Figure 

20), 17 out of 36 sample images are misclassified, and one is invalid. The misclassified 

sample ratio is 47.22%, and the invalid sample ratio is 3.12%.  

According to these numbers, we can calculate a rough prediction about the real accuracy: 

The count of total images used in the test database for the run is 2721. The model predicted 

2281 of them successfully. The remaining image count is 440, which is not classified 

correctly by the model. According to the sample statistics, 208 of these images are 

misclassified (47.22%). On the other hand, the ratio calculated over the manual validation 

process is that 39.73% of images are misclassified. This means 1081 images out of 2721 

are misclassified. So, 811 correctly classified images (1079 – 268) are also misclassified. 

In the end, we can predict the actual accuracy:  

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′ =
2281 − (1081 − 208)

2721 − 1081
=

1408

1640
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′ ≅ 0.8585 
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Figure 20 Sample Images that cannot be accurately predicted in the test dataset of the best model 

According to this rough calculation, the prediction accuracy is increased by ~0.02. But it 

is harder to calculate the actual accuracy precisely without validating every image. Also, 
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human subjectivity affects the outputs if we have enough capacity to validate all the output 

images manually. 

On the other hand, if we consider whether the misclassification exists in the raw dataset 

or not, the CNN AlexNet model performs almost two times more accurately than the 

baseline models. When we examine the confusion matrix of the best CNN AlexNet model 

in Figure 21, we can verbalize some key points according to the model's outputs. 

 

Figure 21 Confusion matrix of the best model 

The classification report of the best model is shown in Table 22. 

Table 22 Classification Report of the best model 

 
Precision Recall F1 Score Support 

black 0.8762 0.9271 0.9009 809 

white 0.7681 0.7211 0.7439 147 

gray 0.7623 0.6711 0.7138 301 

red 0.7786 0.7899 0.7842 138 

green 0.8506 0.6727 0.7513 110 

blue 0.8722 0.8980 0.8849 441 

orange 1.0000 0.1000 0.1818 10 
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Table 23 (cont.) Classification Report of the best model 

 
Precision Recall F1 Score Support 

purple 0.6667 0.2857 0.4000 21 

yellow 0.4516 0.3590 0.4000 39 

pink 0.7923 0.8729 0.8306 118 

brown 0.8525 0.8859 0.8688 587 

multicolor 0.0000 0.0000 0.0000 0 

          

micro avg 0.8383 0.8383 0.8383 2721 

macro avg 0.7226 0.5986 0.6217 2721 

weighted avg 0.8351 0.8383 0.8335 2721 

 

The model performs well for the black, white, gray, red, green, blue, pink, and brown 

classes. A few gray class predictions mixed with black, white, and blue class, and yellow 

class predictions mixed with brown classes. The model could not perform accurate 

predictions in the orange and purple classes. Almost all the predictions for these two 

classes are not correct.  

Now, we can compare those outputs with the best baseline method. The confusion matrix 

of the Refined Dataset Pairwise Argmin method is shown in Figure 22. 

 

 
Figure 22 Refined dataset pairwise argmin confusion matrix (single color with HSL color space) 
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The best baseline method shown in Figure 22 performed with a 0.4532 accuracy score. 

The model predicts almost all the images as black, white, or gray according to the 

confusion matrix and the outputs (see Appendix A). The recall score for black is 0.8591, 

while the precision score is 0.5200. The recall score for white is 0.7135, while the 

precision score is 0.5463. The recall score for gray is 0.7426, while the precision score is 

0.2802. 

For the comparison of the accuracy of the baseline method over the color spaces. The 

methods that use HSL color space performed ~0.025 better than the methods that use RGB 

color space in all experiments. 

According to the accuracy figures in Table 21, single color models performed better than 

the multi-color models, ~0.10 for the CNN AlexNet models and ~0.07 for the baseline 

models. The most significant difference between single color and multi-color is on CNN 

AlexNet model with HSL Color Space is 0.1166. The divergence between these two 

methods is based on the calculation of the multi-color. In CNN AlexNet models, the multi-

color class is calculated with the images defined as multi-color in the dataset. On the other 

hand, the baseline methods identify an image as multi-color if more than one probability 

of color classes has a probability higher than 25%. So, the CNN AlexNet model relies on 

the predefined classes in the dataset, which have ~29% and ~39% misclassification ratios 

on unrefined and refined datasets, respectively. This misclassification ratio has a negative 

effect on output accuracy. 
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CHAPTER 5 

 

 

5. CONCLUSION 

 

 

 

The marketplaces have millions of products listed with tens of millions of metadata to 

validate and correct. However, they also do not have a validated ground truth that helps 

them train the models that can be used in the automated validation processes. In this study, 

we aim to propose a new way to create a ground truth from the unrefined bulk dataset, 

which is our first objective. Our second objective in this research is to offer a new model 

to be used in the validation process that gets images of the products and validates the 

metadata.  

We proposed a new methodology, including automatic validation and classification for 

product metadata using product images with a deep neural network-based model. This 

approach could be applied to different metadata values in various product categories. The 

trained models could be used to validate newly uploaded metadata values for a product in 

an automated fashion. While the accuracy and reliability of product metadata are essential 

for marketplaces, this process helps them give their customers a better experience over 

product search and filtering. Inaccurate or unreliable product metadata can lead to issues 

like poor customer satisfaction. By improving the product metadata, the new methodology 

has the potential to significantly improve these business processes and ultimately lead to 

increased efficiency and profitability. 

To see the performance of our methodology, we used 21,454 shoe images and respective 

metadata from the ABO dataset and performed 26 experiments over the dataset with the 

proposed CNN AlexNet model and statistical baseline methods. We aimed to validate the 

predefined color metadata of the shoe products in those experiments in two color spaces, 

RGB and HSL, and include a multi-color class option. In the first step, we ran our model 

without any refinement on the raw dataset; then, we selected one hundred valid images 

per color manually and created a validation model based on CNN AlexNet to create a 

refined dataset by validating the images from the raw dataset. Then we reran our models 
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on this refined dataset and manually validated the dataset for comparison. In the end, our 

proposed model achieved 83.83% accuracy in the best settings, while the best baseline 

method achieved 45.32% accuracy.  

For future work, the additional color spaces could be used to see their effectiveness in 

classification. For example, XYZ, YUV, or CIELAB color spaces could be used in future 

work. These additional color spaces could be helped the performance of the proposed 

model. 

Another point is that we use the multi-color class like another regular color in the CNN 

AlexNet model. But, in the baseline methods, we take an image as multi-color if it has 

more than one color with a higher probability of over 25%. These two approaches are not 

aligned with each other. As another future work, we can ignore the defined multi-color 

classes in the dataset and create a similar multi-color decision process in the CNN AlexNet 

model. Also, we can use ROC Curve and F1 score to find the best threshold for the multi-

color decision. 

Image augmentation is not applied to the input dataset during the metadata improvement 

CNN AlexNet training. This process could be applied in the future to create additional 

training images and increase the model accuracy. Similarly, for the automatic image 

validation model training, additional invalid images could be augmented or generated to 

increase the input image count and model accuracy. 

In conclusion, the proposed new product metadata validation methodology has proven to 

significantly improve the baseline methods. It has been shown through extensive testing 

and evaluation. The significant increase in performance demonstrates the effectiveness 

and efficiency of the new methodology in validating product metadata. The proposed new 

product metadata validation methodology is a valuable contribution to the field. Its high 

accuracy rate and potential to improve business processes make it an attractive solution 

for various industries. Further research and development of the new methodology have 

the potential to bring even greater accuracy and efficiency to product metadata validation. 
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