

A DEEP NEURAL NETWORK BASED PRODUCT METADATA VALIDATION

APPROACH FOR ONLINE MARKETPLACES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ŞÜKRÜ ALATAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

APRIL 2023

Approval of the thesis:

A DEEP NEURAL NETWORK BASED PRODUCT METADATA VALIDATION

APPROACH FOR ONLINE MARKETPLACES

Submitted by ŞÜKRÜ ALATAŞ in partial fulfillment of the requirements for the degree of Master

of Science in Information Systems Department, Middle East Technical University by,

Prof. Dr. Banu Günel Kılıç

Dean, Graduate School of Informatics

Prof. Dr. Altan Koçyiğit

Head of Department, Information Systems

Prof. Dr. Altan Koçyiğit

Supervisor, Information Systems, METU

Examining Committee Members:

Assoc. Prof. Dr. Pekin Erhan Eren

Information Systems, METU

Prof. Dr. Altan Koçyiğit

Information Systems, METU

Assist. Prof. Dr. Özgür S. Öğüz

Computer Engineering, İhsan Doğramacı Bilkent Uni.

Date: 19.04.2023

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Şükrü Alataş

Signature :

iv

ABSTRACT

A DEEP NEURAL NETWORK BASED PRODUCT METADATA VALIDATION

APPROACH FOR ONLINE MARKETPLACES

Alataş Şükrü

MSc., Department of Information Systems

Supervisor: Prof. Dr. Altan Koçyiğit

April 2023, 72 pages

As e-commerce has become increasingly popular during the pandemic, online

marketplaces have seen a surge in merchants offering various products. A critical factor

in the success of these marketplaces is the user experience they provide, largely dependent

on features like efficient product search, fast filtering, and attractive product images.

However, maintaining the data quality of product metadata and images can be challenging,

especially as the number of products grows exponentially. To address this issue, this

research proposes a novel approach using an AI-based automated image validation model

for validating product images and an AI-based classification model to validate product

metadata in an automated fashion. Our approach offers several advantages over traditional

methods, including handling complex and noisy data and adapting to various challenging

product categories, such as fashion items. We demonstrate the effectiveness of this

approach through comparisons with traditional methods and in different settings,

ultimately showing strong support for the use of AI in product metadata validation for

online marketplaces.

Keywords: Metadata Validation, Deep Neural Networks, CNN, Online Marketplaces

v

ÖZ

ÇEVRİMİÇİ PAZARYERLERİ İÇİN DERİN SİNİR AĞLARINA DAYALI ÜRÜN

ÜSTBİLGİSİ GEÇERLEME YAKLAŞIMI

Alataş Şükrü

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Altan Koçyiğit

Nisan 2023, 72 sayfa

Pandemi sırasında e-ticaret giderek daha popüler hale geldiğinden, çevrimiçi

pazaryerlerinde çeşitli ürünler sunan satıcı sayılarında ciddi bir artış görüldü. Bu pazar

yerlerinin başarısındaki kritik faktör, verimli ürün arama, hızlı filtreleme ve çekici ürün

resimleri gibi özelliklere bağlı olarak sağladıkları kullanıcı deneyimidir. Ancak, özellikle

ürün sayısının üstel arttığı bir ortamda, ürün üst verilerinin ve görüntülerinin veri kalitesini

korumak pazar yerleri için zor olmaktadır. Bu sorunu ele almak için bu araştırma, ürün

resimlerini doğrulamak için yapay zeka tabanlı otomatikleştirilmiş bir görüntü geçerleme

modeli ile ürün üst verilerini otomatik bir şekilde doğrulamak için yine yapay zeka tabanlı

bir sınıflandırma modeli kullanan yeni bir yaklaşım önermektedir. Yaklaşımımız,

karmaşık ve gürültülü verileri işleme ve moda ürünleri gibi çeşitli zorlu ürün

kategorilerine uyum sağlama dahil olmak üzere geleneksel yöntemlere göre çeşitli

avantajlar sunmaktadır. Bu çalışmada, yaklaşımımızın etkinliğini, geleneksel yöntemlerle

ve farklı ortamlarda karşılaştırmalar yaparak gösteriyor ve çevrimiçi pazar yerleri için

ürün üst verileri doğrulamasında yapay zekanın kullanımına yönelik güçlü destek

sağlıyoruz.

 Anahtar Sözcükler: Üst Veri Geçerleme, Derin Sinir Ağları, CNN, Çevrimiçi Pazaryerleri

vi

DEDICATION

To My Family

vii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor, Prof.

Dr. Altan Koçyiğit, for his guidance, support, and patience throughout the entire process

of conducting this research and writing this thesis. His invaluable insights and constructive

feedback have been invaluable to developing and completing this work.

I would also like to thank my wife, Banu Alataş, for her love, support, and understanding

during the long and often stressful process of completing this thesis. Her constant

encouragement and belief in me kept me motivated and inspired at every step of my

academic journey.

I am also profoundly grateful to my parents, Ali and Ayşe Alataş, for their support

throughout my journey with computers since the age of 14. Their belief in my abilities

and constant encouragement in challenging situations has been crucial to my success.

Finally, I would like to thank my little boy, Ata Alataş, for bringing constant joy into my

life, and keeping me awake at night to work on my thesis. His presence has been a constant

source of motivation and joy for me.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

DEDICATION ... vi

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ACRONYMS ... xii

CHAPTERS

INTRODUCTION .. 1

1.1. Motivation ... 1

1.2. Objectives and Scope ... 3

1.3. Solution Perspective .. 3

1.4. Organization .. 4

2. BACKGROUND AND RELATED WORK ... 5

2.1. Background .. 5

2.1.1. Deep Neural Networks (DNNs) ... 5

2.1.2. Convolutional Neural Networks (CNNs) ... 6

2.1.3. Color Spaces ... 7

2.1.4. Distance Algorithms ... 12

2.1.5. Quantization ... 14

2.1.6. CV and Image Processing .. 15

2.2. Related Work ... 16

3. METHODOLOGY ... 19

3.1. Problem Definition .. 19

3.2. Methodology .. 21

ix

3.2.1. Sampling and Manual Validation... 22

3.2.2. Image Validation Model Training .. 23

3.2.3. Image Validation .. 23

3.2.4. Image Classification Model Training... 23

4. EXPERIMENTAL WORK .. 25

4.1. Dataset ... 25

4.2. Product and Metadata Selection .. 27

4.3. Experiment Design .. 28

4.3.1. Dataset Processing Steps and Artifacts .. 29

4.3.2. Metadata Improvement Runs ... 30

4.4. Performance Evaluation Metrics ... 34

4.5. Baseline Algorithms Selection .. 34

4.5.1. Quantization Based Baseline Algorithms .. 35

4.5.2. Pairwise Distance Based Baseline Algorithms .. 36

4.6. Model Implementation and Experiment Settings .. 39

4.6.1. Implementation Details .. 39

4.6.2. Hyperparameter Tuning ... 42

4.7. Results ... 44

4.7.1. Hyperparameter Tuning Results .. 44

4.7.2. Automatic Validation Model Results ... 44

4.7.3. Unrefined Dataset Improvement Runs ... 46

4.7.4. Manually Validated Dataset Improvement Runs 48

4.7.5. Refined Dataset Improvement Runs .. 50

4.8. Discussion ... 52

5. CONCLUSION .. 61

REFERENCES ... 63

APPENDICES ... 71

APPENDIX A .. 71

x

LIST OF TABLES

Table 1 ABO dataset metadata table .. 26

Table 2 ABO dataset product type distribution .. 26

Table 3 CNN AlexNet PyTorch Implementation Architecture .. 33

Table 4 Example 4x4 image pixel RGB values ... 35

Table 5 MMCQ quantization example result ... 36

Table 6 OctTree quantization example result .. 36

Table 7 Modified MMCQ quantization example result ... 36

Table 8 The pairwise distances of the example image sorted by each class 37

Table 9 Pairwise distance quantiles of the example image .. 38

Table 10 Pairwise ArgMin result of the example image .. 38

Table 11 Pairwise mean result of the example image .. 39

Table 12 Array Mean ArgMin result of the example image .. 39

Table 13 Class center points in RGB and HSL color spaces ... 41

Table 14 Text color attribute to the color classes conversion table 41

Table 15 Hyperparameter set for the first phase .. 42

Table 16 Hyperparameter Tuning Results ... 44

Table 17 Automatic validation model run results summary .. 45

Table 18 Unrefined dataset improvement run result summary .. 48

Table 19 Manually validated dataset improvement run result summary 50

Table 20 Refined dataset improvement run result summary .. 52

Table 21 Accuracy results summary .. 53

Table 22 Classification Report of the best model .. 57

xi

LIST OF FIGURES

Figure 1 RGB color space in 3D representation .. 8

Figure 2 HSV color space in cylindrical representation .. 9

Figure 3 HSV color space in circular cone representation ... 10

Figure 4 HSL color space in cylindrical representation ... 11

Figure 5 HSL color space in circular bi-cone representation ... 12

Figure 6 CAVE model architecture.. 17

Figure 7 The process flow for the automated system for extraction of retail food product

metadata ... 18

Figure 8 Improper shoe product image samples .. 20

Figure 9 Shoe product image samples ... 21

Figure 10 Methodology First step overview .. 22

Figure 11 Methodology Second step overview .. 22

Figure 12 Sample shoe image in pink color ... 28

Figure 13 Experiment overview ... 29

Figure 14 Experiment validation step in detail .. 31

Figure 15 Baseline algorithm general perspective ... 35

Figure 16 HSV and HSL distance matrices ... 40

Figure 17 Sample Images that cannot be accurately classified in the Test Dataset 46

Figure 18 Comparing RGB (Right) HSL (Left) color space performance for the manually

validated dataset in a single color setting ... 54

Figure 19 Misclassified Image Sample (Gray) .. 54

Figure 20 Sample Images that cannot be accurately predicted in the test dataset of the best

model .. 56

Figure 21 Confusion matrix of the best model .. 57

Figure 22 Refined dataset pairwise argmin confusion matrix (single color with HSL color

space) ... 58

xii

LIST OF ACRONYMS

3D Three Dimensions

ABO Amazon Berkley Objects

AI Artificial Intelligence

CDN Content Delivery Network

CMYK Cyan, Magenta, Yellow, Black

CNN Convolutional Neural Network

CV Computer Vision

DNN Deep Neural Network

GMM Gaussian Mixture Model

HSL Hue, Saturation, Lightness/Luminance

HSV Hue, Saturation, Value

HTML Hyper Text Markup Language

ILSVRC ImageNet Large Scale Visual Recognition Challenge

ISO International Standards Organization

JSON JavaScript Object Notation

MMCQ Modified Median Color Quantization

MRI Magnetic Resonance Imaging

ReLU Rectified Linear Unit

RGB Red, Green, Blue

RMSProp Root Mean Square Propagation

TPE Tree-structured Parzen Estimator

UTF Unicode Transformation Format

YUV Y - Luminance/Brightness, U - Blue Projection, V - Red Projection)

1

CHAPTER 1

INTRODUCTION

In this chapter, we give a brief introduction about the problem we aim to solve. Then we

explain our motivation, objectives, and the scope of the research. At the end of this

chapter, we give the details about the organization of this document.

1.1. Motivation

Online marketplaces have thousands of merchants selling products on their websites.

Some of them have a specific market to aim for, and some of them do not. For example,

according to revenue, Wayfair.com is one of the top online marketplaces, specifically

aiming at the home decoration and furniture market. Merchants willing to sell their

products through Wayfair.com can sell only a certain set of home and home decorations

products. On the other hand, Amazon.com is the biggest online marketplace according to

revenue and has no specific market to aim for. Almost all the products can be sold on

Amazon online. However, in both situations, whether an online marketplace aims at a

specific market or not, there are thousands of categories and different sets of metadata

attributes for every product defined. Some of these metadata have a specific set of options,

like brand and color. Some of them are free text or numerical attributes, like dimensions,

weight, etc. Additionally, almost every product has one or more images uploaded to a

CDN system. These metadata and images are essential factors for a better customer

experience and also a significant driver of the marketplace's success (Blanco et al., 2010;

Kim & Lennon, 2008; Li et al., 2016; Zhao et al., 2009).

When customers are willing to buy a product that fits the concept in their mind, the search

and filter facilitate the buying decision and play an essential role in their experience on

the website. They want to find the best match to their search definitions. So, suppose a

marketplace has a better metadata selection, and the customer wants to buy a product for

2

the category. In that case, the customer can easily filter the products and find the best

match. So, this improves the shopping experience of the customer very much. Suppose

the filtered products have exciting, good-looking images and a better description. The

customer is more likely willing to buy the product (Blanco et al., 2010; Kim & Lennon,

2008). This drives the marketplace to better sales figures and greater market share. On the

other hand, if a marketplace would not have a good set of defined metadata and images

for its products, customers cannot find the product quickly. They cannot make a buying

decision easily. This results in lower revenue in the end.

Data quality is another aspect of the problem. Thus, the merchants usually upload the

product metadata and images; Marketplaces use predefined product metadata and images

for several products to improve the data quality and the user experience. They merge the

product records from different merchants into one unified product record, and customers

see one product record for a specific product. While the customer wants to see the product

page, the merchants selling the same product are listed on the product page as a list. The

price point is selected as the lowest between them. Otherwise, they have thousands of

different metadata and images for the same product. Customers see the same product

repeatedly in the search results and listing pages with different titles, descriptions,

metadata, and images. This kind of experience hardens the marketplace usage for the

customers who try to find the best match at a lower price point.

While marketplaces try to unify this metadata into their product databases and allow

merchants to use this predefined product database, certain product categories cannot easily

be unified from merchant to merchant. Fashion, clothing, and shoes are examples of these

categories. Marketplaces have to rely on merchants' metadata and images for these

categories. Every merchant designs these products differ from each other, so they cannot

be unified.

Another aspect of the problem is different metadata standards for a product vary according

to the marketplace. Every marketplace has a different set of metadata for a certain product

category. For example, one marketplace may have eight predefined color names for an

item of clothing, and the other has free text for color names. It is hard to align the metadata

and data quality for the merchants selling products in more than one marketplace.

Sometimes it is possible to convert the metadata if it can be converted programmatically,

but sometimes, do not. Also, some of the metadata cannot be validated digitally. For

example, the material of a product could not easily be extracted by using its images. For

example, Wayfair.com is aiming home decoration market and has eight different material

categories (100% Cotton, Turkish Cotton, Egyptian-Quality Cotton, Cotton Blend, Rayon

from Bamboo, Terry Cloth, Linen, and Polyester) for towels, while Amazon.com have

only two (Cotton and Microfiber). For both marketplaces, it is almost impossible to

validate the material using images. Material metadata for some products may also be hard

to validate physically because some materials can only be validated by experts or in the

lab.

3

While data quality is a key factor for buying decisions, merchants do not always have

well-written descriptions, correct attributes, or good-looking images. Even if they have

good quality data, validating and converting this bulky data to different marketplaces is

time-consuming. This is also a problem in the marketplaces; as mentioned before, the

metadata quality is a key factor for a marketplace's success. Customers' shopping

experience is highly tied to the data quality served in the marketplace. Marketplaces need

to improve data quality by validating and correcting the metadata and images provided by

the merchants, especially in categories that do not allow the use of unified metadata and

images.

1.2. Objectives and Scope

The marketplaces have millions of products listed with tens of millions of metadata to

validate and correct. However, they also do not have a validated ground truth that helps

them train the models that can be used in the automated validation processes. In this

research, we propose a new way to create a ground truth from the unrefined bulk dataset,

which is our first objective. Our second objective in this research is to offer a new model

to be used in the validation process that gets images of the products and validates the

metadata.

Our research aims to address the problem defined in the previous section with the

limitation of the data available in the field. Our proposed model needs product images,

product metadata that can be defined as classes, and a human classifier that needs to

classify metadata using certain rules and restrictions defined beforehand. The approach

presumes the existence of these entities. Also, the performance of this study may vary

according to the quality of input product images and the human subject.

1.3. Solution Perspective

This section focuses on providing potential solutions to the problem identified in the

previous sections. These solutions are based on the findings from the literature review.

In the literature, a few pieces of research are found on product metadata/attributes

validation. There are four related works in the literature. They can be separated into two

groups:

The first group uses product descriptions to validate product metadata. They are using

different methodologies to validate the proposed product metadata values. Although they

use textual data, they are quite different approaches to the problem.

The second group of the solution uses CV and OCR techniques to understand the product

images and extract some valuable information from the product images. This methodology

is similar to our perspective by using product images. However, they use CV and OCR

techniques, while we use CNN to identify and validate the product metadata.

4

Overall, these solutions aim to address the challenges identified in the problem statement,

but they use different perspectives and techniques.

1.4. Organization

This thesis consists of five chapters and sections under them. This first chapter is the

introductory chapter that gives brief information about the problem, the motivation behind

the research, and the solution perspectives. The second chapter focuses on the background

information about the tools and techniques used in the proposed methodology. This

section also covers the related work proposed in the literature. The third chapter is about

the proposed methodology. It covers all the details about the proposed solution. The fourth

chapter covers the experiment we conducted to realize the methodology stated in the

previous chapter. The fourth chapter consists of the results and the discussions about the

experiment's results. The final chapter is the concluding chapter, which consists of a

summary of the research results and future work.

5

CHAPTER 2

2. BACKGROUND AND RELATED WORK

In this chapter, we give brief background information about the components of the

solution space and address the previous related work in the literature.

2.1. Background

This section gives brief information about tools and techniques related to the solution

space of the methodology proposed in the research.

2.1.1. Deep Neural Networks (DNNs)

Deep neural networks (DNNs) are artificial intelligence (AI) algorithms that have gained

significant attention in recent years due to their ability to achieve state-of-the-art

performance in various applications. DNNs are composed of multiple layers of

interconnected nodes, each processing input data and passing it on to the next layer for

further processing (Goodfellow et al., 2016). This hierarchical structure allows DNNs to

learn complex patterns and relationships in data, making them particularly effective for

tasks such as classification, image recognition, natural language processing, and machine

translation. One of the key characteristics of DNNs is their ability to learn and adapt to

new data without the need for explicit programming. This is achieved through the use of

backpropagation. This training algorithm adjusts the weights and biases of the network

based on the error between the predicted output and the actual output. Over time, the

network learns to make more accurate predictions, allowing it to generalize to new data.

Recent developments in DNNs have focused on increasing the size and complexity of the

network to improve performance. These large-scale networks, known as deep learning

networks, can have hundreds of layers and millions of parameters, allowing them to learn

more complex patterns and relationships in data. However, these networks require

6

significant computational resources and data to train, making them challenging to

implement in practice. Despite these challenges, the potential benefits of DNNs are

significant.

In the field of computer vision, DNNs have been used to achieve near-human levels of

performance in tasks such as object recognition and image classification (LeCun et al.,

1989; Voulodimos et al., 2018). In natural language processing, DNNs have been used to

improve machine translation and enable the development of conversational AI systems.

In healthcare, DNNs have been used to identify patterns in medical images and predict

patient outcomes (Lundervold & Lundervold, 2019).

Overall, DNNs represent a promising approach to AI that has the potential to improve the

performance of a wide range of applications. While challenges remain in terms of

scalability and practical implementation, ongoing research and development in this area

are likely to continue to drive advancements in the capabilities of DNNs.

2.1.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are a type of deep neural network specifically

designed to work with one or more dimensional input data. One of CNN's most well-

known sub-type is using 2D input data such as images. CNNs are composed of a series of

interconnected layers, each of which performs a specific function in processing the input

data (LeCun et al., 1998).

At a high level, CNNs are composed of multiple layers of interconnected nodes known as

neurons. These neurons receive input from the previous layer, process it using a non-linear

activation function, and pass the output to the next layer. The first layer of a CNN receives

input from the raw data, which in the case of image analysis, would be the image's pixel

values. The first layer in a CNN is the input layer, which receives the raw input data,

followed by a series of convolutional layers, which apply a series of filters to the input

data, extracting features and patterns from it (LeCun et al., 1998). The network learns

these filters based on the input data and the desired output during the training process.

These convolutional layers are followed by a series of pooling layers, which down-sample

the output of the convolutional layers, reducing the dimensionality of the data and making

it easier for the network to process. This may be followed by another convolutional layer

– pooling layer pair or one or more fully-connected layers, which use the output of the

pooling layers to make a final decision or prediction.

One of the key advantages of CNNs is their ability to learn features from the input data

rather than requiring them to be hand-crafted by the user. This allows CNNs to be applied

to various tasks, such as image classification, object detection, and segmentation. Another

advantage of CNNs is their ability to exploit the spatial structure of the input data,

allowing them to make highly efficient use of the available computational resources. This

allows CNNs to be applied to tasks involving large amounts of data, such as video analysis

and medical imaging. Despite these advantages, CNNs also have some limitations, such

7

as their reliance on large amounts of training data and the potential for overfitting if the

network is not properly regularized.

CNNs are a powerful tool for image and video analysis and have demonstrated their

effectiveness in various tasks. Their ability to extract features from raw data and their

efficient use of computational resources make them a promising approach for solving

complex real-world problems.

2.1.3. Color Spaces

Color spaces are a fundamental concept in the field of color science. They are used to

represent and manipulate colors in various applications. These spaces provide a

standardized way to represent colors in a form that computer systems can understand and

process.

One of the most commonly used color spaces is the RGB (Red, Green, Blue) color space,

which is based on the human visual system and how it processes colors. Another popular

color space is the CMYK (Cyan, Magenta, Yellow, Key/Black) color space, which is used

in printing applications. This color space represents colors as a combination of the four

subtractive primary colors. A value between 0 and 100 represents each color channel. This

color space is designed to produce consistent color reproduction on printed materials.

However, it is not suitable for display on electronic devices.

In addition to these popular color spaces, there are also a variety of other color spaces that

have been developed for specific applications, such as the Lab color space for accurate

color reproduction, the HSL (Hue, Saturation, Lightness) color space for intuitive color

manipulation, HSV (Hue, Saturation, Value) and the YUV (Y – Luminance/Brightness,

U – Blue Projection, V – Red Projection) color space for video compression (Schwarz et

al., 1987).

2.1.3.1.RGB Color Space

The RGB color space is a three-dimensional model (see Figure 1 RGB color space in 3D

representation) in which colors are created by mixing red, green, and blue light (Joblove

& Greenberg, 1978). This color space is based on the primary colors of light, red, green,

and blue, and it is used to create a wide range of colors on digital displays, such as TVs,

computers, and smartphones.

8

Figure 1 RGB color space in 3D representation1

The RGB color space is also known as the "additive" color space because the primary

colors are combined to create different colors. For example, when the red and green light

is mixed, they create yellow light. When red and blue light is mixed, they create magenta

light. And when green and blue light is mixed, they create cyan light.

One of the key benefits of the RGB color space is that it is intuitive and easy to understand.

Most people are familiar with the primary colors of light, and the concept of mixing colors

is something that many people are familiar with from childhood. This makes it easy for

people to use the RGB color space to create and manipulate colors on digital devices.

Another benefit of the RGB color space is that digital devices and software widely support

it. Virtually all digital displays and software programs that deal with color support the

RGB color space, which makes it a convenient and versatile choice for many applications.

Despite these benefits, the RGB color space does have some limitations. For example, the

range of colors produced in the RGB color space is relatively limited compared to other

color spaces, such as the CMYK color space. This means that some colors, such as very

saturated greens or purples, may be difficult to produce accurately in the RGB color space.

Additionally, the RGB color space is not well suited for printing applications. Because the

RGB color space is based on the primary colors of light, the colors produced are not the

same as those produced using the primary colors of pigments, such as cyan, magenta,

1 (RGB Color Model - Wikipedia, 2022)

9

yellow, and black. This means that colors that are created in the RGB color space may not

match the colors that are produced when they are printed on paper.

2.1.3.2.HSV Color Space

The HSV color space, also known as the HSB color space, is a cylindrical model of color

that separates hue, saturation, and value into three dimensions. This color space is often

used in image editing and computer graphics due to its intuitive representation of color

and its ability to easily manipulate the saturation and value of a color (Joblove &

Greenberg, 1978).

The hue of color in the HSV color space is represented by a number from 0 to 360, with

0 being red, 120 being green, and 240 being blue. This angle around the color wheel allows

for easy identification and manipulation of the primary and secondary colors. The

saturation of a color in the HSV color space is represented by a percentage, with 0% being

a shade of gray and 100% being the purest and most vibrant form of the hue. This allows

for the adjustment of the vibrancy and intensity of a color. The value of a color in the HSV

color space is represented by a percentage, with 0% being black and 100% being white.

This allows for the adjustment of the lightness or darkness of a color (Figure 2).

Figure 2 HSV color space in cylindrical representation2

Chroma and saturation are terms often used interchangeably, but they have slightly

different meanings. Chroma refers to the intensity or vividness of a color. In contrast,

saturation refers to the purity or richness of color. In other words, chroma measures how

2 (HSL and HSV - Wikipedia, 2022)

10

bright or intense a color is, while saturation measures how pure or intense a color is. For

example, a color with high chroma will be very bright and vivid, while a color with high

saturation will be pure and rich in tone.

When we use chroma (calculated as Saturation * Value) instead of saturation, the resulting

shape is a circular cone in three-dimensional space. This shape is more suitable for

calculating distances between two HSV colors in Euclidean space. Because, the

cylindrical representation of the HSV color space has a plane instead of a vertex for black.

The circular cone representation has a point/vertex instead of a plane for the color black

(Figure 3)(HSL and HSV - Wikipedia, 2022).

Figure 3 HSV color space in circular cone representation3

One advantage of the HSV color space is its ability to preserve the relationships between

colors when manipulating saturation and value. In other color spaces, adjusting the

saturation or value can result in a shift in the hue of a color. However, in the HSV color

space, the hue remains unchanged. Another advantage is its ability to easily create

complementary colors by adjusting the hue by 180 degrees. This allows for quick and easy

color balancing in designs and artwork.

2.1.3.3.HSL Color Space

The HSL color space, also known as the Hue-Saturation-Lightness color space, is a model

used to represent colors more intuitively and perceptually uniformly than other color

spaces. At its core, the HSL color space is based on the three primary colors: red, green,

and blue, like RGB color space. In the HSL color space, colors are represented by hue,

3 (HSL and HSV - Wikipedia, 2022)

11

saturation, and lightness. The hue is the basic color, red, green, or blue. The saturation

represents the intensity or purity of the color, with higher saturation indicating a more

intense color and lower saturation indicating a paler color. Finally, the lightness represents

the brightness of the color, with higher lightness indicating a brighter color and lower

lightness indicating a darker color.

While the hue value can be an angle between 0 and 360 degrees, Saturation and Lightness

values can take values between 0 and 1. HSL color space can be formed as a cylinder

(Figure 4) (Joblove & Greenberg, 1978).

Figure 4 HSL color space in cylindrical representation4

When we plot hue and lightness against chroma instead of saturation, likewise HSV color

space, the resulting model becomes a bi-cone that is a three-dimensional geometric shape

with a circular base and two parallel, conical sides that meet at a point on top which is

more suitable for calculating distances between two HSL colors in Euclidean space

(Joblove & Greenberg, 1978). Because, the cylindrical representation of the HSL color

space has two planes (black and white) at the top and bottom instead of a vertex. These

planes have different distance values instead of one, which is misleading (Figure 4). The

chroma can be calculated after the color is converted from HSL color space to HSV color

space:

𝑉𝑎𝑙𝑢𝑒 = 𝐿 + 𝑆 ∗ min(𝐿, 1 − 𝐿)

4 (HSL and HSV - Wikipedia, 2022)

12

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛′ = {
0 𝑉𝑎𝑙𝑢𝑒 = 0

2 (1 −
𝐿

𝑉𝑎𝑙𝑢𝑒
) 𝑉𝑎𝑙𝑢𝑒 ≠ 0

𝐶ℎ𝑟𝑜𝑚𝑎 = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛′ ∗ 𝑉𝑎𝑙𝑢𝑒

Figure 5 HSL color space in circular bi-cone representation5

One of the key advantages of the HSL color space is its perceptually uniform nature. This

means that changes in hue, saturation, and lightness values will have the same visual

impact regardless of the starting color. For example, increasing the lightness of a color by

50% will always result in the same visual change, regardless of whether the starting color

is red, green, or blue.

2.1.4. Distance Algorithms

Distance algorithms are a set of mathematical calculations that are used to determine the

distance between two points. This distance algorithm is commonly used in various fields,

such as geometry, physics, and engineering. It is also used in machine learning algorithms

for data clustering and classification.

One of the most commonly used distance algorithms is the Euclidean distance, named

after the Greek mathematician Euclid. The Euclidean distance is a fundamental concept

in mathematics and geometry. It measures the straight-line distance between two points

5 (HSL and HSV - Wikipedia, 2022)

13

in a Euclidean space. It is a mathematical space in which coordinates and distances

represent points calculated using the Pythagorean theorem.

In addition to the Euclidean distance, there are other distance algorithms, such as the

Manhattan distance and the Minkowski distance. The Manhattan distance is calculated by

taking the sum of the absolute differences between the coordinates, while the Minkowski

distance is a generalized version of the Euclidean and Manhattan distances.

These distance algorithms have different applications and properties. They are chosen

based on the specific requirements of the problem at hand. For instance, the Euclidean

distance is suitable for problems involving continuous variables, while the Manhattan

distance is more suitable for problems involving discrete variables.

2.1.4.1.Euclidean Distance for RGB Color Space

The Euclidean distance between two points in a 3D environment, denoted by d(x, y), is

calculated by taking the square root of the sum of the squares of the differences between

the coordinates of the three points. For example, suppose we have two points in a cubic,

A, and B, with coordinates (x1, y1, z1) and (x2, y2, z2), respectively. In that case, the

Euclidean distance between them is:

𝑑(𝐴, 𝐵) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

The Euclidean distance is a useful measure in many applications. For example, it is used

to calculate the distance of two colors between two colors in RGB color space. While Red,

Green, and Blue represent a color in RGB color space, we can calculate the distance in

two colors with the help of the Euclidean distance formula:

𝑑(𝐴, 𝐵) = √(𝑅1 − 𝑅2)2 + (𝐺1 − 𝐺2)2 + (𝐵1 − 𝐵2)2

As a result, when the range for each color is presumed between 0 to 255, the maximum

distance in the RGB color space can be calculated as the distance between black and

white, which is ~ 441.6729.

2.1.4.2.Euclidean Distance for HSV and HSL Color Space

The Euclidean distance for HSV and HSL Color Spaces measures the distance between

two points in a circular cone / bi-cone shape. This measure uses the Hue and Chroma of

14

the two colors and the Euclidean distance formula (How Can I Calculate Distance from

Two Pixels HSV?, 2022).

To calculate the distance, we first need to find the chroma (C) with the help of Saturation

(S) and Value (V) for the HSV color space. When using HSL color space, we need to first

convert the HSL color to HSV with the formula defined in the previous section; then, we

can calculate the chroma.

After calculating the chroma, then we can find the x value. y value and the z value of the

coordinates of the colors with the help of the Hue (H) angle, as shown in the formula

below.

𝐶 = 𝑉 ∗ S
𝑥 = 𝐶 ∗ cos(𝐻)
𝑦 = 𝐶 ∗ sin(𝐻)
𝑧 = 𝑉

Once we have the coordinates, we can apply the Euclidean Distance formula between two

points to find the distance between the two colors in the HSL color space.

𝑑(𝐴, 𝐵) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

When we apply the conversion on the Euclidean distance formula, the final formula is

shown in the formula for HSV and HSL Color Spaces.

𝑑𝐻𝑆𝑉(𝐴, 𝐵) = √(𝑉1 − 𝑉2)2 + 𝑆1
2𝑉1

2 + 𝑆2
2𝑉2

2 − 2𝑆1𝑆2𝑉1𝑉2 cos(𝐻1 − 𝐻2)

𝑑𝐻𝑆𝐿(𝐴, 𝐵) = √(𝐿1 − 𝐿2)2 + 𝑆1
2𝑉1

2 + 𝑆2
2𝑉2

2 − 2𝑆1𝑆2𝑉1𝑉2 cos(𝐻1 − 𝐻2)

2.1.5. Quantization

In image processing, quantization refers to reducing the number of bits used to represent

the color information of an image. This is typically done to compress the image, allowing

for more efficient storage and transmission of the data (Orchard et al., 1991).

15

There are several different approaches to quantization, each with its advantages and

disadvantages. One commonly used approach is uniform quantization, where possible

color values are divided into equal intervals. This approach is simple to implement and

can provide good results for images with smooth color gradients. Another approach is

non-uniform quantization, where the range of possible color values is divided into

intervals of varying sizes. This approach can provide better results for images with

complex color patterns. However, it is more computationally intensive and can result in

larger file sizes.

One major limitation of quantization is that it can cause a loss of image quality, resulting

in visible distortion or artifacts in the processed image. To mitigate this, advanced

techniques such as dithering and error diffusion can be used to distribute the quantization

error across the image in a more visually pleasing manner.

2.1.6. CV and Image Processing

Computer vision is a rapidly growing field that has numerous applications in a wide range

of industries. It involves using advanced algorithms and techniques to enable computers

to interpret and understand visual data from the world around them (Vandoni, 1996).

The origins of computer vision can be traced back to the 1950s and 1960s, when

researchers began to explore the potential of using computers to analyze and interpret

visual data. One of the early pioneers in this field was David Marr, who developed the

first computational vision model (Marr, 1982).

Since then, the field of computer vision has continued to evolve and expand, driven by

advances in technology, algorithms, and hardware. Some of the key developments in this

domain have included the development of image recognition algorithms, using deep

learning techniques, and using high-performance computing resources.

One area of research in computer vision focuses on object recognition. This involves

developing algorithms to identify and classify objects in an image or video based on their

visual characteristics. For example, a computer vision system might be trained to

recognize different types of vehicles, animals, or household objects.

Another important area of research in computer vision is image segmentation. This

involves dividing an image into separate regions based on its visual characteristics, such

as color, texture, or shape. This can help to identify and isolate specific objects or regions

of interest within an image.

Today, computer-vision technology is used in many applications, including surveillance,

medical imaging, and self-driving cars. In surveillance, computer-vision systems are being

used to monitor public spaces, detect suspicious behavior, and alert authorities in real-

time. In medical imaging, computer-vision systems analyze medical images, such as X-

rays and MRIs, and identify abnormalities or conditions, such as cancer (Lundervold &

16

Lundervold, 2019). Furthermore, in self-driving cars, computer-vision systems are being

used to provide the vehicle with the ability to perceive and navigate its environment.

Despite the many advances that have been made in computer-vision technology, there are

still significant challenges and obstacles that must be overcome in order for this field to

continue to grow and thrive. Some key challenges in this domain include more

sophisticated algorithms, more efficient and scalable hardware, and better integration with

other AI technologies.

At the same time, many opportunities and potential benefits come with the development

of computer-vision technology. Some of these include the potential to improve safety and

security, the potential to improve the accuracy and efficiency of medical diagnoses, and

the potential to enable new forms of automation and transportation.

2.2. Related Work

In this section, we are elaborating on similar works that aim to address the challenges we

stated as the problem statement. While lots of different research has been conducted for

product metadata extraction and product recommendation (Deng et al., 2022; Ghani et al.,

2006; Ghosh et al., 2023; Kumar & Saladi, 2022a, 2022b; Lin et al., 2021; Miami & Zeng,

2015; Petrovski & Bizer, 2017; Qiu et al., 2015; Rezk et al., 2019; Q. Wang et al., 2020a,

2020b; Wong et al., 2008; Yang et al., 2022a, 2022b; Zhang et al., 2022; Zheng et al.,

2018), there are very few works conducted in the product metadata validation area. We

have searched the literature and found two groups of similar work; the first group of

research uses textual descriptions of the product to validate the product metadata. The

second group uses product images with CV and OCR techniques to validate the product

metadata. These studies are summarized in the following part:

CAVE: Correcting Attribute Values in E-commerce Profiles

This study is one of the recent papers about this area, published in October 2022. In this

paper, the authors propose a system named CAVE (Correcting Attribute Values in E-

commerce) for product metadata validation (Sabeh et al., 2022). This paper aims to

validate, correct, and enrich product metadata using the Question Answering (QA)

models, including BERT, DistilBERT, RoBERTa, ALBERT, and XLNET. CAVE is

trained on datasets generated from the Amazon Review Dataset.

The proposed model learns information from titles and product attributes tables placed in

the product description's HTML, using encoder and language models. Then, they use these

data to validate and correct attribute values. The model also can enrich existing product

descriptions with new attribute values extracted from titles. The work was presented at the

31st ACM International Conference on Information & Knowledge Management

Conference (CIKM '22). The published conference proceeding does not have any

evaluation for the proposed model. The overview of the proposed architecture is shown in

Figure 6.

17

Figure 6 CAVE model architecture

The proposed architecture process Amazon Review Dataset and extract product metadata

question-answer data from it. Then, it trains the QA models with these training data. After

that, the user sends the product information via GUI. The model scrapes the product

attributes from the HTML table in the product description and the product title from the

product data and corrects them using QA models.

E-commerce Product Attribute Value Validation and Correction Based on

Transformers

A transformer-based approach was proposed in this research to validate product attribute

values using the product profile and suggest correct values when errors are detected (le

Yu Haozheng Tian & Velkoski, 2022).

This approach can be applied to all textual metadata types. It uses a RoBERTa-based

Natural Language Inference (NLI) model that has been extended for e-commerce product

metadata value validation by comparing structured product information to the most

relevant content selected from unstructured product profiles. In addition, the model is also

used to recommend correct values. This feature reduces manual effort in real-life

scenarios. As a result, the model has achieved PRAUC scores of 0.889 for contradictory,

0.864 for neutral, and 0.950 for entailed examples in a total of 8247 examples testing data.

Automatic Validation of Textual Attribute Values in E-commerce Catalog by

Learning with Limited Labeled Data

Authors propose to develop an automatic validation approach that verifies the correctness

of textual attribute values for products using product descriptions (Y. Wang et al., 2020).

18

They have proposed a meta-learning latent variable approach called MetaBridge to

validate the textual attribute values of products from various categories as an NFI task in

the few-shot learning setting. This approach involves a meta-learning latent variable

model that simultaneously processes signals obtained from product profiles and textual

attribute values. According to them, this model can significantly reduce annotation costs

by effectively utilizing labeled data from limited categories. Regarding the PRAUC score,

their model MetaBridge showed a 3.66% improvement over Meta-SGD and 3.33%

compared to BERT.

An Automated Computer Vision System for Extraction of Retail Food Product

Metadata

An automation method was proposed to enhance the extraction of unstructured product

metadata from food product label images using computer vision, machine learning, optical

character recognition, and natural language processing (Gundimeda et al., 2019).

The overall process flow is shown in Figure 7. The process starts with background

removal that uses computer vision similar to our baseline methods. Then, the automatic

image quality classification step uses image data to extract product metadata with OCR

combining other techniques. The output of this step is processed with NLP in the attribute

extraction step. After that, the product metadata is validated with the extracted data against

existing metadata.

Figure 7 The process flow for the automated system for extraction of retail food product metadata

This approach also includes an automatic image quality classification system to identify

images and a technique to improve the quality of images using traditional computer vision

algorithms to enhance text detection and OCR and NLP-based metadata extraction

accuracy.

To assess the performance of their proposed solution, the authors conducted an experiment

using a real dataset with 352 food products from 53 brands, which contained 955 images

(including front, back, and side view product images). After the experiment, it was found

that their approach had a 0.9810 accuracy score on nutrition metadata validation and

0.9879 on net weight/volume validation.

19

CHAPTER 3

3. METHODOLOGY

In this chapter, we elaborate on our proposed methodology in detail. First, we give the

problem definition and explain the research questions. Then, we expound the

methodology into two main concepts, and we explain these concepts at every step.

3.1. Problem Definition

Improving the data quality of product metadata is a time-consuming job for the merchants

and also for the marketplaces. The first reason for that is the count of the products. The

marketplaces have millions of different products to be sold in their databases. These

results in tens of millions of metadata attributes plus millions of product images to validate

and correct. It is a costly decision to make this validation by the labor workforce. As a

remediation, marketplaces try to develop internal automation tools to improve the data

quality of the metadata and validate product images. These tools get input data from the

uploaded information by the merchants and try to validate the metadata. For example, a

tool can determine whether a product is placed in the wrong category with image

verification. It gathers and processes all the images previously served in a category and

finds out that the newly uploaded product is in the wrong category. Alternatively, a tool

can easily correct grammar mistakes in a product description uploaded by a merchant.

These tools primarily bear the data already in the marketplace, uploaded by merchants,

like product images. The data quality of the product images is a common problem for

these tools used to improve the metadata. Merchants can upload images shot in improper

lighting or angle. Products can be placed in the frame improperly (Figure 8).

20

Figure 8 Improper shoe product image samples

Also, some of the product images created by the merchants include improper graphical

elements like logos, campaign badges, size charts, or different kinds of text (product

description, company contact information, etc.). These problems allow the internal tools

to output incorrect results. So, these tools can easily miss details or make a wrong decision.

For example, some of the images already served by the marketplace may have some

defects, like containing size charts, shots from an improper angle, etc., that cause the tool

to miss the defects on the newly uploaded images. Alternatively, the tool can correct all

the grammar mistakes in the description. However, it may not handle the wrong

description of the product or misleads the customers.

The last problem is human error and human subjectivity. Even if a marketplace has enough

human resources to handle the validation of every product in its database, people can

easily miss a detail on the product and outputs a worse-quality in data. Also, some

metadata attributes have a vague description by nature. For example, color is one of the

top filter data for clothing products. It defines the main visual conception of the product

and provides guidance to the buying decision.

Despite this, color is a very subjective matter and has many different naming and

classifications. For example, while RGB color space has more than 16 million colors,

many marketplaces try to classify these colors into 8 to 10 color classes. In this

circumstance, one person may classify a clothing product to one color; one other is to

another. Some product categories also have different visual conceptions by its nature. For

example, while shoe category has all the problems mentioned before.

Additionally, the conception of the color of a shoe varies from the other fashion/clothing

categories. A small bow can determine the shoe's color on the top, or the primary color of

a shoe varies from person to person who focuses on a different part of the shoe. These

examples are shown in Figure 9. The shoe on the left is considered a white shoe by the

customers of the small white bow. Different personnel may classify the shoe on the right

as black, white, red, or multi-color.

21

Figure 9 Shoe product image samples

As stated before, the marketplaces have millions of products and tens of millions of

product metadata and images uploaded. In terms of validation and correcting, the labor

workforce cannot handle this bulk data manually. They need to automate this process. But

when using automation, there are data quality-related problems with uploaded images and

metadata. The product images can contain unrelated graphical items, improper posing, or

other quality-related problems that mislead the tools. Also, input metadata contains human

error and subjectivity. Suppose a classification model is trained with this data. In that case,

the resulting model may suffer from these problems, and the results may not show the

actual accuracy. This situation reveals a paradox: the tools created for validation and

correction also need validated input data to work properly. As a result, It is harder to serve

correct metadata for every product in marketplaces with millions of products inside. This

directly affects customer experience and the success of a marketplace.

In this research, we aim to offer a new methodology to validate and correct metadata

attributes of products by using their images, even if the metadata and the product images

are not of good quality.

3.2. Methodology

We aim to offer a new model in this research to lessen the aforementioned problems. First,

we use machine learning models to automatize the process. It is crucial to handle a large

amount of bulk data. Second, we offer to create a ground truth with manual sampling and

validation. This dataset is used to compare our classification model's output. We also

create an image validation model with the sampling output and manual validation step.

We use this model to validate raw images after. So that we can remove unrelated images

from the dataset with the help of this model, and finally, we can use validated bulk images

to create a classifier to improve the metadata. And we compare the results of this model

with the run made with ground truth.

Our methodology has two main steps: validation model preparation and classification. In

the first step, the ground truth is prepared by sampling and manual validation. Then image

validation model is trained with the outputs (Figure 10).

22

Figure 10 Methodology First step overview

In the second step, the artifact of the first step is used with the raw dataset to create a

validated dataset in the beginning. Then metadata classification model is used on ground

truth and validated dataset separately. In the final, the two results of the model are

compared (Figure 11).

Figure 11 Methodology Second step overview

3.2.1. Sampling and Manual Validation

In this step, we aim to create a ground truth dataset with sampling and manual validation.

This is a manual process conducted by an expert. In the beginning, the number of the

target image is determined. This number can change according to metadata and the

properties of the validation model to be created after the selection. We offer to select an

equal number of images for each class of metadata. This improves the resulting validation

model accuracy and decreases the model's bias. If we select more images for a class, it

may create a bias in this class in the resulting model. Also, the resulting model may miss

the details of the other classes more.

Then, a set of rules must be defined preliminarily before the selection begins. These rules

are used to define the properties of a valid image to be selected and the class of the image.

These rules help us to decrease the subjectivity of the human workforce. Every selected

image and the class of the image needs to comply with these rules.

After that, the sampling stage begins. We offer random sampling to avoid bias. First, a set

of images was randomly selected from the raw dataset. The first image is analyzed against

the rules defined. If the image is valid according to the rules, then the class selection is

made according to the rules. The resulting image and the class are recorded. If an image

cannot comply with the rules, then this image is also recorded as an invalid image to be

23

used in the validation model to be created later. The predefined class and the resulting

classes are also compared to calculate the accuracy of the predefined classes. The

sampling stage is finished when the selected images have reached the predefined number.

3.2.2. Image Validation Model Training

In this step, we use valid and invalid image samples from the previous step to create a

validation model. This model validates input images and removes the invalid images from

the dataset. This helps us decrease the effect of invalid images, including additional

graphical items, improper posing, angle, etc. As a result, the classification model gets only

valid input images. We do not add the misclassified images into the process in this step.

These images are only used to find the ratio of the misclassification of the raw dataset.

3.2.3. Image Validation

In this step, we use the model created in the previous step to validate bulk raw image data.

This process classifies input images as valid or invalid. Then we remove invalid images

to clear the dataset and improve the data quality. As a result, a dataset that has validated

images has resulted in this step.

3.2.4. Image Classification Model Training

In this step, we use images to train a classification model to classify products against

selected metadata. But in the first step, we train the model with a ground truth dataset

created in the early stages of the process. We record the resulting metrics of the model.

Then, we train the model again with the predefined classes. After that, we compare the

results with the ground truth model results. In the comparison, we use the misclassification

statistics from the previous stage and the ground truth classification metrics to understand

the efficiency of our classification model in terms of statistics.

24

25

CHAPTER 4

4. EXPERIMENTAL WORK

In this chapter, we give the details about the experiment we performed to realize the

effectiveness of the model we proposed in the previous chapter. At the beginning of the

chapter, we elaborate on the dataset and the features we used in the experiment. Then we

give details about the steps performed in the experiment, implementation details, and

experimental settings. And finally, we explain the results and findings after the

experiment.

4.1. Dataset

In this experiment, we use the Amazon Berkeley Objects (ABO)6 dataset, a large-scale

dataset designed to train 3D models of products with real images (Collins et al., 2021).

ABO dataset contains product catalog images, metadata, and 3D models of products sold

on Amazon websites worldwide. The ABO dataset contains 147,702 products and 398,212

product images, along with the metadata of the products.

The metadata of the products is placed into 16 files encoded with UTF-8 and gzip-

compressed. Every line corresponds to a product as a JSON object. Every product

metadata JSON has common sub-sections listed in Table 1.

6 https://amazon-berkeley-objects.s3.amazonaws.com/index.html

26

Table 1 ABO dataset metadata table

Metadata Section Description

brand Brand name

bullet_point Important features of the products

color Color of the product as text (available in different languages)

color_code Color of the product as HTML color code

country Country of the marketplace, as an ISO_3166-1 alpha-2 code

domain_name The domain name of the marketplace where the product is

found.

fabric_type Description of product fabric

finish_type Description of product finish

item_dimensions Dimensions of the product (height, width, length)

item_id The product reference id.

item_keywords Keywords for the product

item_name The product name

item_shape Description of the product shape

item_weight The product weight

main_image_id The main product images.

marketplace Retail website name (Amazon, AmazonFresh, AmazonGo)

material Description of the product material

model_name Model name

model_number Model number

model_year Model year

node Location of the product in the category tree

other_image_id Other available images for the product

pattern Product pattern

product_description Product description as HTML

product_type Product type (category)

spin_id Reference to the 360º View image sequence.

style Style of the product

3dmodel_id Reference to the 3d model of the product.

There are 576 different types of products listed in the dataset. The top 20 product types

according to the count of the item listed in (Table 2)

Table 2 ABO dataset product type distribution

Product Type Count

CELLULAR_PHONE_CASE 64853

SHOES 12965

GROCERY 6546

HOME 5264

27

Table 2 (cont.) ABO dataset product type distribution

Product Type Count

HOME_BED_AND_BATH 3082

HOME_FURNITURE_AND_DECOR 2255

CHAIR 2100

BOOT 2009

SANDAL 1845

FINERING 1540

HEALTH_PERSONAL_CARE 1449

FINENECKLACEBRACELETANKLET 1377

ACCESSORY 1362

SOFA 1199

OFFICE_PRODUCTS 1152

FINEEARRING 1137

PET_SUPPLIES 1064

SPORTING_GOODS 972

TABLE 935

HARDWARE_HANDLE 860

Each product has one or more images in various sizes. Also, some of the products have

3d models and images taken from different angles.

4.2. Product and Metadata Selection

The preliminary step in the experiment is the selection of the product category and

selecting the metadata attribute to improve. It needs to have two characteristics: selected

metadata could be extracted from the images of the product. The second one is it needs to

be metadata that can be represented as classes.

The dataset has 576 different kinds of products and their metadata attributes. We select

the "SHOES" category and the "color" metadata to improve. Shoes have the characteristics

and the problems we defined in the previous chapter, that is, a fashion product that is hard

to merge with other products and has a different visual perception from other fashion

products, and every shoe has various forms, sizes, and concepts. Especially the color of

the shoes does not always mean the main or dense color of the product. Usually, the color

of a shoe is defined by a part of the shoe. So, it is hard to find the color of shoes by

primitive techniques like using the color histogram. For example, the shoes shown in

(Figure 12) have an intense white color spectrum, while it is pink shoes.

28

Figure 12 Sample shoe image in pink color

The color attribute, in general, also suffers from human subjectivity more than other

metadata attributes. It is hard to classify some colors close to the primary colors' transition

points. Visual perception of a color may vary according to light, posing, and other factors

in the product image.

4.3. Experiment Design

In this section, we detail the experiment step by step. There are two main concepts in our

experiment. The first step is the dataset processing steps using different kinds of tools and

techniques. These steps are marked as blue in Figure 13. Every step results in a new dataset

marked as orange in Figure 13. The second concept is the metadata improvement model

runs on every resulting dataset, marked as green in Figure 13. On every new run for

improvement, we use image data to improve the selected metadata with the help of CNN.

We also use baseline algorithms to compare the results of our proposed model. We also

compare the results of those runs to see the differences between datasets resulting from

the processing phases.

29

Figure 13 Experiment overview

4.3.1. Dataset Processing Steps and Artifacts

This concept has four main steps, three resulting datasets, and a validation model artifact.

4.3.1.1.Data Cleaning, Preprocessing Step

This step uses the raw images and their metadata and results in the unrefined dataset used

in the first improvement run. This step covers the removal of incomplete and inconsistent

data first. While the improvement run uses product images to improve the metadata, the

products with no image data are removed. Then, metadata conversion may apply. Suppose

the metadata is a free text or numerical kind of metadata. In that case, a conversion needs

to be conducted to convert text or numerical data into classes needed by the improvement

run. After that metadata conversion, an image refinement is made on the image data. While

there is a specific image size restriction for the CNN models, image resizing and scale

may be needed according to the image data. Also, color correction and image

preprocessing (like brightness and contrast modifications) may need to be according to

the input image data.

After these steps, the unrefined dataset is ready to use in the first improvement run. This

dataset has unrefined metadata and image data for a certain product category.

4.3.1.2.Manual Validation Step

In this step, a manual validation process is conducted by an expert. The expert randomly

selects an equal number of samples for each class, according to considered metadata. The

30

validation process covers both image data and metadata. The process starts with image

validation. The expert validates the image data with a ruleset defined before the beginning

of the validation process to minimize the subjectivity of the expert. These rules need to

cover the characteristics of a valid image, like pose, quality parameters, etc. The expert

selects the images that only fit the rules defined in the ruleset. Then it validates metadata.

The expert selects only data with valid metadata according to the valid image according

to the predefined ruleset.

After these steps, the manually validated dataset is ready for the second improvement run.

This dataset includes a manually validated small subset of the unrefined metadata and

image data for a certain product category.

4.3.1.3.Validation Model Training

This step covers creating an image validation model from the manually validated dataset's

image data. A predefined CNN model, AlexNet, is used for training the model. The input

dataset is split into training, validation, and test datasets with 60%, 20%, and 20% ratios

similar to the improvement run. The input dataset includes the dropped invalid images.

Then the model training is conducted with the hyperparameters defined.

The resulting model can classify images into two categories: valid and invalid. A valid

class is used to express that the image is valid, according to the predefined ruleset, that

can be used in the further metadata validation process. In contrast, an invalid class

expresses that the image is invalid and cannot be used in the following metadata validation

process. We can use this general image validation model to validate the unrefined dataset's

image data in the next step. This model helps us to remove invalid images from the dataset.

After the training, the validation model is used in the next step in inference mode.

4.3.1.4.Automatic Validation Using Validation Model

In this step, we use the general validation model to validate the images in the unrefined

dataset. The model is used to classify all the images into two categories, valid and invalid.

We drop invalid image data and metadata accordingly. Only valid images and related

metadata are selected into the refined dataset with the help of the validation model.

After this step, the refined dataset is ready for the last improvement run. This dataset

includes an automatically validated subset of the unrefined metadata and image data for a

certain product category.

4.3.2. Metadata Improvement Runs

Metadata improvement runs are applied to the resulting dataset three times, to the

unrefined dataset, manually validated dataset, and refined dataset. CNN and baseline

methods are applied separately to the input dataset on every run. All the results are

collected first and then compared together. The inline schema of every run is shown in

(Figure 14).

31

The input image data and selected metadata attribute data are combined first. Then this

combined dataset is shuffled on a random basis. Then the resulting dataset is split into

training, validation, and testing sub-datasets with 60%, 20%, and 20% consecutively for

the CNN training and testing. This dataset is also used with baseline methods in a single,

not separated manner.

Figure 14 Experiment validation step in detail

After each run, we combined the results and discussed the outputs. Also, we compare the

results of different improvement runs with different datasets mentioned before. We report

32

accuracy, precision, recall, and f1 scores for every class on the dataset for CNN and

baseline methods.

4.3.2.1.Convolutional Neural Network (CNN)

We use the AlexNet model as CNN on every improvement run (Krizhevsky et al., 2017).

The model's top-5 error rate in 1000 different output classes is 15.3% which is 10.8 lower

(better) than the best-performing model to date.

The alternative models are ResNet18 and VGG-Net11 (He et al., 2015; Simonyan &

Zisserman, 2014). We take a random subset of 2000 images from the raw dataset and split

it into training, validation, and testing datasets with the 60%, 20%, and 20% rule. Then,

we run these three candidate models with the selected dataset in different hyperparameter

settings. After that, we take the best-performing model according to the validation dataset

accuracy and select AlexNet with a 0.7345 accuracy score. ResNet18 model performed

0.7267, and VGG-Net11 performed 0.7326 accuracy score in their best-performing

hyperparameter settings.

The original paper of AlexNet uses images with 224 x 224 pixels in width and height

consecutively, with RGB channels. It has five convolutional layers, three max-pooling

layers, and three fully connected layers at the end. We use PyTorch implementation7 ,

which is slightly different from the original architecture (Krizhevsky & Inc, 2014) (Table

3)

7 https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py

33

Table 3 CNN AlexNet PyTorch Implementation Architecture

Layer Details

Convolutional 3 channels, 224x224, kernel:11x11, stride:4, padding:2

ReLU

Max Pooling 64 channels, 55x55, kernel:3x3, stride:2

Convolutional 64 channels, 27x27, kernel:5x5, padding:2

ReLU

Max Pooling 192 channels, 27x27, kernel:3x3, stride:2

Convolutional 192 channels, 13x13, kernel:3x3, padding:1

ReLU

Convolutional 384 channels, 13x13, kernel:3x3, padding:1

ReLU

Convolutional 256 channels, 13x13, kernel:3x3, padding:1

ReLU

Max Pooling 256 channels, 13x13, kernel:3x3, stride:2

Adaptive Avg. Pool 256 channels, 6x6

Flatten

Dropout

Linear 9216

ReLU

Dropout

Linear 4096

ReLU

Linear 4096

SoftMax 11

The input image size should be greater or equal to 224x224 pixels with three channels.

The first convolutional layer is applied with an 11x11 kernel size, 64 output channels, a

stride of 4 pixels, and padding of 2 pixels. ReLU and max pooling are applied to the output

of the first convolutional layer with kernel size 3x3, stride 2 pixels.

The second convolutional layer is applied with a 5x5 kernel size, 192 output channels, and

padding of 2 pixels. Then, ReLU and max pooling are applied with kernel size 3x3 pixels

and stride 2 pixels. After that, three consecutive convolutional are applied with kernel size

3x3, and padding is 1 pixel. There are ReLU between them, not max pooling layers. The

first of these three is applied with 384 output channels, and the remaining two are applied

with 256 output channels. After the last one, max pooling is applied with kernel size 3x3

pixels with stride 2 pixels.

At the end of the convolutional part, an average adaptive pool is applied with 6x6 pixels.

Then the fully connected part is started with two sequential composite layers consisting

of one dropout layer connected with a fully connected layer with 4096 output and ReLU

34

function. In the end, one fully connected layer is placed to connect 4096 features to the

resulting classes with the softmax function.

This model converts 224x224 pixel RGB images into probability distributions of classes

at the end. Then we use the argmax function to select the resulting class of the model.

4.3.2.2.Baseline Methods

To compare the performance of our approach, we developed baseline methods, which are

functions that get input images and output a class of metadata with mathematical

calculations. These methods use different statistical functions to aggregate image data into

a classification. They are used as a baseline in the methodology to compare and prove the

effectiveness of the proposed CNN model.

These methods are closely related to the selected metadata attribute. For example, suppose

the selected metadata is color information. In that case, baseline methods aggerate the

color information from the pixels of the images into one color class. Or, if the selected

metadata is the pattern information, the patterns in the image are collected by the method

and output a single pattern class.

4.4. Performance Evaluation Metrics

We use precision (regular, macro avg, weighted avg), recall (regular, macro avg, weighted

avg), f1-score (regular, macro avg, weighted avg), and accuracy metrics while we measure

the performance of the CNN and baseline models. We use the confusion matrix to compare

the true and the predicted classes. We also use a loss-epoch and accuracy-epoch plot to

see the effectiveness of the CNN model through each epoch.

Additionally, we measure the timing of each model. We report the measurements for each

model, including CNN and baseline models, separately for each run in the result section.

After the experiment, we compare the results of each run.

4.5. Baseline Algorithms Selection

We use three quantization algorithms and four pairwise distance algorithms as baseline

algorithms. All the algorithms get input of all pixels of the input image as an array and

output a probability distribution of 11 possible classes. The image is classified as multi-

color if two or more colors have the possibility of more than 25%. If not, we select the

highest probability as the main color class. The general perspective of a baseline algorithm

is shown in Figure 15.

35

Figure 15 Baseline algorithm general perspective

The background removal from the images before processing is conducted with the help of

an algorithm proposed by Suzuki & be (1985). The OpenCV library implementation of

the algorithm is used.

If needed, we use the softmax function when converting distance vectors into probability

distributions of the possible 11 main color classes. However, we convert the distance

vector by dividing them by the max distance of the color space. The distance vector

conversion and softmax function formula:

𝑧𝑖 =
𝑑𝑚𝑎𝑥

𝑑𝑖

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗11
𝑗=1

We generate a 4x4 pixels image in RGB color space to use in the examples for explaining

the baseline methods. The example image pixel values are shown in Table 4. We use three

classes only to simplify the example calculations, black (R:0, G:0, B:0), white (R:255,

G:255, B:255), and gray (R:128, G:128, B:128).

Table 4 Example 4x4 image pixel RGB values

#1 #2 #3 #4

#1 (69, 201, 33) (34, 134, 70) (129, 100, 73) (139, 173, 72)

#2 (191, 252, 191) (49, 239, 39) (145, 172, 240) (24, 41, 25)

#3 (65, 26, 229) (127, 216, 160) (251, 2, 169) (124, 68, 122)

#4 (105, 91, 174) (118, 118, 189) (206, 31, 245) (165, 191, 208)

4.5.1. Quantization Based Baseline Algorithms

In general, quantization algorithms summarize the colors of an image and decrease the

palette usage of a digital image. In this way, they are used as an image compression

technique. This study uses quantization algorithms as an image's main color identification

36

algorithm. They take the image and try to output a single-color point for the whole image.

So, they summarize the whole image into one color. We take that one color as the primary

color of the image and find the pairwise distance of this color and the color classes. Then

we convert these distances into a probability distribution of 11 possible outcomes. We use

Modified Median Color Quantization (MMCQ), OctTree Quantization and Modified

MMCQ (pngquant) Quantization algorithms (Gervautz & Purgathofer, 1988).

MMCQ quantization aggregates 16 pixels of the example image to one RGB (68, 204, 36)

color. The Euclidean distances of this color to the color classes and the probability

distribution of example three classes are shown in Table 5.

Table 5 MMCQ quantization example result

 black white gray

Distances 218.03 292.46 133.57

Result 19.00% 11.00% 69.00%

OctTree quantization aggregates 16 pixels of the example image to one RGB (155, 181,

224) color. The Euclidean distances of this color to the color classes and the probability

distribution of example three classes are shown in Table 6.

Table 6 OctTree quantization example result

 black white gray

Distances 327.05 128.21 112.93

Result 5.00% 37.00% 59.00%

Modified MMCQ (pngquant) quantization aggregates 16 pixels of the example image to

one RGB (125, 134, 145) color. The Euclidean distances of this color to the color classes

and the probability distribution of example three classes are shown in Table 7.

Table 7 Modified MMCQ quantization example result

 black white gray

Distances 234.68 209.90 19.28

Result 0.00% 0.00% 100.00%

4.5.2. Pairwise Distance Based Baseline Algorithms

37

The pairwise distance algorithm calculates the pairwise distance of each image pixel with

the color classes. This distance is calculated with the Euclidean distance formula for the

RGB color space. For the HSL color space, we use the circular bi-cone distance formula

extracted with the help of Euclidean distance. This algorithm outputs a matrix with color

classes in one of the axes while all the pixel colors are in the other. We use four techniques

to aggregate this matrix into the probability distribution of the main color classes.

4.5.2.1.Pairwise Distance Quantiles

In the first technique, we use quantiles. We sort the distances against each main color

class. Then we take the distance value at 0.25, 0.5, and 0.75 quantiles and convert them

into probability distribution of the main color classes. We use the linear calculation of the

quantiles stated as “Definition 7” by Hyndman & Fan (1996).

The pairwise distances of the example image sorted by each class are shown in Table 8.

Table 8 The pairwise distances of the example image sorted by each class

 black white gray

Q1

53.69 90.56 60.44

155 120 61.72

178.75 138.62 62.62

186.75 164.12 63.34

Q2

215 204.62 72.69

222.62 229.5 93.62

233.25 231.62 108.31

239.5 236.5 110.62

Q3

247.12 264.25 121.5

252.12 267.25 133.5

297.25 270.25 152.75

302.5 294.5 156.75

Q4

321.5 298.75 162.75

327 299 170.25

329 312.5 170.88

369.5 390 180.75

The distances for 0.25, 0.50, and 0.75 quantiles and the resulting probability distributions

are shown in Table 9.

38

Table 9 Pairwise distance quantiles of the example image

 black white gray

0.25 Distance 207.94 194.50 70.35

0.25 Result 1.52% 1.76% 96.72%

0.50 Distance 243.31 250.38 116.06

0.50 Result 10.79% 10.25% 78.96%

0.75 Distance 307.25 295.56 158.25

0.75 Result 16.87% 17.85% 65.28%

4.5.2.2.Pairwise ArgMin

We take the minimum distance for each pixel to the main color classes in the second

pairwise distance technique. Then we count them and convert them into class probability

distribution of the main color classes using the percentage. We called this algorithm

“Pairwise ArgMin.”

The pairwise distance of each pixel to the class points, the argmin class of each pixel, the

count of selected classes, and the result are shown in Table 10.

Table 10 Pairwise ArgMin result of the example image

 black white gray ArgMin

1 215 294.5 133.5 gray

2 369.5 90.56 152.75 white

3 239.5 298.75 156.75 gray

4 222.62 236.5 63.34 gray

5 155 312.5 110.62 gray

6 247.12 299 162.75 gray

7 297.25 164.12 93.62 gray

8 252.12 204.62 62.62 gray

9 178.75 270.25 61.72 gray

10 329 138.62 121.5 gray

11 302.5 267.25 180.75 gray

12 321.5 229.5 170.88 gray

13 233.25 231.62 72.69 gray

14 53.69 390 170.25 black

15 186.75 264.25 60.44 gray

16 327 120 108.31 gray

Count 1 1 14

Result 6.25% 6.25% 87.50%

39

4.5.2.3.Pairwise Mean

In the third one, we take the average distance value of all the distances from each pixel to

the main color classes. And we convert them into probability distribution of the main color

classes. This algorithm is called “Pairwise Mean.”

The mean distance of the pairwise distances is shown in Table 10, and the result of the

algorithm is shown in Table 10.

Table 11 Pairwise mean result of the example image

 black white gray

Mean Distance 245.66 238.25 117.66

Result 10.95% 11.58% 77.46%

4.5.2.4.Array Mean ArgMin

In the last pairwise algorithm, we take the mean value of all pixels in the image called the

center point. Then, we calculate the distance between this center point and the main color

points. And convert these distances into probability distribution of the main color classes.

We called this algorithm “Array Mean ArgMin.”

The mean of the pixels of the example image is RGB (121, 128, 140). This color’s pairwise

distances and the result are shown in Table 12.

Table 12 Array Mean ArgMin result of the example image

 black white gray

Distance 225.0 217.5 13.9

Result 0.00% 0.00% 100.00%

4.6. Model Implementation and Experiment Settings

4.6.1. Implementation Details

We implemented the experiment model in Python Jupiter notebooks and published it in

the GitHub repository8. We use PyTorch and other common Python libraries (NumPy,

8 https://github.com/alatas/MSThesis

40

matplotlib, etc.) in the implementation. The steps of the experiment are implemented in

separate Jupyter notebooks. Each notebook can be run on a local personal computer or

Google Colab environment. There is an option to use Google Drive as the persistent

storage while using Google Colab in the notebooks.

We use 11 color classes "black," "white," "gray," "red," "green," "blue," "orange,"

"purple," "yellow," "pink," "brown," and "multi-color." The distances between selected

color classes in HSV and HSL color spaces are shown in Figure 16.

Figure 16 HSV and HSL distance matrices

We compared HSV and HSL color spaces before the implementation to find a more

suitable color space for the experiment with the matrices shown in Figure 16. HSL color

space has lower distance values for close color classes. For example, HSL has 0.4181,

HSV has a 0.7550 value for the Red/Pink distance, while both color spaces have a 1.0000

distance value between Black/White. Similarly, HSV has a 0.9342 distance value, while

HSL has a 0.8784 distance value between Yellow/Brown. According to this comparison,

we decided to use HSL color space instead of HSV color space. Also, we use RGB color

space, the most common color space. In the implementation, notebooks have the option

to switch between color spaces. The distance algorithm used in baseline algorithms

changes according to the color space used. The rest of the experiment is not changing

according to the color space.

The HTML color names define these RGB and HSL color points. The RGB and HSL

values of these classes are shown in (Table 13).

41

Table 13 Class center points in RGB and HSL color spaces

Color RGB Value HSL Value

Black [0, 0, 0] [0, 0.0, 0.0]

White [255, 255, 255] [0, 0.0, 1.0]

Gray [128, 128, 128] [0, 0.0, 0.5]

Red [255, 0, 0] [0, 1.0, 0.5]

Green [0, 255, 0] [120, 1.0, 0.5]

Blue [0, 0, 255] [240, 1.0, 0.5]

Orange [255, 165, 0] [39, 1.0, 0.5]

Purple [128, 0, 128] [300, 1.0, 0.25]

Yellow [255, 255, 0] [60, 1.0, 0.5]

Pink [255, 192, 203] [350, 1.0, 0.88]

Brown [165, 42, 42] [0, 0.59, 0.40]

The dataset has text color names and HTML color codes for each product. We examine

the HTML color codes provided with the random sampling method. We took 100 random

samples and checked them with the actual images. Most HTML codes are close to the

actual primary color of sample images. But, when we use the HTML color provided, we

need to convert them to a color class with a method like Euclidean distance. Also, most

marketplaces do not have a well-defined color point for the metadata. So, we decided to

use text color names and a conversion matrix to convert text color names into color

classes. The conversion table is shown in Table 14.

Table 14 Text color attribute to the color classes conversion table

Color Classes Text Color Attribute

"multi-color" "multi"

"black" "black", "asphalt", "caviar", "graphite", "Schwarz"

"white" "white", "ivory"

"gray" "gray", "grey", "chrome", "silver", "steel", "charcoal", "nickel",

"aluminum", "anthracite", "ash", "dove", "fog", "iron", "pewter",

"platinum", "slate", "sliver", "smoke", "stainless"

"red" "red", "rose", "bordeaux", "burgundy", "maroon", "merlot",

"autumn", "berry", "brick", "burgandy", "cherry", "garnet",

"mahogany", "maron"

"green" "green", "mint", "olive", "alligator", "aloe", "cadet", "emerald",

"lagoon", "lemongrass", "sage", "seafoam", "sod", "teal",

"turquoise"

"blue" "blue", "navy", "aqua", "denim", "azure", "blau", "bule", "sapphire",

"sky"

"orange" "orange", "fire", "flame", "fawn", "pumpkin", "rust"

"purple" "purple", "amethyst", "fuchsia", "heather", "lavender", "lilac",

"magenta"

42

Table 14 (cont.) Text color attribute to the color classes conversion table

Color Classes Text Color Attribute

"yellow" "yellow", "gold", "amber", "brass", "butter", "canary", "citrine",

"flax"

"pink" "pink", "blush", "champagne", "linen"

"brown" "brown", "beige", "biege" "braun", "bronze", "camel", "caramel",

"sand", "tan", "walnut", "acorn", "antique", "barnwood", "chestnut",

"chocolate", "cognac", "ecru", "hemp", "khaki", "oak", "saddle",

"taupe", "wenge"

The product is ignored and removed from the dataset if the color name is not defined, or

not in the list stated in Table 14. Additionally, if a text includes different two-color classes

(like “navy black”, or “brown black”), it is defined as multi-color.

The experiment is run with two multi-color options. In the first option, we consider a

multi-color class like the other color classes. In the second option, we do not use the multi-

color as a color class and force the models to choose one of the main color classes. We

select the color with the highest probability in baseline algorithms when using the single-

color option. We report the results with multi-color and single-color options separately.

We use 60% training, 20% validation, and 20% testing separation while training the CNN

models.

4.6.2. Hyperparameter Tuning

On hyperparameter tuning, we use a two-phased approach. In the first phase, we use a grid

search with a broad set of possible parameters. After that phase, we select the best-

performing set of hyperparameters from the first phase and run the second phase with a

new set of hyperparameters close to the first phase's output. For the first phase, all possible

hyperparameters are shown in Table 15.

Table 15 Hyperparameter set for the first phase

Hyperparameter Possible Values

learning_rate [0.1, 0.01, 0.001, 0.0001, 1e-05, 1e-06]

optimizer ["Adam", "RMSprop", "SGD"]

dropout [0.05, 0.1, 0.15, 0.2]

batch_size [16, 32, 64, 128]

43

We use the Optuna9 framework in hyperparameter tuning (Akiba et al., 2019). In the first

phase, we use the “GridSampler” sampler, which suggests all combinations of parameters

in the given search space during the study. The first phase has 288 (7 x 3 x 4 x 4) available

combinations of all possible hyperparameter values shown in Table 15. We select the best-

performing set of hyperparameters according to the testing dataset accuracy score. Then,

we select a new set of hyperparameters for the second phase with the help of four plots

drawn by the outputs of the first phase. These plots are the “Intermediate Values Plot,”

“Optimization History Plot,” “Parallel Coordinate Plot,” and “Hyperparameter

Importance Plot.” The Intermediate Values Plot shows the accuracy score after each epoch

for all the trials. The Optimization History Plot shows the best accuracy score after each

trial. The Parallel Coordinate Plot shows each trial's set of selected hyperparameters and

output accuracy. The hyperparameter importance plot shows the importance of each

hyperparameter in percentage according to the accuracy score (see Appendix A for the

details).

In the second phase, we use “TPESampler,” which uses the Tree-structured Parzen

Estimator algorithm. This sampler fits one Gaussian Mixture Model (GMM) (represented

as ‘l(x)’) to the set of parameter values associated with the best objective values. Then it

fits another GMM (represented as ‘g(x)’) to the remaining parameter values. In the end,

TPE chooses the parameter value x that maximizes the ratio l(x)/g(x) (Bergstra et al., n.d.,

2013; Optuna.Samplers.TPESampler — Optuna 3.1.0 Documentation, n.d.; Ozaki et al.,

2020, 2022). We run the second phase for a total of 500 trials. On each trial, Optuna selects

a new hyperparameter set and runs the model to achieve a better accuracy score on the

testing dataset. Ultimately, we select the best-performing set of hyperparameters

according to the accuracy score on the testing dataset.

Additionally, we use the “prune” feature on the Optuna framework on both phases to

release resources for the trials are already have worse accuracy scores on the run. Optuna

decides that the current trial could be pruned according to the current accuracy score on

each epoch. We use the “median pruner” algorithm to decide on prune for the current trial.

The median pruner decides to prune the current trial if the current trial’s best intermediate

result is worse than the median of intermediate results of previous trials at the same step.

We conducted two hyperparameter tuning sessions for two models. In the first model, we

use the manually validated image dataset to tune hyperparameters for Unrefined Dataset

Improvement Run, Manually Validated Dataset Improvement Run, and Refined Dataset

Improvement Run. We run these sessions for 120 epochs in total. We use the automatic

validation dataset in the second model to tune hyperparameters for Automatic Validation

Model Training Run. We run these experiments for 60 epochs in total.

9 https://optuna.org/

44

We conducted these two tuning sessions separately in two color spaces, RGB and HSL.

4.7. Results

We conducted eight hyperparameter sessions and 26 experiments over three different

datasets. We define the results under five sections. In the first section, we give the results

of the hyperparameter tuning sessions. And we give the results of the Automatic

Validation Model; then, we give the results of the runs of three different runs on different

color spaces and models.

4.7.1. Hyperparameter Tuning Results

The results of the phases for each hyperparameter tuning session are shown in Table 16

(see Appendix A for the details).

Table 16 Hyperparameter Tuning Results

 Dataset Improvement Run Hyperparameter Tuning

 RGB Color Space HSL Color Space

 First Phase Second Phase First Phase Second Phase

Best Accuracy: 0.8163 0.8265 0.7193 0.75

Batch Size: 16 16 32 16

Dropout: 0.15 0.15 0.1 0.11

Learning Rate: 0.0001 0.0001 0.0001 0.00008

Optimizer: RMSProp RMSProp RMSProp RMSProp

 Automatic Validation Model Hyperparameter Tuning

 RGB Color Space HSL Color Space

 First Phase Second Phase First Phase Second Phase

Best Accuracy: 0.9558 0.9676 0.9205 0.9264

Batch Size: 16 16 32 16

Dropout: 0.15 0.13 0.05 0.07

Learning Rate: 0.00001 0.00005 0.0001 0.00006

Optimizer: RMSProp RMSProp Adam Adam

4.7.2. Automatic Validation Model Results

After the manual validation process with an expert, we extracted 1092 valid and classified

images for 11 classes. We tried to take a hundred validated image samples for each class.

However, the purple and orange classes did not have enough validated 100 images at the

end. Finally, we found 1092 valid, 609 invalid, and 715 misclassified images in 2416

images. If we ignore the multi-color class, there is a total of 654 misclassified, 555 invalid

images, and 992 valid images in 2201 total images.

45

The automatic validation model training run is conducted on the same CNN AlexNet

model. The model performed a 0.9294 accuracy score on RGB color space and a 0.9059

accuracy score on HSL color space on the testing dataset between “invalid” and “valid”

classes. RGB model run is completed in 414.54 seconds, while the HSL model run is

completed in 786.25 seconds. The summary is shown in Table 17, and some of the sample

misclassified images on Figure 17. (see Appendix A for the details)

After the model was finalized, we compared RGB and HSL accuracy scores. We run the

RGB model on the unrefined dataset. In the manually validated dataset, the invalid image

ratio was 25.20%. The model marked 5744 images out of 21454 images. The invalid ratio

is 26.77%, which is consistent with the manually validated dataset's invalid ratio.

Table 17 Automatic validation model run results summary

 Precision Recall F1 Score Support

R
G

B
 C

o
lo

r
S

p
ac

e invalid 0.9391 0.8640 0.9000 125

valid 0.9244 0.9674 0.9455 215

accuracy 0.9294

macro avg 0.9318 0.9157 0.9227
340

weighted avg 0.9298 0.9294 0.9287

 Precision Recall F1 Score Support

H
S

L
 C

o
lo

r
S

p
ac

e

invalid 0.8974 0.8400 0.8678 125

valid 0.9103 0.9442 0.9269 215

accuracy 0.9059

macro avg 0.9039 0.8921 0.8974
340

weighted avg 0.9056 0.9059 0.9052

46

Figure 17 Sample Images that cannot be accurately classified in the Test Dataset

After the automatic image validation process, as mentioned in section 4.3.2, we conducted

metadata improvement runs in three steps over three datasets: the unrefined dataset, the

manually validated dataset, and the refined dataset.

4.7.3. Unrefined Dataset Improvement Runs

This run is conducted over the dataset containing the raw images and metadata. For RGB

Color Space, the CNN AlexNet model performed a 0.7891 accuracy score in 2865.16

seconds with the single-color mode and a 0.6909 accuracy score in 3194.93 seconds with

the multi-color mode. The best baseline method performed a 0.4076 accuracy score in

47

98.8010 seconds in single-color mode and a 0.3468 accuracy score in 53.09 seconds in

multi-color mode.

For HSL Color Space, the CNN AlexNet model performed a 0.7540 accuracy score in

5519.77 seconds with the single-color mode and a 0.6506 accuracy score in 6201.11

seconds with the multi-color mode. The best baseline method performed a 0.4277

accuracy score in 44.44 seconds in single-color mode and a 0.3535 accuracy score in 97.38

seconds in multi-color mode. The summary is shown in Table 18. (see Appendix A for

the details)

10 The duration for the baseline methods doesn’t include the pairwise distance calculation duration. The

average durations are 190 image per second for RGB color space and 40 image per second for HSL color

space.

48

Table 18 Unrefined dataset improvement run result summary
 P

re
ci

si
o
n

R
ec

a
ll

F
1
 S

co
re

A
cc

u
ra

cy

S
u

p
p

o
rt

S
in

g
le

 C
o
lo

r

C
N

N
 A

le
x
N

et

M
o

d
el

 RGB
macro avg 0.6564 0.5882 0.6095

0.7891

3703
weighted avg 0.7896 0.7891 0.7862

HSL
macro avg 0.5590 0.5236 0.5326

0.7540
weighted avg 0.7531 0.7540 0.7515

B
es

t
B

as
el

in
e

M
et

h
o
d

 RGB
macro avg 0.4034 0.2305 0.1831

0.4076

18592
weighted avg 0.5564 0.4076 0.3336

HSL
macro avg 0.4387 0.2563 0.2135

0.4277
weighted avg 0.5576 0.4277 0.3515

M
u

lt
i-

C
o
lo

r

C
N

N
 A

le
x
N

et

M
o

d
el

 RGB
macro avg 0.6069 0.5467 0.5624

0.6909

4290
weighted avg 0.6735 0.6909 0.6750

HSL
macro avg 0.5239 0.4876 0.4935

0.6506
weighted avg 0.6333 0.6506 0.6361

B
es

t
B

as
el

in
e

M
et

h
o
d

 RGB
macro avg 0.3402 0.2101 0.1578

0.3468

21454
weighted avg 0.4061 0.3468 0.2698

HSL
macro avg 0.2736 0.2382 0.1902

0.3535
weighted avg 0.3614 0.3535 0.2867

 P
re

ci
si

o
n

R
ec

a
ll

F
1
 S

co
re

A
cc

u
ra

cy

S
u

p
p

o
rt

4.7.4. Manually Validated Dataset Improvement Runs

This run is conducted over the dataset containing the selected images and their metadata.

For RGB Color Space, the CNN AlexNet model performed a 0.7806 accuracy score in

49

520.04 seconds with the single-color mode and a 0.6651 accuracy score in 547.82 seconds

with the multi-color mode. The best baseline method performed a 0.3347 accuracy score

in 1.91 seconds in single-color mode and a 0.2873 accuracy score in 2.12 seconds in multi-

color mode.

For HSL Color Space, the CNN AlexNet model performed a 0.7041 accuracy score in

936.43 seconds with the single-color mode and a 0.6193 accuracy score in 1034.46

seconds with the multi-color mode. The best baseline method performed a 0.3609

accuracy score in 0.64 seconds in single-color mode and a 0.3068 accuracy score in 2.25

seconds in multi-color mode. The summary is shown in Table 19. (see Appendix A for

the details)

50

Table 19 Manually validated dataset improvement run result summary

P
re

ci
si

o
n

R
ec

a
ll

F
1

 S
co

re

A
cc

u
ra

cy

S
u

p
p

o
rt

S
in

g
le

 C
o
lo

r

C
N

N
 A

le
x
N

et

M
o

d
el

 RGB
macro avg 0.7064 0.6933 0.6923

0.7806

196
weighted avg 0.7982 0.7806 0.7816

HSL
macro avg 0.6702 0.6388 0.6423

0.7041
weighted avg 0.7308 0.7041 0.7067

B
es

t
B

as
el

in
e

M
et

h
o
d

 RGB
macro avg 0.3669 0.2856 0.2167

0.3347

992
weighted avg 0.3785 0.3347 0.2436

HSL
macro avg 0.2547 0.3016 0.2231

0.3609
weighted avg 0.2718 0.3609 0.2627

M
u

lt
i-

C
o
lo

r

C
N

N
 A

le
x
N

et

M
o

d
el

 RGB
macro avg 0.6621 0.6728 0.6445

0.6651

 218
weighted avg 0.6939 0.6651 0.6580

HSL
macro avg 0.6322 0.6153 0.6010

0.6193
weighted avg 0.6242 0.6193 0.6010

B
es

t
B

as
el

in
e

M
et

h
o
d

 RGB
macro avg 0.2535 0.2398 0.1855

0.2873

1092
weighted avg 0.2704 0.2873 0.2192

HSL
macro avg 0.2626 0.2806 0.2143

0.3068
weighted avg 0.2556 0.3068 0.2326

P
re

ci
si

o
n

R
ec

a
ll

F
1

 S
co

re

A
cc

u
ra

cy

S
u

p
p

o
rt

4.7.5. Refined Dataset Improvement Runs

This run is conducted over the dataset containing the automatically validated images and

their metadata. For RGB Color Space, the CNN AlexNet model performed a 0.8383

accuracy score in 2368.36 seconds with the single-color mode and a 0.7279 accuracy score

51

in 2594.60 seconds with the multi-color mode. The best baseline method performed a

0.4331 accuracy score in 37.56 seconds in single-color mode and a 0.3664 accuracy score

in 44.44 seconds in multi-color mode.

For HSL Color Space, the CNN AlexNet model performed a 0.7986 accuracy score in

4751.72 seconds with the single-color mode and a 0.6820 accuracy score in 4739.08

seconds with the multi-color mode. The best baseline method performed a 0.4532

accuracy score in 48.50 seconds in single-color mode and a 0.3733 accuracy score in 42.09

seconds in multi-color mode. The summary is shown in Table 20. (see Appendix A for

the details)

52

Table 20 Refined dataset improvement run result summary

 P
re

ci
si

o
n

R
ec

a
ll

F
1
 S

co
re

A
cc

u
ra

cy

S
u

p
p

o
rt

S
in

g
le

 C
o
lo

r

C
N

N
 A

le
x
N

et

M
o

d
el

 RGB
macro avg 0.7226 0.5986 0.6217

0.8383

2721
weighted avg 0.8351 0.8383 0.8335

HSL
macro avg 0.5997 0.5624 0.5721

0.7986
weighted avg 0.7989 0.7986 0.7966

B
es

t
B

as
el

in
e

M
et

h
o
d

 RGB
macro avg 0.4321 0.2432 0.1965

0.4331

13596
weighted avg 0.5888 0.4331 0.3537

HSL
macro avg 0.5333 0.2753 0.2369

0.4532
weighted avg 0.5989 0.4532 0.3727

M
u

lt
i-

C
o
lo

r

C
N

N
 A

le
x
N

et

M
o

d
el

 RGB
macro avg 0.6330 0.5940 0.5975

0.7279

3142
weighted avg 0.7151 0.7279 0.7157

HSL
macro avg 0.5848 0.5306 0.5521

0.6820
weighted avg 0.6818 0.6820 0.6793

B
es

t
B

as
el

in
e

M
et

h
o
d

 RGB
macro avg 0.3868 0.2197 0.1670

0.3664

15710
weighted avg 0.4576 0.3664 0.2827

HSL
macro avg 0.2747 0.2530 0.2056

0.3733
weighted avg 0.3279 0.3733 0.3027

P
re

ci
si

o
n

R
ec

a
ll

F
1
 S

co
re

A
cc

u
ra

cy

S
u

p
p

o
rt

4.8. Discussion

The best performance for the automatic validation model is conducted in the RGB color

space. The model is ~0.03 more accurate in RGB color space. The recall score for invalid

53

image class is the worse in the experiment, which is 0.8640 and 0.8400 for RGB and HSL

color spaces, respectively. This shows us the model has worse performance while

predicting invalid images. In contrast, the model has 0.9674 and 0.9442 recall scores for

valid images, showing that the model performs better while predicting valid images.

The accuracy scores of all the runs of different settings are summarized in Table 21.

Table 21 Accuracy results summary

Automatic

Validation

Model

Unverified

Dataset

Manually

Verified

Dataset

Refined

Dataset

S
in

g
le

 C
o
lo

r

C
N

N

A
le

x
N

et

M
o

d
el

 RGB

0.9294

0.7891 0.7806 0.8383

HSL 0.7540 0.7041 0.7986

B
es

t

B
as

el
in

e

M
et

h
o
d

RGB

X

0.4076 0.3347 0.4331

HSL 0.4277 0.3609 0.4532

M
u

lt
i-

C
o
lo

r

C
N

N

A
le

x
N

et

M
o

d
el

 RGB

0.9059

0.6909 0.6651 0.7279

HSL 0.6506 0.6193 0.6820

B
es

t

B
as

el
in

e

M
et

h
o
d

RGB

X

0.3468 0.2873 0.3664

HSL 0.3535 0.3068 0.3733

In general terms, CNN AlexNet models performed better in RGB color space, while

baseline methods scored better in HSL color space. The accuracy difference between color

spaces in both settings is around ~0.03 except for the manually verified dataset run in the

CNN AlexNet model, which is ~0.08 for single color and ~0.05 for multi-color. When we

compare confusion matrices of manually validated datasets run with single color settings

for RGB and HSL color space (see Figure 18), the classification accuracy dropped

significantly for white and black.

54

Figure 18 Comparing RGB (Right) HSL (Left) color space performance for the manually validated dataset

in a single color setting

The most significant drop is in the gray class. The precision score for gray is dropped to

0.4231. When we compare two confusion matrices for the gray class, we see the HSL

model misclassified 12 black and white shoes as gray. Four of them are actually black,

and 8 of them are white. When comparing the failed classification samples of two white

shoes (Figure 19), we see that these misclassified images are highly white intense shoes.

The model predicts these images as gray in HSL color space.

Figure 19 Misclassified Image Sample (Gray)

The automatic validation model removed 26.77% of images (5744 invalid images out of

21454 total images) as invalid in the unrefined dataset. This ratio was similarly 25.29% in

the expert decision sessions. After this removal, the accuracy rate of the CNN AlexNet

Model and baseline methods are increased by ~0.04 after automatic image validation is

applied to the unrefined dataset.

The best accuracy score is 0.8383 with the refined dataset, RGB color space on a single

color setting. All of these accuracy scores are calculated towards the defined classes in the

dataset. But, we recorded a significant count of images misclassified in the raw dataset

55

according to the outputs of the manual validation process. We examined 2416 images in

total; 609 are invalid, 715 are misclassified, and 1092 are valid. The misclassified image

ratio is 29.59% (715 images out of 2416) on a multi-color included setting. When we

ignore the multi-color class, the ratio becomes 29.71% (654 images out of 2201 images

total). These ratios include the invalid images in the total image numbers when we remove

the invalid images from the total image counts: the ratio increases to 39.56% for multi-

color (715 over 1807), 39.73% (654 over 1646) for single color setting.

When we look at the randomly chosen failed 36 sample images from the run (see Figure

20), 17 out of 36 sample images are misclassified, and one is invalid. The misclassified

sample ratio is 47.22%, and the invalid sample ratio is 3.12%.

According to these numbers, we can calculate a rough prediction about the real accuracy:

The count of total images used in the test database for the run is 2721. The model predicted

2281 of them successfully. The remaining image count is 440, which is not classified

correctly by the model. According to the sample statistics, 208 of these images are

misclassified (47.22%). On the other hand, the ratio calculated over the manual validation

process is that 39.73% of images are misclassified. This means 1081 images out of 2721

are misclassified. So, 811 correctly classified images (1079 – 268) are also misclassified.

In the end, we can predict the actual accuracy:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′ =
2281 − (1081 − 208)

2721 − 1081
=

1408

1640

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′ ≅ 0.8585

56

Figure 20 Sample Images that cannot be accurately predicted in the test dataset of the best model

According to this rough calculation, the prediction accuracy is increased by ~0.02. But it

is harder to calculate the actual accuracy precisely without validating every image. Also,

57

human subjectivity affects the outputs if we have enough capacity to validate all the output

images manually.

On the other hand, if we consider whether the misclassification exists in the raw dataset

or not, the CNN AlexNet model performs almost two times more accurately than the

baseline models. When we examine the confusion matrix of the best CNN AlexNet model

in Figure 21, we can verbalize some key points according to the model's outputs.

Figure 21 Confusion matrix of the best model

The classification report of the best model is shown in Table 22.

Table 22 Classification Report of the best model

Precision Recall F1 Score Support

black 0.8762 0.9271 0.9009 809

white 0.7681 0.7211 0.7439 147

gray 0.7623 0.6711 0.7138 301

red 0.7786 0.7899 0.7842 138

green 0.8506 0.6727 0.7513 110

blue 0.8722 0.8980 0.8849 441

orange 1.0000 0.1000 0.1818 10

58

Table 23 (cont.) Classification Report of the best model

Precision Recall F1 Score Support

purple 0.6667 0.2857 0.4000 21

yellow 0.4516 0.3590 0.4000 39

pink 0.7923 0.8729 0.8306 118

brown 0.8525 0.8859 0.8688 587

multicolor 0.0000 0.0000 0.0000 0

micro avg 0.8383 0.8383 0.8383 2721

macro avg 0.7226 0.5986 0.6217 2721

weighted avg 0.8351 0.8383 0.8335 2721

The model performs well for the black, white, gray, red, green, blue, pink, and brown

classes. A few gray class predictions mixed with black, white, and blue class, and yellow

class predictions mixed with brown classes. The model could not perform accurate

predictions in the orange and purple classes. Almost all the predictions for these two

classes are not correct.

Now, we can compare those outputs with the best baseline method. The confusion matrix

of the Refined Dataset Pairwise Argmin method is shown in Figure 22.

Figure 22 Refined dataset pairwise argmin confusion matrix (single color with HSL color space)

59

The best baseline method shown in Figure 22 performed with a 0.4532 accuracy score.

The model predicts almost all the images as black, white, or gray according to the

confusion matrix and the outputs (see Appendix A). The recall score for black is 0.8591,

while the precision score is 0.5200. The recall score for white is 0.7135, while the

precision score is 0.5463. The recall score for gray is 0.7426, while the precision score is

0.2802.

For the comparison of the accuracy of the baseline method over the color spaces. The

methods that use HSL color space performed ~0.025 better than the methods that use RGB

color space in all experiments.

According to the accuracy figures in Table 21, single color models performed better than

the multi-color models, ~0.10 for the CNN AlexNet models and ~0.07 for the baseline

models. The most significant difference between single color and multi-color is on CNN

AlexNet model with HSL Color Space is 0.1166. The divergence between these two

methods is based on the calculation of the multi-color. In CNN AlexNet models, the multi-

color class is calculated with the images defined as multi-color in the dataset. On the other

hand, the baseline methods identify an image as multi-color if more than one probability

of color classes has a probability higher than 25%. So, the CNN AlexNet model relies on

the predefined classes in the dataset, which have ~29% and ~39% misclassification ratios

on unrefined and refined datasets, respectively. This misclassification ratio has a negative

effect on output accuracy.

60

61

CHAPTER 5

5. CONCLUSION

The marketplaces have millions of products listed with tens of millions of metadata to

validate and correct. However, they also do not have a validated ground truth that helps

them train the models that can be used in the automated validation processes. In this study,

we aim to propose a new way to create a ground truth from the unrefined bulk dataset,

which is our first objective. Our second objective in this research is to offer a new model

to be used in the validation process that gets images of the products and validates the

metadata.

We proposed a new methodology, including automatic validation and classification for

product metadata using product images with a deep neural network-based model. This

approach could be applied to different metadata values in various product categories. The

trained models could be used to validate newly uploaded metadata values for a product in

an automated fashion. While the accuracy and reliability of product metadata are essential

for marketplaces, this process helps them give their customers a better experience over

product search and filtering. Inaccurate or unreliable product metadata can lead to issues

like poor customer satisfaction. By improving the product metadata, the new methodology

has the potential to significantly improve these business processes and ultimately lead to

increased efficiency and profitability.

To see the performance of our methodology, we used 21,454 shoe images and respective

metadata from the ABO dataset and performed 26 experiments over the dataset with the

proposed CNN AlexNet model and statistical baseline methods. We aimed to validate the

predefined color metadata of the shoe products in those experiments in two color spaces,

RGB and HSL, and include a multi-color class option. In the first step, we ran our model

without any refinement on the raw dataset; then, we selected one hundred valid images

per color manually and created a validation model based on CNN AlexNet to create a

refined dataset by validating the images from the raw dataset. Then we reran our models

62

on this refined dataset and manually validated the dataset for comparison. In the end, our

proposed model achieved 83.83% accuracy in the best settings, while the best baseline

method achieved 45.32% accuracy.

For future work, the additional color spaces could be used to see their effectiveness in

classification. For example, XYZ, YUV, or CIELAB color spaces could be used in future

work. These additional color spaces could be helped the performance of the proposed

model.

Another point is that we use the multi-color class like another regular color in the CNN

AlexNet model. But, in the baseline methods, we take an image as multi-color if it has

more than one color with a higher probability of over 25%. These two approaches are not

aligned with each other. As another future work, we can ignore the defined multi-color

classes in the dataset and create a similar multi-color decision process in the CNN AlexNet

model. Also, we can use ROC Curve and F1 score to find the best threshold for the multi-

color decision.

Image augmentation is not applied to the input dataset during the metadata improvement

CNN AlexNet training. This process could be applied in the future to create additional

training images and increase the model accuracy. Similarly, for the automatic image

validation model training, additional invalid images could be augmented or generated to

increase the input image count and model accuracy.

In conclusion, the proposed new product metadata validation methodology has proven to

significantly improve the baseline methods. It has been shown through extensive testing

and evaluation. The significant increase in performance demonstrates the effectiveness

and efficiency of the new methodology in validating product metadata. The proposed new

product metadata validation methodology is a valuable contribution to the field. Its high

accuracy rate and potential to improve business processes make it an attractive solution

for various industries. Further research and development of the new methodology have

the potential to bring even greater accuracy and efficiency to product metadata validation.

63

REFERENCES

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-

generation Hyperparameter Optimization Framework. Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

Bergstra, J., Bardenet, R., … Y. B.-A. in neural, & 2011, undefined. (n.d.). Algorithms

for hyper-parameter optimization. Proceedings.Neurips.Cc. Retrieved April 13,

2023, from https://proceedings.neurips.cc/paper/4443-algorithms-for-hyper-

parameter-optimization

Bergstra, J., Yamins, D., on, D. C.-I. conference, & 2013, undefined. (2013). Making a

science of model search: Hyperparameter optimization in hundreds of dimensions

for vision architectures. Proceedings.Mlr.Press, 28.

https://proceedings.mlr.press/v28/bergstra13.html

Blanco, C. F., Sarasa, R. G., & Sanclemente, C. O. (2010). Effects of visual and textual

information in online product presentations: Looking for the best combination in

website design. European Journal of Information Systems, 19(6), 668–686.

https://doi.org/10.1057/EJIS.2010.42

Collins, J., Goel, S., Deng, K., Luthra, A., Xu, L., Gundogdu, E., Zhang, X., Vicente, T.

F. Y., Dideriksen, T., Arora, H., Guillaumin, M., & Malik, J. (2021). ABO: Dataset

and Benchmarks for Real-World 3D Object Understanding. 21094–21104.

https://doi.org/10.48550/arxiv.2110.06199

Deng, Z., Chen, W. Te, Chen, L., & Yu, P. S. (2022). AE-smnsMLC: Multi-Label

Classification with Semantic Matching and Negative Label Sampling for Product

Attribute Value Extraction. Proceedings - 2022 IEEE International Conference on

64

Big Data, Big Data 2022, 1816–1821.

https://doi.org/10.1109/BIGDATA55660.2022.10020304

Gervautz, M., & Purgathofer, W. (1988). A Simple Method for Color Quantization: Octree

Quantization. New Trends in Computer Graphics, 219–231.

https://doi.org/10.1007/978-3-642-83492-9_20

Ghani, R., Probst, K., Liu, Y., Krema, M., & Fano, A. (2006). Text mining for product

attribute extraction. ACM SIGKDD Explorations Newsletter, 8(1), 41–48.

https://doi.org/10.1145/1147234.1147241

Ghosh, P., Wang, N., & Yenigalla, P. (2023). D-Extract: Extracting Dimensional

Attributes From Product Images. Proceedings - 2023 IEEE Winter Conference on

Applications of Computer Vision, WACV 2023, 3630–3638.

https://doi.org/10.1109/WACV56688.2023.00363

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Gundimeda, V., Murali, R. S., Joseph, R., & Naresh Babu, N. T. (2019). An automated

computer vision system for extraction of retail food product metadata. Advances in

Intelligent Systems and Computing, 815, 199–216. https://doi.org/10.1007/978-981-

13-1580-0_20/TABLES/8

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image

Recognition. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2016-December, 770–778.

https://doi.org/10.48550/arxiv.1512.03385

How can I calculate distance from two pixels HSV? (2022). Mathematics Stack Exchange.

https://math.stackexchange.com/questions/4016084/how-can-i-calculate-distance-

from-two-pixels-hsv

HSL and HSV - Wikipedia. (2022). https://en.wikipedia.org/wiki/HSL_and_HSV

Hyndman, R. J., & Fan, Y. (1996). Sample Quantiles in Statistical Packages. American

Statistician, 50(4), 361–365. https://doi.org/10.1080/00031305.1996.10473566

65

Joblove, G. H., & Greenberg, D. (1978). Color spaces for computer graphics. Computer

Graphics, 12(3), 20–25. https://doi.org/10.1145/965139.807362

Kim, M., & Lennon, S. (2008). The effects of visual and verbal information on attitudes

and purchase intentions in internet shopping. Psychology and Marketing, 25(2), 146–

178. https://doi.org/10.1002/MAR.20204

Krizhevsky, A., & Inc, G. (2014). One weird trick for parallelizing convolutional neural

networks. https://doi.org/10.48550/arxiv.1404.5997

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84–90.

https://doi.org/10.1145/3065386

Kumar, K., & Saladi, A. (2022a). PAVE: Lazy-MDP based Ensemble to Improve Recall

of Product Attribute Extraction Models. International Conference on Information

and Knowledge Management, Proceedings, 3233–3242.

https://doi.org/10.1145/3511808.3557119

Kumar, K., & Saladi, A. (2022b). PAVE: Lazy-MDP based Ensemble to Improve Recall

of Product Attribute Extraction Models. International Conference on Information

and Knowledge Management, Proceedings, 3233–3242.

https://doi.org/10.1145/3511808.3557119

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &

Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code

Recognition. Neural Computation, 1(4), 541–551.

https://doi.org/10.1162/NECO.1989.1.4.541

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

https://doi.org/10.1109/5.726791

le Yu Haozheng Tian, Y. Z. S. H., & Velkoski, A. (2022). E-commerce Product Attribute

Value Validation and Correction Based on Transformers.

66

Li, M., Wei, K. K., Tayi, G. K., & Tan, C. H. (2016). The moderating role of information

load on online product presentation. Information & Management, 53(4), 467–480.

https://doi.org/10.1016/J.IM.2015.11.002

Lin, R., He, X., Feng, J., Zalmout, N., Liang, Y., Xiong, L., & Dong, X. L. (2021). PAM:

Understanding Product Images in Cross Product Category Attribute Extraction.

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 3262–3270. https://doi.org/10.1145/3447548.3467164

Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical

imaging focusing on MRI. Zeitschrift Für Medizinische Physik, 29(2), 102–127.

https://doi.org/10.1016/J.ZEMEDI.2018.11.002

Marr, D. (1982). Vision: A Computational Investigation of Visual Representation in Man.

Phenomenology and the Cognitive Sciences, 8(4), 397.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12242&ref

=nf

Miami, F., & Zeng, K. (2015). Next Generation of Product Search and Discovery: Visual

Search and Recommendation.

optuna.samplers.TPESampler — Optuna 3.1.0 documentation. (n.d.). Retrieved April 13,

2023, from

https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.sample

rs.TPESampler.html

Orchard, M. T., Bouman, C. A., & others. (1991). Color quantization of images. IEEE

Transactions on Signal Processing, 39(12), 2677–2690.

Ozaki, Y., Tanigaki, Y., Watanabe, S., Nomura, M., & Onishi, M. (2022). Multiobjective

Tree-Structured Parzen Estimator. Journal of Artificial Intelligence Research, 73,

1209–1250. https://doi.org/10.1613/JAIR.1.13188

Ozaki, Y., Tanigaki, Y., Watanabe, S., & Onishi, M. (2020). Multiobjective tree-

structured parzen estimator for computationally expensive optimization problems.

GECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation

Conference, 533–541. https://doi.org/10.1145/3377930.3389817

67

Petrovski, P., & Bizer, C. (2017). Extracting Attribute-Value Pairs from Product

Specifications on theWeb. Proceedings - 2017 IEEE/WIC/ACM International

Conference on Web Intelligence, WI 2017, 8, 558–565.

https://doi.org/10.1145/3106426.3106449

Qiu, D., Barbosa, L., Dong, X. L., Shen, Y., & Srivastava, D. (2015). DEXTER: Large-

scale discovery and extraction of product specifications on the web. Proceedings of

the VLDB Endowment, 8(13), 2194–2205.

https://doi.org/10.14778/2831360.2831372

Rezk, M., Alonso Alemany, L., Nio, L., & Zhang, T. (2019). Accurate product attribute

extraction on the field. Proceedings - International Conference on Data Engineering,

2019-April, 1862–1873. https://doi.org/10.1109/ICDE.2019.00202

RGB color model - Wikipedia. (2022). https://en.wikipedia.org/wiki/RGB_color_model

Sabeh, K., Kacimi, M., & Gamper, J. (2022). CAVE: Correcting Attribute Values in E-

commerce Profiles. International Conference on Information and Knowledge

Management, Proceedings, 4965–4969. https://doi.org/10.1145/3511808.3557161

Schwarz, M. W., Cowan, W. B., & Beatty, J. C. (1987). An experimental comparison of

RGB, YIQ, LAB, HSV, and opponent color models. ACM Transactions on Graphics,

6(2), 123–158. https://doi.org/10.1145/31336.31338

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-

Scale Image Recognition. 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings.

https://doi.org/10.48550/arxiv.1409.1556

Suzuki, S., & be, K. A. (1985). Topological structural analysis of digitized binary images

by border following. Computer Vision, Graphics, and Image Processing, 30(1), 32–

46. https://doi.org/10.1016/0734-189X(85)90016-7

Vandoni, C. E. (1996). Computer Vision : Evolution And Promise. CERN.

https://doi.org/10.5170/CERN-1996-008.21

68

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep

Learning for Computer Vision: A Brief Review. Computational Intelligence and

Neuroscience, 2018. https://doi.org/10.1155/2018/7068349

Wang, Q., Yang, L., Kanagal, B., Sanghai, S., Sivakumar, D., Shu, B., Yu, Z., & Elsas, J.

(2020a). Learning to Extract Attribute Value from Product via Question Answering:

A Multi-task Approach. Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 47–55.

https://doi.org/10.1145/3394486.3403047

Wang, Q., Yang, L., Kanagal, B., Sanghai, S., Sivakumar, D., Shu, B., Yu, Z., & Elsas, J.

(2020b). Learning to Extract Attribute Value from Product via Question Answering:

A Multi-task Approach. Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 47–55.

https://doi.org/10.1145/3394486.3403047

Wang, Y., Xu, Y. E., Li, X., Dong, X. L., & Gao, J. (2020). Automatic Validation of

Textual Attribute Values in E-commerce Catalog by Learning with Limited Labeled

Data. Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 20, 2533–2541.

https://doi.org/10.48550/arxiv.2006.08779

Wong, T. L., Lam, W., & Wong, T. S. (2008). An unsupervised framework for extracting

and normalizing product attributes from multiple web sites. ACM SIGIR 2008 - 31st

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, Proceedings, 35–42.

https://doi.org/10.1145/1390334.1390343

Yang, L., Wang, Q., Yu, Z., Kulkarni, A., Sanghai, S., Shu, B., Elsas, J., & Kanagal, B.

(2022a). MAVE: A product dataset for multi-source attribute value extraction.

WSDM 2022 - Proceedings of the 15th ACM International Conference on Web

Search and Data Mining, 1256–1265. https://doi.org/10.1145/3488560.3498377

Yang, L., Wang, Q., Yu, Z., Kulkarni, A., Sanghai, S., Shu, B., Elsas, J., & Kanagal, B.

(2022b). MAVE: A product dataset for multi-source attribute value extraction.

WSDM 2022 - Proceedings of the 15th ACM International Conference on Web

Search and Data Mining, 1256–1265. https://doi.org/10.1145/3488560.3498377

69

Zhang, X., Zhang, C., Li, X., Dong, X. L., Shang, J., Faloutsos, C., & Han, J. (2022). OA-

Mine: Open-World Attribute Mining for E-Commerce Products with Weak

Supervision. WWW 2022 - Proceedings of the ACM Web Conference 2022, 3153–

3161. https://doi.org/10.1145/3485447.3512035

Zhao, M., Hoeffler, S., & Dahl, D. W. (2009). The role of imagination-focused

visualization on new product evaluation. Journal of Marketing Research, 46(1), 46–

55. https://doi.org/10.1509/JMKR.46.1.46

Zheng, G., Mukherjee, S., Dong, X. L., & Li, F. (2018). OpenTag: Open aribute value

extraction from product profiles. Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 1049–1058.

https://doi.org/10.1145/3219819.3219839

70

71

APPENDICES

APPENDIX A

* Find the technical report attached, or download it from https://github.com/alatas/MSThesis

72

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	INTRODUCTION
	1.1. Motivation
	1.2. Objectives and Scope
	1.3. Solution Perspective
	1.4. Organization

	2. BACKGROUND AND RELATED WORK
	2.1. Background
	2.1.1. Deep Neural Networks (DNNs)
	2.1.2. Convolutional Neural Networks (CNNs)
	2.1.3. Color Spaces
	2.1.3.1. RGB Color Space
	2.1.3.2. HSV Color Space
	2.1.3.3. HSL Color Space

	2.1.4. Distance Algorithms
	2.1.4.1. Euclidean Distance for RGB Color Space
	2.1.4.2. Euclidean Distance for HSV and HSL Color Space

	2.1.5. Quantization
	2.1.6. CV and Image Processing

	2.2. Related Work

	3. METHODOLOGY
	3.1. Problem Definition
	3.2. Methodology
	3.2.1. Sampling and Manual Validation
	3.2.2. Image Validation Model Training
	3.2.3. Image Validation
	3.2.4. Image Classification Model Training

	4. EXPERIMENTAL WORK
	4.1. Dataset
	4.2. Product and Metadata Selection
	4.3. Experiment Design
	4.3.1. Dataset Processing Steps and Artifacts
	4.3.1.1. Data Cleaning, Preprocessing Step
	4.3.1.2. Manual Validation Step
	4.3.1.3. Validation Model Training
	4.3.1.4. Automatic Validation Using Validation Model

	4.3.2. Metadata Improvement Runs
	4.3.2.1. Convolutional Neural Network (CNN)
	4.3.2.2. Baseline Methods

	4.4. Performance Evaluation Metrics
	4.5. Baseline Algorithms Selection
	4.5.1. Quantization Based Baseline Algorithms
	4.5.2. Pairwise Distance Based Baseline Algorithms
	4.5.2.1. Pairwise Distance Quantiles
	4.5.2.2. Pairwise ArgMin
	4.5.2.3. Pairwise Mean
	4.5.2.4. Array Mean ArgMin

	4.6. Model Implementation and Experiment Settings
	4.6.1. Implementation Details
	4.6.2. Hyperparameter Tuning

	4.7. Results
	4.7.1. Hyperparameter Tuning Results
	4.7.2. Automatic Validation Model Results
	4.7.3. Unrefined Dataset Improvement Runs
	4.7.4. Manually Validated Dataset Improvement Runs
	4.7.5. Refined Dataset Improvement Runs

	4.8. Discussion

	5. CONCLUSION
	REFERENCES
	APPENDICES
	APPENDIX A

