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ABSTRACT 

 

EVALUATION OF RECENT METAHEURISTIC SEARCH TECHNIQUES 
IN OPTIMUM DESIGN OF STEEL STRUCTURES 

 
 
 

Kalaycı, Ahmet Eray 
Master of Science, Engineering Sciences 

Supervisor: Prof. Dr. Murat Dicleli 
Co-Supervisor: Prof. Dr. Oğuzhan Hasançebi 

 
 

April 2023, 84 pages 

 

Meta-heuristic search techniques have become popular in the last decade due to 

advantages, such as preventing local optimum solutions and producing discrete 

solutions to structural systems. The main purpose of the optimization techniques is 

to achieve the minimum weight or cost design of a structural system. As there are so 

many decision variables while calculating the weight or cost of a structure, structural 

optimization is carried out to find the best design out of a large set of acceptable 

solutions. Five optimization techniques; namely Atomic Orbital Search, Honey 

Badger Algorithm, Nuclear Fission-Nuclear Fusion Algorithm, Pathfinder 

Algorithm, and Salp Swarm Algorithm are used in this study to optimize the 

investigated benchmark problems and structural test problems taken from the 

literature. These algorithms are initiated randomly, but each of them has different 

improvement steps to reach the optimum result. In this study, the results obtained 

with all these five different metaheuristic algorithms are compared with each other 

and also with the formerly reported solutions of the investigated problems in the 

previous studies. 
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ÖZ 

 

ÇELİK YAPILARIN OPTIMUM TASARIMINDA YENİ META-SEZGİSEL 
ARAMA TEKNİKLERİNİN DEĞERLENDİRİLMESİ 

 
 
 

Kalaycı, Ahmet Eray 
Yüksek Lisans, Mühendislik Bilimleri 
Tez Yöneticisi: Prof. Dr. Murat Dicleli 

Ortak Tez Yöneticisi: Prof. Dr. Oğuzhan Hasançebi 
 

 

Nisan 2023, 84 sayfa 

 

Meta-sezgisel teknikler, yerel optimum çözümleri engellemesi ve kolay uyarlanabilir 

yapılarının olması gibi avantajları nedeniyle son on yılda popüler hale geldi. 

Optimizasyon tekniklerinin temel amacı, yapısal bir sistem için minimum ağırlığı 

veya minimum maliyeti elde etmektir. Yapı maliyetinin hesaplanmasında çok fazla 

değişken olduğu için yapısal optimizasyonda ağırlığın minimize edilmesi 

amaçlanmaktadır. Bu Çalışmada, literatürdeki kıyaslama problemlerini ve yapısal 

test problemlerini optimize etmek için Atomik Orbital Arama, Bal Porsuğu 

Algoritması, Nükleer Fisyon-Nükleer Füzyon Algoritması, Pathfinder Algoritması 

ve Plantonik Tunikap Sürüsü Algoritması kullanılmıştır. Bu algoritmalar rastgele 

başlangıç değerlerine sahiptir, ancak her birinin optimum sonuca ulaşmak için farklı 

iyileştirme adımları vardır. Bu çalışmada tüm bu beş farklı metasezgisel 

algoritmanın sonuçları kendi içinde ve önceki çalışmalarla karşılaştırılmıştır 

Anahtar Kelimeler: Yapısal Optimizasyon, Planktonik Tunikap Sürü Algoritması, 

Çelik Kafes Yapılar, Boyut Optimizasyonu 
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CHAPTER 1  

1 INTRODUCTION  

The minimum weight or cost optimization of steel structures has long been studied 

in the literature using a variety of different optimization techniques. In the past, 

mathematical programming techniques, which utilized information based on the 

derivative of the objective function and constraints with respect to the design 

variables, were usually implemented by the researchers. Recently, the applications 

of structural optimization have been attempted using newly emerging search 

methods that avoid the use of gradient information during the search, such as meta-

heuristic search algorithms. Optimization is implemented for the designing process 

in engineering, the planning process in logistics, and solving different problems in 

various other disciplines. 

1.1 Structural Optimization and Types 

Structural Optimization is used during the design process of structures and systems 

in all disciplines of engineering, especially civil engineering, mechanical 

engineering, and aircraft engineering.  

1.1.1 The Categories of Structural Optimization 

The optimization method depends on the initial raw data such as usable materials, 

cross-sections of the elements, geographic data, and the expectation from the system 

to be analyzed.  As shown in Figure 1.1, structural optimization can be implemented 

in four different types depending on the type of design variables employed; namely 

size optimization, shape optimization, topology optimization, and material 
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optimization. Optionally, these optimization types can also be implemented together 

to solve a problem. 

 

Figure 1.1. Types of Structural Optimization (Kato, 2010) 

 

Size optimization is related to finding the best dimensions of the elements in a 

structure; for example, the thickness or height of the beam, wall thickness, diameter 

of a hollow tube, the thickness of a shell element, etc. The dimensions of structural 

members are employed as design variables during the optimum design process of a 

structural system. The optimization algorithm employed tries to find the optimum 

dimensions of the elements leading to the minimum weight or cost design of the 

system. At the end of the size optimization process, some structural elements would 

have larger or smaller cross-sections than the initially assigned ones as illustrated in 

Figure 1.2. 

 

Figure 1.2. Structural size optimization problem (Bhensdida, 2015) 
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1.1.1.1 Topology Optimization 

The purpose of topology optimization is to find the optimum topology of a structural 

system. In general, the term “topology” refers to the existence or non-existence of 

structural elements in a structural system. 

Structural truss systems consist of bar elements, which are located between nodes. 

When applied to such systems, topology optimization tries to find which of these bar 

elements will remain in the structural model and which elements are not necessary 

and thus should be removed from the structural model.  An efficiently implemented 

topology design optimization process will lead to the optimum design with the least 

weight of the structure. 

The two subclasses of topology optimization are referred to as geometric topology 

optimization and material topology optimization, which are illustrated in Figure 1.3. 

 

Figure 1.3. Subclasses of the topology optimization, (a) geometric topology 

optimization, (b) discrete distribution, (c) continuous distribution (Maute, 1998) 
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1.1.1.2 Shape Optimization 

Shape optimization deals with finding the optimum geometry of structural systems 

by varying the coordinates of nodes. In other words, in shape optimization nodal 

point coordinates are employed as design variables, while the sizes and the member 

connectivities are left unchanged in the optimum design process.   

This method tries to find the optimum node location in a finite element model. One 

of the first applications of shape optimization dates back to the work of Galileo in 

1638, which produced a solution to the shape optimization problem shown in Figure 

1.4. 

 

Figure 1.4. The shape optimization sample (Crew and Salvio, 2010) 

1.1.1.3 Material Optimization 

In general, a structural system may consist of various parts with different material 

types, such as steel, wood, or aluminum. Then, material optimization aims to find 

the best use of material types or properties for different parts of a structural system. 

Accordingly, material types or properties are employed as design variables during 

the optimization process. Material optimization can be used alone or used in 

conjunction with other optimization models. 
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1.2 Methods of Structural Optimization 

A vast number of different optimization methods exist in the optimization literature. 

In general, the choice of an optimization method used to solve a problem is decided 

upon the nature of the problem at hand, such as whether the problem is constrained 

or not, whether the type of design variables are continuous, discrete, integer, or 

mixed, etc. In a broad sense, the optimization methods used in structural optimization 

can be collected under two categories as Traditional Optimization Techniques and 

Meta-heuristic Optimization Methods. 

1.2.1 Traditional Optimization Techniques 

The optimum solutions of given mathematical problems or functions can be obtained 

using the graphical method and various conventional search techniques. Although 

the graphical method guarantees to find the global optimum solution of a problem, 

it is applicable to problems that have two design variables only. In this method, the 

objective function and all the constraints functions are plotted on a graph sheet, and 

the optimum solution is identified with the help of objective function contours. An 

illustration of the graphical method is depicted in Figure 1.5. 

 

Figure 1.5. An illustration of the graphical method (Arora, 2004) 
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Optimization problems can be divided into two groups as linear programming and 

nonlinear programming optimization problems. In a linear programming problem, 

the optimization function as well as problem constraints are all expressed as a  linear 

function of design variables. In a nonlinear programming problem, however, at least 

the objective function or one of the problem constraints is expressed as a nonlinear 

function of design variables. Similarly, optimization problems (and techniques) can 

also be divided into two groups as constrained or unconstrained optimization 

problems (and techniques) such that some constraints are involved in the former, and 

no constrained are involved in the latter. 

The Simplex Method is the most widely used technique for linear programming 

problems. On the other hand, the unconstrained optimization methods are usually 

attempted by Steepest Descent Method, which is developed by Cauchy in 1847 

(Arora, 2004). Newton’s method, which uses Taylor’s series of second-order 

expansions, obtains more accurate results than the search methods that use first-order 

derivatives. In 1963, the steepest descent method and Newton’s method are 

improved by Marquart’s modification (Arora, 2004). 

Sequential Linear Programming and Sequential Quadratic Programming are two 

methods that are used to solve constrained optimization problems that have different 

initial conditions. The other methods are the Constrained Steepest Descent Method, 

Simplex Method for QP Problem, Quasi-Newton Method, and Gradient Projection 

Method. While using these methods, at the beginning of the optimization process, all 

the constraints must be normalized (Arora, 2004). 

In addition, Steepest Descent Method, Conjugate Gradient Method, Newton Method, 

and Quasi-Newton Method are used for unconstrained problems. All of these 

methods can be used for better results with some modifications such as Scaling 

design variables with Hessian matrix, a modified Hessian formula as Marquart’s 

modification, Inverse Hessian as DFP Method, and Direct Hessian as BFGS Method 

(Arora, 2004).  
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1.2.2 Meta-heuristic Optimization Techniques 

Meta-heuristic optimization techniques have emerged to be powerful search tools 

and received increasing attention from all disciplines of science including structural 

optimization.  

Meta-heuristic optimization techniques have a flexible and gradient-free structure 

and can avoid local optima. These features made them popular in the last decade 

(Mirjalili, 2017). As can be seen from Figure 1.6, they can be classified into five sub-

branches, as evolutionary algorithms, physics-based algorithms, swarm-based 

algorithms, bio-inspired algorithms, and nature-inspired algorithms. All these 

algorithms employ different strategies or inspired methodologies to reach the 

optimum solution for the problems they are applied to.  

Evolutionary Algorithms and Swarm-Based Algorithms (Mirjalili, 2017) are used 

most frequently while solving engineering design optimization problems. The most 

popular technique of Evolutionary algorithms is Genetic Algorithm, which uses a 

numerical solution model based on the evolution theory. At the beginning of the 

optimization process, the optimization process is initiated with randomly generated 

initial solutions. These solutions are improved using evolutionary operators, such as 

selection, crossover, and mutation so that the solution population is guided towards 

better regions of the design space throughout the successive iterations.   

 

Figure 1.6. Classification of metaheuristic algorithms (Dhirman, 2017) 
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1.3 Aim of this study 

The purpose of this thesis is to evaluate the search performances of several recent 

meta-heuristic search techniques in the optimum design of steel truss structures. In 

this regard, Atomic Orbital Search (AOS), Honey Badger Algorithm (HBA), Nuclear 

Fission-Nuclear Fusion Algorithm (N2F), Pathfinder Algorithm (PFA), and Salp 

Swarm Algorithm (SSA) are investigated. The optimum solutions produced to some 

benchmark and structural design problems using these five techniques are compared 

with each other and also with the formerly reported solutions of these problems in 

the literature.   

The Atomic Orbital Search Algorithm, a physics-based algorithm, is inspired by 

electron movement in an atomic orbital range. The electrons revolve around the 

nucleus with different velocities and different distances from the core. 

The second algorithm, Honey Badger Algorithm, is a basic swarm-based algorithm. 

This algorithm mimics the movement and food-searching behaviors of the honey 

badger swarm. 

The Nuclear Fission-Nuclear Fusion Algorithm is another physics-based algorithm 

inspired by the nuclear reaction.  

The Pathfinder Algorithm is a swarm-based algorithm and its design idea has a 

different movement characteristic. The algorithm imitates the group of animals that 

move collectively and follow the leader as well. 

Finally, Salp Swarm Algorithm is a basic swarm algorithm mimicking the salp herd. 

The general movement behavior of the swarm is to follow the leader for reaching the 

food source. 
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CHAPTER 2  

2 FORMULATION OF OPTIMIZATION PROBLEM 

In this study, the sizing optimum design of steel trusses is studied in conjunction 

with five recent meta-heuristic search techniques using three benchmark test 

problems and two structural design problems. All optimization problems have the 

same problem description regarding the definitions of design variables, objective 

function, and constraints, which are discussed in the following sections. 

2.1 Design Variables 

In the context of sizing optimization of steel truss-type structures, design variables 

refer to the cross-sectional areas of truss elements. For practical purposes, referred 

to as discrete optimization, they are selected from the appropriate sections given in 

the profile lists specified in steel design codes. For continuous variable optimization 

problems, however, upper and lower bounds are specified for the design variables 

and they can be assigned to any value in between them.  

2.2 Constraints 

The constraints refer to a set of requirements that must be satisfied during a  design 

process in order to create an acceptable design. In structural engineering 

applications, one can define two types of constraints. The first type is geometric 

constraints. The geometric constraints have nothing to do with the functionality or 

expected performance of a structural system, rather they are usually imposed due to 

fabrication or aesthetics requirements; such as the maximum or minimum slope of a 

roof. The second type of constraint is the so-called functional or behavior constraint. 

Functional or behavioral constraints are usually stipulated by a chosen code of 
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practice, such as maximum displacements or maximum tensile and compressive 

stresses on structural members.  

Meta-heuristic optimization techniques are fundamentally unconstrained 

optimization algorithms. Hence, when meta-heuristic optimization techniques are 

applied to a constrained optimization problem, the problem should be turned into an 

unconstrained one by means of a penalty function approach. In this approach, penalty 

functions are defined for the constrained violations and they are integrated into the 

original objective function. Hence, when a constraint is violated by a design, a 

positive term is assigned associated with this violated constraint, and this term is 

added to the objective function of the corresponding design. Hence, the objective 

function of the design is increased for the violation of each constraint. 

2.2.1 Constraints for Benchmark Problems 

In this thesis, performance evaluation of implemented meta-heuristic techniques is 

implemented in conjunction with the benchmark optimization problems chosen from 

the structural optimization literature. In these benchmark optimization problems, the 

constraints are specified as the maximum nodal displacements in specified directions 

and/or maximum tension and compression stresses on members. In some problems, 

the displacement restrictions are imposed on more than one node, whereas in some 

others they are imposed on one node only. Similarly, some benchmark problems 

have only one stress limitation value under both tension and compression but in some 

other problems, more elaborate stress limitations are defined. 

2.2.2 Constraints for Structural Design Problems 

In structural design optimization problems investigated in this thesis, displacement, 

slenderness, and strength constraints are imposed. The displacement constraints are 

defined as the maximum nodal displacements in specified directions. The member 

strength constraints are imposed according to Load and Resistance Factor (LRFD) 
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design methodology specified by ANSI/AISC 360-16 design specification. 

Similarly, slenderness constraints on members are imposed according to ANSI/AISC 

360-16 design specification. The formulations related to slenderness, stress, and 

displacement constraints are given in equations 2.1, 2.2, and 2.3, respectively.  

� ���� − 1 ≤ 0     (2.1)  

� 	
�� − 1 ≤ 0     (2.2)  

� ���� − 1 ≤ 0     (2.3)  

While ANSI/AISC 360-16 imposes no upper limit for the slenderness of tension 

members, it is recommended that the slenderness ratio of tension members should 

be under 300. Similarly, the slenderness ratio of compression members is 

recommended to be should be under 200 according to ANSI/AISC 360-16. In 

general, the slenderness of a member can be formulated as given in equation 2.3. In 

this equation, l is the unbraced length, K is a factor of effective length, and r is the 

minimum gyration radius for the element. 

 = ���      (2.3)  

According to the LRFD-AISC 360-16, for tension members, the design strength is 

defined as ϕtPn. The design tensile strengths in gross and net sections are given in 

equations 2.4 and 2.5, respectively. In these equations, Pn, Fy, Ag, Fu, and Ae represent 

nominal axial strength, specified minimum yield stress, gross cross-sectional area,  

specified minimum tensile strength, and effective cross-sectional area, respectively. 

ϕ� ∗ �� = 0.9 ∗ �� ∗ ��    (2.4)  

ϕ� ∗ �� = 0.75 ∗ �� ∗ �     (2.5)  

The nominal strength for a compressive member is defined as Pn, and it is calculated 

with equation 2.6, where Fcr and Ag refer to critical compressive stress and gross 

cross-sectional area, respectively. 
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�� = �!� ∗ ��     (2.6)  

The critical stress is calculated using two different formulas. When Fy/Fe is bigger 

than 2.25, equation 2.7 is used; otherwise, equation 2.8 is used. In these equations, 

Fy is the specified minimum yield stress, and Fe is the elastic buckling stress. Elastic 

buckling stress is determined using equation 2.9. 

�!� = "0.658%&%' ( ∗ ��  , if    

&
' ≥ 2.25  (2.7)  

�!� = 0.877 ∗ �   , if    

&
' < 2.25  (2.8)  

� = ,-.
/012 3-      (2.9)  

2.3 Objective Function 

The objective function is defined according to the required performance from a 

structural system design. In the context of structural optimization, the objective 

function is usually chosen as minimizing the weight or cost of a structure. Although 

a direct relationship may be established between weight and cost for all types of steel 

structures, weight can be identified as a strong indication of cost for most steel 

structures. Besides, it is easier and more accurate to calculate weight rather than the 

cost which depends on many items, including material, construction, erection, 

transportation, etc. Therefore, structural weight is used for the objective function of 

the structural optimization problems studied here.   
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CHAPTER 3  

LITERATURE REVIEW 

In this chapter, some studies regarding the optimum design of steel trusses collected 

from the literature are briefly overviewed. 

3.1 Studies on Structural Optimization 

In Hasançebi et al. (2009) the performances of seven meta-heuristic algorithms in 

the size optimum design of steel trusses are investigated and compared. These search 

techniques are Genetic Algorithms (GA), Tabu Search (TS) , Particle Swarm 

Optimization (PSO), Evaluation Strategies (ESs), Harmony Search (HS), Simulated 

Annealing (SA) and Ant Colony Optimization (ACO). In this study, 25-bar tower 

benchmark problem, 113-bar plane bridge, 354-bar dome, 582-bar tower, and 960-

bar double-layer grid are used as test problems, and the optimum designs produced 

to these problems with the aforementioned optimization techniques are compared. 

Kaveh and Talatahari (2009) implemented the Big Bang-Big Crunch (BB-BC) 

algorithm for sizing optimization of steel space trusses. In this study, five different 

truss systems were analyzed, and the optimum designs produced for these structures 

were compared with those of the previous studies. These problems are 25-bar truss, 

72-bar truss, 120-bar truss dome, 26-story truss tower, and a square double-layer grid 

system. 

Degertekin (2011) used an improved version of the Harmony Search Algorithm 

(HSA) to achieve sizing optimization of truss systems. In this paper, 10-bar truss, 

25-bar truss, 72-bar truss, and 200-bar were designed for the minimum weight. Two 

improved variants of the algorithm; namely, Efficient Harmony Search Algorithm 

(EHSA) and Self Adaptive Harmony Search Algorithm (SAHSA), were employed. 
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Kaveh and Khayatazad (2012) used the Ray Optimization algorithm (ROA) for the 

size and shape optimum design of truss structures. The implemented optimization 

algorithm mimics ray refraction, which is a basic physical phenomenon. In the study, 

the performance of the Ray Optimization algorithm was investigated with respect to 

the previous studies and other techniques using a problem suit of 72-bar truss, 120-

bar truss, 200-bar truss, 37-bar truss, and a model of Forth Bridge. 

Degertekin and Hayalioglu (2012) applied the Teaching-Learned-Based 

optimization (TLBO) method for the size optimization of truss systems. This 

optimization method is a meta-heuristic algorithm inspired by the relationship 

between a learner and a teacher. A problem suit of 10-bar truss, 25-bar truss, 72-bar 

truss, and 200-bar truss is used to implement numerical studies and investigations. 

Hasançebi et al. (2013) used a Computationally Improved version of the SOPT 

Algorithm for the size optimization of truss systems. SOPT is a simple optimization 

algorithm, whose computational efficiency is improved with the aid of upper bound 

strategy (UBS). In this study, 10-bar truss, 17-bar truss, and 45-bar truss are tested 

and their results are compared with the results of the previous studies. 

Hasançebi et al. (2013) employed the bat-inspired algorithm for sizing optimization 

of truss structure systems. This algorithm was designed mathematically designed by 

considering the behavior of bats while searching for prey. In this study, the following 

truss structures are used as test problems for investigating the performance of the 

algorithm: 25-bar truss, 354-bar dome truss, 693-bar-truss, and 942-bar truss tower. 

The optimum designs produced for these problems with the bat-inspired algorithm 

are compared with the formerly published solutions of these problems with other 

techniques, such as PSO, HS, SA, ESs, Ant Colony (AC), Simple Genetic Algorithm 

(SGA), TS, etc.  

Kazemzadeh Azad et al. (2013) employed the Upper Bound Strategy (UBS)-

integrated Big Bang-Big Crunch Algorithm for sizing optimization of steel trusses.  

This algorithm is mainly inspired by the theory of Big Bang-Big Crunch, which 

explains how the universe is generated. The optimum designs of the following 
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problems were investigated in the study:  10-bar cantilever truss, 45-bar truss bridge, 

and 120-bar truss dome. The optimum designs produced for these problems with the 

(UBS)-integrated Big Bang-Big Crunch Algorithm were compared with the formerly 

published solutions of these problems with other techniques, such as Adaptive Real-

Coded Genetic Algorithm (ARCGA), Artificial Bee Colony (ABC), Modified 

Artificial Bee Colony (MABC), and Firefly Algorithm (FA). 

Hybridized Firefly Algorithm was used by Baghlani and Makiabadi (2013) for the 

minimum weight design of truss systems. Firefly Algorithm mimics some behaviors 

of the firefly swarm’s movement. In this study, Firefly Algorithm was hybridized 

with the so-called New Feasible Boundary Search Technique, which is an 

improvement to the former. The numerical applications were performed using five 

different structural design examples, which are 10-bar cantilever truss, 17-bar 

cantilever truss, 25-bar tower truss, 72-bar truss, and 120-bar truss dome. The results 

obtained were compared with those of the previous studies. 

Kazemzadeh Azad and Hasançebi (2014) applied an elitist self-adaptive step-size 

search method for optimizing the truss structures. The numerical applications were 

performed using 17-bar cantilever truss, 45-bar bridge, 120-bar dome, and 200-bar 

truss examples. The optimum designs produced for these problems with the 

aforementioned optimization technique with the formerly published solutions of 

these problems with other techniques, such ARCGA, ABC, MABC, FA, and GA.  

Kazemzadeh Azad et al. (2014) developed a so-called Guided stochastic search 

technique for discrete size optimization of steel truss systems. This algorithm utilizes 

the virtual work principle in conjunction with a fully strengthed design approach 

while determining members which have the highest influence on displacement 

quantities. The numerical applications, as well as performance comparison of the 

method, were illustrated using 10-bar truss benchmark problem in addition to four 

practical design examples, which are 117-bar cantilever truss, 130-bar tower truss, 

392-bar double layer grid, and 354-bar dome truss. The optimum solutions obtained 

were compared with the results of PSO, BB-BC, Heuristic Particle Swarm 
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Optimization (HPSO), GA, Finite Element Analysis program based on Genetic 

Algorithm (FEAGEN), and Optimality Criteria algorithms. 

Flager et al. (2014) introduced a general, flexible, and scalable method called the 

Fully Constrained Design Method for the size optimization of steel truss systems. 

The method was applied to the optimum design problems of 10-bar, 25-bar, and 200-

bar trusses, and the results were compared with those of some Heuristic methods and 

the Optimality Criteria. 

Adaptive Dimensional Search was proposed by Hasançebi and Kazemzadeh Azad 

(2015) for sizing optimization of steel truss systems. In this method, the stagnation 

of the method in a local optimum is avoided using several alternative approaches, 

such as Uphill move, Annealing Approach, and Penalty Relaxation. The application 

of the method was tested and illustrated using 10-bar, 200-bar truss, 113-bar bridge, 

693-bar truss, and 960-bar grid systems and the results obtained were compared with 

the results of previous studies. 

Kazemzadeh Azad and Hasançebi (2015) applied the Guided Stochastic Search 

Technique to the sizing optimization of truss structures subject to multiple 

displacement constraints. The numerical efficiency of the proposed method was 

investigated using some benchmark problems from the literature (i.e., 10-bar truss, 

25-bar truss, 200-bar truss) in addition to several truss design problems, such as 117-

bar cantilever, 130-bar tower, and 368-bar dome. 

Kaveh and Ilchi Ghazaan (2015) developed an improved version of the Ray 

Optimization technique for the size and layout optimum design of truss structures.  

A problem suit of 10-bar cantilever beam, 37-bar bridge, 52-bar dome, 72-bar truss, 

and 120-bar dome is used in this study to examine and verify the numerical 

performance of the implemented technique. The results obtained to these problems 

are compared with the other reported solutions of the problems using Charged 

System Search (CSS), Charged System Search – Big Bang-Big Cruunch (CSS-

BBBC), HS, and FA algorithms. 
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Bekdaş et al. (2015) employed the Flower Pollination Algorithm for the size 

optimization of steel truss structures. This algorithm mimics the efflorescence 

operation of phanerogam. Basically, there are two variants of the algorithm named 

cross-efflorescence and self-efflorescence. In this study, a problem suit of 25-bar 

tower, 72-bar truss, and 200-bar truss is used, and the results obtained are compared 

to those of the GA, ACO, BB-BC, Corrected Multi-Level & Multi-Point Simulated 

Annealing (CMLPSA), Hybrid Big Bang – Big Crunch (HBB-BC), Artificial Bee 

Colony with Adaptive Penalty (ABC-AP), TLBO, Hybrid Particle Swallow Swarm 

Optimization (HPSSO), Colliding Bodies Optimization (CBO), HS, Self-Adaptive 

Harmony Search (SAHS), Chaotic Swarming of Particles (CSP), General Geometric 

Programming (GGP) techniques. 

Cheng et al. (2016) proposed Hybrid Harmony Search Algorithm for the optimum 

design of truss systems. This method differs from a standard Harmony Search 

algorithm in the sense that it employs the global best search characteristics of the 

PSO method. Six benchmark truss problems are numerically investigated, namely 

10-bar truss, 15-bar truss, 25-bar truss, 52-bar truss, 72-bar truss, and 200-bar truss, 

and the results obtained are compared to the previously reported solutions of these 

problems by HS, HPSO, and Discrete Heuristic Particle Swarm Ant Colony 

Optimization (DHPSACO) algorithms. 

Kazemzadeh Azad S. (2016) presented Enhanced hybrid metaheuristic algorithms 

for the size optimization of truss systems. The performances of ABC, MBB-BC, and 

Exponential Big Bang-Big Crunch (EBB-BC) methods are investigated 

comparatively using the following test problems: 117-bar truss, 200-bar truss, 354-

bar truss, and 728-bar truss.  

Do and Lee (2017) used a modified version of the Symbiotic Organisms Search 

algorithm for the optimum design of truss and tensegrity structures. The numerical 

applications are performed using 10-bar, 52-bar, 200-bar, 25-bar, and 160-bar truss 

problems in addition to 2-d hexagonal and 3-d truncated tetrahedral tensegrity 

structures.  
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Degertekin et al. (2017) investigated Jaya Algorithm (JA) in the optimum size, 

topology, and layout design of steel structures. For the numerical applications of the 

method, 200-bar, 942-bar, 1938-bar, and 25-bar truss systems were addressed, and 

the results obtained with the JA method were compared with SA, FFA-LS, SQP 

MATLAB algorithms, etc. 

A comprehensive performance evaluation of metaheuristic algorithms is carried out 

by Pholdee and Bureerat (2017) on the size optimum design of truss systems. A total 

of eighteen different metaheuristic algorithms are considered and their solutions to  

10-bar cantilever truss, 25-bar tower truss, 72-bar space truss, and 200-bar plane 

truss systems are compared with each other. 

Assimi et al. (2018) used Genetic Programming with a new adaptive mutant operator 

for size and topology optimization of truss structures. The efficiency of the proposed 

method was determined using three numerical examples; namely 10-bar truss, 25-

bar truss, and 56-bar truss. 

In Sonmez (2018), the performances of eight different population-based 

metaheuristic algorithms are compared in the optimum design of space truss designs. 

The optimum solutions of the 10-bar cantilever plane truss and 582-bar tower truss 

problems are sought using these algorithms, and the results obtained are compared 

with each other to determine the most successful metaheuristic algorithms. 

Multi-objective Colliding Bodies Algorithm was employed by Kaveh and Mahdavi 

(2018) for the design optimization of the truss systems. This algorithm is an 

extension of the Colliding Bodies Optimization Algorithm for multi-objective 

optimization problems. Together with some mathematical functions, the 120-bar 

truss dome and 582-bar truss tower problems were used to verify the efficiency of 

the optimization algorithm. 

Jafari et al. (2018) proposed a hybrid algorithm based on the integration of the 

Cultural Algorithm (CA) into the Elephant Herding Optimization (EHO) method.  A 

problem suit consisting of separately eight mathematical problems and four steel 
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truss structures (namely, 10-bar, 25-bar, 72-bar and 120-bar truss systems) were used 

to examine the numerical performance of the new hybrid algorithm EHOC (Elephant 

Herding Optimization Cultural) as well as individual main algorithms (CA) and 

(EHO). The results obtained with these three methods were also compared with the 

previously reported solutions to these problems using PSO, Multi-Stage Particle 

Swarm Optimization (MSPSO), and HPSSO algorithms. 

An advanced version of the Jaya Algorithm was proposed and employed by 

Degertekin et al. (2019) for discrete sizing, layout, and topology optimization of truss 

systems. This algorithm, named Discrete Advanced Jaya Algorithm (DAJA), allows 

for producing discrete solutions to structural optimization problems. The efficiency 

of the proposed method was investigated using relatively a large set of test problems; 

namely, the 10-bar planar truss, 25-bar spatial tower, 47-bar truss tower, 72-bar 

spatial structure, 200-bar planar system, and 942-bar spatial structure. The optimum 

designs produced for these problems with the DAJA algorithm were compared with 

the results of the previous studies. 

In Jawad et al (2021), Artificial Bee Colony Algorithm is implemented for sizing 

and layout optimization of truss systems. A problem suit consisting of 15-bar, 18-

bar, 25-bar, and 47-bar truss systems is used to evaluate the performance of the 

algorithm as well as to compare the results with those of PSO, Cellular Automata 

hybridized with Particle Swarm Optimization (CPSO), GA, Group Search Optimizer 

(GSO), and Improved Group Search Optimizer (IGSO) methods. 

Awad (2021) used the Political Optimizer algorithm for the size optimization of truss 

systems. The performance of the algorithm was identified using a large problem set, 

including the 10-bar cantilever truss, 18-bar cantilever truss, 200-bar planar truss, 

22-bar cantilever truss, 25-bar tower truss, 72-bar truss, and 942-bar tower. The 

optimum solutions attained with the Political Optimizer algorithm were compared to 

the previously published results of these problems using SA, ES, Genetic-Nelder 

Mead Simplex (GNMS), FA, Cuckoo Search (CS), Grey Wolf Optimizer (GWO), 
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Improved Grey Wolf Optimizer (IGWO), JA, Flower Pollination Algorithm (FPA), 

and TLBO algorithms. 

Liu J. and Xia Y. (2022) employed the Genetic Algorithm integrated with a Deep 

Learning Neural Network for the optimization of truss systems. In this algorithm, 

named Hybrid Intelligent Genetic Algorithm, Deep Learning Neural Network is used 

to substantially improve the computational efficiency of the optimization process 

with the Genetic Algorithm. The 10-bar cantilever truss, 25-bar tower truss, and 37-

bar bridge truss were designed for the minimum weight using this algorithm, and the 

results obtained were compared to those of GA to verify the accuracy of the 

approximation through Deep Learning Neural Network. 
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CHAPTER 4  

4 OPTIMIZATION METHODS 

In this thesis, recently developed five metaheuristic search methods are examined in 

terms of their performances in the sizing optimization of truss structures. These 

algorithms refer to Atomic Orbital Search, Honey Badger Algorithm, Nuclear 

Fission-Nuclear Fusion Algorithm, PathFinder Algorithm, and Salp Swarm 

Algorithm. In this chapter, these methods are briefly introduced and their algorithms 

are explained in the following sections. 

4.1 Atomic Orbital Search (AOS) Optimization Algorithm 

The main idea of Atomic Orbital Search (AOS) lies in the quantum atomic model 

and some principles of quantum mechanics. The difference between the quantum-

based model and the classical atom model is that in the classical atom model, the 

probability of electrons’ locations is specific and the orbitals are accepted as a region 

around the nucleus, whereas in the quantum atom model, the probability of electrons’ 

locations is varied by the energy level of each electron particle. The electron 

movement around the atomic nucleus will be seen as a wave when photographed 

with time exposure . All of these are illustrated in Figure 4.1, where Figure 4.1A is 

the classical atomic sketch; Figure 4.1B is the possible electron location; Figure 4.1C 

is the probability density versus distance between electron and nucleus; Figure 4.1D 

is the layer of the possible locations of electrons; and finally Figure 4.1E is the 

distribution of the radial probability of the locations of the electrons. Every electron 

layer of this quantum model has a different energy level and the positions of electrons 

change with their energy levels.  
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Figure 4.1. Electron motion models (Azizi, 2021). 

4.1.1 Mathematical Model of AOS Algorithm 

The mathematical model of the AOS algorithm is based on the orbital principles of 

the quantum atomic theory, which explains the location change of electrons by 

energy absorption or energy emission. 

In this model, the initial values of all the candidates are determined randomly as 

given in equation 4.1, where i is the current number of the search agent and j is the 

current number of design variables, and Xi
j(0) is the initial value of the variable j in 

the search agent (candidate) i. 

456708 � 45,:5�
6 ; <=>? ∗ @45,:AB

6 � 45,:5�
6 C  (4.1)   

The second step is the evaluation of these initial candidates and the calculation of 

their objective functions. In this atomic model, there are some imaginary layers at 

every iteration and Xk and Ek are used to define the position and the objective 

function value at the kth imaginary layer, respectively. 

Prior to evaluation, the candidates define the lowest energy level in each layer (LEk) 

and calculate the binding state (BSk) and the binding energy (BEk) at the kth layer 

using equations 4.2 and 4.3. In these equations, p is the total number of candidates 

at the kth layer. 
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The binding state and binding energy values are calculated for all the search agents 

when the objective functions are calculated for all candidates using equations 4.4 and 

4.5. In these equations, m is the total number of candidates at whole search agents. 
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In this method, there is a parameter called Photon Rate and this parameter is initially 

set to 0.1 at the beginning of the optimization process. A random number (ϕ) is 

generated for every candidate and if it is greater than the Photon Rate, the candidate 

will continue to progress in the first path. In this first path, a comparison is carried 

out between Binding Energy and Objective Function. If Binding Energy is greater 

than Objective Function for a  candidate, this candidate is improved using equation 

4.6, otherwise, equation 4.7 is used instead. 

P5QRF = P5F + S�∗7T�∗U.VW�∗XY8F    (4.6)   

P5QRF = P5F + Z5 ∗ 7[5 ∗ \NF − ]5 ∗ DEF8  (4.7)   

If the random number ϕ is less than the Photon Number, then the second path is 

followed in which case the candidate is improved using equation 4.8. 

P5QRF = P5F + <5   (4.8)   

The pseudo-code of the Atomic Orbital Search Algorithm is shown in Figure 4.2. 
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Figure 4.2. The AOS algorithm’s pseudo code (Azizi, 2021) 

4.2 Honey Badger Algorithm 

The Honey Badger Algorithm is based on the movement of a honey badger swarm, 

which has an intelligent technique for searching food. This swarm behaviour with its 

effective search strategy is helpful to solve optimization problems and has two 

dynamic steps called digging and finding honey. The mathematical model of this 

algorithm consists of two phases as exploration and exploitation, developed to create 

an effective search strategy for arriving at the optimum solution, 

The Swarm of the Honey Badger searches for food in two different methods. The 

first method is smelling around the possible food or prey location, and digging into 

this area. The second method is following the honey birds, which already found the 
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beehives but did not reach them. The Honey Badgers go after these birds and open 

the beehives with their claws, and then they eat this honey together with these birds. 

4.2.1 Mathematical Model of Honey Badger Algorithm 

The mathematical model of the Honey Badger Optimization (HBO) algorithm is 

inspired by the searching food behaviours of a Honey Badgers Swarm. The Honey 

Badger Optimization algorithm has two steps known as exploration and exploitation, 

similar to digging a possible food area and following the honey birds. 

The initial values of all the candidates are determined randomly using equation 4.9, 

where i is the current number of design variables, and xi is the initial value of the ith 

variable in each candidate. 

45 = ^_5 + <R ∗ 7`_5 − ^_58   (4.9)   

The second step is the calculation of the intensity of smelling for the prey, and this 

is performed using equation 4.10, where d is defined as the distance between the 

current candidate badger and the leader of this swarm, as formulated in equation 

4.11. The other variable of the intensity equation S, which is the strength of the food 

source, is shown in equation 4.12. 

a5 =  <b ∗ Yc∗,∗d�   (4.10)   

?5 = 4M� � − 45   (4.11)   

E =  745 − 45QR8b   (4.12)   

The third step is defining the factor of density, which decreases throughout the 

iteration. This factor is used for a soft transition between exploration and exploitation 

and is calculated using equation 4.13, where tmax is the maximum number of 

iterations, t is the current iteration number and C is a constant, which must be set to 

a value equal to or greater than 1. 
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Z = e ∗ f4g / V��O�h3    (4.13)   

The main phase is updating the candidates' location with the following two separate 

paths, which are digging and honey paths. Both of these paths use a flag F, which 

protects this algorithm from stagnation in a local optimum. This flag F is related to 

a random number r6, and it manages the improving direction of the candidates' 

location (-1 or 1) as formulated in equation  4.14. 

� =  i 1,            jk   <l  ≤ 0.5 −1             f^mf                    (4.14)   

At the digging path, equation 4.15  is used, which imitates the cardioid motion of the 

Honey Badger behaviour. At the honey path, equation 4.16 is used, which imitates 

the chase of the honey birds to find the beehives. 

4� n = 4M� � + � ∗ [ ∗ a ∗ 4M� � + � ∗ <o ∗ Z ∗ ?5 ∗ |cos72t<c8 ∗ u1 − cos 72t<v8w| (4.15)  

4� n = 4M� � + � ∗ <x ∗ Z ∗ ?5  (4.16)   

In equations (4.14) and (4.15), xprey is the location of the leader candidate; r3, r4, r5, 

and r7 are random numbers between 0 and 1; α is a factor of density; I is intensity; 

and β is an ability to reach the food and it must be greater than 1. 

The pseudo-code of the Honey Badger Algorithm is shown in Figure 4.3. 
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Figure 4.3. Pseudo-code of Honey Badger Algorithm (Hashim et al, 2021) 

4.3 Nuclear Fission-Nuclear Fusion (N2F) Algorithm 

The Nuclear Fission-Nuclear Fusion (N2F) Algorithm is an improved variant of the 

Big Bang-Big Crunch (BB-BC) Algorithm. This algorithm has features to avoid the 

search from unnecessary exploration of local minimums and also from jumping to 

ineffective regions of the design space. N2F Algorithm has two phases, which are 

named Nuclear Fission and Nuclear Fusion.  

The first phase is Nuclear Fission, which is similar to the Big Bang step in the BB-

BC algorithm. The task of this phase is to prevent the search steps from getting 

trapped at a local optimum solution. The second phase is Nuclear Fusion, which is 

similar to the Big Crunch step in the BB-BC algorithm. In this method, there is a 

magnification factor, which has an effective ability to exploit the design space. 
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4.3.1 Mathematical Model of N2F Optimization Algorithm 

The Mathematical model of the N2F optimization algorithm imitates the physical 

phenomenon of Nuclear Fission-Nuclear Fusion. The N2F algorithm has been 

devised in a way to eliminate certain drawbacks encountered in the original BB-BC 

algorithm.   

The first step in the implementation of the N2F optimization algorithm is to set the 

ρ and μ parameters and to randomly generate initial candidates of search agents using 

equation 4.17. The ρ parameter should be chosen between 1.0 and 3.0, and the μ 

parameter is set to a value between 100 and 1020. The second step is to calculate the 

objective functions for all the candidates and then find the best result. 

45 = ^_5 + <=>? ∗ 7`_5 − ^_58  (4.17)   

The third step is the Nuclear Fusion phase, where the location of the mass center (xc) 

is determined using equations 4.18 and 4.19.  

aF = /	y'z{	I 3|O}L
   (4.18)   

4! = ∑ BI~I�IKL∑ ~I�IKL     (4.19)   

The fourth step of this algorithm is the Nuclear Fission phase, where new candidates 

are created around the mass center (xc) at random using equation 4.20. Only the best 

candidate, which is the fittest member of previous search agents, is still the same. 

74F8� n = 4! + �F ∗ 74:AB − 4:5�8 ∗ /�}O� 3  (4.20)   

4.4 Pathfinder Algorithm 

Pathfinder Algorithm is another meta-heuristic algorithm investigated in this study. 

The algorithm is based on the collected movement patterns of an animal swarm to 

reach food. The algorithm mimics the searching, exploiting, and hunting behaviours 
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of an animal swarm. The leader must carry the swarm to the food or water resources. 

So, the leader is not a constant member of a swarm; instead, it is the member of the 

swarm which has the best movement of the current step. Therefore, the leader can 

change at every step on the way to the source path (Yapici et al, 2019). 

In this algorithm, an interactive hierarchy is used in the social movement of the 

swarm, such as collective movement and hierarchic foraging. An example of the 

collective movement is shown in Figure 4.4 

 

Figure 4.4. Sample collective movement of Pathfinder Algorithm (Yapici et al, 

2019). 

4.4.1 Mathematical Model of Pathfinder Algorithm 

The Pathfinder algorithm’s main improvement idea is the interactive leadership in 

the swarm, which means that any candidate which has the best result at the current 

iteration will be the leader of the swarm for that iteration. 

The initial values of all candidates are determined randomly using equation 4.21, 

where i is the current number of design variables, and xi is the initial value of the i-

th variable in a candidate.  

45 = ^_5 + <=>? ∗ 7`_5 − ^_58  (4.21)   

The second step is to evaluate these initial candidates and calculate the objective 

functions for all candidates. The candidate, which has the best result in an iteration, 

will be the leader of the swarm at the next iteration. 
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After evaluation, all candidate locations are updated using two separate equations. 

Equation 4.22 is related to the current leader of this swarm, and equation 4.23 is for 

the followers.  

4M�QR = 4M� + 2 ∗ <o ∗ @4M� − 4M�VRC + �   (4.22)   

45�QR = 45� + �R ∗ @46� − 45�C + �b ∗ @4M� − 45�C + � (4.23)   

In equations 4.22 and 4.23, R1 is equal to α*r1, and R2 is equal to β*r2. The α and β 

values are chosen randomly between 1 and 2 for each candidate at the beginning of 

each iteration, and they affect the size steps for improving the candidates. r1, r2, and 

r3 are random numbers between 0 and 1. The ε and A are calculated using the 

equations 4.24 and 4.25, respectively. 

� = /1 − ��O�h3 ∗ `R ∗ �56 , �56 = �45 − 46� (4.24)   

� = `b ∗ f }-��O�h   (4.25)   

In equations 4.24 and 4.25, u1 and u2 are vectors defined randomly between -1 and 

1, tmax is the maximum iteration number, and t is the current iteration number. The 

pseudo-code of the Pathfinder Algorithm is shown in Figure 4.5. 



 
 

31 

 

Figure 4.5. The Pseudo code of the Pathfinder Algorithm (Yapici et al, 2019) 

4.5 Salp Swarm Algorithm 

Salp Swarm Algorithm was inspired by the behavior of the salp swarms. Since the 

living environments of salps are oceans, and they cannot be kept in a laboratory 

environment, it is very hard to understand their living and foraging behaviors. Salps 

usually can be seen in a swarm, which is named the salp chain, in deep oceans. This 

salp chain is illustrated in Figure 4.6. The researchers believe that this behavior 

model is the best way for achieving foraging and better locomotion using rapid 

coordinated changes (Mirjalili , 2017). 
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Figure 4.6. (a) Single Salp, (b) Salps Herd (Mirjalili , 2017). 

4.5.1 Mathematical Model of Salp Swarm Algorithm 

The mathematical model of the Salp Swarm Algorithm (SSA) is based on the 

searching food behaviours of Salp Swarm. The Salp Swarm Algorithm has two steps 

known as exploration and exploitation, similar to navigating in deep ocean and 

finding food. 

The initial values of all the candidates are determined randomly using equation 4.26, 

where i is the current number of design variables. xi is the initial value of the i-th 

variable in a candidate. 

45 = ^_5 + <=>? ∗ 7`_5 − ^_58  (4.26)   

The second step is to evaluate these initial candidates and calculate the objective 

functions of all the candidates. The candidates are sorted according to increasing 

values of their objective functions; hence the best candidate ranks on the first row. 

The candidate, which has the minimum objective function at a current iteration, is 

identified as the best salp. 

The most important component of the algorithm is the c1 parameter, which helps to 

balance between exploitation and exploration and is calculated using equation 4.27.  

�R = 2 ∗ fV/�∗�0 3-
   (4.27)   
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In this method, the other two components of the algorithm are the c2 and c3 

parameters, which are both set to a random value between 0 and 1. If c3 is greater 

than zero, the location of the current leader salp will be updated using equation 4.28, 

otherwise, equation 4.29 is used instead.  

46R = �6 + �R ∗ /@`_6 − ^_6C ∗ �b + ^_63  (4.28)   

46R = �6 − �R ∗ /@`_6 − ^_6C ∗ �b + ^_63  (4.29)   

The follower salps are updated using equation 4.30. 

465 = Rb ∗ @465 + 465VRC   (4.30)   

The pseudo-code of the Salp Swarm Algorithm is shown in Figure 4.7. 

 

Figure 4.7. The Pseudo code of SSA (Mirjalili , 2017). 

4.6 Progress of the Software 

In this study, the numerical implementations of the optimization algorithms were 

coded in MATLAB R2021b program using MATLAB programming language. 

While solving the benchmark problems, the structural analyses were carried out with 

the aid of the so-called K-files, in which the responses of structures; i.e., member 
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forces and displacements are expressed as mathematical functions of cross-sectional 

areas of truss members. While solving the structural design problems, on the other 

hand, optimization codes are communicated with the SAP2000 structural analysis 

software for obtaining response calculations of designs generated in the course of the 

optimization process. This is done using the Open Application Programming 

interface available in SAP2000 software, which allows an external use of the 

structural analysis software by some other programs through the internal functions 

supported by various programming languages. The optimization algorithms are 

iterated until one of the following two stopping criteria is satisfied. Accordingly, the 

algorithms are terminated when a specified maximum number of iterations is 

reached, and when the best design is not improved over a specified number of 

successive iterations. 
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CHAPTER 5  

5 NUMERICAL EXAMPLES 

In this chapter, the numerical performances of the investigated metaheuristic 

optimization algorithms are examined and compared using three benchmark truss 

problems taken from the literature. In addition, two structural truss design examples 

that are sized for the minimum weight according to the provisions of LRFD-AISC 

2016 design specification are also studied here using the five metaheuristic 

algorithms in order to observe the performances and convergence characteristics of 

the algorithms in discrete and challenging optimization problems of engineering 

design practice. 

5.1 Benchmark Test Problems 

Three benchmark truss problems taken from the literature are studied here. These 

problems are the 25-bar truss tower, 38-bar cantilever truss, and 72-bar truss tower. 

While solving a benchmark problem, each optimization algorithm is run ten times 

independently to achieve the size optimum design of the structure, and the best 

feasible weight attained is reported to be the minimum weight design of the structure 

achieved with each optimization algorithm. All the algorithms are initiated with 

randomly generated solutions at the beginning of the optimization process in each 

run. The maximum number of iterations in a single run is limited to 1000, and if the 

best feasible is not improved over 100 iterations, the algorithm is terminated 

prematurely.   
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5.1.1 25- Member Truss 

The 25-member spatial truss shown in Figure 5.1 is an electric transmission tower. 

The truss will be designed for the minimum weight by selecting the truss members 

from a set of 30 discrete sections; namely 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 

3.4 in2. The material density is 0.1 lb/in3 and the Young’s Modulus is 104 ksi.  

 

Figure 5.1. A 3-D view of the 25-member truss 

This truss tower has 10 nodes and 25 members altogether. The truss members are 

collected under 8 member groups (design variables), as shown in Table 5.1. 

Table 5.1 Member groups of the 25-member truss 

Group Name Elements 

1 1 

2 2-5 

3 6-9 

4 10-11 

5 12-13 

6 14-17 

7 18-21 

8 22-25 
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The loads applied on the nodes of the truss are summarized in Table 5.2. Both the 

stress and displacement constraints are imposed on the problem. The upper value of 

stress on every member is defined as ±40 ksi under tension and compression, and the 

displacements of nodes 1 and 2 are limited to a maximum value of ±0.35 in any 

direction.  

Table 5.2 Loadings at 25-member truss 

Nodes\Direction x y z 

1 1.0 -10.0 -10.0 

2 0 -10.0 -10.0 

3 0.5 0 0 

4 0.6 0 0 

5.1.1.1 Results of Analyses 

The 25-member benchmark truss problem was designed for the minimum weight by 

performing ten independent runs with each of the investigated metaheuristic search 

algorithms.  

 

Figure 5.2. Convergence curves for the 25-bar benchmark truss problem with AOS 
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The best run of the Atomic Orbital Search algorithm has resulted in a design weight 

of  489,05 lb for the truss, while the optimum design weight in the worst run is 511,46 

lb. For all the independent runs performed with the Atomic Orbital Search algorithm, 

the resulting convergence curves which show the variation of the best feasible design 

versus the iteration number performed are plotted in Figure 5.2. 

The Honey Badger Algorithm has two parameters as Beta and C. These parameters 

significantly affect the speed of convergence and accuracy of the optimization 

process. After some trials, Beta and C parameters are chosen as 4.50 and 1.25, 

respectively. The best run of the Honey Badger Algorithm has resulted in a design 

weight of  485,05 lb for the truss, while the worst run leads to a design weight of 

492,31 lb. For all the independent runs performed with the Honey Badger Algorithm, 

the resulting convergence curves are plotted in Figure 5.3.   

 

Figure 5.3. Convergence curves for the 25-bar benchmark truss problem with HBA 
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respectively. The best run of the Nuclear Fission-Nuclear Fusion Algorithm has 

resulted in a design weight of  485,05 lb for the truss, while the worst run leads to a 

design weight of 496,58 lb. For all the independent runs performed with the Nuclear 

Fission-Nuclear Fusion Algorithm, the resulting convergence curves are plotted in 

Figure 5.4. 

 

Figure 5.4. Convergence curves for the 25-bar benchmark truss problem with N2F 

 

The Pathfinder Algorithm does not involve any parameter which requires an 

appropriate setting prior to the start of the optimization process. The best run of the 
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performed with the Pathfinder Algorithm, the resulting convergence curves are 

plotted in Figure 5.5. 
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Figure 5.5. Convergence curves for the 25-bar benchmark truss problem with PFA 

 

Similar to the Pathfinder Algorithm, the Salp Swarm Algorithm also does not involve 

any parameter which requires an appropriate setting prior to the start of the 

optimization process. In the runs performed here, the c1 parameter is multiplied by 

0.1 here. The best run of the Salp Swarm Algorithm has resulted in a design weight 

of  485,35 lb for the truss, while the worst run leads to a design weight of 489,04 lb. 

For all the independent runs performed with the Pathfinder Algorithm, the resulting 

convergence curves are plotted in Figure 5.6.  

 

Figure 5.6. Convergence curves for the 25-bar benchmark truss problem with SSA 

450

500

550

600

650

700

750

800

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

W
e

ig
h

t 
o

f 
th

e
 S

y
st

e
m

 (
lb

)

Iteration Number

try_1

try_2

try_3

try_4

try_5

try_6

try_7

try_8

try_9

try_10

450

500

550

600

650

700

750

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

W
e

ig
h

t 
o

f 
th

e
 S

y
st

e
m

 (
lb

)

Iteration Number

try_1

try_2

try_3

try_4

try_5

try_6

try_7

try_8

try_9



 
 

41 

25-bar benchmark truss problem has formerly been studied by Hasançebi et al. 

(2009) using a large number of meta-heuristic search algorithms. The optimum 

designs of the problem attained with different optimization algorithms in that study 

are reproduced in Table 5.3 in terms of cross-sectional areas, the truss weight, and 

the number of analyses performed. Accordingly, the minimum weight of the truss is 

484,85 lb, which is identified by the HS and SA algorithms by performing 2.100 and 

6.624 structural analyses, respectively. 

The optimum designs of the problem attained with the five implemented 

metaheuristic algorithms in this study are also reproduced in Table 5.3 in terms of 

cross-sectional areas, the truss weight, and the number of analyses performed. As 

can be seen from this table, the minimum weight of the truss, which is achieved in 

this study, is 485,05 lb. This solution has been attained by both the Honey Badger 

Algorithm and Nuclear Fission-Nuclear Fusion Algorithm by performing 9.200 and 

10.050 structural analyses, respectively.  

 

Table 5.3 Summary of the optimum results for the 25-bar benchmark truss problem 
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5.1.2 38- Member Truss 

The 38-member cantilever truss shown in Figure 5.7 is a test problem used in a 

student contest called “the International Student Competition in Structural 

Optimization” held in 2012. The cantilever truss consists of 21 nodes and 38 

members altogether, and it will be designed for the minimum weight by selecting the 

truss members from a set of discrete sections; namely (0.1, 0.2, 0.3, …, 14.8, 14.9, 

15.0 in2).  No member grouping is carried out for the truss elements.  The material 

density is 0.283 lb/in3 and the Young’s Modulus is 30,000 ksi. The truss is subjected 

to a single load of P= -15 kips applied at node 21 in the y-direction only.  

 

 

Figure 5.7. 38-member cantilever truss 

Both the stress and displacement constraints are imposed on the problem. The upper 

value of stress on every member is defined as ±30 ksi under tension and compression, 

and the displacements of all nodes are limited to a maximum value of ±4.0 in both x 

and y-directions.  

5.1.2.1 Results of Analyses 

The 38-member cantilever truss problem was designed for the minimum weight by 

performing ten independent runs with each of the investigated metaheuristic search 

algorithms. The independent runs performed with the Atomic Orbital Search 

algorithm have led to an optimum design weight of the structure in the range between 

6005,09 lb. and 6237,83 lb, and the algorithm has terminated at iteration numbers 
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between 450 and 960. For all the independent runs performed with the Atomic 

Orbital Search algorithm, the resulting convergence curves are plotted in Figure 5.8. 

 

Figure 5.8. Convergence curves for the 38-bar cantilever truss problem with AOS 
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6252,30 lb. For all the independent runs performed with the Honey Badger 

Algorithm, the resulting convergence curves are plotted in Figure 5.9.   
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Figure 5.9. Convergence curves for the 38-bar cantilever truss problem with HBA 

 

Nuclear Fission-Nuclear Fusion Algorithm has been implemented such that the μ 

and ρ parameters are set to 1015 and 1.13 respectively. The best run of the Nuclear 

Fission-Nuclear Fusion Algorithm has resulted in a design weight of 6038,52 lb for 

the truss, while the worst run leads to a design weight of 6439,08 lb, and the 

algorithm has terminated at iteration numbers between 250 and 570. For all the 

independent runs performed with the Nuclear Fission-Nuclear Fusion Algorithm, the 

resulting convergence curves are plotted in Figure 5.10. 

 

Figure 5.10. Convergence curves for the 38-bar cantilever truss problem with N2F 
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A standard formulation of The Pathfinder Algorithm could not find any feasible 

solution for the 38-bar cantilever truss problem. Therefore, for this example, a 

modification of the algorithm is performed as formulated in equation 5.1 to remedy 

its search performance. 

 

g� n = g��d + /7=^gℎ= ∗ <18 ∗ @g����A� − g��dC3 + /7_f�= ∗ <28 ∗ @g��d5 − g��d5VRC3 +
�7fgm ∗ ?8,                           �<j�j>=^70.5 ∗ fgm ∗ ?8,              ��?jkjf?   (5.1)   

 

The independent runs performed with the modified (improved) Pathfinder Algorithm 

have led to an optimum design weight of the structure in the range between 7094,79 

lb and 8666,37 lb, and the algorithm has terminated at iteration numbers between 

200 and 650. For all the independent runs performed with the modified Pathfinder 

Algorithm, the resulting convergence curves are plotted in Figure 5.11. 

 

Figure 5.11. Convergence curves for the 38-bar cantilever truss problem with PFA 
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In the runs performed with the Salp Swarm Algorithm, the c1 parameter is multiplied 

by 0.15 here. The best run of the Salp Swarm Algorithm has resulted in a design 

weight of  5959,89 lb for the truss, while the worst run leads to a design weight of 

6004,97 lb, and the algorithm has terminated at iteration numbers between 265 and 

375. For all the independent runs performed with the Salp Swarm Algorithm, the 

resulting convergence curves are plotted in Figure 5.12. 

 

Figure 5.12. Convergence curves for the 38-bar cantilever truss problem with SSA 

 

The 38-member cantilever truss problem has formerly been studied by Kazemzadeh 

Azad et al. (2016) using the standard BB-BC, modified BB-BC, and exponential BB-

BC algorithms. The optimum designs of the problem attained with these algorithms 

are 5889,99 lb by the standard BB-BC, and 5891,16 lb by both modified BB-BC and 

exponential BB-BC. These optimum designs are reproduced in Table 5.4 in terms of 

cross-sectional areas and the truss weight. 

The optimum designs of the problem attained with the five implemented 

metaheuristic algorithms in this study are also reproduced in Table 5.4. As can be 

seen from this table, the minimum weights of the truss achieved with the Salp Swarm 

Algorithm and Honey Badger Algorithm are comparatively lesser than those of other 
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implemented metaheuristic techniques, yet they are slightly higher than the solutions 

attained with the standard BB-BC, modified BB-BC, and exponential BB-BC 

algorithms as reported in Kazemzadeh Azad et al. (2016).  

 

Table 5.4 Summary of the optimum results for the 38-bar cantilever truss problem 
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5.1.3 72-Member Truss 

The 72-member space truss is a rectangular tower as shown in Figure 5.13. The truss 

consists of 20 nodes and 72 members altogether. The material density is 0.1 lb/in3  

and the Young’s Modulus is 10,000 ksi. The truss tower is subjected to two different 

loading conditions. In the first load case, node 17 is subjected to a load of 5.0 kips in 

the x-direction, 5.0 kips in the y- direction, and -5.0 kips in the z-direction (Table 

5.5), whereas in the second load case, a load of -5.0 kips is applied to the nodes 17, 

18 and 19 in the z-direction (Table 5.6).  

Table 5.5 The first loading case for the 72-member truss tower 

Node x-direction y-direction z-direction 

17 5.0 5.0 -5.0 

 

Both the stress and displacement constraints are imposed on the problem. The upper 

value of stress on every member is defined as ±25 ksi under tension and compression, 

and the displacements of the top nodes are limited to a maximum value of ±0.25 in 

all directions. The truss elements are collected under 16 member groups (sizing 

design variables) as given in Table 5.7.  

Table 5.6 The second loading case for the 72-member truss tower 

Node x-direction y-direction z-direction 

17 0.0 0.0 -5.0 

18 0.0 0.0 -5.0 

19 0.0 0.0 -5.0 

20 0.0 0.0 -5.0 

 

Two different design cases of the problem are considered. In the first design case, 

the minimum cross-sectional areas assigned to member groups are limited to 0.1 in2, 

whereas in the second design case, the minimum cross-sectional areas assigned to 
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member groups are limited to 0.01 in2. The other design requirements are all identical 

in both design cases. 

 

Figure 5.13. 72-member truss tower 

Table 5.7 Member groups of the 72-member truss tower

Group Name Elements 

1 1-4 

2 5-12 

3 13-16 

4 17-18 

5 19-22 

6 23-30 

7 31-34 

8 35-36 

Group Name Elements 

9 37-40 

10 41-48 

11 49-52 

12 53-54 

13 55-58 

14 59-66 

15 67-70 

16 71-72 
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5.1.3.1 Results of Analyses 

5.1.3.1.1 The First Design Case 

The 72-member tower truss problem (case-1) was designed for the minimum weight 

by performing ten independent runs with each of the investigated metaheuristic 

search algorithms. The independent runs performed with the Atomic Orbital Search 

algorithm have led to an optimum design weight of the structure in the range between 

384,87 lb and 424.08 lb, and the algorithm has terminated at iteration numbers 

between 300 and 650. For all the independent runs performed with the Atomic 

Orbital Search algorithm, the resulting convergence curves are plotted in Figure 5.14. 

 

Figure 5.14. Convergence curves for the 72-bar tower truss (case-1) with AOS  
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weight of 380,75 lb for the truss, while the worst run leads to a design weight of 

394,87 lb, and the algorithm has terminated at iteration numbers between 200 and 
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400. For all the independent runs performed with the Honey Badger Algorithm, the 

resulting convergence curves are plotted in Figure 5.15.  

 

Figure 5.15. Convergence curves for the 72-bar tower truss (case-1) with HBA  

 

Nuclear Fission-Nuclear Fusion Algorithm has been implemented such that the μ 

and ρ parameters are set to 1014 and 1.10, respectively. In this example, a 

modification of the standard algorithm is performed through equation 5.2 to remedy 

its search performance.  

 

g� n = e� +
⎩⎨
⎧�<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38� ,                      �<j�j>=^

"0.5 ∗ �<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38�( ,     ��?jkjf? (5.2) 

  

The independent runs performed with the Nuclear Fission-Nuclear Fusion algorithm 

have led to an optimum design weight of the structure in the range between 388,81 

lb and 414,48 lb, and the algorithm has terminated at iteration numbers between 300 

and 400. For all the independent runs performed with the Nuclear Fission-Nuclear 

Fusion algorithm, the resulting convergence curves are plotted in Figure 5.16. 
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Figure 5.16. Convergence curves for the 72-bar tower truss (case-1) with N2F 

 

While solving the 72-bar tower truss, a standard formulation of the Pathfinder 

Algorithm is not followed again; rather a modification of the algorithm is 

accomplished as implemented in equation 5.3.  

 

g� n = g��d + /7=^gℎ= ∗ <18 ∗ @g����A� − g��dC3 + /7_f�= ∗ <28 ∗ @g��d5 − g��d5VRC3 +
�7fgm ∗ ?8,                           �<j�j>=^70.1 ∗ fgm ∗ ?8,              ��?jkjf?   (5.3)   

 

The independent runs performed with the modified Pathfinder Algorithm have led 

to an optimum design weight of the structure in the range between 386,06 lb and 

407,87 lb, and the algorithm has terminated at iteration numbers between 350 and 

420. For all the independent runs performed with the modified Pathfinder Algorithm, 

the resulting convergence curves are plotted in Figure 5.17. 
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Figure 5.17. Convergence curves for the 72-bar tower truss (case-1) with PFA 

 

In the runs performed with the Salp Swarm Algorithm, the c1 parameter is multiplied 

by 0.05 here. The best run of the Salp Swarm Algorithm has resulted in a design 

weight of  380,29 lb for the truss, while the worst run leads to a design weight of 

385,84 lb, and the algorithm has terminated at iteration numbers between 280 and 

560. For all the independent runs performed with the Salp Swarm Algorithm, the 

resulting convergence curves are plotted in Figure 5.18. 

 

Figure 5.18. Convergence curves for the 72-bar tower truss (case-1) with SSA 
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The 72-bar tower truss problem (case-1) has formerly been addressed by various 

papers in the literature such as Lee and Geem (2004), Perez and Behdinan (2007), 

and Kaveh and Talatahari (2009). In these papers, the optimum designs of the 

problem were 379,22 lb by the HA technique obtained by performing 20,000 

analyses, 381,91 lb by the PSO technique, and 379,66 lb by the HBB-BC technique 

obtained by performing 13.200 analyses. These optimum designs are reproduced in 

Table 5.8 in terms of cross-sectional areas and the truss weight. The optimum designs 

of the problem attained with the five implemented metaheuristic algorithms in this 

study are also reproduced in Table 5.8. Accordingly, the optimum designs of the 

truss reached in this study are 384,87 lb by the AOS technique obtained by 

performing 26.800 analyses; 380,75 lb by the HBA technique obtained by 

performing 12.250 analyses; 388,81 lb by the N2F technique obtained by performing 

17.850 analyses; 386,06 lb by the PFA technique obtained by performing 19.300 

analyses; and 380,29 lb by the SSA technique obtained by 23.150 analyses.   

 

Table 5.8 Summary of the optimum results for the 72-bar cantilever truss problem 

(case 1) 
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5.1.3.1.2 The Second Design Case 

The 72-member tower truss problem (case-2) was designed for the minimum weight 

by performing ten independent runs with each of the investigated metaheuristic 

search algorithms. The independent runs performed with the Atomic Orbital Search 

algorithm have led to an optimum design weight of the structure in the range between 

370,65 lb and 387,39 lb, and the algorithm has terminated at iteration numbers 

between 260 and 560. For all the independent runs performed with the Atomic 

Orbital Search algorithm, the resulting convergence curves are plotted in Figure 5.19. 

 

Figure 5.19. Convergence curves for the 72-bar tower truss (case-2) with AOS 

 

While solving the 72-member tower truss problem (case-2) with the Honey Badger 

Algorithm, the Beta and C parameters are chosen as 1.65 and 1.15, respectively. The 

best run of the Honey Badger Algorithm has resulted in a design weight of 367,54  

lb for the truss, while the worst run leads to a design weight of 378,27 lb, and the 

algorithm has terminated at iteration numbers between 220 and 400. For all the 

independent runs performed with the Honey Badger Algorithm, the resulting 

convergence curves are plotted in Figure 5.20. 
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Figure 5.20. Convergence curves for the 72-bar tower truss (case-2) with HBA 

 

Nuclear Fission-Nuclear Fusion Algorithm has been implemented such that the μ 

and ρ parameters are set to 1014 and 1.10, respectively. In this example, a 

modification of the standard algorithm is performed through equation 5.4 to improve 

its search performance.  

 

g� n = e� +
⎩⎨
⎧�<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38� ,                      �<j�j>=^

"0.5 ∗ �<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38�( ,     ��?jkjf? (5.4)  

 

The independent runs performed with the Nuclear Fission-Nuclear Fusion algorithm 

have led to an optimum design weight of the structure in the range between 368,63 

lb and 389,28  lb, and the algorithm has terminated at iteration numbers between 340 

and 420. For all the independent runs performed with the Nuclear Fission-Nuclear 

Fusion algorithm, the resulting convergence curves are plotted in Figure 5.21. 

 

350

400

450

500

550

600

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

2
7

1

2
8

6

3
0

1

3
1

6

3
3

1

3
4

6

3
6

1

3
7

6

3
9

1

W
e

ig
h

t 
o

f 
th

e
 S

y
st

e
m

 (
lb

)

Iteration Number

try_1

try_2

try_3

try_4

try_5

try_6

try_7

try_8

try_9

try_10



 
 

57 

 

Figure 5.21. Convergence curves for the 72-bar tower truss (case-2) with N2F 

 

While solving the 72-bar tower truss (case-2), a standard formulation of the 

Pathfinder Algorithm is not followed again; rather a modification of the algorithm is 

accomplished as implemented in equation 5.5.  

 

g� n = g��d + /7=^gℎ= ∗ <18 ∗ @g����A� − g��dC3 + /7_f�= ∗ <28 ∗ @g��d5 − g��d5VRC3 +
�7fgm ∗ ?8,                           �<j�j>=^70.1 ∗ fgm ∗ ?8,              ��?jkjf?   (5.5)   

 

The independent runs performed with the modified Pathfinder Algorithm have led 

to an optimum design weight of the structure in the range between 372,87 lb and 

389,50 lb, and the algorithm has terminated at iteration numbers between 230 and 

630. For all the independent runs performed with the modified Pathfinder Algorithm, 

the resulting convergence curves are plotted in Figure 5.22. 
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Figure 5.22. Convergence curves for the 72-bar tower truss (case-2) with PFA  

 

In the runs performed with the Salp Swarm Algorithm, the c1 parameter is multiplied 

by 0.05 here. The best run of the Salp Swarm Algorithm has resulted in a design 

weight of 364,69 lb for the truss, while the worst run leads to a design weight of 

367,99 lb, and the algorithm has terminated at iteration numbers between 240 and 

470. For all the independent runs performed with the Salp Swarm Algorithm, the 

resulting convergence curves are plotted in Figure 5.23. 

 

Figure 5.23. Convergence curves for the 72-bar tower truss (case-2) with SSA 
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Table 5.9 Summary of 72-bar benchmark results (case 2) 

 

 

The 72-bar tower truss problem (case-2) has formerly been addressed by various 

methods in the literature such as Harmony Search Algorithm in Lee and Geem 

(2004), Corrected Multi-Level & Multi-Point Simulated Annealing (CMLSA) in 

Lamberti (2008), Efficient Harmony Search (EHS) in Lamberti and Degertekin 

(2012). In these studies, the optimum designs of the problem were 364,33 lb by the 

HS technique obtained by performing 20,000 analyses, 363,82 lb by the CMLSA 

technique obtained by 900 analyses, and 364,36 lb by the EHS technique obtained 

by performing 13.755 analyses. These optimum designs are reproduced in Table 5.9 

in terms of cross-sectional areas and the truss weight. The optimum designs of the 

problem attained with the five implemented metaheuristic algorithms in this study 

are also reproduced in Table 5.9. Accordingly, the optimum designs of the truss 

reached in this study are 370,65 lb by the AOS technique obtained by performing 

17.0500 analyses; 367,45 lb by the HBA technique obtained by performing 15.450 
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analyses; 368,64 lb by the N2F technique obtained by performing 19.250 analyses; 

372,87 lb by the PFA technique obtained by performing 20.700 analyses; and 364,69 

lb by the SSA technique obtained by 14.000 analyses.   

5.2 Structural Problems 

Two structural truss problems taken from the literature are studied here. These 

problems are the 130-bar tower and 117- bar cantilever truss. While solving a 

structural design problem, each optimization algorithm is run ten times 

independently to achieve the size optimum design of the structure, and the best 

feasible weight attained is reported to be the minimum weight design of the structure 

achieved with each optimization algorithm. All the algorithms are initiated with 

randomly generated solutions at the beginning of the optimization process in each 

run. The maximum number of iterations in a single run is limited to 1000, and if the 

best feasible is not improved over 100 iterations, the algorithm is terminated 

prematurely.  

5.2.1 130- Member Tower 

The transmission tower truss shown in Figure 5.24 is an electric transmission tower, 

which consists of 33 nodes and 130 members altogether. This structure will be 

designed for the minimum weight by selecting the truss members from a database of 

pipe sections with the following discrete cross-sectional areas: (1.6129, 2.0645, 

2.1484, 2.7935, 3.1871, 4.1226, 4.3161, 5.1548, 5.6839, 6.9032, 6.9032, 9.5484, 

10.9677, 14.3871, 14.5161, 17.1613, 17.2903, 19.4838, 20.4516, 23.7419, 26, 

27.7419, 28.4516, 35.2903, 36, 39.4193, 52.258, 54.1934, 54.1934, 72.9031, 76.774, 

82.5805, 94.1934, 100.645, 103.8708, 123.8707, 137.4191 cm2). No member 

grouping is carried out for the truss elements. The material density is 7850 kg/m3 

and the Young’s Modulus is 200,000 MPa. 
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Figure 5.24. 130-member tower 

 

The loads applied on the nodes of the truss are summarized in Table 5.10. Both the 

strength and displacement constraints are imposed on the problem. The strength 

constraints are imposed according to the provisions of LRFD-AISC (2016) 

specifications. On the other hand, the displacements of nodes 29, 30, 31, 32, and 33 

are limited to a maximum value of ±3 cm in the x-direction. 

 

Figure 5.25. Loadings points of 130-member tower 
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Table 5.10 Loadings of 130-member tower 

Node x-direction (kN) y-direction (kN) z-direction (kN) 

29 100 0 0 

30 100 0 0 

31 0 25 0 

32 0 25 0 

33 0 0 -50 

5.2.1.1 Results of Analyses 

The 130-member structural truss problem was designed for the minimum weight by 

performing ten independent runs with each of the investigated metaheuristic search 

algorithms.  

 

Figure 5.26. Convergence curves for the 130-bar structural truss problem with AOS 

 

The best run of the Atomic Orbital Search algorithm has resulted in a design weight 

of  8427,53 kg for the truss, while the optimum design weight in the worst run is 

11710,48 kg. For all the independent runs performed with the Atomic Orbital Search 
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algorithm, the resulting convergence curves which show the variation of the best 

feasible design versus the iteration number performed are plotted in Figure 5.26. 

While solving the 130-member structural truss problem with the Honey Badger 

Algorithm, after some trials, the Beta and C parameters are chosen as 1.25 and 0.50, 

respectively. The best run of the Honey Badger Algorithm has resulted in a design 

weight of 12206,85 kg for the truss, while the worst run leads to a design weight of 

16313,69 kg. For all the independent runs performed with the Honey Badger 

Algorithm, the resulting convergence curves are plotted in Figure 5.27.   

 

Figure 5.27. Convergence curves for the 130-bar structural truss problem with 

HBA 

 

Nuclear Fission-Nuclear Fusion Algorithm has been implemented such that the μ 

and ρ parameters are set to 107 and 1.01, respectively. In this example, a modification 

of the standard algorithm is performed through equation 5.6 to remedy its search 

performance.  

g� n = e� +
⎩⎨
⎧�<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38� ,                      �<j�j>=^

"0.5 ∗ �<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38�( ,     ��?jkjf?    (5.6) 

7500

12500

17500

22500

27500

32500

1

3
2

6
3

9
4

1
2

5

1
5

6

1
8

7

2
1

8

2
4

9

2
8

0

3
1

1

3
4

2

3
7

3

4
0

4

4
3

5

4
6

6

4
9

7

5
2

8

5
5

9

5
9

0

6
2

1

6
5

2

6
8

3

7
1

4

7
4

5

7
7

6

8
0

7

8
3

8

8
6

9

W
e

ig
h

t 
o

f 
th

e
 S

y
st

e
m

 (
k

g
)

Iteration Number

try_1

try_2

try_3

try_4

try_5

try_6

try_7

try_8

try_9

try_10



 
 

64 

The independent runs performed with the Nuclear Fission-Nuclear Fusion algorithm 

have led to an optimum design weight of the structure in the range between 11841,01 

kg and 13731,87 kg, and the algorithm has terminated at iteration numbers between 

550 and 1000. For all the independent runs performed with the Nuclear Fission-

Nuclear Fusion algorithm, the resulting convergence curves are plotted in Figure 

5.28. 

 

Figure 5.28. Convergence curves for the 130-bar structural truss problem with N2F 

 

While solving the 130-bar tower truss, a standard formulation of the Pathfinder 

Algorithm is not followed again; rather a modification of the algorithm is 

accomplished as implemented in equations 5.7 and 5.8.  
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The independent runs performed with the modified Pathfinder Algorithm have led 

to an optimum design weight of the structure in the range between 13167,45 kg and 

16743,27 kg, and the algorithm has terminated at iteration number 1000 in all the 

runs. For all the independent runs performed with the modified Pathfinder 

Algorithm, the resulting convergence curves are plotted in Figure 5.29. 

 

Figure 5.29. Convergence curves for the 130-bar structural truss problem with PFA 

 

The best run of the Salp Swarm Algorithm has resulted in a design weight of  7876,37 

kg for the truss, while the worst run leads to a design weight of 10504,57 kg. For all 

the independent runs performed with the Pathfinder Algorithm, the resulting 

convergence curves are plotted in Figure 5.30.  
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Figure 5.30. Convergence curves for the 130-bar structural truss problem with SSA 

 

The 130-member transmission tower truss problem has formerly been studied by 

Kazemzadeh Azad et al. (2015) using the Particle Swarm Optimization (PSO), 

standard BB-BC, modified BB-BC, exponential BB-BC methods as well as Guided 

Stochastic Search in two different formulations referred to as (GSSA) and (GSSB).  

The optimum designs of the problem attained with these algorithms are 7344,9 kg 

by the PSO; 8686,1 kg by standard BB-BC; 7011,1 kg by modified BB-BC; 7060,7 

kg by exponential BB-BC; 6485,6 kg by GSSA; and finally 6448,1 kg by GSSB. 

These optimum designs are reproduced in Table 5.8 in terms of the truss weight. 

The optimum designs of the problem attained with the five implemented 

metaheuristic algorithms in this study are also reproduced in Table 5.8. As can be 

seen from this table, the minimum weights of the truss achieved with the Atomic 

Orbital Search and Salp Swarm Algorithm are comparatively lesser than those of 

other implemented metaheuristic techniques and the standard BB-BC, yet they are 

higher than the solutions attained with the PSO, modified BB-BC, exponential BB-

BC, GSSA, and GSSB algorithms as reported in Kazemzadeh Azad et al. (2015).  

 

6000

10000

14000

18000

22000

26000

30000

34000

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

5
3

0

5
5

3

5
7

6

5
9

9

6
2

2

6
4

5

W
e

ig
h

t 
o

f 
th

e
 S

y
st

e
m

 (
k

g
)

Iteration Number

try_1

try_2

try_3

try_4

try_5

try_6

try_7

try_8

try_9

try_10



 
 

67 

Table 5.11 Summary of the optimum results for the 130-bar tower truss problem  

 

 

5.2.2 117- Member Cantilever Beam 

The structural problem shown in Figure 5.31 is a cantilever truss, which consists of 

30 joints and 117 members altogether. This structure will be designed for the 

minimum weight by selecting the truss members from a database of pipe sections 

with the following discrete cross-sectional areas: (1.6129, 2.0645, 2.1484, 2.7935, 

3.1871, 4.1226, 4.3161, 5.1548, 5.6839, 6.9032, 6.9032, 9.5484, 10.9677, 14.3871, 

14.5161, 17.1613, 17.2903, 19.4838, 20.4516, 23.7419, 26, 27.7419, 28.4516, 

35.2903, 36, 39.4193, 52.258, 54.1934, 54.1934, 72.9031, 76.774, 82.5805, 94.1934, 

100.645, 103.8708, 123.8707, 137.4191 cm2). No member grouping is carried out 

for the truss elements. The material density is 7850 kg/m3 and the Young’s Modulus 

is 200,000 MPa. 

 

Figure 5.31. 117-bar Cantilever Beam (Kazemzadeh Azad et.al, 2014) 

The loads applied on the nodes of the truss are summarized in Table 5.9. The strength 

constraints are imposed according to the provisions of LRFD-AISC (2016) 
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specifications. On the other hand, the displacements of all nodes are limited to a 

maximum value of ±4.0 cm in the x,y, and z-directions. 

 

Table 5.12 Loadings at 117-member truss  

Nodes \ Direction x (case 1) y (case 2) z (case 3) 

2-8 15 15 -15 

10-16 15 15 -15 

18-23 15 15 -15 

25-30 15 15 -15 

5.2.2.1 Results of Analyses 

The 117-member cantilever truss problem was designed for the minimum weight by 

performing ten independent runs with each of the investigated metaheuristic search 

algorithms. The independent runs performed with the Atomic Orbital Search 

algorithm have led to an optimum design weight of the structure in the range between 

4640,52 kg and 6434,27 kg, and the algorithm has terminated at iteration numbers 

between 500 and 100. For all the independent runs performed with the Atomic 

Orbital Search algorithm, the resulting convergence curves are plotted in Figure 5.32. 
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Figure 5.32. Convergence curves for the 117-bar cantilever truss problem with 

AOS  

While solving the 117-member cantilever truss problem with the Honey Badger 

Algorithm, after some trials, the Beta and C parameters are chosen as 0.85 and 0.15, 

respectively. The best run of the Honey Badger Algorithm has resulted in a design 

weight of 6112,82 kg for the truss, while the worst run leads to a design weight of 

9813,04 kg. For all the independent runs performed with the Honey Badger 

Algorithm, the resulting convergence curves are plotted in Figure 5.33.  

 

Figure 5.33. Convergence curves for the 117-bar cantilever truss problem with 

HBA  
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Nuclear Fission-Nuclear Fusion Algorithm has been implemented such that the μ 

and ρ parameters are set to 107 and 1.01, respectively. In this example, a modification 

of the standard algorithm is performed through equation 5.9 to remedy its search 

performance.  

 

g� n = e� +
⎩⎨
⎧�<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38� ,                      �<j�j>=^

"0.5 ∗ �<=>? ∗ 74:AB − 4:5�8 ∗ 7�/V {{O�h38�( ,     ��?jkjf? (5.9)  

 

The independent runs performed with the Nuclear Fission-Nuclear Fusion algorithm 

have led to an optimum design weight of the structure in the range between 5713,2 

kg and 7611,84 kg, and the algorithm has terminated at iteration numbers between 

350 and 1000. For all the independent runs performed with the Nuclear Fission-

Nuclear Fusion algorithm, the resulting convergence curves are plotted in Figure 

5.34. 

 

Figure 5.34. Convergence curves for the 117-bar cantilever truss problem with N2F 
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While solving the 117-bar cantilever truss, a standard formulation of the Pathfinder 

Algorithm is not followed again; rather a modification of the algorithm is 

accomplished as implemented in equation 5.10.  

 

g� n = g��d + /7=^gℎ= ∗ <18 ∗ @g����A� − g��dC3 + /7_f�= ∗ <28 ∗ @g��d5 − g��d5VRC3 +
�7fgm ∗ ?8,                           �<j�j>=^70.1 ∗ fgm ∗ ?8,              ��?jkjf?   (5.10)   

 

The independent runs performed with the modified Pathfinder Algorithm have led 

to an optimum design weight of the structure in the range between 6225,00 kg and 

9685,83 kg, and the algorithm has terminated at iteration numbers between 750 and 

1000. For all the independent runs performed with the modified Pathfinder 

Algorithm, the resulting convergence curves are plotted in Figure 5.35. 

 

Figure 5.35. Convergence curves for the 117-bar cantilever truss problem with PFA 
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algorithm has terminated at iteration numbers between 450 and 630. For all the 

independent runs performed with the Salp Swarm Algorithm, the resulting 

convergence curves are plotted in Figure 5.36. 

 

Figure 5.36. Convergence curves for the 117-bar cantilever truss problem with SSA 

 

The 117-member cantilever truss problem has formerly been studied by Kazemzadeh 

Azad et al. (2019) using the standard Adaptive Dimensional Search (ADS), 

exponential BB-BC (EBB-BC), modified BB-BC (MBB-BC) methods as well as the 

modified Monitored Convergence Curve framework (MCC) versions of all these 

algorithms referred to as MCC-ADS, MCC-EB, and MCC-MB. The optimum 

designs of the problem attained with these algorithms are 3078,32 kg by the standard 

ADS; 3094,15 kg by MCC-ADS (SMP100); 3077,79 kg by MCC-ADS (SMP150); 

3041,17 kg by exponential BB-BC; 3041,29 kg by MCC-EB (SMP100); 3042,09 kg 

by MCC-EB (SMP150);  3125,25 kg by modified BB-BC; 3052,88 kg by MCC-MB 

(SMP100); and 3058,80 kg by MCC-MB (SMP150). These optimum designs are 

reproduced in Table 5.10 in terms of the truss weight. 
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seen from this table, the minimum weight of the truss achieved with the Atomic 

Orbital Search is comparatively lesser than those of other implemented metaheuristic 

techniques, yet they are higher than the solutions attained with the standard ADS, 

MCC-ADS, exponential BB-BC, MCC-EB, modified BB-BC, and MCC-MB 

algorithms as reported in Kazemzadeh Azad et al. (2019).  

 

Table 5.13 Summary of the optimum results for the 117-bar cantilever truss 

problem  
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CHAPTER 6  

6 CONCLUSIONS 

The objective of this thesis is to evaluate the performance of the following five 

recently emerged meta-heuristic search techniques in the sizing optimization of steel 

trusses: Atomic Orbital Search, Honey Badger Algorithm, Nuclear Fission-Nuclear 

Fusion Algorithm, PathFinder Algorithm, and Salp Swarm Algorithm. In this 

chapter, the results of this study are summarized, and future research areas are 

articulated. 

6.1 Summary and Conclusion 

A literature survey reveals that in the last three decades, more than two hundred 

meta-heuristic search techniques have been developed to solve mathematical and 

engineering optimization problems. These techniques are non-traditional, stochastic, 

and derivative-free methods that make use of ideas mostly inspired by nature, social 

or physical systems. This trend of developing new metaheuristic techniques is likely 

to continue for a while due to the obvious advantages of these techniques with respect 

to traditional optimization approaches that are based on the use of derivative tools. 

In this thesis, five of these techniques which are recently proposed; namely Atomic 

Orbital Search, Honey Badger Algorithm, Nuclear Fission-Nuclear Fusion 

Algorithm, Pathfinder Algorithm, and Salp Swarm Algorithm have been evaluated 

in the context of structural optimization and sizing optimization of steel trusses in 

particular.    

The numerical implementations of the optimization algorithms were coded in 

MATLAB R2021b program using MATLAB programming language. The numerical 

performances of the methods were quantified using a problem test set consisting of 

selected benchmark truss problems as well as structural design problems. The 
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benchmark problems; namely the 25-bar truss tower, 38-bar cantilever truss, and 72-

bar truss tower as well as structural design problems; namely the 130-bar truss tower, 

and 117-bar cantilever truss, were all taken from the literature. The structural 

analyses of these benchmark problems were performed with the aid of the so-called 

K-files. The K-files consist of the responses of structures; i.e., member forces and 

displacements are expressed as mathematical functions of cross-sectional areas of 

truss members. On the other hand, while solving the structural design problems, 

optimization codes were communicated with the SAP2000 structural analysis 

software for obtaining response calculations of designs, generated in the course of 

the optimization process. 

While solving all the investigated benchmark problems and structural design 

problems, each optimization algorithm was run ten times independently to achieve 

the size optimum design of the structure. All the optimization algorithms were 

initiated with randomly generated solutions. The algorithms were terminated when 

a specified maximum number of iterations was reached or when the best design was 

not improved over 100 successive iterations. 

In this study, the following results were obtained: 

• The minimum truss weight of the 25-bar truss tower problem, which was also 

attained in this study, is  485,05 lb. Both the Honey Badger Algorithm and 

Nuclear Fission-Nuclear Fusion Algorithm attained this solution by 

performing 9.200 and 10.500 structural analyses, respectively. When the 

optimum designs of the search techniques are sorted in the order of the 

lightest design to the heaviest one, this order appears as HBA, NFA, SSA, 

PFA, and AOS. 

• The optimum design results of the 38-bar cantilever truss problem attained 

with the studied techniques were 5959,89 lb by SSA; 5975,09 lb by HBA; 

6005,09 lb by AOS; 6038,52 lb by N2F; and 7094,79 lb by PFA. The 

minimum truss weight was obtained by the Salp Swarm Algorithm, yet this 
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solution is not better than the optimum design of the problem achieved in the 

literature. 

• The minimum design weight of the 72-bar truss tower problem (case-1) 

attained in this study was 384,87 lb by AOS; 380,75 lb by HBA; 388,81 lb 

by N2F; 386,06 lb by PFA; and 380,29 lb by SSA. The minimum design 

weights of the truss obtained by the Salp Swarm Algorithm and the Honey 

Badger Algorithm were better than the optimum solutions reported by the 

Particle Swarm Optimization technique in the literature. When the optimum 

designs of the search techniques are sorted in the order of the lightest design 

to the heaviest one, this order appears as SSA, HBA, AOS, PFA, and N2F. 

• The optimum design results of the 72-bar truss tower problem (case-2) 

attained with the studied techniques were 370,65 lb by AOS 367,45 lb by 

HBA; 368,64 lb by N2F; 372,87 lb by PFA; and 364,69 lb by SSA. The 

minimum design weight of the truss was obtained by the Salp Swarm 

Algorithm, yet this solution is not better than the optimum design of the 

problem achieved in the literature. When the optimum designs of the search 

techniques are sorted in the order of the lightest design to the heaviest one, 

this order appears as SSA, HBA, N2F, AOS, and PFA.  

• The optimum designs of the 130-bar truss tower problem attained with the 

studied techniques were  8427,5 kg by AOS; 12206,85 kg by HBA; 11841,01 

kg by N2F; 13167,45 kg by PFA; and 7876,4 kg by SSA. The minimum 

design weights of the truss obtained by the Salp Swarm Algorithm and the 

Atomic Orbital Search technique were better than the optimum solution 

reported by the standard BB-BC technique in the literature. When the 

optimum designs of the search techniques are sorted in the order of the 

lightest design to the heaviest one, this order appears as SSA, AOS, N2F, 

HBA, and PFA. 

• The optimum designs of the 117-bar cantilever truss problem attained with 

the studied techniques were 4640,25 kg by AOS; 6112,82 kg by HBA; 5713,2 

kg by N2F; 6225,00 kg by PFA; and 5066,63 kg by SSA. The minimum 
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design weight of the truss was obtained by the Atomic Orbital Search 

technique, yet this solution is not better than the optimum design of the 

problem achieved in the literature. When the optimum designs of the search 

techniques are sorted in the order of the lightest design to the heaviest one, 

this order appears as AOS, SSA, N2F, HBA, and PFA. 

• When the analysis results and parameters used in these analyses are 

evaluated, it is seen that the ability of some of the techniques used in this 

study, i.e. PFA, to reach the optimum design values in the literature decreases 

with the increase in design variables. 

• For benchmark problems in which the number of design variables is not high, 

it is observed that meta-heuristic search techniques implemented in this study 

produced comparable solutions to the formerly reported optimum designs of 

these trusses by other techniques in the literature.  

• In benchmark problems, the best overall performance (out of the five 

techniques tested) was exhibited by SSA since it produced the best solutions 

in the 38-bar truss problem and both design cases of the 72-bar truss problem. 

Another promising performance was exhibited by HBA such that it produced 

the best solution in the 25-bar truss problem and the second best solutions in 

the 38-bar truss problem and both design cases of the 72-bar truss problem. 

On the other hand, the least promising performance was exhibited by PFA 

such that it produced the highest design weights for the 38-bar truss and the 

second design case of the 72-bar truss, and the second highest weights for the 

25-bar truss, and the first design case of the 72-bar truss. 

• For structural design problems in which the number of design variables is 

rather high, it is observed that meta-heuristic search techniques implemented 

in this study produced considerably heavier solutions than the formerly 

reported optimum designs of these trusses by other techniques in the 

literature. It follows that all these techniques require a thorough 

reformulation for a successful application to large-scale structural 

optimization problems with numerous design variables.  
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• In structural design problems, the best overall performance (out of the five 

techniques tested) was exhibited by SSA and AOS. The SSA produced the 

least design weight for the 130-bar truss tower, and the second least design 

weight for the 117-bar cantilever truss. The AOS produced the second least 

design weight for the 130-bar truss tower, and the least design weight for the 

117-bar cantilever truss. Again, the least promising performance was 

exhibited by PFA such that it produced the highest design weights for both 

the structural design problems.  

6.2 Future Studies 

For structural design problems which include a limited number of design variables, 

the performances of metaheuristic search techniques investigated in this study are 

found sufficient and comparable to other optimization techniques in the literature. 

However, for large-scale and challenging structural optimization problems 

consisting of numerous design variables, the techniques fall short of exhibiting a 

satisfactory search performance. Therefore, it is recommended that these techniques 

are reformulated or improved in a way to remedy their search performance in such 

problems.      
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