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submitted by ALPER KAYABAŞI in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
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ABSTRACT

FEW-SHOT SEGMENTATION BY ENHANCED ENSEMBLE OF BASE AND
META PREDICTIONS

Kayabaşı, Alper

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. İlkay Ulusoy

April 2023, 72 pages

Supervised learning approaches assume that there is a large amount of data available

with labels. Since data annotation is a costly and time-consuming task, this assump-

tion loses its validity when there are financial or time constraints. In addition, only

a small number of samples may be available for specific classes, such as images of

endangered animals. To address these issues, the concept of few-shot learning has

been developed to recognize patterns from novel tasks with limited supervision. As

a sub-task of few-shot learning, few-shot segmentation aims to create a generalizing

model that can segment query images from unseen classes during training, using a few

support images whose class matches that of the query image. Previous research has

identified two specific problems in this domain: spatial inconsistency and a bias to-

ward seen classes. To address the issue of spatial inconsistency, the proposed method

in this thesis compares the support feature map to the query feature map at multiple

scales, making it scale-agnostic. To address the bias towards seen classes, a super-

vised model called the base learner is trained on available classes to identify pixels

belonging to seen classes accurately. The meta learner then uses an ensemble learning

model to coordinate with the base learner and discard areas belonging to seen classes.
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Our method in this thesis is the first to address these two crucial problems simultane-

ously and achieves state-of-the-art performance on both PASCAL-5i and COCO-20i

datasets.

Keywords: few-shot segmentation, ensemble learning
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ÖZ

META VE BAZ TAHMİNLERİ KULLANAN GELİŞTİRİLMİŞ KOLEKTİF
ÖĞRENMEYLE BİRKAÇ ÖRNEKLİ BÖLÜTLEME

Kayabaşı, Alper

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İlkay Ulusoy

Nisan 2023 , 72 sayfa

Denetimli öğrenme paradigması, etiketiyle birlikte bol miktarda verinin mevcut ol-

duğunu varsaymaktadır. Veri etiketleme maliyetli ve zaman alıcı bir iş olduğundan,

finansal ve ya zamansal kısıtlar olduğunda bu varsayım geçerliliğini yitirir. Buna ek

olarak, bazı sınıflar için örnek görüntülerin sayısı az olabilir (Örneğin soyu tüken-

mekte olan hayvanlara ait görüntüler). Bu durumlara değinmek için, kısıtlı denetim

altında yeni görevlerdeki örüntülerin tanınması amacıyla birkaç adımda öğrenme kon-

septi geliştirilmiştir. Birkaç adımlı öğrenmenin alt başlığı olan birkaç adımlı bölüt-

leme, sınıfı sorgu görüntüsündeki sınıfla eşleşen birkaç destek görüntüsünün rehber-

liğinde eğitim sırasında görünmeyen sınıfları içeren sorgu görüntülerini bölütleyen

genelleyici bir model geliştirmeyi amaçlar. Daha önceki çalışmalarda belirtilen, bo-

yutsal tutarsızlık ve görülen sınıflara yönelik önyargı olmak üzere alana ait iki prob-

lem vardır. Boyutsal tutarsızlık sorununu çözmek için, bu tezde önerilen yöntem, des-

tek özellik haritasını çeşitli ölçeklerde sorgu özellik haritasıyla karşılaştırır, bu ne-

denle ölçeğe bağımlılık ortadan kalkmaktadır. Görülen sınıflara yönelik eğilimi ele

almak için, temel öğrenen adı verilen denetimli bir model görülen sınıflara ait piksel-
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leri doğru bir şekilde tanımlamak için mevcut sınıflar üzerinde eğitilir. Meta öğrenici

daha sonra temel öğrenenle koordinasyon sağlamak ve görülen sınıflara ait alanları

göz ardı etmek için bir topluluk öğrenme modeli kullanır. Bu tez, bu iki hayati sorunu

ilk kez aynı anda ele alıyor ve hem PASCAL-5i hem de COCO-20i veri kümelerinde

en iyi performansları elde ediyor.

Anahtar Kelimeler: Birkaç örnekle bölütleme, kollektif öğrenme

viii



To my beloved family

ix



ACKNOWLEDGMENTS

I consider myself fortunate to have had the opportunity to be under the supervision of
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CHAPTER 1

INTRODUCTION

1.1 From Segmentation to Few-Shot Segmentation

Semantic segmentation is a crucial task that classifies each pixel of an image to make

sense of the scene with application areas such as autonomous driving [12], and med-

ical imaging [13]. Deep learning pervades semantic segmentation like other tasks of

computer vision [14, 15]. Fully convolutional neural network (FCN), which is the

pioneering work in semantic segmentation field, formulates semantic segmentation

as a pixel-wise classification task [15]. In FCN, all fully connected layers at the end

of a model are transformed into convolution layers so that the network accepts ar-

bitrary input sizes. Success of FCN accelerates the field and results in outstanding

architectures such as UNet [13], PSPNet [16], and Deeplab [14, 17]. PSPNet com-

bines average pooled feature maps at different scales to contain not only global but

also local context [16]. Deeplab introduces ASPP module [14] equipped with dilated

convolution that increases the receptive field of the network without a decrease in

resolution by inserting holes between filter weights. Supervised segmentation models

are required to employ abundant annotated data belonging to each class in the train-

ing set since the generalization capacity of supervised models decreases with scarce

labeled data. Therefore, adapting the model to work on unseen classes requires dense

annotation of myriad data from novel classes. Shaban et al. [18] proposed few-shot

segmentation to remove the labeling effort and increase the generalization capacity of

a model given few data for the first time.
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1.2 Problem Statement

Few-shot segmentation task utilizes a base dataset containing adequate images with

their annotations whose classes, Cbase, are disjoint from novel classes, Cnovel, in which

dense predictions are fulfilled with few data and their annotations. K number of avail-

able data and their annotations belonging to the novel classes constitute support set

S for testing which are expected to guide a model M to make predictions for query

image Iq, which is dubbed as K-shot segmentation. The support set is formally rep-

resented as S = {Isi ,Msi}Ki=1, where Isi , and Msi correspond to ith support image

and its dense ground truth mask. On the side of training, support set for training is

sampled from base dataset along with query set which consists of the query image

and its ground truth, sharing its class with the chosen support set. The aforemen-

tioned classes are treated as a novel class during training in order to perform episodic

training, where pixels belonging to chosen class are assigned as foreground while

pixels from all other classes are considered as background. Query set is formally

represented as Q = {Iq,Mq}, where Iq and Mq correspond to the query image and

its dense ground truth mask. The model, M , is trained by backpropagating binary

cross entropy loss between prediction M̂q for query and ground truth Mq over tasks,

named as episodes involving the selected support set from the base dataset with the

accompanying query set.

1.3 Motivation

Few-shot segmentation addresses the problem of making pixel-wise predictions for

a target image, called a query, from an unseen class with the guidance of a support

image from the same category. Inspired by the few-shot classification task [19], most

methods utilized the episodic training strategy in which the gradients are averaged

over tasks named as an episode. Each episode is sampled from a dataset whose classes

are disjoint from a test case where only a few data are available. These episodes

are used to imitate the test case during training to prevent overfitting. Despite this

intention, a model trained with this strategy tends to mistake segments from seen

training classes, referred to as base classes, as novel classes because of constantly

2
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Figure 1.1: (a) Overview of BAM [1]. Support and query features are used by meta

learner to extract support feature map while base learner provides guidance for the

base classes and leads the meta learner to focus on novel regions via ensembling.

(b) Our proposed method. The decoder for meta learner is improved such that query

feature map is obtained at multi-scale. Support feature map is compared with query

feature maps at multi-scale to obtain enriched query features. Query predictions ob-

tained from enriched query features at each scale are ensembled with the base map as

well as the prediction obtained from the fusion of them. Inner losses are computed

at different scale levels and the final prediction is obtained from the ensemble of the

base map with the predictions from the fused query feature maps. (Best viewed in

zoom)
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experiencing the same set of classes during training. Hence, the co-occurrence of

novel and base classes in the same scene causes entanglement between features of

pixels that are part of the novel and base categories.

To prevent this entanglement, prediction of the supervised model, which is trained on

base classes, guides the meta learner, which is responsible for detecting novel areas.

Meta learner is directed to areas not occupied by the base classes so that contradiction

between the base learner and the meta learner is avoided via the ensemble model

entailing both base and meta predictions [1]. On the side of meta learner, candidate

objects in query image might not cover as same area as those in support images, so

the model should compare support feature map with query feature map at different

resolutions to disentangle adjacent regions around novel segments [11]. As shown in

Fig. 1.1, the ensemble of base and meta learner without improved decoder fails to

distinguish background from foreground since naive decoder, which is designed for

the supervised scheme, lacks to combine features at different resolutions in favor of

complete query prediction. Hence, we transform the naive decoder into an improved

decoder such that not only does it correlate the support image with the query image at

multi-resolution but also it benefits from merits of base learner at multi-resolution. In

this regard, we hypothesize that there are cases where it is not enough that base learner

discourages meta learner from base regions at single-scale. Our experiments verify

that the improved decoder and ensembling the predictions at multi-scale outperform

the decoder equipped with ensembling the prediction at single-scale.

1.4 Contributions

Our contributions in this thesis are two-fold:

• We alleviate the spatial inconsistency and the bias problems together with the

assistance of our proposed decoder that seeks to remove bias at multi-resolution.

• Our proposed method achieves new state-of-the art performance on both PASCAL-

5i (mIoU @ 1-shot: 68.59%, mIoU @ 5-shot: 72.05%) and COCO-20i (mIoU

@ 1-shot: 47.16%, mIoU @ 5-shot: 52.50%) datasets for few-shot segmenta-

tion task.
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1.5 The Outline of the Thesis

Chapter 1 presents an introduction to the need for few-shot segmentation, followed by

the formulation of the problem at hand. Additionally, we provide a detailed discussion

of the motivations and contributions of our proposed methodology in this dissertation.

Chapter 2 provides an overview of the relevant literature on few-shot segmentation,

categorized based on the problem they aim to solve. Notable works from each cate-

gory are presented and summarized in their respective subsections.

Chapter 3 provides the necessary background information for comprehending our

novel approach, followed by a thorough discussion of our proposed method.

Chapter 4 provides an introduction to the benchmark dataset and the evaluation met-

rics that are employed to measure the performance of the methods. The experimental

configuration, including hyperparameters, is also outlined in this chapter. In this chap-

ter, our proposed method is evaluated quantitatively and qualitatively to demonstrate

its effectiveness. Additionally, this chapter contains ablation studies ascertaining the

individual contributions of each component used in our methodology.

Chapter 5 provides a concise summary of our proposed method, highlighting its

strengths and limitations.
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CHAPTER 2

OVERVIEW OF FEW-SHOT SEGMENTATION

Few-shot segmentation is a task of predicting pixel-wise labels for new object classes

in query images, given only a few annotated support images. It extends the few-

shot learning paradigm to dense prediction tasks and mostly relies on specialized

architectures that perform meta-training on a base set followed by meta-testing on

a disjoint set. Meta-training is performed on classes from dataset which consists of

ample images with their annotations, which treats those classes as novel to match

training scenario with test one. On the other hand, meta-testing is performed on

classes, which is disjoint from rich and accessible dataset used during meta-training.

Shaban et al. [18] proposed dual-branch network whose support branch undertakes to

generate classifier weights for query branch. Inspiring by prototype concept in few-

shot classification [20], support image with its mask passes through prototype learner

model, which is followed by global average pooling to acquire prototype depicting

category specific information [21]. Extraction of prototype by averaging lead to lose

of details, and it is not obligatory that each support pixel is beneficial for segmentation

of each query. In addition, appearance of support can differ from query such that only

mining features from support is not sufficient to close intra-class gap, and excavation

of query is required to bridge the gap. We name this problem as imbalance in details,

which majority of few-shot segmentation struggle to solve.

Another finding is that freezed backbone and inductive inference can lead to reduction

of model generalizability. It was demonstrated that optimizing part of model during

meta-training [7] and transductive [22] inference mitigate overfitting. We name this

problem as inter-class gap. Most methods take precautions to deal with this problem

while proposed method in thesis acknowledges overfitting, detect such regions, and
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discourage model from predicting those regions as novel.

Other common problem is notorious for vision tasks, called spatial inconsistency [11].

It is not possible that representative template from support captures appearance of

category at different scales. Therefore, content in support should be compared with

query at different scales. Proposed method in this thesis addresses this problem by

establishing such mechanism.

Episodic learning paradigm perceives whole background as if it comes from same

distribution. However, hidden background can consist of objects from novel cate-

gories in which their discriminability is hurted since they are regarded as single class

[2]. We name this problem as misinterpretation of background, which [2], and [23]

address this problem.

Another bunch of works [9, 24] believes that processing of correspondences is more

suitable than processing features for learning-to-learn paradigm since matching pat-

terns tends to be more class agnostic compared to the comparison of features. Since

their processing lead to increase reliability of correspondences, we name this problem

as correspondence reliability.

Other problem overlooked by most methods is scalability of performance according

to number of supports used. Joakim et al. [8] demonstrated that up-to-date methods

show comparable performance at 1-shot case compared to them while they fail in 5-

shot case compared to their method. We name this problem as scalability with number

of support data.

Last problem is that most methods are not capable of segmenting thin objects, which

manifest itself on supervised segmentation as well. We name this problem as thin

object issue.

In next subsections, methods addressing to each problem is discussed in detail man-

ner. Fig. 2.1 demonstrates which problems each method address with taxonomy.
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Figure 2.1: Taxonomy of Few-Shot Segmentation
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2.1 Few-Shot Segmentation Problems

2.1.1 Misinterpretation of Background

Many existing few-shot learning techniques conceptualize the background as a single

entity; however, it can encompass multiple objects that belong to both the training

and testing classes. When a unified label is assigned to the entire background, the

model is trained to map features from various classes to that single label. Mining La-

tent Class (MLC) [2] refers to this problem as feature undermining. The background

component in query images often comprises objects belonging to both novel and base

classes, leading to incorrect categorization of these objects as background as shown

in Fig. 2.2. This results in a decrease in discriminability not just for the novel classes,

but also for the base classes, as their embeddings are treated as background by the

models. To address the problem of feature undermining, [2] presents a method for

obtaining prototypes for each class, including the background, by utilizing masked

average pooling. The foreground prototypes are collected in one set, while back-

ground prototypes are separated into another set. The authors posit that latent classes

share commonalities with base classes, so they apply k-means clustering on the fore-

ground set to uncover these commonalities. Embeddings in the background set are

basically averaged to get a global background embedding. Each image is then labeled

with one of these K+1 commonalities by nearest neighbor classification. During clas-

sical meta-training, they apply multi-class segmentation for extra images with their

pseudo-masks. This solution prevents latent classes from being treated as the same as

background.

Figure 2.2: Novel class in background, namely person, is treated as background,

leading to reduction of its distinguishability [2].
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Different from MLC [2], the Feature Proxy Transformer (FPTrans) [23] employs a

strategy to determine K points exhibiting the greatest interpoint spatial separation in

background, which serve as the centers in the Voronoi Clustering methodology. Sub-

sequently, each point in the background is assigned to the closest cluster center, and

the regions associated with each cluster center are transformed into binary masks.

FPTrans employs a prompting strategy to adjust a transformer to the requirements of

the task at hand. The prompts are derived from the feature maps obtained through the

Vision Transformer [25]. The foreground prompt is represented by the average of the

pixel-level features within the foreground region, while the background prompts are

generated through the computation of the average of the pixel-level features within

the binary masks. The prompts are then subjected to processing by the transformer to

produce background proxies, which serve as weights for the background classifiers.

The cosine similarity between each query pixel and the background classifiers is cal-

culated, and the maximum similarity score is utilized as the background logit. In this

manner, the model is expected to effectively distinguish relevant background regions

from novel regions, thereby alleviating the problem of misinterpretation by avoiding

the prediction of novel regions as background. Additionally, FPTrans facilitates a

mechanism that attracts the features of the foreground support pixels towards the fea-

tures of the foreground query pixels while simultaneously repelling the foreground

and background pairs between the support and query.

2.1.2 Imbalance in Details

As single support embedding can not reflect all details that belong to a query im-

age, there might be details that do not co-exist in both query and corresponding sup-

port image, so inconsistent regions between support and query should be determined

and eliminated on support side to prevent redundant details or noise adaptively. If

each query pixel attends relevant parts of support image where relevancy is generally

quantified by similarity metrics such as cosine similarity, noise is removed. Although

there are proposed methods to alleviate discrepancy between support and query, this

problem continues its importance, and better treatment might lead to performance

improvement. What about details that are found in query image but not in support

image? It is an open question to diagnose part of query differs from support and per-
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form information exchange depending on lacking content on support side to segment

query. In absence of such a mechanism, few support image is augmented without any

exception in order to closing intra class gap. In summary, details found in support but

not in query results with noisy segmentation, while details found in query but not in

support results with incomplete segmentation. In other words, an imbalanced detail

level between support and query prevent the models from making correct segmenta-

tion.

Prototypical Alignment Network (PANet) [26] adopts a Siamese encoder instead of

a two-branch network as it posits that both support and query features should be ex-

tracted from the same encoder to facilitate metric learning. This approach not only

reduces the number of parameters but also allows for a better comparison of features.

Similarly, few-shot segmentation techniques also use support images to extract fea-

ture vectors for comparison with query feature maps. However, they incorporate a

regularization mechanism to ensure that the network successfully segments the sup-

port image from the query image. Specifically, they interchange the roles of the sup-

port and query images to derive consistent prototypes for each class. Finally, they

evaluate the distance between the support and query prototypes for both regularized

and non-regularized models and demonstrate through empirical analysis that feature

consistency is improved when regularization is applied.

The salient features of an object compete with each other to capture attention, and

some features are more salient than others. For instance, while searching for a cof-

fee cup, our eyes may be drawn to a table. Similarly, in the context of few-shot

segmentation, the connection between the query and support graphs becomes strong

only in a narrow and specific region of support nodes. Therefore, only this limited

region has the ability to transfer knowledge, and occlusion of this region can lead

to a failure in the segmentation task. To address this issue, Democratic Attention

Network (DANet) [27] proposes a regularization technique that encourages a larger

area of support to participate in the decision process, thereby increasing the diver-

sity of connections and widening the region of interest in the support image. While

low-level features have been shown to provide benefits in segmentation, many studies

have focused on high-level semantic guidance rather than comprehensive multi-scale

guidance. DANet applies this regularization to features extracted from different lay-
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ers of the model hierarchy and fuses the processed features to transfer multi-scale

information.

Figure 2.3: Despite selecting the support image identical to the query image, the

model fails to segment certain regions of the query. This indicates a loss of informa-

tion resulting from the averaging operation [3].

In previous few-shot segmentation approaches, the support feature vector is obtained

through an averaging operation, which can lead to the loss of necessary information

for the segmentation of the query. This issue persists even when the support and query

images are identical as shown in Fig. 2.3. Due to the restricted data, averaging fails to

capture the general expectation of the support set. To overcome this limitation, Self-

gudided and Cross-guided Learning (SCL) approach [3] proposes to predict a mask

of the support image with its prototype and identify the false negative regions of the

binary mask to locate where the lost information originates. The lost information is

then modeled to predict the query segmentation. However, since SCL presumes that

the lost information can be accurately represented by a single prototype, its solutions

are suboptimal. Despite this drawback, SCL confers an advantage over the simple

averaging approach. It is noteworthy that these efforts were aimed at addressing the

deficiencies of the averaging operation, which has been demonstrated to be insuffi-

cient in preserving the required information for successful few-shot segmentation.

In the Classifier Weight Transformer [28] approach, it was deemed unrealistic to con-
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tinually adapt the parameters of the encoder, decoder, and classifier to each new task

due to the excessive number of parameters in the encoder and decoder. As a result,

the feature encoder and decoder were pre-trained on the meta-training set and then

frozen prior to meta-training the classifier component. This strategy was based on

the assumption that the features extracted from the meta-training set would possess

sufficient generalizability to transfer to novel tasks, which serves as a justification for

the aforementioned approach. In the CWT approach, the classifier is fine-tuned on

the support set from the new task. However, the query images may differ visually

from the support images. To address this issue, the fine-tuned classifier weights are

adapted to the query features using a transformer with the assumption that the support

classifier attends to relevant parts in the query. The transformer extracts an attention

map between the classifier weights and the query feature map, after which the query

pixels are weighted averaged using these coefficients to perform the adaptation. This

approach enables not only the revelation of co-occurrent details but also the dynamic

capture of query-intrinsic details in the adapted classifier weights.

BriNet [29] stated that two instances of the same class do not have to share the same

properties. They propose to transfer features found in only query to support and

vice versa. Collaboration between support and query forms feature representation

that ideally has no intra-class gap. For example, embeddings from person with glass

can be combined with that of person without glasses. In addition to masked global

average prototypes, local averaging with determined sizes is performed in multi-scale

correlation module to obtain prototypes that retain high detail levels compared to

masked global average pooling. In multi-scale correlation module, image is divided

into s parts in both transversal and longitudinal direction. Average pooling is applied

on each part. In addition to global average pooled vector, obtained weights with size

of c× 1× s and c× s× 1 are also convolved with query, and obtained responses are

fused.
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Figure 2.4: Foreground of support is clustered into regions, and each query pixel only

attends most similar partitioned region in support [4].

Adaptive Superpixel-guided Network (ASGNet) [4] aims to address the issue of los-

ing spatial-semantic information in representation of an entire object with a single

prototype. ASGNet proposes a method that adaptively chooses the number of pro-

totypes and their spatial extent based on image content, such that each prototype

represents parts of the object with similar characteristics. For example, prototypes

are allocated to the head, body, and leg regions in a human image, while prototypes

are allocated to the wheel, hood, and wing mirror in a car image. This is achieved

by using a trainable super-pixel sampling strategy that separates the feature map into

representative groups. ASGNet notes that the scale of the image affects the number

of prototypes required, with larger images requiring multiple prototypes to represent

excessive details, while small-scale objects can be represented with just a few pro-

totypes. The method involves two main components: super-pixel guided clustering

and guided prototype allocation. The super-pixel guided clustering initializes the

seed using the MASK-SLIC algorithm and updates the super-pixel centroids using

a weighted average of support pixel features. The guided prototype allocation com-

putes the cosine similarity between all prototypes and the query features and selects

the prototype with the highest similarity to the query pixel as shown in Fig. 2.4. The

network also includes a feature enrichment module for multi-scale feature aggrega-

tion. The super-pixel number is determined by dividing the total number of pixels in

the mask by the average number of pixels in the seeds, with an empirical limit of 100

pixels. The authors observe that adaptive prototype selection slightly improves per-

formance compared to fixed selection. The network utilizes a spatial regularization
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by summing the cosine similarities between each prototype and the query pixel. The

part-based matching approach provides robustness to segmentation and the network

only utilizes the most similar prototype for comparison, preventing other representa-

tive areas from deciding the prediction of the query pixel’s class.

MLC approach [2] claims that it is difficult for a few support images to mimic real

class-wise statistics, making it sub-optimal to merely utilize the current supports for

prototype estimation. This is known as prototype bias. To address the problem of

prototype bias, they propose to update support prototypes during episodic training

and testing. The global background prototypes are moving averaged with each cur-

rent background prototype during episodic training or testing. On the other hand,

foreground prototype rectification is only performed during inference. In their work,

support prototypes are consolidated by transferring most similar group of pixels from

each of retrieved N-nearest image in base training set, where each group corresponds

to pseudo-labeled regions acquired with K cluster center of foreground support pro-

totypes in meta-training set. Region embeddings are weighted averaged according to

similarity to the foreground support prototype, and the resulting feature is multiplied

with predefined constant and added to support foreground prototype to update it. This

approach aims to obtain different aspects of a class with the help of pseudo-labeled

samples. Although it is not proved, it is believed that the groups contain transferable

knowledge. Therefore, pseudo labeled meta-training set augments support set with

hope of closing intra-class gap. In summary, the Cycle-Consistent Transformer com-

prises two critical modules that leverage deformable attention and cycle consistency

to enhance the performance of few-shot segmentation. The cross-alignment block

samples a subset of foreground and background pixels to reduce the computational

complexity while retaining only the cycle-consistent pixels in attention ensures that

only the relevant concepts are preserved.
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Figure 2.5: The sample does not conform to cycle-consistency paradigm [5].

The Cycle-Consistent Transformer [5] comprises two critical modules, namely the

self-alignment and cross-alignment blocks. The former employs a self-attention mech-

anism to query the feature map, whereby the features of each pixel are treated as in-

dividual tokens. However, it is challenging to establish connections between pixels

that originate and terminate in the same region since the foreground and background

of the query are unknown. To overcome this limitation, the authors proposed the uti-

lization of deformable attention, which predicts a predefined number of offsets for the

pixel to be attended to, as well as the corresponding attention weights of the pixels. In

their ablation study, they validated that the replacement of simple self-attention with

deformable attention leads to a significant performance boost. On the other hand,

the cross-alignment block leverages the support feature map as the key and value for

self-attention, while the transformer’s query is derived from the query feature map.

Here, the background pixels of the support are retained in the attention since they can

offer context-specific information on the category in question. To address the com-

putational complexity associated with a large number of tokens, particularly in the

K-shot setting, the authors uniformly sample a predetermined number of foreground

and background pixels in equal proportions. Furthermore, the authors propose re-

taining only cycle-consistent pixels in attention. Cycle consistency is determined by

identifying the most similar query pixel to its corresponding support pixel, followed

by the most similar support pixel to that query. A pixel is deemed cycle consistent if

its starting and ending labels match based on the support mask. Fig. 2.5 illustrates
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an example in which point p1 in the foreground of the support set matches the most

similar query pixel p2 to itself. Subsequently, point p2 is matched to the most similar

support pixel p3 to itself. Since p1 is in the foreground while p3 is in the background,

p1 is not cycle consistent. This mechanism preserves only the concepts that occur

simultaneously in the query and support and addresses the imbalance in details.

The Anti-Aliasing Semantic Reconstruction [30] introduces the notion of semantic

aliasing, whereby common features can express two distinct semantic classes that

share similar content. This phenomenon results in the association of semantically

dissimilar objects, such as a dog and a cat sharing the feature of fur. To address this

challenge, the authors propose optimizing a space constructed by orthogonal basis

vectors, where each vector is associated with a distinct base class. They then recon-

struct the support and query feature maps using these basis vectors, and empirical

evaluations demonstrate that this approach eliminates the problem of semantic alias-

ing. To obtain the reconstruction weights, the authors employ a softmax layer to

derive the magnitude of each basis vector, which in turn corresponds to the recon-

struction weight. They design a loss function to penalize basis vectors from different

classes that are not orthogonal while ensuring that basis vectors from the same class

are colinear. During meta-training, the authors enforce high reconstruction weights

for the corresponding class to decouple the basis vectors from one another. Lastly,

they perform semantic filtering by only utilizing query features that align with the

reconstructed support vectors while treating the remaining features as noise, such

as background cluttering. This filtering mechanism enables the disambiguation of

semantically confusing classes. In summary, the Anti-Aliasing Semantic Reconstruc-

tion paper proposes a novel approach to address the issue of semantic aliasing, which

involves optimizing a space constructed by orthogonal basis vectors, reconstructing

the support and query feature maps, and employing a loss function to penalize non-

orthogonal basis vectors while ensuring colinearity within the same class. The pro-

posed method also employs semantic filtering to disambiguate semantically confusing

classes.

The activation propagation module of the meta-class memory network [31] tackles the

challenge of imbalance in detail by initially computing the cosine similarity between

the activation map of each query and support pixel. Activation maps are extracted in
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meta-class memory module and explained in next section since it addresses another

problem. This similarity matrix captures the relationship between each query pixel

and all foreground support pixels. However, to counteract the effect of background

support pixels, the similarity values corresponding to them are replaced with negative

infinity. Subsequently, a softmax operation is performed along the row dimension

of the matrix to obtain the attention weights. For each query pixel, the correspond-

ing support activations are multiplied by their respective attention weights and then

aggregated. The resulting vector is then multiplied with the query activations to reg-

ulate the activity of the features, such that only common features are encouraged to

maintain their existence. This effective approach effectively addresses the issue of

imbalance in detail.

Figure 2.6: Inter-class gap problem is illustrated with help of t-SNE graphs. Left-

hand side figure portrays embedding space before application of [6] while right-hand

figure represents embedding space after its application.

The Intermediate Prototype Mining Transformer (IPMT) [6] aims to reduce the intra-

class gap between the support and query images in an iterative manner. Fig. 2.6

illustrates the severity of the intra-class gap problem through a t-SNE graph. The

left-hand side of the figure displays the situation before IPMT is applied, while the

right-hand side shows the situation after its application. The results demonstrate that

IPMT effectively reduces the intra-class gap, as depicted in Fig. 2.6. To achieve this,

the IPMT employs a learnable prototype that is used to mine prototypes from both the

query and support images via masked cross-attention. Since the mask for the query

is not available, the IPMT predicts an initial mask for the query from the initial query

feature map. Once the masked cross-attention is applied to the query and support,
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two prototypes are obtained that are adapted from the query and support, respec-

tively. The average of these two prototypes is then added to the learnable prototype at

the current step. IPMT then computes the dot product of the linearly transformed up-

dated prototype with the query and support images, respectively. Segmentation loss

is applied to both the query and support images to guide the network in bridging the

class gap. Subsequently, the updated prototype activates the query image to suppress

the background region. The refined query map, support map, latest query prediction,

and support feature map are then used in the next iteration for the mining of a new

prototype. As the initial mask for the query is erroneous, the iterative mechanism

progressively improves both the refined map and predictions, leading to the reduction

of the intra-class gap between the support and query images.

2.1.3 Inter-Class Gap

Approaches assume that transferable knowledge exists in base set and works to seg-

ment images from unseen classes during training. This strong assumption loses its

validity in proportion to discrepancy between base and novel dataset. However, there

exists risk of memorization of the few data that discourages the adaptation of novel

classes regardless of amount of the shift, so few-shot community generally ignores

optimizing classifier with few data. Recent studies show that the severity of overfit-

ting is exaggerated in few-shot segmentation, and adapting novel classes improves

segmentation performance.

CANet [32] argued that middle-level features might serve as a common denomina-

tor that underlies semantically similar object classes. For instance, the feature of a

"wheel" could be regarded as a mid-level feature, which is likely to be more benefi-

cial in predicting novel classes like "bus" or "truck" than high-level features. Hence,

the transferable knowledge in the middle layers of a pre-trained network can be uti-

lized to infer the location of novel classes by exploiting the underlying shared con-

cepts. In light of this, CANet proposes to incorporate these predictions as a prior to

a class-agnostic module that distinguishes foreground from background in a progres-

sive manner to refine the final segmentation result. Therefore, they devise an iterative

optimization module that gradually improves the predictions by refining them at each
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iteration.

An alternative perspective posits that the transferability of pre-trained models is hin-

dered by the fact that ImageNet weights are primarily suited for classification tasks

and are tailored to ImageNet’s specific classes. While overfitting is a genuine con-

cern in few-shot segmentation, it is suggested that pre-trained network weights must

be fine-tuned to eliminate the noise caused by this issue. Therefore, the Singular

Value Fine-tuning (SVF) method [7] proposes that only a small portion of the model

should be updated. This approach entails decomposing the weights into three matri-

ces using Singular Value Decomposition, where the matrices excluding the one that

retains the singular values are deemed to carry semantic cues. Altering these matri-

ces is believed to degrade performance. The SVF only fine-tunes the singular value

matrix to avoid this issue as shown in right-hand side of Fig. 2.7, thus suppressing

redundant semantic cues while preserving generalizable information.

Figure 2.7: Optimizing part of model can overcome overfitting problem. Left-hand

side figure completely freezes backbone, while [7] selects particular weights cleverly,

after which it fine-tunes them only.

In the CWT [28] approach, the classifier is fine-tuned on the support set of the new

task to adapt the classifier to the specific task and thus bridge the inter-class gap.

BriNet, as described in [29], introduced an online refinement module that alternates

the roles of query and support. The prediction for the query is treated as a pseudo-

mask and is used as support, and the binary cross entropy loss is computed for the

support image. This process is repeated until the determined mean Intersection over

Union (mIoU) threshold between the support mask and its prediction is surpassed.
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This design allows the model to adapt to the current task at hand continuously.

RePRI [22] is a transductive inference-based approach that prioritizes accuracy on

test data compared to inductive inference-based one over-generalizing to all inputs.

Despite offering improved performance in low-data scenarios, it requires more time to

learn new tasks compared to inductive methods. RePRI leverages three loss functions

to train the classifier for a target task. The first loss, cross-entropy, is applied between

the support set labels and the model’s predictions. However, this loss has the tendency

to result in overfitting of the support set. The second loss, the Shannon entropy of

the query examples, ensures confident predictions on the query examples and shapes

the decision boundary through low-density regions of the feature space. The third

loss calculates the KL divergence between the query image’s background-foreground

probability density function and that of the initial classifier, which is defined as the

average of the support features.

Dense Gaussian Processes [8] provide not only the mean prediction but also the asso-

ciated uncertainty for a given query, owing to their ability to learn function distribu-

tions where each instance represents a random variable. The presence of uncertainty

allows the model to assess the reliability of its predictions and return a prior query fea-

ture map when the available support information is deemed insufficient based on the

associated uncertainty. Furthermore, the uncertainty enables the model to measure the

correlation of each pixel with its neighboring pixels and refine its predictions based

on a consensus within the decoder’s kernel. Without such conditioning, elimination

of noisy regions would not be possible. To address inter-class gaps, Dense Gaussian

Processes utilize low-level feature maps that are generally more generalizable, such

as boundary regions that are commonly activated in such feature maps. Rather than

increasing the adaptability capacity, the model benefits from using a feature map with

a lower risk of overfitting.

The Meta-class memory module of Meta-class Memory Network [31] postulates that

middle-level features extracted by pre-trained networks may not be readily transfer-

able to novel classes. In response, the module introduces 50 learnable parameters, re-

ferred to as meta-class embeddings, which encode shared knowledge across classes.

These meta-class embeddings then interact with query and support features through
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the computation of their cosine similarity with the memory elements. The resulting

similarity values are subsequently transformed by a sigmoid function to generate ac-

tivation maps. The findings from an ablation study corroborate the assertion that the

integration of the meta-class memory module leads to improved performance.

2.1.4 Spatial Inconsistency

In a supervised setting, adaptive average pooled feature maps at different scales are

concatenated to contain not only global both also local context. For example, a boat

that is zoomed in a picture can be mistaken for a car; however, adding global con-

text signs that a car can’t be over water and environment resembles a port rather

than a road, so aggregation of feature maps at different scales works to acquire scale-

invariant representations with the help of abundant number of training data. Archi-

tectures designed for supervised cases fail to provide scale invariance in few-shot

scenarios since contextual relationships are not figured out by a handful of data.

Figure 2.8: Discrepancy between sizes of object in query and support image leads to

spatial inconsistency problem.

Interested objects in query image might not cover the same area as those in support

image. For instance, as shown in Fig. 2.8, the cat in the query image does not cover

the same area as the corresponding cat in the support image. As solution, model can

separately compares support feature map with query feature map at different scales
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to become scale-agnostic. On the other hand, controlled information flow across

different scales are satisfied to gather discriminative cues from different resolution,

where control mechanism allows favorable information exchange. Methods design

control mechanism, multi-scale processing, and fusion scheme to overcome the scale

problem.

The prototype-based methods in computer vision often rely on making the feature

vector at each pixel of a query image as similar as possible to the global descriptor of

a support image, despite the fact that not all parts of the support image may align with

the query image. This discrepancy can introduce noise into the network. To address

this issue, the Pyramid Graph Network (PGNet) model [33] proposes a solution in

which each query feature vector gives attention to relevant parts of the support image.

PGNet applies this attention mechanism in a pyramid structure, which allows for

correspondences at different scales to be captured. The model generates a pyramid

of query graphs by modeling predefined sub-regions of the image as nodes in the

query graph using adaptive pooling. PGNet is inspired by graph attention networks,

which collect messages from neighboring nodes based on attention mechanisms such

as self-attention. The goal of this type of network is to adaptively propagate label

information from the support graph to the query graph. Specifically, PGNet combines

the support and query graphs as a bipartite graph, with each node of the query graph

connected to the foreground part of the support graph. The model then computes

the correlation between the foreground support nodes and each query node. The

correlation-weighted average of the foreground support features is then concatenated

to the query graph as guidance.

Other methods in computer vision model different scales of the query feature map,

but they may encounter issues where certain scales dominate over others, particu-

larly in the presence of objects of varying sizes. To address this, a SAGNN [34] that

facilitates favorable information exchange between scales can be utilized to remove

noise effectively. This network is distinguishable from others by its ability to provide

controlled high-order information flow through the use of a graph neural network.

Unlike the PFENet model, which fuses multi-resolution feature maps in a top-down

hierarchy, this design allows for information flow in all directions. The nodes of the

graph correspond to multi-scale fused feature maps, while the edges represent the
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directed relation between two different resolutions. The multi-scale query features

are formed by concatenating the average pooled query feature map with the global

average support embedding and the maximum support-foreground response. The

maximum support-foreground response serves a similar purpose as the prior mask

in the PFENet model. Additionally, it is worth noting that each node, rather than its

neighbors, contributes to the message-passing process to include information from

its resolution. The network utilizes a ConvGRU structure to determine which part

of messages are accepted during updates. After a determined number of message-

passing iterations, the updated nodes are conveyed to a read-out module to synthesize

information from all resolutions. The synthesized features are then passed through a

classifier to predict the query mask.

The Cyclic Memory Network [35] extracts multi-resolution feature maps by combin-

ing a support prototype, an adaptive average pooled query feature map, and a prior

map similar to the SAGNN. However, unlike SAGNN, each resolution in CMN has

key and value maps that are mapped by different convolutional layers. Specifically,

the value map at a particular resolution serves as a query, and a similarity matrix be-

tween its key map and all other resolutions is computed to obtain attention weights.

These attention weights express how each pixel at the query resolution attends to all

other pixels. The features at cross resolutions are then multiplied by these attention

weights before aggregation. Notably, each resolution takes turns serving as the query,

resulting in complex interactions between all resolutions. Furthermore, aggregation

is performed using a recursive block for reasoning about which parts of upcoming

knowledge are most beneficial and which parts of the query resolution are preserved.

2.1.5 Scalability with Number of Support Data

Performance of majority of models marginally increases, although the number of

support examples in its support set increases as shown in Fig. 2.9. It signs that

methods lack leveraging whole support set, especially when shot number exceeds 5.

This might be caused by fusion type, such as averaging that smooths out features in

support set. Therefore, spatial integrity of image should be preserved to exploit each

piece of feature corresponding to each pixel.
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Figure 2.9: Most up-to-date methods do not show comparable performance in 5-shot

case relative to that in 1-shot [8].

In FPTrans approach [23] described in Subsection 2.1.1, the prompts serve as a con-

nection between the support images and the query image. To avoid the quadratic

complexity of the transformer, the prompts are associated separately with each sup-

port image and the query image. These interactions result in distinct hidden prompt

states, which are then averaged to reveal the common properties shared by the query

and support, referred to as prompt synchronization. The advantage of FPTrans lies in

this unique mechanism for facilitating interactions between the query and support at

all levels of the model, which differentiates it from other methods.

Dense Gaussian Process [8] utilize Gaussian process function to struggle with scal-

ability problem. Gaussian process functions make observations of support pixel fea-

tures mapped to output masks as training data and assume that query and support

mask values come from the joint Gaussian distribution. The equation giving the mean

query pixel respects the correlation between each support pixel with the precision

matrix. Although some support pixels do not directly represent the foreground, their

connections with all other support pixels might require them to be closer to the fore-

ground. Such complicated linking mechanisms are modeled with a specific kernel

function designed to capture the covariance of the support with itself. For instance,

the squared exponential kernel enforces similar features to be correlated in the output

space. Furthermore, the covariance between the query and support allows us to model
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how each support and query co-occur simultaneously. The support pixels are aggre-

gated with weights in the row of this matrix. For example, the first row relates the first

query pixel in the raster direction with all support pixels, e.g. the second entry in the

first row shows how likely the occurrence of first query pixel requires the occurrence

of the second support pixel in the raster direction. This model does not compro-

mise the granularity of each pixel, so it can increase performance when the support

set expands. In addition to these benefits, Gaussian processes are highly nonlinear

classifiers that can handle cases where linear classifiers are impossible to overcome.

Since there is no guarantee of linear separability of novel cases, this property brings

about an advantage compared to prototype classifiers.

SCL [3] adopts a methodology for assigning importance scores to each support sam-

ple by performing evaluations with the aid of all other support images. The impor-

tance scores are proportional to the evaluation scores of the mean intersection over

union. The predictions from each prototype are then fused based on their correspond-

ing importance scores. This approach is superior to a naive scheme that assigns equal

importance to each prediction, thereby enabling SCL to leverage the support sets

more effectively.

The Quality Measurement Module of the Meta-Class Memory Network [31] is re-

sponsible for computing activation maps for each support image. Unlike other method-

ologies, this module assigns distinct weights for the fusion of activation maps at each

pixel location, enabling an assessment of the importance of each activation map at

a specific location. To determine these weights, the module utilizes similarity ma-

trices used during each activation propagation step. Specifically, a sigmoid function

is applied to each element in the matrix, and the resulting values are summed along

the row dimension. The resulting vector is then reshaped to the size of the feature

map provided as input to the activation propagation module. These computations are

repeated for each activation map, and the resulting maps are concatenated along the

channel dimension. Finally, a softmax function is applied to the concatenated maps,

and each number in the nth channel represents the contribution of the nth activation

map at the corresponding position.

27



2.1.6 Correlation Reliability

Correlation map determines pixel-wise similarity between support and query im-

ages. Problems such as background clutter and occlusion render particular similarities

noisy, resulting in erroneous comparisons and training based on misinterpreted corre-

spondences. As semantic correspondence literature suggests, neighbor points around

key points, whose correspondence in target is reliable, should also map into points

in target near the key point match. This principle is called neighborhood consensus

or semi-local constraint. Methods are invented to check validity of correspondences

based on learnable or engineered criteria, so filtered correlation maps become inter-

pretable. After elimination of deceptive correspondences as shown in Fig. 2.10, all

similarities corresponding to each query pixel from support image are summed to

obtain activation score that determines level of association of that query pixel with

foreground of support. Since there are many aspects to prune correlation maps, there

are more than one activation maps that are available to be used for segmentation of

query in general.

Figure 2.10: Correlation maps are filtered with 4-D convolution to eliminate misin-

terpreted correspondences [9].

The visual perception of human possesses an exceptional capacity to swiftly and ac-

curately generalize the visual properties of novel objects, even with minimal super-

vision. This is attributed to its ability to discern consistent correspondences across

various instances of a given class. Correspondence methods in computer vision re-

cently have been based on utilizing feature maps from different layers of a network

and 4D convolution, whose task is to analyze relational patterns. These relational
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patterns correspond to correlation maps between the support and query features at

different visual aspects that capture not only semantic but also geometric character-

istics. The 4D convolution is inspired by the neighborhood consensus in classical

vision, which takes a trustworthy match between two images and checks whether

or not matches around the neighborhood occupy the region around the trustworthy

match. Before the deep learning era, people designed constraints such as angle con-

servation, which demands that the angle between three points has to be the same as

that of matched points with a given tolerance. The 4D convolution filter works to

replace such designed constraints and filter unreliable matches. However, this type

of convolution incurs excessive memory and computation time due to a high number

of parameters. HSNet [9] solves this problem by weight-sparsification. They only

focus on correlation that pivots the center of the support and query images so that

they prune unnecessary parameters and it provides development in terms of not only

computation but also performance. This simplification paves the way for the usage

of a great deal of 4D convolution without inference time problem and overfitting. As

a second contribution, they propose a novel architecture that uses these 4D convolu-

tions. The 4D convolution processes hyper correlation that stacks correlation maps in

different layers whose size is the same. They take these hyper correlations from early

to late layers of the architecture to capture geometric and semantic characteristics.

The Volumetric Aggregation with Transformers (VAT) framework, as described in

[24], utilizes the Swin Transformer to aggregate hyper correlation maps between the

support and query sets. The high dimensionality of these hyper correlation maps

presents a challenge, as treating each entry as a token requires significant compu-

tational resources. To address this issue, some approaches employ spatial pooling,

though this sacrifices valuable information. An alternative solution is to split the

correlation map into non-overlapping chunks and embed them with a linear map-

ping. However, this approach leads to an increased number of learnable parameters.

To overcome these limitations, the VAT framework employs a layer consisting of

4D pooling, convolution, and group normalization, which contains fewer parameters

while also providing equivariance properties to the model, which are lacking in the

transformer architecture. This layer effectively reduces the token size, leading to

computational advantages and more meaningful tokens. They called this module as
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Volumetric Embedding Module. Afterward, the Swin Transformer operates by divid-

ing the correlation map into four hypercubes, where self-attention is applied to each

one. To further enhance context aggregation, the correlation map is then subjected to

a cyclical shift, moving it leftward and upward by half of the hypercube’s edge. This

shifting mechanism enables the exchange of information between various windows,

thereby allowing for the incorporation of large contextual information from differ-

ent positions. This module is referred to as Volumetric Transformer. Additionally,

the processed hyper correlation maps at the coarser level are upsampled and merged

with those at the finer level, thereby forming a pyramidal structure. Subsequently,

the query feature map from the initial layer is concatenated with the correlation map,

which has been averaged along the support direction. This combination serves to

eliminate noisy matching scores, and the resulting feature map is processed through

the Swin Transformer-based decoder. The output is then upsampled by a factor of

two, and the process is repeated until the original image size is reached. Finally, a

classification layer is applied to the final feature map, and the binary cross entropy

loss is employed to optimize the model, guided by the query ground truth map.

2.1.7 Thin Object Issue

Figure 2.11: Left-hand side figure reveals oversegmentation of the leaves of the plant,

which is a weakness of the most few-shot segmentation methods. Right-hand side

figure shows that [10] alleviates this problem effectively.

The most few-shot segmentation methods are not capable of segmenting thin objects

as shown in left-hand side of Fig. 2.11. One reason for this is that the efficacy of
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convolutional kernels with a square shape in detecting thin objects such as poles and

sticks is limited. To overcome this limitation, it is advisable to learn both horizontal

and vertical kernels in conjunction with the square kernel. However, the shortcom-

ing is not solely attributable to the kernel’s geometry. When constructing similarity

matrices between query and support images to extract coarse masks, the conventional

approach involves comparing the pixels of the two images. However, a pixel-wise

comparison may not be ideal for detecting thin objects oriented vertically or hor-

izontally. To address this issue, the Dynamic Prototype Network [10] proposes a

regional matching method, which compares 1x5, 5x1, and 3x3 regions of the query

and support images. As a result of this regional comparison, the similarity matrix has

a channel number equivalent to the region size. To obtain three coarse target masks

that account for vertically and horizontally oriented thin objects, as well as homoge-

neous ones, these similarity matrices are averaged along the channel dimension, and

the maximum operation is subsequently applied along the row dimension. Finally, the

average of these three target masks is calculated to derive an initial pseudo mask for

the query. This approach captures thin objects more effectively than target masks that

rely solely on pixel-by-pixel comparisons. The authors refer to the module responsi-

ble for this task as the support activation module. To filter out background pixels, the

initial pseudo mask is multiplied with the query feature map. A refined pseudo tar-

get mask is then generated by combining the filtered query with a support prototype,

which is subsequently processed with a 1x1 convolution and sigmoid. The resulting

tensor is used to represent the refined pseudo target mask. This refined pseudo tar-

get mask is multiplied with the query image, and the resulting product is added to

the query with a residual connection to enable residual learning. This operation, per-

formed by the feature filtering module, reveals features from the class of interest by

suppressing background ones. The authors further extracted foreground support pixel

features and applied 1D pooling with sizes of S and S2 to these features. Rather than

using constant kernel weights, they proposed generating kernel weights by applying

a convolutional network to the pooled feature map. The pooled feature map with a

size of S is used to produce the horizontal and vertical kernels, while the pooled fea-

ture map with a size of S2 gives rise to the squared kernel. As the kernel weights

in this approach are dynamically adjusted based on the pooled features and possess

an asymmetric structure in addition to the symmetric square kernel, they are better
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equipped to represent subtle details compared to conventional convolutions whose

weights remain constant post-training.

2.2 Connection between prompt learning and few-shot segmentation

The technique of prompting was initially utilized in natural language processing to

distinguish between various tasks by incorporating a few clue words into the input

sentences. In a broader sense, prompting methods can effectively condition the model

to different domains or tasks, without making any modifications to model parameters.

[36] employ the CLIP vision-language model [37]. CLIP is trained on a large dataset

of image-text pairs sourced from the web in a self-supervised manner. The model can

encode images and texts into a joint embedding space, which results in a strong cor-

relation between the two modalities. To harness the potential of CLIP, the researchers

incorporate the class name into a simple prompt template and then compute the cosine

similarity of the output from both the vision and text encoders in CLIP. [38] utilize the

CLIP model as a pre-trained backbone and then train a conditional segmentation layer

on top. This layer is thin, and serves as the decoder for the model. The authors lever-

age the joint text-visual embedding space of CLIP to condition their model, allowing

them to handle both textual prompts and images. As evidenced by aforementioned

studies, prompting has been demonstrated to be highly effective in few-shot segmen-

tation tasks, likely due to the close relationship between the two concepts.
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CHAPTER 3

PROPOSED METHOD: BASE AND META LEARNER++

The proposed method presented in this dissertation enhances the BAM [1] model

through two modifications. As first, we replace the ASPP [14] in BAM with Feature

Enrichment Module [11] since ASPP [14] decoder within the BAM model lacks the

capability to transfer information across various resolutions. Furthermore, the ASPP

lacks distinct branches that concentrate on segmentation at separate resolutions. The

ASPP is developed for a supervised case and is susceptible to a low-data regime. As a

result, the utilization of the ASPP can lead to the persistence of spatial inconsistency

issues. Proposed method mitigate spatial inconsistency problem by employing FEM

as its decoder. Section 3.1.1 is dedicated to a thorough examination of the FEM and

all of its subcomponents.

BAM observed that the meta-learned model confuses pixels from base classes with

novel ones during meta-testing, where the base classes correspond to the set of classes

used in meta-training. This is because the base classes are introduced as foreground

in meta-training, resulting in overfitting. To address this issue, they train a model that

specializes in base classes via supervised learning, which they call the base learner.

The small head, which branches from the backbone, adopts episodic learning and is

called the meta learner. During meta-training, the meta-learner interacts with the base

learner to prevent confusion between base classes and novel ones. To achieve this,

they sum the probabilities of all classes except the selected class during an episode to

obtain the base map, which ideally shows the background region relative to the class

in the episode. Prediction of the meta-learner is prone to errors, as it has a higher

tendency to mistake base classes for novel ones. To compensate for this, they con-

catenate the base map with the background prediction of the meta-learner, and pass
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the resulting tensor through a 1 by 1 convolution. This is called the ensemble mech-

anism, which compensates for the weaknesses of the meta-learner. As the base maps

are a decent estimate for the background due to supervised training, this approach is

effective in resolving the confusion issue. As a second modification, the proposed

method implements the ensemble mechanism at each segmentation prediction made

at the branches of the decoder in addition to the one made at the final prediction.

Therefore, the confusion problem is eliminated from the auxiliary predictions. Sec-

tion 3.1.2 provides a comprehensive examination of the base learner, meta learner,

and ensemble mechanisms, while Section 3.2 presents a detailed explanation of the

proposed method.

3.1 Background Methods

3.1.1 Revisit Feature Enrichment Module

Multi-scale modules in supervised semantic segmentation generally do not provide

mechanism to form independent interaction between masked global average pooled

support feature map, called as support prototype vs, and average pooled query feature

maps at different scales.

In these modules, information at different resolutions is generally processed at a sin-

gle branch, preventing consideration of each resolution separately. For example, con-

ventional multi-scale architecture, PSPNet [16], applies single filtering to the combi-

nation of query feature maps at different resolutions and support prototype.

3.1.1.1 Inter-Source Enrichment Module

Different from these approaches, inter-source enrichment module of FEM in Fig. 3.1

separately applies the filtering to the query feature map at each different scale, which

is combined with support prototype and prior mask.
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Figure 3.1: This figure presents an overview of the feature enrichment module pro-

posed in [1]. The blue, orange, and gray rectangles correspond to the query feature

map at different resolutions, the expanded support prototype, and the resized prior

mask, respectively. These three components are concatenated and passed through a

1x1 convolutional layer denoted by the pink rectangle. The inter-source enrichment

module is responsible for the aforementioned operations up to this point. The outputs

of these blocks are then provided to block M, which is named the inter-scale merging

module.

3.1.1.2 Prior Mask

Prior mask describes likelihood of query pixel being related with at least one pixel

in foreground of support [11]. To create a prior map in a class-agnostic manner,

features after block-4 of ResNet-50 are used, namely fqb and fsb corresponding to query

and support respectively. The prior map is created by comparing each pixel in the

query image with the pixels in the foreground of the support image using cosine

similarity. The maximum similarity between a query pixel and all of the pixels in
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the foreground of the support image is assigned as the value for that pixel in the

prior map. Mathematically, high-level query and support features are reshaped from

RH×W×C to RHW×C at first, where H, W, and C correspond to the number of height,

width, and channel respectively. After that, row-wise norms for high-level query and

support pixel features are computed respectively as in Eq. 3.1 and Eq. 3.2, where ◦

corresponds to Hadamard root while diag outputs diagonal elements of a matrix as a

column vector.

Figure 3.2: This figure highlights that the regions related to the target class have

higher activation compared to the background.

∥fqb∥ = (diag(fqb × fqb
⊺))◦1/2 ∈ RHW×1 (3.1)

∥fsb∥ = (diag(fsb × fsb
⊺))◦1/2 ∈ RHW×1 (3.2)
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Prior map before normalization is calculated by max pooling the cosine similarity

matrix between the high-level query and support pixels along row-wise direction as

shown in Eq. 3.3, where ⊘ is Hadamard division. Pool operation in Eq. 3.3 re-

places similarity values computed for background pixel with negative infinity to ne-

glect background region.

Cun
q = pool((fqb × fsb

⊺)⊘ (∥fqb∥ × ∥fsb∥⊺)) ∈ RH×W×1 (3.3)

Before the final version of the prior map is obtained, min-max normalization is ap-

plied to it as shown in Eq. 3.4. During the min-max normalization of the prior map,

the minimum value within the map is subtracted from all values, and the result is di-

vided by the difference between the maximum and minimum values within the map.

This standardizes all values within the prior map to be between 0 and 1. A small ϵ

value is included to address the problem of division by zero when the denominator is

zero.

Cq =
Cun
q −min

(
Cun
q

)
max

(
Cun
q

)
−min

(
Cun
q

)
+ ϵ

(3.4)

The prior mask roughly identifies regions that are likely to belong to the foreground

region and provides a hint about where subsequent processing should focus its atten-

tion. In Fig. 3.2, the segmentation of a cow as a novel class is shown. The region of

the image that is next to the people in the query image has a higher response compared

to other areas of the image due to the presence of the cow.

3.1.1.3 Inter-Source Enrichment Module

Now that the concept of prior maps as a form of prior knowledge has been understood,

we can move on to the details of the inter-source enrichment module. For average

pooling, there are N different dimensions shown as S =
[
S1, S2, S3, . . . , SN

]
, where

the dimensions decrease in size as the index increases. Adaptive average pooling is

applied to the query features in a way that corresponds to all dimensions within the

set S by employing avg_pool_Si function in Eq. 3.5. The support prototypes are
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enlarged to match the dimensions in the set S by using expand_Si function and then

concatenate to the back of the query feature maps. Then, the prior maps are resized

appropriately by using resize_Si function and merged along the channel dimension.

The feature map that is generated is transformed using a 1x1 convolution to produce

f qib ∈ RSi×Si×C as shown in Eq. 3.5.

f qib = F1×1

(
avg_pool_Si (fqb)⊕ expand_Si (vs)⊕ resize_Si (Cq)

)
(3.5)

C +α +β

Auxiliary
Feature

Main
Feature

Refined
Feature

Figure 3.3: Overview of Inter-Scale Merging Module [11]. In this illustration, C, α,

and β correspond to the concatenation operation, a 1-by-1 convolution, and a 3-by-3

set of convolutions, respectively.

Furthermore, inter-scale merging module of FEM fulfills the information transfer be-

tween two consecutive resolutions in top-down path, where top-down path consists

of outputs of inter-source enrichment module ordered from high resolution to low

resolution. During information transfer, preservation of hierarchical structure allows

gradual accumulation of information from higher resolution to lower resolution. In

this module as shown in Fig. 3.3, each resolution has direct connection only to its

neighbour in the top-down direction. Therefore, there is no connection between any

resolution pairs other than the consecutive ones. Hence, the module has a chance to

decide on the scale at which the obtained information is sufficient to make a predic-

tion, and the following scales would bring redundancy.
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Xs1
q = M (f q1b (main))

Xsi
q = M

(
f qib (main), X

si−1
q (auxilary)

)
, i ∈ {x|x ∈ Z, 2 ≤ x ≤ N} (3.6)

At the highest resolution, only the main feature map is processed because there is no

auxiliary feature map available. The interscale merging module then combines the

feature maps from successive resolutions and passes them through a 1x1 α convo-

lution (as shown in Fig. 3.3), enabling the flow of more detailed information from

higher to lower resolutions. The main feature maps are also merged using skip con-

nections to facilitate learning through a residual structure. The final version of the

feature map is created by applying two 3x3 convolutions with residual connections,

and this process continues until the lowest resolution, Sn, is reached. The operations

performed with α and β convolutions are represented by the symbol M in Eq. 3.6.

3.1.1.4 Information Concentration

Enriched feature maps with dimensions smaller than S1 in Eq. 3.5 are upsampled to

the size of S1 through interpolation. Then, all the sequentially concatenated features

are processed with a 1x1 convolution to obtain Xfused
q . This feature map contains the

combined information from all resolutions. All these operations are carried out using

the information concentration module within the FEM as described in Eq. 3.7.

Xfused
q = F1×1

(
Xs1
q ⊕Xs2

q · · · ⊕XsN
q

)
(3.7)

The feature maps from different resolutions, which are input to the information con-

centration module, are passed through convolutions with the architecture shown in

Fig. 3.4(b), resulting in predictions for each resolution. Loss functions calculated at

those resolutions can help create a hierarchical structure for feature maps. Therefore,

these loss functions serve as a guide and can improve the accuracy of the predic-

tions made. The Xfused
q feature map is processed through two 3x3 convolutions with

a residual connection, as depicted in Fig. 3.4(a), prior to being passed through the

classification block composed of a 1x1 convolution and softmax, as illustrated in Fig.
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3.4(b). This differs from the processing of the Xsi
q feature maps, which are passed

through the classification block without undergoing the 3x3 convolutions with the

residual connection.

3×3 Conv

3×3 Conv

input

+

output

3×3 Conv

1×1 Conv

input

output

(a) (b)

Figure 3.4: The left-hand side of the figure represents a convolution layer that is

designed to enhance the feature representation. On the other hand, the right-hand side

of the figure shows a classification block, where the final layer reduces the channel

dimension to 2.

3.1.1.5 K-Shot Configuration

There are several differences when there are multiple support examples. Firstly, the

number of support prototypes is equal to the number of shots because there are multi-

ple support examples. Secondly, there is a prior map for each example in the support

set in a similar manner. If we consider the circumstances specifically within the 5-shot

context, the effective support prototype is found by taking the average of the 5 sup-

port prototypes that are generated. Then, in a similar manner to the 1-shot case, this

prototype is concatenated with the query feature map and used in the Inter-Source

Enrichment Module. A similar procedure is followed to acquire the effective prior
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map. 5 support instances are used to obtain 5 prior maps. The average of the 5 prior

maps is calculated to obtain the effective prior map. Similar to the 1-shot situation,

the effective prior map is concatenated to the back of the query and support proto-

types. In subsequent sections, the module described above will be referred to as the

FEM function, which will provide outputs Xfused
q , Xs1

q , . . . , X
sN
q .

3.1.2 Revisit Base and Meta Learner

3.1.2.1 Episodic Learning

Figure 3.5: Episodic Learning comprises of two stages: meta-training and meta-

testing. During meta-testing, the classes presented are completely distinct from the

ones encountered during meta-training. The term ’task’ can be used interchangeably

with ’episode’.

Typical few-shot segmentation approaches use meta-learning approach such that the

knowledge gained from training the model on the base classes is utilized to predict the

mask of the query image belonging to a novel class given a support image belonging

to the same novel class. This process is called as meta-learning since learning tasks
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are sampled from the base classes during training in order to simulate the few-shot

settings in testing so that the training and testing conditions are matched.

For example, in Fig. 3.5, images and masks belonging to support and query for the

bird, cow, and monitor classes found in the base dataset are sampled. The positions

of each sampled class in the foreground are treated as if they had not been seen before

and labeled with 1, while the remaining parts are labeled with 0. Each row in Fig. 3.5

is referred to as an episode in meta-learning, and serves as the equivalent of a mini-

batch in supervised learning. A forward pass is performed over a certain number

of episodes, followed by the application of backpropagation. Thus, it is expected

that segmentation will be performed independently of the class when the positions

of previously unseen classes in the incoming test are labeled with 1 in the support

images.

3.1.2.2 Bias and Its Solution

BASE MODEL

META MODEL

ENSEMBLE

p1
m

Difference Between

Gram Matrices

L2Norm

f slow f
q
low

p0
m

pf
b

p0
f

Query Prediction

 

 

Figure 3.6: Overview of Base and Meta Learner.
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As [1] states, training on base classes introduces a bias towards them during test-

ing, preventing the model from working on the novel classes properly. To tackle this

bias, BAM is introduced, where a base learner, apart from the meta learner, explicitly

works on the known classes. When the information related to known classes is used

during inference, the recognition of novel classes is enhanced. For example, in Fig.

3.6, while attempting to segment the target cow, the image is constantly exposed to

humans from the base classes during training, causing the parts of the image asso-

ciated with humans to be wrongly classified as a novel. The meta learner is warned

of confusion in the regions incorrectly predicted as cows by the model trained super-

vised on base classes. As illustrated in Fig. 3.6, predictions from the base effectively

eliminate the regions that were wrongly identified as novel. To resolve this confu-

sion, an ensemble learning method that incorporates both meta and base predictions

as inputs is implemented.

Training BAM consists of two stages, namely base-training and meta-training. Both

learners share the same backbone as feature encoder. To leverage the representations

at different levels of abstraction, features are obtained from different layers of the

encoder.

3.1.2.3 Base Learner

Base learner is trained in a supervised manner so that the ability to make confident

predictions regarding base classes is gained. Query features after block-4 of ResNet-

50, fqb , are processed by base learner and decoded by Pyramid Scene Parsing Network

(PSPNet) [16], which is composed of Pyramid Pooling Module (PPM) and classifier.

The operation Db upsamples a feature map mixed from pre-defined multi-scales to

the original height (H) and width (W) of the query image, then applies a classifier to

each pixel. Logits for Nb number of the base classes and background are obtained for

each pixel through this process. The logits are transformed into probabilities with the

softmax operation.

pb = softmax (Db (fqb)) ∈ R(Nb+1)×H×W (3.8)
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In contrast to the typical approach of episodic learning, which is commonly used in

few-shot learning, traditional supervised learning strategy is adopted for classifying

individual pixels into either base classes or the background category. The amount of

discrepancy between the ground truth Mb
q for the image and the estimated pb is deter-

mined by the cross-entropy loss function, and the base learner is trained accordingly

as shown in Eq. 3.9.

Lbase =
1

nbs

nbs∑
i=1

CE
(
pb,i,Mb

q,i

)
(3.9)

In Eq. 3.10, probabilities for each base class are aggregated with summation to obtain

pfb , where pib corresponds to probability of pixel belonging to ith class. This step is

crucial since the base classes are the background classes for the query image while

the novel class is the foreground, which is to be predicted by the meta learner.

pfb =
Nb∑
i=1

pib (3.10)

3.1.2.4 Meta Learner

In meta-training stage, the parameters of the base learner are fixed. The features of

support and query images are extracted by the shared encoder, and the features ob-

tained after block-2 and block-3 of ResNet-50 [39] are concatenated and transformed

with 1×1 convolution layer, which is denoted by fsm and fqm respectively. The support

mask, ms, is used together with fsm in order to obtain the support prototype, vs. Then,

vs are expanded and concatenated with combination of query and prior map by EC,

initial letters of expand and concatenation operations, in Eq. 3.11. Resulting feature

map is inputted to meta-decoder denoted as Dm in Eq. 3.11. Dm performs task of

classifying each pixel into class selected in current episode and background.

pm = softmax (Dm (EC(vs, fqm))) (3.11)
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Lmeta =
1

ne

ne∑
i=1

BCE
(
pm,i,Mq,i

)
(3.12)

The binary cross entropy loss function is utilized to gauge the dissimilarity between

the ground truth Mq and the predicted output pm over a set of ne episodes as shown

in Eq. 3.12. The average of the computed errors is then backpropagated to optimize

the weights of the meta-learner.

3.1.2.5 K-Shot Configuration

×

=

=
nc

nh × nw
n
h
×

n
w

nc

Figure 3.7: Visualization of Computation of Gram Matrix. In this figure, nc, nh, and

nw corresponds to Clow, Hlow, and Wlow respectively.

The adjustment factor, ψ, quantifies the confidence in the prediction made by the

meta-learner, and also determines the relative significance of each sample from the

support set in the final prediction. In fact, the coefficient, ψ, indicates the degree

of stylistic difference between a query image and a support image. When there is a

mismatch between the styles of the query and support image, it implicitly leads to a

decrease in the confidence in the meta-learner or the support image.

A gram matrix, a mathematical representation of the inner product of a set of vectors,

serves as the foundation for the derivation of adjustment factors. The gram matrix

in this context holds the correlations between channels in the feature maps in the

initial layers of the model for the support and query images, namely fslow and fqlow. To

compute the Gram matrix, the feature map is first unfolded in the raster direction, and
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then the dot product is taken with its transpose as shown in Eq. 3.13. This serves

to demonstrate the extent to which certain attributes are present together within the

image [40] as shown in Fig. 3.7.

Vs = unfold (fslow) ∈ RClow×HlowWlow

Gs = VsVT
s ∈ RClow×Clow

Vq = unfold (fqlow) ∈ RClow×HlowWlow

Gq = VqVT
q ∈ RClow×Clow

(3.13)

The adjustment factor is determined by using the Frobenius norm of the differences

between the gram matrices of support and query image as shown in Eq. 3.14. A

graphical representation of the computations is provided in Fig. 3.8 to enhance com-

prehensibility.

ψ = ∥Gs − Gq∥F (3.14)

f
s
low

f
q
low

U

U

Vs

Vq

T V
T
s

T V
T
q

Gs

Gq

|| · ||F
ψ

Clow ×HlowWlow

Clow ×Hlow ×Wlow

Clow ×Hlow ×Wlow

Clow ×HlowWlow

Clow × Clow

Clow × Clow

Figure 3.8: Visualization of the Computation of the Adjustment Factor is presented in

this illustration. U and T represent the unfold and transpose operations, respectively.

The cross inside the circle denotes matrix multiplication, while the minus sign inside

the circle denotes element-wise subtraction.
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If there are multiple support samples, it would not be correct for each support sample

to contribute equally to the prediction of the query. Weighted averaging of support

prototypes, rather than uniform averaging, is considered a more appropriate method.

This is because, scene-wise, support samples that are distant from the query may con-

tain different concepts and can make the final prediction noisy. Therefore, it is neces-

sary to create a weighting system. The ψ coefficients are included in the creation of

this weighting system. The weights of the support samples with smaller ψ coefficients

are determined to be higher, achieving the desired goal. The concatenation of all co-

efficient vectors, denoted as ψall, is performed to form a single vector. Subsequently,

fusion weights are learned by passing the resulting vector through a non-linear layer

as shown in Eq. 3.15. This layer consists of two subsequent blocks, including a fully

connected layer and a rectified linear unit (ReLU) activation function. These blocks

function to map adjustment factors to fusion weights, where smaller adjustment fac-

tors result in larger fusion weights. The matrices w1 ∈ RK×K
f and w2 ∈ R

K
f
×K

represent the weights of a fully connected layer in a neural network, where K de-

notes the number of shots and f denotes the reduction ratio.

η = softmax (w⊺
2ReLU (w⊺

1ψall)) (3.15)

The effective support prototype is determined by computing the weighted mean of all

support prototypes, utilizing the weighting factor η as outlined in Eq. 3.16. In Eq.

3.17, the effective adjustment factor, which assesses the reliability of the support set

for meta-prediction, is derived by means of a weighted average of individual adjust-

ment factors, where fusion weights are employed as the weights. This process is akin

to the fusion of support prototypes into a single, effective representation.

vs =

K∑
i=1

ηi · vs,i

K∑
i=1

ηi

(3.16)
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ψ =

K∑
i=1

ψall,i · ηi
K∑
i=1

ηi

(3.17)

3.1.2.6 Ensemble Learner

At the end of the meta decoder, output background and foreground probability maps,

p0
m and p1

m, are obtained. The probabilities, p0
m and p1

m, are combined with the cred-

ibility information provided by ψ through concatenation. A 1x1 convolutional layer

is then applied to this combination, allowing for the adjustment of the probabilities

based on the ψ. For example, a higher value of ψ can result in the suppression of

the contribution of the meta-learner in the ensemble, while a lower value facilitates a

more equitable treatment of both the base and meta-learners. In Eq. 3.18, regulated

p0
m is ensembled with pfb in order to force the pixels belonging to non-novel regions

for the query image to be closer to the base map. Ensembling operation applies 1

by 1 convolutional layer to concatenation of regulated p0
m and pfb . As long as base

map is accurately predicted, misclassified base regions can be rectified through this

ensemble learning mechanism. In other words, the utilization of ensemble methods

serves to mitigate the likelihood of mistaking base regions for the novel class selected

during the episode through the guidance provided by pfb . Therefore, the regions in

the final background map p0
f that may have been previously confused are refined. Re-

sultant ensembled information is concatenated with regulated p1
m in order to produce

final prediction pf as shown in Eq. 3.19.

p0
f = Ensϕ

(
pfb ⊕ Ensψ

(
p0
m ⊕ ψ

))
(3.18)

pf = Ensψ
(
p1
m ⊕ ψ

)
⊕ p0

f (3.19)

The parameters of the meta-learner are updated by summing the binary cross-entropy

losses of the final prediction, pf , and the meta prediction, pm, as shown in Eq. 3.20.
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Lfinal =
1

ne

ne∑
i=1

BCE
(
pf,i,Mq,i

)

Ltotal = Lfinal + λLmeta

(3.20)

In the context of the Eq. 3.20, the hyperparameter λ is held constant at a value of 1

throughout the entirety of the experiments. Furthermore, the objective function for

training the meta-learner, represented by Lmeta, is the same as the one previously

described in Eq. 3.12.

3.2 Proposed Method

As proposed in the CANet paper [32], we employ middle-level features by applying

1x1 convolution to the concatenation of feature maps obtained from both block-2 and

block-3 layers of the model. The middle-level features extracted from the support and

query images are denoted by Eq. 3.21 and Eq. 3.22 respectively, where the symbol

Enc represents the middle-level feature extraction process.

fsm = Enc(Is) ∈ RH×W×C (3.21)

fqm = Enc(Iq) ∈ RH×W×C (3.22)

Masked global average pooling is applied to fsm to extract support prototype, vs, in Eq.

3.23, where R downsamples Ms to the size of fsm. The R function also duplicates

the downsampled Ms along the channel dimension a number of times equal to the

number of channels present in fs. Then, the masked average pooling function utilizes

an extended mask, which is multiplied with the support feature map, to neutralize

features associated with background pixels prior to averaging effectively. This opera-

tion allows for the computation of a robust representation of the foreground elements

within the feature map, discarding any contributions from background. Through this

process, the masked average pooling function selectively aggregates features from
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the foreground regions of the feature map. Subsequently, the resulting feature map is

divided by the number of foreground pixels to derive the support prototype as shown

in Eq. 3.23.

vs = masked_avg_pool(fsm,R (Ms)) ∈ R1×1×C

z = masked_avg_pool (x, y) =

W∑
i=1

H∑
j=1

xi,j ⊙ yi,j

1

C

W∑
i=1

H∑
j=1

yi,j

(3.23)

The feature enrichment module (FEM) is a computational module that receives as

input a support prototype vector vs, a prior map Cq, and a query feature map fqm. The

output of the FEM is a set of N+1 enriched query feature maps, which includes N

auxiliary feature maps at different scales, as well as a final fused feature map. This is

mathematically represented in Eq. 3.24. FEM is equivalent to function mentioned in

subsection 3.1.1.5.

Xs1
q ,X

s2
q , ...,X

sN
q ,Xfused

q = FEM(Cq, fqm, vs) (3.24)

CAUX = {Caux,1,Caux,2, ...,Caux,N ,Caux,fused} (3.25)

In Eq. 3.25, CAUX denotes a set of classifiers. The first N classifiers in this set are

auxiliary classifiers, which generate predictions for multi-scale features. The final

classifier in this set is responsible for making predictions based on the fused feature.

By utilizing these classifiers, we are able to obtain background and foreground logit

values for the enhanced query feature maps at each scale and the fused feature map,

respectively, as defined in Equations 3.26 and 3.28. The symbol ⊕ in these equations

represents the concatenation operation.
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p0
m,si

,p1
m,si

= Caux,i(Xsi
q ) (3.26)

pm,si = p0
m,si

⊕ p1
m,si

(3.27)

p0
m,fused,p

1
m,fused = Caux,fused(Xfused

q ) (3.28)

pm,fused = p0
m,fused ⊕ p1

m,fused (3.29)

BaseLearner in Eq. 3.30 takes fmq as input and outputs summation of predicted

probabilities for all classes except background. The function of the BaseLearner is

equivalent to the sequential application of the operations defined in Eq. 3.8 and Eq.

3.10.

pfb = BaseLearner(fqm) (3.30)

3.2.1 Range of Ensembles

The current method implements ensemble models, as represented by Equations 3.31,

3.32, and 3.33, similar to those used in BAM [1]. However, it introduces a new

aspect by utilizing different ensemble models for each auxiliary prediction at various

scales, as depicted in Equations 3.34, 3.35, and 3.36. This allows the meta-model to

consider non-novel regions at each scale, which is illustrated in Fig. 3.9 where the

pink rectangular boxes enclosed by dashed lines represent the ensemble models.

p0
f,fused = Ensϕ(pfb , Ensψ(p

0
m,fused, ψ)) (3.31)

p1
f,fused = Ensψ(p1

m,fused, ψ) (3.32)
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Figure 3.9: Detailed architecture of the multi-scale ensemble module. Features at

multi-scale and the fusion of them are obtained at the end of the improved decoder as

Xsi
q and Xfused

q respectively, which are used by the corresponding auxiliary classifiers.

The resultant enriched query feature maps are ensembled with the base map to obtain

query predictions at multi-scale, which are denoted by pf,si and pf,fused respectively.

Inner losses are computed from probability maps at intermediate scales
(
pm,si

)
and

predictions at intermediate scales
(
pf,si

)
while fused losses are computed from fused

probability maps
(
pm,fused

)
and fused predictions

(
pf,fused

)
. (Best viewed in color)

pf,fused = p0
f,fused ⊕ p1

f,fused (3.33)

p0
f,si

= Ensϕ,si(p
f
b , Ensψ(p

0
m,si

, ψ)) (3.34)

p1
f,si

= Ensψ(p1
m,si

, ψ) (3.35)
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pf,si = p0
f,si

⊕ p1
f,si

(3.36)

The proposed method calculates cross-entropy loss for both the auxiliary predictions

and the fused prediction, both before and after the ensemble process. Equations 3.37

and 3.38 calculate the cross-entropy loss for the auxiliary predictions and the fused

prediction respectively, prior to the ensemble process. Equations 3.39 and 3.40 com-

pute the cross-entropy loss for the auxiliary predictions and the fused prediction re-

spectively, after the ensemble process.

Linnermeta =
N∑
i=1

CE(pm,si ,Mq) (3.37)

Lfusedmeta = CE(pm,fused,Mq) (3.38)

Linnerfinal =
N∑
i=1

CE(pf,si ,Mq) (3.39)

Lfusedfinal = CE(pf,fused,Mq) (3.40)

Ltotalfinal = Linnermeta + Lfusedmeta + Linnerfinal + Lfusedfinal (3.41)

The proposed method utilizes a cumulative loss function, as represented in Eq. 3.41,

that aggregates all individual losses calculated for the auxiliary predictions and the

fused prediction, both before and after the ensemble process. This accumulated loss

is used to update the network parameters.
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CHAPTER 4

EXPERIMENTAL EVALUATION

4.1 Experimental Setup

4.1.1 Dataset

The model is evaluated on two datasets which are commonly used in few-shot seg-

mentation tasks. PASCAL-5i [18] is the first dataset, containing 20 classes, and it

is a combination of PASCAL VOC 2012 [41] and the extended annotations obtained

from [42]. The second dataset is COCO-20i [43], which is generated from MSCOCO

[44]. COCO-20i is more challenging when compared to PASCAL-5i as it consists of

images belonging to 80 classes. The datasets are split into 4 folds containing equal

number of classes in order to perform cross-validation while 1000 support and query

pairs are randomly sampled for each fold. One of the folds is selected for evaluating

the performance of the model on unseen classes, while the rest of them are used as

base classes for training the model. This procedure is repeated for all folds.

4.1.2 Implementation Details

All experiments are conducted on PyTorch framework with NVIDIA RTX 2080Ti

GPUs. As suggested in BAM [1], there are two training stages, namely pre-training

and meta-training. Pre-training stage is utilized for learning the base classes while

ResNet-50 [39] and VGG-16 [45] are used as backbone for PASCAL-5i and only

ResNet-50 [39] is used as backbone for COCO-20i. For PASCAL-5i, PSPNet [16]

is trained for 100 epochs as base learner with an initial learning rate of 2.5e-3. For

the base learner on COCO-20i, the model shared by the authors of [1] is used. In
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meta-training stage, PASCAL-5i and COCO-20i are trained for 200 and 50 epochs

respectively while the learning rate is set to 5e-2. For both stages, SGD is utilized

as optimizer. Random scaling, rotation, horizontal flip, cropping and Gaussian Blur

is applied to images. The sizes of the enriched query features at the output of the

improved decoder are set to 60, 30, 15, and 8, which makes N = 4 as suggested by

[11].

4.1.3 Performance Metrics

Area of Overlap

Area of Union
IoU =

Figure 4.1: Green coloured box represents ground truth while red coloured box rep-

resents prediction.

The main metric used in the segmentation task is mean intersection over union (mIoU),

which evaluates the degree of overlap between the predicted segmentation mask and

the ground truth segmentation mask, as shown in Fig. 4.1. The IoU for each class is

computed and then averaged to obtain the mIoU, as shown in Eq. 4.1. To compute

the IoU, the confusion matrix should be first extracted. The confusion matrix counts

the total number of pixels predicted as the jth class while belonging to the ith class at
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the entry of cij of the confusion matrix. Let Ncl represent the total number of classes

in the dataset.

The foreground-background IoU (FB-IoU) is also calculated as an additional metric.

mIoU =
1

Ncl

Ncl∑
i=1

 cii
Ncl∑
j=1

cij +
Ncl∑
j=1

cji − cii

 (4.1)

4.2 Experimental Results

4.2.1 Compared Methods

During our experimentation, we opted to evaluate the performance of proposed method

against two other established models, namely, BAM and PFENet. We chose BAM as

it represents a baseline version of proposed model that lacks the improved decoder.

On the other hand, we selected PFENet as it includes an advanced decoder but does

not have any measures in place to mitigate confusion of base classes as novel. Our de-

cision to include these models in the evaluation was based on the desire to determine

the efficacy of our modifications on segmentation performance.

We selected NTRENet, ASNet, and DPCN for our evaluation, as these models have

exhibited state-of-the-art performance on the relevant benchmarks. It is noteworthy

that our benchmark comprises approaches that almost entirely address the issues iden-

tified in Section 2. Specifically, NTRENet aims to resolve the challenge of misinter-

preting the background by identifying universal background elements, as well as dis-

tracting objects, and subsequently eliminating them from the foreground prediction.

ASNet, in turn, proposes a self-attention mechanism for cost-aggregation that reduces

the size of the correlation matrix, thereby mitigating issues related to hypercorrelation

reliability. Moreover, DPCN tackles the problem of thin objects by modifying the ker-

nel and matching geometry. Furthermore, BAM and PFENet address inter-class gaps

and spatial inconsistencies, respectively. In addition, we include a milestone study of

PGNet to highlight the progress made in few-shot segmentation between 2019 and
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2022. We assessed the segmentation performance of all the aforementioned methods

based on their original papers, and did not perform any reimplementations.

4.2.2 Quantitative Results

Table 4.1: 1-shot and 5-shot class mIoU results on PASCAL-5i dataset for VGG-16

and ResNet-50 as backbone, provided for 4 folds and the average. The best results

are given in boldface. The underlined results show the best performance excluding

our method.

Backbone Method
1-shot (%) 5-shot (%)

Fold-0 Fold-1 Fold-2 Fold-3 Average Fold-0 Fold-1 Fold-2 Fold-3 Average

VGG-16

PFENet (TPAMI’20) [11] 56.90 68.20 54.40 52.40 58.00 59.00 69.10 54.80 52.90 59.00

NTRENet (CVPR’22) [46] 57.70 67.60 57.10 53.70 59.00 60.30 68.00 55.20 57.10 60.20

DPCN (CVPR’22) [10] 58.90 69.10 63.20 55.70 61.70 63.40 70.70 68.10 59.00 65.30

BAM (CVPR’22) [1] 63.18 70.77 66.14 57.53 64.41 67.36 73.05 70.61 64.00 68.76

BAM++ (ours) 64.67 72.11 67.83 59.47 66.02 69.40 74.35 72.77 67.19 70.93

ResNet-50

PGNet (ICCV’19) [33] 56.00 66.90 50.60 50.40 56.00 57.70 68.70 52.90 54.60 58.50

PFENet (TPAMI’20) [11] 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90

NTRENet (CVPR’22) [46] 65.40 72.30 59.40 59.80 64.20 66.20 72.80 61.70 62.20 65.70

ASNet (CVPR’22) [47] 68.90 71.70 61.10 62.70 66.10 72.60 74.30 65.30 67.10 70.80

DPCN (CVPR’22) [10] 65.70 71.60 69.10 60.60 66.70 70.00 73.20 70.90 65.50 69.90

BAM (CVPR’22) [1] 68.97 73.59 67.55 61.13 67.81 70.59 75.05 70.79 67.20 70.91

BAM++ (ours) 69.46 74.16 69.20 61.54 68.59 70.81 75.34 73.04 68.99 72.05

Table 4.2: 1-shot and 5-shot class mIoU results on COCO-20i dataset for ResNet-

50 as backbone, provided for 4 folds and the average. The best results are given in

boldface. The underlined results show the best performance excluding our method.

Backbone Method
1-shot (%) 5-shot (%)

Fold-0 Fold-1 Fold-2 Fold-3 Average Fold-0 Fold-1 Fold-2 Fold-3 Average

ResNet-50

NTRENet (CVPR’22) [46] 36.80 42.60 39.90 37.90 39.30 38.20 44.10 40.40 38.40 40.30

ASNet (CVPR’22) [47] - - - - 42.20 - - - - 47.90

DPCN (CVPR’22) [10] 42.00 47.00 43.20 39.70 43.00 46.00 54.90 50.80 47.40 49.80

BAM (CVPR’22) [1] 43.41 50.59 47.49 43.42 46.23 49.26 54.20 51.63 49.55 51.16

BAM++ (ours) 44.43 51.98 47.01 45.22 47.16 52.53 57.02 50.97 49.49 52.50

Table 4.1 shows the performance comparison between BAM++ and other methods

proposed for few-shot segmentation task using ResNet-50 and VGG-16. The mIoU

results include 1-shot and 5-shot cases for PASCAL-5i dataset. BAM++ outperforms

the existing methods for both settings. When VGG-16 is utilized as backbone, our
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method surpasses the state-of-the-art results by 1.61% and 2.17% for 1-shot and 5-

shot settings, respectively. When it comes to the model with ResNet-50 as backbone,

0.78% and 1.14% performance gains are achieved for 1-shot and 5-shot settings. The

results on COCO-5i dataset are provided in Table 4.2 for ResNet-50 as backbone only.

BAM++ outperforms the best results by 0.93% and 1.34% under 1-shot and 5-shot

settings, respectively.

Table 4.3: 1-shot and 5-shot FB-IoU results on PASCAL-5i dataset for VGG-16 and

ResNet-50 as backbone, provided as the average. The best results are given in bold-

face. The underlined results show the best performance excluding our method.

Backbone Method 1-shot (%) 5-shot (%)

VGG-16

PFENet (TPAMI’20) [11] 72.00 72.30

NTRENet (CVPR’22) [46] 73.10 74.20

DPCN (CVPR’22) [10] 73.70 77.20

BAM (CVPR’22) [1] 77.26 81.10

BAM++ (ours) 78.69 82.52

ResNet-50

PFENet (TPAMI’20) [11] 73.30 73.90

NTRENet (CVPR’22) [46] 77.00 78.40

ASNet (CVPR’22) [47] 77.70 80.40

DPCN (CVPR’22) [10] 78.00 80.70

BAM (CVPR’22) [1] 79.71 82.18

BAM++ (ours) 79.65 82.84

Comparison with state-of-the-art models regarding the FB-IoU scores is provided

in Table 4.3 for both backbones on PASCAL-5i dataset. The results show that our

method performs well in 1-shot setting while exceeding the best result by 0.66% in

5-shot setting for ResNet-50. On the other hand, model with VGG-16 outperforms

the previous state-of-the-art by 1.43% and 1.42% for 1-shot and 5-shot settings re-

spectively.

4.2.3 Generalized few-shot segmentation results

Our method is also evaluated in generalized few-shot segmentation setting, which is

defined by [1], where both pixels belonging to novel and base classes are detected. For

this setting, novel pixels are predicted as novel if their final foreground probabilities

exceed a predefined threshold, while the pixels predicted as base should be assigned

to one of the base classes. By this way, the pixels belonging to different base classes
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are distinguished while the rest of the pixels are classified as novel or background.

This setting requires the calculation of mIoU on base and novel classes and also the

combination of them, which are denoted by mIoUn, mIoUb and mIoUa respectively.

Our method surpasses BAM [1] in generalized few-shot segmentation setting for both

backbones on PASCAL-5i dataset as shown in Table 4.5. The mIoU results validate

the superiority of ensembling at multi-scale for both novel and base predictions.

Table 4.4: Generalized few-shot segmentation results on PASCAL-5i dataset for

VGG-16 and ResNet-50 as backbone. The best results are given in boldface.

Backbone Method
1-shot (%) 5-shot (%)

mIoUn mIoUb mIoUa mIoUn mIoUb mIoUa

VGG-16
BAM [1] 43.19 67.03 61.07 46.15 67.02 61.80

BAM++ 43.94 67.80 61.83 47.20 67.80 62.64

ResNet-50
BAM [1] 47.93 72.72 66.52 49.17 72.72 66.83

BAM++ 49.98 72.87 67.15 52.41 72.87 67.76

4.2.4 Multi-scale few-shot segmentation results

Table 4.5: Multi-scale few-shot segmentation results on PASCAL-5i dataset for

ResNet-50 as backbone. The results presented in this table are obtained by aver-

aging the results from fold-0 and fold-1. The x in the table corresponds to the total

number of pixels in evaluated images.

Method
1-shot (%) 5-shot (%)

x < 322 322 < x < 962 962 < x x < 322 322 < x < 962 962 < x

BAM 0.38 41.45 74.72 0.95 43.32 76.43

BAM++ 0.54 42.36 76.18 1.29 44.35 77.31

Inspired by the COCO-20i evaluation in object detection [43], we have partitioned

masks into three distinct groups based on their size. The small group comprises

objects whose foreground area occupies less than 322 pixels. The medium group

includes objects whose foreground area falls between 322 pixels and 962 pixels, while

the large group encompasses objects whose foreground area covers more than 962
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pixels. These size categories have been chosen to facilitate the analysis and evaluation

of the algorithms in a consistent and standardized manner. The proposed method in

this thesis consistently outperforms BAM at three different scales, demonstrating the

impact of the improved decoder.

4.2.5 Model Complexity

Compared to BAM, BAM++ has an additional 6 million parameters, bringing its

total to 57.63 million parameters. However, a closer analysis of the multiplica-

tion and addition operations reveals that BAM++ performs 275.679 Giga Multiply-

Accumulate operations, while BAM performs 273.733 Giga Multiply-Accumulate

operations. This results in a negligible difference of merely 1.94 Giga Multiply-

Accumulate operations. Consequently, during both training and inference, the dif-

ference between the two models leads to an insignificant gap of approximately one

second per epoch.

4.2.6 Qualitative Results

Qualitative results for PASCAL-5i dataset under 1-shot setting with ResNet-50 back-

bone are provided in Fig. 4.2. The differences between our proposed architecture

and BAM can be seen when the predicted masks are analyzed. The main advantage

of our model is revealed in cases where there is another object adjacent to the novel

target object. In such cases, models generally tend to entangle the objects. In Fig.

4.2, it is seen that BAM predicts both the monitor and the computer as novel objects,

although there is only monitor in the support image. Since our model analyzes the

features at different scales, it distinguishes the neighboring objects from each other

well. Moreover, another faulty case is given in the third row, which is consistent with

our hypothesis. Even though base learner discourages meta learner from non-novel

regions, i.e. sofa, meta learner of BAM predicts these regions as novel. When ensem-

bling the query predictions at different scales is introduced, such incorrect predictions

are eliminated. As it can be seen in the predicted map of our method, only the regions

belonging to the dog are considered as foreground. We deduce that ensembling at
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Figure 4.2: Qualitative 1-shot results on PASCAL-5i dataset for ResNet-50 backbone.

Results for one novel class from each fold are provided in rows. First two columns

contain image and mask for support while the following two columns contain image

and ground truth for query. Fifth column shows the probability map for query ob-

tained from base learner. Predictions are provided for BAM [1] and our method for

comparison in the last two columns. (Best viewed in color)

multi-scale ensures the model to focus on non-novel regions rather than the areas

belonging to base classes.

4.2.7 Weakness of the proposed method

The base learner can perform well at segmenting objects that belong to the in distribu-

tion. However, it tends to make overconfident predictions on objects that belong to the

out-of-distribution. This can cause the base learner to mislabel the out-of-distribution

objects as belonging to one of the base classes with high confidence, thereby mislead-

ing the meta-learner about the base regions. As a result, the meta-learner may fail to

predict the out-of-distribution regions as novel due to the misguidance of base map.

For instance, in Fig. 4.3, we can see an example where a person is holding a bird over

his hand. The person and the bird correspond to objects from the in-distribution and

62



out-of-distribution, respectively. As shown in Fig. 4.3, the base learner segments the

region belonging to the bird as belonging to the in-distribution, failing to distinguish

it from the base classes. Therefore, when the task for segmentation is the bird, the

overall model overlooks the bird due to the incorrect base map.

Figure 4.3: Misguidance of base map

4.2.8 Ablation Study

Table 4.6: Ablation studies on inner losses for the multi-scale predictions regarding

the ensembling with the base map under 1-shot setting for PASCAL-5i. Results show

the averaged mIoU over 4 folds.

Method Lmetainner Lfinalinner mIoU (%)

BAM++ ✓ - 68.37

BAM++ - ✓ 68.45

BAM++ ✓ ✓ 68.59

Ablation study regarding the decision on how to include the inner losses for the multi-

scale predictions is performed by considering the following cases: calculation of inner

losses before and after the ensembling, without the ensembling, and after the ensem-

bling only. The contributions of Linnermeta in Eq. 3.37 and Linnerfinal in Eq. 3.39 on the final

mIoU performance are investigated. Thus, we experimented with the cases where

63



either Linnermeta is inactive, Linnerfinal is inactive, or both Linnermeta and Linnerfinal are active for

the Ltotalfinal calculation in Eq. 3.41. The results are obtained for PASCAL-5i dataset

under 1-shot setting and provided in Table 4.6. Activating only Linnermeta reaches an

mIoU performance of 68.37% while including Linnerfinal alone obtains the performance

of 68.45%. The last row in Table 4.6 indicates that when both Linnermeta and Linnerfinal are

used, the highest performance is achieved, which is 68.59%. As consequence, this

ablation experiment validates our hypothesis, which emphasizes the weakness of the

model implementing ensembling at single scale and the merits of the co-existence of

Linnermeta and Linnerfinal .
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CHAPTER 5

CONCLUSIONS

5.1 Summary

The present study proposes a novel approach that entails substituting the conventional

decoder with an advanced version. Upon incorporating this enhanced decoder into

the network architecture, it was observed that the auxiliary predictions were suscep-

tible to bias, while the final predictions were effectively purified. To overcome this

challenge, an ensembling mechanism was introduced to the intermediate predictions,

which served to mitigate the bias and improve the accuracy of the overall predictions.

5.2 Conclusions

We observed that although ensembling meta prediction with base prediction guides

the model by making the meta learner cautious in the regions where objects from

base classes exist, meta learner misclassifies non-novel regions by neglecting base

learner. This situation arises as a consequence of ensembling the predictions at single-

scale. Therefore, we proposed to perform ensembling for predictions at multi-scale

as well as the final prediction. By this way, bias existing at non-novel regions is

diminished. The experiments on PASCAL-5i and COCO-20i verifies our hypothesis

and our model achieves new state-of-the-art on few-shot segmentation benchmark.

65



5.3 Limitations and Future Work

Our method is not able to provide solution to thin object issue mentioned in Sub-

section 2.1.7. We empirically observe that our model fails to segment such a thin

objects. An additional challenge arises with base prediction models, as they often ex-

hibit overconfidence in their predictions when faced with out-of-distribution objects.

However, uncertainty estimation techniques can be employed to identify instances of

such erroneous predictions. Subsequently, these uncertainty maps can be leveraged

to refine the initial base predictions.
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