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ABSTRACT 

 
QUANTIFICATION OF BRADYKINESIA IN PARKINSON’S DISEASE BY 

USING FACIAL IMAGES AND EMG RECORDINGS 

 

Ölçek, Sabri Can 

Ph.D, Department of Medical Informatics 

Supervisor: Assoc. Prof. Dr. Yeşim Aydın Son 

Co-Supervisor: Assoc. Prof. Dr. Didem Gökçay 
 

April 2023, 94 pages 
 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by both motor and 
non-motor symptoms. The five-scale scoring system called Unified Parkinson’s Disease 
Rating Scale (UPDRS) is the most common tool used in symptom assessment. UPDRS III is 
the subsection targeting the motor symptoms and is based on the observations of the 
clinicians. Since the clinical assessment method is based on the visual observation and a five 
scale scoring, it is highly likely that the scores of two physicians differ. In fact, during 
multiple studies, it is observed that the scores can be biased to the dominant symptom. 
Furthermore, this system requires the physicians to conduct the measurements themselves, 
which is quite time consuming. Thus, it is important to have a repeatable, quantifiable 
method not just to evaluate the patient’s condition but to even detect the subtle changes. 
Beside Tremor, Bradykinesia is one of the main features of Parkinson’s Disease which is 
especially used to determine stage of the disease. The bradykinesia with rigidity can 
seriously hinder the patient’s movements as a result, the quality of their life. The assessment 
methods are mostly based on the rapid movements such as counting the number of touches 
made between thumb and index finger. There are many studies focusing on these tasks to 
measure bradykinesia by using various devices such as accelerometers, gyroscopes, and 
custom-built wearables. However, there is a lack of simple devices and methods that can be 
repeated even at home by the patient himself. In this study, we developed measurements 
based on a non-contact device called leap motion, using hand movements. In addition, a 
special hardware and software interface is developed to collect and process multi modal data 
by using facial images and EMG recordings. We also improved the data processing 
techniques to predict bradykinesia from facial movements in a better way. 

Keywords: parkinson’s disease, bradykinesia, emg, facial image, updrs 
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ÖZ 

 
PARKİNSON HASTALIĞINDA BRADİKİNEZİNİN YÜZ GÖRÜNTÜLERİ VE 

EMG KAYITLARI KULLANILARAK SAYISALLAŞTIRILMASI 

 

Ölçek, Sabri Can 

Doktora, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Aydın Son 

Tez Eş Danışmanı: Doç. Dr. Didem Gökçay 

 
 

Nisan 2023, 94 sayfa 

 
Parkinson hastalığı (PD), hem motor hem de motor olmayan semptomlarla karakterize edilen 
bir nörodejeneratif hastalıktır. Birleşik Parkinson Hastalığı Derecelendirme Ölçeği (UPDRS) 
adı verilen beşli puanlama sistemi, semptom değerlendirmesinde kullanılan en yaygın 
araçtır. UPDRS III motor semptomları hedefleyen alt bölümdür ve klinisyenlerin 
gözlemlerine dayanmaktadır. Klinik değerlendirme yöntemi, görsel gözleme ve dörtlü bir 
puanlamaya dayandığından, iki hekimin puanlaması arasında fark olma olasılığı yüksektir. 
Hatta yapılan birçok çalışmada bu özelliklerden dolayı puanların, baskın semptoma 
kayabileceği gözlemlenmiştir. Ayrıca bu sistem hekimlerin ciddi zaman alan ölçümleri 
bizzat kendilerinin yapmasını gerektirmektedir. Bu nedenle, sadece hastanın durumunu 
değerlendirmek için değil, aynı zamanda ince değişiklikleri bile tespit etmek için 
tekrarlanabilir, ölçülebilir bir yönteme sahip olmak önemlidir. Tremor'un yanı sıra, özellikle 
hastalığın evresini belirlemek için kullanılan bradikinezi, Parkinson Hastalığı’nın ana 
özelliklerinden biridir. Rijidite ile bradikinezi, hastanın hareketlerini ve sonuç olarak, yaşam 
kalitelerini ciddi oranda engelleyebilmektedir. Değerlendirme yöntemleri çoğunlukla, 
başparmak ve işaret parmağı arasında yapılan dokunuşların sayılması gibi hızlı hareketlere 
dayanmaktadır. İvmeölçerler, jiroskoplar ve özel yapım giyilebilir cihazlar gibi çeşitli 
araçları kullanarak bradikineziyi ölçmek için bu görevlere odaklanan birçok çalışma 
bulunmaktadır. Ancak evde bile hastanın kendisi tarafından tekrarlanabilecek basit cihaz ve 
yöntemlerin eksikliği vardır. Bu çalışmada, leap motion adlı temassız cihaz ile el 
hareketlerini kullanan bir ölçüm geliştirdik. Ek olarak, çok modlu yüz görüntüleri ve EMG 
kayıtlarını toplamak ve işlemek için özel bir yazılım ve donanım arayüzü de geliştirilmiştir. 
Yüz hareketlerinden bradikineziyi tahmin eden veri işleme teknikleri de daha iyi bir şekilde 
iyileştirilmiştir.  

Anahtar Sözcükler: parkinson hastalığı, bradykinesia, emg, yüz görüntüsü, updrs  
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CHAPTER 1 

 

1 INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by both 
motor and non-motor symptoms. Symptoms of motor dysfunction comprise tremor 
(T), rigidity-stiffness (R), bradykinesia-slowness in movement (B), gait-postural 
instability (GP), and bulbar abnormalities that include difficulties with speech and 
facial expressions (BA). In Parkinson’s disease, the Unified Parkinson’s Disease 
Rating Scale (UPDRS) is the most common tool used in motor symptom assessment.  

UPDRS scoring system is based on five-scale scores (0 = normal, 4 = severe) for the 
severity of the individual tasks and questions targeting different symptoms. 
Unfortunately, the performance of the patients who are conducting the given tasks 
are evaluated by the clinicians’ observations. Therefore, UPDRS is a subjective 
scoring system in its nature. UPDRS III (motor subsection) is the main focus of this 
study and it is extensive enough to addresses all the motor symptoms of PD (Fahn, 
Marsden, Goldstein, & Calne, 1987). 

However, even in two subsequent sessions, it is possible to see discrepancies 
between the scores if the clinicians are different. In fact, this non-linear and non-
repeatable behavior is caused by the lack of quantifiable values in the scoring. Thus, 
UPDRS scoring cannot be used to track efficiency of a research or treatment. 

Physicians can use more than one scoring system to assess the symptoms’ stage. The 
Hoehn and Yahr (HY) scale (Hoehn & Yahr, 1967) is the other most common scale 
applied during diagnosis and prognosis. However, the scale is superseded by the 
UPDRS and it is mostly used to target the daily activities rather than the motor 
symptoms (Goetz, et al., 2004). Therefore, UPDRS is the primary scoring benchmark 
for this study rather than HY. 

In this thesis, a quantifiable value relying on a repeatable method will be developed 
to measure bradykinesia in PD to address the non-linearity and non-repeatability of 
UPDRS scoring.  

Even though there are several different studies focusing on to measure the 
bradykinesia level based on rapid alternating movements (RAM) such as finger 
tapping or wrist pronation/supination (Ji-Won, et al., 2009; Teräväinen & Calne, 
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1980), the measurement techniques relies on wide variety of devices such as 
accelerometers (Dunnewold, Jacobi, & van Hilten, 1997), gyroscopes (Salarian, et 
al., 2007), magnetic devices (Kandori, et al., 2004; Ghassemi, Lemieux, Jog, 
Edwards, & Duval, 2006), and EMG sensors (de Souza, Dionísio, & Almeida, 2011) 
and there is no common measurement metric. Especially, relying on a custom device 
makes them difficult to use in clinical and daily life settings.  

To overcome this problem, a stone/mask face aspect of the bradykinesia will be 
utilized in this study to achieve a quantified measurement method which is in 
correlation with UPDRS score. The stillness caused by bradykinesia is directly 
characterized by the loss of facial expressions which called stone/mask face. 
Therefore, the facial images and EMG recordings of facial muscles will be gathered 
from PD patients in both ON and OFF medication/treatment cases. Afterwards, these 
recordings will be analyzed together to develop the method. 

The resulting method can be used to evaluate efficiency of the PD treatment studies 
besides determining state of bradykinesia. This will shorten the research and 
development times and it can also be adapted into a self-evolutionary product for PD 
patients. 

In this thesis, CHAPTER 2 will describe the medical background and the existing 
measurement techniques. CHAPTER 3 to 5 contains the different experiments and 
studies conducted to analyze different methods and modalities. These studies focus 
on the data gathering, the acquisition device, and the analytical approaches to 
develop a metric which can be used to assess bradykinesia. Each method and device 
have its own weaknesses and strengths hence the chapters contain the results and 
discussions of the approach used. CHAPTER 3 focuses on the data processing and 
analysis techniques from the hand motion by using COTS device. The correlation 
results are given under each subchapter. CHAPTER 4 explains the custom hardware 
device and software developed for EMG data processing and analysis.  CHAPTER 5 
is the last modality which is the video recording of the facial expressions. 

CHAPTER 6 is the final chapter where the results and contributions of the study is 
summarized. This chapter contains the final remarks and possible future works. 
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CHAPTER 2 

 

2 BACKGROUND 

 

2.1. Parkinson’s Disease 

Parkinson’s Disease (PD) is a neurodegenerative disease caused by the loss of 
dopamine-generating cells in the substantia nigra pars compacta. Dopamine is a 
neurotransmitter which is used essentially in the reward circuitry and motor control 
systems of the brain. Therefore, in the absence of dopamine, the disease progresses 
gradually and as a result, four major motor symptoms, which are tremor, muscle 
rigidity, bradykinesia, and posture instability, develop in time besides behavioral 
dysfunctions. The studies performed in late 1950s revealed that PD is one the most 
common neurodegenerative disorder of the elderly. Because of the core motor 
symptoms, the patient might reach to the point where he cannot perform daily 
routines such as walking, tying shoelaces, and fastening shirt buttons. 

Bradykinesia which results in unnatural stillness/slowness in the motions is one of 
the early symptoms of Parkinson's Disease (PD). Together with tremor, rigidity, and 
postural instability, they are named as four cardinal symptoms of the disease (Calne, 
Snow, & Lee, 1992). The main cause of bradykinesia is the dopamine deficiency in 
basal ganglia from which the inhibitory signals are sent to the motor systems to 
prevent involuntary actions. Under normal circumstances when the dopamine is 
present, basal ganglia promotes those motor actions so that the body can act swiftly 
(Blandini, Nappi, Tassorelli, & Martignoni, 2000). Because of further depletion of 
dopamine in later stages, bradykinesia follows the progression of the disease and it 
gets worse. (Figure 1) 
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Figure 1: (b) shows the changes compared to normal brain in basal ganglia circuitry when substantia 
nigra stops(Wichmann & DeLong, 1996) 

2.2. UPDRS and Hoehn-Yahr Scale 

The state of disease and symptoms including bradykinesia is evaluated by Unified 
Parkinson’s Disease Rating Scale (UPDRS). UPDRS was introduced in 1987 and it 
is composed of different parts assessing different aspects of the disease such as 
behavior, activities of daily life, motor functions, and complications. In 2007, it is 
revised by Movement Disorder Society (MDS-UPDRS) in order to create a superior 
version of the scale specifically addressing motor functions. Both scoring system 
uses five-scale structure (0 = normal, 4 = severe) which based on clinicians’ 
observations. Even though UPDRS is a method which covers almost all the aspects 
of PD it is based on the subjective ratings. It is difficult to reach same results if the 
two scoring sessions are conducted by different clinicians.  

Nevertheless, the level of disease and its symptoms are evaluated by Unified 
Parkinson's Disease Rating Scale (UPDRS). UPDRS scoring is the main clinical 
approach to diagnose and assess the progression of the disease. Even though UPDRS 
III (motor subsection) covers almost all the aspects of the motor symptoms (Fahn, 
Marsden, Goldstein, & Calne, 1987) it depends on the subjective scoring of the 
physicians. In addition to this inconsistency, the discreet rating scale cannot detect 
the subtle changes in the symptoms such as bradykinesia. 
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In summary, this non-linear and non-repeatable behavior is caused by the lack of 
quantifiable values in the scoring. Thus, UPDRS scoring cannot be used to track 
efficiency of a research or treatment. 

The UPDRS is not the only evaluation method used by the physicians. It is common 
to assess symptoms’ stage by using more than one scale at once. The Hoehn and 
Yahr (HY) scale (Hoehn & Yahr, 1967) is the other most common scale applied 
during diagnosis and prognosis. Similar to UPDRS, this scale is based on physicians 
observations and uses 1-5 scale called stages. However, after its initial release in 
1967, the scale is refined and 0.5 steps are added in between the original stages. 
According to the recent studies, HY scale works best in midranges, in other words, 
moderate symptom severity. (Goetz, et al., 2004) 

2.3. Motor Measurements 

2.3.1. Pinching  

The tap rating is one of the popular variables measured during bradykinesia studies. 
It is known that RAM such as finger tapping, namely, pinching can be used to assess 
bradykinesia level. In fact, it is already included in UPDRS III which is the motor 
symptom assessment part of the UPDRS scoring. The pinching task is not only 
present in scoring schemes but it is also grouped under bradykinesia subgroup. 
(Postuma, Gagnon, Vendette, Charland, & Montplaisir, 2008; Çakmak, et al., 2017)  

 

Figure 2: The coil couple generating magnetic response to pinching motion (Kandori, et al., 2004) 

For this purpose, Kandori et al. developed a magnetic device composed of two coils 
to measure it. (Kandori, et al., 2004) The coil couple generating magnetic response is 
worn on index and thumb fingers as shown in Figure 2. Unlike accelerometers and 
gyroscopes, the signal generated by the magnetic sensor device is fairly simple. 
(Figure 3) However, by taking FFT of the signal, the recorded output voltage can 
only be used to determine the tapping frequency. At this point, Kandori et al. 
conducted earlier calibration study to figure out the conversion between the output 
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voltage of the system and the movement distance (D) of the fingers. By using this 
relation, they converted the recorded waveforms into the movement distance 
waveforms. This enables them to derive the speed and acceleration of the motion 
from the movement distance waveform by taking first and second derivatives of it. 
They couldn’t find a strong correlation between the tapping frequency and PD level. 
However, the main reason of it is the Hoehn and Yahr scale (Hoehn & Yahr, 1967) 
which is used as comparative PD level in the study. Unlike UPDRS score, HY-scale 
focuses on the global assessment of the disease rather than its specific disability or 
symptom. Despite the low granularity of the scale and the results of the tap 
frequency, the mean values of the motion distance, acceleration, and velocity showed 
negative correlations with the HY-scale. 

 

Figure 3: The signal recorded from healthy control subject (Kandori, et al., 2004) 

2.3.2. Pronation-Supination 

Like pinching, pronation and supination (PS) is one the motor tasks given to the PD 
patients to assess their severity level. Furthermore, PS is also classified under 
bradykinesia group. The researchers such as Ghassemi et al. were decided to use PS 
in their studies.  Ghassemi et al. (Ghassemi, Lemieux, Jog, Edwards, & Duval, 2006) 
used pronation-supination action to measure bradykinesia. However, in Ghassemi et 
al.’s work, the pronation-supination action didn’t show a significant correlation with 
the bradykinesia level unlike the tapping and alternating hand movements used in 
other studies. Nonetheless, Daneault et al. (Daneault, Carignan, Sadikot, & Duval, 
2013) clarified those odd findings by showing that the maximal and mean velocity of 
pronation-supination cycles has significant correlation rather than the cycle duration. 
Daneault further explained that the maximal and mean velocity does not reflect all 
the clinical aspects of bradykinesia because the clinical evaluation combines 
bradykinesia, hypokinesia, and motor coordination. By looking those two studies, it 
can be said that selection of measurement plays an important role and using more 
than one measurement might give more clinically correct results. 

2.3.3. Face 

It is common to encounter reduced facial expression in PD patients, especially 
bradykinesia dominant ones. Because of that, the voluntary facial expression 
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diminishes and even disappears in time. In other words, the abnormalities in 
movement for facial expressions can be seen in bradykinesia. (Bologna, et al., 2013) 

In two different studies, the voluntary facial expression tasks were given and 
recorded by image recordings. Whereas Marsili et al. (Marsili, et al., 2014) used 
infrared markers glued onto facial skin, Bowers et al. (Bowers, Miller, Bosch, & 
Gökçay, 2006) utilized simple camera recordings. The common finding in those 
studies were the correlation between the measurement and bradykinesia level 
regardless of the device and measurement technique. 

 

Figure 4: Positions of the six infrared markers (Marsili, et al., 2014) 

Marsili et al. (Marsili, et al., 2014) conducted two different recording sessions to find 
a relation to the bradykinesia level. Firstly, the subjects were asked to imitate 
Duchenne smile shown on the screen as visual queue. Later, they ask them to grin as 
much as possible after a simple starting signal. The infrared markers put on 6 
different locations as shown in Figure 4. The two markers in the medial eyebrow 
corners are used only to exclude incongruent emotional activations such as disgust. 
Namely, the reason of this upper face analysis is to find out if the PD patients can 
correctly identify the emotion shown by the Duchenne smile. After initial statistical 
analysis, it was revealed that there is no correlation between the left and right side of 
the face. Therefore, they combined these two hemi-faces to double their sample size. 
Unfortunately, the results presented about this claim are not enough to support it. 
Nevertheless, the striking finding in this study is that the only PD patients showed a 
correlation between the two sessions with respect to the peak velocity of the labial 
corner displacement. As seen in Figure 5, while the healthy controls did not show 
any specific pattern, the correlation in PD patients’ case was clearly visible. 
According to Marsili et al. (Marsili, et al., 2014), this finding might indicate that the 
PD changes the brain circuitry takes place in these two tasks. 
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Figure 5: Correlation found in PD patients with facial recordings (Marsili, et al., 2014) 

2.4. EMG 

The previous studies have shown that rapid self-terminated muscle movements show 
triphasic EMG pattern. (Cheron, Cebolla, Bengoetxea, Leurs, & Danc, 2007) That 
pattern is composed of three phases following each other. These phases are first 
agonist burst, quite or antagonist burst, and finally, second agonist burst. (Hannaford, 
Cheron, & Stark, 1985) Figure 6 shows the basic triphasic EMG pattern both on 
agonist and antagonist muscles. It is claimed that the source of first agonist burst is 
the primary motor cortex. However, the involvement of this cortex in other phases is 
still unknown. (Irlbacher, Voss, Meyer, & Rothwell, 2006) The other property of a 
typical sEMG signal is its frequency which is above 500Hz. 

 

 

Figure 6: Triphasic pattern showing all the phases, first agonist burst (AG1), quite phase (ANT), 
second agonist burst (AG2). (Irlbacher, Voss, Meyer, & Rothwell, 2006) 

As seen in Figure 7, the most of the clinical devices have only 2 channels and it is 
not enough to conduct bilateral. Nonetheless, in neurophysiology labs, the multi-
channel research oriented EMG devices can be found. (Figure 8)  
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Figure 7: Photo of clinical EMG in Koç University Hospital 

 

Figure 8: Photo of ADInstruments Powerlab 16/35 DAQ system 

Under normal circumstances, the research oriented devices don’t include bio 
amplifiers for small signal acquired from surface EMG or any other signal 
conditioner so that they don’t distort the raw signal but they are easy to interface 
with. For example, even the smallest and cheapest ADInstruments DAQ has trigger 
input and serial output ports. (Figure 9) By the help of these standard ports, any 
custom device can be integrated to build a multi-modal data acquisition setup. 

 

 

Figure 9: Photo of ADInstruments Powerlab 26T DAQ system 
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2.5. Motivation and Research Question 

Even though all the studies agree that RAM based task can be used in assessing 
bradykinesia level,  the measurement techniques used in them relies on wide variety 
of devices such as accelerometers (Dunnewold, Jacobi, & van Hilten, 1997), 
gyroscopes (Salarian, et al., 2007), magnetic devices (Kandori, et al., 2004; 
Ghassemi, Lemieux, Jog, Edwards, & Duval, 2006), and EMG sensors (de Souza, 
Dionísio, & Almeida, 2011).  

In summary, the lack of focus on a common measure, which can be used both in 
clinical and daily life applications, causes every study to implement its own 
technique and to use time consuming UPDRS scoring. Furthermore, this issue and 
re-implementation in every new study forces researchers to rely on the variables of 
one technique. As shown in two conflicting studies (Ghassemi, Lemieux, Jog, 
Edwards, & Duval, 2006; Daneault, Carignan, Sadikot, & Duval, 2013), the 
measurement selection is an important issue which is disregarded due to the 
complexity of the problem. Besides indirect techniques that measure movements, 
there are also techniques such as EMG and facial recordings. These techniques can 
perform more thorough analysis. In order to achieve a precise assessment, using 
more than two techniques and evaluating their data together seems like the only 
viable solution. Moreover, the recent technical advancements enabled use of 
handheld and user friendly devices as in Salarian et al.’s study (Salarian, et al., 2007) 
One example is the software called NeuroRPM (NeuroRPM, 2023). The software 
that runs on the Apple watch to continuously monitor the cardinal symptoms of the 
disease is FDA cleared. Therefore, the progression of the symptoms and PD state can 
be easily monitored both in clinical and research environments. As a result, 
efficiency of a treatment which is already available or will be developed can be 
evaluated and improved rapidly. 

The research question of this thesis centers on the development of a practical 
interface to be used in clinical studies. For this purpose, we investigated hand 
movements as well as facial movements in Parkinson’s Disease Patients partnering 
with Koç University. The clinical data from pinching, pronation and supination hand 
movements collected by Leap Motion device was analyzed. In terms of the research 
question, we investigated whether we could predict the UPDRS score automatically. 
Furthermore, to analyze the facial movements, we developed our own hardware and 
software interface and investigated if the bradykinesia prediction can be improved 
with the new data processing techniques. 
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CHAPTER 3 

 

3 FEATURE EXTRACTION AND STATISTICAL ANALYSIS OF HAND 

MOTIONS 

3.1. Pinching Motion 

Various researchers have tried many different assessment techniques to overcome the 
inadequacy of UPDRS for detecting bradykinesia. All these techniques are mostly 
focused on rapid alternating movements (RAM) or finger tapping/pinching. Even 
though all the studies agree that RAM based tasks can be used in assessing 
bradykinesia level, the measurement techniques are relying on wide variety of 
devices such as accelerometers (Dunnewold, Jacobi, & van Hilten, 1997), 
gyroscopes (Salarian, et al., 2007), magnetic devices (Kandori, et al., 2004; 
Ghassemi, Lemieux, Jog, Edwards, & Duval, 2006), and EMG sensors (Sande de 
Souza, Dionísio, & Almeida, 2011). The common problem of all these devices is that 
they are depending on custom designs or setups. In other words, they are not 
commercially available off-the-shelf (COTS) products.  

The objective of this experiment is to develop a new method to measure bradykinesia 
in PD patients by using COTS product called Leap Motion. Thus, the efficiency of 
Leap Motion is studied by recording various motor tasks performed by PD patients. 
The recorded data is analyzed for its various features against the UPDRS scores. The 
aim is to be able to utilize this easily available and relatively cheap device for daily 
tracking of patients and their treatments. The study is approved by the local Ethics 
Committees of Koç University Hospital, İstanbul, Turkey and all participants gave 
informed consent prior to the study. 

 

Figure 10: The representation of interior design of Leap Motion taken from its product page. 
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Leap Motion (Leap Motion, Inc., San Francisco, USA) is a motion controller device 
to capture hand gestures by using pair of cameras and infrared lighting. It is a fairly 
compact device and very powerful to capture obvious hand motions like pinching 
and pronation/supination. Figure 10 shows the device interior and its compact 
design. 

Weichert et. al. (Weichert, Bachmann, Rudak, & Fisseler, 2013) analyzed the 
accuracy of leap motion controller and found that it can achieve 0.7 mm overall 
average accuracy in all 3 axes. This result is comparable to the average human hand 
accuracy, 0.4 mm. Besides the accuracy, the controller is able to sample the hand 
motions around 100 Hz. 

3.1.1. Method 

Pinching and Pronation-Supination are the two motor tasks given to the subjects. In 
this study, only the pinching task was used. Other data will be discussed separately. 
With the software developed on top of Leap Motion SDK, the positions and rotations 
of the finger joints and wrist are recorded during these tasks. After the recording 
session, the raw data is processed and several features are extracted. For the 
pinching, the local minima and maxima of the distances between thumb and index 
finger are marked. Afterwards, the time difference between the consecutive 
minimum and maximum is calculated. 

By using the time difference and distance obtained from the raw data processing, the 
speed, acceleration, and frequency of a motion are calculated. In previous studies, it 
was shown that those three measures can be used to assess bradykinesia. (Daneault, 
Carignan, Sadikot, & Duval, 2013; Dunnewold, Jacobi, & van Hilten, 1997) 

24 patients (7 female, 17 male, mean age ± SD = 57.08 ± 8.91) who were diagnosed 
by neurologist for PD participated in the experiment. All patients were under 
dopaminergic replacement treatment and their disease duration was 8.04 ± 3.88 
years. 20 patients were right-handed whereas 4 patients were left-handed. They came 
to the hospital in 12-hour OFF state (without medication) and two independent 
neurologists immediately evaluated UPDRS III (motor section) bilaterally. The 
average of those two scorings was considered as the final bilateral UPDRS scores 
( 𝜇𝑙𝑒𝑓𝑡 ± 𝑆𝐷𝑙𝑒𝑓𝑡 = 11.49 ± 4.61, 𝜇𝑟𝑖𝑔ℎ𝑡 ± 𝑆𝐷𝑟𝑖𝑔ℎ𝑡 = 12.28 ± 5.15 ). The patients 
were not specifically marked as tremor or bradykinesia dominant. 

The patients visited hospital multiple times for another ongoing study for the data 
acquisition. There was at least one week difference between visits. 9 patients came to 
hospital twice and 15 remaining patients were recorded three times. In every case, 
the patients were seated against a laptop computer to which the leap motion 
controller is connected. The controller was laid on the table. To familiarize the 
patients with the device and to test the setup, they were asked to put their hand above 
the controller and move their fingers as shown in Figure 11. It was visually verified 
that the controller was capturing the gestures.  
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Figure 11: Basic recording setup with laptop and leap controller. 

After the initial UPDRS scoring and familiarization was completed, the participant 
started to experiment. During the study, the motor tasks given to the patients were 
recorded in 3 successive sessions for both hands. Namely, one patient has total 12 
recordings (6 pinching, 6 wrist motion) per hospital visit. At the end of the data 
acquisition phase, total 378 recordings were taken for pinching. The important part 
of the study is that before each session, bilateral UPDRS III scoring was evaluated 
by the same neurologists. The reason for the repeated scoring is to capture the subtle 
changes in the symptoms between the visits and different sessions. Each motion task 
was recorded at least 10 seconds for both hands one after another. 

Table 1: Discarded speed values because of large SD  

Mean Value (mm/s) SD (mm/s) 
216.80 129.36 
689.53 543.78 

Regardless of the session and action hand, the feature extraction was applied onto all 
recordings. Because of the fixation problems observed in the data (Figure 12), the 
first several extracted values of each feature (time difference, distance, and angles) 
were removed. With remaining features, the mean and standard deviation of speed, 
acceleration, and frequency were calculated. By comparing the mean and standard 
deviation of each metric, it was decided if the patient could perform the task 
correctly or not. Table 1 lists several exemplary values discarded because of having 
large deviations. In other words, the examples in the table have SD values which are 
almost comparable to the corresponding mean values. 

 

Figure 12: Change of the distance between thumb and index finger, during pinching for 3 different 
patients. The fixation problem can be seen at the start (before 2 seconds) of signal where the pattern is 
distorted. 
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Since the bilateral UPDRS scores were independently taken before each session, the 
values calculated for both hands were pooled together as Marsili et al. (Marsili, et al., 
2014) did. Similarly, the recordings of all the visits and their three distinct sessions 
were also combined. This data pooling process was done separately for each   motor 
task. After obtaining the two big sets of recordings, the correct metric was selected 
for pinching and pronation-supination, respectively. Thus, Pearson’s correlation was 
applied between UPDRS scores and three metrics derived from extracted features. 

Later, by using all the metrics of both motor tasks, a linear regression model as in 
Equation 1  was derived to improve the link between UPDRS III and the data 
gathered from the controller. The correctness of the model was evaluated by the root-
mean-square error defined by Equation 2. 

 𝑈′ = 𝑎1𝑓1 + ⋯ + 𝑎𝑛𝑓𝑛 + 𝑏 (1) 

 𝑒𝑟𝑚𝑠 = √
∑ (𝑈𝑖

′−𝑈𝑖)2𝑛
𝑖=1

𝑛
 (2) 

3.1.2. Results 

Some patients couldn’t complete the tasks given to them. There were 9 such sessions 
that were excluded from the study. Unrelated to the data content, the data belonging 
to one patient were discarded because of invalid UPDRS scoring. The features of 43 
pinching recordings couldn’t be extracted because of invalid or missing data. As a 
result, these 43 data were also removed from the data pool. 

The investigation of mean and standard deviation of metrics calculated for remaining 
sessions revealed that almost half of the data for each metric have large deviations 
( 𝑠𝑝𝑒𝑒𝑑 = 49%, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 59%, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 40% ). Since it is not 
possible to include these inconsistent values, the correlation study was completed by 
discarding them. 

Firstly, the pinching task was analyzed and it was found that there were very low 
correlations ( 𝑟𝑠𝑝𝑒𝑒𝑑 = −0.222,  𝑟𝑎𝑐𝑐 = −0.112, 𝑟𝑓𝑟𝑒𝑞 = −0.144 ) between the 
pinching metrics and their respective contra-lateral UPDRS III scores. However, 
when the analysis was conducted against the ipsi-lateral scores, a moderate 
correlation was obtained ( 𝑟𝑠𝑝𝑒𝑒𝑑 = −0.512,  𝑟𝑎𝑐𝑐 = −0.398,  𝑟𝑓𝑟𝑒𝑞 = −0.337, 𝑝 <

0.001 ). UPDRS III motor section contains many items focusing on a specific 
symptom. Thus, the correlation study was repeated against the bradykinesia subset of 
UPDRS III because the pinching performance should be mostly affected by 
bradykinesia. As expected, the results (𝑟𝑠𝑝𝑒𝑒𝑑 = −0.562,  𝑟𝑎𝑐𝑐 = −0.453, 𝑟𝑓𝑟𝑒𝑞 =

−0.388, 𝑝 < 0.001) got better for all three metrics. In the end, the speed is the best 
metric for the pinching.  

Even though the speed was selected as the best metric for pinching, the values were 
fitted to create linear model from all metrics as in Equation 3 (𝑠 = 𝑠𝑝𝑒𝑒𝑑, 𝑎 =
𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) to estimate UPDRS III score. 
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 𝑈′ = 𝑘1𝑠𝑝𝑖𝑛𝑐ℎ + 𝑘2𝑎𝑝𝑖𝑛𝑐ℎ + 𝑘3𝑓𝑝𝑖𝑛𝑐ℎ + 𝑏 (3) 

 𝑧𝑒 =
𝑒𝑟𝑚𝑠

max (𝑈𝑃𝐷𝑅𝑆𝐼𝐼𝐼)
 (4) 

The correlation between pinching and bradykinesia was significant so should be the 
linear model when the features of pinching is selected as sole predictors. The 
important point is that this model had small root-mean-square error (𝑒𝑟𝑚𝑠 = 4.37) 
for estimating total UPDRS III score. To better visualize the error, it is normalized 
(𝑧𝑒 = 0.078) by the max value of UPDRS III as in Equation 4. 

Because of stronger correlation with bradykinesia subset in pinching, the linear 
model was also created for UPDRS III bradykinesia score. As expected, the error of 
this model was similarly small ( 𝑒𝑟𝑚𝑠 = 2.13, 𝑧𝑒 = 0.107 ). Even though the 
normalized value was slightly bigger than the error in the total score case, it was not 
significantly different. 

Instead of using whole data to create the model, the training procedure was repeated 
by using randomly selected 75% of the data. After training, the remaining 25% of the 
data was used for testing the model. This training-testing procedure was repeated 100 
times for the different randomly selected training set. After 100 repetitions, the 
average RMSE values were calculated. The results of trained model were similar to 
the previous approach for both total UPDRS III (𝑒𝑟𝑚𝑠 = 4.37,  𝑧𝑒 = 0.078) and 
bradykinesia subset (𝑒𝑟𝑚𝑠 = 2.12,  𝑧𝑒 = 0.107) cases. The important finding was 
that error of estimations was (𝑒𝑟𝑚𝑠 = 5.59,  𝑧𝑒 = 0.099) and (𝑒𝑟𝑚𝑠 = 2.90,  𝑧𝑒 =
0.145) respectively.  
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Figure 13: Distribution of UPDRS III total score and bradykinesia subset against the three metrics 
(speed, acceleration, frequency) extracted from the pinching recordings. The metrics are the 
combination of data from all the session for both hands. The upper two rows show the ipsi-lateral 
results while the bottom two rows belong to contra-lateral results. As expected, the speed showed the 
highest correlation (𝑟 = −0.512, 𝑝 < 0.001) and the correlation (𝑟 = −0.562, 𝑝 < 0.001) increases 
by using bradykinesia subset. Furthermore, the contra-lateral analysis revealed that there was no 
correlation between the total (𝑟 = −0.222, 𝑝 < 0.001) and the metrics. Even using bradykinesia 
subset (𝑟 = −0.240, 𝑝 < 0.001) scores did not improve it. 

3.1.3. Discussions 

In this study (Çakmak, Ölçek, Özsoy, & Gökçay, 2018), it is showed that a COTS 
device can be used in simple setup to assess the bradykinesia level of the patient with 
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PD. Furthermore, it is important that the assessment was done by using a quantitative 
metric acquired from the device. By comparing the measurements with the UPDRS 
III scores which are based on the subjective observations of physicians, it was seen 
that this method can be used as a fast and reliable alternative. The main advantage of 
this technique is that it helps the physician by keeping the process completely 
objective, thus, they can better decide on treatment regime. Nevertheless, the number 
of invalid data suggested that the patients need further familiarization with the task 
and device. This can be overcome by extending the recording time and the 
familiarization time. The exclusion of data could be done by using z-scores of the 
metrics which might give further information why the patients couldn’t complete the 
given task. 

UPDRS is a subjective scoring system, although it is widely used in the clinic. Due 
to its subjectivity, having mild to moderate correlations of UPDRS with an actual 
physical measure is not surprising. Despite this fact, UPDRS III was chosen for the 
validation because it is the clinical golden standard for diagnosis and prognosis. The 
correlation study revealed that the fine movements like pinching expresses 
bradykinesia well. Further testing of linear model showed that this method is less 
error-prone than the UPDRS. If a physician makes 1 scale-unit error for each item, 
the error becomes 𝑧𝑒 = 0.250  which is a value much larger than our proposed 
model’s error. 

3.2. Pronation and Supination Motion 

UPDRS motor scaling, which is the most common assessment modality for the 
motor symptoms of Parkinson’s disease, uses the pronation/supination movement 
ability to score the bradykinesia/rigidity related sections of the UPDRS but not as a 
proxy for gait and posture instability. Although the researchers have investigated 
pronation and supination mechanics (Garza-Rodríguez, Sánchez-Fernández, 
Sánchez-Pérez, Ornelas-Vences, & Ehrenberg-Inzunza, 2018) the UPDRS motor 
scaling does not consider the pronation/supination as a proxy for the gait ability. 
Furthermore, there is no report investigating the potential relationship of the forearm 
pronation/supination with the gait/posture instability in PD. Numerous biomedical 
wearables for the forearm including smart watches are in the market to monitor the 
motor symptoms of PD patients but to our knowledge, none of them were able to 
provide the gait/posture stability information based on a unilateral forearm/wrist or 
finger movement.  The gait and posture stability info can only be gathered if the 
multiple wearable sensors are combined and placed on multiple body locations 
including thorax and limbs but not with the aid of a unilateral, single limb movement 
based sensor. 

As the next step of the previous work done for pinching, the pronation and 
supination data collected in the same sessions were analyzed to investigate whether 
the pronation/supination movement data of a single wrist is correlated with the 
bradykinesia level of PD patients or not. By the help of this work, the forearm 
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wearables like smart watches that can also be used for continuous monitoring during 
daily life activities such as walking, standing up, eating, etc. 

3.2.1. Method 

3.2.1.1.Data Collection 

The participants of this experiment were exactly same in pinching experiment 
because this is the continuation of that work. During previous study, two motor tasks 
were recorded one another, however, only pinching was analyzed for bradykinesia. 
Nevertheless, in this case, pronation and supination signal recorded during the 
sessions were processed and evaluated.  

In addition to the traditional approach of taking into account the dominant symptom 
side scores of lateralized subitems (items 20–26) for the UPDRS Part-III motor scale 
scoring, the scores of lateralized subitems on both sides (ipsilateral and contralateral 
to the dominant symptoms and to the stimulator) were also documented to 
demonstrate the potential correlation with B and UPDRS. Moreover, the subscores of 
UPDRS Part-III were also classified and analyzed as Tremor (items 20–21), Rigidity 
(item 22), Bradykinesia (items 23–26,31), Gait and Postural Instability (items 27–30) 
and Bulbar Anomalies (items 18–19), as in previous studies. (Postuma, Gagnon, 
Vendette, Charland, & Montplaisir, 2008; Çakmak, et al., 2017) 

All patients were asked to perform pronation-supination (P/S) motor tasks. The 
UPDRS III bradykinesia subsection includes pronation-supination task and 
accordingly patients were observed by the physicians during diagnosis. As seen in 
Table 2, twenty-four patients with idiopathic PD (17 men, 7 women; mean age ± SD 
=  57.08 ± 8.91 years) participated to this study. 

Table 2: Demographics of the patients participated 

Age Gender Dominant 
Hand 

Affected 
Side 

at Onset 

PD Duration 
(year) 

H&Y 
Stage 

61 F R R 12 3 

46 M R L 4 3 

55 M R R 8 2 

48 M R R 12 2 

54 M R R 6 2 

48 M R L 8 2 

61 M R L 6 2 

71 M R R 17 2 

52 M R R 2 2 

61 M R R 8 3 

56 M R R 7 2 

47 F R R 10 2 
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63 M R R 8 2 

58 F R R 15 2 

54 M R R 9 3 

70 F R R 8 3 

64 M R L 1 2 

45 F R L 4 2 

71 M R R 5 2 

45 F R L 8 2 

63 F R R 4 2 

72 M R L 13 2 

45 M L R 8 2 

60 M R R 10 2 

 

The raw data belonging to the gestures was recorded by the custom software 
developed using Leap Motion SDK. The recorded raw data was processed to extract 
features defining the characteristics of the motions. The wrist rotation on a single 
axis was processed for pronation-supination and as the task is a rapid repetitive 
motion, the local minimal and maximal values of the processed data were marked for 
further extraction. The consecutive markers were used to calculate three final 
features which relate to speed, acceleration, and frequency. In previous studies 
(Daneault, Carignan, Sadikot, & Duval, 2013; Dunnewold, Jacobi, & van Hilten, 
1997), these three features were also analyzed and were found to be useful in 
assessing bradykinesia. Figure 14 shows the details of an example raw data collected 
by the software. 

3.2.1.2.Data Sanitization  

The occasional glitches and noisy sections of the data that originate from initiation 
and termination of the movement was excluded from all records. The exclusion 
procedure was performed with manual marking for these sections with visual control 
by the same investigator (CO). The full flow of the exclusion process is provided as a 
supplementary file.  
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Figure 14: Signals after moving average filter was applied, (a) shows the whole signal and resulting 
waveform in red after filter. (b) is the zoomed in part where the tremor is clearly visible 

If tremor occurs in the middle of the data collection task, it appears as ripples and 
results in inaccurate minima and maxima detection. To solve this issue, the wave was 
analyzed by a frequency spectrum and a typical spectrum was observed to contain a 
significant response below 5 Hz (Figure 15). Taking into account the sampling rate, a 
moving average filter with window size of 7 was applied to smooth out the signal as 
shown in Figure 14. At the saddle points, where the motion reaches its extreme 
points, it was observed that several patients had double peaks which were different to 
the tremor form. Since our feature selection was based on the difference between 
time and the angles of the motion, it was possible to use consecutive minima and 
maxima pairs to calculate the features for pronation and supination. As seen Figure 
16, those consecutive points were marked for further feature extraction. As explained 
in the analysis section, the averaged features derived from several minima and 
maxima pairs were used. For the analysis any single pronation and supination signals 
less than 4 consecutive points were excluded from the study.  As a result, 3 records 
are discarded from the entire batch. 
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Figure 15: Frequency spectrum of P/S signals. Upper row shows 2 excluded signals after smoothing, 
while bottom 2 shows the typical frequency spectrum. The proper bottom signals contain powerful 
response on low frequencies around 2 and 3 which is basically the number of P/S cycles. 

 

Figure 16: Signal after moving average is applied and marked. The important features of the 
pronation/supination movement are marked as follows. “x” marks are the extrema points found by the 
marking process but as seen in the figure not all the markings were accepted. Only if the minima 
immediately following the maxima or vice versa were accepted as the ones that should be included 
into feature calculations. Those points are marked by additional circle. 
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Figure 17: Invalid parts of the data was trimmed. Trimmed parts are the parts inside the red line 
markers 

In total 77 of the 274 recordings must be excluded in the context of incomplete 
pronation/supination data due to incomplete pronation/supination data (because of 
the severe rigidity or data collection errors). 197 of the 274 recordings are analyzed. 
The data analysis algorithm chart can be seen in APPENDIX B. 

3.2.1.3.Feature Extraction  

Following on from the data sanitation phase the remaining datasets (197) were used 
for feature extraction. In this phase, three specific features were calculated starting 
from the first minima marker. The mean of the calculated values for each 
consecutive minima-maxima points in a single record were accepted as the final 
feature metric (Equation, 7, 8, and 9). Namely, 𝑓1, 𝑓2and 𝑓3features are influenced by 
speed, acceleration, and frequency respectively.  The marked extrema points 
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enabled separate metrics for pronation and supination phases. In addition, the 
features for combined motion were also computed as in Equation 10, 11, and 12.  

 𝑑∅ = |∅𝑚𝑖𝑛 − ∅𝑚𝑎𝑥| (5) 

 𝑑𝑡 = |𝑡𝑚𝑖𝑛 − 𝑡𝑚𝑎𝑥| 
 (6) 

 𝑓1 =
1

𝑛
∑ 𝑑∅/𝑑𝑡 (7) 

 𝑓2 =
1

𝑛
∑ 𝑑∅/𝑑𝑡2 (8) 

 𝑓3 =
1

𝑛
∑ 1/𝑑𝑡 (9) 

 𝑓1
𝑤𝑟𝑖𝑠𝑡 =

1

𝑛
∑(𝑑∅𝑝𝑟𝑜 + 𝑑∅𝑠𝑢𝑝)/(𝑑𝑡𝑝𝑟𝑜 + 𝑑𝑡𝑠𝑢𝑝) (10) 

 𝑓2
𝑤𝑟𝑖𝑠𝑡 =

1

𝑛
∑(𝑑∅𝑝𝑟𝑜 + 𝑑∅𝑠𝑢𝑝)/(𝑑𝑡𝑝𝑟𝑜 + 𝑑𝑡𝑠𝑢𝑝)2 (11) 

 𝑓3
𝑤𝑟𝑖𝑠𝑡 =

1

𝑛
∑ 1/(𝑑𝑡𝑝𝑟𝑜 + 𝑑𝑡𝑠𝑢𝑝) (12) 

∅ = wrist angle, ∅𝑚𝑖𝑛 = angle at local minima, ∅𝑚𝑎𝑥 = angle at local maxima 

𝑡 = time, 𝑡𝑚𝑖𝑛= time at local minima, 𝑡𝑚𝑎𝑥= time at local maxima 

𝑛 = number of valid consecutive extrema points 

It is important to note that the features shown in Equation 10, 11, and 12, treat the 
pronation and supination movements altogether as a single sweep, disregarding the 
pause in between. The angles of pronation and supination are added together, hence 
the information regarding the turn of the wrist from one direction to the other is not 
captured in these features because the entire pronation and supination sweep is taken 
as a single movement.    

For each record, there were corresponding independent bilateral UPDRS III scores 
where right and left side records are considered to be independent records. To keep 
data set homogeneous, the patients having left hand preference and left hand 
symptom dominancy (4 patients with a total of 47 records) were removed. With final 
dataset, Pearson’s correlation between UPDRS scores and metrics were used to find 
the highest correlations. Since UPDRS III is composed of 5 subgroups/scores which 
are tremor (T), rigidity (R), bradykinesia (B), gait and postural instability (GP), and 
bulbar anomalies (BA), the correlation analysis was not only applied for UPDRS III 
total score but also for all the possible combinations  such as T+R, T+B+BA, 
summing up to 18 combined UPDRS values (𝑛𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = 18). By adopting this 
approach, it was aimed to demonstrate the overall pattern of the subgroup 
contributions and relations. 
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3.2.1.4.Statistical Analysis 

All the statistical analyses were performed in MATLAB (MathWorks R2016a) 
Statistics and Machine Learning Toolbox. The signal processing phase were also 
developed in MATLAB (MathWorks R2016a) by using the Fourier Analysis and 
Filtering functions. 

Statistical significance analysis on linear models created in this work required a 
correction for multiple comparisons because of the difference in the number of 
correlated features used in each model (i.e. each prediction was correlated with 
various number of features originating from the same set of measurements). 
Therefore, a Bonferonni correction (Curtin & Schulz, 1998) was applied for 
estimating the significance by dividing 0.05 by the number of predictors (𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). 
As a result, the features were classified as significant only when the associated p-
value is found to be less than 0.05/𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. 

Multi linear regression models with the feature set was constructed to see if B can be 
predicted from pronation and supination. From 1 feature only models to 
combinations of multiple features starting from 2 up to 18 features, all the possible 
combinations of the subsets (more than 200000), were used to create and test linear 
models. The top 50 models with the minimum root mean square error (RMSE) were 
used for further regression analysis. Monte Carlo cross validation was applied onto 
the top 50 models, thus, they were trained and tested against 3 different cases where 
90%, 75%, and 50% of data were used in training. Each set was trained 1000 times, 
wherein the training sets were sampled randomly and the remaining data used to test 
the accuracy of the models. Both the mean of model RMSE and mean of RMSE 
between the expected and predicted scores were reported. 

3.3. Results 

3.3.1. Correlation Analysis 

The calculated features provide indications of speed, acceleration, and frequency. 
Namely, 𝑓1, 𝑓2,  and 𝑓3  features will be shown respectively as 
𝑠𝑝𝑒𝑒𝑑, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 in the figures. Initially to capture the overall 
picture, a correlation study between subgroups of the UPDRS and the features 
extracted from the signals was conducted. In order to keep the analysis homogenous, 
4 patients whose hand preference was left hand or who had left hand dominant 
symptoms were excluded. A more generalized work with all patients is intended for 
future work. In Figure 18, Figure 19, and Figure 20, the correlations are shown 
through a color map. According to the number of data points in the study, the 
correlation values that are above 0.2 and below -0.2 qualify to be significant at p < 
0.05 level. These correlation values correspond to the shades that range from orange 
to red (for positive correlations) and from light blue to dark blue (for negative 
correlations). 
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The 𝑓1 resembling speed in bradykinesia (B) showed a strong correlation (𝑟1(𝐵)
𝑠𝑢𝑝 =

−0.60, 𝑟1(𝐵)
𝑝𝑟𝑜 = −0.60, 𝑟1(𝐵)

𝑤𝑟𝑖𝑠𝑡 = −0.62) with large effect size in both pronation and 
supination components of the motion. Furthermore, the 𝑓1in rigidity (R) followed the 
bradykinesia results with similar effect size (𝑟1(𝑅)

𝑠𝑢𝑝 = −0.50, 𝑟1(𝑅)
𝑝𝑟𝑜 = −0.52, 𝑟1(𝑅)

𝑤𝑟𝑖𝑠𝑡 =

−0.53). Besides bradykinesia and rigidity, gait and postural instability (GP) showed 
strong correlation in 𝑓2 (acceleration) for supination component (𝑟2(𝐺𝑃)

𝑠𝑢𝑝 = −0.51). 
Although, other features were not as strongly correlated as the 𝑓2results as seen in 
Figure 1, they had correlations with medium effect sizes. When the combinations 
were inspected, R+B provided the strongest correlations (𝑟1(𝑅+𝐵)

𝑠𝑢𝑝 = −0.62, 𝑟1(𝑅+𝐵)
𝑝𝑟𝑜 =

−0.63, 𝑟1(𝑅+𝐵)
𝑤𝑟𝑖𝑠𝑡 = −0.65). R+B was not only the strongest correlated combination to 

the movements, it also improved the single subgroup correlations.  

Among all combinations of the UPDRS scores, those with GP stand out as a third 
component almost as strong as R and B in correlating with our motion features. By 
definition, R and B are expected to correlate with speed, acceleration, and frequency 
of the motion, however, correlation of these features with GP warrants a closer 
inspection. While R+GP in 𝑓2 (𝑟2(𝑅+𝐺𝑃)

𝑠𝑢𝑝 = −0.55) and R+B+GP in 𝑓1(𝑟1(𝑅+𝐵+𝐺𝑃)
𝑠𝑢𝑝 =

−0.61) had values close to R+B for supination, pronation had similar R+B+GP 
( 𝑟1(𝑅+𝐵+𝐺𝑃)

𝑝𝑟𝑜 = −0.60)  and R+B+GP+BA ( 𝑟1(𝑅+𝐵+𝐺𝑃+𝐵𝐴)
𝑝𝑟𝑜 = −0.58)  correlation 

values. Furthermore, the combined 𝑓1(speed) had slightly better values for B+GP 
( 𝑟1(𝐵+𝐺𝑃)

𝑤𝑟𝑖𝑠𝑡 = −0.58 ), R+B+GP ( 𝑟1(𝑅+𝐵+𝐺𝑃)
𝑤𝑟𝑖𝑠𝑡 = −0.62) , and R+B+GP+BA 

(𝑟1(𝑅+𝐵+𝐺𝑃+𝐵𝐴)
𝑤𝑟𝑖𝑠𝑡 = −0.60). 

For left hand correlations with ipsilateral UPDRS scores, except a couple of 
combinations, almost all the combinations had strong correlations (Figure 19) similar 
to right hand. In addition, the revelation of GP correlation was also strong. Even the 
single group GP correlations were quite high showing medium effect size in every 
case. The correlation study served its purpose by giving clues which subgroups are 
contributing to each other. In fact, GP can be found in many of the moderate and 
strong correlations. 

. 
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Figure 18: Correlations between features and UPDRS from right hand where * marks the highest 
correlation. The dataset is composed of only right hand preferred and right hand symptom 

dominant records. T=Tremor, R=Rigidity, B=Bradykinesia, GP=Gait and Postural Instability, 
BA=Bulbar Anomalies. As expected, B and R has powerful correlation with the motion. 
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Figure 19: Correlations between features and UPDRS from left hand where * marks the highest 
correlation. The dataset is composed of only right hand preferred and right hand symptom 

dominant records. Similar to the right hand results, left hand ipsi-lateral analysis show significant 
correlation with B, R, and their combined UPDRS scores.  

When the same data were analyzed for contra-lateral scores (Figure 20) it showed 
very low effect sizes except in GP related combinations such as R+GP and B+GP for 
𝑓2(acceleration) in supination. Only few correlations had markedly moderate effect 
sizes and they were not as strong as their ipsi-lateral counterparts ( 𝑟2(𝐺𝑃)

𝑠𝑢𝑝
=

−0.51, 𝑟2(𝑅+𝐺𝑃)
𝑠𝑢𝑝 = −0.52, 𝑟2(𝐵+𝐺𝑃)

𝑠𝑢𝑝 = −0.54). 
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Figure 20: Correlations between features from right hand and UPDRS from left hand where * marks 
the highest correlation. The dataset is composed of only right hand preferred and right hand 

symptom dominant records. The contralateral correlations are weak except for the acceleration in 
supination phase. The most interesting outcome is the strong correlation with GP scores which are 
unilateral.  

3.3.2. Linear Regression Model 

Among all the multiple linear regression model combinations created to predict B 
score, the top 50 having lowest RMSE were isolated. Figure 21 shows the 
significance of the factors used in these 50 models and shows that all 50 models 
show similar patterns with each other. For example, the left hand speed for 
pronation, and combined were included in almost all the top models. Likewise, right 
hand acceleration, and frequency of combined motion have also significant 
contribution to the models. Among these models, the confidence values for the speed 
components are stronger than the other features. Nevertheless, the results showed 
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that frequency components follow the speed and are the significant parts of the 
models.  

While the regression models have contributions from the features with large effect 
sizes it is important to control the model accuracy. Therefore, the prediction accuracy 
of the selected models were tested by Monte Carlo cross validation with three 
different training-test percentages. The mean RMSE values of the trained models 
against the expected results were 𝑚𝑒𝑎𝑛(𝑅𝑀𝑆𝐸90) = 1.86 ± 0.03,
𝑚𝑒𝑎𝑛(𝑅𝑀𝑆𝐸75) = 1.96 ± 0.04, 𝑚𝑒𝑎𝑛(𝑅𝑀𝑆𝐸50 ) = 2.19 ± 0.07, wherein the 50% 
ratio provided enough accuracy to predict bradykinesia.  

3.3.3. Discussion 

The results demonstrated that B is correlated with the forearm pronation and 
supination speed on both forearms. Amongst 3 of the P/S movement parameters only 
the speed component demonstrated a significant correlation with one or more of the 
5 subgroups of the UPDRS motor scaling system. 

The UPDRS Bradykinesia sub group is composed of 9 measurements where 4 
questions repeated bilaterally and 1 question is unilateral. With 9 measurements, the 
total maximum score can be 45 out of the 5 point scoring system. When the linear 
models are converted to error percentages, they become 4.14%, 4.35%, and 4.86% 
respectively. It can be conceptualized that if a physician makes a 1 point error for 
each measurement, the physician based error can reach up to 20%. In other words, 
the human error may be much higher in comparison to the errors of the linear 
regression models. It’s worth to note that, there was one case where there was a 12-
point difference between the evaluations of two physicians in our data collection. For 
all the recording sessions, there was a deviation between two physicians 
(𝑚𝑒𝑎𝑛(𝑑𝑈𝐵) = 1.95 ± 2.75). This deviation converted into percentage for total B 
score is approximately (𝑚𝑒𝑎𝑛(𝑑𝑈𝐵

%) = 4.33% ± 6.12%). These values show that 
the theoretical human error assumption is on par with that deviation. In other words, 
it can be claimed that the linear models have enough accuracy to predict 
bradykinesia. 
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Figure 21: Significance of the features in top 50 regression models having minimum RMSE. Each row 
shows a single model. Rows are ordered with respect to increasing RMSE (range: 1.73-1.74). Each 
column identifies a feature in the model. The last character is L=Left and R=Right shows from which 
hand the feature was extracted. Colors indicate whether the feature is used in the model (white if the 
feature is absent), whether the feature is significant (red) or not (gray). As expected, the speed 
component exists in almost all the top models.  
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Figure 22: List of the features in top 1% (2621) of the regression models with lowest RMSE, ordered 
with respect to increasing RMSE (range: 1.73–1.81) (rows: different regression models, columns: 
model features; L = left hand, R = right hand from which features were extracted; white indicates 
absent feature, gray indicates contributing feature, black marks the significant features; 𝑓1, 𝑓2, and  𝑓3 
are speed, acceleration and frequency). It is clearly visible that the speed component is the most 
common component, thus the most significant in predicting the UPDRS score. 
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CHAPTER 4 

 

4 FEATURE EXTRACTION AND STATISTICAL ANALYSIS OF 

FACIAL EXPRESSIONS COLLECTED BY EMG 

4.1. Development of Hardware Interface to Collect EMG in Sync with Facial 

Camera Recordings 

 

Figure 23: The assembled trigger device used in recording sessions 

Synchronization is a major issue when dealing with more than one recording device. 
Since each device has own particular sampling rate and interface, it is important to 
find a reference point in time to synchronize them. In this thesis, the trigger device 
shown in Figure 23 was designed and developed to create a signal for EMG device 
and the computer used for video recording. While EMG device has its own trigger 
input, the software used for video recording captured the trigger sent through USB 
port. By the push of a button, the device sends signals to both devices and at the 
same time, it turns the LED light on to give visual cue to synchronize the patient as 
well. Figure 24 shows the circuit diagram of the device that is based on STM32F103 
microcontroller.  
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Figure 24: Circuit diagram for Trigger Device 

The source code, that can be seen Table 3, was developed in C and kept simple to 
reduce the possible latency of the data collection when the trigger signal is captured. 
The developed code is assembled by using arm compiler and STM32 controller is 
programmed via JTAG interface. Whenever the trigger input is captured on the rising 
edge of the GPIO pin the code simultaneously writes a message to the USB interface 
that can be captured by the software on PC side and set another GPIO pin to light the 
LED lamp. To prevent glitches, the input is debounced for 500 ms so that any false 
triggers are ignored after the first capture.  

Table 3: Source code if the trigger device 

#include <stm32f10x.h> 
#include <stm32f10x_gpio.h> 
#include <stm32f10x_tim.h> 
#include "USB.h" 
 
int main(int argc, char* argv[]) 
{ 
 USB::init(); 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); 
 GPIO_InitTypeDef gpio; 
 gpio.GPIO_Mode = GPIO_Mode_Out_PP; 
 gpio.GPIO_Speed = GPIO_Speed_50MHz; 
 gpio.GPIO_Pin = GPIO_Pin_3; 
 GPIO_Init(GPIOA, &gpio); 
 gpio.GPIO_Mode = GPIO_Mode_IN_FLOATING; 
 gpio.GPIO_Speed = GPIO_Speed_50MHz; 
 gpio.GPIO_Pin = GPIO_Pin_5; 
 GPIO_Init(GPIOA, &gpio); 
 GPIO_ResetBits(GPIOA, GPIO_Pin_3); 
 
 uint8_t triggerData[] = { 'm', 'k' }; 
 bool triggered = false; 
 
 while(1) 



35 
 

 { 
  // trigger cleared 
  if(triggered && !GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5)) 
  { 
   GPIO_ResetBits(GPIOA, GPIO_Pin_3); 
   triggered = false; 
  } 
 
  // trigger at rising edge 
  if(!triggered && GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5)) 
  { 
   GPIO_SetBits(GPIOA, GPIO_Pin_3); 
 
   // send trigger to USB 
   USB::write(triggerData, 2); 
 
   // wait 500u 
   uint16_t timer = 36000; // 72 
   while(timer--); 
 
   triggered = true; 
  } 
 } 
} 

 

4.1.1. Detecting Onset From the Trigger Signal 

4.1.1.1.EMG Data Preprocessing 

Most of the studies start (Cheron, Cebolla, Bengoetxea, Leurs, & Danc, 2007; 
Hannaford, Cheron, & Stark, 1985; Robichaud, et al., 2009) by applying high pass 
filter to the raw EMG signal. However, the recorded signal is already conditioned by 
some of the data acquisition devices. In fact, as seen in Figure 25, the frequency 
spectrum does not show any low frequency signals with the ADInstruments device. 
Moreover, the signal-to-noise ratio is large enough for analysis. In summary, it is not 
necessary to apply any high pass filtering to the raw signal. 
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Figure 25: Frequency spectrum of the raw signal recorded from PD subject. The spectrum shows that 
the signal is already conditioned and filtered the low frequencies. The big spike around 1000 Hz is the 
small oscillation caused by the data acquisition device. It will be removed during signal smoothing. 

The raw signal might contain DC offset which needs to be removed. The red line in 
Figure 26a marks the DC offset which is the mean value calculated from the first one 
second of the signal. Since there is no meaningful distinction between negative and 
positive values, the signal is full-way rectified after its DC offset is removed. Figure 
26b shows the signal shape after rectification and the red line is the main signal 
shape. The EMG signal can have rapid changing local maximas and minimas which 
might lead to false results during analysis. Therefore, the envelope of the signal is 
extracted by applying a low-pass Butterworth filter with a cutoff frequency around 
10-20 Hz. (Figure 26c) Even though the DC offset is removed, extracting the 
envelop introduces a slight offset during the fixation period. However, this info 
doesn’t contribute or change of the features used in this study so it is left as is. 
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Figure 26: EMG data processing steps. First step (a) is to remove DC offset and signal rectification. 
(b) shows the signal after the first step. The bottom figure (c) show the signal filter by the low pass 
Butterworth filter. Red line in the first two figures is the shape in (c). 

4.1.1.2.Applying CUSUM 

The primary measure decided is the latency of the first burst peak. Therefore, it is 
required to find the onset time of first agonist burst. CUSUM is the abbreviation of 
cumulative sum and mostly used in the control engineering for monitoring changes 
in the signal. (Tam, 2009) As seen in Equation 13 and Equation 14, 𝐶𝑖 represents the 
cumulative sum of the deviation from the calculated mean (𝜇) of data (𝑥) in positive 
and negative directions respectively. 𝑘𝜎 in these equations is the minimum change 
that can be detected. Finally, Equation 15 shows how the first two values are used in 
change detection. If there is ℎ𝜎 change in the signal, the change is detected. 

 𝐶𝑖
+ = max [0, 𝑥𝑖 − (𝜇 + 𝑘𝜎) + 𝐶𝑖−1

+ ] (13) 

 𝐶𝑖
− = min [0, 𝑥𝑖 − (𝜇 − 𝑘𝜎) + 𝐶𝑖−1

− ]  (14) 
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 Change Detected = {
𝐶𝑖

+ > ℎ𝜎

𝐶𝑖
− < −ℎ𝜎

𝑒𝑙𝑠𝑒

     

𝑡𝑟𝑢𝑒
𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒
 (15) 

Nevertheless, to be able to apply CUSUM to the preprocessed EMG signal, 𝑘 and ℎ 
parameters should be selected. For the signal gathered from Frontalis muscle, 5 and 
10 are selected because of the high SNR ratio. However, 3 and 5 are used on the data 
acquired from Zygomatic Major muscle because of its lower SNR ratio. Figure 27 
and Figure 28 shows the auto detected onsets in 3 different actions. 

 

Figure 27: Onset detected by CUSUM for ON period. Purple, green, and red lines are trigger, onset, 
and maximum locations of the signal collected during pilot study 
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Figure 28: Onset detected by CUSUM for OFF period. Purple, green, and red lines are trigger, onset, 
and maximum locations of the signal collected during pilot study 

Table 4: Whole process starting from preprocessing. 

I. Preprocess 

a. DC Offset Removal: Calculate mean from first second and 
subtract it from data 

b. Full-wave rectification: Take absolute value of the data 

c. Find Signal Envelope: Apply low pass filter like Butterworth 

II. Analysis 

a. Find Onset: Apply upper CUSUM 

b. Find Max Value in First Agonist Burst: Search for max value in 
on second after onset 
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c. Calculate Latency 

d. Take Average of 2 sessions 

4.2. Experimental Procedure to Collect Repetitive Facial Expressions 

To collect repetitive facial expressions, the procedure whose detailed steps are given 
in APPENDIX C was prepared. The procedure is applied to the pilot study at Koç 
University Hospital. The pilot subject had mild PD symptoms and came to hospital 
in 12-hour OFF state. The facial cards which can be seen in Figure 29 were shown to 
the subject during the training session. It was expected that the cards will improve 
the recognition of the verbal directives. 

 

Figure 29: Facial cards for training session. Images were taken from Du, S. et. al.’s work (Du, Tao, & 
Martinez, 2014) 

The subject was instructed to take medication after the recording session for OFF 
state completed. Since the medication takes at least 30 minutes to affect, after 45 
minutes waiting and the recording session was repeated. Even though the patient has 
low UPDRS III score for OFF period, it was observed that the symptoms lessen after 
taking medication. The EMG recordings of the subject can be seen in Figure 27 and 
Figure 28. 

The repetitive nature of the task and the procedure can be susceptible to the training 
effect. The subjects executing the same tasks repeatedly can start learning it and 
perform better even though the other factors are constant. Thus, the data become 
influenced by this phenomenon. The visual inspection of the data taken from first 
subject showed that the latency decreases almost in every session. This could be the 
result of training effect. 

4.2.1. Results of Pilot Subject 

Before and after medication, the subject showed a small change in his UPDRS III 
score. Nevertheless, as seen Table 5 and Table 6, these changes are detectable in the 
calculated latency. 
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Table 5: Latency calculated from initial subject. Latency is the average of the time difference between 
onset and maximum in seconds of the repetitive tasks.  

 OFF ON  
Facial Task right left right left  

smile 0.5513 0.9533 0.5455 0.6778 seconds 
eyebrow lower 0.5857 0.7410 0.4858 0.5917 seconds 
eyebrow raiser 0.5247 0.4352 0.3267 0.4945 seconds 

 

Table 6: UPDRS III scores of the initial subject 

 OFF ON 

 right left right left 

UPDRS III 13 12 5 5 
 

4.2.2. Training Effect and Improving CUSUM 

The control group composed of 9 healthy subjects whose age is between 20 and 30 
was assembled to investigate training effect in repetitive tasks defined in recording 
protocol. All the subjects were right-hand dominant and 6 of the subjects were 
female. The recording protocol was applied onto the control group as in initial PD 
subject. 

 

Figure 30: Two consecutive recording of eyebrow raiser in control subject. Purple, green, and red 
lines are trigger, onset, and maximum locations 
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Figure 31: Two consecutive recording of smiling in control subject. Purple, green, and red lines are 
trigger, onset, and maximum locations 

In control group case, the latencies calculated from two consequitive sessions 
(repetitions) were analyzed by looking the difference of those two. Unfortunately, 
one smile and one eyebrow raiser was discarded because of noisy EMG. As seen in 
Figure 30 and Figure 31, the two waveforms belonging to consecutive repetitions 
taken from one of the subjects are almost identical. However, when the waveforms 
and automatically extracted onset positions were inspected it is discovered that the 
CUSUM parameters need further tweaking. In other words, even though the 
waveforms are almost identical, the auto detected onset locations are not same. 

At the end, instead of applying CUSUM directly to find the onset, a better algorithm 
was developed. Table 7 summarizes the algorithm which salvages the duration of the 
deviation in the signal to decide if it is an actual onset or not. In the first approach, 
the onset position was found only by applying upper CUSUM. The first point 
showing deviation was considered as the onset time. However, this approach showed 
problems because it did not count if the deviation from fixation is meaningful 
enough or not. As a result, the positive slopes of small hill like changes were 
considered as onset. However, the actual action starts later with a longer time span. 
Therefore, to solve this case, a better heuristic was accompanied. After finding a 
candidate deviation point by upper CUSUM, the algorithm checks if the deviation 
has time span longer than 1 second. If the time span is shorter, it continues to search 
for another candidate starting from the point where previous deviation ends.  
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Table 7: Improved onset detection with CUSUM  

 

t <- 0 

loop  

if UPPER_CUSUM(t) 

if deviation_span > 1.0 s 

onset <- candidate_onset 

return 

else 

t <- deviation_time 

end 

end 

end 

onset <- canditate_onset 

return 

 

 

The extracted onset locations shown in Figure 32 are more accurate and closer to 
each other in the repetitions of the same task. Table 8 also shows that the difference 
between repertitive tasks get numerically smaller after the improved CUSUM.  

 

Figure 32: Results of the improved CUSUM. The new onsets locations are correctly detected  
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Table 8: The average time difference between latencies in control group for original and improved 
CUSUM 

Facial Task 

∆𝒕 seconds 

(original) 

∆𝒕 seconds 

(improved) 

smile 0.1161 0.0804 
eyebrow lower 0.1443 0.0287 
eyebrow raiser 0.0994 0.0662 

 

4.2.3. Discussions 

As seen in the results, EMG modality shows clean data signals to analyze facial 
expressions after the preprocessing phase. The numeric results showed that the 
latency calculated from EMG can be used as a quantitative metric. However, the data 
set collected also showed that how important the probe positioning is. If the probes 
are misplaced the SNR gets significantly lower. Hence, the experimenter/physician 
needs to monitor the signal in real-time to make sure that the data collected has high 
SNR. 

CUSUM can detect the onset location easily, however, it is not enough to build a 
stable approach to automatize the processing methodology. The initial findings and 
the ones calculated after improved CUSUM show significant differences. After 
improved CUSUM was applied, the recalculated average time difference between 
latencies get lower and the visual inspection also confirmed that the improved 
approach is working. As seen in Table 8, the initially what was precepted as the 
training effect isn’t the actual problem. In fact, the onset locations were incorrectly 
detected by the original CUSUM. 

4.3. Experiment with PD Patients 

This part of the thesis is composed of the recordings done by the custom setup 
prepared in the clinical environment of Koç University Hospital to synchronize EMG 
and video recordings. The same protocol applied to the pilot study was used with the 
PD patients. 

4.3.1. Method 

6 PD patients (Table 9) having mild to moderate symptoms (mean 𝑈𝑃𝐷𝑅𝑆𝐼𝐼𝐼𝑂𝐹𝐹 ± 
SD = 29.6 ± 6.8) from various age ranges (mean age ± SD = 54.8 ± 7.6 years) were 
participated in the sessions. All the patients received psychological evaluation by 
psychologist and didn’t have depression or dementia. This is important so that it was 
accepted that the patients can understand the visual and verbal commands given 
during the experiment.  
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Table 9: Demographics of the patients participated. Bradykinesia subgroup scores are the sum of the 
tasks 23, 24, 25, 26, 31 in UPDRSIII 

  OFF ON 

  UPDRSIII Bradykinesia UPDRSIII Bradykinesia 

Age Handedness Left Right Left Right Left Right Left Right 

58 R 12 12 6 6 5 5 2 2 

51 R 21 13 12 7 11 5 5 1 

66 L 7 14 1 6 4 9 1 3 

46 R 15 22 7 11 4 10 2 6 

53 R 22 10 11 3 11 5 6 2 

 

A recording protocol was prepared as seen in APPENDIX C so that the neurologist 
can complete all the recording sessions by herself while conducting neurological 
evaluation as well. Since the patient arrived in OFF state (no medication more than 
12 hours), it is crucial that a physician keep observing them. In addition to that, it 
was necessary to take UPDRS evaluation before each recording session. 

When the patients arrived to Koç University Hospital they were asked to sign a 
consent form before starting to the experiment. Each recording session consisted of 4 
repetitions where the first one is for testing the recording setup and train the subject. 
In each repetition, the patients were asked to do 3 different facial expressions which 
are smile (lip puller), eyebrow raiser, and eyebrow lowerer. Even though the facial 
expressions were always given in same order, before the expressions, the patients 
kept the neutral face for small fixation period around 5 seconds until the visual cue 
via LED light attached to trigger device was shown. The group of 3 expressions was 
repeated 3 times at minimum. This session was done again for both OFF and ON 
state. In addition, before each session, the UPDRSIII scoring was completed by the 
physician. After OFF session, the patients were instructed to take their medication as 
usual and wait for at least 45 minutes before starting ON session. 

The EMG preprocessing was done as in the previous section. After preprocessing, 
improved CUSUM was applied to find the onset position of the EMG signals. The 
results can be seen in the Figure 35-Figure 38 

4.3.2. Results 

As seen in Figure 33, the data recorded for smile expression has all the features of 
fake smile. In other words, the upper-face related data do not have any changes in it. 
For example, the frontalis muscle does not express any action compared to 
zygomatic-major signal. 

Similarly, the eyebrow-lowerer presents significant activity only in the upper part of 
the face. Figure 34 summarizes all EMG probes and entropy calculations. 
Nevertheless, the signal strength between zygomatic major (lower) and frontalis 
(upper) in EMG is visible when Figure 33 and Figure 34 are compared. It is expected 
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to see different SNR values because of the probe locations. To move the probe out of 
the video recording’s ROI, they were pushed little bit side. Furthermore, there are 
multiple muscles located in the close proximity of the same location. 

The signals recorded for both modalities show similar properties waveforms when 
they are grouped for channel/ROI and action. This shows that the measurement 
method is repeatable for the given movement task and recording device. Table 10 
shows the extracted numbers from the signals. The onset which is automatically 
calculated by CUSUM is the time elapsed from the trigger point where the lag is the 
time elapsed until the signal reaches maximum point. 

When the two states are statistically compared to each other, it is difficult to say that 
the features extracted are enough to detect subtle changes between ON/OFF states. 
Table 11 lists the p-values of the paired t-test for each feature between two states. 
Even the combination of the features by taking their difference to calculate the 
latency (𝑑𝑡 = 𝑡𝑙𝑎𝑔 − 𝑡𝑜𝑛𝑠𝑒𝑡) didn’t improve the confidence levels. 

4.3.3. Discussions 

The signal patterns and acquired data from EMG is enough to analyze the motion 
tasks given. When the probe positioning is correctly done the SNR values are high 
enough to preprocess without losing valuable information. As expected, the signals 
from the upper and lower face expressed the characteristics of the facial expressions.  

However, the sample size in this study isn’t enough to reach a statistical conclusion. 
When visually observed, the automatically extracted features shows a difference. 
Unfortunately, the t-test results do not comply the observation. 

Nonetheless, the method has a potential because it is easy to repeat, and an EMG 
device is available in almost all the clinical settings. Moreover, the data processing 
can be done automatically by the software. This means that the approach can reveal 
information missed by the physicians immediately after the data acquisition.  
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(a) 

 

(b) 

 

(c) 

 

Figure 33: The data recorded for smiling expression. As expected upper regions do not show change 
while lower regions (lips) show big changes in the signal. (a) top image is the entropy change of the 
image recordings for the multiple ROIs, (b) zygomatic-major EMG signal, (c) frontalis EMG signal. 
Red vertical line marks the trigger point 
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(a) 

 

(b) 

 

(c) 

 

Figure 34: The data recorded for eyebrow-lowerer expression. As expected lower regions do not show 
change while upper regions (eyebrows) have visible signals. (a) top image is the entropy change of the 
image recordings for the multiple ROIs, (b) zygomatic-major EMG signal, (c) frontalis EMG signal. 
Red vertical line marks the trigger point 
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CHAPTER 5 

 

5 FEATURE EXTRACTION AND STATISTICAL ANALYSIS OF 

FACIAL EXPRESSIONS COLLECTED BY VIDEO CAMERA 

5.1. Software Development for Facial Image Collection and Analysis  

5.1.1. Data Collection 

 

Figure 39: The UI of the software developed for video recording. Like the LED light, an icon to debug 
if the trigger is received or not is added (marked in purple) 

During the multi modal data collection, the video needs to be recorded in sync with 
the EMG signal without losing the quality of the images. Thus, the available simple 
video recording applications aren’t enough to capture both video data and the trigger 
signals. The software in Figure 39 was developed to solve this problem. The 
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application was written in C/C++ and based on the open-source technologies like 
OpenCV, Eigen, and Qt. Software records the video data which is in RGB format by 
converting it into Grayscale (Equation 16 ) (Recommendation ITU-R BT.601-7, 
2011) in order to decrease the file size.  

 𝑌 = 0.299 ∙ 𝑅 + 0.587 ∙ 𝐺 + 0.114 ∙ 𝐵 (16) 

The software is composed of two executables. The first one is to capture the series of 
images and trigger signal sent from the USB camera and trigger device as fast as 
possible without losing the quality. The second one is the one processing the 
recordings automatically extracting ROIs and their entropies for further calculations. 
Figure 40 shows automatically extracted the lower face ROIs from the frames of the 
video.  

 

Figure 40: Lower face ROI aligned and extracted for the video stream. Each image belongs to one 
frame. The first box is the frame 0 and the frames go from 0 to n in left to right direction. The first 
frame in the newline is the next from the end of the previous line. 

5.1.2. Data Analysis 

 

Figure 41: The preprocessing steps are face and landmark detection, eyeline detection, registeration, 
and ROI extraction 

The facial expression frames need processing procedure as in EMG. The processing 
step is done by the second part of custom software developed. The second part 
composes of various steps as shown in Figure 41. 

Bowers et al.’s work states various emotional states such as happy, disgust, and 
angry can be discriminated from the video recordings of the facial expression. 
(Bowers, Miller, Bosch, & Gökçay, 2006) In the same study, they claim that 
Equation 17 which is the entropy of the intensity change of the pixels is a good 
measure to capture the expression. It is expected to see a change only in the lower 
region of the face when involuntary smile is considered. (Ekman & Friesen, 1982) 
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Therefore, the lower region of interest is usually extracted from the images before 
applying the analysis. 

 𝑬 =  − ∑  (𝑝𝑡 − 𝑝𝑡−1) 𝑙𝑜𝑔2(𝑝𝑡 − 𝑝𝑡−1)𝑝 ∈ 𝑅𝑂𝐼  (17) 

As seen in Figure 42, the entropy is indeed a good measure; namely, the transition 
from neutral to the expression can easily be captured. This proves that the facial 
video recording is the suitable as a second modality next to EMG. Why the ROI 
selection is important can also be seen in the same figure. Only significant change 
happens inside the ROI which agrees with the lower face statement. The DC offset 
observed in both signal is caused by the natural noise coming from the sensory 
device. In other words, the intensity of a pixel does not stay same even for a still 
image. Therefore, the intensity of the expression should be calculated by subtracting 
the average of the signal observed in the neutral state. 

 

Figure 42: Entropy change comparison inside and outside the ROI for smiling 

When dealing with a one patient and a short video recording, it is easy to do the ROI 
selection and data processing. It is even possible to do it manually. For this study, an 
automatic method was necessary, therefore, during a joint research, the data 
processing method and the software for facial video recordings was created and 
refined. 

5.1.3. Still Pictures Experiment 

5.1.3.1.Method 

As a part of the joint study with Assoc. Prof. Atilla YILMAZ from Mustafa Kemal 
University, Hatay, Turkey, 25 PD patients under STN DBS were recorded while they 
are on stimulation and medication. They were asked to pose neutral and three 
different emotional expressions which are happy, sad and angry. When they are 
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holding the expression a still picture was taken by Canon 350 D camera. This 
process was repeated for 5 different DBS frequencies (while 5th is the DBS OFF) to 
find which one is more effective to ease the symptoms. When the frequency changed 
before commencing to the photo shoots, 15 minutes of gap was forced to let the 
patient reach steady-state.  

To make the data processing autonomous, a face recognition algorithm was applied 
to each image. The algorithm provided the important landmarks such as bottom of 
nose, outer labia, inner eye, and outer eye locations. (Figure 43)  

 

Figure 43: All the landmarks (in green) automatically found 

Because of the tremor, it was necessary to align the images of different expressions. 
Therefore, the neutral image was used as the base and all the other images are 
aligned to it. The alignment process given in Table 12 was basically applies an affine 
transform to the images. After the transformation (Figure 44), all the images have 
equal inner eye distance and orientation. Thus, the ROIs selected from neutral image 
should map to the same regions in all the images.    

Table 12: Image alignment procedure 

lm_base <- landmarks of neutral image 

l_base <- lm_base[leftInnerEye] 

r_base <- lm_base[rightInnerEye] 

 

for each img in images 

lm_base <- landmarks of neutral image 

 

l <- lm[leftInnerEye] 

r <- lm[rightInnerEye] 

dx <- l – l_base 

sx <- (r_base – l_base) / (r – l) 

 

img <- translate(img, dx) 

img <- rotate(img, sx) 

end 
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Figure 44: The image after alignment is applied where left is the original and right is the transformed 
image 

When the images are aligned and registered to each other the selection of ROI 
becomes a trivial task. The regions selected in neutral image can be easily used in the 
images of the expressions. Since the expressions used in the study consists of actions 
involving both upper and lower face, lower face, left upper face, and right upper face 
visible in Figure 45 were defined as the ROIs.  

 

Figure 45: Three ROIs selected for analysis 

To make the ROI selection automatic, the landmarks and certain multipliers were 
used. For example, left and right edges of the lower face region were taken as the 
middle of the outer jaw and labia. The height was calculated as the two times of the 
distance between labia and bottom of the nose. On the other hand, the upper face 
region needed a special attention because of the expected eyebrow movement. In 
details, the top edge was found by adding %6.25 of the facial bounding box height 
(shown black in Figure 46) to the eyebrow landmark which is located at the top.  

After the alignment, and ROI extraction the entropies of the intensity difference in 
expression images with respect to the neutral image were calculated. As seen in 
Figure 46, the aligned images gave proper ROIs that do not suffer from tremor or 
camera movement side effects. 

The main purpose of this study was to select the best DBS frequency which eases the 
symptoms, namely, bradykinesia and rigidity on facial expressions. Accordingly, one 
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way ANOVA was applied to the entropies to find which frequency show 
significantly expression, in other words, movement in it.  

 

Figure 46: Four ROIs which are upper face, left upper face, right upper face, and bottom face are  
selected for the analysis 

5.1.3.2.Results 

As a part of the analysis, it was initially investigated if the left and right sides of the 
face have significant difference among them. However, any significant difference 
couldn’t be found, consequently, the further analysis were conducted as upper and 
lower regions. 

Statistical Analysis: To measure the influence of stimulation frequency and facial 
expressions on facial expressivity (i.e., the entropy value), a 5x3 repeated measures 
ANOVA was carried-out using the Data Analysis Toolkit of Excel with ‘Two-factor 
with replication’ setting. The two independent factors were adjusted to 5 levels of 
stimulation frequency (no stimulation, f1, f2, f3, f4), and 3 levels of facial 
expressions (Happy: 1, Sad: 2, Angry: 3).  

The results indicated that at the 0.05 significance level, for the upper face ROI, the 
main effect of stimulation frequency was significant with p = 0.005 and the main 
effect of facial expression was significant (p = 0.00002). For the lower face, similar 
results are obtained: the main effect of stimulation frequency was significant with p 
= 0.003 and the main effect of facial expression was significant (p = 0.003). The 
interaction between stimulation frequency and facial expressions was not significant. 
An illustration of the effects of DBS frequencies is provided in the figure below. 
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Figure 47: ANOVA results for upper-face ROI where * marks the significant frequency and 
expression 

 

 
Figure 48: ANOVA results for lower-face ROI where * marks the significant frequency and 
expression 

As seen in Figure 47 and Figure 48, 4th frequency (the value of the frequency was 
kept hidden on purpose because of the on-going study) was found as the most 
significant one. However, because of the nature of the approach, it was necessary to 
validate the results. Thus, another significance analysis based on surveys was also 
completed in Hatay. In conclusion, both results were same and this states that 
entropy approach is validated. Furthermore, the autonomous approach was worked as 
intended and can be used in next steps of the study. 

5.1.4. Video Recording Experiment 

5.1.4.1.Method 

The recording protocol is explained in the EMG chapter and the video images are 
recorded simultaneously for both modalities. The video recordings are collected in 
sync with EMG by the custom setup used in previous chapter.  

The autonomous image processing technique was extended for video recordings, 
namely, for series of frames. In practice, the first frame is accepted as the neutral 
image and any images following that are aligned and registered to that the first 
frame. The resulting image stream can be seen in Figure 40 where each extracted 
region is appended next to each other. Afterwards, the entropy of the intensity 
difference was calculated for each frame by using this stream. 

* * 

* * 
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The similar preprocessing used for EMG and the improved CUSUM is applied to 
entropy signals generated from the video frames to find the onset positions. The 
results can be seen on the Figure 35-Figure 38 with the EMG signals together. 

5.1.4.2.Results 

Video analysis of the smile-expression shows similar features like the EMG 
recording. As seen in Figure 33 (a), the clear change in entropy visible for upper 
regions. 

The entropy of eyebrow-lowerer seen in Figure 34 (a) has significant activity in the 
upper part of the face compared to the lower part. Table 13 lists the onset points 
which are automatically calculated by CUSUM. The lag feature is the time elapsed 
until the signal reaches maximum point like in the EMG signals. 

5.1.5. Discussions 

As expected, the video frame modality contains almost same patterns as in the EMG 
modality. It can be claimed that both modalities can be used interchangeably to 
predict bradykinesia and to detect subtle changes in the symptoms. 

However, the frame rate is far inferior to the EMG signal. It is possible to double the 
frame rate to 60 Hz by using commercially available cameras or mobile phones. If 
the data will be collected simultaneously the computer needs to be powerful to not 
miss any frame during the recording session.  
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CHAPTER 6 

 

6 DISCUSSION AND FUTURE WORK 

While UPDRSIII motor scaling is an observational method that is commonly used by 
neurologists to assess motor functions of the PD patients, the observational aspect of 
the UPDRS includes lack of objectivity and it is limited by human perception. Hence 
numerous motion capture systems have been proposed for the objective assessment 
of the motor function of the PD patients. To overcome the objectivity and improve 
the quality, the UPDRS data can be assessed by 2 different neurologists (instead of 
only one neurologist’s UPDRS scoring as a regular clinical approach) and obtained 
the UPDRS data bilaterally (instead of regular unilateral-dominant symptom side- 
UPDRS approach). In the sub-studies covered in this work, this method is adapted 
while developing the statistical methods. Unfortunately, even though UPDRS is one 
of the clinical standards the problem of being a discreet scale still hinders the PD 
studies. Any device or methodology which obtains its data in a continuous manner 
such as EMG or video signals needs to extract heuristic features from the data. 

This problem reveals two main problems, the sample size, and data quality. To be 
able to devise meaningful values for a heuristic feature, the sample size must be big 
and the data variance, in other words, the quality must be good. As seen in the 
experiment described in CHAPTER 5.1.3, the high quality and high resolution still 
images resulted in stable values. However, the still images are not enough to capture 
all the aspects of the motion because of the sampling rate. However, the EMG 
recordings on PD patients in CHAPTER 4.3 is affected by the small sample size. In 
addition, even when the patterns of one patient is examined, it is easy to see that the 
waveforms are changing significantly. Compared to the other modalities and devices, 
the leap motion overcame the sample size issue. The easy to setup device is also 
compact thus the recording sessions can be conducted anywhere rapidly. 

Nevertheless, it is also visible on the same signals that if the task given to the patient 
is conducted properly the methods generate similar waveforms. In other words, the 
researcher conducting the recording session should keep an eye on the outputs and 
don’t rush the sessions. Even one of the recordings becomes invalid because of 
displaced probe or setup issues it means that the data set shrinks further.  

Unfortunately, increasing the sample size isn’t easy for PD studies. During the 
recording sessions, it is observed that when the patients are in OFF state (off 
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medication for the last 12 hours) their symptoms worsen significantly, and they 
cannot even travel to the hospital by public transportation. This can also be seen by 
the scores in demographics (Table 9) where the difference between ON and OFF 
states is large. 

These are the reasons why this study is important. In other words, finding a method 
which is easy to repeat can solve the repeatability and reliability issues. If the data 
acquisition step can be completed at home alone by a patient, the sample size can be 
increased freely and the disease severity can be tracked by the long-term works.  

The video capturing used in this study revealed that camera is an easy modality to 
use. However, the problem is the data resolution. When the recording session started 
for this study, hi-resolution video cameras wasn’t common. However, in past 3 years, 
the video cameras embed in our mobile devices are already surpassed the 
professional cameras used for photography. In CHAPTER 5.1.4, the low-resolution 
camera generated satisfactory and repeatable outputs if the recording environment is 
carefully controlled. As seen in the recent studies (Liua, et al., 2023; Lua, et al., 
2021), the video sequences can be used to predict UPDRS scores. Even though the 
studies are focused on the tremor and GP, they contain various preprocessing steps 
with CNN. Both studies required heavy CUDA enabled computers. In comparison, 
the entropy extraction approach in this study is much simpler and easier to 
implement on a portable device, because the entropy approach was completed on a 
regular laptop. In summary, it can be claimed that the facial recording and the 
entropy feature generated in this thesis is confirmed by the studies of Liua, et. al 
(Liua, et al., 2023) and Lua, et. al. (Lua, et al., 2021). 

Even though EMG isn’t common and available for home use, it is common for the 
clinical environments. In the recent years, the wearable sensors have been evolving 
and have improved considerably. The smart watches are started to collect many 
physiological signals. For example, Isaacsona, et al. used wearable device called 
Kinesia to monitor patients at their home to assess various motor symptoms. 
(Isaacsona, et al., 2019) Their results show that the small wearable devices can 
support the decision making during the long-term treatment. Moreover, portable 
wireless EMG systems such as the one available in Biometrics Ltd. can be used 
outside the clinical settings are being sold. During this study, all the EMG recordings 
showed good quality data if the probes are properly placed. Even the SNR is enough 
if the probes are off location but not loose. Therefore, this second modality is also 
acceptable to build a quantitative measure.  

Nevertheless, the statistical analysis on the EMG recordings was highly affected by 
the sample size and the results seen in previous substudies cannot be clearly 
observed. Although CUSUM approach to find onset location and data preprocessing 
steps worked the dirty data skewed the extracted features. Research focusing solely 
on the data gathering from a larger sample size should be done to improve the 
results. 
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The most important outcomes of this study are the improvement of the CUSUM and 
the development of the hardware and software interfaces to collect multiple 
modalities in an autonomous way. The emerging technologies such as NeuroRPM 
(NeuroRPM, 2023) show that the mobile applications can be used for long-term 
continuous monitoring. The hardware and software developed in this study is based 
on the underlying mobile technologies such as ARM based processor and the multi-
platform software kit OpenCV. In other words, it is possible to adapt the software to 
a mobile device as a future work to increase the sample size. 

In terms of future work, it was aimed to develop a measure which is non-linear and 
repeatable to improve the objectivity of the traditional UPDRS part III scoring 
system to assess bradykinesia. However, the results of this study should also be 
validated with data that will be obtained by other modalities. 

 

  



68 
 

68 

 



69 
 

69 

 

 

 

 

REFERENCES 

 

 

 

Çakmak, Y. Ö., Ölçek, S. C., Özsoy, B., & Gökçay, D. (2018). Quantitative 
Measurement of Bradykinesia in Parkinson's Disease using Commercially 
Available Leap Motion. 11th International Conference on Bio-inspired 

Systems and Signal Processing. 3, pp. 227-232. BIOSIGNALS. 

Çakmak, Y. O., Apaydın, H., Kızıltan, G., Gündüz, A., Özsoy, B., Ölçer, S., . . . 
Ertan, F. (2017). Rapid Alleviation of Parkinson’s Disease Symptoms via 
Electrostimulation of Intrinsic Auricular Muscle Zones. Frontiers in Human 

Neuroscience, 11. 

Association, E. P. (n.d.). Unified Parkinson’s Disease Rating Scale (UPDRS). 

Blandini, F., Nappi, G., Tassorelli, C., & Martignoni, E. (2000). Functional changes 
of the basal ganglia circuitry in Parkinson's disease. Progress in 

Neurobiology, 62(1), 63-88. 

Bologna, M., Fabbrini, G., Marsili, L., Defazio, G., Thompson, P. D., & Berardelli, 
A. (2013). Facial bradykinesia. Journal of Neurology, Neurosurgery & 

Psychiatry, 84, 681-685. 

Bowers, D., Miller, K., Bosch, W., & Gökçay, D. (2006). Faces of emotion in 
Parkinson’s disease: Micro-expressivity and bradykinesia during voluntary 
facial expressions. Journal of the International Neuropsychological Society, 

12, 765-773. 

Calne, D., Snow, B., & Lee, C. (1992). Criteria for diagnosing Parkinson's disease. 
Annals of Neurology, 32(S1), S125-S127. 

Cheron, G., Cebolla, A. M., Bengoetxea, A., Leurs, F., & Danc, B. (2007). 
Recognition of the physiological actions of the triphasic EMG pattern by a 



70 
 

70 

dynamic recurrent neural network. Neuroscience Letters, 414(2007), 192–
196. 

Curtin, F., & Schulz, P. (1998). Multiple Correlations and Bonferroni’s Correction. 
Society of Biological Psychiatry, 44, 775–777. 

Daneault, J., Carignan, B., Sadikot, A., & Duval, C. (2013). Are quantitative and 
clinical measures of bradykinesia related in advanced Parkinson's disease? 
Journal of Neuroscience Methods, 219(2), 220-223. 

de Souza, L., Dionísio, V., & Almeida, G. (2011). Multi-joint movements with 
reversal in Parkinson’s disease: Kinematics and electromyography. Journal 

of Electromyography and Kinesiology, 21(2), 376-383. 

Dietz, V., & Sinkjaer, T. (2012). Spasticity. Handb Clin Neurol., 109, 197-211. 

Du, S., Tao, Y., & Martinez, A. M. (2014). Compound facial expressions of emotion. 
Proceedings of the National Academy of Sciences, 111(15), E1454-62. 

Dunnewold, R., Jacobi, C., & van Hilten, J. (1997). Quantitative assessment of 
bradykinesia in patients with parkinson's disease. Journal of Neuroscience 

Methods, 74(1), 107-112. 

Ekman, P., & Friesen, W. V. (1982). Felt, false, and miserable smiles. Journal of 

Nonverbal Behavior, 6, 238-252. 

Ertekin, C., Tarlacı, S., Aydoğdu, İ., Kiylioglu, N., Yüceyar, N., Turman, B. A., . . . 
Esmeli, F. (2002). Electrophysiological evaluation of pharyngeal phase of 
swallowing in patients with Parkinson's disease. Movement Disorders, 17(5), 
942-949. 

Fahn, S., Marsden, C., Goldstein, M., & Calne, D. (1987). Recent developments in 
Parkinson's disease. Annals of Neurology, 22(5), 153–163. 

Fedirchuk, B., Nielsen, J., Petersen, N., & Hultborn, H. (1998). Pharmacologically 
evoked fictive motor patterns in the acutely spinalized marmoset monkey 
(Callithrix jacchus). Experimental Brain Research, 122(3), 351–361. 

Garza-Rodríguez, A., Sánchez-Fernández, L. P., Sánchez-Pérez, L. A., Ornelas-
Vences, C., & Ehrenberg-Inzunza, M. (2018). Pronation and supination 
analysis based on biomechanical signals from Parkinson’s disease patients. 
Artif. Intell. Med., 84, 7–22. 

Ghassemi, M., Lemieux, S., Jog, M., Edwards, R., & Duval, C. (2006). Bradykinesia 
in patients with Parkinson's disease having levodopa-induced dyskinesias. 
Brain Research Bulletin, 69(5), 512-518. 



71 
 

71 

Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell, C., . . . 
Seidl, L. (2004). Movement Disorder Society Task Force report on the Hoehn 
and Yahr staging scale: Status and recommendations. Movement Disorders, 

19(9), 1020-1028. 

Hannaford, B., Cheron, G., & Stark, L. (1985). Effects of Applied Vibration on 
Triphasic Electromyographic Patterns in Neurologically Ballistic Head 
Movements. Experimental Neurology, 88(2), 447-60. 

Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: onset, progression, and 
mortality. Neurology, 17(5), 427. 

Irlbacher, K., Voss, M., Meyer, B., & Rothwell, J. C. (2006). Influence of ipsilateral 
transcranial magnetic stimulation on the triphasic EMG pattern 
accompanying fast ballistic movements in humans. The Journal of 

Physiology, 574(Pt 3):917. 

Isaacsona, S. H., Boroojerdib, B., Walnc, O., McGrawd, M., Kreitzmane, D. L., 
Klosf, K., . . . D, T. (2019). Effect of using a wearable device on clinical 
decision-making and motor symptoms in patients with Parkinson's disease 
starting transdermal rotigotine patch: A pilot study. Parkinsonism and 

Related Disorders, 132-137. 

Ji-Won, K., Joseph, L., Jin-Young, S., Jae-Ho, L., Do-Young, K., Kun-Woo, P., . . . 
Gwang-Moon, E. (2009). Measurement of Angular Velocity of Forearm 
Pronation-Supination Movement for the Quantification of the Bradykinesia in 
Idiopathic Parkinson’s Disease Patients. J. Biomed. Eng. Res., 30, 142–146. 

Kandori, A., Yokoe, M., Sakoda, S., Abe, K., Miyashita, T., Oe, H., . . . Tsukada, K. 
(2004). Quantitative magnetic detection of finger movements in patients with 
Parkinson’s disease. Neuroscience Research, 49(2), 253-260. 

Liua, W., Linb, X., Chena, X., Wanga, Q., Wanga, X., Yanga, B., . . . Lin, Y. (2023). 
Vision-based estimation of MDS-UPDRS scores for quantifying Parkinson’s 
disease tremor severity. Medical Image Analysis, 85. 

Lua, M., Zhaob, Q., Postonc, K. L., Sullivanb, E. V., Pfefferbaumb, A., Shahidc, M., 
. . . Adelia, E. (2021). Quantifying Parkinson’s disease motor severity under 
uncertainty using MDS-UPDRS videos. Medical Image Analysis, 73. 

Marsili, L., Agostino, R., Bologna, M., Belvisi, D., Palma, A., Fabbrini, G., & 
Berardelli, A. (2014). Bradykinesia of posed smiling and voluntary 
movement of the lower face in Parkinson's disease. Parkinsonism & Related 

Disorders, 20(4), 370-375. 

NeuroRPM. (2023). Retrieved from www.neurorpm.com 



72 
 

72 

Oh, E., Seo, J., & Kang, H. (2016). Assessment of Oropharyngeal Dysphagia in 
Patients With Parkinson Disease: Use of Ultrasonography. Annals of 

Rehabilitation Medicine, 40, 190. 

Postuma, R. B., Gagnon, J. F., Vendette, M., Charland, K., & Montplaisir, J. (2008). 
Research paper REM sleep behaviour disorder in Parkinson’s disease is 
associated with specific motor features. J. Neurol. Neurosurg., Psychiatry 79, 
1117–1121. 

(2011). Recommendation ITU-R BT.601-7. International Telecommunication Union. 

Robichaud, J. A., Pfann, K. D., Leurgans, S., Vaillancourt, D. E., Comella, C. L., & 
Corcos, D. M. (2009). Variability of EMG patterns: A potential 
neurophysiological marker of Parkinson’s disease? Clinical Neurophysiology, 

120(2009), 390–3. 

Salarian, A., Russmann, H., Wider, C., Burkhard, P., Vingerhoets, F., & Aminian, K. 
(2007). Quantification of Tremor and Bradykinesia in Parkinson's Disease 
Using a Novel Ambulatory Monitoring System. IEEE Transactions on 

Biomedical Engineering, 54(2), 313-322. 

Sande de Souza, L., Dionísio, V., & Almeida, G. (2011). Multi-joint movements 
with reversal in Parkinson’s disease: Kinematics and electromyography. 
Journal of Electromyography and Kinesiology, 21(2), 376-383. 

Tam, D. (2009). A Theoretical Analysis of Cumulative Sum Slope (CUSUM-Slope) 
Statistic for Detecting Signal Onset (begin) and Offset (end) Trends from 
Background Noise Level. The Open Statistics and Probability Journal, 1, 43-
51. 

Teräväinen, H., & Calne, D. B. (1980). Action tremor in Parkinson’s disease. J. 

Neurol. Neurosurg. Psychiatry, 43, 257–263. 

Weichert, F., Bachmann, D., Rudak, B., & Fisseler, D. (2013). Analysis of the 
Accuracy and Robustness of the Leap Motion Controller. Sensors, 13(5), 
6380-6393. 

Wichmann, T., & DeLong, M. R. (1996). Functional and pathophysiological models 
of the basal ganglia. Current Opinion in Neurobiology, 6(6), 751-758. 

 

  



73 
 

73 

 

 

 

 

APPENDICES 

 

APPENDIX A 

Source Code of Face Registration Routine 

 

void Face::transform(const cv::Mat& m) 
{ 
 cv::warpAffine(image, image, m, image.size()); 
 for(auto&& p : landmarks) 
 { 
  cv::Mat v = (cv::Mat_<double>(3, 1) << p.x, p.y, 1); 
  cv::Mat r = m * v; 
  p.x = r.at<double>(0); 
  p.y = r.at<double>(1); 
 } 
} 
 
void Face::align() 
{ 
 cv::Vec2f center = landmarks[Constants::noseBottom]; 
  
#ifdef _FACE_DEBUG 
 cv::line(image, landmarks[Constants::leftInnerEye], 
landmarks[Constants::rightInnerEye], cv::Scalar(0, 255, 255), 2); 
#endif 
 
 cv::Vec2f innerEyeline = landmarks[Constants::rightInnerEye] - 
landmarks[Constants::leftInnerEye]; 
 innerEyeline = cv::normalize(innerEyeline); 
 
 float d = atan2(innerEyeline[1], innerEyeline[0]) - atan2(0, 1); 
 cv::Mat R = cv::getRotationMatrix2D(center, d * 180.0 / M_PI, 1); 
 
 transform(R); 
} 
 
void Face::registerTo(const Face& other) 
{ 
 const auto& targetLeft = other.landmarks[Constants::leftInnerEye]; 
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 const auto& targetRight = other.landmarks[Constants::rightInnerEye]; 
 
 const auto& left = landmarks[Constants::leftInnerEye]; 
 const auto& right = landmarks[Constants::rightInnerEye]; 
 
 const auto dx = targetLeft - left; 
 const auto sx = (targetRight.x - targetLeft.x) / (right.x - left.x); 
 
 cv::Mat T = (cv::Mat_<double>(2, 3) << 
  1, 0, dx.x, 
  0, 1, dx.y); 
 transform(T); 
  
 //cv::Mat S = cv::getRotationMatrix2D(targetLeft, 0, sx); 
 cv::Mat S = cv::getRotationMatrix2D(targetLeft, 0, 1); 
 transform(S); 
 
 crop(other); 
} 
 
void Face::select() 
{  
 // select upper face 
 { 
  const auto& leftFace = landmarks[Constants::leftFace]; 
  const auto& leftOuterEye = landmarks[Constants::leftOuterEye]; 
  const auto& rightFace = landmarks[Constants::rightFace]; 
  const auto& rightOuterEye = landmarks[Constants::rightOuterEye]; 
  const auto eyebrowsRect = 
cv::boundingRect(Landmarks(&landmarks[Constants::eyebrowsStart], 
&landmarks[Constants::eyebrowsEnd + 1])); 
 
  const auto l = leftFace.x + (leftOuterEye.x - leftFace.x) / 2; 
  const auto r = rightFace.x + (rightOuterEye.x - rightFace.x) / 
2; 
  const auto t = eyebrowsRect.tl().y - exterior.height * 0.0625; 
  const auto b = landmarks[Constants::noseMiddle].y; 
     
  const auto center = landmarks[Constants::leftInnerEye] + 
(landmarks[Constants::rightInnerEye] - landmarks[Constants::leftInnerEye]) / 
2; 
   
  regions.push_back(Region{ cv::Rect(l, t, r - l, b - t) }); 
  regions.push_back(Region{ cv::Rect(l, t, center.x - l, b - t) 
}); 
  regions.push_back(Region{ cv::Rect(center.x, t, r - center.x, b 
- t) }); 
 } 
  
 
 // select bottom face 
 { 
  const auto& noseBottom = landmarks[Constants::noseBottom]; 
  const auto& leftFace = landmarks[Constants::leftBottomFace]; 
  const auto& rightFace = landmarks[Constants::rightBottomFace]; 
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  const auto lipsRect = 
cv::boundingRect(Landmarks(&landmarks[Constants::lipsStart], 
&landmarks[Constants::lipsEnd + 1])); 
 
  const auto l = leftFace.x + (lipsRect.tl().x - leftFace.x) / 2; 
  const auto r = rightFace.x + (lipsRect.br().x - rightFace.x) / 
2; 
  const auto t = noseBottom.y; 
  const auto b = lipsRect.br().y + (lipsRect.tl().y - 
noseBottom.y); 
   
  regions.push_back(Region{ cv::Rect(l, t, r - l, b - t) }); 
  regions.push_back(Region{ cv::Rect(l, t, noseBottom.x - l, b - 
t) }); 
  regions.push_back(Region{ cv::Rect(noseBottom.x, t, r - 
noseBottom.x, b - t) }); 
 } 
 
#ifdef _EQU_HIST 
 cv::equalizeHist(image, image); 
#endif 
 
 for(auto&& r : regions) 
 { 
  r.data = image(r.roi); 
 } 
} 
 
void Face::crop(const Face& other) 
{ 
 regions = other.regions; 
 
#ifdef _EQU_HIST 
 cv::equalizeHist(image, image); 
#endif 
 
 for(Face::Regions::size_type i = 0; i < regions.size(); ++i) 
 { 
  auto&& r = regions[i]; 
  r.data = image(r.roi); 
 
  cv::absdiff(r.data, other.regions[i].data, r.diff); 
  r.entropy = entropy(r.diff); 
 } 
} 
 
bool Face::fit() 
{ 
 typedef std::vector<cv::Rect> Faces; 
 
 for(int t = 0; t < 2; ++t) 
 { 
  if(t % 2 != 0) 
  { 
   std::cout << "    Trying with equalizeHist!!!" << 
std::endl; 
   equalizeHist(image, image); 
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  } 
 
  Faces faces; 
  faceCascade().detectMultiScale(image, faces, 1.1, 3, 0, 
cv::Size(30, 30)); 
 
  std::vector<std::vector<cv::Point2f>> shapes; 
  if(facemark().fit(image, faces, shapes)) 
  { 
   int fid = -1; 
   for(Faces::size_type i = 0; i < faces.size(); i++) 
   { 
    exterior = faces[i]; 
    if(exterior.area() < 6000) 
    { 
     std::cout << "Too small skipping... " << 
exterior.area() << std::endl; 
     continue; 
    } 
 
    fid = i; 
    break; 
   } 
 
   if(fid >= 0) 
   { 
    landmarks.swap(shapes[fid]); 
    return true; 
   } 
  } 
 } 
 
 return false; 
} 
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Source Code of CUSUM function 

function [ res, range ] = cusum(data, h, k, varargin) 
    range = 0; 
    options = struct(... 
        'up', 1, ... 
        'down', 1, ... 
        'samples', 30, ... 
        'tm', NaN, ... 
        'td', NaN, ... 
        'after', NaN); 

     
    optionNames = fieldnames(options); 

     
    for pair = reshape(varargin,2,[]) %# pair is 

{propName;propValue} 
       inpName = lower(pair{1}); %# make case insensitive 

  
       if any(strcmp(inpName,optionNames)) 
          %# overwrite options. If you want you can test for the 

right class here 
          %# Also, if you find out that there is an option you keep 

getting wrong, 
          %# you can use "if 

strcmp(inpName,'problemOption'),testMore,end"-statements 
          options.(inpName) = pair{2}; 
       else 
          error('%s is not a recognized parameter name',inpName) 
       end 
    end 

     
    c = options.samples; 
    if isnan(options.tm) 
        tmean = mean(data(1:c)); 
    else 
        tmean = options.tm; 
    end 

     
    if isnan(options.tm) 
        tdev = std(data(1:c)); 
    else 
        tdev = options.td; 
    end 

     
    h = h * tdev; 
    k = k * tdev; 
    d_u =  (data - tmean) - k; 
    d_l =  (data - tmean) + k; 
    csu = 0; 
    csl = 0; 
    res = -1; 
    range = 0; 

     
    for x = c:length(d_u) 
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        if(options.up == 1) 
            csu = max(0, d_u(x) + csu); 
            if res > 0 && csu == 0 
                range = x - res; 
                break; 
            elseif res == -1 && (isnan(options.after) || x > 

options.after) && csu > h 
                res = x; 
            end 
        end 

         
        if(options.down == 1) 
            csl = min(0, d_l(x) + csl); 
            if res > 0 && csl == 0 
                range = x - res; 
                break; 
            elseif res == -1 && (isnan(options.after) || x > 

options.after) && csl < -h 
                res = x; 
            end 
        end 
    end 

     
    if range == 0 && res > 0 
        range = x - res; 
    end 
end 
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APPENDIX B 

 

Data Sanitization Flow 
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APPENDIX C 

 

Parkinson’da Bradykinesia Deneyi 

Kayıt Protokolü  

 

KOÇ ÜNİ. HASTANESİ – ODTÜ  

Temmuz, 2016 
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KURULUM 

 

Şekil 1 - Trigger Kartı Bağlantı Şeması 

 

Şekil 2 - EMG Cihazı Bağlantı Şeması 
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Şekil 3 - VideoRecorder yazılım arayüzü 

Cihazların ve Yazılımın Birbirine Bağlanması 

 

1- EMG cihazı Trigger Konnektörü (1) ile Trigger kartı EMG Bağlantı (2)’yi coaxial 

(anten kablosu ucu gibi olan) kablo ile bağlayınız. 

 
2- Trigger kartı üzerine LED kablosunu LED Kablo Konnektörü (3)’e bağlayınız 
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3- Trigger cihazını USB bağlantısını (1) Laptop’un SOL tarafındaki USB’ye takıp, 

bilgisayarın cihazı tanıması için bekleyiniz. 

4- EMG cihazını Laptop’ın SAĞ tarafındaki USB konnektörlerinden birine bağlayınız. 

5- USB kamerayı da EMG ile aynı taraftaki (SAĞ) USB girişine takınız. 

 

6- Kamerayı aşağıdaki resimdeki gibi tripoda tutturunuz. 

 
7- Ucunda LED olan kabloyu, kameranın yanına veya hastanın görebileceği ama 

kamera da gözükmeyecek bir yere tutturunuz. (bant  ile kameranın kenarına 

bantlanabilir) 

8- VideoRecorder yazılımının bulunduğu klasörde varsa settings veya settings.ini 

dosyasını siliniz 

9- Eğer bağlantılar doğru ise VideoRecorder uygulaması çalıştırıldığında hata 

vermeden açılacaktır. 

10- VideoRecorder yazılımında kamera görüntüsünü gördüğünüzden emin olunuz. 

 

EMG ve Bioamplifierın Bağlanması 

 

1- Bioamplifier modülünden gelen iki kabloyu aşağıdaki resimde görüldüğü gibi EMG 

cihazının 1 ve 2 nolu kanallarına bağlayınız.  

2- Bioamplifier’ın 1 nolu kanalından gelenin 1, 2 nolu kanalından gelen kablonun 2’ye 

girdiğine emin olun 
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3- Probe’ları her iki sokette üst sırasına, aşağıdaki düzene uygun şekilde takınız. 

 
Bioamplifier CH1 Sağ Zygomaticus 

Bioamplifier CH2 Sol Zygomaticus 

EMG CH1 Sağ Frontalis 

EMG CH2 Sol Frontalis 
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DENEY 

Deneye Başlama 

 

1- Deneğe Onam Formunu imzalatıp bir kopyasını saklayınız. 

2- Eğer denek ilk kez geliyorsa denek için yeni bir klasör yaratınız (Örneğin, 

PD_Denek1 ) 

3- Deneğin ilaç durumuna göre 2. Adımdaki klasör içerisine ON veya OFF diye bir 

klasör daha yaratınız  

4- Denek bilgi formunu doldurup 2. adımdaki klasöre kaydediniz. 

(DenekBilgiFormu.xlsx) 

5- Deneğin her iki tarafı için ayrı ayrı UPDRS III skorlaması yapıp, UPDRS formunu ilaç 

durum bilgisini not ederek saklayınız. 

6- VideoRecorder da  Dosyanın Kaydedileceği Klasörü Seçme butonu 3. adımdaki 

seçiniz.  

7- Kamera Focus Ayarını,  için +12 ve  için -6’ya aralayıp hastanın kamera 

görüntüsünde net olduğuna emin olunuz. 

8- LabChart yazılımını için 4 kanal için önceden ayarlanmış olan setup.adicht 3. 

adımdaki klasöre kopyalayınız. 

9- LabChart yazılımını 7. adımda kopyalanan dosyayı açınız. Bu dosya açılınca trigger 

ayarı yapılmış ve 4 kanal için kayda hazır bir kayıt ortamı gelmelidir. 

10- Trigger kartı üzerindeki, Trigger butonuna basınca hem VideoRecorder  hem de 

EMG cihazı üzerindeki Trigger İndikatörlerinin yandığına emin olunuz. 

11- Eğer EMG cihazı üzerinde Trigger ışığı yanmıyorsa, LabChart yazılımda Setup 

menüsünden External Trigger’ı açınız ve Voltage Level modunu ve Channel 1’i 

seçiniz ve 6. adımı tekrarlayınız.  

12- Deneğin yüzünün her iki tarafına EMG probe’larını yerleştiriniz.  

a. Bir probe çiftini kaşın ortasına dik şekilde frontalis kasına, 

b. Diğer probe çiftinden bir ucu zgyomaticus kasının ortasına diğer ucunu ise 

kasın başlangıç noktası olan elmacık kemiğinin dış kısmına, 

c. Referans probe’unu kulak arkasına yerleştiriniz. 

/Users/colcek/Projects/PHD/PHD/thesis/Thesis/DenekBilgiFormu.xlsx
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Deneğin Hazırlanması 

 

1- Deney, ilaç ON ve OFF olmak üzere iki oturumda, deneme ve 2 adet gerçek kayıt 

olmak üzere 3 adımda gerçekleştirilecektir. 

2- Deneğe “Sizden sırayla dört adet yüz mimiği yapmanız istenecek. Komutum ile 

gözünüzü kapatıp yüzünüzü serbest bırakacaksınız. Bir süre sonra ben size, 

yapmanızı istediğim mimiği söyleceğim, örneğin, gülümseme. Bu komuttan sonra 

gözlerinizi açıp uyarıcı ışığı bekleyeceksiniz. Işığı görür görmez en güçlü şekilde 

istenen hareketi yapıp bir iki saniye  bekledikten sonra, yüzünüzü tekrar serbest 

bırakıp gözlerinizi kapatacaksınız.  

 

Bu işlemi dört mimik için de tekrarlayacağız.” şeklinde açıklama yapınız. 

3- Deneğin direktifleri anladığı görmek ve düzeneğin çalıştığına emin olmak için ilk 

olarak deneme kaydını alınız. 

  

Deneme Kaydı 

 

1- Deneğe, “İlk olarak deneme kaydı alacağız, komutlarımı takip ediniz” komutunu 

veriniz 

2- LabChart yazılımından mevcut durumu, File > Save As... menüsünden 

deneme.adicht adıyla kaydedin. 

3- LabChart yazılımından kaydı başlatınız. 

4- VideoRecorder’da Kayıt Dosyası Önad Alanına deneme_gul yazınız. 

Daha sonraki tekrarlarda yapılacak olan mimiğe uygun olarak deneme_catma, 

deneme_kaldirma ve deneme_dudak yazınız. 
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5- Deneğe, gülümseme mimiğini gösteren kartı gösterip, “Bu gülümseme, komut 

verdiğimde gözlerinizi açıp uyarı ışığını görür görmez en güçlü şekilde gülümseyiniz. 

Şimdi gözlerinizi kapatınız ve yüzünüzü serbest bırakınız” komutunu verin. 

    
6- LabChart’da, Add Comment diyip gulumseme yazın. 

7- Deneğe “Gözlerinizi açıp bekleyiniz, ışığı gördüğünüzde hemen en güçlü şekilde 

gülümseyip/kaş çatıp/kaş kaldırıp/dudak büküp ve biraz bekledikten sonra 

yüzünüzü serbest bırakınız” komutunu verin 

8- Denek gözünü açtıktan sonra, VideoRecorder’da  Kaydı Başlat tuşuna basınız 

9- Ardından kısa bir süre içinde Trigger cihazından Trigger Butonuna basınız ve 

Deneğin komutları doğru anlayıp uyguladığından emin olunuz. 

10- Denek mimiği yapıp yüzünü serbest bıraktığında VideoRecorder uygulamasında 

Kaydı Durdur tuşuna basınız 

11- Eğer denek uygulamada zorlanırsa veya kayıt cihazlarında/programlarında bir hata 

olursa bu mimiği bir kez daha tekrarlayınız. 

12- Bu bölümü 4. adımdan itibaren kaş çatma, kaş kaldırma ve dudak bükme için 

tekrarlayınız, her mimik arasında en az 30 saniye beklediğinize emin olun  

13- LabChart yazılımından kaydı durdurup kaydediniz. 

Gerçek Kayıt 

 

1- Deneğe, “Asıl deney kaydına başlıyoruz, komutlarımı takip ediniz” komutunu veriniz 

2- LabChart’tan Deneğin klasörüne kaydedilmiş olan setup.adicht dosyasını açarak 

sıfır bir kayıt ortamı oluşturun. 

3- LabChart yazılımından mevcut durumu, File > Save As... menüsünden 

1_session.adicht adıyla kaydedin. İkinci seansta 2_session.adicht olarak kaydedin. 

4- LabChart yazılımından kaydı başlatınız. 

5- VideoRecorder’da Kayıt Dosyası Önad Alanına 1_gul yazınız. Daha 

sonraki tekrarlarda yapılacak olan mimiğe uygun olarak 1_catma, 1_kaldirma ve 

1_dudak yazınız. İkinci seansta 2_gul, 2_catma, 2_kaldirma ve 2_dudak şeklinde 

giriniz. 

6- LabChart’da, Add Comment diyip gulumseme yazın. 
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7- Deneğe, “Gözlerinizi kapatınız ve yüzünüzü serbest bırakınız” komutunu verin 

8- Deneğe “Gözlerinizi açıp bekleyiniz, ışığı gördüğünüzde hemen en güçlü şekilde 

gülümseyip/kaş çatıp/kaş kaldırıp/dudak büküp ve biraz bekledikten sonra 

yüzünüzü serbest bırakınız” komutunu verin 

9- Denek gözünü açtıktan sonra, VideoRecorder’da  Kaydı Başlat tuşuna basınız 

10- Ardından kısa bir süre içinde Trigger cihazından Trigger Butonuna basınız. 

11- Denek mimiği yapıp yüzünü serbest bıraktığında VideoRecorder uygulamasında 

Kaydı Durdur tuşuna basınız. 

12- Bu bölümü 4. adımdan itibaren kaş çatma, kaş kaldırma ve dudak bükme için 

tekrarlayınız, her mimik arasında en az 30 saniye beklediğinize emin olun  

13- LabChart yazılımında kaydı durdurunuz. 

14- Bütün işlemleri bir kere daha tekrarlayıp ikinci bir kez daha kayıtları alınız 
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