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ABSTRACT

COMPUTATIONAL MODELING OF HARDENING CONCRETE AT
MESOSCALE

Yılmaz, Çağlar

M.S., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Serdar Göktepe

April 2023, 72 pages

Concrete can be conceived as a composite material made up of cement, fine and

coarse aggregates, water, and admixtures. The strength gain mechanism of concrete

is based on the exothermic chemical reactions between the cement and free water

that are collectively referred to as hydration. Generally hydration is accompanied by

various physico-chemical phenomena such as the evolution of temperature and water

content, thermal and shrinkage-induced volumetric deformations. During the chemi-

cal aging of concrete residual stresses develop in the material, especially at the inter-

face between the mortar and coarse aggregates. These residual stresses mainly arise

from the constraining effect of aggregates due to their higher stiffness on the mortar.

This work is concerned with the computational modeling of hardening concrete at the

mesoscale to investigate the effect of the area fraction, segregation, aspect ratio, and

the roundness of aggregates under the action of different magnitudes of shrinkage de-

formations in mortar on the magnitude of residual stresses. For this purpose, a virtual

tool for generating the meso-structure of concrete is developed. The generated mod-

els at mesoscale are then analyzed numerically to calculate the evolution of principal

residual stresses during early ages of samples. The hardened samples incorporating
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shrinkage-induced residual stresses are then analyzed under tension to examine the

effect of the residual stresses on the tensile strength of concrete at mesoscale using

the phase-field fracture method.

Keywords: Constitutive equations, Hardening concrete, Mesoscale, Shrinkage, Phase-

Field Method
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ÖZ

SERTLEŞEN BETONUN MEZO ÖLÇEKTE HESAPLAMALI
MODELLENMESİ

Yılmaz, Çağlar

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Serdar Göktepe

Nisan 2023 , 72 sayfa

Kompozit bir malzeme olarak da düşünülebilecek beton, çimento, ince ve iri agre-

galar, su ve katkı malzemelerinin bileşiminden oluşur. Betonun dayanımını kazan-

ması çimento ile su arasında, topluca hidratasyon olarak anılan, ısıveren kimyasal

tepkimeler sonucunda olmaktadır. Hidratasyon genellikle, sıcaklık değişimi, su mik-

tarındaki değişim ve bunların sonucunda ortaya çıkan hacimsel şekil değişimler gibi

farklı fiziko-kimyasal olaylarca eşlik edilmektedir. Betonun kimyasal olgunlaşması

sırasında, özellikle harç ve agregalar arasında artık gerilmeler oluşmaktadır. Bunlar

agregaların harca göre daha rijit olmasından kaynaklanan şekil değiştirme üzerindeki

sınırlayıcı etkileri nedeni ile ortaya çıkmaktadır. Bu çalışma, agregaların alan oranı,

ayrılanması, en-boy oranı ve yuvaklaklığının, harçtaki farklı büzülme mertebeleri al-

tında oluşan artık gerilmeler üzerine etkisini incelemek için sertleşen betonun mezo

ölçekte hesaplamalı modellenmesini konu almaktadır. Bu amaçla, betonun mezo ya-

pısının oluşturmak için sanal bir araç geliştirilmiştir. Betonun erken yaşlarda oluşan

asal artık gerilmelerin hesaplanması için mezo ölçekteki modellerin sayısal olarak

analizi gerçekleştirilmiştir. Bu aşama sonrasında büzülme nedeni ile oluşan artık ge-
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rilmeleri barındıran sertleşmiş beton numunelerin çekme altında analizleri yapılarak

farklı mezo yapılarda oluşan artık gerilmelerin mezo ölçekteki betonun çekme daya-

nımı üzerine etkisi Faz Alanı Yöntemi ile incelenmiştir.

Anahtar Kelimeler: Bünye denklemleri, Sertleşen beton, Mezo Ölçek, Büzülme, Faz

Alanı Yöntemi
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Ãξ Normalized affinity

Aχ, and Aχ Model parameters related with aging

d Crack phase field

d Opening diameter

dmax Maximum opening diameter

D̃ Crack driving state function

Eac Activation energy for hydration

Ec Elastic modulus

E∞ Elastic modulus at fully hydrated state

fc Compressive strength

ft Tensile strength

f∞ Compressive strength at fully hydrated state

f̂d Diffusion

ĝ(d) Degredation function

Gc Critical energy release rate

h Moisture
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CHAPTER 1

INTRODUCTION

Concrete is a construction material that is broadly used in structures such as resi-

dential buildings, dams, pavements, and power plants. Therefore, the comprehension

of its behavior is vital. The behavior of mature concrete is significantly affected by

its early-age history. Young concrete goes through hardening and gains its strength

and rigidity through the hydration of cement. While the hydration process takes place

under various conditions, the shrinkage of concrete occurs. Subsequently, the shrink-

age may lead to micro-cracks, and during the lifetime of concrete, micro-cracks may

build up to macro-cracks so that failure may occur. Therefore, this work is con-

cerned with the computational modeling of hardening concrete at mesoscale where

the effects of aggregate geometry, aggregate roundness, grading, and the amount of

shrinkage on the evolution of the residual stresses are investigated. Furthermore, in

the subsequent strength prediction through the phase-field fracture analyses on the

various hardened mesostructures, the ultimate influence of the investigated factors on

the tensile strength of concrete is investigated.

1.1 Hydration of Concrete

Concrete is a widely preferred material in construction. Its popularity is due to its

ability to achieve required high-strength values. The strength and rigidity of concrete

are characterized by hydrated cement, aggregates, and the interfacial transition zone

(ITZ) between aggregate and cement paste. Concrete gains its strength and rigidity

throughout its lifetime, but the early ages are more crucial regarding the contribution

of its strength gain. The mechanism of strength gain of young concrete is called hard-
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ening. Hardening is caused by a set of exothermic chemical processes that is named

hydration. During hydration, cement reacts with water to form the compounds that

are referred to as hydrates. Unhydrated cement is reached by the water that diffuses

through the layers of hydrates. Therefore, the moisture distribution within the ma-

terial plays a crucial role in the hydration process. The moisture content decreases

by drying of concrete and also by the water consumption through hydration, the so-

called self-desiccation.

The initiation of hydration occurs quickly as soon as the water contacts with cement.

As the hydration begins, a great amount of heat is liberated, and until the hydra-

tion process is finished, heat liberation continues. However, the process does not

attain 100% level of completion, so the strength and rigidity gain still continues in the

mature concrete. The release of heat causes a temperature difference between both

hydrates and aggregate and hydrates and unhydrated cement. The mismatch between

the temperatures provokes the initiation of micro-cracks.

Cement is composed of five main minerals. These are aluminates: tricalcium alu-

minate (C3A) and tetracalcium aluminoferrite (C4AF); silicates: tricalcium silicate

(C3S), dicalcium silicate (C2S), and calcium sulfate (CS̄), which is also known as

gypsum. The primary compounds of hydration is calcium silicates that constitutes

about 75% of cement.

During the initial stage of hydration of cement, water comes into contact with cement

particles that causes rapid dissolution of C3A and CS̄ (gypsum). Within about 15

minutes, these materials produce solid compounds that results in significant heat gen-

eration that increases rapidly. During this period, a reaction between fast-dissolving

gypsum, dissolved C3A, and water produces a substance that coats the cement grains.

This hydration product, known as a gel-like ettringite (C-A-S̄-H), is solid but lacks

a specific composition or crystalline form. It slows down the aluminate reactions,

thereby reducing the amount of heat generated by the end of the mixing stage [5].

Within 1−3 hours after the mixing stage, the second stage of cement hydration occurs.

During this stage, the gel-like substance known as C-A-S̄-H controls the aluminate

reactions, resulting in a deceleration of heat generation. As the cement continues

to dissolve, the water becomes saturated with dissolved calcium and hydroxyl (OH)

ions, but the dissolution of silicates happens at a slower rate. By the end of the second

stage, the water becomes fully saturated with calcium ions, and the hardening process

2



begins [5].

The third stage begins once the concrete starts to set. In this stage heat of hydration

rate increases. C3S governs this stage and calcium silicate hydrate and calcium hy-

droxide form as the results of reaction of silicates and water. C-S-H, which is the

desired hydration product due to its contribution of strength and rigidity gain of con-

crete, is resulted in both from the reactions of C3S and C2S with water.

In the fourth stage of the cement hydration process, the reactions between water and

undissolved cement particles persist, while the reaction rate of C3S decreases. This

leads to an increase in heat generation rate, followed by a gradual slowdown. Af-

ter the temperature reaches its peak, CS̄ reacts continuously with aluminates. The

remaining aluminates react with ettringite to form monosulfate, which has no signifi-

cant impact on the properties of the resulting concrete [5].

In the fifth stage of hydration, the rate of strength and rigidity gain in concrete slows

down, approaching a steady state, marking the hardened state of the material. The

remaining C3S will continue to react with water, forming C-S-H. Both C3S and C2S

react with water, with C3S reacting primarily before C2S becomes notable [5].

Many experimental and computational studies have been conducted on the hydra-

tion of concrete. A thermo-chemo-mechanical coupling model is studied by Ulm and

Coussy [27] with the identification of thermodynamic force and maturity, which are

called the chemical affinity and the degree of hydration, respectively, as the internal

variables. The missing effects of the evolution of stress and temperature are included

in the work of Cervera et al. [5] with the consideration of hydration kinetics. They

introduced an internal variable named the degree of aging that the mechanical prop-

erties of concrete are evolved by.

Gawin, Pesavento, and Schrefler [6, 7] introduced an early-age model that considers

solidification and they extended it to a hygro-thermo-chemo-mechanical model. Di

Luzio and Cusatis [8,9] included moisture transportation and heat transfer with a cal-

ibrated and validated hygro-thermo-chemical model.

Apart from the computational studies that model hydration kinetics, some studies ex-

perimentally measure the degree of hydration. Bouasker et al. [10] measured the de-

gree of hydration of cement paste with thermogravimetric analysis, which is a method

that determines the degree of hydration by measuring the amount of product that is

burned [11], and the degree of hydration of mortar by loss on ignition, which is a
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method that is based on the weight loss of the unhydrated cement [11]. Zhang et

al. [11] determined the degree of hydration through thermogravimetric analysis and

they also relate the degree of hydration with the percolation threshold, i.e. setting

point, with ultrasonic velocity measurements.

1.2 Shrinkage of Concrete

Shrinkage is a volumetric deformation that takes place over time. It can be classified

into different types, such as drying shrinkage, plastic shrinkage, autogenous shrink-

age, and chemical shrinkage. Drying shrinkage is the evaporation of excess water

from the surface after the concrete has hardened. Plastic shrinkage is associated with

the loss of water from the surface due to poor curing at early ages. Autogenous and

chemical shrinkage are related to water consumption through the hydration process,

and self-desiccation.

There is a lack of agreement on the applied terminology about chemical and auto-

genous shrinkage. Jensen and Hansen [12] described autogenous shrinkage as the

internal volume reduction due to hydration reactions and chemical shrinkage as the

bulk deformation of a close, isothermal system that is not subjected to external forces.

Shrinkage of concrete leads to cracking when it is subjected to restraints such as dif-

ferential shrinkage or aggregate. Differential shrinkage may occur due to the fact

that the liberated heat by the hydration may be differential in the concrete. Aggre-

gates have a restraining effect on shrinkage and that will eventually lead to micro-

cracks [13].

Experimental studies have been widely conducted on drying shrinkage [14–16], plas-

tic shrinkage [17–19] of cement and mortar. Considering the point of view of our

work, it is more relevant to take into consideration of studies regarding chemical and

autogenous shrinkage and their direct relation to the degree of hydration. Bouasker

et al. [10], which is also mentioned in Section 1.1, measured volumetric chemical

shrinkage while relating it to the measured degree of hydration. Also, Zhang et

al. [11] assess the chemical shrinkage while relating it to the degree of hydration

of oil-well cement under different temperatures and have similar findings to the work

of Bouasker et al. [10]. Fu et al. [20] suggested an equation regarding autogenous
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shrinkage and creep according to the findings of the conducted tests. Bentz et al. [2]

conducted experiments for comparing the early-age strength of mortars with 0.35

water-cement ratio prepared with cement having different fineness values and the au-

togenous shrinkage is measured between 100−300 microstrains, Figure 1.2. Findings

of Bentz et al. [1] are also similar to that of Bentz et al. [2], who conducted exper-

iments to examine the effect of shrinkage reducing admixtures and they measured

autogenous shrinkage of mortar having 0.35 water-cement ratio between 100 − 300

microstrains, Figure 1.1. Autogenous shrinkage measurements of Loukili et al. [3] for

mortar having water-cement ratio of 0.35 is also presented at Figure 1.3. Although

the measurement values are not relatively close enough, the findings of Lu et al. [4],

Figure 1.4, show that having different proportions of sand in mortar specimens results

in such values.

Figure 1.1: Autogenous shrinkage findings of Bentz et al. [1] with and without

Shrinkage Reducing Admixture

Figure 1.2: Autogenous shrinkage findings of Bentz et al. [2] with fine and coarse

aggregates
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Figure 1.3: Autogenous shrinkage findings of Loukili et al. [3]

Figure 1.4: Autogenous shrinkage findings of Lu et al. [4] for w/c ratio of 0.3 and 0.4

for different percentage of sand

1.3 Meso-Structure and Concrete

Concrete is a composite material that consists of Portland cement, sand, coarse ag-

gregates, and water. The heterogeneity of concrete could differ according to the scale

that the material is examined. Although concrete is treated as a homogenous mate-

rial at macroscale, it is scrutinized as a heterogeneous material composed of Portland

cement, sand, coarse aggregates, and water at microscale. At mesoscale, concrete is

studied as a heterogeneous material that includes mortar with sand dissolved in it,
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coarse aggregate, and the interfacial transition zone between coarse aggregates and

mortar. The multi-phase structure of concrete that is represented by meso-scale mod-

eling helps us understand the non-linear behavior of concrete. The different mechani-

cal properties of each of these phases provide a better examination of the relationship

between phases and their contribution to the overall concrete behavior.

The assessment of modeling concrete at different scales could be addressed to the

level of detail and the computational cost. Microscale modeling enables to understand

the behavior of concrete regarding the fundamental mechanism of individual particles

and the relations between them. The approach causes modeling at the microscale to

be computationally costly due to its detailed inspection. On the other hand, modeling

at mesoscale simulates the general behavior of the material, and it is more efficient

computationally since it inspects in less detail than microscale modeling.

The generation of a meso-structure could either be done by computationally con-

structing an existing structure or by generating a random meso-structure (RMS). X-

ray computed tomography or CT-scanning specimens [21] is a way of constructing

an existing structure. It has the advantage of modeling the structure realistically. The

numerical result of an analysis of the structure may be more accurate as it eliminates

any oversight that could be made by imitating a real structure. A meso-structure could

lack representing a realistic structure if the model is simplified extensively. However,

an accurate representation of a meso-structure provides a way to control how different

variables, such as aggregate shape, position, and segregation, affect the development

of residual stresses while concrete is going through hardening and shrinkage.

The method of Take-and-Place [22] is a technique for generating a RMS or, in this

case, the random aggregate structure where the geometry, size, and distribution of ag-

gregates closely mimic the real concrete statistically. The method generates randomly

shaped and randomly placed aggregates with respect to a grading curve in a section.

The generation of a RMS gives the ability to control various parameters and facili-

tates seeing how the analysis results are affected by a specific parameter change.

Modeling concrete at mesoscale is widely used in the literature primarily the inves-

tigation of aggregate shape, size, and distribution [23–25]. The damage and fail-

ure of concrete are studied with the introduction of a damage parameter [26–30] at

mesoscale. Also, the propagation and initiation of crack is modeled using phase-

field [31–33].
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Over the past few years, there has been a growing interest in studying the development

of residual stresses considering different phenomena of early-age concrete and the im-

pact of residual stresses on the long-term performance of hardened concrete. Corrado

and Molinari [34] investigated the propagation of cracks under the influence of resid-

ual stresses that are developed under drying shrinkage of mortar. They represented the

cracks by dynamically inserting cohesive zone elements during the simulation. Xu et

al. [35] studied the development of self-restrained thermal stresses that are due to the

heat released from the hydration reaction of hardening concrete considering elastic

strain, creep strain, thermal strain, and autogenous strain. They conducted analyses

in 3-D with spherical aggregate particles. Nguyen et al. [36] examined the early-age

cracking of hardening concrete with a phase-field model considering thermal expan-

sion strain, autogenous shrinkage strain mesoscale, transient thermal creep strain, and

basic creep strain. Li et al. [37] examined the early-age hydration considering heat

transfer, humidity transport, and chemical reactions. They investigated the effects of

relative humidity, area ratio and shape of the aggregates on the development of prin-

cipal stresses. They also validated their model with the experiments they conducted

for concrete model with and without the presence of expansion agent, mortar model

without any agent. Taibi et al. [38] investigated the hardening process of mass con-

crete, taking into account the effects of autogenous and thermal strains using damage

plasticity model in 2-D. Their study also examined how a pipe cooling system im-

pacts the behavior of concrete at mesoscale and the effect of early-age hydration on

the mechanical behavior of hardened concrete using simplified morphology of circu-

lar aggregates. Qiu et al. [39] enhance the model Xu et al. [35] used by considering

the complex morphology of actual aggregates. They investigated the effects of ag-

gregate morphology and orientation on stress concentrations by relating it with the

thermal effects of hardening concrete. Qiu et al. [40] examined the effects of residual

stresses, which are obtained by using their previously mentioned work [39], on the

mechanical response of hardened concrete with a elasto-viscoplastic damage model.

They used diffuse meshing technology to represent ITZ.
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1.4 Scope and Aim of the Thesis

This study aims to model the hardening phenomenon in concrete considering hydra-

tion and shrinkage of mortar at mesoscale. The effect of the produced stresses, which

are referred as the residual stresses, due to hardening of concrete is investigated under

different mechanical loadings and crack formation is examined using the phase-field

fracture model and cohesive zone elements. Although the residual stresses may seem

insignificant, they characterize the overall performance of concrete.

A model is developed to consider the hydration effects by relating it to the mechani-

cal parameters of the material. It is crucial to take into account the shrinkage effects

while associating it with the hydration process since, during the early hydration, ma-

terial may be significantly affected by shrinkage strain. To make use of the developed

models, a tool for the generation of random meso-structures is implemented. The tool

is used to assess the impact of different factors of aggregate on the development of

principal stresses and their ratio to the tensile strength of mortar. These factors are

the roundness, shape, area ratio, grading, and segregation of aggregate.

ITZ, located between the aggregate and mortar, is included in this work using co-

hesive zone elements. With the cohesive zone elements and the phase-field frac-

ture model the crack formation is observed in the presence and absence of residual

stresses. Although there are comprehensive works, which are mentioned in Section

1.3, regarding the hydration and hardening of concrete; this work is one of the pi-

oneers that examines the mesostructure of concrete under initial residual stresses,

due to hydration of mortar, using cohesive zone elements and the phase-field fracture

model to observe crack formation and propagation.

1.5 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, the construction of the ran-

domly shaped aggregates, the taking process, and the placing process are discussed.

In Chapter 3 the governing balance equations, the associated boundary conditions,

and the constitutive equations along with the hydration and aging mechanism are de-

scribed. In Chapter 4 the representative numerical examples are presented along with

9



the results and discussions based on the computationally obtained results. In Chapter

5 concluding remarks are given.
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CHAPTER 2

GENERATION OF RANDOM MESO-STRUCTURES

Random meso-structures (RMS) are generated to realistically represent multi-phase

composite structures. The Take-and-Place Method, which is the implemented method

for this work according to the study of Wang et al. [22], is one of the widely used

methods to generate RMS in a statistical manner. The generated structure should re-

semble a homogenous material on the macroscale where the randomness of geomet-

ric arrangements should be met. To be able to fulfill these needs the Take-and-Place

method, which is based on the Monte-Carlo sampling technique, is used. By tak-

ing samples from a source and placing them in a section, by avoiding overlapping,

randomness is applied.

2.1 Generation of Polygonal Aggregate Particles

Fine and coarse aggregates are the two types of aggregates that concrete sections

consist of. Generally, aggregates smaller than 4.75 mm are assumed to be fine and

the bigger ones are considered to be coarse aggregates. In a meso-scale analysis, fine

aggregates are taken into account as a part of the matrix. In this work, a prescribed

shape of a coarse aggregate is generated.

Polygons are constructed using polar coordinates. A polygon’s vertices, a total of

n, are represented by polar radius, r, and polar angles, θ. It has been stated from

visual interrogations that aggregates generally have between 4 and 10 vertices. But

having vertices between 4 and 10 results in relatively sharp corners and constructing

a shape of an aggregate beyond these limits also results in sharp corners. Therefore,

first, a random number between 4 and 10 is generated to be assigned to the number
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of vertices of an aggregate. Then, after constructing the shape of the aggragate, the

cubic spline is fitted to smooth out the sharp corners.

While constructing the shape of an aggregate, subtended angles, defined as Θi :=

θi+1− θi, are used. To obtain a polygonal shape, the mean value of the subtended an-

gles should be 2π/n. The subtended angles, presented in Figure 2.1 could be obtained

as formulated in (2.1) where δ represents the variation, which is always less than 1,

from the mean and ηi represents a uniformly distributed random number between 0

and 1.

Θi =
2π

n
+ (2ηi − 1)δ

2π

n
(2.1)

Since the sum of the angles should be exactly 2π a correction should be made as

Θ̄j = Θi
2π∑n
j=1 Θj

, (2.2)

and the polar angles, also presented in Figure 2.1, could then be obtained as

θi =
i−1∑
j=1

Θ̄j. (2.3)

i− 1

i

i+ 1

θi

Θi

Figure 2.1: An aggregate with its polar coordinates and angles

The generation of a prescribed shape could be achieved after an adjustment of vertices

as the generated shape could have a different elongation ratio than the prescribed one.
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The width and the length of the aggregate are described as follows: the width is the

width of the rectangle that has minimum width among every rectangle that is obtained

by the rotation of the aggregate. The length is the length of the same rectangle.

To generate such a rectangle; first, all the vertices that violate the convexity of the

polygon are eliminated. After the elimination, a rectangle is constructed by taking a

side of the rectangle as an edge of the polygon and the rectangle should be just big

enough to contain all the vertices of the polygon. This process is repeated for every

edge of the convex polygon. Last, after constructing every rectangle for each edge, the

one having the minimum width is selected and its width and length are assigned to the

aggregate. By obtaining these values, the elongation ratio could finally be calculated.

Then, the shape is adjusted to the prescribed value and the original elongation ratio to

become the same by stretching or compressing the polygon. The adjustment,

ūi = κui, (2.4)

is made by multiplying the longitudinal direction of the Cartesian coordinates, ui,

with a ratio, κ, defined as the ratio of the prescribed elongation ratio to the original

elongation ratio. The adjustment is not applied in tranverse direction it is only been

applied in longitudinal direction,

v̄i = vi. (2.5)

2.1.1 Grading of Aggregate

Aggregate size distribution, i.e. grading, is generally taken as the cumulative percent-

age of aggregates that passes through a series of sieve sizes. The Fuller curve [41],

one of the grading curves that have optimum density, is used in this work and it could

be calculated as

P (d) = 100

(
d

dmax

)n
, (2.6)

where P (d) represents the cumulative percentage passing, d is the related opening

diameter, dmax is the maximum opening diameter, n is the gradation index. Total

area, Aagg[ds, ds+1], between two opening sizes, [ds, ds+1] could be obtained as

Aagg[ds, ds+1] =
P (ds+1)− P (ds)

P (dmax)− P (dmin)
RaggAcon, (2.7)

13



where Ragg is the area ratio of coarse aggregates and Acon is the area of the cross

section.

2.2 Take-and-Place Method

The Take-and-Place method is used for simulating a real specimen in a statistical

manner. It has the ability to represent the model as homogenous on a macroscale

while constructing a mesoscopic heterogeneous structure. It includes two processes

that happen concurrently for every particle. The first one, the take-process, includes

"taking" a particle from a source whose total area is calculated according to the grad-

ing curve and shaping the particle. The latter, the place-process, is related to "placing"

of the particle in the section so that it will not intersect or overlap with already placed

particles.

2.2.1 Take-Process

Take-process is initiated from the segment that has the biggest size and continues with

the smaller ones. The process could be explained with the following steps:

1. Calculate the total area of particles that could be generated according to the

related grading segment.

2. Generate the shape of the particle using the necessary random numbers

3. Execute the Place-Process

4. Repeat the previous two steps until the area of the next aggregate that could be

generated with the minimum size obtained from the related segment is bigger

than the total area calculated in Step 1.

5. Move to the next grading segment and return to Step 1 until all segments are

covered.
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2.2.2 Place-Process

While executing the placing process, first, a random location, Point 0, within the

cross-section is obtained using,

X0 = Xmin + η1 (Xmax −Xmin) (2.8)

Y0 = Ymin + η2 (Ymax − Ymin) , (2.9)

where X0 and Y0 are the coordinates of the Point 0; Xmax, Ymax, Xmin, Ymin are the

maximimum and minimum X , Y values of the cross section where aggregates are

placed; η1 and η2 values are two uniformly distributed random values between 0 and

1 and independent from each other.

Then; the phase angle α, which is the angle defines the orientation of particle, is

calculated as

α = η · 2π, (2.10)

where η is a uniformly distributed random number between 0 and 1.
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Table 2.1: Steps of Take-Process and Place-Process

Take-Process Place-Process

T1. Calculate the total area of particles

that could be generated according to

the related grading segment.

T2. Generate the shape of the particle

using the necessary random num-

bers.

T3. Execute the Place-Process

T4. Repeat the previous two steps until

the area of the next aggregate that

could be generated with the mini-

mum size obtained from the related

segment is bigger than the total area

calculated in T1.

T5. Move to the next grading segment

and return to T1 until all segments

are covered.

P1. Generate the shape of the aggregate

P2. Generate the location of the aggre-

gate.

P3. Generate the phase angle of the ag-

gregate

P4. Check whether the aggregate can be

placed to the generated location if it

can return to T4 if it cannot continue

to P5.

P5. If the total trial amount is a integer

multiple of 100 return to P2, if the

total trial amount is above 1000 re-

turn P1 and reset the trial amount to

0, if the previous two conditions are

false return to P3.

After the determination of the location and the angle of the particle, it is checked if

the aggregate could be placed in that spot. This operation includes two checks. The

first one is checking if the particle is within the boundary of the cross-section. The

second one is checking if the particle intersects or overlaps any other particle already

placed. Whole process of Take-and-Place Method is given in Table 2.1 The aggregate

placement of each segment of the grading curve is shown in Figure 2.3 with color

coding that is compatible with Figure 2.2. Since aggregate smaller than 5 mm is

considered fine aggregate the grading curve is presented for aggregate bigger than 5

mm.
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Figure 2.2: The grading curve

(a) = 20− 16 mm (b) = 16− 12.5 mm (c) = 12.5− 9.5 mm (d) = 9.5− 5. mm

Figure 2.3: Stages of aggregate placement. The colors of aggregates indicate the

corresponding grading interval in Figure 2.2

2.3 Generated Structures

Some examples of the generated structures that are also used in numerical examples

in Section 4 are presented in Figure 2.4. The dimensions of all the generated sections

are 150 mm × 150 mm. Related parameter information is also presented in Table

4.4. Case I in Figure 2.4 represents a control case, in Case II and III the area ratio

of aggregates is investigated, Case IV is related with the segregation, in Case V the

elongation ratio of aggregate is examined, and in Case VI, a control case, and Case
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VII the roundness of aggregate is discussed.

a) Case I b) Case II c) Case III

d) Case IV e) Case V

f) Case VI g) Case VII

Figure 2.4: Random meso-structures generated
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CHAPTER 3

GOVERNING AND CONSTITUTIVE EQUATIONS

The exothermic nature of hydration results in a significant temperature rise in the

concrete body. The surface of mass structures cools at a faster rate, leading to a

nonuniform distribution of temperature that leads to thermally induced volumetric de-

formations. Although thermally induced volumetric deformations are not so relevent

in comparatively small structures, autogeneous volumetric deformation can be critical

in both massive and comparatively small structures. Autogenous shrinkage is related

with the so called self-desiccation that is the internal water consumption during hy-

dration that leads to volumetric deformation. Thus, the modeling of the hardening

process is significant due to the volumetric deformation of the concrete may results

in cracking. Although the deformations that occur during the hardening process of

concrete are small in comparison to the life-time deformations that it undergoes, it is

during this time that concrete is gaining rigidity and strength and is therefore particu-

larly vulnerable to deformations. The vulnerability of concrete during the hardening

process comes from both its lack of fully strength and its rapidly changing material

properties. Therefore, it is crucial to properly model this sensitive process. In this

work only autogenous deformations are taken into account since the examination of

comperatively small structures has been conducted.

Hydration of concrete throughout the hardening process is a primary cause of the

mentioned volume changes. Due to the heterogeneity of the structure of concrete at

mesoscale and the constraints on it, the change in volume may cause the evolution of

residual stresses and the formation of micro-cracks in the specimen during hardening.

Although the micro-cracks seem small at first, throughout the life time of concrete,

these micro-cracks may lead up to macro-cracks under different loading conditions.

The phase-field method, a variational numerical method, has been introduced and
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been widely adopted. It allows for the development of models at different scales

and also enables the representation of complex crack topologies, whose thickness can

be controlled with a length scale parameter, by introducing an additional phase-field

variable. The additional variable eliminates the remeshing problem for the simulation

of crack growth.

In this chapter the key equations are presented regarding the mechanical behavior of

hardening concrete. In Section 3.1 kinematics and state variables; the strain tensor,

the crack phase field for brittle fracture, and the degree of hydration are introduced.

In Section 3.2 governing balance equations are described. The stress response is in-

troduced using the degradation function in Section 3.3. The crack driving force and

its incremental update scheme are presented in Section 3.4. Last, the hydration of

cement and its aging mechanism are discussed paying regards to work of Di Luzio

and Cusatis [42] in Sections 3.5 and 3.6.

3.1 Kinematics and State Variables

Assume a configuration of a material body in the Eucledian space, B ⊂ R3, at time

t ∈ T . The displacement field u of a material point positioned at x ∈ B, and time

t ∈ T is described by

u :=

B × T → Rδ

(x, t) 7−→ u(x, t),
(3.1)

in the geometrically linear setting. Then, the strain tensor can be expressed as the

symmetric displacement gradient,

ε(u) = ∇u :=
1

2
[∇u+∇Tu]. (3.2)

To consider stress degradation only in tension, the strain tensor is decomposed into

its positive and negative parts

ε = ε+ + ε− (3.3)

where ε+ and ε− are defined using the spectral decomposition of the strain tensor, ε =∑3
i=1 εi ni ⊗ ni where ε1,2,3 denote the principal strains and n1,2,3 are the principal
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directions. The positive and the negative parts of the strain tensor are then given by

ε+ :=
3∑
i=1

〈εi〉+ni ⊗ ni and ε− :=
δ∑
i=1

〈εi〉−ni ⊗ ni (3.4)

where the Macaulay bracket operators are defined as

〈x〉+ := (x+ |x|)/2 and 〈x〉− := (x− |x|)/2. (3.5)

∂B

B

Γ

P ∈ B

Figure 3.1: Sharp crack embedded in a solid body

Approximation of the total surface area of a sharp crack Γ in the body B, as demon-

strated in the Figure 3.1,

S :=

∫
Γ

dA ≈
∫
B
γl(d,∇d)dV (3.6)

depends on the crack phase field d and it gradient ∇d. The phase-field values vary

within the interval d ∈ [0, 1] where the lower bound represents intact state and the

upper bound represents the fully broken state.

The crack surface density function can be defined as

γl(d,∇d) :=
1

2l
d2 +

l

2
|∇d|2 (3.7)

where the length scale parameter, l, controls the width of the crack. Sharp crack

topologies could be obtained by choosing a small length scale parameter as shown

in Figure 3.2. Thus, the length scale, l, has a significant effect on the behavior of

material response.
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Figure 3.2: Phase-field approximations with different length scale values

The state of the material,

State(x, t) = {u(x, t), d(x, t), ξ(x, t)}, (3.8)

is constituted by the displacement field, u(x, t), the crack phase field, d(x, t), and the

degree of hydration, ξ(x, t), which indicates the extend of hydration of the material.

3.2 Governing Equations

Newton’s second law of motion, the conservation of linear momentum principle,

dI

dt
= F , (3.9)

states that the rate of change of linear momentum of a body part P over time is equal

to the net force acting on it. The linear momentum is defined as

I =

∫
P
ρvdV (3.10)

and the mechanical force F mentioned in (3.9) is given as

F =

∫
P
ρbdV +

∫
∂P
tdA. (3.11)
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Using (3.10) and (3.11) the conservation of linear momentum, (3.9), can be expressed

as
d

dt

∫
P
ρvdV =

∫
P

(ρ̇v + ρv̇)dV =

∫
P
ρbdV +

∫
∂P
tdA. (3.12)

With the utilization of the Cauchy’s theorem and the Gauss integral theorem, the

surface integral in (3.12) becomes∫
∂P
tdA =

∫
∂P
σndA =

∫
P

div(σ)dV. (3.13)

Substituting (3.13) into (3.12) along with the conservation of mass, we arrive at∫
P

(ρa− div(σ)− ρb)dV = 0. (3.14)

The localization of (3.14),

lim
P→dV

∫
P

(ρa− div(σ)− ρb)dV = 0, (3.15)

results in the local form of the conservation of linear momentum,

ρa = div(σ) + ρb. (3.16)

The rate of the crack surface density, which is introduced in (3.7) can be described as

γ̇l(d,∇d) = δdγlḋ with δdγl := ∂dγl − div(∂∇dγl) (3.17)

holding for homogeneous Neumann boundary conditions, ∂∇dγl · nL = 0, on ∂L
where nL is the outward unit normal function and L is the crack phase field localiza-

tion zone. The variational derivative of (3.7) can then be obtained as

δdγ(d) := ∂dγ − div[∂∇dγ] =
1

l
[d− l2∆d]. (3.18)

Making use of the local dissipation, (3.18), and the irreversibility condition, ḋ > 0,

the following nonlocal damage evolution expression can be obtained,

div(q̂d)− Ĥd + f̂d = 0 (3.19)

where Ĥd is the crack driving force, q̂d and f̂d define the resistance to the crack phase

field evolution and diffusion. The latter are defined as

q̂d = −lGc∇d, f̂d =
Gc

l
d, (3.20)
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where Gc is the critical energy release rate. Thus, the balance equations (3.16) and

(3.19) with the following boundary conditions for the phase-field model of hardening

concrete are obtained.

u = ū on ∂Bu (3.21)

σn = t̄ on ∂Bt (3.22)

∂∇dγl · nL = 0 on ∂L (3.23)

3.3 Stress Response

We employ the so-called hybrid formulation, see Ambati, Gerasimov, and De Loren-

zis [43]. Therefore, the stress response can be expressed using degradation function

as

σ = σ̂(ε, d, ξ) = ĝ(d)σ̂0(ε, ξ) (3.24)

where ĝ(d) is defined as

ĝ(d) := (1− d)2. (3.25)

The degradation function expresses the degradation of the stress tensor and fulfill the

conditions

g(0) = 1, g(1) = 0, g′(1) = 0. (3.26)

The first two conditions represent the unbroken and fully broken cases, respectively.

The last one is for ensuring the convergence of energetic fracture force if the damage

converges to fully broken state.

The rigidity of concrete increases as it undergoes hydration during the hardening

process, which leads to changes in its elastic constants, e.g., the Lamé constant and

the shear modulus, over time. This fact leads to an approach of the incremental stress

update, such that

σ̂0 = σ̂0n + C : ∆εen+1, (3.27)

where σ̂0n is the non-degraded stress tensor at time tn and ∆εen+1 is the incremental

elastic strain tensor for the time step of [tn, tn+1]. Moreover, C are the current tangent

moduli, expressed as

C = λ̂(χ)1⊗ 1 + 2µ̂(χ)I. (3.28)
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The hydration-dependent elastic parameters λ̂(χ) and µ̂(χ) are, respectively, the Lamé

constant and the shear modulus, which are the functions of the aging degree, χ, that

is going to be introduced in (3.49), and they should conform with the conditions of

λ̂(χ) > 0, µ̂(χ) > 0. Also, 1 and I represent the second-order identity tensor and the

fourth-order identity tensor, respectively.

The elastic part of the strain tensor, εe, is defined as the difference between the total

strain tensor and the shrinkage strain tensor, εsh := εsh1, as

εe = ε− εsh. (3.29)

3.4 Crack Driving Force

Miehe et al. [44] identified the crack driving force with the crack driving state func-

tion, D̃, which depends on set state of state variables. The crack driving force can be

stated as

Hd =
Gc

2l
max
s∈[0,t]

(D̃(State(x, s)),Hn). (3.30)

The crack driving state function, based on the energy-based approach,

D̃ = ζ

〈
ψ+

0

ψc
− 1

〉
(3.31)

is formulated in terms of the positive part of the energy storage function with a energy

storage function threshold, ψc. Hydration products are created as concrete hardens

through the hydration process. As the hydration products continue to form and mature

over time, the concrete becomes more rigid and its material parameters change. This

process also leads to the development of an incremental update of the positive part of

the energy storage function, as mentioned in (3.30). Therefore, the current value of

the positive part of the energy storage function is defined as

ψ+
0n+1(ε) = ψ+

0n(ε) + ∆ψ+
0 (ε), (3.32)

where ∆ψ+
0 (ε) is the increment of energy storage function and it is expressed by

∆ψ+
0 (ε) = σ+

0 : ∆εe+. (3.33)

The incremental elastic strain tensor, ∆εe+, in (3.33) is defined by

∆εe± := εe± − εen±, (3.34)
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where the positive and negative parts of the elastic strain tensor are defined by using

the Macaulay brackets as

εe± :=
δ∑
i=1

〈εi〉±ni ⊗ ni, (3.35)

where ε1,...,δ are the principal elastic strains and the n1,...,δ are the principal directions.

The positive part of the non-degraded stress tensor, σ+
0 , in (3.33) is defined as

σ+
0 = σ+

0n + ∆σ+
0 (3.36)

and the positive part of the incremental non-degraded tensile stress tensor is calculated

as

∆σ+
0 = C : ∆εe+. (3.37)

3.5 Hydration of Cement

Concrete gains its strength and rigidity through highly exothermic reaction that is

called hydration. The degree of hydration, ξ, is introduced as the measure of the

extent of hydration, [45], [46], [42]. Its definition can be made as the ratio of amount

of heat liberated per unit volume to the final amount of liberated heat per volume

under ideal conditions. Thus, it is expected that the degree of hydration should reach

1 for complete hydration.

The evolution of the degree of hydration is adopted from the work of Di Luzio and

Cusatis [42] and is described as

ξ̇ = Ãξ(ξ)β(h) exp(−Eac
RT

), (3.38)

where Ãξ(ξ) is defined as the normalized affinity that completely characterizes the

hydration kinetics and it is stated as

Ãξ = Ac1 exp(− ηξ
ξ∞

)

(
Ac2
ξ∞

+ ξ

)
(ξ∞ − ξ), (3.39)

Eac is activation energy for hydration; R is the universal constant for ideal gases with

the value of 8.315 J/(mol K); η, Ac1, and Ac2 are the material parameters.

The factor β(h) appearing in the (3.38) is related with moisture effects on the hydra-

tion and it is expressed as

β(h) = [1 + (5.5− 5.5h)4]−1, (3.40)
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where h is referred to as the moisture. In the scope of this work, moisture effects

are not considered and thus we take h as 1. For h = 1, β(h) becomes 1 and (3.38)

yields to the one that Cervera et al. [46] have defined. However, the parameter val-

ues related with the normalized affinity, (3.39), used in this work are validated and

calibrated using the one that Di Luzio and Cusatis [42] described. Thus, for the sake

of convenience evolution of the degree of hydration (3.38) defined by Di Luzio and

Cusatis [42] is used.

The Newton-Raphson scheme is adopted for the iterative update of ξ through the

non-linear evolution equation,

ξk+1 = ξk − a−1
k rk, (3.41)

where r is referred as residual and could be calculated as

rk = ξk+1 − ξk − (tn+1 − tn)ξ̇n+1. (3.42)

Also, a is defined as

a =
dr

dξ
. (3.43)

3.6 Aging Mechanism

The hardening of mortar is characterized by hydration. Concrete gains its rigidity

and strength over time during the hardening process. Thus, the material properties

of young concrete change over time during hardening. Cervera et al. [46] introduce

an intermediate variable called the degree of aging for the relation of the hydration

degree with the aging of concrete [46]. Mechanical properties including the com-

pressive strength fc(χ), the tensile strength ft(χ), and the elastic modulus Ec(χ) are

defined as

fc(χ) = χf∞ (3.44)

ft(χ) = 0.1fc(χ) (3.45)

Ec(χ) = χ2/3E∞, (3.46)

where E∞ is the final value of the elastic modulus and f∞ denotes the final compres-

sive strength of concrete corresponding to the fully hydrated state.
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Then, the Lamé constants introduced in 3.28 can be calculated using the elastic mod-

ulus and the Poisson’s ratio by

λ̂(χ) =
Ec(χ)ν

(1− ν)(1− 2ν)
, (3.47)

µ̂(χ) =
Ec(χ)

2(1 + ν)
. (3.48)

The degree of aging definition is adopted from the work of Di Luzio and Cusatis [42]

where it is given by

χ̇ = ξ̇

(
Tmax − T
Tmax − Tref

)ηχ
(Bχ − 2Aχξ) (3.49)

with the conditions of ξ > ξ0, otherwise χ̇ = 0. ξ0 is the value of the degree of

hydration at the end of the setting phase, in which concrete could be regarded as

solid. Tmax is the maximum temperature that hardening can take place, Tref is the

reference temperature that the calibration of model is done. In this work T is taken as

constant. Therefore, we have

Tmax − T
Tmax − Tref

= 1. (3.50)

Moreover, ηχ and Aχ, appearing in (3.49) are the model parameters that should be

identified based on the experimental data. Also, Bχ is defined as

Bχ =
1 + Aχ(ξ2

∞ − ξ2
0)

ξ∞ − ξ0

. (3.51)
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CHAPTER 4

NUMERICAL EXAMPLES

The numerical examples are presented to investigate the development of residual

stresses, due to hardening, in terms of principal stresses and the evolution of the

ratio of principal stresses to the instantaneous tensile strengths, β, and consequently

investigate the effect of residual stresses on the hardened meso-structure using brittle

phase-field fracture analyses. In the light of the governing and constitutive equations

introduced in Chapter 3, numerical examples are conducted using the Finite Element

Analysis Program (FEAP) [47]. The mesh that are used in the following numeri-

cal examples are generated using the Computational Geometry Algorithms Library

(CGAL) [48].

This chapter is divided into three parts, the validation of the numerical solutions, the

development of residual stresses due to hardening of mortar, and the fracture behav-

ior of meso-structure in tension. The validation of the methodology is conducted in

Section 4.1 through the comparison of the analytical and the numerical solutions of

a model of pure mortar sample in Section 4.1.1, the investigation of mesh conver-

gence in Section 4.1.2, and the statistical study in Section 4.1.3. In Section 4.2, the

development of residual stresses is investigated by considering different cases. With

this objective, different meso-structure models are generated according to Chapter 2.

Different cases are numbered with Roman numerals I to VII. Case I, the control case,

is used as a point of comparison for the other cases. In Section 4.2.1 the total area

fraction of coarse aggregates, in Section 4.2.2 the assessment of segregation effect

which may occur due to over vibration of fresh concrete, the effect of elongation ratio

in Section 4.2.3, and the effect of the shape of aggregates in Section 4.2.4 are exam-

ined in terms of the development of principal stresses and the evolution of the ratio of

principal stresses to the instantaneous tensile strengths, β. The examinations are con-
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ducted through the comparisons at the end of four different times, 1. Day, 7. Day, 14.

Day, and 28. Day. All cases related with each section are presented in Table 4.4. The

applied shrinkage strain is given in Figure 4.3. The dimensions of all meso-structures

are 150 mm× 150 mm.

In Section 4.2 the effect of residual stresses on the tensile behavior of hardened meso-

structure is examined, also the cases given in Table 4.4 are compared under tensile

loading in the presence and absence of residual stresses.
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Figure 4.1: (a) Evolution of degree of hydration (b) Evolution of degree of aging

In the following numerical analyses, the hardening of concrete for 28 days is con-

sidered. The evolution of the degree of hydration according to hydration kinetics

presented in Section 3.5 and the evolution of the degree of aging described in Section

3.6 are shown in Figure 4.1. Analyses using different evolutions of the degree of hy-

dration, Figure 4.2, are conducted and they are resulted in close values of maximum

principal stresses, Table 4.1. Therefore, for the sake of convenience the evolution

presented in Figure 4.1a is used.
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Figure 4.2: The degree of hydration with respect to time

Table 4.1: Maximum principal stresses (MPa ×10−2)

Evolution 1 Evolution 2 Evolution 3

5.94 5.89 4.31

The material parameters that are used for all presented numerical examples are given

in Table 4.2, the modulus of elasticity value given for the mortar represents the value

when the degree of aging reaches to 1. The Poisson’s ratio of mortar remains constant

throughout the hydartion and other parameters related with the degree of hydration

are given in Table 4.3.

Table 4.2: Material Parameters

Constituents Modulus of Elasticity (GPa) Poisson’s ratio

Mortar 20 0.18

Aggregates 40 0.18
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Table 4.3: Parameters governing the hydration of mortar

Parameter Units Value

Ac1 h−1 6× 107

Ac2 - 7× 10−3

η - 6.5

w/c - 0.66

Eac J mol−1 45646

R J/(mol K) 8.315
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Figure 4.3: Applied Shrinkage Strains
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Table 4.4: Numerical example cases

Related

Section
Case

Examined

parameter

Area

ratio
Elongation Figure

Section 4.2.1

Case I Control Case 0.5 1 ∼ 2

Case II Area Ratio 0.35 1 ∼ 2

Case III Area Ratio 0.6 1 ∼ 2

Section 4.2.2

Case I Control Case 0.5 1 ∼ 2

Case IV Segregation 0.5 1 ∼ 2

Section 4.2.3

Case I Control Case 0.5 1 ∼ 2

Case V Elongation 0.5 1 ∼ 3

Section 4.2.3

Case VI Round Edges 0.5 1 ∼ 2

Case VII Sharp Edges 0.5 1 ∼ 2
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4.1 Validations

Validations of the conducted numerical solutions are presented in this section. Com-

parison of analytical and numerical solutions for the stress evolution in a hardening of

mortar is presented in Section 4.1.1, the mesh convergence study is carried out in Sec-

tion 4.1.2, and the linear elastic calculations to verify the statistical representativeness

of fifty meso-structures generated for Case I are conducted in Section 4.1.3.

4.1.1 Hardening of Mortar

In this example, stress evolution in a hardening of mortar is investigated. To ensure

that the numerical implementation in this work is done correctly the comparison of

analytical solution and the solution obtained from the implementation are compared.

For this purpose, material point analyses with uniform strain field are performed. In

these plain-strain analyses, the normal strain in the vertical direction and the normal

stress in the horizontal direction are set to zero.

4.1.1.1 Analytical Solution

The evolution of material parameters necessitates an incremental update of the stress

tensor, as it is described in (3.27). Since the loading is only applied as shrinkage, the

occurrence of any mechanical strain is not expected except for the one in the direction

of x. The elastic strain tensor can be obtained as defined at (3.29), such that

εe = ε− εsh1

εe =


ε11 0 0

0 0 0

0 0 0

− εsh


1 0 0

0 1 0

0 0 1



=


ε11 − εsh 0 0

0 −εsh 0

0 0 −εsh

 .
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Subtracting the forms of two consecutive time step of the algorithmic form of (3.29),

∆εe = ∆ε−∆εsh1, (4.1)

incremental elastic strain tensor can be obtained. Since there are no restraints in the

x direction, the stress and thus the incremental stress in that direction will not exist,

i.e.

∆σ11 = 0. (4.2)

Utilizing the input of Lamé parameter values, along with the incremental stress for-

mulation presented in (3.27) and the condition outlined in (4.2), ε11 can be obtained

as

∆σ11 = C11kl : ∆εkl = 0 (4.3)

The elastic strain is obtained using the value of ε11. Therefore, by using (3.27), σ22 can

be calculated and compared to the findings obtained from the finite element solution

with the boundary conditions leading to the same strain state. The comparison of

the maximum principal stresses obtained from the material point (driver) calculations

with those from the finite element analysis in Figure 4.4 indicates that the numerically

obtained shrinkage-induced principal stress values agree well with the analytically

obtained results.
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4.1.2 Mesh Convergence

The mesh convergence study of a hardened specimen and a hardening specimen is

conducted in this section for different values of mesh sizes. The analyses are con-

ducted using triangular finite elements with maximum edge lengths of 0.3 mm, 0.5

mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm, and 4.0 mm. For this purpose, both three-

node and six-node triangles are used and it is observersed that three-node triangles

having 0.5 mm maximum edge length result in sufficiently accurate results.

4.1.2.1 Hardened Specimen

The finite element analyses of the meso-structure of Case I (Table 4.4) for the hard-

ened concrete with the material parameters given in Table 4.2 are conducted using

three-node triangles and six-node triangles. Maximum lengths of a triangle edge are

0.3 mm, 0.5 mm, 1.5 mm, 2 mm, 3 mm, and 4 mm. Upper and lower edge of the

section are restrained in both x and y directions. Time step is taken as 0.001 and the

total step number is 100, displacement is applied proportional to the time with the

range of 0 − 0.01 × 150 mm at y = 150 mm in the direction of y. The convergence

of the mesh could be observed with the Figure 4.5.

Figure 4.5: Reaction loads with respect to total degrees of freedom
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4.1.2.2 Hardening Specimen

The geometry of models are the same as the one described in Section 4.1.2.1. At

the lower edge of the section translation in y direction is restrained. There is no

mechanical loading, only the shrinkage is applied while mortar is hardening. The

analyses are carried out with meshes that have the maximum edge lengths of 0.3

mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 3 mm, and 4 mm. Material parameters are

given in Tables 4.2 and 4.3, the elastic modulus given for the mortar is the value at

the end of the hardening process. The displacement values for the nodes that are

placed at the left and right upper edge of the section are given in Table 4.5. The

convergence of the analyses can be observed in Figure 4.6 where x axis represents the

total degrees of freedom of related mesh and the y axis represents the displacement

of upper rightmost node of related mesh in y direction, which is also given in Table

4.5. The convergence analyses conducted on both hardened and hardening specimen

indicate that three-node linear triangular elements with edge length smaller than 1

mm and six-node quadratic triangular elements with edge length smaller than 2 mm

give sufficiently accurate results. In this study, we use three-node triangles with edge

of length 0.5 mm in the residual stress calculations in Section 4.2 and three-node

triangles with edge of length 1 mm in the fracture analyses in Section 4.3 for the sake

of convenience.

Table 4.5: Displacement values (mm× 10−4) in y direction of nodes at left and right

upper edge

Maximum Edge Length 3-Node 6-Node

mm Left Node Right Node Left Node Right Node

hmax = 4.0 −2.1983 −2.0195 −2.2289 −2.0508

hmax = 3.0 −2.2128 −2.0382 −2.2309 −2.0529

hmax = 2.0 −2.2214 −2.0470 −2.2316 −2.0534

hmax = 1.5 −2.2256 −2.0497 −2.2318 −2.0536

hmax = 1.0 −2.2289 −2.0519 −2.2320 −2.0537

hmax = 0.5 −2.2312 −2.0532 −2.2321 −2.0537

hmax = 0.3 −2.2318 −2.0535 −2.2321 −2.0537
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Figure 4.6: Displacement in y direction of upper leftmost node with respect to total

degrees of freedom

4.1.3 Statistical Study

In this section, the deviation of maximum principal stress and stiffness values ob-

tained from meso-structures having the same set of parameters, referred as subcases,

is examined. With this objective, 50 subcases with the cross-section of 150×150 mm2

are obtained using control parameters and 9 of them are depicted in Figure 4.7. The

geometry, the material parameters, and the loading are exactly the same given in Sec-

tion 4.1.2. In the analyses, three-node triangles are used with the maximum edge

length of 0.5 mm. At the upper and lower edge of the section translation in y direc-

tion is restrained, at the leftmost nodes at both upper and lower edge the translation

in x direction is also restrained. The maximum principal stress attained for all sub-

cases is given in Figure 4.9. The load displacement curves for every subcase is given

in Figure 4.8 and the stiffness values are shown in Figure 4.10. The distribution of

principal stresses and stiffness values with respect to the total subcase numbers are

shown in Figures 4.11 and 4.12.
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(a) Subcase 1 (b) Subcase 2 (c) Subcase 3

(d) Subcase 4 (e) Subcase 5 (f) Subcase 6

(g) Subcase 7 (h) Subcase 8 (i) Subcase 9

Figure 4.7: Nine examples of subcases obtained with control parameters
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Figure 4.10: Stiffness values of each subcase and its deviation from the average value

The statistical analysis conducted through the generation of fifty subcases of the con-

trol case (Case I in Table 4.4) indicate that the dispersion of the stiffness value among

the subcases is quite small as shown in Figures 4.8, 4.10, and 4.12. The maximum

deviation from the average stiffness is less than 1%, see Figure 4.10. Although the

variation of the maximum principal stress among subcases is overall less than 9%,

this value falls into the nearly 6% for majority of cases as shown in Figure 4.9, see

also Figure 4.11. Based on these results obtained from the statistical analysis con-

ducted on Case I (Control), we conclude that one meso-structure randomly generated

for each of seven different cases, presented in Table 4.4, is sufficiently representative

for the investigations presented in Sections 4.2 and 4.3.
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(a) (b)

Figure 4.11: Density and probability density distribution functions of principal

stresses

(a) (b)

Figure 4.12: Density and probability density distribution functions of stiffness values

4.2 Shrinkage-Induced Residual Stress Evolution

The investigation of the evolution of the residual stresses for hardening mortar under

autogenous shrinkage is conducted in this section. The evolution of the crack phase-

field is deactivated during the residual stress analysis. The translation in y direction

of bottom-edge nodes are fixed and springs that are active only in compression are
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placed at the left-edge and the right-edge nodes of the meso-structure as it is shown

in Figure 4.13. Furthermore, the nodes at the top-edge free to move in both directions.

The comparison between the cases is made in terms of the maximum principal stress

values and the values of β, which is defined as the instantaneous ratio of the maximum

principal stress to the tensile strength.

Figure 4.13: Boundary Conditions

4.2.1 Area Ratio

The area ratio refers to the ratio of area of aggregates to the cross-sectional area of

the cross-section as stated in Wang et al. [22]. Case II and Case III are inspected

and compared with the control case (Case I). The duration of the analysis is 28 days.

The area ratio of Case I is 0.5. At the end of 28 days, the maximum principal stress

obtained is 0.036 MPa and the maximum β ratio is 0.01. The area ratio of Case II

is 0.35. At the end of 28 days, the maximum principal stress obtained is 0.035 MPa

and the maximum β ratio is 0.0098. The area ratio of Case III is 0.6. At the end of

28 days, the maximum principal stress obtained is 0.034 MPa and the maximum β

ratio is 0.0090. The principal stress and β values are shown for the compared cases

in Figures 4.14(a) and 4.15(a). For every case the maximum principal stress and β

values are shown for different days to be able to observe the evolutions of them. The

days are selected to be 1, 7, 14, and 28. Each row of the Figures 4.14(a) and 4.15(a)

represents the case stated at the far left of the row and each column represents the

the end of the day from which the values are taken, for every column corresponding

43



legend is given at the base of the column.

1. Day 7. Day 14. Day 28. Day

Control Case

Case II

Case III

(a)

(b)

Figure 4.14: Maximum principal stress values (a) Contour plots (b) Histograms

Histogram plots are utilized to compare the cases. The plots are given in Figures

4.14(b) and 4.15(b) for principal stresses and β values respectively. The columns in

Figures 4.14(a) and 4.15(a) are aligned with corresponding histogram plots of Figures

4.14(b) and 4.15(b). In Figure 4.14(b) Case II has a higher probability of having lower

values of maximum principal stresses and Case III has a higher probability of having

higher values of maximum principal stresses. The reason behind the histogram plots

of Case III and Control Case are not much distinct from each other that the area ratio
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interval between Control Case and Case II is higher than the interval between Control

Case and Case III, another reason can be that the increase in probability can have a

non-linear relation with the area ratio of the meso-structure. Therefore, the observa-

tion of an increasing probability of maximum principal stresses with increasing area

ratio of the meso-structure can be made.

1. Day 7. Day 14. Day 28. Day

Control Case

Case II

Case III

β β β β

(a)

(b)

Figure 4.15: β values (a) Contour plots (b) Histograms
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4.2.2 Segregation

Segregation can be defined as the seperation of some size of aggregates from the

mortar. It is mainly due to the over vibration of fresh concrete. It can result in honey-

combing, a decrease in ultimate strength. All parameters of Case IV are the same with

with that of the control case. Only the placing process of the aggregate is manipulated

to obtain a segregated model where coarses aggregates appear denser in the lower part

of the section. At the end of 28 days, the maximum principal stress obtained is 0.035

MPa and the maximum β ratio is 0.0097. The principal stress and β values are shown

for the compared cases in Figures 4.16(a) and 4.17(a). For every case the maximum

principal stress and β values are shown for different days to be able to observe the

evolutions of them. The days are selected to be 1, 7, 14, and 28.

1. Day 7. Day 14. Day 28. Day

Control Case

Case IV

(a)

(b)

Figure 4.16: Maximum principal stress values (a) Contour plots (b) Histograms
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Each row of the Figures 4.16(a) and 4.17(a) represents the case stated at the far left

of the row and each column represents the end of the day from which the values are

taken, for every column corresponding legend is given at the base of the column.

Generation of a segregated meso-structure forces the bigger aggregates to be placed

at the bottom of the meso-structure and the probability of smaller aggregates to be

placed at the top places of the meso-structure increases. Aggregates being close to

each other results in stress concentrations. Although bigger aggregates cause stress

concentration at the bottom of the meso-structure the smaller ones are going to be

placed far away from each other at the top and this fact cause more mortar area to

prevent having stress concentrations and it could be seen in Figure 4.16 Case IV has

a higher probability of having smaller values of maximum principal stresses than the

Control Case.

1. Day 7. Day 14. Day 28. Day

Control Case

Case IV

β β β β

(a)

(b)

Figure 4.17: β values (a) Contour plots (b) Histograms
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4.2.3 Elongation Ratio

Elongation ratio generally associated with different types of aggregate shapes. Crushed

aggregates are generally flaky and elongated unlike coarse aggregates, which are gen-

erally round. Elongation ratio of Case V varies between 1 and 3. At the end of 28

days, the maximum principal stress obtained is 0.039 MPa and the maximum β ratio

is 0.011. The principal stress and β values are shown for the compared cases in Fig-

ures 4.18(a) and 4.19(a). For every case the maximum principal stress and β values

are shown for different days to be able to observe the evolutions of them. The days are

selected to be 1, 7, 14, and 28. Each row of the Figures 4.18(a) and 4.19(a) represents

the case stated at the far left of the row and each column represents the the end of the

day from which the values are taken, for every column corresponding legend is given

at the base of the column.

1. Day 7. Day 14. Day 28. Day

Control Case

Case V

(a)

(b)

Figure 4.18: Maximum principal stress values (a) Contour plots (b) Histograms
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Having a greater elongation ratio cause aggregates to have smooth edges and it is

expected that Case V should has less stress concentration spots, in Figure 4.18 the

validation of that Control Case has a higher probability of having higher values of

maximum principal stresses due to having more stress concentrations can be done.

1. Day 7. Day 14. Day 28. Day

Control Case

Case V

β β β β

(a)

(b)

Figure 4.19: β values (a) Contour plots (b) Histograms

4.2.4 Shape

The investigation of effect of having sharp edges will be conducted in this section.

For this purpose, two meso-structures, one having sharp corner aggregates and the

other one having rounded corner aggregates considered. To evaluate only this effect,

the meso-structure having sharp-corner aggregates is obtained then the cubic splines

are fitted to nodes of each aggregate to be able to obtain the one having rounded-

cornered aggregates. By doing that, two equivalent meso-structures are obtained.

49



Case VI, control case, has the maximum principal stress of 0.0035 MPa and β ratio

of 0.0097 at the end of 28 days. Case VII has the maximum principal stress of 0.0034

MPa and β ratio of 0.009 at the end of 28 days. The principal stress and β values

are shown for the compared cases in Figures 4.20(a) and 4.21(a). For every case the

maximum principal stress and β values are shown for different days to be able to

observe the evolutions of them. The days are selected to be 1, 7, 14, and 28. Each row

of the Figures 4.20(a) and 4.21(a) represents the case stated at the far left of the row

and each column represents the the end of the day from which the values are taken,

for every column corresponding legend is given at the base of the column.

1. Day 7. Day 14. Day 28. Day

Control Case

Case VII

(a)

(b)

Figure 4.20: Maximum principal stress values (a) Contour plots (b) Histograms

Current comparison could not support the observation of stress concentrations around

the sharp edges of aggregates. The reason behind that can be the autogenous shrink-

age could not be large enough to highlight this fact. A meso-structure under me-
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chanical or thermal loading could demonstrate this fact better. The rounded case,

Control Case, have area ratio greater than the case with sharp edges, Case VII, so that

the histogram plots show that in Control Case it is higher probability to have higher

maximum principal stresses.

1. Day 7. Day 14. Day 28. Day

Control Case

Case VII

(a)

(b)

β β β β

Figure 4.21: β values (a) Contour plots (b) Histograms

4.3 Fracture Behavior in Tension

In this section, a study on how the presence of residual stresses affect the behavior of

hardened meso-structure and how different type of meso-structures affect their own

behavior are conducted in Sections 4.3.1 and 4.3.2, respectively. The conducted anal-

yses are aimed to represent two consequent processes which are the hardening and

the tensile loading once it is hardened. The hardening process is already discussed
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in Section 4.2 and the tensile loading is aimed to be discussed. The investigation of

fracture behavior is done using brittle phase-field fracture model as it is described in

Chapter 3. The presence of residual stresses is aimed to observe, that is why the cases

given in Table 4.4 are analyzed with and without residual stresses. The translation in

y direction of the nodes at bottom edge are fixed in y direction and the node placed

at the left bottom edge is fixed also in x direction, the displacement is applied pro-

portional to the time at y = 150 mm in y direction as it is shown in Figure 4.22. The

evolution of the crack phase-field in the aggregates is suppressed through a high value

of the critical energy that acts as a threshold value for crack initiation. The formation

of crack in the Interfacial Transition Zone (ITZ) on the surface of an aggregate is

modeled by means of zero-thickness cohesive zone elements that are placed between

the aggregate and the mortar to represent the ITZ.

ū(t)

Figure 4.22: Boundary Conditions

Cohesive Zone Elements. The formation of cracks can be represented using cohe-

sive zone elements which extends the crack while applying surface traction. In this

work the implemented model of cohesive zone elements suggested by Corrado and

Molinari [34].

The crack opening is represented by a vector ∆ whose the tangential component is

denoted by ∆t and the normal component by ∆n. The cohesive traction is expressed
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as

T = (∆tt+ ∆nn)K (4.4)

where T consists of normal and tangential components Tn and Tt with respect to the

crack surfaces. Moreover, the parameter K is the stifness, t and n are tangent and

normal vectors to the crack surface respectively. The stiffness depend on the effective

crack opening displacement which is stated as

δ =
√

∆t + ∆n. (4.5)

The loading and the unloading-reloading regime is decided according to the maxi-

mum effective opening displacement over time δmax. The stiffness is indicated for

δ = δmax as

K =
σc
δ

(1− δ

δc
) (4.6)

where σc is the tensile strength and δc is the critical opening displacement.

For the unloading-reloading path the stiffness is stated as

K =
σc
δmax

(1− δmax
δc

) (4.7)

The initial stiffness for δmax < δi is stated as

K =
σc
δi
. (4.8)

σc

δmax δc

T

δδi

Figure 4.23: Unloading reloading path for cohesive zone element
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The values of parameters that are related with the cohesive zone elements are given

in Table 4.6.

Table 4.6: Cohesive Zone Element Parameters

σc δi δc

(N/mm) (mm) (mm)

1.3 4.6× 10−4 4.6× 10−2

The tangential traction is treated as a linear loading-unloading path, and due to the

stability issues that it might create, the stiffness of it is taken small enough to neglect

its effect.

4.3.1 Effect of Residual Stresses

The development of residual stresses through hardening of mortar results in micro-

cracks. Micro-cracks builds up to macro-crack in hardened meso-structure under

tensile loads. Cases given in Table 4.4 are examined under tensile loading in the pres-

ence and absence of the residual stresses. The load displacement curves; crack pattern

with and without residual stresses for every case are given in Figures 4.24-4.30.

Case I (Control Case). The maximum loads obtained with and without the presence

of residual stresses are 258 N and 266 N for control case under tensile loading re-

spectively. Load displacement curve; crack patterns with and without the presence of

residual stresses are shown in Figure 4.24. The presence of residual stresses cause

the meso-structure to obtain a lower value of maximum load and it also decreases

the stiffness of the meso-structure. Both effects can be observed in Figure 4.24(a).

The presence of the residual stresses can result in the change of the crack pattern as

it can be seen from Figures 4.24(b) and 4.24(c). Toughness values are calculated as

2.9 mJ and 3.4 mJ with and without the residual stresses, respectively. Furthermore,

the toughness of the section with the residual stresses is slightly less than that of the

same section in the absence of residual stresses.
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(a) (b) (c)

d d

Figure 4.24: Control case: (a) Load displacement curve (b) Fracture formation with

residual stresses (c) Fracture formation without residual stresses

Case II. The maximum loads obtained are 287 N and 297 N with and without the

residual stresses, respectively. The decrease in initial stiffness and the decrease in

attaining lower values of maximum load are obversed in Figure 4.25(a). It can be

observed from Figures 4.25(b) and 4.25(c) the crack pattern are very similar. This is

also reflected by the similar toughness values, which are calculated as 2.8 mJ.

(a) (b) (c)

d d

Figure 4.25: Case II: (a) Load displacement curve (b) Fracture formation with resid-

ual stresses (c) Fracture formation without residual stresses
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Case III. The maximum loads obtained are 231 N and 236 N with and without the

residual stresses, respectively. The decrease in initial stiffness and the decrease in

attaining lower values of maximum load are obversed in Figure 4.26(a). It can be

observed from Figures 4.26(b) and 4.26(c) the crack pattern are very similar, so do

the toughness values, which are calculated as 3.8 mJ.

(a) (b) (c)

d d

Figure 4.26: Case III: (a) Load displacement curve (b) Fracture formation with resid-

ual stresses (c) Fracture formation without residual stresses

Case IV. The maximum loads obtained are 254 N and 261 N with and without the

residual stresses, respectively. The decrease in initial stiffness and the decrease in the

attained values of maximum load are obversed in Figure 4.27(a). It can be observed

from Figures 4.27(b) and 4.27(c) the crack patterns are very similar, so do the tough-

ness values, which are calculated as 2.5 mJ. Forcing bigger aggregate to be placed

at the bottom of the meso-structure results in aggregates at these spots to become far

close to each other. Therefore, at the bottom part of the meso-structure the stress

concentration occurs so that the crack pattern is likely to be in the bottom part of the

meso-structure.
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(a) (b) (c)

d d

Figure 4.27: Case IV: (a) Load displacement curve (b) Fracture formation with resid-

ual stresses (c) Fracture formation without residual stresses

Case V. The maximum loads obtained are 242 N and 248 N with and without the

residual stresses, respectively. The decrease in initial stiffness and the decrease in

the attained values of the maximum load are observed in Figure 4.28(a). It can be

observed from Figures 4.28(b) and 4.28(c) the crack patterns are very similar, so do

the toughness values, which are calculated as 2.6 mJ.

(a) (b) (c)

Figure 4.28: Case V: (a) Load displacement curve (b) Fracture formation with resid-

ual stresses (c) Fracture formation without residual stresses
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Case VI (Control Case). The maximum loads obtained are 290 N and 298 N with

and without the presence of residual stresses, respectively. The decrease in initial

stiffness and the decrease in the attained values of the maximum load are observed

in Figure 4.29(a). It can be observed from Figures 4.29(b) and 4.29(c) the crack

patterns are very similar. However, there is a slight difference between toughness

values which are calculated as 3 mJ and 2.7 mJ with and without the residual stresses,

respectively.

(a) (b) (c)

d d

Figure 4.29: Case VI: (a) Load displacement curve (b) Fracture formation with resid-

ual stresses (c) Fracture formation without residual stresses

Case VII. The maximum loads obtained are 331 N and 341 N with and without the

presence of residual stresses, respectively. The decrease in initial stiffness and the

decrease in the attained values of the maximum load are obversed in Figure 4.30(a).

It can be observed from Figures 4.30(b) and 4.30(c) the crack patterns are very similar,

so do the toughness values, which are calculated as 3.1 mJ.
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(a) (b) (c)

d d

Figure 4.30: Case VII: (a) Load displacement curve (b) Fracture formation with resid-

ual stresses (c) Fracture formation without residual stresses

4.3.2 Comparison of Cases

The cases given in Table 4.4 are compared against Control Case under tensile loading

using brittle phase-field model stated in Chapter 3. The comparison of the cases with

and without the residual stresses shows the same behavior, and thus, only the results

obtained without residual stresses will be presented.

Area Ratio. Case I (Control Case), Case II, and Case III are compared in order to

observe the effect of the area ratio of aggregates. Having more aggregate increases

the general stiffness of the meso-structure since aggregate is stiffer than the mortar.

However, this fact could not be observed with the results. Figure 4.31 shows that Case

II, where the area ratio is the smallest, is the stiffest one and it experiences the highest

maximum load than the others while Case III, where the area ratio is the highest, is

the least stiff one and it experiences the lowest maximum load than the others. The

reason behind this fact is thought to be cohesive zone elements add compliance to the

meso-structure. The contribution of aggregate stiffness to the general stiffness of the

meso-structure could not be added up due to cohesive zone elements. Increase in the

area ratio of aggregates causes the total perimeter of aggregates to increase and that

causes the total number of cohesive zone elements to increase and more compliance
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is added to the system. The total perimeter of aggregates are calculated as 2827 mm,

1927 mm, and 3476 mm for Case I, Case II, and Case III, respectively. Analyses

without cohesive zone elements are conducted to observe the compliance added by

the cohesive zone elements. It is observed that the load displacement curves become

similar for Case I, Case II, and Case III. However, it should be noted that the crack

patterns obtained with these analyses differ from those conducted with cohesive zone

elements.

Figure 4.31: Load displacement curve for area ratio comparison

Segregation. The values of parameters generated for Case IV is the same with Con-

trol Case. Therefore, both of them should attain close values of maximum loads and

close values of stiffnesses. This fact can be seen in Figure 4.32.

Figure 4.32: Load displacement curve for segregation comparison
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Elongation Ratio. Control Case and Case V are aimed to be examine the effect of

elongation ratio of aggregates. Load displacement curves are given in Figure 4.33.

Case I experienced a higher value of maximum load, and although the initial stiff-

nesses of both cases are the same, the stiffness of Case V started to decrease as the

applied load approached its maximum. Having greater elongation ratio cause aggre-

gates to have round edges, so that it is expected to Control Case to have more stress

concentrations than Case V; therefore, the behavior seen in Figure 4.33 should be

opposite of that. However, although there is no supplied proof of that, having greater

elongation ratio could cause aggregates to be placed closer to each other, thus, more

stress concentration could occur in Case V and the behavior in Figure 4.33. There-

fore, without additional evidence, it is difficult to determine the exact behavior seen

in Figure 4.33.

Figure 4.33: Load displacement curve for elongation ratio comparison

Shape. The comparison regarding for the effect of aggregate shape is done with Case

VI (Control Case) and Case VII which are equivalent meso-structures of each other.

Load displacement curves are given in Figure 4.34. Having sharp corners results in

more stress concentrations to occur and those occurances leads to fracture to initiate.

However, the total perimeters of aggregates are calculated as 3044 mm and 2900

mm for Case VI and Case VII, respectively. Therefore, the total number of cohesive

elements are greater in Case VI. Thus, the compliance that is added up to the system

by the cohesive zone elements is observed.
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Figure 4.34: Load displacement curve for shape comparison
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CHAPTER 5

CONCLUDING REMARKS

In this thesis, the evolution of residual stresses due to autogenous shrinkage of hard-

ening mortar at mesoscale has been examined. For this purpose, seven different meso-

structures of concrete that differ from one another by different geometrical, fractional,

and topological features have been generated. The fracture behavior of these sections

of concrete with distinct meso-structures have then been analyzed under direct tension

using the brittle phase-field model based on the work of Miehe et al. [44] and the co-

hesive zone elements based on the work of Corrado and Molinari [34] in the presence

and absence of residual stresses. The meso-structures examined in this study have

been generated using the Take-and-Place method, suggested in Wang et al. [22]. The

hydration kinetics that characterizes the shrinkage and aging mechanism has been

adopted from the work of Cervera et al. [46]. Shrinkage strain is applied as being a

linear function of the degree of hydration.

The development of principal stresses and the ratio of the maximum principal stresses

to the instantenous tensile strengths are used as the measures used in the comparison

of seven different meso-structures. These different cases have been used to investigate

the effects of the area ratio, the segregation, the elongation ratio, and the sharpness

of coarse aggregates. The contour and histogram plots of principal stresses and the

β values have been used to compare the cases. It is observed that a greater area ratio

of aggregates increases the probability of having higher values of principal stresses,

segregation increases the probability of smaller values of principal stresses and the

occurence of stress concentration exists on the locations where bigger aggregates are

accumulated. However, it is worth noting that the autogenous shrinkage may not be

enough to highlight the fact of sharp edges of aggregates leading to stress concentra-

tions. The distinction of contour plots of principal stresses and their histogram plots
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has not been come out to be pronounced for the compared cases and also the stress

concentrations around the sharp edges of aggregates has not been observed due to

residual stress development. These are due probably to the relatively low levels of

autogenous shrinkage and its uniform distribution throughout the mortar. It is seen

that the presence of residual stresses both decrease the stiffness of the meso-structure

and reduce the value of maximum load that could be attined. The comparison of

fracture behavior of different cases validates the stress concentrations occur between

aggregates that are close to each other and results in the formation of crack. The cases

where segregation is observed clearly show that the crack formation occur at lower

parts of the meso-structure where the bigger aggregates are accumulated. However,

the cohesive zone elements add to the compliance of the meso-structures as clearly

observed in the comparison where a higher area ratio resulted in a decreased in stiff-

ness and the ultimate load. Also, similar load displacement curves are obtained with

analyses conducted without cohesive zone elements for different cases. Therefore,

validation of compliance can be done. However, it should be noted that the crack

patterns obtained with these analyses differ from those conducted with cohesive zone

elements. Furthermore, the formation of crack due to stress concentrations around

sharp edges of aggregates has been observed due to the compliance related with cohe-

sive zone elements. Overall, based on the results obtained it can be stated that while

the pre-cracking stiffness and the tensile strength of meso-structures are primarily

controlled by the properties of cohesive elements used to model ITZ, the toughness

of the sections is chiefly governed by the pattern of cracking in mortar that is es-

sentially regulated by the stress localizations due to shrinkage and the properties of

coarse aggregates.

As it is the case for the failure behavior of any composite material, the cohesive be-

havior of interfacial zone governs the overall macroscopic behavior a meso-structure.

Therefore, besides the correct account for the residual stress evolution, the sound

modeling of ITZ is of key importance as clearly demonstrated through the examples

presented in this study. Therefore, a precise parameter study should be conducted on

cohesive zone elements to suppress the spurious introduction of compliance to the

meso-structure. Moreover, future studies could include different types of shrinkage

for more accurate representation of the development of residual stresses. Including

different types of shrinkage may result in a more clear comparison between different
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cases.
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